R5220x SERIES
PWM Step-down DC/DC Converter with switch function
NO.EA-121-120113
1
OUTLINE
The R5220x Series are CMOS-based PWM step-down DC/DC Converters with synchronous rectifier, low
supply current and LDO mode.
DC/DC converter of the R5220x consists of an oscillator, a PWM control circuit, a reference voltage unit, an
error amplifier, a soft-start circuit, protection circuits, a protection against miss operation under low voltage
(UVLO), PWM-DC to DC converter / LDO alternative circuit, a chip enable circuit, and a driver transistor. A high
efficiency step-down DC/DC converter can be easily composed of this IC with only a few kinds of external
components, or an inductor and capacitors.
LDO of the R5220x consists of a vortage reference unit, an error amplifier, resistors for voltage setting, output
current limit circuit, a driver transistor, and so on. The output voltage is fixed internally in the R5220x. The output
voltage of the DC/DC converter and the LDO can be set independently.
PWM step-down DC/DC converter / LDO alternative circuit is active with Mode Pin of the R5220x Series. Thus,
when the load current is small, the operation can be switching into the LDO operation from PWM operation by
the logic of MODE pin and the consumption current of the IC itself will be small at light load current. As protection
circuits, the current limit circuit which limits peak current of Lx at each clock cycle, and the latch type protection
circuit which works if the term of the over-current condition keeps on a certain time in PWM mode. Latch-type
protection circuit works to latch an internal driver with keeping it disable. To release the protection, after disable
this IC with a chip enable circuit, enable it again, or restart this IC with power-on or make the supply voltage at
UVLO detector threshold level or lower than UVLO.
FEATURES
Supply Current ................................................................Typ. 350μA (DC/DC), Typ. 5μA (VR)
Standby Current ..............................................................Typ. 0.1μA
Built-in Driver ON Resistance .........................................P-channel 0.5Ω, N-channel 0.5Ω (at VIN=3.6V)
Output Current ................................................................ Min. 400mA (DC/DC), Min. 50mA (VR)
Input Voltage ................................................................... 2.8V to 5.5V (Absolute Input Maximum: 6.5V)
Output Voltage ................................................................ 1.0V to 3.3V (0.1V steps)
(For other voltages, please refer to MARK INFORMATIONS.)
Output Voltage Accuracy.................................................±2.0% (VOUT
>
=
1.5), ±30mV (VOUT <1.5V)
Oscillator Frequency (DC/DC) ........................................ Typ. 1.2MHz
Package .......................................................................... SON-6, DFN(PLP)2514-6
Built-in Soft-start Function............................................... Typ. 0.2ms
Latch-type Protection Function (Delay Time).................. Typ. 3.0ms
Built-in fold-back protection circuit (DC/DC, VR)
Ceramic Capacitor is recommended.
APPLICATIONS
Power source for portable equipment such as DSC, DVC, and communication equipment.
R5220x
2
BLOCK DIAGRAM
L
X
OUTPUT
CONTROL
Soft
Start
Vref
V
OUT
Vref
Current Limit
V
IN
MODE
1
CE
GND
OSC
Current Limit
*1) R5220xxxxA: DC/DC mode: Mode pin= "H", VR mode: Mode pin= "L"
R5220xxxxB: DC/DC mode: Mode pin= "L", VR mode: Mode pin= "H"
SELECTION GUIDE
In the R5220x Series, the output voltage, the version and the pin polalities for the ICs can be selected at the
user's request.
Product Name package Quantity per Reel Pb Free Halogen Free
R5220Kxx$-TR DFN(PLP)2514-6 5,000 pcs
R5220Dxx$-TR-FE SON-6 3,000 pcs
xx Output Voltage (VOUT) or serial number.
The output voltage can be designed in the range from 1.0V(10) to 3.3V(33) in 0.1V steps.
( If selected the custum-made product)The output voltage can be designed by Serial numbers.
Please refer to the attached Mark Informations.
:(1Standard (DC/DC output voltage = LDO output voltage)
2Custom-made (DC/DC output voltage LDO output voltage)
$ Designation of chip enable and Mode pin polarities
AMode pin; "H"=DC/DC converter mode, "L"=LDO Mode
BMode pin; "L"=DC/DC converter mode, "H"=LDO Mode
R5220x
3
PIN CONFIGURATIONS
SON-6 DFN(PLP)2514-6
Top View Bottom View
6 5 4 4 5 6
1 2 3 3 2 1
Top View Bottom View
654
123
4 5 6
3 2 1
PIN DESCRIPTIONS
Pin No Symbol Description
1 Lx LX Pin Voltage Supply Pin
2 GND Ground Pin
3 MODE
Mode changer Pin
(Refer to the Selection Guide)
4 CE Chip Enable Pin (active with "H")
5 VOUT Output Pin
6 VIN Voltage Supply Pin
1) Tab is GND level. (They are connected to the reverse side of this IC.)
The tab is better to be connected to the GND, but leaving it open is also acceptable.
R5220x
4
ABSOLUTE MAXIMUM RATINGS
Symbol Item Rating Unit
VIN VIN Supply Voltage 6.5 V
VLX LX Pin Voltage 0.3 to VIN+0.3 V
VCE CE Pin Input Voltage 0.3 to 6.5 V
VMODE MODE Pin Input Voltage 0.3 to 6.5 V
VOUT VOUT Pin Voltage 0.3 to VIN+0.3 V
ILX LX Pin Output Current 600 mA
IOUT VOUT Pin Output Current 200 mA
Power Dissipation (SON-6)* 500
PD
Power Dissipation (DFN(PLP)2514-6)* 730
mW
Topt Operating Temperature Range 40 to 85 °C
Tstg Storage Temperature Range 55 to 125 °C
*) For Power Dissipation, please refer to PACKAGE INFORMATION.
ABSOLUTE MAXIMUM RATINGS
Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the
permanent damages and may degrade the life time and safety for both device and system using the device
in the field.
The functional operation at or over these absolute maximum ratings is not assured.
RECOMMENDED OPERATING CONDITIONS (ELECTRICAL CHARACTERISTICS)
All of electronic equipment should be designed that the mounted semiconductor devices operate within the
recommended operating conditions. The semiconductor devices cannot operate normally over the
recommended operating conditions, even if when they are used over such conditions by momentary
electronic noise or surge. And the semiconductor devices may receive serious damage when they continue
to operate over the recommended operating conditions.
R5220x
5
ELECTRICAL CHARACTERISTICS
R5220xxxxA Topt=25°C
Symbol Item Conditions Min. Typ. Max. Unit
VIN Input Voltage 2.8 5.5 V
ISS1 Supply Current 1
(Standby mode)
VIN=VOUT1+1.0V, VCE=GND, VMODE=GND or VIN
VOUT1:
DC/DC
Set VOUT 0.1 1.0
μA
ISS2 Supply Current 2
(Power Save mode)
VIN=VCE=VOUT2+1.0V, VMODE=GND
VOUT2:VR Set VOUT, IOUT=0mA 5 10
μA
ISS3 Supply Current 3 VIN=VCE=VMODE=3.6V 350 450 μA
DC/DC Part Topt =25°C
Symbol Item Conditions Min. Typ. Max. Unit
VOUT1
>
=
1.5 ×0.98 ×1.02
VOUT1 Output Voltage VIN=3.6V
IOUT=50mA VOUT1 < 1.5 0.03 +0.03 V
fosc Oscillator Frequency VIN=3.6V 0.96 1.20 1.44 MHz
VOUT1 < 1.5 0.15 0.30
TSTART Soft-start Time VIN=3.6V VOUT1
>
=
1.5 0.20 0.35
ms
RONP
ON Resistance of Pch Transistor
VIN=3.6V, ILX=−100mA 0.5 Ω
RONN
ON Resistance of Nch Transistor
VIN=3.6V, ILX=−100mA 0.5 Ω
ILXLEAK Lx Leakage Current VIN=5.5V, VCE=0V, LX=5.5V/0V 1.0 1.0
μA
ΔVOUT/
ΔTopt
Output Voltage
Temperature Coefficient 40°C
<
=
Topt
<
=
85°C ±150 ppm/°C
Maxduty Oscillator Maximum Duty Cycle VOUT=0V 100 %
ILXlim Lx Current Limit VIN=3.6V 500 800 mA
Tprot Protection Delay Circuit VIN=3.6V 1.0 3.0 7.0 ms
VUVLO1 UVLO Threshold Voltage VIN=VCE=VMODE, VOUT=0V 2.00 2.35 2.75 V
VUVLO2 UVLO Released Voltage VIN=VCE=VMODE, VOUT=0V 2.05 2.45 2.80 V
VMODEH MODE "H" Input Voltage 1.0 V
VMODEL MODE "L" Input Voltage 0 0.3 V
VR Part Top t=25°C
Symbol Item Conditions Min. Typ. Max. Unit
VOUT2
>
=
1.5 ×0.98 ×1.02
VOUT2 Output Voltage VIN=VOUT2+1.0V
IOUT=10mA VOUT2 < 1.5 0.03 +0.03 V
IOUT Output Current VIN=VOUT2+1.0V 50 mA
VOUT2 < 2.3 15 40
2.3
<
=
VOUT2 < 3.0 25 50
ΔVOUT2/
ΔIOUT Load Regulation VIN=VOUT2+1.0V
10μA
<
=
IOUT
<
=
25mA VOUT2
>
=
3.0 35 65
mV
VOUT2 < 1.8 0.7
VDIF Dropout Voltage IOUT=50mA VOUT2
>
=
1.8 0.3
V
2.8V
<
=
VIN
<
=
5.5V
IOUT=25mA VOUT2 < 2.3
ΔVOUT2/
ΔVIN Line Regulation VOUT2+0.5V
<
=
VIN
<
=
5.5V
IOUT=25mA VOUT2
>
=
2.3
0.2 %/V
RR Ripple Rejection Refer to Typical Characteristics dB
ΔVOUT/
ΔTopt
Output Voltage
Temperature Coefficient
IOUT=30mA,
40°C
<
=
Topt
<
=
85°C ±100 ppm/°C
Ilim Short Current Limit VOUT=0V 60 mA
IPDC CE pull-down current 0.12 0.40 0.70 μA
VCEH CE "H" Input Voltage 1.0 V
VCEL CE "L" Input Voltage 0 0.3 V
R5220x
6
R5220xxxxB Topt=25°C
Symbol Item Conditions Min. Typ. Max. Unit
VIN Input Voltage 2.8 5.5 V
ISS1 Supply Current 1
(Standby mode)
VIN=VOUT1+1.0V, VCE=GND, VMODE=GND or VIN
VOUT1:
DC/DC
Set VOUT 0.1 1.0
μA
ISS2 Supply Current 2
(Power Save mode)
VIN=VCE=VMODE=VOUT2+1.0V,
VOUT2:VR Set VOUT, IOUT=0mA 5 10
μA
ISS3 Supply Current 3 VIN=VCE=3.6V, VMODE=GND 350 450 μA
DC/DC Part Topt =25°C
Symbol Item Conditions Min. Typ. Max. Unit
VOUT1
>
=
1.5 ×0.98 ×1.02
VOUT1 Output Voltage VIN=3.6V
IOUT=50mA VOUT1<1.5 0.03 +0.03 V
fosc Oscillator Frequency VIN=VSET1+1.5V 0.96 1.20 1.44 MHz
VOUT1<1.5 0.15 0.30
TSTART Soft-start Time VIN=3.6V VOUT1
>
=
1.5 0.20 0.35
ms
RONP
ON Resistance of Pch Transistor
VIN=3.6V, ILX=−100mA 0.5 Ω
RONN
ON Resistance of Nch Transistor
VIN=3.6V, ILX=−100mA 0.5 Ω
ILXLEAK Lx Leakage Current VIN=5.5V, VCE=0V, LX=5.5V/0V 1.0 1.0
μA
ΔVOUT/
ΔTopt
Output Voltage
Temperature Coefficient 40°C
<
=
Topt
<
=
85°C ±150 ppm/°C
Maxduty Oscillator Maximum Duty Cycle VOUT=0V 100 %
ILXlim Lx Current Limit VIN=3.6V 500 800 mA
Tprot Protection Delay Circuit VIN=3.6V 1.0 3.0 7.0 ms
VUVLO1 UVLO Threshold Voltage VCE=VIN, VMODE=GND, VOUT=0V 2.00 2.35 2.75 V
VUVLO2 UVLO Released Voltage VCE=VIN, VMODE=GND, VOUT=0V 2.05 2.45 2.80 V
VMODEH MODE "H" Input Voltage 1.0 V
VMODEL MODE "L" Input Voltage 0 0.3 V
VR Part Top t=25°C
Symbol Item Conditions Min. Typ. Max. Unit
VOUT2
>
=
1.5 ×0.98 ×1.02
VOUT2 Output Voltage VIN=VOUT2+1.0V
IOUT=10mA VOUT2<1.5 0.03 +0.03 V
IOUT Output Current VIN=VOUT2+1.0V 50 mA
VOUT2<2.3 15 40
2.3
<
=
VOUT2<3.0 25 50
ΔVOUT2/
ΔIOUT Load Regulation VIN=VOUT2+1.0V
10μA
<
=
IOUT
<
=
25mA VOUT2
>
=
3.0 35 65
mV
VOUT2<1.8V 0.7
VDIF Dropout Voltage IOUT=50mA VOUT2
>
=
1.8V 0.3
V
2.8V
<
=
VIN
<
=
5.5V
IOUT=25mA VOUT2<2.3V
ΔVOUT2/
ΔVIN Line Regulation VOUT2+0.5V
<
=
VIN
<
=
5.5V
IOUT=25mA VOUT2
>
=
2.3V
0.2 %/V
RR Ripple Rejection Refer to Typical Characteristics dB
ΔVOUT/
ΔTopt
Output Voltage
Temperature Coefficient
IOUT=30mA,
40°C
<
=
Topt
<
=
85°C ±100 ppm/°C
Ilim Short Current Limit VOUT=0V 60 mA
IPDC CE pull-down current 0.12 0.40 0.70 μA
VCEH CE "H" Input Voltage 1.0 V
VCEL CE "L" Input Voltage 0 0.3 V
R5220x
7
TYPICAL APPLICATION
1
2
3
C
OUT
10μF
Lx
GND
4
5
MODE CE
V
IN
V
IN
C
IN
10
F
L 4.7μH
Load
V
OUT
6
R5220x
Series
Parts Recommendation
CIN 10μF Ceramic Capacitor C2012JB0J106K (TDK)
COUT 10μF Ceramic Capacitor C2012JB0J106K (TDK)
L 4.7μH VLP5610T-4R7MR90 (TDK)
External Components
Set external components such as an inductor, CIN, COUT as close as possible to the IC, in particular,
minimize the wiring to VIN pin and GND pin. If VDD line or GND line’s impedance is high, the internal voltage
level of the IC may fluctuate and the operation may be unstable. Make GND line and VDD line sufficient.
Through the VDD line, the GND line, the inductor, Lx pin, and VOUT line, a large current caused by switching
may flow, therefore, those lines should be sufficient and avoid the cross talk with other sensitive lines. Use
the individual line from the VOUT pin of the IC for the inductor and the capacitor and load.
Use a low ESR ceramic capacitor COUT/CIN with a capacity of 10μF or more.
Select an inductor with an inductance range from 4.7μH to 10μH. The internal phase compensation is
secured with these inductance values and COUT value. Choose the inductor with a low DC resistance and
enough permissible current and hard to reach magnetic saturation. In terms of inductance value, choose the
appropriate value with considering the conditions of the input voltage range and the output voltage, and
load current. If the inductance value is too small and the load current is large, the peak current of Lx may
reach the Lx current limit, and the protection against over-current may work.
The protection circuit against over-current is affected by the self-heating and the heat radiation environment.
Therefore evaluate under the considerable environment of the application.
The performance of power source circuits using these ICs extremely depends upon the peripheral circuits.
Pay attention in the selection of the peripheral circuits. In particular, design the peripheral circuits in a way that
the values such as voltage, current, and power of each component, PCB patterns and the IC do not exceed their
respected rated values.
R5220x
8
OPERATION of step-down DC/DC converter and Output Current
The step-down DC/DC converter charges energy in the inductor when LX transistor is ON, and discharges the
energy from the inductor when LX transistor is OFF and controls with less energy loss, so that a lower output
voltage than the input voltage is obtained. The operation will be explained with reference to the following
diagrams:
<Basic Circuits> <Current through L>
Pch Tr L
Nch Tr
V
IN
i1
V
OUT
CL
i2
GND
I
OUT
T=1/fosc
ton toff
to
p
en
ILmin
ILmax
IL
t
Step 1: P-channel Tr. turns on and current IL (=i1) flows, and energy is charged into CL. At this moment, IL
increases from ILmin (=0) to reach ILmax in proportion to the on-time period (ton) of P-channel Tr.
Step 2: When P-channel Tr. turns off, Synchronous rectifier N-channel Tr. turns on in order that L maintains IL
at ILmax, and current IL (=i2) flows.
Step 3: IL (=i2) decreases gradually and reaches IL=ILmin=0 after a time period of topen, and N-channel Tr.
Turns off. Provided that in the continuous mode, next cycle starts before IL becomes to 0 because toff
time is not enough. In this case, IL value increases from this ILmin (>0).
In the case of PWM control system, the output voltage is maintained by controlling the on-time period (ton), with
the oscillator frequency (fosc) being maintained constant.
The maximum value (ILmax) and the minimum value (ILmin) of the current flowing through the inductor are the
same as those when P-channel Tr. turns on and off.
The difference between ILmax and ILmin, which is represented by ΔI;
ΔI = ILmax Ilmin = VOUT × topen / L = (VIN VOUT) × ton / L .........................................Equation 1
wherein, T = 1 / fosc = ton + toff
duty (%) = ton / T × 100 = ton × fosc × 100
topen
<
=
toff
In Equation 1, VOUT × topen / L and (VIN VOUT) × ton / L respectively show the change of the current at "ON", and
the change of the current at "OFF".
R5220x
9
OUTPUT CURRENT AND SELECTION OF EXTERNAL COMPONENTS
When P-channel Tr. of LX is ON:
(Wherein, Ripple Current P-P value is described as IRP, ON resistance of P-channel Tr. and N-channel Tr. of LX
are respectively described as RONP and RONN, and the DC resistor of the inductor is described as RL.)
VIN = VOUT + (RONP + RL) × IOUT + L × IRP / ton................................................................... Equation 2
When P-channel Tr. of LX is "OFF" (N-channel Tr. is "ON"):
L × IRP / toff = RONN × IOUT + VOUT + RL × IOUT .................................................................. Equation 3
Put Equation 3 to Equation 2 and solve for ON duty of P-channel transistor, ton / (toff + ton) = DON,
DON = (VOUT – RONN × IOUT + RL × IOUT) / (VIN + RONN × IOUT – RONP × IOUT) ........................... Equation 4
Ripple Current is as follows;
IRP = (VIN VOUT RONP × IOUT RL × IOUT) × DON / fosc / L ............................................... Equation 5
wherein, peak current that flows through L, and LX Tr. is as follows;
ILmax = IOUT + IRP / 2...................................................................................................... Equation 6
Consider ILmax, condition of input and output and select external components.
The above explanation is directed to the calculation in an ideal case in continuous mode.
R5220x
10
TIMING CHART
1) IC start-up
The timing chart as shown in the next describes the operation starting the IC is enabled with CE. When the CE
pin voltage becomes higher than the threshold voltage, the IC’s operations starts. At first, only the voltage
regulator (VR) starts. The threshold level of the CE pin is between CE “H” input voltage and CE “L” input voltage.
After starting the operation, the output capacitor (COUT) is charged with the output current of the VR, and the
output level becomes the set VR output voltage. At this moment, the output of Lx is “off”, (“Hi-Z”), the pin voltage,
VLX=VOUT through the external inductor L.
Secondly, the Mode pin voltage is higher than the threshold voltage, internal operation of DC/DC starts. The
threshold level is between Mode “H” input voltage and Mode “L” input voltage. The soft-start circuit inside the
DC/DC converter’s operation is as follows:
(Case 1) DC/DC output voltage < VR output voltage
After the soft-start time, while the output voltage level is down from the VR output voltage to DC/DC output
voltage, the circuit is waiting for the start of DC/DC operation. When the output voltage reaches so set DC/DC
output voltage level, the actual DC/DC operation starts.
(Case 2) DC/DC output voltage> VR output voltage
The soft-start circuit of DC/DC converter makes the voltage reference unit of the IC rise gradually and be
constant. After the voltage reference unit reaches the constant level which the output voltage of DC/DC
converter can balance becomes the output voltage of VR, the set output voltage of DC/DC converter may be
realized.
Therefore, the soft-start time means the time range of starting to the time when the voltage reference unit
reaches the constant level, and the soft-start time is different from turning on speed in some cases. The
operation starting time depends on the ability of the power supply, the load current, the inductance value, the
capacitance value, and the voltage difference between the set VR output and the set DC/DC output.
If CE and Mode are on at once, the same operation as above is happened except the VR start-up and
Soft-start operation start at the same time.
If Mode signal is forced earlier than CE signal, this IC is stand-by until CE signal comes. Therefore when the
CE signal is set, the IC operation starts as above.
VOUT voltage rising speed at start-up with power supply is affected by the next conditions:
1.The turning on speed of VIN voltage limited by the power supply to the IC and the input capacitor CIN.
2.The output capacitor, COUT value and load current.
DC/DC operation starting time
1.If the VR output
>
=
DC/DC output, the operation starting time of the DC/DC converter is approximately equal to
the next formula.
TDC/DC_ACT = TSS + (VOUT_VR VOUT_DC/DC + 15mV) × COUT / (load current at mode change + 1μA)
TSS: Soft-start time
VOUT_VR: VR output voltage
VOUT_DC/DC: DC/DC Output Voltage
*1μA is the supply current of the IC itself for the output.
2.If the VR output < DC/DC output, the operation starting time is the soft-start time + starting operation time
which depends on the power supply, the load current, and the external components.
R5220x
11
V
CEH
V
CEL
CE pin input signal
IC DC/DC Voltage Reference Unit
Soft start time
A.VR Output=DC/DC Output voltage
Effect from Power Supply, Load Current, Extemal Components
B.VR voltage > DC/DC Output
C. VR voltage < DC/DC voltage
V
OUT
Lx
voltage
V
OUT
V
OUT
Lx
voltage
Lx
voltage
MODE pin input signal
V
MODEH
V
MODEL
DC/DC does not operate if VR output is larger than
DC/DC
DC/DC Operating
DC/DC Operation
DC/DC Operation
If CE pin input signal is forced earlier than the supply voltage, the voltage difference between the input and the
output which is according to the input voltage to VIN, is maintained and the VOUT is rising up.
R5220x
12
TEST CIRCUITS
A
Lx
GND
MODE
V
V
L
x
GND
MODE
V
IN
V
OUT
CE
OSCILLOSCOPE
Lx
GND
MODE
V
V
L
x
GND
MODE
V
IN
V
OUT
CE
Supply Current 1,2,3 Output Voltage(DC/DC)
OSCILLOSCOPE
Lx
GND
MODE
V
V
L
x
GND
MODE
V
IN
V
OUT
CE
OSCILLOSCOPE
Lx
GND
MODE
V
V
L
x
GND
MODE
V
IN
V
OUT
CE
Oscillator Frequency Sof t-start Time
A
Lx
GND
MODE
V
V
Lx
GND
MODE
VIN
VOUT
CE
OSCILLOSCOPE
Lx
GND
MODE
V
V
Lx
GND
MODE
V
IN
VOUT
CE
Lx Leakage Current Lx Current Limit, Output Delay for Protection
Lx Pch transistor ON resi stance
Nch transistor ON resistance
R5220x
13
OSCILLOSCOPE
Lx
GND
MODE
V
V
L
x
GND
MODE
V
IN
V
OUT
CE
OSCILLOSCOPE
A
Lx
GND
MODE
V
V
L
x
GND
MODE
V
IN
V
OUT
CE
UVLO Detector Threshold UVLO Release Voltage MODEInpu t Voltage ”H”,”L” Input Current
V
Lx
GND
MODE
V
V
L
x
GND
MODE
V
IN
VOUT
CE
Network
A
nalyzer
Lx
GND
MODE
V
V
L
x
GND
MODE
VIN
VOUT
CE
Output Voltage (VR), Load Regulation (J) RippleRejection
Line Regulation, Dropout Volt age
A
Lx
GND
MODE
V
V
L
x
GND
MODE
V
IN
VOUT
CE
A
V
Lx
GND
MODE
V
V
L
x
GND
MODE
VIN
VOUT
CE
Short Current Limit CE=”H”/”L” Input Voltage/ Input Current
R5220x
14
TYPICAL CHARACTERISTICS
1) DC/DC Converter
1-1) DC/DC Output Voltage vs. Output Current 1-2) DC/DC Output Voltage vs. Input Voltage
R5220x181A R5220x181A
2.8V
3.6V
5.5V
1.76
1.77
1.84
1.82
1.83
1.79
1.80
1.78
1.81
0 100 300200 400
Output Current(mA)
Output Voltage(V)
1mA
50mA
250mA
2.5 3.5 5.03.0 4.54.0 5.5
Input Voltage(V)
Output Voltage(V)
1.76
1.77
1.78
1.79
1.80
1.82
1.81
1.83
1.84
1-3) DC/DC Efficiency vs. Output Current 1-4) DC/DC Supply Current vs. Temperature
R5220x181A
2.8V
3.6V
5.5V
0
20
100
60
80
40
Output Current(mA)
Efficiency(%)
0.1 1 10010 1000
200
240
220
400
360
280
380
320
260
300
340
Temperature Topt(°C)
Supply Current I
SS
(μ
A
)
DC/DC_V
SET
: 1.0V
DC/DC_V
SET
: 1.8V
V
IN
=V
CE
=V
MODE
=3.6V
-50 7525-25 500 100
1-5) DC/DC Supply Current vs. Input Voltage 1-6) DC/DC Output Waveform
R5220x121A
Input Voltage(V)
Supply Current I
SS(μA)
200
220
240
260
280
320
300
360
340
380
400 V
IN
=V
CE
=V
MODE
-50 7525-25 500 100
1.14
1.26
1.24
1.16
1.20
1.18
1.22
031425
Time(μs)
Output Ripple Voltage(V)
C
IN
=C
OUT
=Ceramic 10μF,L=4.7μH
V
IN
=3.6V,I
OUT
=300mA
R5220x
15
1-7) DC/DC Output Voltage vs. Temperature
R5220x181A R5220x181A
1.74
1.86
1.84
1.76
1.80
1.78
1.82
031425
Time(μs)
Output Ripple Voltage(V)
1.70
1.72
1.90
1.84
1.80
1.88
1.76
1.82
1.78
1.86
1.74
Temperature Topt(°C)
Output Voltage V
OUT
(V)
I
OUT
=50mA
-50 7525-25 500 100
1-8) DC/DC Oscillator Frequency vs. Temperature 1-9) DC/DC Oscillator Frequency vs. Input Voltage
R5220x181A
1000
1050
1400
1250
1350
1150
1200
1300
1100
Temperature Topt(°C)
Frequency fosc(kHz)
VIN=3.6V
-50 7525-25 500 100
1050
1350
1250
1150
1200
1300
1100
2.5 3.0 4.0 5.04.53.5 5.5
Input Voltage(V)
Frequency fosc(kHz)
1-10) Soft-start time vs. Temperature 1-11) UVLO Detector Threshold/ Released Voltage vs.
Temperature
DC/DC_VSET : 1.0V
DC/DC_VSET : 1.8V
0
250
100
200
50
150
Temperature Topt(°C)
Soft-Start Time (μs)
-50 7525-25 500 100
UVLO Detector Threshold
UVLO Released Voltage
2.0
2.8
2.3
2.7
2.1
2.5
2.2
2.6
2.4
Temperature Topt(°C)
V
DD
Voltage Level(V)
-50 7525-25 500 100
R5220x
16
1-12) MODE Input Voltage vs. temperature 1-13) Pch Transistor On Resistance vs. Temperature
0.0
0.8
0.3
0.7
0.1
0.5
0.2
0.6
0.4
Temperature Topt(°C)
MODE Input Voltage V
MODE
(V)
-50 7525-25 500 100
0.0
0.8
0.3
0.7
0.1
0.5
0.2
0.6
0.4
Temperature Topt(°C)
PchTr. On Resistance (Ω)
V
IN
=3.6V
-50 7525-25 500 100
1-14) Nch Transistor On Resistance vs. 1-15) DC/DC Lx Current Limit vs. Temperature
Temperature
R5220x131A
0.0
0.8
0.3
0.7
0.1
0.5
0.2
0.6
0.4
Temperature Topt(°C)
NchTr. ON Resistance (Ω)
V
IN
=3.6V
-50 7525-25 500 100
400
1200
1000
600
800
Temperature Topt(°C)
Lx Limit Current(mA)
-50 7525-25 500 100
2) VR
2-1) VR Output Voltage vs. Output Current
R5220x121A R5220x181A
V
IN
=2.8V
V
IN
=3.6V
V
IN
=5.5V
0.0
1.4
0.4
1.2
0.8
0.2
1.0
0.6
0 50 150100 200
Output Current I
OUT
(mA)
Output Voltage V
OUT
(V)
V
IN
=2.8V
V
IN
=3.6V
V
IN
=5.5V
0.0
0.6
1.4
0.2
1.6
1.8
2.0
1.0
0.8
0.4
1.2
0 50 150100 200
Output Current I
OUT
(mA)
Output Voltage V
OUT
(V)
R5220x
17
2-2) VR Output Voltage vs. Input Voltage
R5220x121A R5220x181A
I
OUT
=1mA
I
OUT
=25mA
I
OUT
=50mA
0.0
1.4
1.2
0.8
1.0
0.4
0.2
0.6
045312 6
Input Voltage V
IN
(V)
Output Voltage V
OUT
(V)
I
OUT
=1mA
I
OUT
=25mA
I
OUT
=50mA
0
2.0
1.8
1.4
1.6
0.6
0.2
1.0
0.8
0.4
1.2
045312 6
Input Voltage V
IN
(V)
Output Voltage V
OUT
(V)
2-3) VR Supply Current vs. Input Voltage
R5220x121A R5220x181A
0.0
8.0
7.0
5.0
6.0
1.0
3.0
2.0
4.0
045312 6
Input Voltage V
IN
(V)
Supply Current I
SS2
(μA)
0.0
8.0
7.0
5.0
6.0
1.0
3.0
2.0
4.0
045312 6
Input Voltage V
IN
(V)
Supply Current I
SS2
(μA)
2-4) VR Output Voltage vs. Temperature
R5220x121A R5220x181A
1.16
1.24
1.19
1.23
1.17
1.21
1.18
1.22
1.20
Temperature Topt(°C)
Output Voltage V
OUT
(V)
-50 7525-25 500 100
1.76
1.84
1.79
1.83
1.77
1.81
1.78
1.82
1.80
Temperature Topt(°C)
Output Voltage V
OUT
(V)
-50 7525-25 500 100
R5220x
18
2-5) VR Supply Current vs. Temperature
R5220x121A R5220x181A
V
IN
=3.6V
V
IN
=5.5V
0
10
5
9
1
7
3
2
4
8
6
Temperature Topt(°C)
Supply Current I
SS2
(μA)
-50 7525-25 500 100
V
IN
=3.6V
V
IN
=5.5V
0
10
5
9
1
7
3
2
4
8
6
Temperature Topt(°C)
Supply Current I
SS2
(μA)
-50 7525-25 500 100
2-6) Dropout Voltage vs. Output Current
R5220x121A R5220x181A
-40°C
25°C
85°C
0
800
300
700
100
500
200
600
400
010 403020 50
Output Current I
OUT
(mA)
Dropout Voltage V
DIF
(V)
1.74
1.86
1.84
1.76
1.80
1.78
1.82
031425
Time(μs)
Output Ripple Voltage(V)
2-7) Ripple Rejection vs. Input Voltage
R5220x121A R5220x181A
f=400Hz
f=1kHz
f=10kHz
f=100kHz
0
80
40
60
10
20
50
70
30
1.5 2.0 5.04.03.0 4.53.52.5 5.5
Input Voltage V
IN
(V)
Ripple Rejection RR(dB)
Ripple 0.2Vp-p,I
OUT
=25mA,
C
IN
=none,C
OUT
=Ceramic10μF
f=400Hz
f=1kHz
f=10kHz
f=100kHz
0
80
40
60
10
20
50
70
30
1.5 2.0 5.04.03.0 4.53.52.5 5.5
Input Voltage V
IN
(V)
Ripple Rejection RR(dB)
Ripple 0.2Vp-p,I
OUT
=25mA,
C
IN
=none,C
OUT
=Ceramic10μF
R5220x
19
2-8) VR Ripple Rejection vs. Frequency
R5220x121A R5220x181A
I
OUT
=50mA
I
OUT
=25mA
I
OUT
=1mA
0
100
60
80
20
10
30
40
70
90
50
0.1 101 100
Frequency f (kHz)
Ripple Rejection(dB)
V
IN
=2.2V+0.2Vp-p
C
IN
=none C
OUT
=Ceramic10μF
I
OUT
=50mA
I
OUT
=25mA
I
OUT
=1mA
0
100
60
80
20
10
30
40
70
90
50
0.1 101 100
Frequency f (kHz)
Ripple Rejection(dB)
V
IN
=2.8V+0.2Vp-p
C
IN
=none C
OUT
=Ceramic10μF
2-9) Input Transient Response
R5220x121A R5220x181A
1.16
1.28
1.20
1.24
1.22
1.26
1.18
0.0 0.2 0.6 0.80.4 1.0
Time T(ms)
Output Voltage(V)
I
OUT
=10mA
C
IN
=none, C
OUT
=Ceramic10μF
1
0
5
4
3
2
Input Voltage(V)
1.76
1.88
1.80
1.84
1.82
1.86
1.78
0.0 0.2 0.6 0.80.4 1.0
Time T(ms)
Output Voltage(V)
IOUT=10mA
CIN=none, COUT=Ceramic10μF
1
0
5
4
3
2
Input Voltage(V)
2-10) Load Transient Response
R5220x121A R5220x121A
0mA 10mA 0mA
1.10
1.40
1.20
1.30
1.25
1.35
1.15
0.0 0.8 2.4 3.21.6 4.0
Time T(μs)
Output Voltage(V)
V
IN
=3.6V,C
IN
=C
OUT
=Ceramic10μF50
25
0
Load Current(mA)
1mA 25mA 1mA
1.10
1.40
1.20
1.30
1.25
1.35
1.15
0.0 0.8 2.4 3.21.6 4.0
Time (μs)
Output Voltage(V)
VIN=3.6V,CIN=COUT=Ceramic10μF
Load Current(mA)
50
25
0
R5220x
20
R5220x181A R5220x181A
0mA 10mA 0mA
1.70
2.00
1.80
1.90
1.85
1.95
1.75
0.0 0.8 2.4 3.21.6 4.0
Time T(μs)
Output Voltage(V)
VIN=3.6V,CIN=COUT=Ceramic10μF
Load Current(mA)
50
25
0
1mA 25mA 1mA
0.0 0.8 2.4 3.21.6 4.0
Time T(μs)
Output Voltage(V)
V
IN
=3.6V,C
IN
=C
OUT
=Ceramic10μF
Load Current(mA)
1.70
2.00
1.80
1.90
1.85
1.95
1.75
50
25
0
3) Mode Transient Response between VR and DC/DC
3-1) VR to DC/DC Mode Transient Response 3-2) DC/DC to VR Mode Transient Response
R5220x151A R5220x151A
V
MODE
V
OUT
1.30
1.60
1.40
1.50
1.45
1.55
1.35
0 200 600 800400 1000
Time (μs)
Output Voltage(V)
V
IN
=3.6V,I
OUT
=0.5mA
C
IN
=C
OUT
=Ceramic10μF
4
0
20
16
12
8
MODE(V)
V
MODE
V
OUT
1.30
1.60
1.40
1.50
1.45
1.55
1.35
0 200 600 800400 1000
Time (μs)
Output Voltage(V)
V
IN
=3.6V,I
OUT
=0.5mA
C
IN
=C
OUT
=Ceramic10μF
4
0
20
16
12
8
MODE(V)
RICOHCOMPANY,LTD.
ElectronicDevicesCompany
●Higashi-ShinagawaOffice(InternationalSales)
3-32-3,Higashi-Shinagawa,Shinagawa-ku,Tokyo140-8655,Japan
Phone:+81-3-5479-2857Fax:+81-3-5479-0502
RICOHEUROPE(NETHERLANDS)B.V.
●SemiconductorSupportCentre
Prof.W.H.Keesomlaan1,1183DLAmstelveen,TheNetherlands
P.O.Box114,1180ACAmstelveen
Phone:+31-20-5474-309Fax:+31-20-5474-791
RICOHELECTRONICDEVICESKOREACo.,Ltd.
11floor,Haesung1building,942,Daechidong,Gangnamgu,Seoul,Korea
Phone:+82-2-2135-5700Fax:+82-2-2135-5705
RICOHELECTRONICDEVICESSHANGHAICo.,Ltd.
Room403,No.2Building,690#BiBoRoad,PuDongNewdistrict,Shanghai201203,
People'sRepublicofChina
Phone:+86-21-5027-3200Fax:+86-21-5027-3299
RICOHCOMPANY,LTD.
ElectronicDevicesCompany
●Taipeioffice
Room109,10F-1,No.51,HengyangRd.,TaipeiCity,Taiwan(R.O.C.)
Phone:+886-2-2313-1621/1622Fax:+886-2-2313-1623
http://www.ricoh.com/LSI/
1.Theproductsandtheproductspecificationsdescribedinthisdocumentaresubjecttochangeor
discontinuationofproductionwithoutnoticeforreasons
suchasimprovement.Therefore,before
decidingtousetheproducts,pleaserefertoRicohsalesrepresentativesforthelatest
informationthereon.
2.Thematerialsinthisdocumentmaynotbecopiedorotherwisereproducedinwholeorinpart
withoutpriorwrittenconsentofRicoh.
3.Pleasebesuretotakeanynecessaryformalitiesunderrelevantlawsorregulationsbefore
exportingorotherwisetakingoutofyourcountrytheproductsorthetechnicalinformation
describedherein.
4.Thetechnicalinformationdescribedinthisdocumentshowstypicalcharacteristicsofand
exampleapplicationcircuitsfortheproducts.Thereleaseofsuchinformationisnottobe
construedasawarrantyoforagrantoflicenseunderRicoh'soranythirdparty'sintellectual
propertyrightsoranyotherrights.
5.
Theproductslistedinthisdocumentareintendedanddesignedforuseasgeneralelectronic
componentsinstandardapplications(officeequipment,telecommunicationequipment,
measuringinstruments,consumerelectronicproducts,amusementequipmentetc.).Those
customersintendingtouse
aproductinanapplicationrequiringextremequalityandreliability,
forexample,inahighlyspecificapplicationwherethefailureormisoperationoftheproduct
couldresultinhumaninjuryordeath(aircraft,spacevehicle,nuclearreactorcontrolsystem,
trafficcontrolsystem,automotiveand
transportationequipment,combustionequipment,safety
devices,lifesupportsystemetc.)shouldfirstcontactus.
6.Wearemakingourcontinuousefforttoimprovethequalityandreliabilityofourproducts,but
semiconductorproductsarelikelytofailwithcertainprobability.Inordertopreventanyinjuryto
personsordamagestopropertyresultingfromsuchfailure,customersshouldbecarefulenough
toincorporatesafetymeasuresintheirdesign,suchasredundancyfeature,firecontainment
featureandfail-safefeature.Wedonotassumeanyliability
orresponsibilityforanylossor
damagearisingfrommisuseorinappropriateuseoftheproducts.
7.Anti-radiationdesignisnotimplementedintheproductsdescribedinthisdocument.
8.
PleasecontactRicohsalesrepresentativesshouldyouhaveanyquestionsorcomments
concerningtheproductsorthetechnicalinformation.
RICOHCOMPANY.,LTD.ElectronicDevicesCompany
Ricoh presented with the Japan Management Quality Award for 1999
.
Ricoh continually strives to promote customer satisfaction, and shares the achievements
of its management quality improvement program with people and society.
Ricoh awarded ISO 14001 certification.
The Ricoh Group was awarded ISO 14001 certification, which is an international standard for
environmental management systems, at both its domestic and overseas production facilities.
Our current aim is to obtain ISO 14001 certification for all of our business offices.
Ricoh completed the organization of the Lead-free production for all of our products.
After Apr. 1, 2006, we will ship out the lead free products only. Thus, all products that
will be shipped from now on comply with RoHS Directive.