MLX90316
Rotary Position Sensor IC
3901090316
Page 1 of 45 Mar/12
Rev08
Features and Benefits
Absolute Rotary Position Sensor IC
Simple & Robust Magnetic Design
Triais® Hall Technology
Programmable Angular Range up to 360 Degrees
Programmable Linear Transfer Characteristic
Selectable Analog (Ratiometric), PWM, Serial Protocol
12 bit Angular Resolution - 10 bit Angular Thermal Accuracy
40 bit ID Number
Single Die – SO8 Package RoHS Compliant
Dual Die (Full Redundant) – TSSOP16 Package RoHS Compliant
Applications
Absolute Rotary Position Sensor
Steering Wheel Position Sensor
Pedal Position Sensor
Motor-shaft Position Sensor
Throttle Position Sensor
Float-Level Sensor
Ride Height Position Sensor
Non-Contacting Potentiometer
Ordering Code
Product Code Temperature Code Package Code Option Code Packing Form Code
MLX90316 S DC BCG-000 RE
MLX90316 S DC BCG-000 TU
MLX90316 E DC BCG-000 RE
MLX90316 E DC BCG-000 TU
MLX90316 K DC BCG-000 RE
MLX90316 K DC BCG-000 TU
MLX90316 L DC BCG-000 RE
MLX90316 L DC BCG-000 TU
MLX90316 E GO BCG-000 RE
MLX90316 E GO BCG-000 TU
MLX90316 K GO BCG-000 RE
MLX90316 K GO BCG-000 TU
MLX90316 L GO BCG-000 RE
MLX90316 L GO BCG-000 TU
MLX90316 K DC BCG-200 RE
MLX90316 K DC BCG-200 TU
MLX90316 K GO BCG-200 RE
MLX90316 K GO BCG-200 TU
MLX90316 K DC BCG-300 RE
MLX90316 K DC BCG-300 TU
MLX90316 K GO BCG-300 RE
MLX90316 K GO BCG-300 TU
MLX90316 E DC BDG-100 RE
MLX90316 E DC BDG-100 TU
MLX90316
Rotary Position Sensor IC
3901090316
Page 2 of 45 Mar/12
Rev08
MLX90316 K DC BDG-100 RE
MLX90316 K DC BDG-100 TU
MLX90316 L DC BDG-100 TU
MLX90316 L DC BDG-100 RE
MLX90316 E GO BDG-100 TU
MLX90316 E GO BDG-100 RE
MLX90316 K GO BDG-100 TU
MLX90316 K GO BDG-100 RE
MLX90316 L GO BDG-100 TU
MLX90316 L GO BDG-100 RE
MLX90316 L DC BDG-102 TU
MLX90316 L DC BDG-102 RE
MLX90316 L DC BCS-000 TU
MLX90316 L DC BCS-000 RE
Legend:
Temperature Code: L for Temperature Range -40°C to 150°C
E for Temperature Range -40°C to 85°C
K for Temperature Range -40°C to 125°C
S for Temperature Range -20°C to 85°C
Package Code: DC for SOIC150
GO for TSSOP173
Option Code: AAA-xxx: die version
xxx-000: standard
xxx-100: SPI
xxx-102: SPI75AGC, see section 14.4.2
xxx-200: PPA (Pre-programmed Analog)
xxx-300: PPD (Pre-programmed Digital)
Packing Form: RE for Reel, TU for Tube
Ordering example: MLX90316KDC-BCG-000-TU
MLX90316
Rotary Position Sensor IC
3901090316
Page 3 of 45 Mar/12
Rev08
1. Functional Diagram
Figure 1 - Block Diagram (Analog & PWM)
Figure 2 - Block Diagram Analog (MLX90316BCS)
Figure 3 - Block Diagram (Serial Protocol)
DSP
V
SS
V
DD
3V3
Reg
MUX
µC
ROM - F/W
RAM
EEP
ROM
Vy
Vx
Tria
is
A
D
D
A
G
Rev.Pol.
&
OverVolt.
O
UT
(Analog/PWM)
x 1
S
WITCH
O
UT
14-15
12
DSP
V
SS
V
DD
3V3
Reg
MUX
µC
ROM - F/W
RAM
EEP
ROM
Vy
Vx
Tria
is
A
D
D
A
G
Rev.Pol.
&
OverVolt.
O
UT2
(Analog)
x 1
S
WITCH
O
UT
14-15
12
x 1
O
UT1
(Analog)
DSP
V
SS
V
DD
3V3
Reg
MUX
µC
ROM - F/W
RAM
EEP
ROM
Vy
Vx
Tria
is
A
D
G
Rev.Pol.
14-15
S
ERIAL
P
ROTOCOL
/SS
S
CLK
MOSI/MISO
MLX90316
Rotary Position Sensor IC
3901090316
Page 4 of 45 Mar/12
Rev08
2. Description
The MLX90316 is a monolithic sensor IC featuring the Triais® Hall technology. Conventional planar Hall
technology is only sensitive to the flux density applied orthogonally to the IC surface. The Triais® Hall
sensor is also sensitive to the flux density applied parallel to the IC surface. This is obtained through an
Integrated Magneto-Concentrator (IMC) which is deposited on the CMOS die (as an additional back-end
step).
The MLX90316 is only sensitive to the flux density coplanar with the IC surface. This allows the
MLX90316 with the correct magnetic circuit to decode the absolute rotary (angular) position from 0 to 360
Degrees. It enables the design of novel generation of non-contacting rotary position sensors that are
frequently required for both automotive and industrial applications.
In combination with the appropriate signal processing, the magnetic flux density of a small magnet
(diametral magnetization) rotating above the IC can be measured in a non-contacting way (Figure 4). The
angular information is computed from both vectorial components of the flux density (i.e. B
X
and B
Y
).
MLX90316 produces an output signal proportional to the decoded angle. The output is selectable between
Analog, PWM and Serial Protocol.
Figure 4 - Typical application of MLX90316
MLX90316
Rotary Position Sensor IC
3901090316
Page 5 of 45 Mar/12
Rev08
TABLE of CONTENTS
FEATURES AND BENEFITS ....................................................................................................................... 1
APPLICATIONS ............................................................................................................................................ 1
ORDERING
CODE………………………………………………………………………………………………………………....1
1.
FUNCTIONAL DIAGRAM ...................................................................................................................... 3
2.
DESCRIPTION ....................................................................................................................................... 5
3.
GLOSSARY OF TERMS
ABBREVIATIONS
ACRONYMS ............................................................ 8
4.
PINOUT .................................................................................................................................................. 8
5.
ABSOLUTE MAXIMUM RATINGS ....................................................................................................... 9
6.
DETAILED DESCRIPTION .................................................................................................................... 9
7.
MLX90316 ELECTRICAL SPECIFICATION ....................................................................................... 11
8.
MLX90316 ISOLATION SPECIFICATION .......................................................................................... 13
9.
MLX90316 TIMING SPECIFICATION ................................................................................................. 13
10.
MLX90316 ACCURACY SPECIFICATION ......................................................................................... 14
11.
MLX90316 MAGNETIC SPECIFICATION .......................................................................................... 15
12.
MLX90316 CPU & MEMORY SPECIFICATION ................................................................................. 15
13.
MLX90316 END-USER PROGRAMMABLE ITEMS ........................................................................... 16
14.
DESCRIPTION OF END-USER PROGRAMMABLE ITEMS .............................................................. 17
14.1.
O
UTPUT
M
ODE
.......................................................................................................................................... 17
14.1.1.
Analog Output Mode ............................................................................................................................ 17
14.1.2.
PWM Output Mode ............................................................................................................................... 17
14.1.3.
Serial Protocol Output Mode ............................................................................................................... 19
14.1.4.
Switch Out ............................................................................................................................................ 19
14.2.
O
UTPUT
T
RANSFER
C
HARACTERISTIC
....................................................................................................... 19
14.2.1.
CLOCKWISE Parameter ...................................................................................................................... 19
14.2.2.
Discontinuity Point (or Zero Degree Point) ......................................................................................... 19
14.2.3.
LNR Parameters ................................................................................................................................... 20
14.2.4.
CLAMPING Parameters ...................................................................................................................... 20
14.2.5.
DEADZONE Parameter ....................................................................................................................... 21
14.2.6.
MLX90316 xDC- BCS ONLY ............................................................................................................... 21
14.3.
I
DENTIFICATION
........................................................................................................................................ 21
14.4.
S
ENSOR
F
RONT
-E
ND
................................................................................................................................. 22
14.4.1.
HIGHSPEED Parameter ...................................................................................................................... 22
14.4.2.
ARGC, AUTO_RG, RoughGain and FORCECRA75 Parameters ........................................................ 22
14.4.3.
RGThresL, RGThresH Parameters ...................................................................................................... 23
14.5.
FILTER .................................................................................................................................................... 23
14.5.1.
Hysteresis Filter ................................................................................................................................... 23
14.5.2.
FIR Filters ............................................................................................................................................ 23
14.5.3.
IIR Filters ............................................................................................................................................. 26
14.6.
P
ROGRAMMABLE
D
IAGNOSTIC
S
ETTINGS
................................................................................................. 27
14.6.1.
RESONFAULT Parameter ................................................................................................................... 26
14.6.2.
EEHAMHOLE Parameter .................................................................................................................... 26
14.7.
L
OCK
......................................................................................................................................................... 26
14.7.1.
MLXLOCK Parameter ......................................................................................................................... 27
14.7.2.
LOCK Parameter ................................................................................................................................. 27
MLX90316
Rotary Position Sensor IC
3901090316
Page 6 of 45 Mar/12
Rev08
15.
MLX90316 SELF DIAGNOSTIC .......................................................................................................... 28
16.
SERIAL PROTOCOL ........................................................................................................................... 30
16.1.
I
NTRODUCTION
......................................................................................................................................... 30
16.2.
SERIAL
PROTOCOL
M
ODE
................................................................................................................... 30
16.3.
MOSI
(M
ASTER
O
UT
S
LAVE
I
N
) ............................................................................................................... 30
16.4.
MISO
(M
ASTER
I
N
S
LAVE
O
UT
) ............................................................................................................... 30
16.5.
SS
(S
LAVE
S
ELECT
) .................................................................................................................................. 30
16.6.
M
ASTER
S
TART
-U
P
................................................................................................................................... 30
16.7.
S
LAVE
S
TART
-U
P
...................................................................................................................................... 30
16.8.
T
IMING
...................................................................................................................................................... 31
16.9.
S
LAVE
R
ESET
............................................................................................................................................ 32
16.10.
F
RAME
L
AYER
.......................................................................................................................................... 32
16.10.1.
Command Device Mechanism .......................................................................................................... 32
16.10.2.
Data Frame Structure ...................................................................................................................... 32
16.10.3.
Timing............................................................................................................................................... 32
16.10.4.
Data Structure .................................................................................................................................. 33
16.10.5.
Angle Calculation ............................................................................................................................. 33
16.10.6.
Error Handling ................................................................................................................................. 33
17.
RECOMMENDED APPLICATION DIAGRAMS .................................................................................. 34
17.1.
A
NALOG
O
UTPUT
W
IRING WITH THE
MLX90316
IN
SOIC
P
ACKAGE
....................................................... 34
17.2.
A
NALOG
O
UTPUT
W
IRING WITH THE
MLX90316
IN
TSSOP
P
ACKAGE
.................................................... 35
17.3.
PWM
L
OW
S
IDE
O
UTPUT
W
IRING
............................................................................................................ 35
17.4.
S
ERIAL
P
ROTOCOL
.................................................................................................................................... 36
17.4.1.
SPI Version – Single Die ...................................................................................................................... 36
17.4.2.
SPI Version – Dual Die ........................................................................................................................ 37
17.4.3.
Non SPI Version (Standard Version).................................................................................................... 38
18.
STANDARD INFORMATION REGARDING MANUFACTURABILITY OF MELEXIS PRODUCTS
WITH DIFFERENT SOLDERING PROCESSES ........................................................................................ 39
19.
ESD PRECAUTIONS ........................................................................................................................... 39
20.
PACKAGE INFORMATION .................................................................................................................. 40
20.1.
SOIC8
-
P
ACKAGE
D
IMENSIONS
............................................................................................................... 40
20.2.
SOIC8
-
P
INOUT AND
M
ARKING
............................................................................................................... 40
20.3.
SOIC8
-
IMC
P
OSITIONNING
..................................................................................................................... 41
20.4.
TSSOP16
-
P
ACKAGE
D
IMENSIONS
.......................................................................................................... 42
20.5.
TSSOP16
-
P
INOUT AND
M
ARKING
.......................................................................................................... 43
20.6.
TSSOP16
-
IMC
P
OSITIONNING
................................................................................................................ 43
21.DISCLAIMER………………………………………………………………………………………………........45
MLX90316
Rotary Position Sensor IC
3901090316
Page 7 of 45 Mar/12
Rev08
3. Glossary of Terms
Abbreviations
Acronyms
Gauss (G), Tesla (T): Units for the magnetic flux density 1 mT = 10 G
TC: Temperature Coefficient (in ppm/Deg.C.)
NC: Not Connected
PWM: Pulse Width Modulation
%
DC
: Duty Cycle of the output signal i.e. T
ON
/(T
ON
+ T
OFF
)
ADC: Analog-to-Digital Converter
DAC: Digital-to-Analog Converter
LSB: Least Significant Bit
MSB: Most Significant Bit
DNL: Differential Non-Linearity
INL: Integral Non-Linearity
RISC: Reduced Instruction Set Computer
ASP: Analog Signal Processing
DSP: Digital Signal Processing
ATAN: trigonometric function: arctangent (or inverse tangent)
IMC: Integrated Magneto-Concentrator (IMC)
CoRDiC: Coordinate Rotation Digital Computer (i.e. iterative rectangular-to-polar transform)
EMC: Electro-Magnetic Compatibility
4. Pinout
Pin # SOIC-8 TSSOP-16
Analog / PWM Serial Protocol Analog / PWM Serial Protocol
1 V
DD
V
DD
V
DIG
1
V
DIG
1
2 Test 0 Test 0 V
SS
1
(Ground
1
) V
SS
1
(Ground
1
)
3 Switch Out /SS V
DD
1
V
DD
1
4 Not Used / Out 2
(1)
SCLK Test 0
1
Test 0
1
5 Out MOSI / MISO Switch Out
2
/SS
2
6 Test 1 Test 1 Not Used
2
SCLK
2
7 V
DIG
V
DIG
Out
2
MOSI
2
/ MISO
2
8 V
SS
(Ground) V
SS
(Ground) Test 1
2
Test 1
2
9 V
DIG
2
V
DIG
2
10 V
SS
2
(Ground
2
) V
SS
2
(Ground
2
)
11 V
DD
2
V
DD
2
12 Test 0
2
Test 0
2
13 Switch Out
1
/SS
1
14 Not Used
1
SCLK
1
15 Out
1
MOSI
1
/ MISO
1
16 Test 1
1
Test 1
1
For optimal EMC behavior, it is recommended to connect the unused pins (Not Used and Test) to the
Ground (see section 17).
1
MLX90316xDC-BCS includes a programmable second output
MLX90316
Rotary Position Sensor IC
3901090316
Page 8 of 45 Mar/12
Rev08
5. Absolute Maximum Ratings
Parameter Value
Supply Voltage, V
DD
(overvoltage) + 20 V
Reverse Voltage Protection 10 V
Positive Output Voltage – Standard Version
(Analog or PWM)
+ 10 V
+ 14 V (200 s max T
A
= + 25°C)
Positive Output Voltage – SPI Version V
DD
+ 0.3V
Positive Output Voltage (Switch Out) + 10 V
+ 14 V (200 s max T
A
= + 25°C)
Output Current (I
OUT
) ± 30 mA
Reverse Output Voltage 0.3 V
Reverse Output Current 50 mA
Operating Ambient Temperature Range, T
A
40°C + 150°C
Storage Temperature Range, T
S
40°C + 150°C
Magnetic Flux Density ± 700 mT
Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolute-
maximum-rated conditions for extended periods may affect device reliability.
6. Detailed Description
As described on the block diagram (Figure 1, Figure 2 and Figure 3), the magnetic flux density parallel to
the IC surface (i.e. B
//
) is sensed through the Triaisensor front-end. This front-end consists into two
orthogonal pairs (for each of the two directions parallel with the IC surface i.e. X and Y) of conventional
planar Hall plates (blue area on Figure 5) and an Integrated Magneto-Concentrator (IMC yellow disk on
Figure 5).
Figure 5 - Triais® sensor front-end (4 Hall plates + IMC disk)
Hall Plates
MLX90316
Rotary Position Sensor IC
3901090316
Page 9 of 45 Mar/12
Rev08
Both components of the applied flux density B
//
are measured individually i.e. B
X//
and B
Y//
. Two orthogonal
components (respectively B
X
and B
Y
) proportional to the parallel components (respectively B
X//
and B
Y//
)
are induced through the IMC and can be measured by both respective pairs of conventional planar Hall
plates as those are sensitive to the flux density applied orthogonally to them and the IC surface.
While a magnet (diametrically magnetized) rotates above the IC as described on Figure 4, the sensing
stage provides two differential signals in quadrature (sine and cosine Figure 6 and Figure 7)
Figure 6 – Magnetic Flux Density – B
X
cos(α) & B
Y
sin(α)
Figure 7 – Triais® sensor front-end Output signals V
X
B
X
cos(α) & V
Y
B
Y
sin(α)
-400
-300
-200
-100
0
100
200
300
400
0 90 180 270 360 450 540 630 720
Alpha (Degree)
B
X
& B
Y
(G)
BX
BY
-2000
-1500
-1000
-500
0
500
1000
1500
2000
0 90 180 270 360 450 540 630 720
Alpha (Degree)
V
X
& V
Y
(mV)
VX
VY
MLX90316
Rotary Position Sensor IC
3901090316
Page 10 of 45 Mar/12
Rev08
Those Hall signals are processed through a fully differential analog chain featuring the classic offset
cancellation technique (Hall plate quadrature spinning and chopper-stabilized amplifier).
The conditioned analog signals are converted through an ADC (configurable 14 or 15 bits) and provided
to a DSP block for further processing. The DSP stage is based on a 16 bit RISC micro-controller whose
primary function is the extraction of the angular position from the two raw signals (after so-called front-end
compensation steps) through the following operation:
=
X
Y
V
V
ATAN
α
The DSP functionality is governed by the micro-code (firmware F/W) of the micro-controller which is
stored into the ROM (mask programmable). In addition to the ATAN function, the F/W controls the whole
analog chain, the output transfer characteristic, the output protocol, the programming/calibration and also
the self-diagnostic modes.
In the MLX90316, the ATAN function is computed via a look-up table (i.e. it is not obtained through a
CoRDiC algorithm).
Due to the fact that the ATAN operation is performed on the ratio V
Y
/V
X
, the angular information is
intrinsically self-compensated vs. flux density variations (due to airgap change, thermal or ageing effects)
affecting both signals. This feature allows therefore an improved thermal accuracy vs. rotary position
sensor based on conventional linear Hall sensors.
In addition to the improved thermal accuracy, the realized rotary position sensor is capable of measuring a
complete revolution (360 Degrees) and the linearity performances are excellent taking into account typical
manufacturing tolerances (e.g. relative placement between the Hall IC and the magnet).
Once the angular information is computed (over 360 degrees), it is further conditioned (mapped) vs. the
target transfer characteristic and it is provided at the output(s) as:
an analog output level through a 12 bit DAC followed by a buffer
a digital PWM signal with 12 bit depth (programmable frequency 100 Hz 1 kHz)
a digital Serial Protocol (SP 14 bits computed angular information available)
For instance, the analog output can be programmed for offset, gain and clamping to meet any rotary
position sensor output transfer characteristic:
Vout(α) = ClampLo for α αmin
Vout(α) = Voffset + Gain × α for αmin α αmax
Vout(α) = ClampHi for α αmax
where Voffset, Gain, ClampLo and ClampHi are the main adjustable parameters for the end-user.
The linear part of the transfer curve can be adjusted through either a 2 point or a 3 point calibration
depending on the linearity requirement.
A digital output is also available and used as a programmable angular switch.
The calibration parameters are stored in EEPROM featuring a Hamming Error Correction Coding (ECC).
The programming steps do not require any dedicated pins. The operation is done using the supply and
output nodes of the IC. The programming of the MLX90316 is handled at both engineering lab and
production line levels by the Melexis Programming Unit PTC-04 with the dedicated MLX90316
daughterboard and software tools (DLL User Interface).
MLX90316
Rotary Position Sensor IC
3901090316
Page 11 of 45 Mar/12
Rev08
7. MLX90316 Electrical Specification
DC Operating Parameters at V
DD
= 5V (unless otherwise specified) and for T
A
as specified by the
Temperature suffix (S, E, K or L).
Parameter Symbol
Test Conditions Min Typ Max Units
Nominal Supply Voltage V
DD
4.5 5 5.5 V
Supply Current
(2)
Idd Slow mode
(3)
Fast mode
(3)
8.5
13.5
11
16
mA
mA
POR Level V
DD
POR Supply Under Voltage 2 2.7 3 V
Output Current Iout Analog Output mode
PWM Output mode
-8
-20
8
20
mA
mA
Output Short Circuit Current I
short
Vout = 0 V
Vout = 5 V
Vout = 14 V (T
A
= 25°C)
12
12
24
15
15
45
mA
mA
mA
Output Load R
L
Pull-down to Ground
Pull-up to 5V
(4)
1
1
10
10
(5)
(5)
k
k
Analog Saturation Output Level Vsat_lo Pull-up load R
L
10 kΩ 3 %V
DD
Vsat_hi Pull-down load R
L
10 kΩ
96 %V
DD
Digital Saturation Output Level VsatD_lo Pull-up Low Side R
L
10 kΩ
Push-Pull (I
OUT
= -20mA) 1.5 %V
DD
VsatD_hi Push-Pull (I
OUT
= 20mA) 97 %V
DD
Active Diagnostic Output Level
Diag_lo Pull-down load R
L
10 kΩ
Pull-up load R
L
10 kΩ
1
1.5 %V
DD
Diag_hi Pull-down load R
L
10 kΩ
Pull-up load R
L
10 kΩ
97
98
%V
DD
Passive Diagnostic Output Level
(Broken Track Diagnostic)
(6)
BV
SS
PD Broken V
SS
(7)
&
Pull-down load R
L
≤ 10 kΩ 4
(6)
%V
DD
BV
SS
PU Broken V
SS
(7)
&
Pull-up load R
L
1kΩ 99 100 %V
DD
BV
DD
PD Broken V
DD
(7)
&
Pull-down load R
L
1kΩ 0 1 %V
DD
BV
DD
PU Broken V
DD
&
Pull-up load to 5V No Broken Track diagnostic %V
DD
MLX 90316 Electrical Specification continues…
…MLX 90316 Electrical Specification
2
For the dual version, the supply current is multiplied by 2
3
See section 14.4.1 for details concerning Slow and Fast mode
4
Applicable for output in Analog and PWM (Open-Drain) modes
5
RL < for output in PWM mode
6
For detailed information, see also section 15
7
Not Valid for the SPI Version
MLX90316
Rotary Position Sensor IC
3901090316
Page 12 of 45 Mar/12
Rev08
Clamped Output Level Clamp_lo Programmable 0 100 %V
DD
(8)
Clamp_hi Programmable 0 100 %V
DD
(8)
Switch Out
(9)
Sw_lo Pull-up Load 1.5k to 5V 0.55 1.1 V
Sw_hi Pull-up Load 1.5k to 5V 3.65 4.35 V
As an illustration of the previous table, the MLX90316 fits the typical classification of the output span
described on the Figure 8.
Figure 8 - Output Span Classification
8
Clamping levels need to be considered vs the saturation of the output stage (see Vsat_lo and Vsat_hi)
9
See section 14.1.4 for the application diagram
Diagnostic Band (High)
Linear Range
Diagnostic Band (Low)
Clamping High
Clamping Low
0 %
10 %
20 %
30 %
40 %
50 %
60 %
70 %
80 %
90 %
100 %
96 %
4 %
Output Level
92 %
88 %
12 %
8 %
MLX90316
Rotary Position Sensor IC
3901090316
Page 13 of 45 Mar/12
Rev08
8. MLX90316 Isolation Specification
DC Operating Parameters at V
DD
= 5V (unless otherwise specified) and for T
A
as specified by the
Temperature suffix (S, E, K or L). Only valid for the package code GO i.e. dual die version.
Parameter Symbol
Test Conditions Min Typ Max Units
Isolation Resistance Between 2 dies 4 MΩ
9. MLX90316 Timing Specification
DC Operating Parameters at V
DD
= 5V (unless otherwise specified) and for T
A
as specified by the
Temperature suffix (S, E, K or L).
Parameter Symbol
Test Conditions Min Typ Max Units
Main Clock Frequency Ck Slow mode
(10)
Fast mode
(10)
7
20
MHz
MHz
Sampling Rate Slow mode
(11)
Fast mode
(11)
600
200
µs
µs
Step Response Time Ts Slow mode
(10)
, Filter=5
(11)
Fast mode
(10)
, Filter=0
(11)
400
4
600
ms
µs
Watchdog Wd See Section 15 5 ms
Start-up Cycle Tsu Slow and Fast mode
(10)
15 ms
Analog Output Slew Rate C
OUT
= 42 nF
C
OUT
= 100 nF
200
100
V/ms
PWM Frequency F
PWM
PWM Output Enabled 100 1000 Hz
Digital Output Rise Time Mode 5 – 10nF, R
L
= 10 kΩ
Mode 7 – 10nF, R
L
= 10 kΩ
120
2.2
µs
µs
Digital Output Fall Time Mode 5 – 10nF, R
L
= 10 kΩ
Mode 7 – 10nF, R
L
= 10 kΩ
1.8
1.9
µs
µs
10
See section 14.4.1 for details concerning Slow and Fast mode
11
See section 14.5 for details concerning Filter parameter
MLX90316
Rotary Position Sensor IC
3901090316
Page 14 of 45 Mar/12
Rev08
10. MLX90316 Accuracy Specification
DC Operating Parameters at V
DD
= 5V (unless otherwise specified) and for T
A
as specified by the
Temperature suffix (S, E, K or L).
Parameter Symbol
Test Conditions Min Typ Max Units
ADC Resolution on the raw
signals sine and cosine
R
ADC
Slow Mode
(12)
Fast Mode
(12)
15
14
bits
bits
Thermal Offset Drift #1
(13)
Thermal Offset Drift at the DSP
input (excl. DAC and output stage)
Temperature suffix S, E and K
Temperature suffix L
-60
-90
+60
+90
LSB
15
LSB
15
Thermal Offset Drift #2
(to be considered only for the
analog output mode)
Thermal Offset Drift of the DAC
and Output Stage
Temperature suffix S, E and K
Temperature suffix L
- 0.3
- 0.4
+ 0.3
+ 0.4
%V
DD
%V
DD
Thermal Drift of Sensitivity
Mismatch
(14)
Temperature suffix S, E and K
Temperature suffix L
- 0.3
- 0.5
+ 0.3
+ 0.5
%
%
Intrinsic Linearity Error
(15)
Le T
A
= 25°C -1 1 Deg
Analog Output Resolution R
DAC
12 bits DAC
(Theoretical – Noise free)
INL
DNL
-4
-2
0.025
+4
+2
%V
DD
/LSB
LSB
LSB
Output stage Noise Clamped Output 0.05 %V
DD
Noise pk-pk
(16)
RG = 9, Slow mode, Filter=5
RG = 9, Fast mode, Filter=0
0.03
0.1
0.06
0.2
Deg
Deg
Ratiometry Error -0.1 0 0.1 %V
DD
PWM Output Resolution R
PWM
12 bits
(Theoretical – Jitter free)
0.025
%
DC
/LSB
PWM Jitter
(17)
J
PWM
RG = 6, F
PWM
= 250 Hz – 800Hz 0.2 %
DC
Serial Protocol Output
Resolution
R
SP
14 bits – 360 Deg.
Mapping(Theoretical – Jitter free)
0.022 Deg/LSB
12
15 bits corresponds to 14 bits + sign and 14 bits corresponds to 13 bits + sign. After angular calculation, this corresponds to
0.005Deg/LSB
15
in Low Speed Mode and 0.01Deg/LSB
14
in High Speed.
13
For instance, Thermal Offset Drift #1 equal ± 60LSB
15
yields to max. ± 0.3 Deg. angular error for the computed angular
information (output of the DSP). See Front End Application Note for more details. This is only valid if automatic gain is set (See
Section 14.4.2)
14
For instance, Thermal Drift of Sensitivity Mismatch equal ± 0.4% yields to max. ± 0.1 Deg. angular error for the computed
angular information (output of the DSP). See Front End Application Note for more details.
15
The Intrinsic Linearity Error refers to the IC itself (offset, sensitivity mismatch, orthogonality) taking into account an ideal
rotating field. Once associated to a practical magnetic construction and the associated mechanical and magnetic tolerances, the
output linearity error increases. However, it can be improved with the multi point end-user calibration that is available on the
MLX90316.
16
The application diagram used is described in the recommended wiring. For detailed information, refer to section Filter in
application mode (Section 14.5).
17
Jitter is defined by ± 3 σ for 1000 successive acquisitions and the slope of the transfer curve is 100%
DC
/360 Deg.
MLX90316
Rotary Position Sensor IC
3901090316
Page 15 of 45 Mar/12
Rev08
11. MLX90316 Magnetic Specification
DC Operating Parameters at V
DD
= 5V (unless otherwise specified) and for T
A
as specified by the
Temperature suffix (S, E, K or L).
Parameter Symbol
Test Conditions Min Typ Max Units
Magnetic Flux Density B 20 50 70
(18)
mT
Magnet Temperature Coefficient
TCm -2400 0 ppm/°C
12. MLX90316 CPU & Memory Specification
The DSP is based on a 16 bit RISC µController. This CPU provides 5 Mips while running at 20 MHz.
Parameter Symbol
Test Conditions Min Typ Max Units
ROM 10 kB
RAM 256 B
EEPROM 128 B
18
Above 70 mT, the IMC starts saturating yielding to an increase of the linearity error.
MLX90316
Rotary Position Sensor IC
3901090316
Page 16 of 45 Mar/12
Rev08
13. MLX90316 End-User Programmable Items
Parameter Comments
Default Values
STANDARD
SPI /
SPI75AGC
PPA PPD # bit
Output Mode Define the output stage mode 4 N/A 4 7 3
MLX90316BCS 2 N/A 2 N/A 3
PWMPOL1 PWM Polarity 0 N/A N/A 1 1
PWMT PWM Frequency 1000h N/A N/A 1kHz 16
CLOCKWISE 0 0 0 1 1
DP Discontinuity Point 0h 0h 0h 0h 15
LNR_S0 Initial Slope 0h N/A N/A N/A 16
LNR_A_X AX Coordinate 8000h 0 0 0 16
LNR_A_Y AY Coordinate 0h 0% 10% 10% 16
LNR_A_S AS Coordinate 0h 100%/360d
80%/360d
80%/360d
16
LNR_B_X BX Coordinate FFFFh FFFFh FFFFh FFFFh 16
LNR_B_Y BY Coordinate 0h FFFFh FFFFh FFFFh 16
LNR_B_S BS Coordinate 0h N/A N/A N/A 16
LNR_C_X CX Coordinate FFFFh FFFFh FFFFh FFFFh 16
LNR_C_Y CY Coordinate FFFFh FFFFh FFFFh FFFFh 16
LNR_C_S CS Coordinate 0h N/A N/A N/A 16
CLAMP_HIGH Clamping High 8% 0% 10% 10% 16
CLAMP_LOW Clamping Low 8% 100% 90% 90% 16
KD Switch Out FFFFh FFFFh FFFFh FFFFh 16
MLX90316BCS 0 N/A FFFFh N/A 16
KDHYST Hysteresis on the Switch Out N/A N/A N/A N/A 8
DEADZONE 0 0 0 0 8
FHYST 4 0 0 0 8
MLX90316BCS 0 N/A 0 N/A 8
MLXID1 / MLXID2 / MLXID3 MLX MLX MLX MLX 16
CUSTID1 1 1 1 1 8
CUSTID2
(20)
6
(19)
19 / 36 16 20 16
CUSTID3 MLX MLX MLX MLX 16
FREE2 0 0 0 0 8
MLX90316BCS 0 N/A 2Ah N/A 16
FILTER 5 0 2 5 16
FILTER A1
(20)
Filter coefficient A1 for FILTER=6 6600h N/A N/A N/A 16
FILTER A2
(20)
Filter coefficient A2 for FILTER=6 2A00h N/A N/A N/A 16
ARGC Auto Gain at Start Up 0 1 1 1 1
MLX90316BCS 0 N/A 1 N/A 1
HIGHSPEED 0 1 0 1 1
End-User Programmable Items continues...
19
For MLX90316SDC–BCG–STANDARD, the CUSTUMERID2 parameter might differ from the given value (28d instead of 6d)
20
Not available in MLX90316xDC -BCS
MLX90316
Rotary Position Sensor IC
3901090316
Page 17 of 45 Mar/12
Rev08
… End-User Programmable Items
FSWAP 1 1 0 1 1
FORCECRA75 Radius Adjustment to 75% 0 0 / 1 0 0 1
AUTO_RG Automatic Rough Gain Selection 0 1 1 1 1
RoughGain 9 0 3 0 8
MLX90316BCS 6 N/A 3 N/A 8
RGThresL 0 0 0 0 4
RGThresH 15 15 15 15 4
EEHAMHOLE 3131h 0 0 0 16
RESONFAULT 0 1 1 1 2
MLXLOCK 0 1 1 1 1
LOCK 0 1 1 1 1
MLX90316BCS 0 N/A 0 N/A 1
Parameter for MLX90316xDC-BCS only
OUT2EN 1 N/A 1 N/A 1
OUT2 SLOPE RATIO Was CUSTUMERID2 N/A N/A -1 N/A 8
OUT2 OFFSET MLX N/A 100% N/A 8
CLAMP_LOW OUT2 8% N/A 10% N/A 16
CLAMP_HIGH OUT2 8% N/A 90% N/A 16
14. Description of End-User Programmable Items
14.1. Output Mode
The MLX90316 output type is defined by the Output Mode parameter.
Parameter Value Description
Analog Output Mode 2, 4 Analog Rail-to-Rail
PWM Output Mode 5
7
Low Side (NMOS)
Push-Pull
Serial N/A Low Side (NMOS)
14.1.1. Analog Output Mode
The Analog Output Mode is a rail-to-rail and ratiometric output with a push-pull output stage configuration
allows the use of a pull-up or pull-down resistor.
14.1.2. PWM Output Mode
If one of the PWM Output modes is selected, the output signal is a digital signal with Pulse Width
Modulation (PWM).
In mode 5, the output stage is an open drain NMOS transistor (low side), to be used with a pull-up resistor
to V
DD
.
In mode 7, the output stage is a push-pull stage for which Melexis recommends the use of a pull-up
resistor to V
DD
.
The PWM polarity is selected by the PWMPOL1 parameter:
PWMPOL1 = 0 for a low level at 100%
PWMPOL1 = 1 for a high level at 100%
MLX90316
Rotary Position Sensor IC
3901090316
Page 18 of 45 Mar/12
Rev08
The PWM frequency is selected by the PWMT parameter.
PWM Frequency Code (based on typical main clock frequency)
Oscillator Mode Pulse-Width Modulation Frequency (Hz)
100 200 500 1000
Low Speed ~35000 ~17500 ~7000 ~3500
High Speed - ~50000 ~20000 ~10000
For instance, in Low Speed Mode, set PWMT=7000 (decimal) to set the PWM frequency around
500Hz
(21)
.
14.1.3. Serial Protocol Output Mode
The MLX90316 features a digital Serial Protocol mode. The MLX90316 is considered as a Slave node.
See the dedicated Serial Protocol section for a full description (Section 16).
14.1.4. Switch Out
Parameter Value Unit
KD 0…359.9999 deg
KDHYST 0 1.4 deg
The switch is activated (Sw_lo) when the digital angle is greater than the value stored in the KD
parameter. This angle refers to the internal angular reference linked to the parameter DP and not to the
absolute physical 0° angle.
The KDHYST defines the hysteresis amplitude around the Switch point. The switch is actually activated if
the digital angle is greater than KD+KDHYST. It is deactivated if the digital angle is less than
KD-KDHYST.
The mandatory application diagram to use this feature is depicted in the Figure 9. See section 7 for the
electrical characteristic.
If the Switch feature is not used in the application, the output pin needs to be connected to the ground.
Figure 9 – Application Diagram for the Switch Out
21
In order to compensate the lot to lot variation of the main clock frequency (Ck), Melexis strongly recommends trimming the
PWM frequency during EOL programming (see the PTC-04 documentation).
SWITCH
OUT
1k5
5 V
ECU
to uC
I/O
Port
125
175
6k
100 nF
MLX90316
MLX90316
Rotary Position Sensor IC
3901090316
Page 19 of 45 Mar/12
Rev08
14.2. Output Transfer Characteristic
Parameter Value Unit
CLOCKWISE 0 CCW
1 CW
DP 0 359.9999 deg
LNR_A_X
LNR_B_X
LNR_C_X
0 359.9999 deg
LNR_A_Y
LNR_B_Y
LNR_C_Y
0 100 %
LNR_S0
LNR_A_S
LNR_B_S
0 17 %/deg
LNR_C_S -17 … 0 … 17 %/deg
CLAMP_LOW 0 100 %
CLAMP_HIGH 0 100 %
DEADZONE 0 359.9999 deg
MLX90316 xDC – BCS only
OUT2 SLOPE RATIO -8 … 0 … 8 -
OUT2 OFFSET -400 400 %
CLAMP_LOW OUT2 0 100 %
CLAMP_HIGH OUT2 0 100 %
14.2.1. CLOCKWISE Parameter
The CLOCKWISE parameter defines the magnet rotation direction.
CCW is the defined by the 1-4-5-8 pin order direction for the SOIC8 package and 1-8-9-16 pin
order direction for the TSSOP16 package.
CW is defined by the reverse direction: 8-5-4-1 pin order direction for the SOIC8 and 16-9-8-1 pin
order direction for the TSSOP16 package.
Refer to the drawing in the IMC positioning sections (Section 20.3 and 20.6).
14.2.2. Discontinuity Point (or Zero Degree Point)
The Discontinuity Point defines the 0° point on the circle. The discontinuity point places the origin at any
location of the trigonometric circle. The DP is used as reference for all the angular measurements.
MLX90316
Rotary Position Sensor IC
3901090316
Page 20 of 45 Mar/12
Rev08
Figure 10 - Discontinuity Point Positioning
14.2.3. LNR Parameters
The LNR parameters, together with the clamping values, fully define the relation (the transfer function)
between the digital angle and the output signal.
The shape of the MLX90316 transfer function from the digital angle value to the output voltage is
described by the drawing below. Six segments can be programmed but the clamping levels are
necessarily flat.
Two, three, or even five calibration points are then available, reducing the overall non-linearity of the IC by
almost an order of magnitude each time. Three or five point calibration will be preferred by customers
looking for excellent non-linearity figures. Two-point calibrations will be preferred by customers looking for
a cheaper calibration set-up and shorter calibration time.
A
Slope LNR_A_S
B
C
Slope LNR_B_S
Slope LNR_C_S
Slope LNR_S0
360
(Deg.)
Clamping Low
Clamping High
LNR_A_X
LNR_A_Y
LNR_B_Y
LNR_C_Y
CLAMPHIGH
CLAMPLOW
0 %
100 %
0
LNR_B_X LNR_C_X
14.2.4. CLAMPING Parameters
The clamping levels are two independent values to limit the output voltage range. The CLAMP_LOW
parameter adjusts the minimum output voltage level. The CLAMP_HIGH parameter sets the maximum
output voltage level. Both parameters have 16 bits of adjustment. In analog mode, the resolution will be
limited by the D/A converter (12 bits) to 0.024%V
DD
. In PWM mode, the resolution will be 0.024%
DC
. In
SPI mode, the resolution is 14bits or 0.022deg over 360deg.
360°
The placement of the discontinuity
point (0 point) is programmable.
MLX90316
Rotary Position Sensor IC
3901090316
Page 21 of 45 Mar/12
Rev08
14.2.5. DEADZONE Parameter
The dead zone is defined as the angle window between 0 and 359.9999.
When the digital angle lies in this zone, the IC is in fault mode (RESONFAULT must be set to “1” – See
14.6.1).
14.2.6. MLX90316 xDC- BCS ONLY
The MLX90316 BCS firmware offers the possibility to program a second output transfer characteristic of
the single die version.
The following formula is used in the 90316BxS:
O
UT
2 = O
UT
2SlopeRatio * O
UT
1 + O
UT
2Offset
Range O
UT
2 = [ Clamp_Low O
UT
2..Clamp_High O
UT
2 ]
O
UT
2 SLOPE RATIO Controls the slope ratio O
UT
1 vs O
UT
2. The ratio can be positive or negative.
The example of MLX90316LDC-BCS-PPA is given in the figure below (slope = -1, O
UT2
= -1 x slope O
UT1
+ 100 %).
14.3. Identification
Parameter Value Unit
MELEXSID1
MELEXSID2
MELEXSID3
0 65535
0 65535
0 65535
CUSTUMERID1
CUSTUMERID2
CUSTUMERID3
0 255
0 65535
0 65535
Identification number: 40 bits freely useable by Customer for traceability purpose.
360 (Deg.)
0
O
UT
1
O
UT
2
Output Level (%V
DD
)
0%
100%
10%
90%
MLX90316
Rotary Position Sensor IC
3901090316
Page 22 of 45 Mar/12
Rev08
14.4. Sensor Front-End
Parameter Value Unit
HIGHSPEED 0 = Slow mode
1 = Fast mode
ARGC 0 = disable
1 = enable
AUTO_RG 0 = disable
1 = enable
RoughGain 0 15
RGThresL 0 15
RGThresH 0 15
14.4.1. HIGHSPEED Parameter
The HIGHSPEED parameter defines the main frequency for the DSP.
HIGHSPEED = 0 selects the Slow mode with a 7 MHz master clock.
HIGHSPEED = 1 selects the Fast mode with a 20 MHz master clock.
For better noise performance, the Slow Mode must be enabled.
14.4.2. ARGC, AUTO_RG, RoughGain and FORCECRA75 Parameters
AUTO_RG and ARGC parameters enable the automatic gain control (AGC) of the analog chain. The AGC
loop is based on
(V
X
)²+ (V
Y
)² = (Amplitude)² = (Radius)²
and it targets an amplitude of 90% of the ADC input span.
At Start-Up phase, the gain stored in the parameter RoughGain is always used. Depending of the
AUTO_RG and ARGC settings, the AGC regulation acts as follow:
If ARGC is set, the regulation proceeds by jump to reach the target gain. Note that this regulation
is only valid if the starting gain does not saturate the ADC. Melexis recommendation is to use
RoughGain 3 if ARGC=1.
If ARGC is “0” and AUTO_RG is set to “1”, the regulation adapts every cycle by one gain code the
current gain to reach the 90% ADC span target. Note that if the value of RoughGain is too far
from the actual gain, the chip will enter the normal operating mode (after the Start-Up phase) with
an incorrect gain which will cause the device to go in diagnostic low (field too low/field too high
See section 15).
If ARGC and AUTO_RG are “0”, the AGC regulation is off and the gain used is the value stored in
the parameter RoughGain. Melexis does not advise the use of this mode.
The parameter AUTO_RG activates the automatic regulation during normal operation of the device as
background task.
The parameter FORCECRA75 modifies the target of the AGC algorithm to 75% - instead of 90% - of the
ADC span (at start-up and in normal operation).
MLX90316
Rotary Position Sensor IC
3901090316
Page 23 of 45 Mar/12
Rev08
Melexis strongly recommend to set ARGC = “1”, AUTO_RG = “1 and RoughGain 3 for all types of
application. If the magnetic specifications of the application are well known and under control, the
appropriate RoughGain can also be programmed with ARGC set to “0” and AUTO_RG to “1”.
Please note that the angular errors listed in the section 10 are only valid if the AUTO_RG is activated.
AUTO_RG avoids also the saturation of the analog chain and the associated linearity error.
The current gain (RG) can be read out with the PTC-04 and gives a rough indication of the applied
magnetic flux density (Amplitude).
14.4.3. RGThresL, RGThresH Parameters
RGThresL & RGThresH define the boundaries within the gain setting (Rough Gain) is allowed to vary.
Outside this range, the output is set in diagnostic low.
14.5. FILTER
Parameter Value Unit
FHYST 0 11 ; step 0.04 deg
FILTER 0… 6
FSWAP 0
1
The MLX90316 includes 3 types of filters:
Hysteresis Filter: programmable by the FHYST parameter
Low Pass FIR Filters controlled with the Filter parameter
Low Pass IIR Filter controlled with the Filter parameter and the coefficients FILTER A1 and
FILTER A2
Note: if the parameter FSWAP is set to “1”, the filtering is active on the digital angle. If set to “0”, the
filtering is active on the output transfer function.
14.5.1. Hysteresis Filter
The FHYST parameter is a hysteresis filter. The output value of the IC is not updated when the digital step
is smaller than the programmed FHYST parameter value. The output value is modified when the
increment is bigger than the hysteresis. The hysteresis filter reduces therefore the resolution to a level
compatible with the internal noise of the IC. The hysteresis must be programmed to a value close to the
noise level.
Please note that for the programmable version, the FHYST parameter is set to 4 by default. If you do not
wish this feature, please set it to “0”.
14.5.2. FIR Filters
The MLX90316 features 6 FIR filter modes controlled with Filter = 0…5. The transfer function is described
below:
in
j
i
i
j
i
i
n
xa
a
y
=
=
=
0
0
1
MLX90316
Rotary Position Sensor IC
3901090316
Page 24 of 45 Mar/12
Rev08
The characteristics of the filters no 0 to 5 is given in the Table 1.
Filter No (j) 0 1 2 3 4 5
Type Disable Finite Impulse Response
Coefficients a
0
… a
5
N/A 110000 121000 133100 111100 122210
Title No Filter Extra Light Light
90% Response Time 1 2 3 4 4 5
99% Response Time 1 2 3 4 4 5
Efficiency RMS (dB) 0 2.9 4.0 4.7 5.6 6.2
Efficiency P2P (dB) 0 2.9 3.6 5.0 6.1 7.0
Table 1 - FIR Filters Selection Table
Figure 11 - Step Response and Noise Response for FIR (No 3) and FHYST=10
FIR and HYST Filters : Step response Comparative Plot
30000
32000
34000
36000
38000
40000
0 5 10 15 20 25 30
Milliseconds
[0..65535] Scale
x(n)
fir(n)
hyst(n)
FIR and HYST Filter : Gaussian white noise response
39800
39850
39900
39950
40000
40050
40100
40150
40200
0 50 100 150
Milliseconds
[0..65535] Scale
x(n)
fir(n)
hyst(n)
MLX90316
Rotary Position Sensor IC
3901090316
Page 25 of 45 Mar/12
Rev08
14.5.3. IIR Filters
The IIR Filter is enabled with Filter = 6. The diagram of the IIR Filter implemented in the MLX90316 is
given in Figure 12. Only the parameter A1 and A2 are configurable (See Table 2).
Figure 12 - IIR Diagram
Filter No 6
Type 2
nd
Order Infinite Impulse Response (IIR)
Title Medium & Strong
90% Response Time 11 16 26 40 52 100
Efficiency RMS (dB) 9.9 11.4 13.6 15.3 16.2 >20
Efficiency P2P (dB) 12.9 14.6 17.1 18.8 20 >20
Coefficient A1 26112 28160 29120 30208 31296 31784
Coefficient A2 10752 12288 12992 13952 14976 15412
Table 2 - IIR Filter Selection Table
The Figure 13 shows the response of the filter to a Gaussian noise with default coefficient A1 and A2.
Z
-1
x(n)
Z
-1
Z
-1
Z
-1
y(n)
b
0
= 1
b
1
= 2
b
2
= 1
-a
1
-a
2
MLX90316
Rotary Position Sensor IC
3901090316
Page 26 of 45 Mar/12
Rev08
Figure 13 - Noise Response for the IIR Filter
14.6. Programmable Diagnostic Settings
Parameter Value Unit
RESONFAULT 0
1
EEHAMHOLE 0
3131h
14.6.1. RESONFAULT Parameter
This RESONFAULT parameter enables the soft reset when a fault is detected by the CPU when the
parameter is set to 1. By default, the parameter is set to “0” but it is recommended to set it to “1 to
activate the self diagnostic modes (See section 15).
Note that in the User Interface (MLX90316UI), the RESONFAULT is split in two bits:
DRESONFAULT: disable the reset in case of a fault.
DOUTINFAULT: disable output in diagnostic low in case of fault.
14.6.2. EEHAMHOLE Parameter
The EEHAMHOLE parameter disables the CRC check and the memory recovery (Hamming code) when it
is equal to 3131h. Melexis strongly recommends to set the parameter to 0 (enable memory recovery).
This is done automatically when using the MEMLOCK function.
14.7. Lock
Parameter Value Unit
MLXLOCK 0
1
LOCK 0
1
IIR Filter - Gaussian White Noise Response
39800
39850
39900
39950
40000
40050
40100
40150
40200
0 50 100 150
Time
[0…65535] Scale
x(n)
y(n)
MLX90316
Rotary Position Sensor IC
3901090316
Page 27 of 45 Mar/12
Rev08
14.7.1. MLXLOCK Parameter
MLXLOCK locks all the parameters set by Melexis.
14.7.2. LOCK Parameter
LOCK locks all the parameters set by the user. Once the lock is enabled, it is not possible to change the
EEPROM values anymore.
Note that the lock bit should be set by the solver function “MemLock”.
MLX90316
Rotary Position Sensor IC
3901090316
Page 28 of 45 Mar/12
Rev08
15. MLX90316 Self Diagnostic
The MLX90316 provides numerous self-diagnostic features. Those features increase the robustness of the IC
functionality as it will prevent the IC to provide erroneous output signal in case of internal or external failure
modes (“fail-safe”).
Action Effect on Outputs Remark
ROM CRC Error at start up
(64 words including Intelligent
Watch Dog - IWD)
CPU Reset
(22)
Diagnostic low
(23)
All the outputs are already
in Diagnostic low - (start-up)
ROM CRC Er
ror (Operation
-
Background task)
Enter Endless Loop:
- Progress (watchdog
Acknowledge)
- Set Outputs in Diagnostic low
Immediate
Diagnostic low
RAM Test Fail (Start up)
CPU Reset
Diagnostic low
All the outputs are already
in Diagnostic low (start-up)
Calibration Data CRC Error
(Start-Up)
Hamming Code Recovery
Start
-
Up Time is increased
by 3 ms if successful
recovery
Hamming Code Recovery Erro
r
(Start-Up)
CPU Reset
Immediate
Diagnostic low
See
14.6.2
Calibration Data CRC Error
(Operation - Background)
CPU Reset
Immediate
Diagnostic low
Dead Zone
Set
Outputs in Diagnostic low
.
Normal Operation until the “dead
zone” is left.
Immediate
Diagnostic low
Immediate recovery if the
“dead zone” is left
ADC Clipping
(ADC Output is 0000h or
7FFFh)
Set
Outputs in Diagnostic low
Normal mode and CPU Reset If
recovery
Immediate
Diagnostic low
Radius Overflow ( > 100% )
or
Radius Underflow
( < 50 % )
Set
Outputs in Diagnostic low
Normal mode and CPU Reset If
recovery
Immediate
Diagnostic low
(50 %
-
100 %)
No magnet / field too high
See also 14.4.2
Fine Gain Clipping
(FG < 0d or > 63d)
Set
O
utputs in Diagnostic low
Normal mode, and CPU Reset If
recovery
Immediate
Diagnostic low
Rough Offset Clipping
(RO is < 0d or > 127d)
Set
Outputs in Diagnostic low
Normal mode, and CPU Reset If
recovery
Immediate
Diagnostic low
Rough Gain Clipping
(RG < RGTHRESLOW or RG >
RGTHRESHIGH)
Set Outputs in Diagnostic low
Normal mode, and CPU Reset If
recovery
Immediate
Diagnostic low
See also 14.4.2
DAC Monitor (Digital to Analog
converter)
Set Outputs in Diagnostic low.
Normal Mode with immediate
recovery without CPU Reset
Immediate
Diagnostic low
MLX90316 Fault Mode
continues
22
CPU reset means
1. Core Reset (same as Power-On-Reset). It induces a typical start up time.
2. Periphery Reset (same as Power-On-Reset)
3. Fault Flag/Status Lost
4. The reset can be disabled by clearing the RESONFAULT bit (See 14.6.1)
23
Refer to section 7 for the Diagnostic Output Level specifications
MLX90316
Rotary Position Sensor IC
3901090316
Page 29 of 45 Mar/12
Rev08
…MLX90316 Fault Mode
Fault Mode Action Effect on Outputs Remark
ADC Monitor (Analog to Digital
Converter)
Set Outputs in Diagnostic low.
Normal Mode with immediate
recovery without CPU Reset
Immediate
Diagnostic low
ADC Inputs are Shorted
Undervoltage Mode At Start-Up, wait Until V
DD
> 3V.
During operation, CPU Reset after
3 ms debouncing
-
V
DD
<
POR level
=>
Outputs high impedance
- POR level < V
DD
< 3 V =>
Outputs in Diagnostic low.
Firmware Flow Error
CPU Reset
Immediate
Diagnostic low
Intelligent Watchdog
(Observer)
Read/Write Access out of
physical memory
CPU Reset
Immediate
Diagnostic low
100% Hardware detection
Write Access to p
rotected
area
(IO and RAM Words)
CPU Reset
Immediate
Diagnostic low
100% Hardware detection
Unauthorized entry in
“SYSTEM” Mode
CPU Reset
Immediate
Diagnostic low
100% Hardware detection
V
DD
> 7 V Set Output High Impedance
(Analog)
Pull down resistive load =>
Diag. Low
Pull up resistive load =>
Diag. High
(23)
100% Hardware detection
V
DD
> 9.4 V IC is switched off (internal supply)
CPU Reset on recovery
Pull down resistive load =>
Diag. Low
Pull up resistive load =>
Diag. High
100% Hardware detection
Broken
V
SS
(24)
CPU Reset
on recovery
Pull down resistive load =>
Diag. Low
Pull up resistive load =>
Diag. High
100% Hardware detection.
Pull down load 10 kΩ to
meet Diag Low spec:
- < 2% V
DD
(temperature
suffix S and E)
- < 4% V
DD
( temperature
suffix K)
- contact Melexis for
temperature suffix L
Broken V
DD
(24)
CPU Reset
on recovery
Pull down resistive load =>
Diag. Low
Pull up resistive load =>
Diag. High
No valid
diagnostic for
V
PULLUP
= V
DD
.
Pull up load ( 10kΩ) to
V
PULLUP
> 8 V to meet Diag
Hi spec > 96% Vdd.
24
Not Valid for SPI Version
MLX90316
Rotary Position Sensor IC
3901090316
Page 30 of 45 Mar/12
Rev08
16. Serial Protocol
16.1. Introduction
The MLX90316 features a digital Serial Protocol mode. The MLX90316 is considered as a Slave node.
The serial protocol of the MLX90316 is a three wires protocol (/SS, SCLK, MOSI-MISO):
/SS pin is a 5 V tolerant digital input
SCLK pin is a 5 V tolerant digital input
MOSI-MISO pin is a 5 V tolerant open drain digital input/output
The basic knowledge of the standard SPI specification is required for the good understanding of the
present section.
16.2. SERIAL PROTOCOL Mode
CPHA = 1 even clock changes are used to sample the data
CPOL = 0 active-Hi clock
The positive going edge shifts a bit to the Slave’s output stage and the negative going edge samples the
bit at the Master’s input stage.
16.3. MOSI (Master Out Slave In)
The Master sends a command to the Slave to get the angle information.
16.4. MISO (Master In Slave Out)
The MISO of the slave is an open-collector stage. Due to the capacitive load (TBD) a >1 k pull-up is
used for the recessive high level (in fast mode). Note that MOSI and MISO use the same physical pin of
the MLX90316.
16.5. /SS (Slave Select)
The /SS pin enables a frame transfer (if CPHA = 1). It allows a re-synchronization between Slave and
Master in case of communication error.
16.6. Master Start-Up
/SS, SCLK, MISO can be undefined during the Master start-up as long as the Slave is re-synchronized
before the first frame transfer.
16.7. Slave Start-Up
The slave start-up (after power-up or an internal failure) takes 16 ms. Within this time /SS and SCLK is
ignored by the Slave. The first frame can therefore be sent after 16 ms. MISO is Hi-Z (i.e. Hi-Impedance)
until the Slave is selected by its /SS input. MLX90316 will cope with any signal from the Master while
starting up.
MLX90316
Rotary Position Sensor IC
3901090316
Page 31 of 45 Mar/12
Rev08
16.8. Timing
To synchronize communication, the Master deactivates /SS high for at least t5 (1.5 ms). In this case, the
Slave will be ready to receive a new frame. The Master can re-synchronize at any time, even in the middle
of a byte transfer.
Note: Any time shorter than t5 leads to an undefined frame state, because the Slave may or may not
have seen /SS inactive.
Timings Min
(25)
Max Remarks
t1 2.3 µs / 6.9 µs -
No capacitive load on MISO
.
t1 is the minimum clock period for any
bits within a byte.
t2 12.5 µs / 37.5 µs -
t2 the minimum time between any other
byte
t4 2.3 µs / 6.9 µs -
Time between last clock and
/SS=high=chip de-selection
t5 300 µs / 1500 µs -
Minimum /SS
=
Hi
time where it’s
guaranteed that a frame re-
synchronizations will be started.
t5 0µs
-
Maximum /SS
=
Hi
time where it’s
guaranteed that NO frame re-
synchronizations will be started.
t6 2.3 µs / 6.9 µs -
The time t6 defi
nes the minimum time
between /SS = Lo and the first clock edge
t7 15 µs / 45 µs -
t7 is the minimum time between the
StartByte and the Byte0
t9 - <1 µs
Maximum time between /SS
=
Hi
and
MISO Bus High-Impedance
T
StartUp
- < 10 ms / 16 ms
Minimum time bet
ween reset
-
inactiv
e
and any master signal change
25
Timings shown for oscillator base frequency of 20MHz (Fast Mode) / 7 MHz (Slow Mode)
SCLK
MOSI/
MISO
/SS
t6 t1 t7 t2 t4 t9 t5
2 Startbytes Byte 0 Byte 1 Byte 2 Byte 7
t1 t1 t1 t1
MLX90316
Rotary Position Sensor IC
3901090316
Page 32 of 45 Mar/12
Rev08
16.9. Slave Reset
On internal soft failures the Slave resets after 1 second or after an (error) frame is sent. On internal hard
failures the Slave resets itself. In that case, the Serial Protocol will not come up. The serial protocol link is
enabled only after the completion of the first synchronization (the Master deactivates /SS for at least t5).
16.10. Frame Layer
16.10.1. Command Device Mechanism
Before each transmission of a data frame, the Master should send a byte AAh to enable a frame transfer.
The latch point for the angle measurement is at the last clock before the first data frame byte.
16.10.2. Data Frame Structure
A data frame consists of 10 bytes:
2 start bytes (AAh followed by FFh)
2 data bytes (DATA16 – most significant byte first)
2 inverted data bytes (/DATA16 - most significant byte first)
4 all-Hi bytes
The Master should send AAh (55h in case of inverting transistor) followed by 9 bytes FFh. The Slave will
answer with two bytes FFh followed by 4 data bytes and 4 bytes FFh.
16.10.3. Timing
There are no timing limits for frames: a frame transmission could be initiated at any time. There is no inter-
frame time defined.
/SS
SCLK
A
A
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
A
A
F
F
F
FD A T A F
F
F
F
F
F
F
F
F
F
MOSI
MISO
Timing diagram
F
F
F
F
F
FD
Latch point
MLX90316
Rotary Position Sensor IC
3901090316
Page 33 of 45 Mar/12
Rev08
16.10.4. Data Structure
The DATA16 could be a valid angle, or an error condition. The two meanings are distinguished by the
LSB.
DATA16: Angle A[13:0] with (Angle Span)/2
14
Most Significant Byte Less Significant Byte
MSB
LSB
MSB
LSB
A13 A12
A11
A10
A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 0 1
DATA16: Error
Most Significant Byte Less Significant Byte
MSB
LSB
MSB
LSB
E15 E14
E13
E12
E11
E10
E9
E8 E7 E6
E5
E4
E3
E2
E1
E0
BIT
NAME
E0 0
E1 1
E2 F_ADCMONITOR ADC Failure
E3 F_ADCSATURA ADC Saturation (Electrical failure or field too strong)
E4 F_RGTOOLOW Analog Gain Below Trimmed Threshold
(Likely reason : field too weak)
E5 F_MAGTOOLOW Magnetic Field Too Weak
E6 F_MAGTOOHIGH Magnetic Field Too Strong
E7 F_RGTOOHIGH
Analog Gain Above Trimmed Threshold
(Likely reason : field too strong)
E8 F_FGCLAMP Never occurring in serial protocol
E9 F_ROCLAMP Analog Chain Rough Offset Compensation : Clipping
E10 F_MT7V Device Supply V
DD
Greater than 7V
E11 -
E12 -
E13 -
E14 F_DACMONITOR Never occurring in serial protocol
E15 -
16.10.5. Angle Calculation
All communication timing is independent (asynchronous) of the angle data processing. The angle is
calculated continuously by the Slave:
Slow Mode: every 1.5 ms at most.
Fast Mode: every 350
µ
s at most.
The last angle calculated is hold to be read by the Master at any time. Only valid angles are transferred by
the Slave, because any internal failure of the Slave will lead to a soft reset.
16.10.6. Error Handling
In case of any errors listed in section 16.10.4, the Serial protocol will be initialized and the error condition
can be read by the master. The slave will perform a soft reset once the error frame is sent.
In case of any other errors (ROM CRC error, EEPROM CRC error, RAM check error, intelligent watchdog
error…) the Slave’s serial protocol is not initialized. The MOSI/MISO pin will stay Hi-impedant (no error
frames are sent).
MLX90316
Rotary Position Sensor IC
3901090316
Page 34 of 45 Mar/12
Rev08
17. Recommended Application Diagrams
17.1. Analog Output Wiring with the MLX90316 in SOIC Package
Figure 14 – Recommended wiring for the MLX90316 in SOIC8 package
(26)
.
Figure 15 – Recommended wiring for the MLX90316 in SOIC8 package – “BCS” Version.
26
See section 14.1.4 if the Switch Output feature is used.
C2
100nF
MLX90316
Vdd
NotUsed
Test 2
Vss
1
Test 1 Vdig
Switch Out
Out1
8
4
5
C1
100nF
C3
100nF
Vdd
GND
Output
5 V
ECU
R1
10K C4
4.7nF
ADC
C2
MLX90316
V
DD
O
UT2
T
EST2
V
SS
1
T
EST1
V
DIG
Switch Out
O
UT1
8
4
5
C1
C3
V
DD
GND
O
UT1
5 V
ECU
ADC
O
UT2
C4
C1, C2, C3, C4: 100nF
BCS
MLX90316
Rotary Position Sensor IC
3901090316
Page 35 of 45 Mar/12
Rev08
17.2. Analog Output Wiring with the MLX90316 in TSSOP Package
Figure 16 – Recommended wiring for the MLX90316 in TSSOP16 package (dual die).
17.3. PWM Low Side Output Wiring
Figure 17 – Recommended wiring for a PWM Low Side Output configuration
(27)
.
27
See section 14.1.4 if the Switch Output feature is used.
ECU
VDD1
VDD2
GND1
GND1
GND2
Vdd1
Vss1
1
Out2
Vdig1
Out1
Vss2
16
8
9
MLX90316
Vdd2
Vdig2
C1
100nF
C2
100nF C3
100nF
C6
100nF
C4
100nF
C5
100nF
Vdd1
GND1
Output1
Vdd2
GND2
Output2
ADC
R1
10K
C7
4.7nF
R2
10K
C8
4.7nF
GND2
C2
100nF
MLX90316
Vdd
NotUsed
Test 2
Vss
1
Test 1 Vdig
Switch Out
PWM
8
4
5
C1
100nF
C3
4.7nF
Vdd
GND
Output
5 V
ECU
R1
1K
C4
4.7nF
TIMER
5 V
MLX90316
Rotary Position Sensor IC
3901090316
Page 36 of 45 Mar/12
Rev08
17.4. Serial Protocol
Generic schematics for single slave and dual slave applications are described.
17.4.1. SPI Version – Single Die
Figure 18 – MLX90316 SPI Version – Single Die – Application Diagram
C2
100nF
MLX90316
Vdd
SCLK
Test 1
Vss
1
Test 0 Vdig
/SS
MOSI
8
4
5
C1
100nF
3.3V/5V
SPI Master
5 V
R2
1K
MISO
MOSI
SCLK
_SS
GND
Vdd
_SS
SCLK
MOSI
MLX90316
Rotary Position Sensor IC
3901090316
Page 37 of 45 Mar/12
Rev08
17.4.2. SPI Version – Dual Die
Figure 19 – MLX90316 SPI Version – Dual Die – Application Diagram
C2
100nF
MLX90316
Vdd
SCLK
Test 1
Vss
1
Test 0 Vdig
/SS
MOSI
8
4
5
C1
100nF
3.3V/5V
SPI Master
5 V
R2
1K
MISO
MOSI
SCLK1
_SS1
GND
Vdd
_SS1
SCLK1
MOSI
C2
100nF
MLX90316
Vdd
SCLK
Test 1
Vss
1
Test 0 Vdig
/SS
MOSI
8
4
5
C1
100nF
SCLK2
_SS2
_SS2
SCLK2
#1
#2
MLX90316
Rotary Position Sensor IC
3901090316
Page 38 of 45 Mar/12
Rev08
17.4.3. Non SPI Version (Standard Version)
Figure 20 – MLX90316
Single Die
Serial Protocol Mode
Application Type
µCtrl
Supply
(V)
Pull
-
up
Supply
(V)
90316
Supply
(V)
R1 (Ω) R2 (Ω) R3 (Ω) R4 (Ω) R5 (Ω)
MOS
Type
5V
µ
Ctrl w/o O.D. w/o 3.3V
5V
5V
5V
100
1000
20,000
1000
20,000
BS170
5V
µ
Ctrl w/o O.D. w/ 3.3V
5V
3.3V
5V
150
1000
N/A
1000
20,000
BS170
3.3V
µ
Ctrl w/o
O.D.
(28)
3.3V
3.3V
5V
150
1000
N/A
N/A
N/A
BS170
5V
µ
Ctrl w/ O.D. w/o 3.3V
(29)
5V
5V
5V
100
1000
20,000
1000
20,000
N/A
3.3V µCtrl w/ O.D.
3.3V
3.3V
5V
150
1000
N/A
N/A
N/A
N/A
Table 3 - Resistor Values for Common Specific Applications
28
µCtrl w/ O.D. : Micro-controller with open-drain capability (for instance NEC V850ES series)
29
µCtrl w/o O.D. : Micro-controller without open-drain capability (like TI TMS320 series or ATMEL AVR )
C2
100nF
MLX90316
Vdd
SCLK
Test 1
Vss
1
Test 0 Vdig
/SS
MOSI
8
4
5
C1
100nF
3.3V/5V
SPI Master
5 V
R1
MISO
MOSI
SCLK
_SS
GND
Vdd
_SS
MOSI
R2
R3
R5
R4
MLX90316
Rotary Position Sensor IC
3901090316
Page 39 of 45 Mar/12
Rev08
18. Standard information regarding manufacturability of Melexis
products with different soldering processes
Our products are classified and qualified regarding soldering technology, solderability and moisture
sensitivity level according to following test methods:
Reflow Soldering SMD’s (Surface Mount Devices)
IPC/JEDEC J-STD-020
Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices
(classification reflow profiles according to table 5-2)
EIA/JEDEC JESD22-A113
Preconditioning of Nonhermetic Surface Mount Devices Prior to Reliability Testing
(reflow profiles according to table 2)
Wave Soldering SMD’s (Surface Mount Devices) and THD’s (Through Hole Devices)
EN60749-20
Resistance of plastic- encapsulated SMD’s to combined effect of moisture and soldering heat
EIA/JEDEC JESD22-B106 and EN60749-15
Resistance to soldering temperature for through-hole mounted devices
Iron Soldering THD’s (Through Hole Devices)
EN60749-15
Resistance to soldering temperature for through-hole mounted devices
Solderability SMD’s (Surface Mount Devices) and THD’s (Through Hole Devices)
EIA/JEDEC JESD22-B102 and EN60749-21
Solderability
For all soldering technologies deviating from above mentioned standard conditions (regarding peak
temperature, temperature gradient, temperature profile etc) additional classification and qualification tests
have to be agreed upon with Melexis.
The application of Wave Soldering for SMD’s is allowed only after consulting Melexis regarding assurance
of adhesive strength between device and board.
Melexis is contributing to global environmental conservation by promoting lead free solutions. For more
information on qualifications of RoHS compliant products (RoHS = European directive on the Restriction
Of the use of certain Hazardous Substances) please visit the quality page on our website:
http://www.melexis.com/quality.aspx
19. ESD Precautions
Electronic semiconductor products are sensitive to Electro Static Discharge (ESD).
Always observe Electro Static Discharge control procedures whenever handling semiconductor products.
MLX90316
Rotary Position Sensor IC
3901090316
Page 40 of 45 Mar/12
Rev08
20. Package Information
20.1. SOIC8 - Package Dimensions
20.2. SOIC8 - Pinout and Marking
0.19
0.25
NOTES:
All dimensions are in millimeters (anlges in degrees).
* Dimension does not include mold flash, protrusions or
gate burrs (shall not exceed 0.15 per side).
** Dimension does not include interleads flash or protrusion
(shall not exceed 0.25 per side).
*** Dimension does not include dambar protrusion.
Allowable dambar protrusion shall be 0.08 mm total in
excess of the dimension at maximum material condition.
Dambar cannot be located on the lower radius of the foot.
5.80
6.20**
1.27 TYP
4.80
4.98*
1.52
1.72
0.100
0.250
1.37
1.57
0.36
0.46***
3.81
3.99**
0.41
1.27
Marking :
Part Number MLX90316 (3 digits)
316
Die Version (3 digits)
123456 Lot number (6 digits)
Week Date code (2 digits)
Year Date code (2 digits)
YY WW
BCG
Out2
SCLK
1
8
4
5
316Bxx
123456
\SS
Switch
Test 0
Vdd
Out
MOSI/MISO
Test 1
Vdig
Vss
TOP
Bottom
BDG
Standard
SPI Version
BCS BCS Version
MLX90316
Rotary Position Sensor IC
3901090316
Page 41 of 45 Mar/12
Rev08
20.3. SOIC8 - IMC Positionning
0.46 +/- 0.06
1.25
1.65
1.96
2.26
1 2 3 4
8 7 6 5
CCW
CW
COS
SIN
The MLX90316 is an absolute angular position sensor but the linearity error (Le – See Section 10) does
not include the error linked to the absolute reference 0 Deg (which can be fixed in the application through
the discontinuity point – See 14.2.2).
Angle detection MLX90316 SOIC8
1 2 3 4
8765
~ 0 Deg.*
S
N
1234
8 7 6 5
S
N
~ 90 Deg.*
1234
8 7 6 5
S
N
~ 270 Deg.*
1 2 3 4
8765
S
N
~ 180 Deg.*
* No absolute reference for the angular information.
MLX90316
Rotary Position Sensor IC
3901090316
Page 42 of 45 Mar/12
Rev08
20.4. TSSOP16 - Package Dimensions
0.09
0.20
1.0 DIA
NOTES:
All dimensions are in millimeters (anlges in degrees).
* Dimension does not include mold flash, protrusions or gate burrs (shall not exceed 0.15 per side).
** Dimension does not include interleads flash or protrusion (shall not exceed 0.25 per side).
*** Dimension does not include dambar protrusion. Allowable dambar protrusion shall be 0.08 mm total in excess of the dimension at
maximum material condition. Dambar cannot be located on the lower radius of the foot.
0.20 TYP
12
O
TYP
0.09 MIN
0.09 MIN
0.50
0.75
1.0 TYP
12
O
TYP
0
O
8
O
4.90
5.10*
1.1 MAX
0.05
0.15
0.85
0.95
0.19
0.30***
6.4 TYP
4.30
4.50**
0.65 TYP
1.0
1.0
MLX90316
Rotary Position Sensor IC
3901090316
Page 43 of 45 Mar/12
Rev08
20.5. TSSOP16 - Pinout and Marking
20.6. TSSOP16 - IMC Positionning
0.30 +/- 0.06
1.95
2.45
1.84
2.04
2.76
2.96
1 8
916
CCW
CW
COS 2
COS 1
SIN 2 SIN 1
Die 2Die 1
Marking :
Part Number MLX90316 (3 digits)
316
Die Version (3 digits)
123456
Lot number (6 digits)
Week Date code (2 digits)
Year Date code (2 digits)
YY WW
BCG
Vdd_1 SCLK_1
Test1_1
Vss_1
1
Test0_1
Out_2/MOSI/MISO_2
Vdig_1
_SS_1/ Switch_1
Out_1/MOSI/MISO_1
Vss_2
16
8
9
316BxG
123456
Test0_2
Vdd_2
_SS_2/Switch_2
SCLK_2
Vdig_2Test1_2
BDG
Standard
SPI Version
Top
Bottom
MLX90316
Rotary Position Sensor IC
3901090316
Page 44 of 45 Mar/12
Rev08
The MLX90316 is an absolute angular position sensor but the linearity error (Le – See Section 10) does
not include the error linked to the absolute reference 0 Deg (which can be fixed in the application through
the discontinuity point – See 14.2.2).
Angle detection MLX90316 TSSOP16
~ 270 Deg.* ~ 90 Deg.*
1 8
916
Die 2Die 1
S
N
~ 180 Deg.* ~ 0 Deg.*
1 8
916
Die 2Die 1
S
N
~ 0 Deg.* ~ 180 Deg.*
1 8
916
Die 2Die 1
S
N
1 8
916
Die 2Die 1
S
N
~ 90 Deg.* ~ 270 Deg.*
* No absolute reference for the angular information.
MLX90316
Rotary Position Sensor IC
3901090316
Page 45 of 45 Mar/12
Rev08
21. Disclaimer
Devices sold by Melexis are covered by the warranty and patent indemnification provisions appearing in
its Term of Sale. Melexis makes no warranty, express, statutory, implied, or by description regarding the
information set forth herein or regarding the freedom of the described devices from patent infringement.
Melexis reserves the right to change specifications and prices at any time and without notice. Therefore,
prior to designing this product into a system, it is necessary to check with Melexis for current information.
This product is intended for use in normal commercial applications. Applications requiring extended
temperature range, unusual environmental requirements, or high reliability applications, such as military,
medical life-support or life-sustaining equipment are specifically not recommended without additional
processing by Melexis for each application.
The information furnished by Melexis is believed to be correct and accurate. However, Melexis shall not
be liable to recipient or any third party for any damages, including but not limited to personal injury,
property damage, loss of profits, loss of use, interrupt of business or indirect, special incidental or
consequential damages, of any kind, in connection with or arising out of the furnishing, performance or
use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow
out of Melexis’ rendering of technical or other services.
© 2012 Melexis NV. All rights reserved.
For the latest version of this document, go to our website at
www.melexis.com
Or for additional information contact Melexis Direct:
Europe, Africa, Asia: America:
Phone: +32 1367 0495 Phone: +1 248 306 5400
E-mail: sales_europe@melexis.com E-mail: sales_usa@melexis.com
ISO/TS 16949 and ISO14001 Certified