SGP20N60HS
SGW20N60HS
Power Semiconductors 1 Rev 2.4 Sep 08
High Speed IGBT in NPT-technology
30% lower Eoff compared to previous generation
Short circuit withstand time – 10 µs
Designed for operation above 30 kHz
NPT-Technology for 600V applications offers:
- parallel switching capability
- moderate Eoff increase with temperature
- very tight parameter distribution
High ruggedness, temperature stable behaviour
Pb-free lead plating; RoHS compliant
Qualified according to JEDEC1 for target applications
Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/
Type VCE I
C Eoff Tj Marking Package
SGP20N60HS 600V 20 240µJ
150°C G20N60HS PG-TO-220-3-1
SGW20N60HS 600V 20 240µJ 150°C G20N60HS PG-TO-247-3
Maximum Ratings
Parameter Symbol Value Unit
Collector-emitter voltage VCE 600 V
DC collector current
TC = 25°C
TC = 100°C
IC
36
20
Pulsed collector current, tp limited by Tjmax ICpuls 80
Turn off safe operating area
VCE 600V, Tj 150°C
- 80
A
Avalanche energy single pulse
IC = 20A, VCC=50V, RGE=25
start TJ=25°C
EAS 115 mJ
Gate-emitter voltage static
transient (tp<1µs, D<0.05)
VGE ±20
±30
V
Short circuit withstand time2)
VGE = 15V, VCC 600V, Tj 150°C
tSC 10
µs
Power dissipation
TC = 25°C
Ptot 178 W
Operating junction and storage temperature Tj ,
Tstg
-55...+150
Time limited operating junction temperature for t < 150h Tj(tl) 175
Soldering temperature, 1.6mm (0.063 in.) from case for 10s - 260
°C
1 J-STD-020 and JESD-022
2) Allowed number of short circuits: <1000; time between short circuits: >1s.
G
C
E
PG-TO-247-3
PG-TO-220-3-1
http://store.iiic.cc/
SGP20N60HS
SGW20N60HS
Power Semiconductors 2 Rev 2.4 Sep 08
Thermal Resistance
Parameter Symbol Conditions Max. Value Unit
Characteristic
IGBT thermal resistance,
junction – case
RthJC 0.7
Thermal resistance,
junction – ambient
RthJA PG-TO-220-3-1
PG-TO-247-3-21
62
40
K/W
Electrical Characteristic, at Tj = 25 °C, unless otherwise specified
Value
Parameter Symbol Conditions
min. Typ. max.
Unit
Static Characteristic
Collector-emitter breakdown voltage V(BR)CES VGE=0V, IC=500µA600 - -
Collector-emitter saturation voltage VCE(sat) VGE = 15V, IC=20A
Tj=25°C
Tj=150°C
2.8
3.5
3.15
4.00
Gate-emitter threshold voltage VGE(th) IC=500µA,VCE=VGE 3 4 5
V
Zero gate voltage collector current
ICES VCE=600V,VGE=0V
Tj=25°C
Tj=150°C
-
-
-
-
40
2500
µA
Gate-emitter leakage current IGES VCE=0V,VGE=20V - - 100 nA
Transconductance gfs VCE=20V, IC=20A - 14 S
Dynamic Characteristic
Input capacitance Ciss - 1100
Output capacitance Coss - 105
Reverse transfer capacitance Crss
VCE=25V,
VGE=0V,
f=1MHz - 64
pF
Gate charge QGate VCC=480V, IC=20A
VGE=15V
- 100 nC
Internal emitter inductance
measured 5mm (0.197 in.) from case
LE PG-TO-220-3-1
PG-TO-247-3-21
- 7
13
nH
Short circuit collector current1) IC(SC) VGE=15V,tSC10µs
VCC 600V,
Tj 150°C
- 170 A
1) Allowed number of short circuits: <1000; time between short circuits: >1s.
http://store.iiic.cc/
SGP20N60HS
SGW20N60HS
Power Semiconductors 3 Rev 2.4 Sep 08
Switching Characteristic, Inductive Load, at Tj=25 °C
Value
Parameter Symbol Conditions
min. typ. max.
Unit
IGBT Characteristic
Turn-on delay time td(on) - 18
Rise time tr - 15
Turn-off delay time td(off) - 207
Fall time tf - 13
ns
Turn-on energy Eon - 0.39
Turn-off energy Eoff - 0.30
Total switching energy Ets
Tj=25°C,
VCC=400V,IC=20A,
VGE=0/15V,
RG=16
L
σ
1) =60nH,
C
σ
1) =40pF
Energy losses include
“tail” and diode
reverse recovery. - 0.69
mJ
Switching Characteristic, Inductive Load, at Tj=150 °C
Value
Parameter Symbol Conditions
min. typ. max.
Unit
IGBT Characteristic
Turn-on delay time td(on) - 15
Rise time tr - 8.5
Turn-off delay time td(off) - 65
Fall time tf - 35
ns
Turn-on energy Eon - 0.46
Turn-off energy Eoff - 0.24
Total switching energy Ets
Tj=150°C
VCC=400V,IC=20A,
VGE=0/15V,
RG= 2.2
L
σ
1) =60nH,
C
σ
1) =40pF
Energy losses include
“tail” and diode
reverse recovery. - 0.7
mJ
Turn-on delay time td(on) - 17
Rise time tr - 13
Turn-off delay time td(off) - 222
Fall time tf - 13
ns
Turn-on energy Eon - 0.6
Turn-off energy Eoff - 0.36
Total switching energy Ets
Tj=150°C
VCC=400V,IC=20A,
VGE=0/15V,
RG= 16
L
σ
1) =60nH,
C
σ
1) =40pF
Energy losses include
“tail” and diode
reverse recovery. - 0.96
mJ
1) Leakage inductance L
σ
and Stray capacity Cσ due to test circuit in Figure E.
http://store.iiic.cc/
SGP20N60HS
SGW20N60HS
Power Semiconductors 4 Rev 2.4 Sep 08
IC, COLLECTOR CURRENT
10Hz 100Hz 1kHz 10kHz 100kHz
0A
1
0A
2
0A
3
0A
4
0A
5
0A
6
0A
7
0A
8
0A
TC=110°C
TC=80°C
IC, COLLECTOR CURRENT
1V 10V 100V 1000V
0.1A
1A
10A
100A
tP=4µs
15µs
200µs
1ms
50µs
DC
f, SWITCHING FREQUENCY VCE, COLLECTOR-EMITTER VOLTAGE
Figure 1. Collector current as a function of
switching frequency
(Tj 150°C, D = 0.5, VCE = 400V,
VGE = 0/+15V, RG = 16)
Figure 2. Safe operating area
(D = 0, TC = 25°C,
Tj 150°C;VGE=15V)
Ptot, POWER DISSIPATION
25°C 50°C 75°C 100°C 125°C
0W
20W
40W
60W
80W
100W
120W
140W
160W
180W
IC, COLLECTOR CURRENT
25°C 75°C 125°C
0A
10A
20A
30A
TC, CASE TEMPERATURE TC, CASE TEMPERATURE
Figure 3. Power dissipation as a function of
case temperature
(Tj 150°C)
Figure 4. Collector current as a function of
case temperature
(VGE 15V, Tj 150°C)
Ic
Ic
http://store.iiic.cc/
SGP20N60HS
SGW20N60HS
Power Semiconductors 5 Rev 2.4 Sep 08
IC, COLLECTOR CURRENT
0V 2V 4V 6V
0A
10A
2
0A
3
0A
4
0A
5
0A
5V
7V
9V
11V
13V
15V
VGE=20V
IC, COLLECTOR CURRENT
0V 2V 4V 6V
0A
10A
20A
30A
40A
50A
5V
7V
9V
11V
13V
15V
VGE=20V
VCE, COLLECTOR-EMITTER VOLTAGE VCE, COLLECTOR-EMITTER VOLTAGE
Figure 5. Typical output characteristic
(Tj = 25°C)
Figure 6. Typical output characteristic
(Tj = 150°C)
IC, COLLECTOR CURRENT
0V 2V 4V 6V 8V
0A
2
0A
4
0A
150°C
25°C
TJ=-55°C
VCE(sat), COLLECTOR-EMITT SATURATION VOLTAGE
-50°C 0°C 50°C 100°C 150°C
1,0V
1,5V
2,0V
2,5V
3,0V
3,5V
4,0V
4,5V
5,0V
5,5V
IC=40A
IC=20A
IC=10A
VGE, GATE-EMITTER VOLTAGE TJ, JUNCTION TEMPERATURE
Figure 7. Typical transfer characteristic
(VCE=10V)
Figure 8. Typical collector-emitter
saturation voltage as a function of
junction temperature
(VGE = 15V)
http://store.iiic.cc/
SGP20N60HS
SGW20N60HS
Power Semiconductors 6 Rev 2.4 Sep 08
t, SWITCHING TIMES
0A 10A 20A 30A
1ns
10ns
100ns
tr
td(on)
tf
td(off)
t, SWITCHING TIMES
0Ω 10Ω 20Ω 30Ω 40Ω
1 ns
10 ns
100 ns
tf
tr
td(off)
td(on)
IC, COLLECTOR CURRENT RG, GATE RESISTOR
Figure 9. Typical switching times as a
function of collector current
(inductive load, TJ=150°C,
VCE=400V, VGE=0/15V, RG=16,
Dynamic test circuit in Figure E)
Figure 10. Typical switching times as a
function of gate resistor
(inductive load, TJ=150°C,
VCE=400V, VGE=0/15V, IC=20A,
Dynamic test circuit in Figure E)
t, SWITCHING TIMES
0°C 50°C 100°C 150°C
10ns
100ns
tf
tr
td(on)
td(off)
VGE(th), GATE-EMITT TRSHOLD VOLTAGE
-50°C 0°C 50°C 100°C 150°C
1,5V
2,0V
2,5V
3,0V
3,5V
4,0V
4,5V
5,0V
min.
typ.
max.
TJ, JUNCTION TEMPERATURE TJ, JUNCTION TEMPERATURE
Figure 11. Typical switching times as a
function of junction temperature
(inductive load, VCE=400V,
VGE=0/15V, IC=20A, RG=16,
Dynamic test circuit in Figure E)
Figure 12. Gate-emitter threshold voltage as
a function of junction temperature
(IC = 0.5mA)
http://store.iiic.cc/
SGP20N60HS
SGW20N60HS
Power Semiconductors 7 Rev 2.4 Sep 08
E, SWITCHING ENERGY LOSSES
0A 10A 20A 30A 40A
0
,0mJ
1,0mJ
2
,0mJ
Ets*
Eoff
*) Eon include losses
due to diode recovery
Eon*
E, SWITCHING ENERGY LOSSES
0Ω 10Ω 20Ω 30Ω 40Ω
0,0 mJ
0,5 mJ
1,0 mJ
Ets*
Eon*
*) Eon include losses
due to diode recovery
Eoff
IC, COLLECTOR CURRENT RG, GATE RESISTOR
Figure 13. Typical switching energy losses
as a function of collector current
(inductive load, TJ=150°C,
VCE=400V, VGE=0/15V, RG=16,
Dynamic test circuit in Figure E)
Figure 14. Typical switching energy losses
as a function of gate resistor
(inductive load, TJ=150°C,
VCE=400V, VGE=0/15V, IC=20A,
Dynamic test circuit in Figure E)
E, SWITCHING ENERGY LOSSES
0°C 50°C 100°C 150°C
0
,00mJ
0
,25mJ
0
,50mJ
0
,75mJ
Ets*
Eon*
*) Eon include losses
due to diode recovery
Eoff
ZthJC, TRANSIENT THERMAL RESISTANCE
1µs 10µs 100µs 1ms 10ms 100ms
10-4K/W
10-3K/W
10-2K/W
10-1K/W
100K/W
single pulse
0.01
0.02
0.05
0.1
0.2
D=0.5
TJ, JUNCTION TEMPERATURE tP, PULSE WIDTH
Figure 15. Typical switching energy losses
as a function of junction
temperature
(inductive load, VCE=400V,
VGE=0/15V, IC=20A, RG=16,
Dynamic test circuit in Figure E)
Figure 16. IGBT transient thermal resistance
(D = tp / T)
C1=
τ
1/R1
R1R2
C2=
τ
2/R2
R,(K/W)
τ
, (s)
0.1882 0.1137
0.3214 2.24*10-2
0.1512 7.86*10-4
0.0392 9.41*10-5
http://store.iiic.cc/
SGP20N60HS
SGW20N60HS
Power Semiconductors 8 Rev 2.4 Sep 08
VGE, GATE-EMITTER VOLTAGE
0nC 50nC 100nC
0V
5V
10V
15V
480V
120V
c, CAPACITANCE
0V 10V 20V
10pF
100pF
1nF
Crss
Coss
Ciss
QGE, GATE CHARGE VCE, COLLECTOR-EMITTER VOLTAGE
Figure 17. Typical gate charge
(IC=20 A)
Figure 18. Typical capacitance as a function
of collector-emitter voltage
(VGE=0V, f = 1 MHz)
tSC, SHORT CIRCUIT WITHSTAND TIME
10V 11V 12V 13V 14V
0µs
5µs
10µs
15µs
IC(sc), short circuit COLLECTOR CURRENT
10V 12V 14V 16V 18V
0A
50A
100A
150A
200A
250A
VGE, GATE-EMITETR VOLTAGE VGE, GATE-EMITETR VOLTAGE
Figure 19. Short circuit withstand time as a
function of gate-emitter voltage
(VCE=600V, start at TJ=25°C)
Figure 20. Typical short circuit collector
current as a function of gate-
emitter voltage
(VCE 600V, Tj 150°C)
http://store.iiic.cc/
SGP20N60HS
SGW20N60HS
Power Semiconductors 9 Rev 2.4 Sep 08
PG-TO220-3-1
http://store.iiic.cc/
SGP20N60HS
SGW20N60HS
Power Semiconductors 10 Rev 2.4 Sep 08
5.44
0.55
6.04
5.49
1.68
3.68
4.17
20.82
16.25
15.70
1.05
3.50
19.80
13.10
3
MIN
1.90
4.90
2.27
1.07
1.85
1.90
0.238
0.216
0.066
0.145
0.164
0.075
0.820
0.640
0.618
0.022
0.193
0.089
0.042
0.073
0.041
0.075
0.138
0.780
0.516
0.68
6.30
6.00
17.65
2.60
5.10
14.15
3.70
21.10
16.03
20.31
1.35
4.47
2.41
5.16
2.53
1.33
2.11
MAX
2.16
0.027
0.214
3
0.248
0.236
0.695
0.557
0.102
0.201
0.831
0.631
0.053
0.146
0.799
0.176
MIN MAX
0.095
0.203
0.099
0.052
0.083
0.085
0
7.5mm
55
0
17-12-2007
03
Z8B00003327
2.87
2.87
0.113
0.113
3.38
3.13
0.133
0.123
M
M
PG-TO247-3
http://store.iiic.cc/
SGP20N60HS
SGW20N60HS
Power Semiconductors 11 Rev 2.4 Sep 08
Figure A. Definition of switching times
Figure B. Definition of switching losses
p(t)
12 n
T(t)
j
τ
1
1
2
2
n
n
τ
T
C
rr
r
r
rr
Figure D. Thermal equivalent
circuit
Figure E. Dynamic test circuit
Leakage inductance L
σ
=60nH
and Stray capacity Cσ =40pF.
http://store.iiic.cc/
SGP20N60HS
SGW20N60HS
Power Semiconductors 12 Rev 2.4 Sep 08
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2008 Infineon Technologies AG
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or
any information regarding the application of the device, Infineon Technologies hereby disclaims any and all
warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual
property rights of any third party.
Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements, components may contain dangerous substances. For information on the
types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies
components may be used in life-support devices or systems only with the express written approval of
Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of
that life-support device or system or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body or to support and/or maintain and
sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other
persons may be endangered.
http://store.iiic.cc/