A
AE
EV
V
2
24
4V
V&
&4
48
8V
V
I
In
np
pu
ut
t
S
Se
er
ri
ie
es
s
T
Te
ec
ch
hn
ni
ic
ca
al
l
R
Re
ef
fe
er
re
en
nc
ce
e
N
No
ot
te
es
s
Single and Dual Output Series
Single and Dual Output Series
25W DC-DC Converter
25W DC-DC Converter
(Rev01)
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 Publishing Date: 20020701
Page 1
AEV Technical Description
The AEV series of switching DC-DC
converters is one of the most cost
effective options available in com-
ponent power. The AEV uses an
industry standard package size and
pinout configuration, and provides
control and trim functions.
AEV converters come in 24V or 48V
input versions, each of which uses a
2:1 input range. Outputs are isolat-
ed from the input and the convert-
ers are capable of providing up to
25 watts of output power.
At startup, input current passes
through an input filter designed to
help meet CISPR 22 level A radiat-
ed emissions, and Bellcore GR1089
conducted emissions. A fuse should
be used in line with the input.
The AEV converters are pulse width
modulated (PWM) and operate at a
nominal fixed frequency of 330 kHz.
Feedback to the PWM controller
uses an opto-isolator, maintaining complete isolation between primary and secondary. Caution
should be taken to avoid ground loops when connecting the converter to ground. Output power is
typically available within 10 ms after application of input power.
AEV Series Electrical Input
Input
The +Vin and -Vin pins are located as shown in the mechanical drawings at the end of this man-
ual. AEV converters have a 2:1 input voltage range; 24 Vin converters can accept 18-36 Vdc,
and 48 Vin converters can accept 36-72 Vdc. Care should be taken to avoid applying reverse
polarity to the converters which can damage the converter.
Note: CNT
must be tied
to -Vin for
operation.
Fig. 1. AEV Single Output Block Diagram
Note: CNT
must be tied
to -Vin for
operation.
Fig. 2. AEV Dual Output Block Diagram
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
AA
AAEE
EEVV
VV
22
2244
44VV
VV&&
&&44
4488
88VV
VV
II
IInn
nnpp
ppuu
uutt
tt
SS
SSee
eerr
rrii
iiee
eess
ss
DD
DDCC
CC-
-DD
DDCC
CC
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
SS
SSii
iinn
nngg
ggll
llee
ee
AA
AAnn
nndd
dd
DD
DDuu
uuaa
aall
ll
OO
OOuu
uutt
ttpp
ppuu
uutt
tt,,
,,
22
2255
55
WW
WWaa
aatt
tttt
tt
DD
DDCC
CC-
-DD
DDCC
CC
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
AA
AAEE
EEVV
VV
22
2244
44VV
VV&&
&&44
4488
88VV
VV
II
IInn
nnpp
ppuu
uutt
tt
SS
SSee
eerr
rrii
iiee
eess
ss
DD
DDCC
CC-
-DD
DDCC
CC
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
SS
SSii
iinn
nngg
ggll
llee
ee
AA
AAnn
nndd
dd
DD
DDuu
uuaa
aall
ll
OO
OOuu
uutt
ttpp
ppuu
uutt
tt,,
,,
22
2255
55WW
WW
DD
DDCC
CC-
-DD
DDCC
CC
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
Page 2
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
Input Reverse Voltage Protection
Under installation and cabling conditions where
reverse polarity across the input may occur, reverse
polarity protection is recommended. Protection can
easily be provided as shown in Figure 3. In both cases
the diode used is rated for 4A/100V. Placing the diode
across the inputs rather than in-line with the input
offers an advantage in that the diode only conducts in
a reverse polarity condition, which increases circuit efficiency and thermal performance.
Input Undervoltage Protection
The AEV is protected against undervoltage on the input. If the input voltage should drop below the
acceptable range, the converter will shut down. It will automatically restart when the undervoltage
condition is removed.
Input Overvoltage Protection
The AEV is protected against overvoltage on the input. If the input voltage should rise above the
acceptable range, the converter will shut down. It will automatically restart when the undervoltage
condition is removed.
Input Filter
Input filters are included in the converters to
help achieve standard system emissions certi-
fications. Some users however, may find that
additional input filtering is necessary. The AEV
series has an internal switching frequency of
330 kHz so a high frequency capacitor mount-
ed close to the input terminals produces the
best results. To reduce reflected noise, a capacitor can be added across the input as shown in
Figure 4, forming a πfilter. A 47µF/100V electrolytic capacitor is recommended for C1.
For conditions where EMI is a concern, a dif-
ferent input filter can be used. Figure 5 shows
an input filter designed to reduce EMI effects.
L1 is a 1mH common mode inductor, C1is a
47µF/100V electrolytic capacitor, and C2is a
1µF/100V metal film or ceramic high frequency
capacitor, and Cy1 and Cy2 are each 4700 pF
high frequency ceramic capacitors.
+Vin
-Vin
C1
+Vin
-Vin
C1
C2
Cy1
Cy2
L1
+Vin
-Vin
Fig. 4. Ripple Rejection Input Filter
Fig. 5. EMI Reduction Input Filter
+Vin
-Vin
Fig. 3. Reverse Polarity Protection Circuits
AA
AAEE
EEVV
VV
22
2244
44VV
VV&&
&&44
4488
88VV
VV
II
IInn
nnpp
ppuu
uutt
tt
SS
SSee
eerr
rrii
iiee
eess
ss
DD
DDCC
CC-
-DD
DDCC
CC
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
SS
SSii
iinn
nngg
ggll
llee
ee
AA
AAnn
nndd
dd
DD
DDuu
uuaa
aall
ll
OO
OOuu
uutt
ttpp
ppuu
uutt
tt,,
,,
22
2255
55WW
WW
DD
DDCC
CC-
-DD
DDCC
CC
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
Page 3
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
When a filter inductor is connected in series with the power converter input, an input capacitor C1
should be added. An input capacitor C1should also be used when the input wiring is long, since
the wiring can act as an inductor. Failure to use an input capacitor under these conditions can pro-
duce large input voltage spikes and an unstable output.
Input Fusing
Standard safety agency regulations require input fusing.
Recommended fuse ratings for the AEV Series are shown in Table 1.
AEV Series Electrical Output
Output Connections (+Vout, -Vout)
Outputs on the AEV series are isolated from the input and can therefore be left to float or can be
grounded. Pin connections for +Vout, and -Vout are shown in the mechanical drawings at the end
of this manual.
Sharing Power Between Dual Outputs
Each output of a dual output AEV is limited
to one half of the total power capacity of the
converter. For example, if the positive out-
put of an AEV01CC48 only draws 5W, the
negative output will still be limited to 12.5W.
Voltage regulation performance is best
when the outputs are balanced. Figure 6
shows typical cross regulation for a 15 volt
output.
Overcurrent Protection (OCP)
AEV series DC/DC converters feature fold-
back current limiting as part of their
Overcurrent Protection (OCP) circuits.
When output current exceeds 115 to 150%
of rated current, such as during a short cir-
cuit condition, the output will shutdown
immediately, and can tolerate short circuit
conditions indefinitely. When the overcur-
rent condition is removed, the converter will
automatically restart.
Table 1. Fuse Ratings
AEV02B24
AEV02C24
Fig. 7. Overcurrent Performance
Nominal
Input Fuse
24V 5A
48V 2.5A
+Vo (V)
-Io (A)
AEV01CC24 +Io=max
AEV01CC48 +Io=max
AEV01CC24 +Io=0.01A
AEV01CC48 +Io=0.01A
Fig. 6. Cross Regulation
AA
AAEE
EEVV
VV
22
2244
44VV
VV&&
&&44
4488
88VV
VV
II
IInn
nnpp
ppuu
uutt
tt
SS
SSee
eerr
rrii
iiee
eess
ss
DD
DDCC
CC-
-DD
DDCC
CC
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
SS
SSii
iinn
nngg
ggll
llee
ee
AA
AAnn
nndd
dd
DD
DDuu
uuaa
aall
ll
OO
OOuu
uutt
ttpp
ppuu
uutt
tt,,
,,
22
2255
55WW
WW
DD
DDCC
CC-
-DD
DDCC
CC
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
Page 4
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
Overvoltage Protection (OVP)
The AEV series provides overvoltage protection on the output, which will shut the output off if the
voltage exceeds 120 to 140% of the nominal output voltage. If the OVP circuit activates, power to
the converter should be cycled to turn the converter back on.
Trim
The output voltage of the AEV series can be trimmed using the trim pin provided. Applying a volt-
age to the trim pin through a voltage divider from the output will cause the output to increase or
decrease by up to 10%. Trimming up by more
than 10% of the nominal output may activate the
OVP circuit or damage the converter. Trimming
down more than 10% can cause improper regu-
lation. When trimming a dual output converter,
both outputs trim simultaneously.
Fixed and variable trim circuits are shown in
Figures 7 to 9. Note that resistor values will
change depending on the converter used. For
trim ranges not listed, contact the factory for
assistance.
CNT Function
The AEV provides a control function allowing the user to turn the output on and off using an exter-
nal circuit. Applying a voltage greater than 7V to the CNT pin will disable the output, while apply-
ing a voltage less than 3.0V will enable it. The performance of the converter between these two
points will depend on the individual converter and whether the control voltage is increasing or
+Vout
-Vout
Trim
Load
R1
R2
RT = 100k
All resistor values in k
10% 5%
R1 R2 R1R2
3.3V out
5V out
12V out 47 12 86 22
15V out 68 12 12022
Single Output Converters 10% 5%
R1 R2 R1R2
5V out 33 12 63 22
12V out 120 11 20020
15V out 150 10 27020
Dual Output Converters
+Vout
-Vout
Tr i m
Load
R1
1.27
3.3V out: R1 = y - 3.03
5.6
5V out: R1 = y - 8.47
7.49
6Vout,12Vout: R1 = y - 10.46
10.38
15V out: R1 = y - 13.45
where y = Ve - Vo
Ve
Single Output Converters
5.6
5V out: R1 = y - 9.67
19.18
12V out: R1 = y - 23.61
25.11
15V out: R1 = y - 29.59
where y = Ve - Vo
Ve
Dual Output Converters
All resistor values in k
Fig. 10. Fixed Trim Down
Fig. 8. Variable Trim
+Vout
-Vout
Tr i m
Load
R2
0.77
3.3Vout: R1 = y - 1
1.87
5Vout: R1 = y - 1
6Vout, 12Vout: R1 = y - 1
2.08
15Vout: R1 = y - 1
where y = Vo - Ve
Ve
Single Output Converters
1.87
5V out: R1 = y - 2.2
2.23
12V out: R1 = y - 2.2
2.28
15V out: R1 = y - 2.2
where y = Vo - Ve
Ve
Dual Output Converters
All resistor values in k
1.97
Fig. 9. Fixed Trim Up
AA
AAEE
EEVV
VV
22
2244
44VV
VV&&
&&44
4488
88VV
VV
II
IInn
nnpp
ppuu
uutt
tt
SS
SSee
eerr
rrii
iiee
eess
ss
DD
DDCC
CC-
-DD
DDCC
CC
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
SS
SSii
iinn
nngg
ggll
llee
ee
AA
AAnn
nndd
dd
DD
DDuu
uuaa
aall
ll
OO
OOuu
uutt
ttpp
ppuu
uutt
tt,,
,,
22
2255
55WW
WW
DD
DDCC
CC-
-DD
DDCC
CC
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
Page 5
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
decreasing. The CNT pin must be connected to -Vin for operation. If the CNT pin is left open, the
converter will default to “control off” and the output will not turn on. The maximum voltage that can
be applied to the CNT pin is 80 volts.
Output Filters
When the load is sensitive to ripple and noise, an output filter
can be added to minimize the effects. A simple output filter to
reduce output ripple and noise can be made by connecting a
capacitor across the output as shown in Figure 15. The rec-
ommended value for the output capacitor is 470µF / 10V for sin-
gle outputs up to 5 volts, 100µF / 25V for 12 and 15 volt single
outputs, and 220µF / 25V on each output for dual output converters.
Extra care should be taken when long leads or traces are used
to provide power to the load. Long lead lengths increase the
chance for noise to appear on the lines. Under these conditions
C2 can be added across the load as shown in Figure 16. The
recommended component for C2 is 1µF ceramic capacitor.
Decoupling
Noise on the power distribution system is not always created by the converter. High speed analog
or digital loads with dynamic power demands can cause noise to cross the power inductor back
onto the input lines. Noise can be reduced by decoupling the load. In most cases, connecting a
10 µF tantalum capacitor in parallel with a 0.1µF ceramic capacitor across the load will decouple
it. The capacitors should be connected as close to the load as possible.
Series Operation
When converters are connected in series to increase the output
voltage, diodes should be added as shown in Figure 16. Choose
low forward voltage drop diodes, such as shottky diodes. The
reverse voltage of the diode should be greater than the output
voltage, and the diode’s turn-on current should be greater than
the series load current. The maximum operating output current
of the series connection should not be greater than the maxi-
mum output current of any single converter.
+Vout
-Vout
Load
C1
Fig. 15. Output Ripple Filter
+Vout
-Vout
Load
C1C2
Fig. 16. Output Ripple Filter for a
Distant Load
-Vin
CNT
Fig. 11. Simple Control
Circuit
-Vin
CNT
Fig. 12. Transistor
Control Circuit
-Vin
CNT
Fig. 13. Isolated Control
Circuit
-Vin
CNT
Fig. 14. Relay Control
Circuit
+Vout
-Vout
+Vin
-Vin
+Vout
-Vout
+Vin
-Vin
Load
Fig. 17. Series Operation
AA
AAEE
EEVV
VV
22
2244
44VV
VV&&
&&44
4488
88VV
VV
II
IInn
nnpp
ppuu
uutt
tt
SS
SSee
eerr
rrii
iiee
eess
ss
DD
DDCC
CC-
-DD
DDCC
CC
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
SS
SSii
iinn
nngg
ggll
llee
ee
AA
AAnn
nndd
dd
DD
DDuu
uuaa
aall
ll
OO
OOuu
uutt
ttpp
ppuu
uutt
tt,,
,,
22
2255
55WW
WW
DD
DDCC
CC-
-DD
DDCC
CC
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
Page 6
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
Parallel Operation
Under most circumstances, paralleling converters is not desirable. When more power is required,
a higher power converter will usually use less space and will cost less than using two lower power
converters. One common exception is when redundancy or graceful degradation is required. In
this case, multiple converters should be used. Please see the discussion on Redundant Operation
in the Design Considerations section for further information.
Design Considerations
Parallel Power Distribution
Figure 18 shows a typical parallel power distribution
design. Such designs, sometimes called daisy chains, can
be used for very low output currents, but are not normally
recommended. The voltage across loads far from the
source can vary greatly depending on the IR drops along
the leads and changes in the loads closer to the source.
Dynamic load conditions increase the potential problems.
Radial Power Distribution
Radial power distribution is the preferred method of pro-
viding power to the load. Figure 19 shows how individual
loads are connected directly to the power source. This
arrangement requires additional power leads, but it avoids
the voltage variation problems associated with the paral-
lel power distribution technique.
Mixed Distribution
In the real world a combination of parallel and radial
power distribution is often used. Dynamic and high cur-
rent loads are connected using a radial design, while sta-
tic and low current loads can be connected in parallel.
This combined approach minimizes the drawbacks of a
parallel design when a purely radial design is not feasible.
Redundant Operation
A common requirement in high reliability systems is to provide redundant power supplies. The
easiest way to do this is to place two converters in parallel, providing fault tolerance but not load
sharing. Oring diodes should be used to ensure that failure of one converter will not cause failure
of the second. Figure 21 shows such an arrangement. Upon application of power, one of the con-
verters will provide a slightly higher output voltage and will support the full load demand. The sec-
Load 1 Load 2 Load 3
+Vout
-Vout
RL1 RL2
RL3
RG1 RG2
RG3
RL = Lead Resistance
RG = Ground Lead Resistance
Fig. 19. Radial Distribution
Load 1 Load 2 Load 3
+Vout
-Vout
RL1 RL2 RL3
RG1 RG2 RG3
I1 + I2 + I3I2 + I3I3
RL = Lead Resistance
RG = Ground Lead Resistance
Fig. 18. Parallel Power Distribution
Load 1 Load 2 Load 3
+Vout
-Vout
RL1 RL2
RL3
RG1 RG2
RG3
RL = Lead Resistance
RG = Ground Lead Resistance
Load 4
RL4
RG4
Fig. 20. Mixed Distribution
AA
AAEE
EEVV
VV
22
2244
44VV
VV&&
&&44
4488
88VV
VV
II
IInn
nnpp
ppuu
uutt
tt
SS
SSee
eerr
rrii
iiee
eess
ss
DD
DDCC
CC-
-DD
DDCC
CC
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
SS
SSii
iinn
nngg
ggll
llee
ee
AA
AAnn
nndd
dd
DD
DDuu
uuaa
aall
ll
OO
OOuu
uutt
ttpp
ppuu
uutt
tt,,
,,
22
2255
55WW
WW
DD
DDCC
CC-
-DD
DDCC
CC
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
Page 7
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
ond converter will see a zero load condition and will
“idle”. If the first converter should fail, the second con-
verter will support the full load. When designing redun-
dant converter circuits, Shottky diodes should be used to
minimize the forward voltage drop. The voltage drop
across the Shottky diodes must also be considered when
determining load voltage requirements.
Ground Loops
Ground loops occur when different circuits are given multiple paths to common or earth ground,
as shown in Figure 22. Multiple ground points can have slightly different potential and cause
current flow through the circuit from one point to another. This can result in additional noise in all
the circuits. To eliminate the problem, circuits should be designed with a single ground connec-
tion as shown in Figure 23.
Hot Plugging
When a power source or load is inserted or removed from a system while the system is opera-
tional, it is called “hot plugging”. Designing a system for hot plug operation is challenging and sev-
eral issues should be considered.
The input to a converter is largely capacitive and it will draw a high inrush current when power is
first applied. This will place a large demand on the power bus which must be designed to handle
the current spike. It also presents the risk of arcing when the converter is connected.
A common way to minimize inrush current is to disable the output until after the inrush current has
subsided. Disabling the output eliminates power draw from the converter and reduces capacitor
charge times. The output only has to be disabled for a very short time and can usually be done
through mechanical connections. Making the input connections physically longer lets them con-
nect first and initiate the inrush current. When the shorter output or output enable connections are
made, the inrush has already subsided.
+Vout
-Vout
Load Load
RLine
RLine RLine
RLine
RLine
Fig. 23. Single Point Ground
+Vout
-Vout
Load Load
RLine
RLine RLine
RLine
RLine
RLine
Ground
Loop
Fig. 22 Ground Loops
+Vout
-Vout
+Vout
-Vout
Load
Fig 21. Redundant Operation
AA
AAEE
EEVV
VV
22
2244
44VV
VV&&
&&44
4488
88VV
VV
II
IInn
nnpp
ppuu
uutt
tt
SS
SSee
eerr
rrii
iiee
eess
ss
DD
DDCC
CC-
-DD
DDCC
CC
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
SS
SSii
iinn
nngg
ggll
llee
ee
AA
AAnn
nndd
dd
DD
DDuu
uuaa
aall
ll
OO
OOuu
uutt
ttpp
ppuu
uutt
tt,,
,,
22
2255
55WW
WW
DD
DDCC
CC-
-DD
DDCC
CC
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
Page 8
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
AEV Series Mechanical Considerations
Thermal Derating
AEV single and dual output converters are rated
for full power up to a case temperature of 90°C.
Under typical conditions this equates to an ambi-
ent temperature of 55°C. For operation above
ambient air temperatures of 55°C, output power
must be derated as shown in Figure 24, or airflow
over the converter must be provided. When air-
flow is provided, the case temperature should be
used to determine maximum temperature limits.
The minimum operating temperature for the AEV is -25°C. Operation at temperatures as low as -
40°C is possible, but output performance below -25°C is not specified.
Installation
AEV series converters can be mounted in any orientation, but care should be taken to allow for
free airflow. Common placement techniques put heat sources such as power components at the
end of the airflow path or provide separate airflow paths. This arrangement keeps other system
equipment cooler and increases component life spans.
Soldering
AEV series converters are compatible with standard wave soldering techniques. When wave
soldering, the converter pins should be preheated for 20-30 seconds at 110°C, and wave sol-
dered at 260°C for less than 15 seconds.
When hand soldering, the iron temperature should be maintained at 450°C and applied to the
converter pins for less than 5 seconds. Longer exposure can cause internal damage to the con-
verter. Cleaning can be performed with cleaning solvent IPA or with water.
0
20
40
60
80
100
706050403020100-10-20
Ambient Temperature in degrees C
Percent maximum output power
Safe Operating Area
80 90
Maximum Case Temperature
Fig. 24. Temperature Derating
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
AA
AAEE
EEVV
VV
22
2244
44VV
VV&&
&&44
4488
88VV
VV
II
IInn
nnpp
ppuu
uutt
tt
SS
SSee
eerr
rrii
iiee
eess
ss
DD
DDCC
CC-
-DD
DDCC
CC
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
SS
SSii
iinn
nngg
ggll
llee
ee
AA
AAnn
nndd
dd
DD
DDuu
uuaa
aall
ll
OO
OOuu
uutt
ttpp
ppuu
uutt
tt,,
,,
22
2255
55WW
WW
DD
DDCC
CC-
-DD
DDCC
CC
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
Page 9
AEV Single and Dual Mechanical Chart (pin side view)
5.08 (0.20)
50.0 (1.97)
5.08 (0.20)
15.24 (0.60)
55.88 (2.20)
65.0 (2.56)
5.44 (0.21)
3.81 (0.15)
15.24 (0.60)
5.08 (0.20)
+Vo
-Vo
Trim
+Vin
-Vin
CNT
Electrical Specs
Nominal Output Output Short Circuit Overvoltage
Input Voltage Current Current Ripple Noise Efficiency Lockout
(V) (V) (A) (A) (mV rms) (mV pp) (%) (V)
typ typ max typ max min typ min max
AEV05F24 24 3.3 5 6.7 10 20 50 75 78 80 3.96 5.0
AEV04A24 24 5 4 5.3 10 20 50 75 82 83 5.75 7.0
AEV02B24 24 12 2.1 2.9 10 20 75 100 83 85 13.8 15.5
AEV02C24 24 15 1.7 2.6 10 20 75 100 83 86 17.0 19.5
AEV05F48 48 3.3 5 6.7 10 20 50 75 78 80 3.96 5.0
AEV04A48 48 5 4 5.3 10 20 50 75 82 83 5.75 7.0
AEV04N48 48 6 4.1 5.4 10 20 50 75 84 86 7.0 8.0
AEV02B48 48 12 2.1 2.9 10 20 75 100 83 86 13.8 15.5
AEV02C48 48 15 1.7 2.6 10 20 75 100 83 86 17.0 19.5
AEV02AA24 24 ±5 ±2 6.6 10 20 50 75 82 83 12 14
AEV01BB24 24 ±12 ±1.05 3.4 10 20 75 100 84 86 27 33
AEV01CC24 24 ±15 ±0.85 3.2 10 20 75 100 84 86 33.5 42
AEV02AA48 48 ±5 ±2 6.2 10 20 50 75 82 83 12 14
AEV01BB48 48 ±12 ±1.05 2.9 10 20 75 100 84 86 27 33
AEV01CC48 48 ±15 ±0.85 2.7 10 20 75 100 84 86 33.5 42
5.08 (0.20)
50.0 (1.97)
5.08 (0.20)
15.24 (0.60)
55.88 (2.20)
65.0 (2.56)
5.44 (0.21)
3.81 (0.15)
7.62 (0.30)
5.08 (0.20)
7.62 (0.30) +Vin
-Vin
CNT
+Vo
COM
-Vo
Trim
6.6 (0.26)
6-φ1.0 (0.039)
STANDOFF
TYP, 4 PLACES 2.4 (0.09)
3.0 (0.12)
0.5 (0.02)
8.5 (0.33)
6.6 (0.26)
7-φ1.0 (0.039)
STANDOFF
TYP, 4 PLACES 2.4 (0.09)
3.0 (0.12)
0.5 (0.02)
8.5 (0.33)
Tolerances:
Inches Millimeters
.xx !0.020 .x !0.5
.xxx !0.010 .xx !0.25
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
AA
AAEE
EEVV
VV
22
2244
44VV
VV&&
&&44
4488
88VV
VV
II
IInn
nnpp
ppuu
uutt
tt
SS
SSee
eerr
rrii
iiee
eess
ss
DD
DDCC
CC-
-DD
DDCC
CC
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
SS
SSii
iinn
nngg
ggll
llee
ee
AA
AAnn
nndd
dd
DD
DDuu
uuaa
aall
ll
OO
OOuu
uutt
ttpp
ppuu
uutt
tt,,
,,
22
2255
55WW
WW
DD
DDCC
CC-
-DD
DDCC
CC
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
Page 10
Common Specs
Input Min Nom Max Units Notes
Input Voltage 18 24 36 Vdc 50 Vdc max < 100 ms
36 48 72 Vdc 100 Vdc max < 100 ms
Isolation
Input-Output 500 Vdc
Input-Case 500 Vdc
Output-Case 500 Vdc
I/O Isolation Resistance 300 M
Control Voltage 80 Vdc absolute maximum
Control Logic
Logic Low = On 3.0 Vdc
Logic High = Off 7 Vdc
Control Current 1.4 mA
Undervoltage Shutdown
24 Vin 14 16 18 Vdc
48 Vin 30 33 36 Vdc
Overvoltage Shutdown
24 Vin 36 38 42 Vdc
48 Vin 72 76 82 Vdc
Output
Power 25 W
Voltage Setpoint Accuracy ±1 %Vo
Line Regulation ±0.05 ±0.2 %Vo
Load Regulation ±0.35 ±0.5 %Vo
T rim Range -10 +10 %Vo Both outputs trim together.
Dynamic Response
50-75% load 5 %Vo T=25°C, di/dt=1A/10µs
200 µs T=25°C, di/dt=1A/10µs
50-25% load 5 %Vo T=25°C, di/dt=1A/10µs
200 µs T=25°C, di/dt=1A/10µs
Temperature Regulation ±0.02 %Vo/°C
General
MTBF 2,030 k Hrs Bellcore TR332, 25°C
Case Temperature -25 90 °C
Storage Temperature -45 85 °C
Switching Frequency 330 kHz
Pin solder temperature 260 °C wave solder < 15 s
Hand Soldering Time 5 s iron temperature 450°C
Weight 63 grams
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
AA
AAEE
EEVV
VV
22
2244
44VV
VV&&
&&44
4488
88VV
VV
II
IInn
nnpp
ppuu
uutt
tt
SS
SSee
eerr
rrii
iiee
eess
ss
DD
DDCC
CC-
-DD
DDCC
CC
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
SS
SSii
iinn
nngg
ggll
llee
ee
AA
AAnn
nndd
dd
DD
DDuu
uuaa
aall
ll
OO
OOuu
uutt
ttpp
ppuu
uutt
tt,,
,,
22
2255
55WW
WW
DD
DDCC
CC-
-DD
DDCC
CC
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
Page 11
AEV05F24
AEV04A24
AEV02B24
AEV02C24
AEV05F24
AEV04A24
AEV02B24
AEV02C24
AEV Single Output Typical Startup Delay from CNT On AEV Single Output Typical Shutdown Delay from CNT Off
AEV Single Performance Curves
(rated input voltage, full load, at 25 °C)
AEV05F48
AEV04A48
AEV02B48
AEV02C48
AEV05F48
AEV04A48
AEV02B48
AEV02C48
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
AA
AAEE
EEVV
VV
22
2244
44VV
VV&&
&&44
4488
88VV
VV
II
IInn
nnpp
ppuu
uutt
tt
SS
SSee
eerr
rrii
iiee
eess
ss
DD
DDCC
CC-
-DD
DDCC
CC
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
SS
SSii
iinn
nngg
ggll
llee
ee
AA
AAnn
nndd
dd
DD
DDuu
uuaa
aall
ll
OO
OOuu
uutt
ttpp
ppuu
uutt
tt,,
,,
22
2255
55WW
WW
DD
DDCC
CC-
-DD
DDCC
CC
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
Page 12
AEV05F24
AEV04A24
AEV02B24
AEV02C24
Typical step up load response from 50% to 75% load.
AEV04A48
Typical step down load response from 50% to 25% load.
AEV04A48
AEV Single Performance Curves
(rated input voltage, full load, at 25 °C)
AEV02B48
AEV02C48
AEV05F48
AEV04A48
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
AA
AAEE
EEVV
VV
22
2244
44VV
VV&&
&&44
4488
88VV
VV
II
IInn
nnpp
ppuu
uutt
tt
SS
SSee
eerr
rrii
iiee
eess
ss
DD
DDCC
CC-
-DD
DDCC
CC
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
SS
SSii
iinn
nngg
ggll
llee
ee
AA
AAnn
nndd
dd
DD
DDuu
uuaa
aall
ll
OO
OOuu
uutt
ttpp
ppuu
uutt
tt,,
,,
22
2255
55WW
WW
DD
DDCC
CC-
-DD
DDCC
CC
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
Page 13
0
10
20
30
40
50
60
70
80
90
0 0.5 1 1.5 2 2.5
Output Current (amps)
Efficiency (%)
AEV02AA24
AEV01BB24
AEV01CC24
AEV02AA24
AEV01BB24
AEV01CC24
AEV Dual Output Typical Startup Delay from CNT On AEV Dual Output Typical Shutdown Delay from CNT Off
AEV Dual Performance Curves
(rated input voltage, full load, at 25 °C)
AEV02AA48
AEV01BB48
AEV01CC48
0
10
20
30
40
50
60
70
80
90
0 0.5 1 1.5 2 2.5
Output Current (amps)
Efficiency (%)
AEV02AA48
AEV01BB48
AEV01CC48
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
AA
AAEE
EEVV
VV
22
2244
44VV
VV&&
&&44
4488
88VV
VV
II
IInn
nnpp
ppuu
uutt
tt
SS
SSee
eerr
rrii
iiee
eess
ss
DD
DDCC
CC-
-DD
DDCC
CC
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
SS
SSii
iinn
nngg
ggll
llee
ee
AA
AAnn
nndd
dd
DD
DDuu
uuaa
aall
ll
OO
OOuu
uutt
ttpp
ppuu
uutt
tt,,
,,
22
2255
55WW
WW
DD
DDCC
CC-
-DD
DDCC
CC
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
Page 14
AEV02AA24 +Io=max
AEV02AA48 +Io=max
AEV02AA24 +Io=0.01A
AEV02AA48 +Io=0.01A
+Vo (V)
-Io (A)
+Vo (V)
-Io (A)
AEV01BB24 +Io=max
AEV01BB48 +Io=max
AEV01BB24 +Io=0.01A
AEV01BB48 +Io=0.01A
+Vo (V)
-Io (A)
AEV01CC24 +Io=max
AEV01CC48 +Io=max
AEV01CC24 +Io=0.01A
AEV01CC48 +Io=0.01A
AEV Dual Performance Curves
(rated input voltage, full load, at 25 °C)
PART NUMBER DESCRIPTION
ss pp
c
-0 iv L- xxx f yy h n -p-mx-Options
p = Pin Length
Omit this digit for Standard 5mm
6 = 3.8mm, 7= 5.8mm
iv = Input Voltage 8 = 2.8mm
05 = Range centered on 5V
12 = Range centered on 12V Enable Logic Polarity
24 = 18 to 36(2:1), 9 to 36V(4:1) Omit for Positive Enable Logic
36 = 20 to 60V N = Negative Enable
46 = 18V to 75V (4:1) Except: AK60C-20H, BK60C-30H
48 = Typ 36 to 75V Omit for Negative Logice
P = Positive Logic
c = Pinout compatability
A= Astec Footprint or "non Lucent" footprint H = High Efficiency (Synch rect.)
C= Ind Std, Exact Lucent drop in Omit H if Conventional Diode (low Eff)
yy = Output Current
pp = Package Type ie. 08 = 8 Amps
40 = 1" x 2" SMD
42 = 1.5" x 2" SMD f = # of Outputs
45 = 1.45" X 2.3" (1/4 Brk) F = Single Output
60 = 2.4" X 2.3" (1/2 Brk) D = Dual Output
80 = Full size 4.6" x 2.4"
72= 2.35" X 3.3 (3/4 Brk) xxx = Output Voltage
Format is XX.X (ie 1.8V = 018)
ss = Series
AA = 1/2brick Dual (Old designator)
AK = Ind Std sizes (1/4, 1/2, full) <150W mx = Options
AM/BM = Full size, astec pin out M1,M2 = .25" Height Heatsink
AL = Half size, astec pin-out M3,M4 = .5" height Heatsink
BK = Ind Std size =>150W or feature rich M5.M6 = 1.0" Height Heatsink
AV = Avansys Product
Note: For some products, they may not conform with the PART NUMBER DESCRIPTION above absolutely.
REVISION Q ATTACHMENT I Page 1 of 2
NEW PART NUMBER DESCRIPTION
Acs ii V1 V2 V3Vin -e t p Mx
Output Voltage
A = 5.0V E = 7.5V
F = 3.3V B = 12V, C = 15V
G = 2.5V L = 8V, H = 24V, R = 28V
D = 2.0V / 2.1V Omit V2 and V3 if Single Output
Y = 1.8V Omit V3 if Dual Output
M = 1.5V ie for Dual Output 5 and 3.3V
K = 1.2V V1 =A, V2 = F, V3 =Omit
J = 0.9V V1 =A, V2 = F, V3 =Omit
ii = Output Current Max
ie 60 = 60 Amps Vin = Input Voltage range
300 = 250V to 450V
S = Size 48 = 36V to 75V
F = Full Brick 24 = 18V to 36V
H = Half Brick 03 = 1.8V to 5.0V
Q = Quarter Brick 08 = 5.0V to 13.0V
S = 1 X 2 18 Pin SMT PFC: Power Factor Corrected
E = 1 X 2 Thru Hole
C = (.53X1.3X.33) SMT (Austin Lite drop in) E = Enable Logic for > 15W
V = Conventional Package (2X2.56") or ( Omit this digit for Positive enable
A = SIP N = Negative Logic
W = Convent pkg (Wide 2.5X3) E = Enable Logic for < 15W
R = 1 X 1 Thru Hole Omit this digit for no enable option
A = SIP 1 = Negative Logic
T = 1.6 X 2 4 = Positive Logic
c = Construction Trim for 1W to 15W
E = Enhanced Thermals (Baseplate or adapter plate) 9 = Trim Added
I = Integrated (Full Featured) Hong Kong models
L = Low Profile (Open Frame, No case - Isolated)
P = Open Frame (SIP or SMT) non-isolated P = Pin Length
Omit this digit for Standard 5mm
6 = 3.8mm
8 = 2.8mm
7 = 5.8 mm
Mx - Factory Options
customer Specific
Note: For some products, they may not conform with the NEW PART NUMBER DESCRIPTION above absolutely.
REVISION Q ATTACHMENT I Page 2 of 2