Document Number: 81373 For technical questions, contact: emittertechsupport@vishay.com www.vishay.com
Rev. 1.3, 03-Nov-09 322
Infrared Emitting Diode, 950 nm, GaAs
VSMS3700
Vishay Semiconductors
DESCRIPTION
VSMS3700 is an infrared, 950 nm emitting diode in GaAs
technology, molded in a PLCC-2 package for surface
mounting (SMD).
FEATURES
Package type: surface mount
Package form: PLCC-2
Dimensions (L x W x H in mm): 3.5 x 2.8 x 1.75
Peak wavelength: λp = 950 nm
High reliability
Angle of half intensity: ϕ = ± 60°
Low forward voltage
Suitable for high pulse current operation
Good spectral matching with Si
photodetectors
Package matched with IR emitter series VEMT3700
Floor life: 168 h, MSL 3, acc. J-STD-020
Lead (Pb)-free reflow soldering
AEC-Q101 qualified
Compliant to RoHS directive 2002/95/EC and in
accordance to WEEE 2002/96/EC
Find out more about Vishay’s Automotive Grade Product
requirements at: www.vishay.com/applications
APPLICATIONS
Infrared source in tactile keyboards
IR diode in low space applications
PCB mounted infrared sensors
Emitter in miniature photo-interrupters
Note
Test conditions see table “Basic Characteristics”
Note
MOQ: minimum order quantity
94 8553
PRODUCT SUMMARY
COMPONENT Ie (mW/sr) ϕ (deg) λP (nm) tr (ns)
VSMS3700 4.5 ± 60 950 800
ORDERING INFORMATION
ORDERING CODE PACKAGING REMARKS PACKAGE FORM
VSMS3700-GS08 Tape and reel MOQ: 7500 pcs, 1500 pcs/reel PLCC-2
VSMS3700-GS18 Tape and reel MOQ: 8000 pcs, 8000 pcs/reel PLCC-2
** Please see document “Vishay Material Category Policy”: www.vishay.com/doc?99902
www.vishay.com For technical questions, contact: emittertechsupport@vishay.com Document Number: 81373
323 Rev. 1.3, 03-Nov-09
VSMS3700
Vishay Semiconductors Infrared Emitting Diode, 950 nm,
GaAs
Note
Tamb = 25 °C, unless otherwise specified
Fig. 1 - Power Dissipation Limit vs. Ambient Temperature Fig. 2 - Forward Current Limit vs. Ambient Temperature
Note
Tamb = 25 °C, unless otherwise specified
ABSOLUTE MAXIMUM RATINGS
PARAMETER TEST CONDITION SYMBOL VALUE UNIT
Reverse voltage VR5V
Forward current IF100 mA
Peak forward current tp/T = 0.5, tp = 100 μs IFM 200 mA
Surge forward current tp = 100 μs IFSM 1.5 A
Power dissipation PV170 mW
Junction temperature Tj100 °C
Operating temperature range Tamb - 40 to + 85 °C
Storage temperature range Tstg - 40 to + 100 °C
Soldering temperature Acc. figure 11, J-STD-020 Tsd 260 °C
Thermal resistance junction/ambient J-STD-051, soldered on PCB RthJA 250 K/W
0
20
40
60
80
100
120
140
160
180
0 102030405060708090100
21341
Tamb - Ambient Temperature (°C)
P
V
- Power Dissipation (mW)
RthJA = 250 K/W
0
20
40
60
80
100
120
0 102030405060708090100
21342
RthJA = 250 K/W
Tamb - Ambient Temperature (°C)
IF - Forward Current (mA)
BASIC CHARACTERISTICS
PARAMETER TEST CONDITION SYMBOL MIN. TYP. MAX. UNIT
Forward voltage IF = 100 mA, tp = 20 ms VF1.3 1.7 V
IF = 1 A, tp = 100 μs VF1.8 V
Temperature coefficient of VFIF = 100 mA TKVF - 1.3 mV/K
Reverse current VR = 5 V IR100 μA
Junction capacitance VR = 0 V, f = 1 MHz, E = 0 Cj30 pF
Radiant intensity IF = 100 mA, tp = 20 ms Ie1.6 4.5 8 mW/sr
IF = 1.5 A, tp = 100 μs Ie35 mW/sr
Radiant power IF = 100 mA, tp = 20 ms φe15 mW
Temperature coefficient of φeIF = 100 mA TKφe- 0.8 %/K
Angle of half intensity ϕ± 60 deg
Peak wavelength IF = 100 mA λp950 nm
Spectral bandwidth IF = 100 mA Δλ 50 nm
Temperature coefficient of λpIF = 100 mA TKλp0.2 nm/K
Rise time IF = 20 mA tr800 ns
IF = 1 A tr400 ns
Fall time IF = 20 mA tf800 ns
IF = 1 A tf400 ns
Virtual source diameter EN 60825-1 d 0.5 mm
Document Number: 81373 For technical questions, contact: emittertechsupport@vishay.com www.vishay.com
Rev. 1.3, 03-Nov-09 324
VSMS3700
Infrared Emitting Diode, 950 nm,
GaAs Vishay Semiconductors
BASIC CHARACTERISTICS
Tamb = 25 °C, unless otherwise specified
Fig. 3 - Pulse Forward Current vs. Pulse Duration
Fig. 4 - Forward Current vs. Forward Voltage
Fig. 5 - Relative Forward Voltage vs. Ambient Temperature
Fig. 6 - Radiant Intensity vs. Forward Current
Fig. 7 - Radiant Power vs. Forward Current
Fig. 8 - Relative Radiant Intensity/Power vs. Ambient Temperature
0.01 0.1 1 10
1
10
100
1000
10 000
t
p
- Pulse Length (ms)
100
95 9985
I
F
- Forward Current (mA)
DC
t
p
/T = 0.005
0.5
0.2
0.1
0.01
0.05
0.02
T
amb
< 60 °C
94 7996
10 1
10 0
10 2
10 3
10 4
10-1
I - Forward Current (mA)
F
43210
V
F- Forward Voltage (V)
0.7
0.8
0.9
1.0
1.1
1.2
VF rel - Relative Forward Voltage (V)
94 7990 Tamb - Ambient Temperature (°C)
100806040200
IF = 10 mA
IF
- Forward Current (mA)
94 7956
10
3
10
1
10
2
10
4
10
0
0.1
1
10
100
I
e
- Radiant Intensity (mW/sr)
e
- Radiant Power (mW)
I
F
- Forward Current (mA)
94 8012
10
3
10
1
10
2
10
4
10
0
0.1
1
10
1000
100
Φ
- 10 10 50 0 100
0
0.4
0.8
1.2
1.6
Ie rel;
140
94 7993
IF = 20 mA
Φe rel
T
amb - Ambient Temperature (°C)
www.vishay.com For technical questions, contact: emittertechsupport@vishay.com Document Number: 81373
325 Rev. 1.3, 03-Nov-09
VSMS3700
Vishay Semiconductors Infrared Emitting Diode, 950 nm,
GaAs
Fig. 9 - Relative Radiant Power vs. Wavelength Fig. 10 - Relative Radiant Intensity vs. Angular Displacement
PACKAGE DIMENSIONS in millimeters
Die Position (for reference only)
X = +/- 0.2 mm centrical
Y = +/- 0.2 mm centrical
Z = 1.13 mm +/- 0.25 mm, from top of die bottom of component
900 950
0
0.25
0.5
0.75
1.0
1.25
λ - Wavelength (nm)
1000
94 7994
Φe rel - Relative Radiant Power
IF = 100 mA
0.4 0.2 0
I
e, rel
- Relative Radiant Intensity
94 8013
0.6
0.9
0.8
30°
10° 20°
40°
50°
60°
70°
80°
0.7
1.0
ϕ - Angular Displacement
20541
Mounting Pad Layout
1.2
2.6 (2.8)
1.6 (1.9)
4
4
area covered with
solder resist
3.5 ± 0.2
3 + 0.15
1.75 ± 0.1
0.9
2.8 ± 0.15
CA
Pin identification
2.2
Ø 2.4
technical drawings
according to DIN
specifications
Drawing-No.: 6.541-5067.01-4
Issue: 5; 04.11.08
Document Number: 81373 For technical questions, contact: emittertechsupport@vishay.com www.vishay.com
Rev. 1.3, 03-Nov-09 326
VSMS3700
Infrared Emitting Diode, 950 nm,
GaAs Vishay Semiconductors
SOLDER PROFILE
Fig. 11 - Lead (Pb)-free Reflow Solder Profile acc. J-STD-020
DRYPACK
Devices are packed in moisture barrier bags (MBB) to
prevent the products from moisture absorption during
transportation and storage. Each bag contains a desiccant.
FLOOR LIFE
Floor life (time between soldering and removing from MBB)
must not exceed the time indicated on MBB label:
Floor life: 168 h
Conditions: Tamb < 30 °C, RH < 60 %
Moisture sensitivity level 3, acc. to J-STD-020.
DRYING
In case of moisture absorption devices should be baked
before soldering. Conditions see J-STD-020 or label.
Devices taped on reel dry using recommended conditions
192 h at 40 °C (+ 5 °C), RH < 5 %.
TAPE AND REEL
PLCC-2 components are packed in antistatic blister tape
(DIN IEC (CO) 564) for automatic component insertion.
Cavities of blister tape are covered with adhesive tape.
Fig. 12 - Blister Tape
Fig. 13 - Tape Dimensions in mm for PLCC-2
MISSING DEVICES
A maximum of 0.5 % of the total number of components per
reel may be missing, exclusively missing components at the
beginning and at the end of the reel. A maximum of three
consecutive components may be missing, provided this gap
is followed by six consecutive components.
Fig. 14 - Beginning and End of Reel
The tape leader is at least 160 mm and is followed by a
carrier tape leader with at least 40 empty compartments.
The tape leader may include the carrier tape as long as the
cover tape is not connected to the carrier tape. The least
component is followed by a carrier tape trailer with a least
75 empty compartments and sealed with cover tape.
0
50
100
150
200
250
300
0 50 100 150 200 250 300
Time (s)
Temperature (°C)
240 °C 245 °C
max. 260 °C
max. 120 s max. 100 s
217 °C
max. 30 s
max. ramp up 3 °C/s max. ramp down 6 °C/s
19841
255 °C
Adhesive tape
Component cavity
Blister tape
94 8670
1.85
1.65
4.0
3.6
3.6
3.4
2.05
1.95
1.6
1.4
4.1
3.9
4.1
3.9
5.75
5.25
8.3
7.7
3.5
3.1
2.2
2.0
0.25
94 8668
De-reeling direction
Tape leader
min. 75 empty
compartments
> 160 mm
40 empty
compartments
Carrier leader Carrier trailer
94 8158
www.vishay.com For technical questions, contact: emittertechsupport@vishay.com Document Number: 81373
327 Rev. 1.3, 03-Nov-09
VSMS3700
Vishay Semiconductors Infrared Emitting Diode, 950 nm,
GaAs
Fig. 15 - Dimensions of Reel-GS08
Fig. 16 - Dimensions of Reel-GS18
COVER TAPE REMOVAL FORCE
The removal force lies between 0.1 N and 1.0 N at a removal
speed of 5 mm/s. In order to prevent components from
popping out of the blisters, the cover tape must be pulled off
at an angle of 180° with regard to the feed direction.
180
178
4.5
3.5
2.5
1.5
13.00
12.75
63.5
60.5
14.4 max.
10.0
9.0
120°
94 8665
Identification
Label:
Vishay
type
group
tape code
production
code
quantity
321
329
Identification
4.5
3.5
2.5
1.5
13.00
12.75
62.5
60.0
14.4 max.
10.4
8.4
120°
18857
Label:
Vishay
type
group
tape code
production
code
quantity
Measurement Techniques
www.vishay.com Vishay Semiconductors
Rev. 1.4, 31-Jul-12 1Document Number: 80085
For technical questions, contact: emittertechsupport@vishay.com
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
Measurement Techniques
INTRODUCTION
The characteristics of optoelectronics devices given in
datasheets are verified either by 100 % production tests
followed by statistic evaluation or by sample tests on typical
specimens. These tests can be divided into following
categories:
Dark measurements
Light measurements
Measurements of switching characteristics, cut-off
frequency and capacitance
Angular distribution measurements
Spectral distribution measurements
Thermal measurements
Dark and light measurements limits are 100 %
measurements. All other values are typical. The basic
circuits used for these measurements are shown in the
following sections. The circuits may be modified slightly to
accommodate special measurement requirements.
Most of the test circuits may be simplified by use of a source
measure unit (SMU), which allows either to source voltage
and measure current or to source current and measure
voltage.
DARK AND LIGHT MEASUREMENTS
EMITTER DEVICES
IR Diodes
Forward voltage, VF, is measured either on a curve tracer or
statically using the circuit shown in figure 1. A specified
forward current (from a constant current source) is passed
through the device and the voltage developed across it is
measured on a high-impedance voltmeter.
Fig. 1
To measure reverse voltage, VR, a 10 μA or 100 μA reverse
current from a constant current source is impressed through
the diode (figure 2) and the voltage developed across is
measured on a voltmeter of high input impedance (10 MΩ).
Fig. 2
For most devices, VR is specified at 10 μA reverse current.
In this case either a high impedance voltmeter has to be
used, or current consumption of DVM has to be calculated
and added to the specified current. A second measurement
step will then give correct readings.
In case of IR diodes, total radiant output power, Φe, is
usually measured. This is done with a calibrated large-area
photovoltaic cell fitted in a conical reflector with a bore
which accepts the test item - see figure 3. An alternative test
set uses a silicon photodiode attached to an integrating
sphere. A constant DC or pulsating forward current of
specified magnitude is passed through the IR diode. The
advantage of pulse-current measurements at room
temperature (25 °C) is that results can be reproduced
exactly.
Fig. 3
If, for reasons of measurement economy, only DC
measurements (figure 4) are to be made, then the energizing
time should be kept short (below 1 s) and of uniform
duration, to minimize any fall-off in light output due to
internal heating.
VS= 5 V
Ri> 10 kΩ
V
VF
I = 50 mA
100 mA
constant
948205
VS = 80 V
( > VR max.)
Ri > 10 MΩ
V
VR
I = 10 µA
100 µA
constant
94 8206
IF
Photo Voltaic Cell, Calibrated
Reflector
94 8155
Measurement Techniques
www.vishay.com Vishay Semiconductors
Rev. 1.4, 31-Jul-12 2Document Number: 80085
For technical questions, contact: emittertechsupport@vishay.com
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
Fig. 4
To ensure that the relationship between irradiance and
photocurrent is linear, the photodiode should operate near
the short-circuit configuration. This can be achieved by
using a low resistance load (10 Ω) of such a value that the
voltage dropped across is very much lower than the open
circuit voltage produced under identical illumination
conditions (Rmeas << Ri). The voltage across the load should
be measured with a sensitive DVM.
A knowledge of radiant intensity, Ie, produced by an IR
emitter enables customers to assess the range of IR light
barriers. The measurement procedure for this is more or less
the same as the one used for measuring radiant power. The
only difference is that in this case the photodiode is used
without a reflector and is mounted at a specified distance
from, and on the optical axis of, the IR diode (figure 5). This
way, only the radiant power of a narrow axial beam is
considered.
The radiant power within a solid angle of Ω = 0.01 steradian
(sr) is measured at a distance of 100 mm. Radiant intensity
is then obtained by using this measured value for calculating
the radiant intensity for a solid angle of Ω = 1 sr.
Fig. 5
DETECTOR DEVICES
Photovoltaic cells, photodiodes
Dark measurements
The reverse voltage characteristic, VR, is measured either on
a curve tracer or statically using the circuit shown in figure
6. A high-impedance voltmeter, which draws only an
insignificant fraction of device’s reverse current, must be
used.
Fig. 6
Dark reverse current measurements, Iro, must be carried out
in complete darkness - reverse currents of silicon
photodiodes are in the range of nanoamperes only, and an
illumination of a few lx is quite sufficient to falsify the test
result. If a highly sensitive DVM is to be used, then a current
sampling resistor of such a value that voltage dropped
across it is small in comparison with supply voltage must be
connected in series with the test item (figure 7). Under these
conditions, any reverse voltage variations of the test
samples can be ignored. Shunt resistance (dark resistance)
is determined by applying a very slight voltage to the
photodiode and then measuring dark current. In case of
10 mV or less, forward and reverse polarity will result in
similar readings.
Fig. 7
Light measurements
The same circuit as used in dark measurement can be used
to carry out light reverse current, Ira, measurements on
photodiodes. The only difference is the diode is now
irradiated and a current sampling resistor of lower value
must be used (figure 8), because of the higher currents
involved.
VS = 5 V
Ri 10 kΩ
V
I = 100 mA
constant
RL = 1 Ω to 10 Ω
RL
Ik
94 8207
Position of the Emitting Area
a = 100 mm
= 0.01 sr
Photo Voltaic Cell with Filter
(Calibrated), 1 cm 2
94 8156
Ω
Ri
V
VF
IR = 100 µA
constant
94 8209
10 MΩ
E = 0
VS > VR
VS = 20 V
Ri1 MΩ
mV
10 kΩ
Iro
94 8210
E = 0
Measurement Techniques
www.vishay.com Vishay Semiconductors
Rev. 1.4, 31-Jul-12 3Document Number: 80085
For technical questions, contact: emittertechsupport@vishay.com
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
Fig. 8
The open circuit voltage, VO, and short circuit current, Ik, of
photovoltaic cells and photodiodes are measured by means
of the test circuit shown in figure 9. The value of the load
resistor used for the Ik measurement should be chosen so
that the voltage dropped across it is low in comparison with
the open circuit voltage produced under conditions of
identical irradiation.
Fig. 9
The light source used for the light measurements is a
calibrated incandescent tungsten lamp with no filters.
The filament current is adjusted for a color temperature of
2856 K (standard illuminant A to DIN 5033 sheet 7). A
specified illumination, Ev, (usually 100 lx or 1000 lx) is
produced by adjusting the distance, a, between the lamp
and a detector on an optical bench. Ev can be measured on
a V(λ)-corrected luxmeter, or, if luminous intensity, Iv, of the
lamp is known, Ev can be calculated using the formula:
Ev = Iv/a2.
It should be noted that this inverse square law is only strictly
accurate for point light sources, that is for sources where the
dimensions of the source (the filament) are small (10 %) in
comparison with the distance between the source and
detector.
Since lux is a measure for visible light only, near-infrared
radiation (800 nm to 1100 nm) where silicon detectors have
their peak sensitivity is not taken into account.
Unfortunately, the near-infrared emission of filament lamps
of various construction varies widely. As a result, light
current measurements carried out with different lamps (but
the same lux and color temperature calibration) may result
in readings that differ up to 20 %.
The simplest way to overcome this problem is to calibrate
(measure the light current) some items of a photodetector
type with a standard lamp (OSRAM WI 41/G) and then use
these devices for adjustment of the lamp used for field
measurements.
An IR diode is used as a radiation source (instead of a
Tungsten incandescent lamp), to measure detector devices
being used mainly in IR transmission systems together with
IR emitters (e.g., IR remote control, IR headphone).
Operation is possible both with DC or pulsed current.
The adjustment of irradiance, Ee, is similar to the above
mentioned adjustment of illuminance, Ev. To achieve a high
stability similar to filament lamps, consideration should be
given to the following two points:
The IR emitter should be connected to a good heat sink to
provide sufficient temperature stability.
DC or pulse-current levels as well as pulse duration have
great influence on self-heating of IR diodes and should be
chosen carefully.
The radiant intensity, Ie, of the device is permanently
controlled by a calibrated detector.
Phototransistors
The collector emitter voltage, VCEO, is measured either on a
transistor curve tracer or statically using the circuit shown in
figure 10. Normal bench illumination does not change the
measured result.
Fig. 10
In contrast, however, the collector dark current, ICEO or ICO,
must be measured in complete darkness (figure 11). Even
ordinary daylight illumination of the wire fed-through glass
seals would falsify the measurement result.
VS = 20 V
Ri = 10 kΩ
mV
EA = 1 klx or
Ee = 1 mW/cm2
10 Ω
Ira
94 8211
Ri 10 MΩ
mV
EA = 1 klx or
Ee = 1 mW/cm2
1 Ω to 10 Ω
IkVO
94 8212
Ri 1 MΩ
V
VCEO
IC = 1 mA
constant
VS = 80 V
94 8213
( < VCEO )
E < 100 lx
Measurement Techniques
www.vishay.com Vishay Semiconductors
Rev. 1.4, 31-Jul-12 4Document Number: 80085
For technical questions, contact: emittertechsupport@vishay.com
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
Fig. 11
The same circuit is used for collector light current, Ica,
measurements (figure 12). The optical axis of the device is
aligned to an incandescent tungsten lamp with no filters,
producing a CIE illuminance A of 100 lx or 1000 lx with a
color temperature of Tf = 2856 K. Alternatively an IR
irradiance by a GaAs diode can be used (refer to the
photovoltaic cells and photodiodes section). Note that a
lower sampling resistor is used, in keeping with the higher
current involved.
Fig. 12
To measure collector emitter saturation voltage, VCEsat, the
device is illuminated and a constant collector current is
passed through. The magnitude of this current is adjusted
below the level of the minimum light current, Ica min, for the
same illuminance (figure 13). The saturation voltage of the
phototransistor (approximately 100 mV) is then measured
on a high impedance voltmeter.
Fig. 13
SWITCHING CHARACTERISTICS
Definition
Each electronic device generates a certain delay between
input and output signals as well as a certain amount of
amplitude distortion. A simplified circuit (figure 14) shows
how input and output signals of optoelectronic devices can
be displayed on a dual-trace oscilloscope.
Fig. 14
The switching characteristics can be determined by
comparing the timing of output current waveform with the
input current waveform (figure 15).
Ri 10 kΩ
Ica
VS = 5 V
Ee = 1 mW/cm2 or
EA = 1 klx
1 Ω to 10 ΩmV
94 8215
Ri 1 MΩ
V
VCEsat
IC = constant
VS = 5 V
Ee = 1 mW/cm2 or
EA = 1 klx
94 8216
VS
Channel I Channel II
GaAs-Diode
IF
Channel II
VSChannel II
94 8219
Measurement Techniques
www.vishay.com Vishay Semiconductors
Rev. 1.4, 31-Jul-12 5Document Number: 80085
For technical questions, contact: emittertechsupport@vishay.com
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
Fig. 15
These time parameters also include the delay existing in a
luminescence diode between forward current (IF) and
radiant power Φe).
Notes Concerning the Test Set-up
Circuits used for testing IR emitting, emitting sensitive and
optically coupled isolator devices are basically the same
(figure 14). The only difference is the way in which test
device is connected to the circuit.
It is assumed that rise and fall times associated with
the signal source (pulse generator) and dual trace
oscilloscope are insignificant, and that the switching
characteristics of any radiant sensitive device used in set-up
are considerably shorter than those of the test item. The
switching characteristics of IR emitters, for example
(tr 10 ns to 1000 ns), are measured with aid of a PIN
Photodiode detector (tr 1 ns).
Photo- and darlington transistors and photo- and solar cells
(tr 0.5 μs to 50 μs) are, as a rule, measured by use of fast
IR diodes (tr < 30 ns) as emitters.
Red light-emitting diodes are used as light sources only for
devices which cannot be measured with IR diodes because
of their spectral sensitivity (e.g. BPW21R). These diodes
emit only 1/10 of radiant power of IR diodes and
consequently generate only very low signal levels.
Switching Characteristic Improvements on
Phototransistors and Darlington Phototransistors
As in any ordinary transistor, switching times are reduced if
drive signal level, and hence collector current, is increased.
Another time reduction (especially in fall time tf) can be
achieved by use of a suitable base resistor, assuming there
is an external base connection, although this can only be
done at the expense of sensitivity.
TECHNICAL DESCTIPTION - ASSEMBLY
Emitter
Emitters are manufactured using the most modern liquid
phase epitaxy (LPE) process. By using this technology, the
number of undesirable flaws in the crystal is reduced. This
results in a higher quantum efficiency and thus higher
radiation power. Distortions in the crystal are prevented by
using mesa technology which leads to lower degradation. A
further advantage of the mesa technology is that each
individual chip can be tested optically and electrically, even
on the wafer.
DETECTOR
Vishay Semiconductor detectors have been developed to
match perfectly to emitters. They have low capacitance,
high photosensitivity, and extremely low saturation voltage.
Silicon nitride passivation protects surface against possible
impurities.
Assembly
Components are fitted onto lead frames by fully automatic
equipment using conductive epoxy adhesive. Contacts are
established automatically with digital pattern recognition
using well-proven thermosonic techniques. All component
are measured according to the parameter limits given in the
datasheet.
Applications
Silicon photodetectors are used in manifold applications,
such as sensors for radiation from near UV over visible to
near infrared. There are numerous applications in
measurement of light, such as dosimetry in UV, photometry,
and radiometry. A well known application is shutter control
in cameras.
Another large application area for detector diodes, and
especially phototransistors, is position sensing.
Examples are differential diodes, optical sensors, and reflex
sensors.
Other types of silicon detectors are built-in as parts of
optocouplers.
One of the largest application areas is remote control of TV
sets and other home entertainment appliances.
Different applications require specialized detectors and also
special circuits to enable optimized functioning.
tpt
t
0
0
10 %
90 %
100 %
tr
td
ton
tstf
toff
IF
IC
tpPulse duration
tdDelay time
trRise time
ton (= td + tr) Turn-on time
tsStorage time
tfFall time
toff (= ts + tf) Turn-off time
96 11698
Measurement Techniques
www.vishay.com Vishay Semiconductors
Rev. 1.4, 31-Jul-12 6Document Number: 80085
For technical questions, contact: emittertechsupport@vishay.com
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
Equivalent circuit
Photodetector diodes can be described by the electrical
equivalent circuit shown in figure 16.
Fig. 16
As described in the chapter “I-V Characteristics of
illuminated pn junction”, the incident radiation generates a
photocurrent loaded by a diode characteristic and load
resistor, RL. Other parts of the equivalent circuit (parallel
capacitance, C, combined from junction, Cj, and stray
capacitances, serial resistance, RS, and shunt resistance,
Rsh, representing an additional leakage) can be neglected in
most standard applications, and are not expressed in
equations 5 and 7 (see “Physics and Technology”).
However, in applications with high frequencies or extreme
irradiation levels, these parts must be regarded as limiting
elements.
Searching for the right detector diode type
The BPW 20 RF photodiode is based on rather highly doped
n-silicon, while BPW34 is a PIN photodiode based on very
lightly doped n-silicon. Both diodes have the same active
area and spectral response as a function of wavelength is
very similar. These diodes differ in their junction capacitance
and shunt resistance. Both can influence the performance of
an application.
Detecting very small signals is the domain of photodiodes
with their very small dark currents and dark/shunt
resistances.
With a specialized detector technology, these parameters
are very well controlled in all Vishay photodetectors.
The very small leakage currents of photodiodes are offset by
higher capacitances and smaller bandwidths in comparison
to PIN photodiodes.
Photodiodes are often operated in photovoltaic mode,
especially in light meters. This is depicted in figure 17, where
a strong logarithmic dependence of the open circuit voltage
on the input signal is used.
Fig. 17 - Photodiode in the Photovoltaic Mode Operating with a
Voltage Amplifier
It should be noted that extremely high shunt/dark resistance
(more than 15 GΩ) combined with a high-impedance
operational amplifier input and a junction capacitance of
about 1 nF can result in slow switch-off time constants of
some seconds. Some instruments therefore have a reset
button for shortening the diode before starting a
measurement.
The photovoltaic mode of operation for precise
measurements should be limited to the range of low ambient
temperatures, or a temperature control of the diode
(e.g., using a Peltier cooler) should be applied. At high
temperatures, dark current is increased (see figure 18)
leading to a non-logarithmic and temperature dependent
output characteristic (see figure 19). The curves shown in
figure 18 represent typical behavior of these diodes.
Guaranteed leakage (dark reverse current) is specified with
Iro = 30 nA for standard types. This value is far from that one
which is typically measured. Tighter customer specifications
are available on request. The curve shown in figure 19 show
the open circuit voltage as a function of irradiance with dark
reverse current, IS, as a parameter (in a first approximation
increasing IS and Ish have the same effect). The parameter
shown covers the possible spread of dark current. In
combination with figure 18 one can project the extreme
dependence of the open circuit voltage at high temperatures
(figure 20).
R
sh
R
s
R
L
I
sh
I
ph
I
d
V
D
V
0
I
0
94 8606
IOIph - ID - Ish
=1()
IOIph - Is
qVD
kT
-----------exp - 1


- Ish
=
VOC VT x ln Sλ() x φe - Ish
Is
-------------------------------------- + 1


=2()
R2
R1
V0
94 8607
VOVOC x 1 + R1
R2
------ with3()
VOC VT x ln Sλ() x φe - Ish
Is
-------------------------------------- + 1


=2()
Measurement Techniques
www.vishay.com Vishay Semiconductors
Rev. 1.4, 31-Jul-12 7Document Number: 80085
For technical questions, contact: emittertechsupport@vishay.com
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
Fig. 18 - Reverse Dark Current vs. Temperature
Fig. 19 - Open Circuit Voltage vs. Irradiance, Parameter: Dark
Reverse Current, BPW20RF
Fig. 20 - Open Circuit Voltage vs. Temperature, BPW46
Operating modes and circuits
The advantages and disadvantages of operating a
photodiode in open circuit mode have been discussed.
For operation in short circuit mode (see figure 21) or
photoconductive mode (see figure 22), current-to-voltage
converters are typically used. In comparison with
photovoltaic mode, the temperature dependence of the
output signal is much lower. Generally, the temperature
coefficient of the light reverse current is positive for
irradiation with wavelengths > 900 nm, rising with increasing
wavelength. For wavelengths < 600 nm, a negative
temperature coefficient is found, likewise with increasing
absolute value to shorter wavelengths.
Between these wavelength boundaries the output is almost
independent of temperature. By using this mode of
operation, the reverse biased or unbiased (short circuit
conditions), output voltage, VO, will be directly proportional
to incident radiation, φe (see equation in figure 21).
Fig. 21 - Transimpedance Amplifier, Current to Voltage Converter,
Short Circuit Mode
Fig. 22 - Transimpedance Amplifier, Current to Voltage Converter,
Reverse Biased Photodiode
The circuit in figure 21 minimizes the effect of reverse dark
current while the circuit in figure 22 improves the speed of
the detector diode due to a wider space charge region with
decreased junction capacitance and field increased velocity
of the charge carrier transport.
- 20 20 60 100 140
Current (nA)
Temperature (°C)
94 8608
0
107
101
103
105
Reverse Bias
Voltage Vr = 20 V BPW24R
BPW20RF
10-1
0.01 0.1 100
0
100
200
300
400
Open Circuit Voltage (mV)
Irradiance (µW)
1000
94 8609
10 pA
100 pA
5 nA
1 nA
30 nA
110
0
100
200
300
400
Open Circuit Voltage (mV)
Temperature (°C)
100
94 8610
020 40 60 80
R
V0
94 8611
VO- R x Φe x S λ()=4()
VOC - Isc x R=5()
R
V0
Vb
94 8612
Measurement Techniques
www.vishay.com Vishay Semiconductors
Rev. 1.4, 31-Jul-12 8Document Number: 80085
For technical questions, contact: emittertechsupport@vishay.com
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
Fig. 23 - RC-Loaded Photodiode with Voltage Amplifier
Figure 23 shows photocurrent flowing into an RC load,
where C represents junction and stray capacity while R3 can
be a real or complex load, such as a resonant circuit for the
operating frequency.
Fig. 24 - AC-Coupled Amplifier Circuit
The circuit in figure 24 is equivalent to figure 23 with a
change to AC coupling. In this case, the influence of
background illumination can be separated from a
modulated signal. The relation between input signal
(irradiation, φe) and output voltage is given by the equation
in figure 24.
Frequency response
The limitations of switching times in photodiodes are
determined by carrier lifetime. Due to the absorption
properties of silicon, especially in photodiodes, most of
incident radiation at longer wavelengths is absorbed outside
the space charge region. Therefore, a strong wavelength
dependence of the switching times can be observed
(figure 25).
Fig. 25 - Switching Times vs. Wavelength for Photodiode
BPW20RF
A drastic increase in rise and fall times is observed at
wavelengths > 850 nm. Differences between unbiased and
biased operation result from the widening of the space
charge region.
However, for PIN photodiodes (BPW34/TEMD5000 family)
similar results with shifted time scales are found. An
example of such behavior, in this case in the frequency
domain, is presented in figure 26 for a wavelength of 820 nm
and figure 27 for 950 nm.
Fig. 26 - BPW34, TEMD5010X01, Bandwidth vs.
Reverse Bias Voltage, Parameter: Load Resistance, λ = 820 nm
Fig. 27 - BPW41, TEMD5110X01, Bandwidth vs.
Reverse Bias Voltage, Parameter: Load Resistance λ = 950 nm
V0
R2
R1
R3
Vb
C
94 8613
V0
R2
R1
R3
Vb
C1
C2
94 8614
VOφe x S λ() x R3 x 1 + R1
R2
------
6()
0
5
10
15
20
25
30
Wavelength (nm)
550 600 650 700 750 800 850 900 950
Rise Time tr, Fall Time tf (µs)
948615
tr = 0 V
tf = 0 V
tf = - 10 V
tr = - 0 V
0
2
4
6
8
12
Reverse Bias (V)
94 8616
10
104106
105108
107
RL =
50 Ω
100 kΩ
10 kΩ
1 kΩ
- 3 dB - Bandwidth (Hz)
0
2
4
6
8
12
Reverse Bias (V)
94 8617
10
10 105
104107
106
10 kΩ
50 Ω
1 kΩ
100 kΩ
RL = 1 MΩ
3
- 3 dB - Bandwidth (Hz)
Measurement Techniques
www.vishay.com Vishay Semiconductors
Rev. 1.4, 31-Jul-12 9Document Number: 80085
For technical questions, contact: emittertechsupport@vishay.com
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
Below about 870 nm, only slight wavelength dependence
can be recognized, while a steep change of cut-off
frequency takes place from 870 nm to 950 nm (different time
scales in figure 26 and figure 27). Additionally, the influence
of load resistances and reverse bias voltages can be taken
from these diagrams.
For cut-off frequencies greater than 10 MHz to 20 MHz,
depending on the supply voltage available for biasing the
detector diode, PIN photodiodes are also used. However,
for this frequency range, and especially when operating with
low bias voltages, thin epitaxially grown intrinsic (i) layers are
incorporated into PIN photodiodes.
As a result, these diodes (e.g., Vishay’s TESP5700) can
operate with low bias voltages (3 V to 4 V) with cut-off
frequencies of 300 MHz at a wavelength of 790 nm. With
application-specific optimized designs, PIN photodiodes
with cut-off frequencies up to 1 GHz at only a 3 V bias
voltage with only an insignificant loss of responsivity can be
generated.
The main applications for these photodiodes are found in
optical local area networks operating in the first optical
window at wavelengths of 770 nm to 880 nm.
WHICH TYPE FOR WHICH APPLICATION?
In table 1, selected diode types are assigned to different
applications. For more precise selection according to chip
sizes and packages, refer to the tables in introductory pages
of this data book.
PHOTOTRANSISTOR CIRCUITS
A phototransistor typically operates in a circuit shown in
figure 28. Resistor RB can be omitted in most applications.
In some phototransistors, the base terminal is not
connected. RB can be used to suppress background
radiation by setting a threshold level (see equation 7 and 8)
For the dependence of rise and fall times on load resistance
and collector-base capacitance, see the chapter
“Properties of Silicon Phototransistors”.
Fig. 28 - Phototransistor with Load Resistor and
Optional Base Resistor
TABLE 1 - PHOTODIODE REFERENCE TABLE
DETECTOR APPLICATION PIN PHOTODIODE PHOTODIODE
Photometry, light meter BPW21R
Radiometry TEMD5010X01, BPW34, BPW24R, ... BPW20RF
Light barriers BPV10NF, BPW24R
Remote control, IR filter included, λ > 900 nm BPV20F, BPV23F, BPW41N, S186P, TEMD5100X01
IR Data Transmission fc < 10 MHz
IR filter included, λ > 820 nm
BPV23NF, BPW82, BPW83, BPV10NF,
TEMD1020, TEMD5110X01
IR Data Transmission, fc > 10 MHz, no IR filter BPW34, BPW46, BPV10, TEMD5010X01
Densitometry BPW34, BPV10, TEMD5010X01 BPW20RF, BPW21R
Smoke detector BPV22NF, BPW34, TEMD5010X01
VOVS - B x φe x S λ() x RL
=7()
VOC VS - B x φe x S λ() - 0.6
RB
--------


x RL
8()
RL
Vs
RB
V0
94 8618
Legal Disclaimer Notice
www.vishay.com Vishay
Revision: 02-Oct-12 1Document Number: 91000
Disclaimer
ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE
RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively,
“Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other
disclosure relating to any product.
Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or
the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all
liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special,
consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular
purpose, non-infringement and merchantability.
Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical
requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements
about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular
product with the properties described in the product specification is suitable for use in a particular application. Parameters
provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All
operating parameters, including typical parameters, must be validated for each customer application by the customer’s
technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase,
including but not limited to the warranty expressed therein.
Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining
applications or for any other application in which the failure of the Vishay product could result in personal injury or death.
Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please
contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by
any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.
Material Category Policy
Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the
definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council
of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment
(EEE) - recast, unless otherwise specified as non-compliant.
Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that
all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.
Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free
requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference
to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21
conform to JEDEC JS709A standards.