a Next Generation OP07 Ultralow Offset Voltage Operational Amplifier OP77 FEATURES Outstanding Gain Linearity Ultrahigh Gain 5000 V/mV Min Low VOS Over Temperature 60 V Max Excellent TCVos 0.3 V/C Max High PSRR 3 V/V Max Low Power Consumption 60 mW Max Fits OP07, 725,108A/308A, 741 Sockets Available in Die Form PIN CONNECTIONS Epoxy Mini-Dip (P-Suffix) 8-Pin Hermetic DIP VOS TRIM 1 8 OP07 VOS TRIM -IN 2 7 V+ +IN 3 6 OUT V- 4 5 NC NC = NO CONNECT TO-99 (J-Suffix) GENERAL DESCRIPTION The OP77 significantly advances the state-of-the-art in precision op amps. The OP77's outstanding gain of 10,000,000 or more is maintained over the full 10 V output range. This exceptional gain-linearity eliminates incorrectable system nonlinearities common in previous monolithic op amps, and provides superior performance in high closed-loop gain applications. Low initial VOS drift and rapid stabilization time, combined with only 50 mW power consumption, are significant improvements over previous designs. These characteristics, plus the exceptional TCVOS of 0.3 mV/C maximum and the low VOS of 25 mV maximum, eliminates the need for VOS adjustment and increases system accuracy over temperature. VOS TRIM VOS TRIM 1 V+ OP07 OUT -IN 2 NC +IN 3 4V- (CASE) NC = NO CONNECT PSRR of 3 mV/V (110 dB) and CMRR of 1.0 mV/V maximum virtually eliminate errors caused by power supply drifts and common-mode signals. This combination of outstanding characteristics makes the OP77 ideally suited for high-resolution instrumentation and other tight error budget systems. V+ 7 R2A (OPTIONAL NULL) 8 1 R1A NOTE: R2A AND R2B ARE ELECTRONICALLY ADJUSTED ON CHIP AT FACTORY. Q7 INVERTING INPUT R1B Q19 Q10 Q11 Q8 Q3 Q6 Q4 Q27 3 R3 C3 R9 Q12 Q17 C2 Q21 Q22 Q20 Q26 Q23 Q24 Q15 Q25 Q2 4 OUTPUT 6 R10 Q16 R5 Q1 2 R4 R7 C1 Q9 Q5 NONINVERTING INPUT R2B Q18 Q14 Q13 R6 R8 V- REV. C Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/329-4700 www.analog.com Fax: 781/326-8703 (c) Analog Devices, Inc., 2002 OP77-SPECIFICATIONS ELECTRICAL SPECIFICATIONS (@ V = 15 V, T = 25C, unless otherwise noted.) s A OP77A Typ Max Unit VOS 10 25 mV VOLTAGE STABILITY1 DVOS/Time 0.2 mV/Mo INPUT OFFSET CURRENT IOS 0.3 nA INPUT BIAS CURRENT IB Parameter Symbol INPUT OFFSET VOLTAGE Conditions Min LONG-TERM INPUT OFFSET -0.2 1.2 2.0 nA enp-p 0.1 Hz to 10 Hz 0.35 0.6 mV p-p en fO = 10 Hz fO = 100 Hz fO = 1000 Hz 10.3 10.0 9.6 18.0 13.0 11.0 nV//Hz inp-p 0.1 Hz to10 Hz 14 30 pA p-p INPUT NOISE CURRENT DENSITY in fO = 10 Hz fO = 100 Hz fO = 1000 Hz 0.32 0.14 0.12 0.80 0.23 0.17 pA//Hz INPUT RESISTANCE Differential Mode3 Common Mode RIN RINCM 26 45 200 MV GV INPUT VOLTAGE RANGE IVR 13 14 V COMMON-MODE REJECTION RATIO CMRR VCM = 13 V 0.1 1.0 mV/V POWER SUPPLY REJECTION RATIO PSRR VS = 3 V to 18 V 0.7 3 mV/V LARGE-SIGNAL VOLTAGE GAIN AVO RL 2 kW VO = 10V 5000 12000 V/mV OUTPUT VOLTAGE SWING VO RL 10 kW RL 2 kW RL 1 kW 13.5 12.5 12.0 14.0 13.0 12.5 V SR RL 2 kW 0.1 0.3 V/ms BW AVCL = +1 0.4 0.6 MHz 60 W 2 INPUT NOISE VOLTAGE 2 INPUT NOISE VOLTAGE DENSITY INPUT NOISE CURRENT2 2 SLEW RATE2 2 CLOSED-LOOP BANDWIDTH OPEN-LOOP OUTPUT RESISTANCE RO POWER CONSUMPTION OFFSET ADJUSTMENT RANGE Pd VS = 15 V, No Load VS = 3 V, No Load 50 3.5 RP = 20 kW 3 60 4.5 mW mV NOTES 1 Long-Term Input Offset Voltage Stability refers to the averaged trend line of V OS vs. Time over extended periods after the first 30 days of operation. Excluding the initial hour of operation, changes in V OS during the first 30 operating days are typically 2.5 mV. 2 Sample tested. 3 Guaranteed by design. -2- REV. C OP77 SPECIFICATIONS ELECTRICAL SPECIFICATIONS (@ V = 15 V, -55C T 125C, unless otherwise noted.) s A OP77A Typ Max Unit VOS 25 60 mV AVERAGE INPUT OFFSET VOLTAGE DRIFT1 TCVOS 0.1 0.3 mV/C INPUT OFFSET CURRENT IOS 0.5 2.2 nA AVERAGE INPUT OFFSET CURRENT DRIFT2 TCIOS 1.5 25 pA/C INPUT BIAS CURRENT IB 2.4 4 nA AVERAGE INPUT BIAS CURRENT DRIFT2 TCIB 8 25 pA/C INPUT VOLTAGE RANGE IVR 13.5 0.6 V COMMON-MODE REJECTION RATIO CMRR VCM = 13 V 0.1 1.0 mV/V POWER SUPPLY REJECTION RATIO PSRR VS = 3 V to 18 V 1 3 mV/V LARGE-SIGNAL VOLTAGE GAIN AVO RL 2 kW VO = 10 V 2000 6000 V/mV OUTPUT VOLTAGE SWING VO RL 10 kW 12 13.0 V POWER CONSUMPTION Pd VS = 15 V, No Load Parameter Symbol INPUT OFFSET VOLTAGE Conditions -0.2 13 NOTES 1 OP77A: TCVCS is 100% tested. 2 Guaranteed by design. REV. C Min -3- 60 75 mW OP77-SPECIFICATIONS ELECTRICAL CHARACTERISTICS (@ V = 15 V, T = 125C, unless otherwise noted.) s A Conditions Min OP77E Typ Max Parameter Symbol INPUT OFFSET VOLTAGE VOS 10 LONG-TERM STABILITY1 VOS/Time 0.3 INPUT OFFSET CURRENT IOS INPUT BIAS CURRENT IB INPUT NOISE VOLTAGE2 enp-p INPUT NOISE VOLTAGE DENSITY Min 25 OP77F Typ Max Unit 20 mV 60 mV/Mo 0.4 0.3 1.5 1.2 2.0 0.1 Hz to 10 Hz 0.35 en fO = 10 Hz fO = 100 Hz2 fO = 1000 Hz INPUT NOISE CURRENT2 inp-p INPUT NOISE CURRENT DENSITY in INPUT RESISTANCE Differential Mode3 Common Mode RIN RINCM INPUT RESISTANCE Common Mode RINCM INPUT VOLTAGE RANGE IVR COMMON-MODE REJECTION RATIO CMRR VCM = 13 V 0.1 1.0 0.1 1.6 mV/V POWER SUPPLY REJECTION RATIO PSRR VS = 3 V to 18 V 0.7 3.0 0.7 3.0 mV/V LARGE-SIGNAL VOLTAGE GAIN AVO RL 2 k 5000 OUTPUT VOLTAGE SWING VO RL 10 k RL 2 k RL 1 k 13.5 14.0 12.5 13.0 12.0 12.5 13.5 14.0 12.5 13.0 12.0 12.5 V SLEW RATE2 SR RL 2 k 0.1 0.3 0.1 0.3 V/ms CLOSED-LOOP BANDWIDTH2 BW AVCL 1 0.4 0.6 0.4 0.6 MHz OPEN-LOOP OUTPUT RESISTANCE RO 60 W POWER CONSUMPTION Pd OFFSET ADJUSTMENT RANGE 0.3 2.8 nA 1.2 2.8 nA 0.6 0.38 0.65 mVp-p 10.3 10.0 9.6 18.0 13.0 11.0 10.5 10.2 9.8 20.0 13.5 11.5 nV//Hz 0.1 Hz to 10 Hz 14 30 15 35 pAp-p fO = 10 Hz fO = 100 Hz2 fO = 1000 Hz 0.32 0.14 0.12 0.80 0.23 0.17 0.35 0.15 0.13 0.90 0.27 0.18 pA/Hz -0.2 26 45 200 -0.2 18.5 200 13 14 13 12000 2000 60 VS = 15 V, No Load VS = 3 V, No Load 50 3.5 Rp = 20 kn 3 60 4.5 45 200 MW GW 200 GW 14 V 6000 50 3.5 3 V/mV 60 4.5 mW mV NOTES 1 Long-Term Input Offset Voltage Stability refers to the averaged trend line of V OS vs. Time over extended periods after the first 30 days of operation. Excluding the initial hour of operation, changes in V OS during the first 30 operating days are typically 2.5 mV. 2 Sample tested. 3 Guaranteed by design. -4- REV. C OP77 SPECIFICATIONS ELECTRICAL CHARACTERISTICS (@ V = 15 V, -25C T +85C for OP77E/FJ and OP77E/FZ, unless otherwise noted.) s A Min OP77E Typ Max Symbol Conditions INPUT OFFSET VOLTAGE V J. Z Packages 10 10 45 55 20 20 100 100 mV AVERAGE INPUT OFFSET VOLTAGE DRIFT1 TVCOS J. Z Packages 0.1 03 0.3 0.6 0.2 0.4 0.6 1.0 mV/C INPUT OFFSET CURRENT IOS 0.5 2.2 0.5 4.5 nA AVERAGE INPUT OFFSET CURRENT DRIFT2 TCIOS 1.5 4.0 1.5 85 pA/C INPUT BIAS CURRENT IB 2.4 4.0 2.4 6.0 nA AVERAGE INPUT BIAS CURRENT DRIFT2 TCIB 8 40 15 60 pA/C INPUT VOLTAGE RANGE IVR COMMON-MODE REJECTION RATIO CMRR VCM = 13 V 0.1 1.0 0.1 3.0 pVlV POWER SUPPLY REJECTION RATIO PSRR VS = 3 V to 18 V 1.0 3.0 1.0 5.0 mV/V LARGE-SIGNAL VOLTAGE GAIN AVO RL 2 kW VO = 10 V 2000 6000 OUTPUT VOLTAGE SWING VO RL 2 kW 12 13.0 POWER CONSUMPTION Pd VS = 15 V, No Load E, F -0.2 13.0 13.5 NOTES 1 OP77E: TCVOS is 100% tested on J and Z packages. 2 Guaranteed by end-point limits. REV. C -5- 60 Min OP77F Typ Max Parameter -0.2 13.0 13.5 75 1000 4000 12 13.0 60 Unit V V/mV V 75 mW OP77-SPECIFICATIONS WAFER TEST LIMITS (@ V = 15 V, T = 25C, for OP77N devices, unless otherwise noted.) s A Parameter Symbol Conditions OP77N Limit Unit INPUT OFFSET VOLTAGE VOS 40 mV Max INPUT OFFSET CURRENT IOS 2.0 nA Max INPUT BIAS CURRENT IB 2 nA Max INPUT RESISTANCE Differential Mode RIN 26 MW Min INPUT VOLTAGE RANGE IVR 13 V Min COMMON-MODE REJECTION RATIO CMRR VCM = 13 V 1 mV/V Max POWER SUPPLY REJECTION RATIO PSRR VS = 3 V to 18 V 3 mV/VMax OUTPUT VOLTAGE SWING VO RL = 10 kW RL = 2 kW RL = 1 kW 13.5 12.5 12.0 V Min LARGE-SIGNAL VOLTAGE GAIN AVO RL = 2 kW VO = 10 V 2000 V/mV Min 30 V Max Pd VOUT = 0 V 60 mW Max DIFFERENTIAL INPUT VOLTAGE POWER CONSUMPTION NOTES 1 Guaranteed by design. 2 Electrical tests are performed at wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed for standard product dice. Consult factory to negotiate specifications based on dice lot qualification through sample lot assembly and testing. TYPICAL ELECTRICAL CHARACTERISTICS (@ V = 15 V, T = 25C, unless otherwise noted.) s A Parameter Symbol Conditions OP77N Limit Unit AVERAGE INPUT OFFSET VOLTAGE DRIFT TCVOS RS = 50 W 0.1 mV/OC NULLED INPUT OFFSET VOLTAGE DRIFT TCVOSn RS = 50 W, RP = 20 kW 0.1 mV/C AVERAGE INPUT OFFSET CURRENT DRIFT TCIOS 0.5 pA/C SLEW RATE SR RL 2 kW 0.3 V/ms BANDWIDTH BW AVCL + 1 0.6 MHz -6- REV. C OP77 ABSOLUTE MAXIMUM RATINGS 1 Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 V Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . 30 V Input Voltage2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 V Output Short-Circuit Duration . . . . . . . . . . . . . . . . . Indefinite Storage Temperature Range J and Z Packages . . . . . . . . . . . . . . . . . . . . -65C to +150C Operating Temperature Range OP77A . . . . . . . . . . . . . . . . . . . . . . . . . . . -55C to +125C OP77E, OPP77F (J, Z) . . . . . . . . . . . . . . . . -25C to +85C Junction Temperature (Tj) . . . . . . . . . . . . . -65C to +150C Lead Temperature (Soldering, 60 sec.) . . . . . . . . . . . . . 300C NOTES 1 Absolute Maximum Ratings apply to both DICE and packaged parts, unless otherwise noted. 2 For supply voltages less than 22 V, the absolute maximum input voltage is equal to the supply voltage. Package Type jA jC Unit TO-99 (J) 8-Lead Hermetic DIP (Z) 150 148 18 16 C/W C/W NOTE jA is specified for worst-case mounting conditions, i.e., jA is specified for device in socket for TO, CERDIP, P-DIP, and PLCC packages; jA is specified for device soldered to printed circuit board for SO package. BONDING DIAGRAM 1. BALANCE 2. INVERTING INPUT 3. NONINVERTING INPUT 4. V6. OUTPUT 7. V+ 8. BALANCE DIE SIZE 0.093 0.057 inch, 5301 sq. mm (2.36 1.45 mm, 3.42 sq. mm) ORDERING GUIDE Package Options CERDIP* TO-99 8-Lead OP77EJ OP77FJ OP77AZ OP77EZ OP77FZ Operating Temperature Range MIL IND IND Not for new designs; obsolete April 2002. For Military processed devices, please refer to the Standard Microcircuit Drawing (SMD) available at www.dscc.dla.mil/programs/milspec/default.asp SMD Part Number ADI Equivalent 5962-87738012A 5962-8773802GA 5962-8773802PA OP77BRCMDA OP77AJMDA OP77AZMDA CAUTION ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the OP77 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality. REV. C -7- WARNING! ESD SENSITIVE DEVICE OP77-Typical Performance Characteristics 2 16 25 VS = 15V TA = 25C -1 -2 -10 -5 0 5 OUTPUT VOLTAGE - V OPEN-LOOP GAIN - V/V 0 15 10 5 0 -55 -35 -15 10 TPC 1. Gain Linearity (Input Voltage vs. Output Voltage) J, Z PACKAGES +0.3V/C 20 MEAN S.D. 10 0 -10 -20 -0.3V/C -30 -55 -35 -15 5 25 45 65 85 105 125 TEMPERATURE - C OPEN-LOOP GAIN - dB 60 40 20 3 TA = 25C 2 1M 10M TPC 7. Closed-Loop Response for Various Gain Configurations DEVICE IMMERSED IN 70C OIL BATH (20 UNITS) 20 1 15 0 -1 10 -2 -3 MAX 5 AVE MIN 0 -4 0 VS = 15V 0 20 30 40 TIME - SEC 50 60 70 150 TA = 25C TA = 25C 140 45 120 10 TPC 6. Offset Voltage Change Due to Thermal Shock 100 130 120 90 80 110 60 135 40 100 90 20 1k 10k 10k FREQUENCY - Hz VS = 15V 25 0 -20 20 30 140 TA = 25C 5 10 15 POWER SUPPLY VOLTAGE - V TPC 3. Open-Loop Gain vs. Power Supply Voltage VS = 15V 160 100 0 TPC 5. Warm-Up Drift VS = 15V CLOSED-LOOP GAIN - dB 0 0.5 1 1.5 2 2.5 3 3.5 0 TIME AFTER POWER SUPPLY TURN-ON - MINUTES 100 10 4 5 25 45 65 85 105 125 TEMPERATURE - C 4 TPC 4. Untrimmed Offset Voltage vs. Temperature 80 8 TPC 2. Open-Loop Gain vs. Temperature CHANGE IN INPUT OFFSET VOLTAGE - V CHANGE IN OFFSET VOLTAGE - V 30 RL = 2k 12 ABSOLUTE CHANGE IN INPUT OFFSET VOLTAGE - V RL = 10k CMMR -dB 1 TA = 25C 20 OPEN-LOOP GAIN - V/V INPUT VOLTAGE - V (NULLED TO 0 @VOUT = 0V) VS = 15V 0 0.01 0.1 1 180 10 100 1k 10k 100k 1M FREQUENCY - Hz TPC 8. Open-Loop Gain/Phase Response -8- 80 1 10 100 1k FREQUENCY - Hz 10k 100k TPC 9. CMRR vs. Frequency REV. C OP77 130 4 110 100 90 80 VS = 15V INPUT OFFSET CURRENT - nA INPUT BIAS CURRENT - nA 120 PSRR - dB 2.0 VS = 15V TA = 25C 3 2 1 70 60 0.1 1.0 0.5 0 10 100 FREQUENCY - Hz 1k 0 -50 10k 0 50 TEMPERATURE - C -50 100 TPC 11. Input Bias Current vs. Temperature 10 1000 INPUT NOISE VOLTAGE - nV/ Hz TA = 25C 1.0 100 32 RS1 = RS2 = 200kV THERMAL NOISE OF SOURCE RESISTORS INCLUDED VS = 15V 0 50 TEMPERATURE - C TPC 12. Input Offset Current vs. Temperature PEAK-TO-PEAK AMPLITUDE - V 1.0 TPC 10. PSRR vs. Frequency RMS NOISE - mV 1.5 EXCLUDED 100 RS = 0 10 VS = 15V VS = 15V 28 TA = 25C 24 20 16 12 8 4 TA = 25C 1 1k 10k FREQUENCY - Hz 1 100k TPC 13. Input Wideband Noise vs. Bandwidth (0.1 Hz to Frequency Indicated) 20 TA = 25C VS = 15V MAXIUM OUTPUT - VOLTS TA = 25C 10 0 0 10 20 30 40 TOTAL SUPPLY VOLTAGE, V+ TO V - V TPC 16. Power Consumption vs. Power Supply REV. C 15 VIN = 10mV POSITIVE SWING NEGATIVE SWING 10 5 0 100 0 1k 1k TPC 14. Total Input Noise Voltage vs. Frequency 100 POWER CONSUMPTION - mW 10 100 FREQUENCY - Hz TPC 17. Maximum Output Voltage vs. Load Resistance -9- 1M 40 VS = 15V TA = 25C 35 30 25 20 15 1k 10k LOAD RESISTANCE TO GROUND - 10k 100k FREQUENCY - Hz TPC 15. Maximum Output Swing vs. Frequency OUTPUT SHORT-CIRCUIT CURRENT - mA 0.1 100 0 4 1 2 3 TIME FROM OUTPUT BEING SHORTED - MINUTES TPC 18. Output Short-Circuit Current vs. Time OP77 200k TYPICAL PRECISION OP AMP 50 10k VO OP77 100k VY 1M VOS = VO 4000 VIN = 10V VX VX -10V 10 Figure 1. Typical Offset Voltage Test Circuit AVO ~ 650V/mV V+ 2 100 3 7 OUTPUT 4.7F 4 ( V- 20k V+ INPUT + 3 3. CHECK THE OP AMP PERFORMANCE, ESPECIALLY AT TEMPERATURES. Figure 5. Open-Loop Gain Linearity Figure 2. Typical Low-Frequency Noise Test Circuit 1 8 7 6 OP77 RL = 2k 10Hz FILTER) VO 25,000 INPUT REFERRED NOISE = 2 NOTES 1. GAIN NOT CONSTANT. CAUSES NONLINEAR ERRORS. 2. AVO SPEC IS ONLY PART OF THE SOLUTION. 3.3k 6 OP77 - +10V RL 2.5M 100 0V OUTPUT 4 Actual open-loop voltage gain can vary greatly at various output voltages. All automated testers use endpoint testing and therefore only show the average gain. This causes errors in high closedloop gain circuits. Since this is so difficult for manufacturers to test, users should make their own evaluation. This simple test circuit makes it easy. An ideal op amp would show a horizontal scope trace. V- Figure 3. Optional Offset Nulling Circuit VY 100k +18V + 10F * 10 -10V 0V +10V 0.1F 10k 2 7 3 OP77 10k 6 4 10 10F * VX 0.1F AVO ~ 650V/mV + RL = 2k -18V * 1 PER BOARD Figure 4. Burn-In Circuit Figure 6. Output Gain Linearity Trace This is the output gain linearity trace for the new OP77. The output trace is virtually horizontal at all points, assuring extremely high gain accuracy. The average open-loop gain is truly impressive--approximately 10,000,000. -10- REV. C OP77 APPLICATIONS INFORMATION Bilateral Current Source R3 R2 1k 1M +15V 0.1F VIN R1 2 100k R2 R1 2 1k 7 6 IOUT < 15mA 100k OP77E R3 OP77 3 R5 10 6 3 4 1k R4 0.1F 990 R4 1M Figure 9. Basic Current Source -15V R3 +15V Figure 7. Precision High-Gain Differential Amplifier VIN The high gain, gain linearity, CMRR, and low TCVos of the OP77 make it possible to obtain performance not previously available in single-stage very high-gain amplifier applications. R1 R2 2 2N2222 OP77 6 3 2N2907 R5 R4 For best CMR, R1 R3 must equal . In this example, R2 R4 TYPE AMOUNT COMMON-MODE VOLTAGE GAIN LINEARITY, WORST CASE TCVOS TCI OS 0.01%/V 0.02% 0.003%/C 0.008%/C Figure 10. 100 mA Current Source E R4 R5 A + 1 E R2 Note that ZO = R5 + R 4 R3 R2 R1 and that for ZO to be infinite, RF +15V 0.1F 7 6 OP77 100 OUTPUT 3 4 0.1F CLOAD -15V Figure 8. Isolating Large Capacitive Loads This circuit reduces maximum slew-rate but allows driving capacitive loads of any size without instability. Because the boon resistor is inside the feedback loop, its effect on output impedance is reduced to insignificance by the high open-loop gain of the OP77. REV. C ) GIVEN R3 = R4 R5, R1 = R2 10pF 2 ( R3 R1 - R5 These current sources will supply both positive and negative current into a grounded load. Table I. Maximum Errors RS IOUT < 100mA IOUT = VIN with a 10 mV differential signal, the maximum errors are as listed in Table I. INPUT -15V -11- OP77 In these circuits, OP77's high gain, high CMRR, and low TCVOS ensure high accuracy. R5 + R 4 R3 must = R1 R2 Precision Current Sinks R1 2mA V+ 1.8k 15V RL IO VIN OP77 IO = 3 VIN R1 VIN > OV 200 IRF520 2 7 OP77 6 4 1N4579A 6.4V 5% 5ppm/C FULL SCALE OF 1V, IO = 1A/V EO = 10V R2 3.6k D1 AVCL 1.6 R3 6.4k R1 1 1W Figure 13. High Stability Voltage Reference Figure 11. Positive Current Sink This simple bootstrapped voltage reference provides a precise 10 V virtually independent of changes in power supply voltage, ambient temperature and output loading. Correct Zener operating current of exactly 2 mA is maintained by R1, a selected 5 ppm/C resistor, connected to the regulated output. Accuracy is primarily determined by three factors: the 5 ppm/C temperature coefficient of D1, 1 ppm/C ratio tracking of R2 and R3, and operational amplifier VOS errors. R1 200 IRF520 OP77 VIN IO RL IO = VIN VOs errors, amplified by 1.6 (AVCL), appear at the output and can be significant with most monolithic amplifiers. For example, an ordinary amplifier with TCVOS of 5 mV/C contributes 0.8 ppm/ C of output error while the OP77, with TCVOS of 0.3 mV/C, contributes but 0.05 ppm/C of output error, thus effectively eliminating TCVOS as an error consideration. R1 VIN > OV V- Figure 12. Positive Current Source The high gain and low TCVOS assure accurate operation with inputs from microvolts to volts. In this circuit, the signal always These simple high-current sinks require the load to float between the power supply and the sink. 1k 1k +15V +15V 0.1F C1 30pF 0.1F D1 1N4148 2 2 7 D2 OP77E 6 VIN 3 OP77E 7 6 4 0.1F 2N4393 4 VOUT 0 < VOUT < 10V 3 R3 2k 0.1F -15V -15V Figure 14. Precision Absolute Value Amplifier The high gain and low TCVOS assure accurate operation with inputs from microvolts to volts. In this circuit, the signal always appears as a common-mode signal to the op amps. The OP77E CMRR of 1 V/V assures errors of less than 2 ppm. -12- REV. C OP77 15V + 10F 2 2 2 REF-01 REF-01 VO 6 4 REF-01 VO 6 VO 6 OP77 100 4 4 VOUT 100 100 0.1F Figure 15. Low Noise Precision Reference This circuit relies upon OP77's low TCVOS and noise combined with very high CMRR to provide precision buffering of the averaged REF01 voltage outputs. CH must be of polystyrene, Teflon*, or polyethylene to minimize dielectric absorption and leakage. The droop rate is determined by the size of CH and the bias current of the AD820. *Teflon is a registered trademark of the Dupont Company 1k 15V 0.1F 1N4148 15V 0.1F 2 VIN 1k 7 6 3 OP77 4 0.1F 2N930 2 1k 3 7 AD820 6 4 0.1F CH -15V RESET -15V Figure 16. Precision Positive Peak Detector REV. C -13- VOUT OP77 +15V CC 0.1F RF 100k 2 +15V VIN VO 0.1F VTH RS TRIM 5 2 7 1k OP77 R1 VIN 2k 6 D1 1N4148 RC RA 6 50k REF-02 VOUT 3 TEMP 4 1.5k 3 Rb1 OP77 0.1F GND 0.1F VOUT 4 Rbp -15V -15V Figure 17. Precision Threshold Detector/Amplifier When VIN < VTH, amplifier output swings negative, reverse biasing diode D1. VOUT = VTH if RL= * when VIN > VTH, the loop closes, VOUT = VTH + (VIN E R - VTH ) A1 + F RS E CC is selected to smooth the response of the loop. Figure 18. Precision Temperature Sensor Table II. Resistor Values TCVOUT SLOPE (S) 10 mV/C 100 mV/C 10 mV/F TEMPERATURE RANGE -55C to +125C -55C to +125C -67F to +257C OUTPUT VOLTAGE RANGE -0.55 V to +1.25 V -5.5 V to +12.5V -0.67 V to +2.57V ZERO-SCALE 0 V @ 0C 0 V @ 0C 0 V @ 0F Ra ( 1% Resistor) 9.09 kW 15 kW 7.5 kW Rb1 ( 1% Resistor) 1.5 kW 1.82 kW 1.21 kW Rbp (Potentiometer) 200 W 500 W 200 W Rc ( 1% Resistor) 5.11 kW 84.5 kW 8.25 kW -14- REV. C OP77 OUTLINE DIMENSIONS 8-Lead Ceramic Dip - Glass Hermetic Seal [CERDIP] 8-Lead Metal Can [TO-99] (Q-8) (H-08) Dimensions shown in inches and (millimeters) Dimensions shown in inches and (millimeters) 0.005 (0.13) MIN 8 0.055 (1.40) MAX REFERENCE PLANE 0.1850 (4.70) 0.1650 (4.19) 5 0.310 (7.87) 0.220 (5.59) PIN 1 0.023 (0.58) 0.014 (0.36) 0.320 (8.13) 0.290 (7.37) 0.060 (1.52) 0.015 (0.38) 0.150 (3.81) MIN SEATING 0.070 (1.78) PLANE 0.030 (0.76) 0.0400 (1.02) MAX 15 0 0.0400 (1.02) 0.0100 (0.25) 0.015 (0.38) 0.008 (0.20) CONTROLLING DIMENSIONS ARE IN INCH; MILLIMETERS DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN REV. C 0.1600 (4.06) 0.1400 (3.56) 5 0.405 (10.29) MAX 0.200 (5.08) 0.125 (3.18) 0.1000 (2.54) BSC 4 0.100 (2.54) BSC 0.200 (5.08) MAX 0.2500 (6.35) MIN 0.0500 (1.27) MAX 0.3700 (9.40) 0.3350 (8.51) 0.3350 (8.51) 0.3050 (7.75) 1 0.5000 (12.70) MIN 6 4 0.2000 (5.08) BSC 3 7 2 0.0190 (0.48) 0.0160 (0.41) 0.1000 (2.54) BSC 0.0210 (0.53) 0.0160 (0.41) 0.0450 (1.14) 0.0270 (0.69) 8 1 0.0340 (0.86) 0.0280 (0.71) 45 BSC BASE & SEATING PLANE COMPLIANT TO JEDEC STANDARDS MO-002AK CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETERS DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN -15- Revision History Location Page Edits to SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Figure 2 Caption Changed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Figure 3 Caption Changed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Edits to Figure 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Updated OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2/02--Data Sheet changed from REV. A to REV. B. PRINTED IN U.S.A. Remove 8-Lead SO PIN CONNECTION DIAGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Changes to ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Remove OP77B column from SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Remove OP77B column from ELECTRICAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5 Remove OP77G column from WAFER TEST LIMITS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Remove OP77G column from TYPICAL ELECTRICAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 C00320-0-10/02(C) 10/02--Data Sheet changed from REV. B to REV. C. -16-