Freescale Semiconductor
Data Sheet: Technical Data Document Number: MPC5200BDS
Rev. 4, 02/2010
© Freescale Semiconductor, Inc., 2008, 2010. All rights reserved.
F reescale reserves the right to change the detail specifications as ma y be required to permit
improvements in the design of its produ cts.
TEPBGA–272
27 mm x 27 mm
Key features are shown below.
MPC603e series e300 core
Superscalar architecture
760 MIPS at 400 MHz (–40 oC to +85 oC)
16 KB Instruction cache, 16 KB Data cache
Double precision FPU
Instru c ti on and Data MMU
Standard and Critical interrupt capability
SDRAM / DDR Memory Interface
Up to 133 MHz operation
SDRAM and DDR SDRAM support
256 MB addressing range per CS, two CS available
32-bit data bus
Built-in initialization and refresh
Flexible multi-functio n External Bus Interface
Supports interfacing to ROM/Flash/SRAM memories or
other memory mapped devices
8 programmable Chip Selects
Non-multiplexed data access using 8-/16-/32-bit databus
with up to 26-bit address
Short or Long Burst capable
Multiplexed data access using 8-/16-/32-bit databus
with up to 25-bit address
Peripheral Component Interconnect (PCI) Controller
Version 2.2 PCI compatibility
PCI initiator and target operation
32-bit PCI Address/Data bus
33 and 66 MHz operation
PCI arbitration function
ATA Controller
Version 4 AT A compatible external interface—IDE Disk
Drive connectivity
BestComm DMA subsystem
Intelligent virtual DMA Co ntroller
Dedicated DMA channels to control peripheral
reception and transmission
Local memory (SRAM 16 KB)
6 Programmable Serial Controllers (PSC)
UART or RS232 interface
CODEC interface for Soft Modem, Master/Slave
CODEC Mode, I2S and AC97
Full duplex SPI mode
IrDA mode from 2400 bps to 4 Mbps
Fast Ethernet Controller (FEC)
Supports 100Mbps IEEE 802.3 MII, 10 Mbps IEEE
802.3 MII, 10 Mbps 7-wire interface
Universal Serial Bus Controller (USB)
USB Revision 1.1 H ost
Open Host Controller Interface (OHCI)
Integrated USB Hub, with two ports.
Two Inter-Integrated Circuit Interfaces (I2C)
Serial Peripheral Interface (SPI)
Dual CAN 2.0 A/B Controller (MSCAN)
Implementation of version 2.0A/B CAN protocol
Standard and extended data frames
J1850 Byte Data Link Controller (BDLC)
J1850 Class B data communication network interface
compatible and ISO compatible for low speed (<125 kbps)
serial data communications in automotive applications.
Supports 4X mode, 41.6 kbps
In-frame response (IFR) types 0, 1, 2, and 3 supported
Systems level features
Interrupt Controller suppo rts four external interrupt
request lines and 47 internal interrupt sources
GPIO/Timer functions
Up to 56 total GPIO pins that support a variety of
interrupt/WakeUp capabilities.
Eight GPIO pins with timer capabilit y supporting input
capture, output compare, and pulse width modulation
(PWM) functions
Real-time Clock with one-second reso lution
Systems Protection (watch dog timer, bus monitor)
Individual control of functional block clock sources
Power management: Nap, Doze, Sleep, Deep Sleep
modes
Support of WakeUp from low power modes by different
sources (GPIO, RTC, CAN)
Test/Debug features
JTAG (IEEE 1149.1 test access port)
Common On-chip Processor (COP) debug port
On-board PLL and clock generation
MPC5200B Data Sheet
MPC5200B Data Sheet, Rev. 4
Freescale Semiconductor2
Table of Contents
1 Electrical and Thermal Characteristics. . . . . . . . . . . . . . . . . . .4
1.1 DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . .4
1.1.1 Absolute Maximum Ratings. . . . . . . . . . . . . . . . .4
1.1.2 Recommended Operating Conditions . . . . . . . . .4
1.1.3 DC Electrical Specifications. . . . . . . . . . . . . . . . .5
1.1.4 Electrostatic Discharge . . . . . . . . . . . . . . . . . . . .7
1.1.5 Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . .7
1.1.6 Thermal Characteristics. . . . . . . . . . . . . . . . . . . .9
1.2 Oscillator and PLL Electrical Characteristics . . . . . . . .10
1.2.1 System Oscillator Electrical Characteristics . . .11
1.2.2 RTC Oscillator Electrical Characteristics. . . . . .11
1.2.3 System PLL Electrical Characteristics. . . . . . . .11
1.2.4 e300 Core PLL Electrical Characteristics . . . . .11
1.3 AC Electrical Characteristics. . . . . . . . . . . . . . . . . . . . .12
1.3.1 AC Te st Timing Conditions: . . . . . . . . . . . . . . . .12
1.3.2 AC Operating Frequency Data. . . . . . . . . . . . . .13
1.3.3 Clock AC Specifications. . . . . . . . . . . . . . . . . . .13
1.3.4 Resets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
1.3.5 External Interrupts. . . . . . . . . . . . . . . . . . . . . . .15
1.3.6 SDRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
1.3.7 PCI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
1.3.8 Local Plus Bus. . . . . . . . . . . . . . . . . . . . . . . . . .23
1.3.9 ATA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
1.3.10 Ethernet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
1.3.11 USB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40
1.3.12 SPI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41
1.3.13 MSCAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45
1.3.14 I2C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
1.3.15 J1850 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
1.3.16 PSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
1.3.17 GPIOs and Timers . . . . . . . . . . . . . . . . . . . . . . 54
1.3.18 IEEE 1149.1 (JTAG) AC Specifications . . . . . . 56
2 Package Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.1 Package Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.2 Mechanical Dimensions. . . . . . . . . . . . . . . . . . . . . . . . 58
2.3 Pinout Listings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3 System Design Information. . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.1 Power Up/Down Sequencing. . . . . . . . . . . . . . . . . . . . 64
3.1.1 Power Up Sequence. . . . . . . . . . . . . . . . . . . . . 65
3.1.2 Power Down Sequence . . . . . . . . . . . . . . . . . . 65
3.2 System and CPU Core AVDD Power Supply Filtering. 65
3.3 Pull-up/Pull-down Resistor Requirements. . . . . . . . . . 65
3.3.1 Pull-down Resistor Requirements for TEST pins65
3.3.2 Pull-up Requirements for the PCI Control Lines66
3.3.3 Pull-up/Pull-down Requirements for MEM_MDQS
Pins (SDRAM) . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.3.4 .Pull-up/Pull-down Requirements for MEM_MDQS
Pins (DDR 16-bit Mode). . . . . . . . . . . . . . . . . . 66
3.4 JTAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.4.1 JTAG_TRST. . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.4.2 e300 COP/BDM Interface . . . . . . . . . . . . . . . . 67
4 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5 Document Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . 70
MPC5200B Data Sheet, Rev. 4
Freescale Semiconductor 3
Figure 1 shows a simplified MPC5200B block diagram.
Figure 1. Simplified Block Diagram—MPC5200B
603
e300 Core
SDRAM/DDR
JTAG / COP
Interface
Reset / Clock
MSCAN
SDRAM/DDR
CommBus
Local
BestComm
SRAM Bus
J1850
USBSPI
I2C
Ethernet
PSC
Memory Controller
Generation 16 KB DMA
Systems Interf ace Unit (SIU)
Real-Time Clock
System Functions
Interrupt Controller
GPIO/Timers
Local Plus Controller
PCI Bus Controller
ATA Host Controller
2x
6x 2x 2x
MPC5200B Data Sheet, Rev. 4
4Freescale Semiconductor
1 Electrical and Thermal Characteristics
1.1 DC Electrical Characteristics
1.1.1 Absolute Maximum Ratings
The tables in this section describe the MPC5200B DC Electrical characteristics. Table 1 gives the absolute maximum ratings.
1.1.2 Recommended Operating Conditions
Table 2 gives the recommended operating conditions.
Table 1. Absolute Maximum Ratings(1)
1Absolute maximum ratings are stress ratings only, and functional operation at the maximums is not guaranteed.
Stresses beyond those listed may affect device reliability or cause permanent damage .
Characteristic Sym Min Max Unit SpecID
Supply voltage — e300 core and peripheral logic VDD_CORE 0.3 1.8 V D1.1
Supply voltage — I/O buffers VDD_IO,
VDD_MEM_IO –0.3 3.6 VD1.2
Supply voltage — System APLL SYS_PLL_AVDD –0.3 2.1 VD1.3
Supply voltage — e300 APLL CORE_PLL_AVDD –0.3 2.1 VD1.4
Input voltage (VDD_IO) Vin –0.3 VDD_IO + 0.3 VD1.5
Input voltage (VDD_MEM_IO) Vin –0.3 VDD_MEM_IO
+0.3 VD1.6
Input voltage oversho ot Vinos 1.0 VD1.7
Input voltage undershoot Vinus 1.0 VD1.8
Storage temperature range Tstg –55 150 oCD1.9
Table 2. Recommended Operating Conditions
Characteristic Sym Min(1) Max(1) Unit SpecID
Supply voltage — e300 core and peripheral
logic VDD_CORE 1.42 1.58 V D2.1
Supply voltage — standard I/O buffers VDD_IO 3.0 3.6 V D2.2
Supply voltage — memory I/O buffers (SDR) VDD_MEM_IOSDR 3.0 3.6 V D2.3
Supply voltage — memor y I/O buffers (DDR) VDD_MEM_IODDR 2.42 2.63 V D2.4
Supply voltage — System APLL SYS_PLL_AVDD 1.42 1.58 V D2.5
Supply voltage — e300 APLL CORE_PLL_AVDD 1.42 1.58 V D2.6
MPC5200B Data Sheet, Rev. 4
Freescale Semiconductor 5
1.1.3 DC Electrical Specifications
Table 3 gives the DC Electrical characteristics for the MPC5200B at recommended operating cond itions (see Table 2).
Input voltage — standard I/O buffers Vin 0 VDD_IO V D2.7
Input voltage — memory I/O buffers (SDR) VinSDR 0 VDD_MEM_IOSDR VD2.8
Input voltage — memory I/O buffers (DDR) VinDDR 0VDD_MEM_IO
DDR VD2.9
Ambient operating temperature range(2) TA–40 +85 oC D2.10
Die junction operating temperature range Tj –40 +115 oC D2.12
1These are recommended and tested operating conditions. Proper device operation outside these conditions is not
guaranteed.
2Maximum e300 core operating frequency is 400 MHz.
Table 3. DC Electrical Specifi cations
Characteristic Condition Sym Min Max Unit SpecID
Input high voltage Input type = TTL
VDD_IO/VDD_MEM_IOSDR
VIH 2.0 V D3.1
Input high voltage Input type = TTL
VDD_MEM_IODDR
VIH 1.7 V D3.2
Input high voltage Input type = PCI
VDD_IO VIH 2.0 V D3.3
Input high voltage Input type = SCHMITT
VDD_IO VIH 2.0 V D3.4
Input high voltage SYS_XTAL_IN CVIH 2.0 V D3.5
Input high voltage RTC_XTAL_IN CVIH 2.0 V D3.6
Input low voltage Input type = TTL
VDD_IO/VDD_MEM_IOSDR
VIL —0.8VD3.7
Input low voltage Input type = TTL
VDD_MEM_IODDR
VIL —0.7VD3.8
Input low voltage Input type = PCI
VDD_IO VIL —0.8VD3.9
Input low voltage Input type = SCHMITT
VDD_IO VIL 0.8 V D3.10
Input low voltage SYS_XTAL_IN CVIL 0.8 V D3.11
Input low voltage RTC_XTAL_IN CVIL 0.8 V D3.12
Input leakage current Vin = 0 or
VDD_IO/VDD_IO_MEMSDR
(depending on input type(1))
IIN ±2μA D3.13
Input leakage current SYS_XTAL_IN
Vin = 0 or VDD_IO IIN ±10 μA D3.14
Table 2. Re commended Operating Conditions (continued)
Characteristic Sym Min(1) Max(1) Unit SpecID
MPC5200B Data Sheet, Rev. 4
6Freescale Semiconductor
Input leakage current RTC_XTAL_IN
Vin = 0 or VDD_IO IIN ±10 μA D3.15
Input current, pullup resistor PULLUP
VDD_IO
Vin = 0
IINpu 40 109 μA D3.16
Input current, pullup resistor
— memor y I/O buffers PULLUP_MEM
VDD_IO_MEMSDR
Vin = 0
IINpu 41 111 μA D3.17
Input current, pulldown
resistor PULLDOWN
VDD_IO
Vin = VDD_IO
IINpd 36 106 μA D3.18
Output high voltage IOH is driver dependent(2)
VDD_IO, VDD_IO_MEMSDR
VOH 2.4 V D3.19
Output high voltage IOH is driver dependent(2)
VDD_IO_MEMDDR
VOHDDR 1.7 V D3.20
Output low voltage IOL is driver dependent(2)
VDD_IO, VDD_IO_MEMSDR
VOL 0.4 V D3.21
Output low voltage IOL is driver dependent(2)
VDD_IO_MEMDDR
VOLDDR 0.4 V D3.22
DC Injection Current Per
Pin(3) ICS –1.0 1.0 mA D3.23
Capacitance Vin = 0 V, f = 1 MHz Cin 15 pF D3.24
1Leakage current is measured with output drivers disabled and pull-up/pull-downs inactive.
2See Table 4 for the typical driv e capability of a specific signal pin based on the type of output driver associated with that
pin as listed in Table 52.
3All injection current is transferred to VDD_IO/VDD_IO_MEM. An external load is requ ired to dissipate this current to
maintain the power supply within the specified voltage range . Total injection current f or all digital input-only and all digital
input/output pins must not exceed 10 mA. Exceeding this limit can cause disruption of normal operation.
Table 4. Drive Capability of MPC520 0B Output Pins
Driver Type Supply Voltage IOH IOL Unit SpecID
DRV4 VDD_IO = 3.3 V 4 4 mA D3.25
DRV8 VDD_IO = 3.3 V 8 8 mA D3.26
DRV8_OD VDD_IO = 3.3 V 8 mA D3.27
DRV16_MEM VDD_IO_MEM = 3.3 V 16 16 mA D3.28
DRV16_MEM VDD_IO_MEM = 2.5 V 16 16 mA D3.29
PCI VDD_IO = 3.3 V 16 16 mA D3.30
Table 3. DC Electrical Specifications (continued)
Characteristic Condition Sym Min Max Unit SpecID
MPC5200B Data Sheet, Rev. 4
Freescale Semiconductor 7
1.1.4 Electrostatic Discharge
CAUTION
This device contains circuitry that protects against damage due to high-static voltage or
electrical fields. However, it is advised that normal precautions be taken to avoid
application of any voltages higher than maximum-rated voltages. Operational
reliability is enhanced if unused inputs are tied to an appropriate logic voltage level (GND
or VCC). Table 7 gives package thermal characteristics for this device.
1.1.5 Power Dissipation
Power dissipation of th e MPC5200B is caused by 3 different components: the dissipation of the internal or core digital logic
(supplied by VDD_CORE), the dissipation of the analog circuitry (supplied by SYS_PLL_AVD D and CORE_PLL_AVDD)
and the dissipation of the IO logic (supplied by VDD_IO_MEM and VDD_IO). Table 6 details typical measured core and
analog power dissipation figures for a range of operating modes. However, the dissipation due to the switching of the IO pins
can not be given in general, but must be calculated by the user for each application case using the following formula:
Eqn. 1
where N is the number of output pins switching in a group M, C is the capacitance per pin, VDD_IO is the IO voltage swing, f
is the switching frequency and PIOint is the power consumed by the unloaded IO stage. The total power consumption of the
MPC5200B processor must not exceed the value, which wou ld cause the maximum junction temperature to be exceeded.
Eqn. 2
Table 5. ESD and Latch-Up Protection Characteristics
Sym Rating Min Max Unit SpecID
VHBM Human Body Model (HBM)JEDEC JESD22-A114-B 2000 V D4.1
VMM Machine Model (MM)JEDEC JESD22-A115 200 V D4.2
VCDM Charge Device Model (CDM)JEDEC JESD22-C101 500 V D4.3
ILAT Latch-up Current at TA=85 oC
positive
negative +100
–100 —mA
D4.4
ILAT Latch-up Current at TA=27 oC
positive
negative +200
–200 —mA
D4.5
PIO PIOint N
M
+CVDD_IO2f×××=
Ptotal Pcore Panalog PIO
++=
MPC5200B Data Sheet, Rev. 4
8Freescale Semiconductor
Table 6. Power Dissipation
Core P ower Supply (VDD_CORE)
SpecID
Mode
SYS_XTAL/XLB/PCI/IPB/CORE (MHz)
Unit Notes33/66/33/33/264 33/132/66/132/396
Typ Typ
Operational 727.5 1080 mW (1),(2)
1Typical core power is measured at VDD_CORE = 1.5 V, Tj = 25 °C
2Operational power is measured while running an entirely cache-resident progr am with floating-point multiplication
instructions in parallel with a continuous PCI transaction via BestComm.
D5.1
Doze 600 mW (1),(3)
3Doze po wer is measured with the e300 core in Doz e mode, the system oscillator, System PLL and Core PLL are
active, all other system modules are inactive
D5.2
Nap 225 mW (1),(4)
4Nap power is measured with the e300 core in Nap mode, the system oscillator, System PLL and Core PLL are
active, all other system modules are inactive
D5.3
Sleep 225 mW (1),(5)
5Sleep power is measured with the e300 core in Sleep mode, the system oscillator , System PLL and Core PLL are
active, all other system modules are inactive
D5.4
Deep-Sleep 52.5 52.5 mW (1),(6)
6Deep-Sleep power is measured with the e300 core in Sleep mode, the system oscillator, System PLL, Core
PLL and all other system modules are inactive
D5.5
PLL Power Supplies (SYS_PLL_AVDD, CORE_PLL_AVDD)
Mode Typ Unit Notes
Typical 2 mW (7)
7Typical PLL power is measured at SYS_PLL_AVDD = CORE_PLL_AVDD = 1.5 V, Tj = 25 °C
D5.6
Unloaded I/O Power Supplies (VD D_IO, VDD_MEM_IO8)
8IO power figures given in the table represent the worst case scenario. Fo r the VDD_MEM_IO rail conn ected to
2.5 V the IO power is e xpected to be lower and bounded by the worst case with VDD_MEM_IO connected to 3.3 V.
Mode Typ Unit Notes
Typical 33 mW (9)
9Unloaded typical I/O power is measured in Deep-Sleep mode at VDD_IO = VDD_MEM_IOSDR= 3.3 V, Tj = 25 °C
D5.7
MPC5200B Data Sheet, Rev. 4
Freescale Semiconductor 9
1.1.6 Thermal Characteristics
1.1.6.1 Heat Dissipation
An estimation of the chip-junction temperature, TJ, can be obtained from the following equation:
TJ=T
A+(R
θ
JA
×
PD) Eqn. 3
where:
TA= ambient temperature for the package (ºC)
RθJA = junction to ambient thermal resistance (ºC/W)
PD= power dissipation in package (W)
The junction to ambient thermal resistance is an industry standard value, wh ich provides a qui ck and easy estima tion of thermal
performance. Unfortunately, there are two values in common usage: the value determined on a single layer board, and the value
obtained on a board with two planes. For packages such as the PBGA, these values can be different by a factor of two. Which
value is correct depends on the power dissipated by other components on the board. The value obtained on a single layer board
is appropriate for the tightly packed printed circuit board. The value obtained on the board with the internal planes is usually
appropriate if the board has low power dissipation and the components are well separated.
Historically, the thermal resistance has frequently been expressed as the sum of a junction to case thermal resistance and a case
to ambient thermal resistance:
Table 7. Thermal Resistance Data
Rating Board Layers Sym Value Unit Notes SpecID
Junction to Ambient
Natural Convection Single layer board
(1s) RθJA 30 °C/W (1),(2)
1Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site
(board) temperature, ambient temperature, air flow , power dissipation of other components on the board, and board
ther mal resistance.
2Pe r SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.
D6.1
Junction to Ambient
Natural Convection Four layer board (2s2p) RθJMA 22 °C/W (1),(3)
3Pe r JEDEC JESD51-6 with the board horizontal.
D6.2
Junction to Ambient (@200
ft/min) Single layer board
(1s) RθJMA 24 °C/W (1),(3) D6.3
Junction to Ambient (@200
ft/min) Four layer board
(2s2p) RθJMA 19 °C/W (1),(3) D6.4
Junction to Board RθJB 14 °C/W (4)
4Thermal resistance between the die and the pr inted circuit board per JEDEC JESD51-8. Board temperature is
measured on the top surface of the board near the package.
D6.5
Junction to Case RθJC C/W
(5)
5Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL
SPEC-883 Method 1012.1).
D6.6
Junction to Package Top Natural Convection ΨJT C/W
(6)
6Thermal characterization parameter indicating the temperature difference between package top and the junction
temperature per JEDEC JESD51-2. When Greek letters are not availab le, the thermal characterization parameter
is written as Psi-JT.
D6.7
MPC5200B Data Sheet, Rev. 4
10 Freescale Semiconductor
R
θ
JA =R
θ
JC+R
θ
CA Eqn. 4
where:
RθJA = junction to ambient thermal resistance (ºC/W)
RθJC = junction to case thermal resistance (ºC/W)
RθCA = case to ambient thermal resistance (ºC/W)
RθJC is device related and cannot be influenced by the user. The user controls the thermal environment to change the case to
ambient thermal resistance, RθCA. For instance, the user can change the air flow around the device, add a heat sink, change the
mounting arrangement on printed circu it board, or change the thermal dissipation on the printed circuit board surrounding the
device. This description is most useful for ceramic packages with heat sinks where some 90% of the heat flow is through the
case to the heat sink to ambient. For most packages, a better model is required.
A more accurate thermal model can be constructed from the junction to board thermal resistance and the junction to case thermal
resistance. The junction to case covers the situation where a heat sink is used or a substantial amount of heat is dissipated from
the top of the package. The junction to board thermal resistance describes the thermal performance when most of the heat is
conducted to the printed circuit board. This model can be used for hand estimations or for a computational fluid dynamics (CFD)
thermal model.
To determine the junction temperature of the device in the application after prototypes are available, the Thermal
Characterization Parameter (ΨJT) can be used to determine the junction temperature with a measurement of the temperature at
the top center of the package case using the following equation:
TJ=T
T+(
Ψ
JT
×
PD) Eqn. 5
where:
TT= thermocouple temperature on top of package (ºC)
ΨJT = thermal characterization parameter (ºC/W)
PD= power dissipation in package (W)
The thermal characterization parameter is measured per JESD51-2 specification using a 40-gauge type T thermocouple epoxied
to the top center of the package case. The thermocouple should be positioned, so that the thermocouple junction rests on the
package. A small amount of epoxy is placed over the thermocouple junction and over approximately one mm of wire extending
from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling
effects of the thermocouple wire.
1.2 Oscillator and PLL Electrical Characteristics
The MPC5200B System requires a system-level clock input SYS_XTAL. This clock input may be driven directly from an
external oscillator or with a crystal using the internal oscillator.
There is a separate oscillator for the independent Real-Time Clock (RTC) system.
The MPC5200B clock generation uses two phase locked loop (PLL) blocks.
The system PLL (SYS_PLL) takes an external reference frequency and generates the internal system clock. The
system clock frequency is determined by the external reference frequency and the setti ngs of the SYS_PLL
configuration.
The e300 core PLL (CORE_PLL) generates a master clock for all of the CPU circuitry. The e300 core clock frequency
is determined by the system clock frequency and the settings of the CORE_PLL configuration.
MPC5200B Data Sheet, Rev. 4
Freescale Semiconductor 11
1.2.1 System Oscillator Electrical Characteristics
1.2.2 RTC Oscillator Electrical Characteristics
1.2.3 System PLL Electrical Characteristics
1.2.4 e300 Core PLL Electrical Characteristics
The internal clocking of the e300 core is generated from and synchronized to the system clock by means of a voltage-controlled
core PLL.
Table 8. System Oscillator Electrical Characteristics
Characteristic Sym Notes Min Typical Max Unit SpecID
SYS_XTAL frequency fsys_xtal 15.6 33.3 35.0 MHz O1.1
Oscillator start-up time tup_osc 10 ms O1.2
Table 9. RTC Oscillator Electrical Characteristics
Characteristic Sym Notes Min Typical Max Unit SpecID
RTC_XTAL frequency frtc_xtal 32.768 kHz O2.1
Table 10. System PLL Specifications
Characteristic Sym Notes Min Typical Max Unit SpecID
SYS_XTAL frequency fsys_xtal (1)
1The SYS_XTAL frequency and PLL Configuration bits must be chosen such that the resulting system frequency, CPU
(core) frequency, and PLL (VCO) freque ncy do not exceed their respective maximum or minimum operating
frequencies.
15.6 33.3 35.0 MHz O3.1
SYS_XTAL cycle time tsys_xtal (1) 66.6 30.0 28.5 ns O3.2
SYS_XTAL clock input jitter tjitter (2)
2This represents total input jitter—short term and long term combined—and is guaranteed by design. Two different
types of jitter can e xist on the input to CORE_SYSCLK, systemic and true random jitter . True random jitter is rejected.
Systemic jitter is passed into and through the PLL to the inter nal clock circuitry.
150 ps O3.3
System VCO frequency fVCOsys (1) 250 533 800 MHz O3.4
System PLL relock time tlock (3)
3Relock time is guaranteed by design and characterization. PLL-relock time is the maximum amount of time required
for the PLL lock after a stable VDD and CORE_SYSCLKare reached during the power-on reset sequence. This
specification also applies when the PLL has been disabled and subsequently re-enabled during sleep modes.
100 μsO3.5
MPC5200B Data Sheet, Rev. 4
12 Freescale Semiconductor
1.3 AC Electrical Characteristics
Hyperlinks to the indicated tim ing specification sections are provided below.
1.3.1 AC Test Timing Conditions:
Unless otherwise noted, all test conditions are as follows:
TA = –40 to 85 oC
Tj = –40 to 115 oC
VDD_CORE = 1.42 to 1.58 V
VDD_IO = 3.0 to 3.6 V
Table 11. e300 PLL Specifications
Characteristic Sym Notes Min Typical Max Unit SpecID
e300 frequency fcore (1)
1The XLB_CLK frequency and e300 PLL Configuration bits must be chosen such that the resulting system
frequencies, CPU (core) frequency, and e300 PLL (VCO) frequency do not exceed their respective maximum or
minimum operating frequencies in Table 12.
50 550 MHz O4.1
e300 cycle time tcore (1) 2.85 40.0 ns O4.2
e300 VCO frequency fVCOcore (1) 400 1200 MHz O4.3
e300 input clock frequency fXLB_CLK 25 367 MHz O4.4
e300 input clock cycle time tXLB_CLK 2.73 50.0 ns O4.5
e300 input clock jitter tjitter (2)
2This represents total input jitter—short term and long term combined—and is guaranteed by design. Two different
types of jitter can e xist on the input to CORE_SYSCLK, systemic and true random jitter . True random jitter is rejected.
Systemic jitter is passed into and through the PLL to the inter nal clock circuitry.
150 ps O4.6
e300 PLL relock time tlock (3)
3Relock time is guaranteed by design and characterization. PLL-relock time is the maximum amount of time required
for the PLL lock after a stable VDD and CORE_SYSCLK are reached during the power-on reset sequence. This
specification also applies when the PLL has been disabled and subsequently re-enabled during sleep modes.
100 μsO4.7
AC Operating Frequency Data USB
Clock AC Specifications SPI
•Resets •MSCAN
External Interrupts I2C
SDRAM J1850
•PCI •PSC
Local Plus Bus GPIOs and Timers
ATA IEEE 1149.1 (JTAG) AC Specifications
Ethernet
MPC5200B Data Sheet, Rev. 4
Freescale Semiconductor 13
Input conditions:
All Inputs: tr, tf <= 1 ns
Output Loading:
All Outputs: 50 pF
1.3.2 AC Operating Frequency Data
Table 12 provides the operating frequency information for the MPC5200B.
1.3.3 Clock AC Specifications
Figure 2. Timing Diagram—SYS_XTAL_IN
Table 12. Clock Frequencies
Min Max Units SpecID
1 e300 Processor Core 400 MHz A1.1
2 SDRAM Clock 133 MHz A1.2
3 XL Bus Cloc k 133 MHz A1.3
4 IP Bus Clock 133 MHz A1.4
5 PCI / Local Plus Bus Clock 66 MHz A1.5
6 PLL Input Range 15.6 35 MHz A1.6
Table 13. SYS_XTAL_IN Timing
Sym Description Min Max Units SpecID
tCYCLE SYS_XTAL_IN cycle time.(1)
1CAUTION—The SYS_XTAL_IN frequency and system PLL_CFG[0–6] settings must be chosen such that the resulting
system frequencies do not exceed their respective maximu m or minimum operating frequencies. See the MPC5200B
User’s Manual (MPC5200BUM).
28.6 64.1 ns A2.1
tRISE SYS_XTAL_IN rise time. 5.0 ns A2.2
tFALL SYS_XTAL_IN f all time . 5.0 ns A2.3
tDUTY SYS_XTAL_IN duty cycle (measured at VM).(2)
2SYS_XTAL_IN duty cycle is measured at VM.
40.0 60.0 % A2.4
CVIH SYS_XTAL_IN input voltage high 2.0 V A2.5
CVIL SYS_XTAL_IN input voltage low 0.8 V A2.6
tFALL
tRISE
tCYCLE
SYSCLK
tDUTY
tDUTY
CVIH
CVIL
VM
VMVM
MPC5200B Data Sheet, Rev. 4
14 Freescale Semiconductor
1.3.4 Resets
The MPC5200B has three reset pins:
PORRESET—Power on Reset
•HRESET
—Hard Reset
•SRESET
—Software Reset
These signals are asynchronous I/O signals and can be asserted at any time. The input side uses a Schmitt trigger and requires
the same input characteristics as other MPC5200B inputs, as specified in the DC Electrical Specifications section. Table 14
specifies the pulse widths of the Reset inputs.
For PORRESET the value of the minimum pulse width reflects the power on sequence. If PORRESET is asserted afterwards
its minimum pulse width equals the min im um gi ven for HRESET related to the same reference clock.
The tVDD_stable describes the time which is needed to ge t all power supplies stable.
For tlock, refer to the Oscillator/PLL section of this specification for further details.
For tup_osc, refer to the Oscillator/PLL section of this specification for further details.
Following the deassertion of PORRESET, HRESET and SRESET remain low for 4096 reference clock cycles.
The deassertion of HRESET for at least the minimum pulse width forces the internal resets to be active for an additional 4096
clock cycles.
NOTE
As long as VDD is not stable the HRESET output is not stable.
NOTE
Make sure that the PORRESET does not carry any glitches. The MPC5200B has no filter
to prevent them from getting into the chip. HRESET and SRESET must have a monotonous
rise time. The assertion of HRESET becomes active at Power on Reset without any
SYS_XTAL clock.
Table 14. Reset Pulse Width
Name Description Min Pulse Width Max Pulse
Width Reference Clock SpecID
PORRESET Power On Reset tVDD_stable +t
up_osc +t
lock SYS_XTAL_IN A3.1
HRESET Hardware Reset 4 clock cycles SYS_XTAL_IN A3.2
SRESET Software Reset 4 clock cycles SYS_XTAL_IN A3.3
Table 15. Reset Rise/F all Timing
Description Min Max Unit SpecID
PORRESET fall time 1 ms A3.4
PORRESET rise time 1 ms A3.5
HRESET fall time 1 ms A3.6
HRESET rise time 1 ms A3.7
SRESET f all time 1 ms A3.8
SRESET rise time 1 ms A3.9
MPC5200B Data Sheet, Rev. 4
Freescale Semiconductor 15
For additional information, see th e MPC5200B Users Manual (MPC5200BUM).
1.3.4.1 Reset Configuration Word
During reset (HRESET and PORRESET) the Reset Configuration Word is latched in the related Reset Configurat ion Word
Register with each rising edge of the SYS_XTAL signal. If both resets (HRESET and PORRESET) are inactive (high), the
contents of this register are locked immediately with the SYS_XTAL clock (see Figure 3).
Figure 3. Reset Configuration Word Locking
NOTE
Beware of changing the values on the pins of the reset configurat ion word after the
deassertion of PORRESET. This may cause problems because it may change the internal
clock ratios and so extend the PLL locking process.
1.3.5 External Interrupts
The MPC5200B provides three different kinds of external interrupts:
Four IRQ interrupts
Eight GPIO interrupts with simple int erru pt capabi lity (not available in power-down mode)
Eight WakeUp interrupts (special GPIO pins)
The propagation of these three kinds of in terrupts to the core is shown in the following graphic:
sample
sample
sample
sample
sample
sample sample
sample sample
sample
LOCK
RST_CFG_WRD
HRESET
PORRESET
SYS_XTAL
4096 clocks
MPC5200B Data Sheet, Rev. 4
16 Freescale Semiconductor
Figure 4. External Interrupt Scheme
Due to synchronization, priori tizat ion, and mapping of external interrupt sources, the propagation of ex ternal interrupts to the
core processor is delayed by several IP_CLK clock cycles. The foll owin g table specifies the interrupt latencies in IP_CLK
cycles. The IP_CLK frequency is programmable in th e Clock Dist ribution Module (see Table 16).
NOTES:
1) The frequency of IP_CLK depends on register settings in Clock Distribution Module. See the MPC5200B User’s Manual.
Table 16. External Interrupt Latencies
Interrupt Type Pin Name Clock Cycles Reference Clock Core Interrupt SpecID
Interrupt Requests IRQ0 10 IP_CLK critical (cint) A4.1
IRQ0 10 IP_CLK normal (int) A4.2
IRQ1 10 IP_CLK normal (int) A4.3
IRQ2 10 IP_CLK normal (int) A4.4
IRQ3 10 IP_CLK normal (int) A4.5
Standard GPIO Interrupts GPIO_PSC3_4 12 I P_CLK normal (int) A4.6
GPIO_PSC3_5 12 IP_CLK normal (int) A4.7
GPIO_PSC3_8 12 IP_CLK normal (int) A4.8
GPIO_USB_9 12 IP_CLK normal (int) A4.9
GPIO_ETHI_4 12 I P_CLK normal (int) A4.10
GPIO_ETHI_5 12 I P_CLK normal (int) A4.11
GPIO_ETHI_6 12 I P_CLK normal (int) A4.12
GPIO_ETHI_7 12 I P_CLK normal (int) A4.13
GPIO WakeUp Interrupts GPIO_PSC1_4 12 I P_CLK normal (int) A4.15
GPIO_PSC2_4 12 I P_CLK normal (int) A4.16
GPIO_PSC3_9 12 I P_CLK normal (int) A4.17
GPIO_ETHI_8 12 I P_CLK normal (int) A4.18
GPIO_IRDA_0 12 I P_CLK normal (int) A4.19
DGP_IN0 12 IP_CLK normal (int) A4.20
DGP_IN1 12 IP_CLK normal (int) A4.21
MPC5200B Data Sheet, Rev. 4
Freescale Semiconductor 17
2) The interrupt latency descriptions in the table abov e are related to non competitive , non masked b ut enabled e xternal interrupt
sources. Take care of interrupt prioritization which may increase the latencies.
Because all external interrupt signals are synchronized into the internal processor bus clock domain, each of these signals has
to exceed a minimum pulse width of more than one IP_CLK cycle.
NOTES:
1) The frequency of the IP_CLK depends on the register settings in Clock Distribution Module. See the MPC5200B User’ s Manual
(MPC5200BUM) for further information.
2) If the same interrupt occurs a second time while its interrupt service routine has not cleared the former one, the second
interrupt is not recognized at all.
Besides synchronization, prioritization, and mapping the latency of an external interrupt to the start of its associated interrupt
service routine also depends on the following conditions: To get a minimum interrupt service response time, it is recommended
to enable the instruction cache and set up the maximum core clock, XL bus, and IP bus frequenc ies (depending on board design
and programming). In addition, it is advisable to execute an interrupt handler, which has been implemented in assembly code.
1.3.6 SDRAM
1.3.6.1 Memory Interface Timing-Standard SDRAM Read Command
Table 17. Minimum Pulse Width for External Interrupts to be Recognized
Name Min Pulse Width Max Pulse Width Reference Clock SpecID
All external interrupts (IRQs, GPIOs) > 1 clock cycle IP_CLK A4.22
Table 18. Standard SDRAM Memory Read Timing
Sym Description Min Max Units SpecID
tmem_clk MEM_CLK period 7.5 ns A5.1
tvalid Control Signals, Address and MBA Valid after
rising ed ge of MEM_CLK —t
mem_clk ×0.5+0.4 ns A5.2
thold Control Signals, Address and MBA Hold after
rising ed ge of MEM_CLK tmem_clk ×0.5 ns A5.3
DMvalid DQM valid after rising edge of MEM_CLK tmem_clk ×0.25+0.4 ns A5.4
DMhold DQM hold after rising edge of MEM_CLK
t
mem_clk
×0.25–0.7
—nsA5.5
datasetup MDQ setup to rising edg e of MEM_CLK 0.3 ns A5.6
datahold MDQ hold after rising edge of MEM_CLK 0.2 ns A5.7
MPC5200B Data Sheet, Rev. 4
18 Freescale Semiconductor
Figure 5. Timing Diagram—Standard SDRAM Memory Read Timing
1.3.6.2 Memory Interface Timing-Standard SDRAM Write Command
In Standard SDRAM, all signals are activated on the MEM_CLK from the Memory Controller and captured on the MEM_CLK
clock at the memory device.
Table 19. Standard SDRAM Write Timing
Sym Description Min Max Units SpecID
tmem_clk MEM_CLK period 7.5 ns A5.8
tvalid Control Signals, Address and MBA Valid
after rising edge of MEM_CLK —t
mem_clk × 0.5 + 0.4 ns A5.9
thold Control Signals, Address and MBA Hold after
rising edge of MEM_CLK tmem_clk × 0.5 ns A5.10
DMvalid DQM valid after rising edge of MEM_CLK tmem_clk × 0.25 + 0.4 ns A5.11
DMhold DQM hold afte r rising edge of Mem_clk
t
mem_clk
×0.25–0.7
ns A5.12
datavalid MDQ valid after rising edge of MEM_CLK tmem_clk × 0.75 + 0.4 ns A5.13
datahold MDQ hold after rising edge of MEM_CLK
t
mem_clk
×0.75–0.7
ns A5.14
MEM_CLK
Control Signals
MDQ (Data)
MA (Address)
NOTE: Control Signals are composed of RAS, CAS, MEM_WE, MEM_CS, MEM_CS1 and CLK_EN
Active NOP READ NOPNOPNOP NOP
thold
Row Column
MBA (Bank Selects)
tvalid
thold
tvalid
thold
tvalid
DQM (Data Mask)
DMvalid DMhold
NOP
datahold
datasetup
MPC5200B Data Sheet, Rev. 4
Freescale Semiconductor 19
Figure 6. Timing Diagram—Standard SDRAM Memory Write Timing
1.3.6.3 Memory Interface Timing-DDR SDRAM Read Command
The SDRAM Memory Controller uses a 1/4 period delayed MDQS strobe to capture the MDQ data. The 1/4 period delay value
is calculated automatically by hardware.
Table 20. DDR SDRAM Memory Read Timing
Sym Description Min Max Units SpecID
tmem_clk MEM_CLK period 7.5 ns A5.15
tvalid Control Signals, Address and MBA
valid after rising edge of MEM_CLK —t
mem_clk ×0.5+0.4 ns A5.16
thold Control Signals, Address and MBA
hold after rising edge of MEM_CL K tmem_clk × 0.5 ns A5.17
datasetup Setup time relative to MDQS 0.4 ns A5.18
datahold Hold time relative to MDQS 2.6 ns A5.19
MEM_CLK
Control Signals
MDQ (Data)
MA (Address)
NOTE: Control Signals are composed of RAS, CAS, MEM_WE, MEM_CS, MEM_CS1 and CLK_EN
Active NOP WRITE NOPNOPNOPNOP NOP
thold
Row Column
MBA (Bank Selects)
datahold
datavalid
tvalid
thold
tvalid
thold
tvalid
DQM (Data Mask)
DMvalid DMhold
MPC5200B Data Sheet, Rev. 4
20 Freescale Semiconductor
Figure 7. Timing Diagram—DDR SDRAM Memory Read T iming
MEM_CLK
Control Sign a ls
MDQ (Data)
MA (Address)
MEM_CLK
MDQS (Data Strobe)
NOTE: Control Signals signals are composed of RAS, CAS, MEM_WE, MEM_CS, MEM_CS1 and CLK_EN
Active NOP READ NOPNOPNOPNOP NOP
thold
Row Column
MBA (Bank Selects)
tvalid
thold
tvalid
thold
tvalid
tdata_valid_min tdata_valid_max
Read Data
tdata_sample_min tdata_sample_max
Sample Window
MDQ (Data)
MDQS (Data Strobe)
tdata_valid_min tdata_valid_max
Read Data
tdata_sample_min
tdata_sample_max
Sample Window
Sample position A: data are sampled on the expected edge of ME M_CLK, the MDQS signal indicate the valid data
Sample
position
A
Sample
position
B
Sample position B: data are sampled on a later edge of MEM_CLK, SDRAM controlle r is waiting for the valid MDQS signal
0.5 × tMEM_CLK
MPC5200B Data Sheet, Rev. 4
Freescale Semiconductor 21
1.3.6.4 Memory Interface Timing-DDR SDRAM Write Command
Figure 8. DDR SDRAM Memory Write Timing
1.3.7 PCI
The PCI interface on the MPC5200B is designed to PCI Version 2.2 and supports 33 MHz and 66 MHz PCI operations. See the
PCI Local Bus Specification; the component section specifies the electrical and timing parameters for PCI componen ts with the
intent that components connect directly together whether on the planar or an expansion board, without any external buffers or
other “glue logic.” Parameters apply at the package pins, not at expansion bo ar d edge connectors.
The MPC5200B is always the source of the PCI CLK. The clock waveform must be delivered to each 33 MHz or 66 MHz PCI
component in the system. Figure 9 shows the cloc k waveform and required measurement points for 3.3 V signaling
environments. Table 22 summarizes the clock specifications.
Table 21. DDR SDRAM Memory Write Timing
Sym Description Min Max Units SpecID
tmem_clk MEM_CLK period 7.5 ns A5.20
tDQSS Dela y from write command to first
rising edge of MDQS —t
mem_clk + 0.4 ns A5.21
datavalid MDQ valid before rising edge of
MDQS 1.0 ns A5.22
datahold MDQ valid after rising edge of
MDQS 1.0 ns A5.23
MEM_CLK
Control Signals
MDQ (Data)
MEM_CLK
MDQS (Data Strobe)
NOTE: Control Signals signals are composed of RAS, CAS, MEM_WE, MEM_CS, MEM_CS1, and CLK_EN
Write WriteWrite
tDQSS
Write
datavalid
datahold
MPC5200B Data Sheet, Rev. 4
22 Freescale Semiconductor
Figure 9. PCI CLK Waveform
NOTES:
1. In general, all 66 MHz PCI components must work with any clock frequency up to 66 MHz. CLK requirements vary depending
upon whether the clock frequency is above 33 MHz.
2. Rise and fall times are specified in terms of the edge rate measured in V/ns. This slew rate must be met across the minim um
peak-to-peak portion of the clock waveform as shown in Figure 9.
3. The minimum clock period must not be violated for any single clock cycle, i.e., accounting for all system jitter.
NOTES:
1. See the timing measurement conditions in the PCI Local Bus Specification. It is important that all driven signal transitions drive
to their Voh or Vol lev el within one Tcyc.
Table 22. PCI CLK Specifications
Sym Description 66 MHz 33 MHz Units Notes SpecID
Min Max Min Max
tcyc PCI CLK Cycle Time 15 30 30 —ns
(1),(3) A6.1
thigh PCI CLK High Time 6 —11—ns—A6.2
tlow PCI CLK Low Time 6 —11—ns—A6.3
PCI CLK Slew Rate 1.5 4 1 4 V/ns (2) A6.4
PCI Clock Jitter
(peak to peak) —200 200 ps
Table 23. PCI Timing Parameters
Sym Description 66 MHz 33 MHz Units Notes SpecID
Min Max Min Max
tval CLK to Signal Valid Delay —
bused signals 26211ns
(1),(2),(3) A6.5
tval(ptp) CLK to Signal Valid Delay —
point to point 26212ns
(1),(2),(3) A6.6
ton Float to Active Delay 2 —2—ns(1) A6.7
toff Active to Float Delay 14 28 ns (1) A6.8
tsu Input Setup Time to CLK —
bused signals 3—7—ns
(3),(4) A6.9
tsu(ptp) Input Setup Time to CLK — point
to point 5—10,12—ns
(3),(4) A6.10
thInput Hold Time from CLK 0 —0—ns(4) A6.11
tcyc
PCI CLK
tlow
thigh
0.4 Vcc 0.4 Vcc, p-to-p
0.3 Vcc
0.5 Vcc 0.6 Vcc
0.2 Vcc (minimum)
MPC5200B Data Sheet, Rev. 4
Freescale Semiconductor 23
2. Minimum times are measured at the package pin with the load circuit, and maximum times are measured with the load circuit
as shown in the PCI Local Bus Specification.
3. REQ# and GNT# are point-to-point signals and hav e different input setup times than do bused signals. GNT# and REQ# hav e
a setup of 5 ns at 66 MHz. All other signals are bused.
4. See the timing measurement conditions in the PCI Local Bus Specification.
For Measurement and Test Conditions, see the PCI Local Bus Specification.
1.3.8 Local Plus Bus
The Local Plus Bus is the external bus interface of the MPC5200B. A maximum of eight configurable chip selects (CS) are
provided. There are two main modes of operation: non-MUXed (Legacy and Burst) and MUXED. The reference clock is the
PCI CLK. The maximum bus frequency is 66 MHz.
Definition of Acronyms and Terms:
WS = Wait State
DC = Dead Cycle
LB = Long Burst
DS = Data Size in Bytes
•t
PCIck = PCI clock period
•t
IPBIck = IPBI clock period
Figure 10. Timing Diagram—IPBI and PCI clock (example ratio: 4:1)
1.3.8.1 Non-MUXed Mode
Table 24. Non-MUXed Mode Timing
Sym Description Min Max Units Notes SpecID
tCSA PCI CLK to CS assertion 4.6 10.6 ns —A7.1
tCSN PCI CLK to CS negation 2.9 7.0 ns —A7.2
t1CS pulse width (2 + WS) × tPCIck (2+WS)×t
PCIck ns (1) A7.3
t2ADDR valid before CS assertion tIPBIck tPCIck ns —A7.4
t3ADDR hold after CS negation tIPBIck —ns
(2) A7.5
t4OE assertion before CS assertion —4.8ns—A7.6
t5OE negation before CS negation —2.7ns—A7.7
t6RW valid before CS assertion tPCIck —ns—A7.8
t7RW hold after CS negation tIPBIck —ns—A7.9
t8DATA output valid before CS assertion tIPBIck —ns A7.10
t9DATA output hold after CS negati on tIPBIck —ns A7.11
PCI CLK
IPBI CLK
tIPBIck
tPCIck
MPC5200B Data Sheet, Rev. 4
24 Freescale Semiconductor
NOTES:
1. ACK can shorten the CS pulse width.
Wait States (WS) can be progra mmed in the Chip Select X Register, Bit field WaitP and WaitX. It can be specified from
0–65535.
2. In Large Flash and MOST Graphics mode the shared PCI/ATA pins, used as address lines, are released at the same moment
as the CS. This can cause the address to change before CS is deasserted.
3. ACK is input and can be used to shorten the CS pulse width.
4. Only available in Large Flash and MOST Graphics mode.
5. Only available in MOST Graphics mode.
6. Deadcycles are only used, if no arbitration to an other module (ATA or PCI) of the shared local bus happens. If arbitration
happens the bus can be driven within 4 IPB clocks by an other modules.
t10 DATA input setup before CS negation 8.5 —ns A7.12
t11 DATA input hold after CS negation 0 (DC + 1) × tPCIck ns (6) A7.13
t12 ACK assertion after CS assertion tPCIck —ns
(3) A7.14
t13 ACK negation after CS negation —t
PCIck ns (3) A7.15
t14 TS assertion before CS assertion —6.9ns
(4) A7.16
t15 TS pulse width tPCIck tPCIck ns (4) A7.17
t16 TSIZ valid before CS assertion tIPBIck —ns
(5) A7.18
t17 TSIZ hold after CS negation tIPBIck —ns
(5) A7.19
t18 ACK change before PCI clock —2.0ns
(1) A7.20
t19 ACK change after PCI clock —4.4ns
(1) A7.21
Table 24. Non-MUXed Mode Timing (continued)
Sym Description Min Max Units Notes SpecID
MPC5200B Data Sheet, Rev. 4
Freescale Semiconductor 25
Figure 11. Timing Diagram—Non-MUXed Mode
1.3.8.2 Burst Mode
Table 25. Burst Mode Timing
Sym Description Min Max Units Notes SpecID
tCSA PCI CLK to CS assertion 4.6 10.6 ns A7.22
tCSN PCI CLK to CS negation 2.9 7.0 ns A7.23
t1CS pulse width (1 + WS + 4LB ×2
×(32/DS))×t
PCIck
(1 + WS + 4LB ×2×
(32/DS)) × tPCIck
ns (1),(2) A7.24
t2ADDR valid before CS assertion tIPBIck tPCIck ns A7.25
t3ADDR hold after CS negation –0.7 —ns A7.26
t4OE assertion before CS assertion —4.8ns A7.27
t5OE negation before CS negation —2.7ns A7.28
t6RW valid befo re CS assertion tPCIck —ns A7.29
t7RW hold after CS negation tPCIck —ns A7.30
t8DATA setup before r i sing edge of
PCI clock 3.6 —ns A7.31
ADDR
DATA (rd)
CS[x]
R/W
DATA (wr)
OE
t
10
t
11
TS
t
2
t
6
t
8
t
7
t
4
t
3
t
9
TSIZ[1:2]
t
5
t
17
t
16
ACK t
12
t
13
t
14
t
15
t
1
PCI CLK
t
18
t
19
MPC5200B Data Sheet, Rev. 4
26 Freescale Semiconductor
NOTES:
1. W ait States (WS) can be programmed in the Chip Select X Register, Bit field WaitP and WaitX. It can be specified from
0–65535.
2. Example:
Long Burst is used, this means the CS related BERx and SLB bits of the Chip Select Burst Control Register are set and a burst
on the inter na l XLB is executed. => LB = 1
Data bus width is 8 bit. => DS = 8
=> 41×2×(32/8) = 32 => ACK is asserted for 32 PCI cycles to transfer one cache line.
Wait State is set to 10. => WS = 10
1+10 + 32 = 43 => CS is asserted for 43 PCI cycles.
3. ACK is output and indicates the burst.
4. Deadcycles are only used, if no arbitration to an other module (ATA or PCI) of the shared local bus happens. If arbitration
happens the bus can be driven within 4 IPB clocks by an other modules.
Figure 12. Timing Diagram—Burst Mode
t9DATA hold after rising edge of PCI
clock 0—ns A7.32
t10 DATA hold after CS negation 0 (DC + 1) × tPCIck ns (4) A7.33
t11 ACK assertion after CS assertion —(WS+1)×t
PCIck ns A7.34
t12 ACK negation before CS negation —7.0ns
(3) A7.35
t13 ACK pulse width
4
LB
×2×(32/DS)×t
PCIck
4
LB
×2×(32/DS)×t
PCIck
ns (2),(3) A7.36
t14 CS assertion after TS asser tion —2.5ns A7.37
t15 TS pulse width tPCIck tPCIck ns A7.38
Table 25. Burst Mode Timing (continued)
Sym Description Min Max Units Notes SpecID
ADDR
DATA (rd)
CS[x]
R/W
OE
TS
t
10
t3
t5
ACK
t1
PCI CLK
t
2
t4
t7
t
6
t11
t13
t14 t15
t9
t8
t12
MPC5200B Data Sheet, Rev. 4
Freescale Semiconductor 27
1.3.8.3 MUXed Mode
NOTES:
1. ACK can shorten the CS pulse width.
Wait States (WS) can be progra mmed in the Chip Select X Register, Bit field WaitP and WaitX. It can be specified from
0–65535.
2. ACK is input and can be used to shorten the CS pulse width.
3. Deadcycles are only used, if no arbitration to an other module (ATA or PCI) of the shared local bus happens. If arbitration
happens the bus can be driven within 4 IPB clocks by an other modules.
Table 26 . MUXed Mode Timing
Sym Description Min Max Units Notes SpecID
tCSA PCI CLK to CS assertion 4.6 10.6 ns A7.39
tCSN PCI CLK to CS negation 2.9 7.0 ns A7.40
tALEA PCI CLK to ALE assertion —3.6ns A7.41
t1ALE assertion before Address, Bank,
TSIZ assertion —5.7ns A7.42
t2CS assertion before Address, Bank,
TSIZ negation —–1.2ns A7.43
t3CS assertion before Data wr valid —–1.2ns A7.44
t4Data wr hold after CS negation tIPBIck —ns A7.45
t5Data rd setup before CS negation 8.5 —ns A7.46
t6Data rd hold after CS negation 0
(DC + 1) × t
PCIck
ns (1),(3) A7.47
t7ALE pulse width —t
PCIck ns A7.48
tTSA CS assertion after TS assertion —6.9ns A7.49
t8TS pulse width —t
PCIck ns A7.50
t9CS pulse width
(2 + WS) × t
PCIck
(2 + WS) × t
PCIck
ns A7.51
tOEA OE assertion before CS assertion —4.7ns A7.52
tOEN OE negation before CS negation —5.9ns A7.53
t10 RW assertion before ALE asser tion tIPBIck —ns A7.54
t11 RW negation after CS negation —t
PCIck ns A7.55
t12 ACK assertion after CS assertion tIPBIck —ns
(2) A7.56
t13 ACK negation after CS negation —t
PCIck ns (2) A7.57
t14 ALE negation to CS assertion —t
PCIck ns A7.58
t15 ACK change befo re PCI clock —2.0ns
(2) A7.59
t16 ACK change after PCI clock —4.4ns
(2) A7.60
MPC5200B Data Sheet, Rev. 4
28 Freescale Semiconductor
Figure 13. Timing Diagram—MUXed Mode
1.3.9 ATA
The MPC5200B ATA Controller is comp letely software programmable. It can be programmed to operate wit h ATA protocols
using their respective timing, as described in the ANSI ATA-4 specification. The ATA interface is completely asynchronous in
nature. Signal relationships are based on specific fixed tim ing in terms of timing units (nanoseconds).
AT A data setup and hold times, with respect to Read/W rite strobes, are software programmable inside the ATA Controller. Data
setup and hold times are implemented using counters. The counters count the number of ATA clock cycles needed to meet the
ANSI ATA-4 timing specifications. For details, see the ANSI ATA-4 specification and how to program an ATA Controller and
ATA drive for different ATA protocols and their respective timing. See the MPC5200B Users Manual (MPC5200BUM).
The MPC5200B ATA Host Controller design makes data available coincidentally with the active edge of the WRITE strobe in
PIO and Multiword DMA mod es.
Write data is latched by the drive at the inactive edge of the WRITE strobe. This gives ample setup time beyond that
required by the ATA-4 specification.
Data is held unchanged until the next active edge of the WRITE strobe. This gives ample hold time beyond that
required by the ATA-4 specification.
PCI CLK
AD[24:0] (wr)
CSx
R/W
ALE
AD[30:28] (wr)
AD[26:25] (wr)
AD[31,27] (wr)
Address[7:31]
Bank[0:1] bits
TSIZ[0:2] bits
ACK
Data
Data tenureAddress tenure
TS
Data
Data
Data
AD[31:0] (rd) Data
t4
t13
t5
t1
Address latch
t7
t6
t11
t9
t12
t10
t8
t2
t3
OE
t14
t
15
t
16
MPC5200B Data Sheet, Rev. 4
Freescale Semiconductor 29
All ATA transfers are programmed in terms of system clock cycles (IP bus clocks) in the ATA Host Controller timing registers.
This puts constraints on the ATA protocols and their respective timing modes in which the ATA Controller can communicate
with the drive.
Faster ATA modes (i.e., UDMA 0, 1, 2) are supported when the system is running at a suff icient frequency to provide adequate
data transfer rates. Adequate data transfer rates are a function of the following:
The MPC5200B operating frequency (IP bus clock frequency)
Internal MPC520 0B bu s lat e n cies
Other system load dependent variables
The ATA clock is the same frequency as the IP bus clock in MPC 5200B. See the MPC5200B User’s Manual (MPC5200B) .
NOTE
All output timing numbers are specified for nominal 50 pF loads.
Table 27. PIO Mode Timing Specifications
Sym PIO Timing Parameter Min/Max
(ns) Mode 0
(ns) Mode 1
(ns) Mode 2
(ns) Mode 3
(ns) Mode 4
(ns) SpecID
t0Cycle Time min 600 383 240 180 120 A8.1
t1Address valid to DIOR/DIOW setup min 70 50 30 30 25 A8.2
t2DIOR/DIOW pulse width 16-bit
8-bit min
min 165
290 125
290 100
290 80
80 70
70 A8.3
t2i DIOR/DIOW recovery time min 70 25 A8.4
t3DIOW data setup min 60 45 30 30 20 A8.5
t4DIOW data hold min 30 20 15 10 10 A8.6
t5DIOR data setup min 50 35 20 20 20 A8.7
t6DIOR data hold min55555A8.8
t9DIOR/DIOW to address
valid hold min2015101010A8.9
tAIORDY setup max 35 35 35 35 35 A8.10
tBIORDY pulse width max 1250 1250 1250 1250 1250 A8.11
MPC5200B Data Sheet, Rev. 4
30 Freescale Semiconductor
Figure 14. PIO Mode Timing
Table 28. Multiword DMA Timing Specifications
Sym Multiword DMA Timing Parameters Min/Max Mode 0(ns) Mode 1(n s) Mode 2(ns) SpecID
t0Cycle Time min 480 150 120 A8.12
tCDMACK to DMARQ delay max A8.13
tDDIOR/DIOW pulse width (16-bit) min 215 80 70 A8.14
tEDIOR data access max 150 60 50 A8.15
tGDIOR/DIOW data setup min 100 30 20 A8.16
tFDIOR data hold min 5 5 5 A8.17
tHDIOW data hold min 20 15 10 A8.18
tIDMACK to DIOR/DIOW setup m in 0 0 0 A8.19
tJDIOR/DIOW to DMACK hold min 20 5 5 A8.20
tKr DIOR negated pulse width min 50 50 25 A8.21
tKw DIOW negated pulse width min 215 5 0 25 A8.22
tLr DIOR to DMARQ delay max 120 40 35 A8.23
tLw DIOW to DMARQ delay max 40 40 35 A8.24
WDATA
RDATA
IORDY
t0
t1
t2
t3t4
t5t6
t9
tAtB
CS[0]/CS[3]/DA[2:0]
DIOR/DIOW
MPC5200B Data Sheet, Rev. 4
Freescale Semiconductor 31
Figure 15. Multiword DMA Timing
NOTE
The direction of signal assertion is towards the top of the page, and the direction of negation
is towards the bottom of the page, irrespective of the electrical properties of the signal.
Table 29. Ultra DMA Timing Specification
Sym
MODE 0
(ns) MODE 1
(ns) MODE 2
(ns) Comment SpecID
Min Max Min Max Min Max
tCYC 114 75 55 Cycle time allowing for asymmetry and clock
variations from STROBE edge to STROBE edge A8.26
t2CYC 235 156 117 Two-cycle time allowing for clock variations, from
rising edge to ne xt rising edge or from falling edge to
next fallin g edge of STROBE.
A8.27
tDS 15 10 7 Data setup time at recipient. A8.28
tDH 5—5—5— Data hold time at recipient. A8.29
tDVS 70 48 34 Data valid setup time at sender, to STROBE edge. A8.30
tDVH 6 6 6 Data valid hold time at sender, from STROBE edge. A8.31
tFS 0 230 0 200 0 170 First STROBE time for drive to first negate DSTROBE
from STOP during a data-in burst. A8.32
tLI 015001500150 Limited Interlock time.
A8.33
tMLI 20 20 20 Interlock t ime w ith minimum. A8.34
tUI 0—0—0— Unlimited interlock time. A8.35
t0
tC
tE
tItD
tF
tH
tG
tJ
DMARQ
RDATA
WDATA
(Drive)
(Host)
(Host)
(Drive)
(Host)
tL
tK
DMACK
DIOR
DIOW
MPC5200B Data Sheet, Rev. 4
32 Freescale Semiconductor
NOTES:
1 tUI, tMLI, tLI indicate sender-to-recipient or recipient-to-sender interlocks . That is, one agent (sender or recipient) is w aiting for
the other agent to respond with a signal before proceeding.
•t
UI is an unlimited interlock that has no maximum time value.
•t
MLI is a limited time-out that has a defined minimum.
•t
LI is a limited time-out that has a defined maximum.
2 All timing parameters are measured at the connector of the drive to which the parameter applies. For example, the sender shall
stop generating STROBE edges tRFS after negation of DMARDY. STROBE and DMARDY timing measurements are taken at
the connector of the sender. Even though the sender stops generating STROBE edges, the receiver may receive additional
STROBE edges due to propagation delays. All timing measurement s witching points (low to high and high to low) are taken at
1.5 V.
tAZ 10 10 10 Maximum time allowed for output drivers to release
from being asserted or negated A8.36
tZAH 20 20 20 Minimum delay time required for output drivers to
assert or negate from released state A8.37
tZAD 0—0—0— A8.38
tENV 20 70 20 70 20 70 Envelope time—from DMACK to STOP and
HDMARDY during data out burst initiation. A8.39
tSR 50 30 20 STROBE to DMARDY time, if DMARDY is negated
before this long after STROBE edge, the recipient
receives no more than one additional data word.
A8.40
tRFS 75 60 50 Ready-to-Final STROBE time—no STROBE edges
are sent this long after negation of DMARDY.A8.41
tRP 160 125 100 Ready-to-Pause time—the time recipient waits to
initiate pause after negating DMARDY.A8.42
tIORDYZ 20 20 20 Pull-up time before allowing IORDY to be released. A8.43
tZIORDY 0 0 0 Minimum time drive waits before driving IORDY A8.44
tACK 20 20 20 Setup and hold times for DMACK, bef ore assertion or
negation. A8.45
tSS 50 50 50 Time from STROBE edge to negation of DMARQ or
assertion of STOP, when sender ter m inates a burst. A8.46
Table 29. Ultra DMA Timing Specification (continued)
Sym
MODE 0
(ns) MODE 1
(ns) MODE 2
(ns) Comment SpecID
Min Max Min Max Min Max
MPC5200B Data Sheet, Rev. 4
Freescale Semiconductor 33
Figure 16. Timing Diagram—Initiating an Ultra DMA Data In Burst
Figure 17. Timing Diagram—Sustained Ultra DMA Data In Burst
tUI
tACK
tAZ
tACK
tACK
tZAD
tFS
tFS
tENV
tENV
tZIORDY
tDVS tDVH
tZAD
DMARQ
(device)
DMACK
(device)
STOP
(host)
HDMARDY
(host)
DSTROBE
(device)
DD(0:15)
DA0, DA1, DA2,
CS[0:1]1
tCYC
DSTROBE
at host
DSTROBE
at device
DD(0:15)
at device
DD(0:15)
at host
tCYC
t2CYC
t2CYC
tDVH tDVH
tDVH
tDVS tDVS
tDH tDH
tDS tDS tDH
MPC5200B Data Sheet, Rev. 4
34 Freescale Semiconductor
Figure 18. Timing Diagram—Host Pausing an Ultra DMA Data In Burst
Figure 19. Timing Diagram—Drive Terminating Ultra DMA Data In Burst
DMARQ
(device)
tRP
DMARQ
(host)
STOP
(host)
HDMARDY
(host)
DSTROBE
(device)
DD[0:15]
(device)
tRFS
tSR
DMARQ
(device)
DMACK
(host)
HDMARDY
(host)
DSTROBE
(device)
DD[0:15]
tMLI
STOP
(host)
DA0,DA1,DA2,
CS[0:1]
tLI tLI
tLI
tACK
tACK
tIORDYZ
tSS
tZAH
tAZ
tDVS
CRC
tACK
tDVH
MPC5200B Data Sheet, Rev. 4
Freescale Semiconductor 35
Figure 20. Timing Diagram—Host Terminating Ultra DMA Data In Burst
Figure 21. Timing Diagram—Initiating an Ultra DMA Data Out Burst
DMARQ
(device)
DMACK
(host)
HDMARDY
(host)
DSTROBE
(device)
DD[0:15]
tMLI
STOP
(host)
DA0,DA1,DA2,
CS[0:1]
tLI
tIORDYZ
t
AZ
tACK
tZAH
tRP
tRFS
tACK
tLI
tDVS tDVH
tACK
CRC
tMLI
DMARQ
(device)
DMACK
(host)
DDMARDY
(host)
HSTROBE
(device)
DD[0:15]
STOP
(host)
DA0,DA1,DA2,
CS[0:1]
tACK
(host)
tUI
tACK
tACK
tLI tUI
tDVS tDVH
tENV
tZIORDY
MPC5200B Data Sheet, Rev. 4
36 Freescale Semiconductor
Figure 22. Timing Diagram—Sustained Ultra DMA Data Out Burst
Figure 23. Timing Diagram—Drive Pausing an Ultra DMA Data Out Burst
HSTROBE
(host)
DD[0:15]
(host)
tCYC
HSTROBE
(device)
DD[0:15]
(device)
tCYC
t2CYC
t2CYC
tDVH
tDVS
tDVS tDVH
tDVH
tDH
tDH tDH
tDS tDS
DMARQ
(device)
DMACK
(host)
DDMARDY
HSTROBE
DD[0:15]
STOP
(host)
(host)
(device)
tSR
tRFS
tRP
MPC5200B Data Sheet, Rev. 4
Freescale Semiconductor 37
Figure 24. Timing Diagram—Host Terminating Ultra DMA Data Out Burst
Figure 25. Timing Diagram—Drive Terminating Ultra DMA Data Out Burst
tLI
DMARQ
(device)
DMACK
(host)
DDMARDY
HSTROBE
DD[0:15]
STOP
(host)
DA0,DA1,DA2,
CS[0:1]
(host)
(device)
(host)
tMLI
tLI
tLI
tACK
tACK
tACK
tDVS tDVH
tIORDYZ
tSS
CRC
DMARQ
(device)
DMACK
(host)
DDMARDY
HSTROBE
DD[0:15]
STOP
(host)
DA0,DA1,DA2,
CS[0:1]
(host)
tACK
tMLI
(device)
(host)
tLI
tMLI
tLI
tRP
tRFS
tACK
tDVH
tACK
tDVS
tIORDYZ
CRC
MPC5200B Data Sheet, Rev. 4
38 Freescale Semiconductor
Figure 26. Timing Diagram—ATA-ISOLATION
1.3.10 Ethernet
AC Test Timing Conditions:
Output Loading
All Outputs: 25 pF
Figure 27. Ethernet Timing Diagram—MII Rx Signal
Table 30. Timing Specification ata_isolation
Sym Description Min Max Units SpecID
1 ata_isolation setup time 7 IP Bus cycles A8.48
2 ata_isolation ho ld time 19 IP Bus cycles A8.49
Table 31. MII Rx Signal Timing
Sym Description Min Max Unit SpecID
t1RXD[3:0], RX_DV, RX_ER to RX_CLK setup 10 ns A9.1
t2RX_CLK to RXD[3:0], RX_DV, RX_ER hold 10 ns A9.2
t3RX_CLK pulse width high 3 5% 65% RX_CLK Period(1)
1RX_CLK shall have a frequency of 25% of data rate of the received signal. See the IEEE 802.3 Specification.
A9.3
t4RX_CLK pulse width low 35% 65% RX_CLK Period(1) A9.4
DIOR
2
1
ATA_ISOLATION
t4
t3
t1t2
RX_CLK (Input)
RXD[3:0] (inputs)
RX_DV
RX_ER
MPC5200B Data Sheet, Rev. 4
Freescale Semiconductor 39
Figure 28. Ethernet Timing Diagram—MII Tx Signal
Figure 29. Ethernet Timing Diagram—MII Async
Table 32. MII Tx Signal Timing
Sym Description Min Max Unit SpecID
t5TX_CLK rising edge to TXD[3:0], TX_EN, TX_ER
invalid 5— ns A9.5
t6TX_CLK rising edge to TXD[3:0], TX_EN, TX_ER valid 25 ns A9.6
t7TX_CLK pulse width high 35% 65% TX_CLK Period(1)
1The TX_CLK frequency shall be 25% of the nominal transmit frequency, e.g., a PHY operating at 100 Mb/s must provide
a TX_CLK frequency of 25 MHz and a PHY operating at 10 Mb/s must provide a TX_CLK frequency of 2.5 MHz. See
the IEEE 802.3 Specification.
A9.7
t8TX_CLK pulse width low 35% 65% TX_CLK Period(1) A9.8
Table 33. MII Async Signal Timing
Sym Description Min Max Unit SpecID
t9CRS, COL minimum pulse width 1.5 TX_CLK Period A9.9
t8
t7
t5
TX_CLK (Input)
TXD[3:0] (Outputs)
TX_EN
TX_ER
t6
t9
CRS, COL
MPC5200B Data Sheet, Rev. 4
40 Freescale Semiconductor
Figure 30. Ethernet Ti min g Di agram—MII Serial Management
1.3.11 USB
NOTE
Output timing is specified at a nominal 50 pF load.
Table 34. MII Serial Management Channel Signal Timing
Sym Description Min Max Unit SpecID
t10 MDC falling edge to MDIO output delay 0 25 ns A9.10
t11 MDIO (input) to MDC rising edge setup 10 ns A9.11
t12 MDIO (input) to MDC rising edge hold 10 ns A9.12
t13 MDC pulse width high(1)
1MDC is generated by MPC5200B with a duty cycle of 50% e xcept when MII_SPEED in the FEC MII_SPEED control
register is changed during operation. See the MPC5200B User’s Manual (MPC5200BUM).
160 ns A9.13
t14 MDC pulse width low(1) 160 ns A9.14
t15 MDC period(2)
2The MDC period must be set to a value of less than or equal to 2.5 MHz (to be compliant with the IEEE MII
characteristic) by programming the FEC MII_SPEED control register. See the MPC5200B User’s Manual
(MPC5200BUM).
400 ns A9.15
Table 35. Timing Specifications—USB Output Line
Sym Description Min Max Units SpecID
1 USB Bit width(1)
1Defined in the USB config register, (12 Mbit/s or 1.5 Mbit/s mode).
83.3 667 ns A10.1
2 Transceiver enab le time 83.3 667 ns A10.2
3 Signal falling time 7.9 ns A10.3
4 Signal rising time 7.9 ns A10.4
t14
t13
t12
MDC (Output)
MDIO (Input)
MDIO (Output)
t11
t10
t15
MPC5200B Data Sheet, Rev. 4
Freescale Semiconductor 41
Figure 31. Timing Diagram—USB Output Line
1.3.12 SPI
NOTE
Output timing is specified at a nominal 50 pF load.
Table 36. Timing Specifications — SPI Master Mode, Format 0 (CPHA = 0)
Sym Description Min Max Units SpecID
1 Cycle time 4 1024 IP-Bus Cycle(1)
1Inter Peripheral Clock is defined in the MPC5200B User’s Manual (MPC5200BUM).
A11.1
2 Clock high or low time 2 512 IP-Bus Cycle(1)A11.2
3 Slave select to clock delay 15.0 ns A11.3
4 Output Data valid after Slave Select (SS) 20.0 ns A11.4
5 Output Data valid after SCK 20.0 ns A11.5
6 Input Data setup time 20.0 ns A11.6
7 Inp ut Data hold time 20.0 ns A11.7
8 Slave disable lag time 15.0 ns A1 1.8
9 Sequenti al transfer delay 1 IP-Bus Cycle(1)A11.9
10 Cloc k falling time 7.9 ns A11.10
11 Clock rising time 7.9 ns A11.11
11
2
4
3
3
4
USB_OE
USB_TXN
USB_TXP
MPC5200B Data Sheet, Rev. 4
42 Freescale Semiconductor
Figure 32. Timing Diagram — SPI Master Mode, Format 0 (CPHA = 0)
NOTE
Output timing is specified at a nominal 50 pF load.
Table 37. Timing Specifications — SPI Slave Mode, Format 0 (CPHA = 0)
Sym Description Min Max Units SpecID
1 Cycle time 4 1024 IP-Bus Cycle(1)
1Inter Peripheral Clock is defined in the MPC5200B User’s Manual (MPC5200BUM).
A11.12
2 Clock high or low time 2 512 IP-Bus Cycle(1)A11.13
3 Slave select to clock delay 15.0 ns A11.14
4 Output Data valid after Slave Sele ct (SS) 50.0 ns A11.15
5 Output Data valid after SCK 50.0 ns A11.16
6 Input Data setup time 50.0 ns A11.17
7 I nput Data hold time 0.0 ns A11.18
8 Slave disable lag time 15.0 ns A11.19
9 S equential Transfer delay 1 IP-Bus Cycle(1)A11.20
SCK
(CLKPOL=0)
SCK
(CLKPOL=1)
MOSI
Output
Output
Output
SS
Output
MISO
Input
1
22
89
3
45
66
77
11
10
10
11
MPC5200B Data Sheet, Rev. 4
Freescale Semiconductor 43
Figure 33. Timing Diagram — SPI Slave Mode, Format 0 (CPHA = 0)
NOTE
Output timing is specified at a nominal 50 pF load.
Table 38. Timing Specifications — SPI Master Mode, Format 1 (CPHA = 1)
Sym Description Min Max Units SpecID
1 Cycle time 4 1024 IP-Bus Cycle(1)
1Inter Peripheral Clock is defined in the MPC5200B User’s Manual (MPC5200BUM).
A11.21
2 Clock high or low time 2 512 IP-Bus Cycle(1)A11.22
3 Slave select to clock delay 15.0 ns A11.23
4 Output data valid 20.0 ns A11.24
5 Input Data setup time 20.0 ns A11.25
6 Inp ut Data hold time 20.0 ns A11.26
7 Slave disable lag time 15.0 ns A11.27
8 Sequential Transfer delay 1 IP-Bus Cycle(1)A11.28
9 Clock falling time 7.9 ns A11.29
10 Clock rising time 7.9 ns A11.30
SCK
(CLKPOL=0)
SCK
(CLKPOL=1)
MOSI
Input
Input
Input
SS
Input
MISO
Output
1
22
9
3
7
4
6
5
8
MPC5200B Data Sheet, Rev. 4
44 Freescale Semiconductor
Figure 34. Timing Diagram — SPI Master Mode, Format 1 (CPHA = 1)
NOTE
Output timing is specified at a nominal 50 pF load.
Table 39. Timing Specifications — SPI Slave Mode, Format 1 (CPHA = 1)
Sym Description Min Max Units SpecID
1 Cycle time 4 1024 IP-Bus Cycle(1)
1Inter Peripheral Clock is defined in the MPC5200B User’s Manual (MPC5200BUM).
A11.31
2 Clock high or low time 2 512 IP-Bus Cycle(1)A11.32
3 Slave select to clock delay 15.0 ns A11.33
4 Output data valid 50.0 ns A11.34
5 Input Data setup time 50.0 ns A11.35
6 Input Data ho l d ti me 0.0 ns A11.36
7 Slave disable lag time 15.0 ns A11.37
8 Sequential Transfer delay 1 IP-Bus Cycle(1)A11.38
SCK
(CLKPOL=0)
SCK
(CLKPOL=1)
MOSI
Output
Output
Output
SS
Output
MISO
Input
1
22
78
3
4
6
10
9
9
10
5
MPC5200B Data Sheet, Rev. 4
Freescale Semiconductor 45
Figure 35. Timing Diagram — SPI Slave Mode, Format 1 (CPHA = 1)
1.3.13 MSCAN
The CAN functions are available as RX and TX pins at normal IO pads (I2C1+GPTimer or PSC2). There is no filter for the
WakeUp do minant pulse. Any High-to-Low edge can cause WakeUp, if configured.
1.3.14 I2C
Table 40. I2C Input Timing Specifications—SCL and SDA
Sym Description Min Max Units SpecID
1 Start condition hold time 2 IP-Bus Cycle(1)
1Inter Peripheral Clock is defined in the MPC5200B User’s Manual (MPC5200BUM).
A13.1
2 Clock low time 8 IP-Bus Cycle(1)A13.2
4 Data hold time 0.0 ns A13.3
6 Clock high time 4 IP-Bus Cycle(1)A13.4
7 Data setup time 0.0 ns A13.5
8 Start condition setup time (for repeated start condition
only) 2 IP-Bus Cycle(1)A13.6
9 Stop condition setup time 2 IP-Bus Cycle(1)A13.7
SCK
(CLKPOL=0)
SCK
(CLKPOL=1)
MOSI
Input
Input
Input
SS
Input
MISO
Output
1
22
78
3
4
6
5
MPC5200B Data Sheet, Rev. 4
46 Freescale Semiconductor
NOTE
Output timing is specified at a nominal 50 pF load.
Figure 36. Timing Diagram—I2C Input/Output
1.3.15 J1850
See the MPC5200B Users Manual (MPC520 0BUM) .
Table 41. I2C Output Timing Specifications—SCL and SDA
Sym Description Min Max Units SpecID
1(1)
1Programming IFDR with the maximum frequency (IFDR=0x 20) results in the minimum output timings listed. The
I2C interface is designed to scale the data transition time, moving it to the middle of the SCL lo w period. The actual
position is affected by the prescale and division values programmed in IFDR.
Start condition hold time 6 IP-Bus Cycle(3)A13.8
2(1)Clock low time 10 IP-Bus Cycle(3)A13.9
3(2)
2Because SCL and SDA are open-drain-type outputs, which the processor can only actively drive low, the time SCL
or SDA takes to reach a high level depends on external signal capacitance and pull-up resistor values.
SCL/SDA r ise time 7.9 ns A13.10
4(1)Data hold time 7 IP-Bus Cycle(3)A13.11
5(1)SCL/SDA fall time 7.9 ns A13.12
6(1)Clock high time 10 IP-Bus Cycle(3)A13.13
7(1)Data setup time 2 IP-Bus Cycle(3)A13.14
8(1)Start condition setup time (for repeated start condition
only) 20 IP-Bus Cycle(3)A13.15
9(1)Stop condition setup time 10 IP-Bus Cycle(3)
3Inter Peripheral Clock is defined in the MPC5200B User’s Manual (MPC5200BUM).
A13.16
1
2
3
4
56
789
SCL
SDA
MPC5200B Data Sheet, Rev. 4
Freescale Semiconductor 47
1.3.16 PSC
1.3.16.1 Codec Mode (8-,16-, 24-, and 32-bit)/I2S Mode
NOTE
Output timing is specified at a nominal 50 pF load.
Figure 37. Timing Diagram — 8-, 16-, 24-, and 32-bit CODEC / I2S Master Mode
Table 42. Timing Specifications—8-, 16-, 24-, and 32-bit CODEC / I2S Master Mode
Sym Description Min Typ Max Units SpecID
1 Bit Clock cycle time, programmed in CCS register 40.0 ns A15.1
2 Clock duty cycle 50 %(1)
1Bit Clock cycle time.
A15.2
3 Bit Clock fall time 7.9 ns A15.3
4 Bit Clock rise time 7.9 ns A15.4
5 FrameSync valid after clock edge 8.4 ns A15.5
6 FrameSync invalid after clock edge 8.4 ns A15.6
7 Output Data valid after clock edge 9.3 ns A15.7
8 Input Data setup time 6.0 ns A15.8
BitClk
5
34
3
4
(CLKPOL=0)
BitClk
(CLKPOL=1)
FrameSync
(SyncPol = 1)
TxD
Output
Output
Output
6
7
8
Output
FrameSync
(SyncPol = 0)
Output
RxD
Input
1
22
MPC5200B Data Sheet, Rev. 4
48 Freescale Semiconductor
NOTE
Output timing is specified at a nominal 50 pF load.
Figure 38. Timing Diagram — 8-, 16-, 24-, and 32-bit CODEC / I2S Slave Mode
Table 43. Timing Specifications — 8-, 16-, 24-, and 32-bit CODEC / I2S Slave Mode
Sym Description Min Typ Max Units SpecID
1 Bit Clock cycle time 40.0 ns A15.9
2 Clock duty cycle 50 %(1)
1Bit Clock cycle time.
A15.10
3 FrameSync setup time 1.0 ns A15.11
4 Output Data valid after clock edge 14.0 ns A15.12
5 Input Data setup time 1.0 ns A15.13
6 Input Data hold time 1.0 ns A15.14
BitClk
3
(CLKPOL=0)
BitClk
(CLKPOL=1)
FrameSync
(SyncPol = 1)
TxD
Output
Input
Input
4
5
Input
FrameSync
(SyncPol = 0)
Input
RxD
Input
1
22
6
MPC5200B Data Sheet, Rev. 4
Freescale Semiconductor 49
1.3.16.2 AC97 Mode
NOTE
Output timing is specified at a nominal 50 pF load.
Figure 39. Timing Diagram — AC97 Mode
1.3.16.3 IrDA Mode
NOTE
Output timing is specified at a nominal 50 pF load.
Table 44. Timing Specifications — A C97 Mode
Sym Description Min Typ Max Units SpecID
1 Bit Clock cycle time 81.4 ns A15.15
2 Clock pulse high time 40.7 ns A15.16
3 Clock pulse low time 40.7 ns A15.17
4 FrameSync valid after rising clock edge 13.0 ns A15.18
5 Output Data valid after rising clock edge 14.0 ns A15.19
6 Input Data setup time 1.0 ns A15.20
7 Input Data hold time 1.0 ns A15.21
Table 45. Timing Specifications — IrDA Transmit Line
Sym Description Min Max Units SpecID
1 Pulse high time, defined in the IrDA protocol definition 0.125 10000 μs A15.22
2 P ulse low time, defined in the IrDA protocol definition 0.125 10000 μs A15.23
3 Transmitter rising time 7.9 ns A15.24
4 Transmitter falling time 7.9 ns A15.25
BitClk
(CLKPOL=0)
FrameSync
(SyncPol = 1)
Sdata_out
Output
Input
6
Output
Sdata_in
Input
1
43
5
2
7
MPC5200B Data Sheet, Rev. 4
50 Freescale Semiconductor
Figure 40. Timing Diagram — IrDA Transmit Line
1.3.16.4 SPI Mode
NOTE
Output timing is specified at a nominal 50 pF load.
Table 46. Timing Specifications — SPI Master Mode, Format 0 (CPHA = 0)
Sym Description Min Max Units SpecID
1 SCK cycle time, programable in the PSC CCS register 30.0 ns A15.26
2 SCK pulse width, 50% SCK duty cycle 15.0 ns A15.27
3 Slave select clock delay, programable in the PSC CCS register 30.0 ns A15.28
4 Output Data valid after Slave Sele ct (SS) 8.9 ns A15.29
5 Output Data valid after SCK 8.9 ns A15.30
6 Input Data setup time 6.0 ns A15.31
7 Input Data hold time 1.0 ns A15.32
8 Slave disable lag time 8.9 ns A15.33
9 Sequential T ransfer delay , programable in the PSC CTUR / CTLR
register 15.0 ns A15.34
10 Clock f alling time 7.9 ns A15.35
11 Clock rising time 7.9 ns A15.36
IrDA_TX 4
3
(SIR / FIR / MIR) 12
MPC5200B Data Sheet, Rev. 4
Freescale Semiconductor 51
Figure 41. Timing Diagram — SPI Master Mode, Format 0 (CPHA = 0)
NOTE
Output timing is specified at a nominal 50 pF load.
Table 47. Timing Specifications — SPI Slave Mode, Format 0 (CPHA = 0)
Sym Description Min Max Units SpecID
1 SCK cycle time, programable in the PSC CCS register 30.0 ns A15.37
2 SCK pulse width, 50% SCK duty cycle 15.0 ns A15.38
3 Slave select clock delay 1.0 ns A15.39
4 Input Data setup time 1.0 ns A15.40
5 Input Data hold time 1.0 ns A15.41
6 Output data valid after SS 14.0 ns A15.42
7 Output data valid after SCK 14.0 ns A15.43
8 Slave disable lag time 0.0 ns A15.44
9 Minimum Sequential Transfer dela y = 2 × IP Bus clock cycle time 30.0 A15.45
SCK
(CLKPOL=0)
SCK
(CLKPOL=1)
MOSI
Output
Output
Output
SS
Output
MISO
Input
1
22
89
3
45
66
77
11
10
10
11
MPC5200B Data Sheet, Rev. 4
52 Freescale Semiconductor
Figure 42. Timing Diagram — SPI Slave Mode, Format 0 (CPHA = 0)
NOTE
Output timing is specified at a nominal 50 pF load.
Table 48. Timing Specifications — SPI Master Mode, Format 1 (CPHA = 1)
Sym Description Min Max Units SpecID
1 SCK cycle time, programable in the PSC CCS register 30.0 ns A15.46
2 SCK pulse width, 50% SCK duty cycle 15.0 ns A15.47
3 Slave select clock delay, programable in the PSC CCS register 30.0 ns A15.48
4 Output data valid 8.9 ns A15.49
5 Input Data setup time 6.0 ns A15.50
6 Input Data hold time 1.0 ns A15.51
7 Slave disable lag time 8.9 ns A15.52
8 Sequential T ransfer delay , programable in the PSC CTUR / CTLR
register 15.0 ns A15.53
9 Clock falling time 7.9 ns A15.54
10 Clock rising time 7.9 ns A15.55
SCK
(CLKPOL=0)
SCK
(CLKPOL=1)
MOSI
Input
Input
Input
SS
Input
MISO
Output
1
22
9
3
7
4
6
5
8
MPC5200B Data Sheet, Rev. 4
Freescale Semiconductor 53
Figure 43. Timing Diagram — SPI Master Mode, Format 1 (CPHA = 1)
NOTE
Output timing is specified at a nominal 50 pF load.
Table 49. Timing Specifications — SPI Slave Mode, Format 1 (CPHA = 1)
Sym Description Min Max Units SpecID
1 SCK cycle time, programable in the PSC CCS register 30.0 ns A15.56
2 SCK pulse width, 50% SCK duty cycle 15.0 ns A15.57
3 Slave select clock delay 0.0 ns A15.58
4 Output data valid 14.0 ns A15.59
5 Input Data setup time 2.0 ns A15.60
6 Input Data hold time 1.0 ns A15.61
7 Slave disable lag time 0.0 ns A15.62
8 Minimum Sequential Transf er delay = 2 × IP-Bus clock cycle time 30.0 ns A15.63
SCK
(CLKPOL=0)
SCK
(CLKPOL=1)
MOSI
Output
Output
Output
SS
Output
MISO
Input
1
22
78
3
4
6
10
9
9
10
5
MPC5200B Data Sheet, Rev. 4
54 Freescale Semiconductor
Figure 44. Timing Diagram — SPI Slave Mode, Format 1 (CPHA = 1)
1.3.17 GPIOs and Timers
1.3.17.1 General and Asynchronous Signals
The MPC5200B contains several sets if I/Os that do not require special setup, hold, or valid requirem ents. Most of these are
asynchronous to the system clock. The following numbers are provided for test and validation purposes only, and they assume
a 133 MHz internal bus frequency.
Figure 45 shows the GPIO Timing Diagram. Table 50 gives the timing specifications.
Table 50. Asynchronous Signals
Sym Description Min Max Units SpecID
tCK Clock Period 7.52 ns A16.1
tIS Input Setup 12 ns A16.2
tIH Input Hold 1 ns A16.3
tDV Output Valid 15.33 ns A16.4
tDH Output Hold 1 ns A16.5
SCK
(CLKPOL=0)
SCK
(CLKPOL=1)
MOSI
Input
Input
Input
SS
Input
MISO
Output
1
22
78
3
4
6
5
MPC5200B Data Sheet, Rev. 4
Freescale Semiconductor 55
Figure 45. Timing Diagram—Asynchronous Signals
Output
Input
tCK
valid
valid
tDV tDH
tIS tIH
MPC5200B Data Sheet, Rev. 4
56 Freescale Semiconductor
1.3.18 IEEE 1149.1 (JTAG) AC Specifications
Figure 46. Timing Diagram—JTAG Clock Input
Figure 47. Timing Diagram—JTAG TRST
Table 51. JTAG Timing Specification
Sym Characteristic Min Max Unit SpecID
TCK frequency of operation. 0 25 MHz A17.1
1 TCK cycle time. 40 ns A17.2
2 TCK clock pulse width measured at 1.5V. 1 .08 ns A17.3
3 TCK rise and fall times. 0 3 ns A17.4
4TRST
setup time to tck falling edge(1).
1TRST is an asynchronous signal. The setup time is for test purposes only.
10 ns A17.5
5TRST
assert time. 5 ns A17.6
6 Input data setup time(2).
2Non-test, other than TDI and TMS, signal input timing with respect to TCK.
5 ns A17.7
7 Input data hold time(2).15 ns A17.8
8 TCK to output data valid(3).
3Non-test, other than TDO, signal output timing with respect to TCK.
030nsA17.9
9 TCK to output high impedance(3). 0 30 ns A17.10
10 TMS, TDI data setup time. 5 ns A17.11
11 TMS, TDI data hold time. 1 ns A17.12
12 TCK to TDO data valid. 0 1 5 ns A17.13
13 TCK to TDO high imped ance. 0 15 ns A17.14
TCK VMVM VM
33
22
1
VM = Midpoint Voltage
Numbers shown reference Tab l e 51.
TCK
TRST
5
4
Numbers shown reference Table 51.
MPC5200B Data Sheet, Rev. 4
Freescale Semiconductor 57
Figure 48. Timing Diagram—JTAG Boundary Scan
Figure 49. Timing Diagram—Test Access Port
2 Package Description
2.1 Package Parameters
The MPC5200B uses a 27 mm x 27 mm TE-PBGA package. The package parameters are as provided in the following list:
Package outline: 27 mm x 27 mm
Interconnects: 2
Pitch: 1.27 mm
TCK
INPUT DATA VALID
OUTPUT DATA VALID
DATA INPUTS
DATA OUTPUTS
DATA OUTPUTS
67
8
9
Numbers shown reference Table 51.
TCK
INPUT DATA VALID
OUTPUT DATA VALID
TDI, TMS
TDO
TDO
10 11
12
13
Numbers shown reference Table 51.
MPC5200B Data Sheet, Rev. 4
58 Freescale Semiconductor
2.2 Mechanical Dimensions
Figure 50 provides the mechanical dimensions, top surface, side profile, and pinout for the MPC5200B, 272 TE-PBGA
package.
Figure 50. Mechanical Dimensions and Pinout Assignments for the MPC5200B, 272 TE-PBGA
CASE 1135A–01
ISSUE B
DATE 10/15/1997
CB
DIM MIN MAX
MILLIMETERS
A2.05 2.65
A1 0.50 0.70
A2 0.50 0.70
A3 1.05 1.25
b0.60 0.90
D27.00 BSC
D1 24.13 REF
D2 23.30 24.70
E27.00 BSC
E1 24.13 REF
E2 23.30 24.70
e1.27 BSC
NOTES:
1. DIMENSIONS AND TOLERANCING PER ASME
Y14.5M, 1994.
2. DIMENSIONS IN MILLIMETERS.
3. DIMENSION IS MEASURED AT THE MAXIMUM
SOLDER BALL DIAMETER PARALLEL TO
PRIMARY DATUM A.
4. PRIMARY DATUM A AND THE SEATING PLANE
ARE DEFINED BY THE SPHERICAL CROWNS OF
THE SOLDER BALLS.
PIN A1
E2
D2
D
E
B
M
0.2
INDEX C
0.2
4X
TOP VIEW
(D1)
A
(E1)
4X e
19X e
/2
19X e
123 54 678910111213141516171819
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
20
V
W
Y
272X b3
CB
M
0.3 A
M
0.15 A
SIDE VIEW
0.35 A
A
0.2 A
272X
A
BOTTOM VIEW
A2
A1
A3
MPC5200B Data Sheet, Rev. 4
Freescale Semiconductor 59
2.3 Pinout Listings
See details in the MPC5200B Users Manual (MPC5200BUM).
Table 52. MPC5200B Pinout Listing
Name Alias Type Power Supply Output Driver
Type Input
Type Pull-up/
down
SDRAM
MEM_CAS CAS I/O VDD_MEM_IO DRV16_MEM TTL
MEM_CLK_EN CLK_EN I/O VDD_MEM_IO DRV16_MEM TTL
MEM_CS I/O VDD_MEM_IO DRV16_MEM TTL
MEM_DQM[3:0] DQM I/O VDD_MEM_IO DRV16_MEM TTL
MEM_MA[12:0] MA I/O VDD_MEM_IO DRV16_MEM TTL
MEM_MBA[1:0] MBA I/O VDD_MEM_IO DRV16_MEM TTL
MEM_MDQS[3:0] MDQS I/O VDD_MEM_IO DRV16_MEM TTL
MEM_MDQ[31:0] MDQ I/O VDD_MEM_IO DRV16_MEM TTL
MEM_CLK I/O VDD_MEM_IO DRV16_MEM TTL
MEM_CLK I/O VDD_MEM_IO DRV16_MEM TTL
MEM_RAS RAS I/O VDD_MEM_IO DRV16_MEM TTL
MEM_WE I/O VDD_MEM_IO DRV16_MEM TTL
PCI
EXT_AD[31:0] I/O VDD_IO PCI PCI
PCI_CBE_0 I/O VDD_IO PCI PCI
PCI_CBE_1 I/O VDD_IO PCI PCI
PCI_CBE_2 I/O VDD_IO PCI PCI
PCI_CBE_3 I/O VDD_IO PCI PCI
PCI_CLOCK I/O VDD_IO PCI PCI
PCI_DEVSEL I/O VDD_IO PCI PCI
PCI_FRAME I/O VDD_IO PCI PCI
PCI_GNT I/O VDD_IO DRV8 TTL
PCI_IDSEL I/O VDD_IO DRV8 TTL
PCI_IRDY I/O VDD_IO PCI PCI
PCI_PAR I/O VDD_IO PCI PCI
PCI_PERR I/O VDD_IO PCI PCI
PCI_REQ I/O VDD_IO DRV8 TTL
PCI_RESET I/O VDD_IO PCI PCI
PCI_SERR I/O VDD_IO PCI PCI
PCI_STOP I/O VDD_IO PCI PCI
MPC5200B Data Sheet, Rev. 4
60 Freescale Semiconductor
PCI_TRDY I/O VDD_IO PCI PCI
Local Plus
LP_ACK I/O VDD_IO DRV8 TTL PULLUP
LP_ALE I/O VDD_IO DRV8 TTL
LP_OE I/O VDD_IO DRV8 TTL
LP_RW I/O VDD_IO DRV8 TTL
LP_TS I/O VDD_IO DRV8 TTL
LP_CS0 I/O VDD_IO DRV8 TTL
LP_CS1 I/O VDD_IO DRV8 TTL
LP_CS2 I/O VDD_IO DRV8 TTL
LP_CS3 I/O VDD_IO DRV8 TTL
LP_CS4 I/O VDD_IO DRV8 TTL
LP_CS5 I/O VDD_IO DRV8 TTL
ATA
ATA_DACK I/O VDD_IO DRV8 TTL
ATA_DRQ I/O VDD_IO DRV8 TTL PULLDOWN
ATA_INTRQ I/O VDD_IO DRV8 TTL PULLDOWN
ATA_IOCHRDY I/O VDD_IO DRV8 TTL PULLUP
ATA_IOR I/O VDD_IO DRV8 TTL
ATA_IOW I/O VDD_IO DRV8 TTL
ATA_ISOLATION I/O VDD_IO DRV8 TTL
Ethernet
ETH_0 TX, TX_EN I/O VDD_IO DRV4 TTL
ETH_1 RTS, TXD[0] I/O VDD_IO DRV4 TTL
ETH_2 USB_TXP, RTX,
TXD[1] I/O VDD_IO DRV4 TTL
ETH_3 USB_PRTPWR,
TXD[2] I/O VDD_IO DRV4 TTL
ETH_4 USB_SPEED,
TXD[3] I/O VDD_IO DRV4 TTL
ETH_5 USB_SUPEND,
TX_ER I/O VDD_IO DRV4 TTL
ETH_6 USB_OE, RT S,
MDC I/O VDD_IO DRV4 TTL
ETH_7 TXN, MDIO I/O VDD_IO DRV4 TTL
Table 52. MPC5200B Pinout Listing (continued)
Name Alias Type Power Supply Output Driver
Type Input
Type Pull-up/
down
MPC5200B Data Sheet, Rev. 4
Freescale Semiconductor 61
ETH_8 RX_DV I/O VDD_IO DRV4 TTL
ETH_9 CD, RX_CLK I/O VDD_IO DRV4 Schmitt
ETH_10 CTS, COL I/O VDD_IO DRV4 TTL
ETH_11 TX_CLK I/O VDD_IO DRV4 Schmitt
ETH_12 RXD[0] I/O VDD_IO DRV4 TTL
ETH_13 USB_RXD, CTS,
RXD[1] I/O VDD_IO DRV4 TTL
ETH_14 USB_RXP,
UART_RX, RXD[2] I/O VDD_IO DRV4 TTL
ETH_15 USB_RXN, RX,
RXD[3] I/O VDD_IO DRV4 TTL
ETH_16 USB_OVRCNT,
CTS, RX_ER I/O VDD_IO DRV4 TTL
ETH_17 CD, CRS I/O VDD_IO DRV4 TTL
IRDA
PSC6_0 IRDA_RX, RxD I/O VDD_IO DRV4 TTL
PSC6_1 Frame, CTS I/O VDD_IO DRV4 TTL
PSC6_2 IRDA_TX, TxD I/O VDD_IO DRV4 TTL
PSC6_3 IR_USB_CLK,BitC
lk, RTS I/O VDD_IO DRV4 Schmitt
USB
USB_0 USB_OE I/O VDD_IO DRV4 TTL
USB_1 USB_TXN I/O VDD_IO DRV4 TTL
USB_2 USB_TXP I/O VDD_IO DRV4 TTL
USB_3 USB_RXD I/O VDD_IO DRV4 TTL
USB_4 USB_RXP I/O VDD_IO DRV4 TTL
USB_5 USB_RXN I/O VDD_IO DRV4 TTL
USB_6 USB_PRTPWR I/O VDD_IO DRV4 TTL
USB_7 USB_SPEED I/O VDD_IO DRV4 TTL
USB_8 USB_SUPEND I/O VDD_IO DRV4 TTL
USB_9 USB_OVRCNT I/O VDD_IO DRV4 TTL
I2C
I2C_0 SCL I/O VDD_IO DRV4 Schmitt
I2C_1 SDA I/O VDD_IO DRV4 Schmitt
I2C_2 SCL I/O VDD_IO DRV4 Schmitt
Table 52. MPC5200B Pinout Listing (continued)
Name Alias Type Power Supply Output Driver
Type Input
Type Pull-up/
down
MPC5200B Data Sheet, Rev. 4
62 Freescale Semiconductor
I2C_3 SDA I/O VDD_IO DRV4 Schmitt
PSC
PSC1_0 TxD, Sdata_out,
MOSI, TX I/O VDD_IO DRV4 TTL
PSC1_1 RxD, Sdata_in,
MISO, TX I/O VDD_IO DRV4 TTL
PSC1_2 Mclk, Sync, RTS I/O VDD_IO DRV4 TTL
PSC1_3 BitClk, SCK, CTS I/O VDD_IO DRV4 Schmitt
PSC1_4 Frame, SS, CD I/O VDD_IO DRV4 TTL
PSC2_0 TxD, Sdata_out,
MOSI, TX I/O VDD_IO DRV4 TTL
PSC2_1 RxD, Sdata_in,
MISO, TX I/O VDD_IO DRV4 TTL
PSC2_2 Mclk, Sync, RTS I/O VDD_IO DRV4 TTL
PSC2_3 BitClk, SCK, CTS I/O VDD_IO DRV4 Schmitt
PSC2_4 Frame, SS, CD I/O VDD_IO DRV4 TTL
PSC3_0 USB_OE, TxDS,
TX I/O VDD_IO DRV4 TTL
PSC3_1 USB_TXN, RxD,
RX I/O VDD_IO DRV4 TTL
PSC3_2 USB_TXP, BitClk,
RTS I/O VDD_IO DRV4 Schmitt
PSC3_3 USB_RXD, Frame,
SS, CTS I/O VDD_IO DRV4 TTL
PSC3_4 USB_RXP, CD I/O VDD_IO DRV4 TTL
PSC3_5 USB_RXN I/O VDD_IO DRV4 TTL
PSC3_6 USB_PR TPWR,
Mclk, MOSI I/O VDD_IO DRV4 TTL
PSC3_7 USB_SPEED.
MISO I/O VDD_IO DRV4 TTL
PSC3_8 USB_SUPEND,
SS I/O VDD_IO DRV4 TTL
PSC3_9 USB_OVRCNT,
SCK I/O VDD_IO DRV4 TTL
GPIO/TIMER
GPIO_WKUP_6 MEM_CS1 I/O VDD_MEM_IO DRV16_MEM TTL PULLUP_MEM
GPIO_WKUP_7 I/O VDD_IO DRV8 TTL
TIMER_0 I/O VDD_IO DRV4 TTL
Table 52. MPC5200B Pinout Listing (continued)
Name Alias Type Power Supply Output Driver
Type Input
Type Pull-up/
down
MPC5200B Data Sheet, Rev. 4
Freescale Semiconductor 63
TIMER_1 I/O VDD_IO DRV4 TTL
TIMER_2 MOSI I/O VDD_IO DRV4 TTL
TIMER_3 MISO I/O VDD_IO DRV4 TTL
TIMER_4 SS I/O VDD_IO DRV4 TTL
TIMER_5 SCK I/O VDD_IO DRV4 TTL
TIMER_6 I/O VDD_IO DRV4 TTL
TIMER_7 I/O VDD_IO DRV4 TTL
Clock
SYS_XTAL_IN Input VDD_IO
SYS_XTAL_OUT Output VDD_IO
RTC_XTAL_IN Input VDD_IO
RTC_XTAL_OUT Output VDD_IO
Misc
PORRESET Input VDD_IO DRV4 Schmitt
HRESET I/O VDD_IO DRV8_OD1Schmitt
SRESET I/O VDD_IO DRV8_OD1Schmitt
IRQ0 I/O VDD_IO DRV4 TTL
IRQ1 I/O VDD_IO DRV4 TTL
IRQ2 I/O VDD_IO DRV4 TTL
IRQ3 I/O VDD_IO DRV4 TTL
Test/Configuration
SYS_PLL_TPA I/O VDD_IO DRV4 TTL
TEST_MODE_0 Input VDD_IO DRV4 TTL
TEST_MODE_1 Input VDD_IO DRV4 TTL
TEST_SEL_0 I/O VDD_IO DRV4 TTL PULLUP
TEST_SEL_1 I/O VDD_IO DRV8 TTL
JTAG_TCK TCK Input VDD_IO DRV4 Schmitt PULLUP
JTAG_TDI TDI Input VDD_IO DRV4 TTL PULLUP
JTAG_TDO TDO I/O VDD_IO DRV8 TTL
JTAG_TMS TMS Input VDD_IO DRV4 TTL PULLUP
JTAG_TRST TRST Input VDD_IO DRV4 TTL PULLUP
Power and Grou nd
VDD_IO
Table 52. MPC5200B Pinout Listing (continued)
Name Alias Type Power Supply Output Driver
Type Input
Type Pull-up/
down
MPC5200B Data Sheet, Rev. 4
64 Freescale Semiconductor
3 System Design Information
3.1 Power Up/Down Sequencing
Figure 51 shows situations in sequencing the I/O VDD (VDD_IO), Memory VDD (VDD_IO_MEM), PLL VDD
(PLL_AVDD), and Core VDD (VDD_CORE).
Figure 51. Supply Voltage Sequencing
VDD_MEM_IO
VDD_CORE
VSS_IO/CORE
SYS_PLL_AVDD
CORE_PLL_AVDD
1All “open drain” outputs of the MPC5200B are actually regular three-state output driv ers with the output data tied low
and the output enable controlled. Thus, unlike a true open drain, there is a current path from the external system to
the MPC5200B I/O power rail if the external signal is driven above the MPC5200B I/O power rail voltage.
Table 52. MPC5200B Pinout Listing (continued)
Name Alias Type Power Supply Output Driver
Type Input
Type Pull-up/
down
1.5 V
2.5 V
3.3 V
0
DC Power Supply Voltage
VDD_IO,
VDD_IO_MEM (SDR)
VDD_IO_MEM (DDR)
VDD_CORE,
PLL_AVDD
Note: VDD_CORE should not e xceed VDD_IO, VDD_IO_MEM or P LL_A VDD by more than 0.4 V at any time , including
power-up.
Note: It is recommended that VDD_CORE/PLL_AVDD should track VDD_IO/VDD_IO_MEM up to 0.9 V then separate
for completion of ramps.
Note: Input voltage must not be greater than the supply v oltage (VDD_IO) VDD_IO_MEM, VDD_CORE, or PLL_A VDD)
by more than 0.5 V at any time, including during powe r-up.
Note: Use 1 microsecond or slower rise time for all supplies.
1
2
Time
MPC5200B Data Sheet, Rev. 4
Freescale Semiconductor 65
The relationship between VDD_IO_MEM and VDD_IO is non-critical during power -up and power-down sequences.
VDD_IO_MEM (2.5 V or 3.3 V) and VDD_IO are specified relative to VDD_CORE.
3.1.1 Power Up Sequence
If VDD_IO/VDD_IO_MEM are powered up with the VDD_CORE at 0 V, the sense circuits in the I/O pads cause all pad output
drivers connected to the VDD_IO/VDD_IO_MEM to be in a high-impedance state. There is no limit to how long after
VDD_IO/VDD_IO_MEM powers up before VDD_CORE must power up. VDD_CORE should not lead the VDD_IO,
VDD_IO_MEM or PLL_AVDD by more than 0.4 V during power ramp up or there will be high current in the internal ESD
protection diodes. The rise times on the power supplies should be slower than 1 microsecond to avoid turning on the internal
ESD protection clamp diodes.
The recommended power up sequence is as follows:
Use one microsecond or slower rise time for all supplies.
VDD_CORE/PLL_AVDD and VDD_IO/VDD_IO_MEM should track up to 0.9 V and then separate for the completion of
ramps with VDD_IO/VDD_IO_MEM going to the higher external voltages. One way to accomplish this is to use a low drop-out
voltage regulator.
3.1.2 Power Down Sequence
If VDD_CORE/PLL_AVDD are powered down first, sense circuits in the I/O pads cause all output drivers to be in a high
impedance state. There is no limit on how long after VDD_CORE and PLL_AVDD power down before VDD_IO or
VDD_IO_MEM must power down. VDD_CORE should not lag VDD_IO, VDD_IO_MEM, or PLL_AVDD going low by more
than 0.5 V during power down or there will be undesired high current in the ESD protection diodes. There are no requirements
for the fall times of the power supplies.
The recommended power down sequence is as follows:
1. Drop VDD_CORE/PLL_AVDD to 0 V.
2. Drop VDD_IO/VDD_IO_MEM supplies.
3.2 System and CPU Core AVDD Power Supply Filtering
Each of the independent PLL power supplies require filtering external to the device. The following drawing is a
recommendation for the required fi lter circuit.
Figure 52. Power Supply Filtering
3.3 Pull-up/Pull-down Resistor Requirements
The MPC5200B requires external pull-up or pull-down resistors on certain pins.
3.3.1 Pull-down Resistor Requirements for TEST pins
The MPC5200B requires pull-down resistors on the test pins TEST_MODE_0, TEST_MODE_1, TEST_SEL_1.
AVDD device pinPower
Supply
source
< 1 Ω
10 Ω
200–400 pF
10 μF
MPC5200B Data Sheet, Rev. 4
66 Freescale Semiconductor
3.3.2 Pull-up Requirements for the PCI Control Lines
If the PCI interface is NOT used (and internally disabled) the PCI control pins must be terminated as indicated by the PCI Local
Bus specification. This is also required for MOST/Graphics and Large Flash Mode.
PCI control signals always require pull-up resistors on the motherboard (not the expansio n board) to ensure that they contain
stable values when no agent is actively driving the bus. This includes PCI_FRAME, PCI_TRDY, PCI_IRDY, PCI_DEVSEL,
PCI_STOP, PCI_SERR, PCI_PERR, and PCI_REQ.
3.3.3 Pull-up/Pull-down Requirements for MEM_MDQS Pins (SDRAM)
The MEM_MDQS[3:0] signals are not used with SDR memories and require pull-up or pull-down resistors in SDRAM mode.
3.3.4 .Pull-up/Pull-down Requirements for MEM_MDQS Pins (DDR 16-bit
Mode)
The MEM_MDQS[1:0] signals are not used in DDR 16-bit mode and requ ire pull-down resistors.
3.4 JTAG
The MPC5200B provides the user an IEEE 1 149.1 JT AG interface to facilitate board/system testing. It also provides a Common
On-Chip Processor (COP) Interface, which shares the IEEE 1149.1 JTAG port. The COP Interface provides access to the
MPC5200B's embedded Freescale (formerly Motorola) MPC603e e300 processor. This interface provides a means for
executing test routines and for performing soft ware development and debug functions.
3.4.1 JTAG_TRST
Boundary scan testing is enabled through the JTAG interface signals. The JTAG_TRST sig nal is opti onal in the IEEE 1149.1
specification but is provided on all processors that implem ent the PowerPC architecture. To obtain a reliable power-on reset
performance, the JTA G_TRST signal must be asserted during power-on reset.
3.4.1.1 JTAG_TRST and PORRESET
The JTAG interface can control the direction of the MPC5200B I/O pads via the boundary scan chain. The JTAG module must
be reset before the MPC5200B comes out of power-on reset; do this by asserting JTAG_TRST before PORRESET is released.
For more details refer to the Reset and JTAG Timing Specification.
Figure 53. PORRESET vs. JTAG_TRST
3.4.1.2 Connecting JTAG_TRST
The wiring of the JTAG_TRST depends on the existence of a board-related debug interface. (see below)
JTAG_TRST
PORRESET
Require d as s e rtio n of JTAG_TRST Optional as s ert ion of JTAG_TRST
MPC5200B Data Sheet, Rev. 4
Freescale Semiconductor 67
Normally this interface is implemented, using a COP (common on-chip processor) connector. The COP allows a remote
computer system (typically , a PC with dedicated hardware and debugging software) to access and control the internal operations
of the MPC5200B.
3.4.2 e300 COP/BDM Interface
There are two possibilities to connect the JTAG interface: using it with a COP connector and without a COP connector.
3.4.2.1 Boards Interfacing the JTAG Port via a COP Connector
The MPC5200B functional pin interface and internal logic provides access to the embedded e300 processor core through the
Freescale (formerly Motorola) standard COP/BDM interface. Table 53 gives the COP/BDM interface signals. The pin order
shown reflects only the COP/BDM connector order.
For a board with a COP (common on-chip processor) connector, which accesses the JTAG interface and which needs to reset
the JTAG module, simply wiring JTAG_TRST and PORRESET is not recommended.
Table 53. COP/BDM Interface Signals
BDM
Pin # MPC5200B
I/O Pin BDM
Connector Internal
Pull Up/Down External
Pull Up/Down I/O1
1With respect to the emulator tool’s perspective, Input is really an output from the embedded e300 core and
output is really an input to the core.
16 GND
15 TEST_SEL_0 ckstp_out I
14 KEY
13 HRESET hreset 10k Pull-Up O
12 GND
11 SRESET sreset 10k Pull-Up O
10 N/C
9 JTAG_TMS tms 100k Pull-Up 10k Pull-Up O
8— N/C
7 JTAG_TCK tck 100k Pull-Up 10k Pull-Up O
6— VDD
2
2From the board under test, power sense for chip power.
——
5 halted3
3HALTED is not avai lable from e300 core.
——I
4 JTAG_TRST trst 100k Pull-Up 10k Pull-Up O
3 JTAG_TDI tdi 100k Pull-Up 10k Pull-Up O
2 qack4
4Input to the e300 core to enable/disable soft-stop condition during breakpoints. MPC5200B
inter nally ties CORE_QACK to GND in its normal/fu nctional mode (always asserted).
——O
1JTAG_TDO tdo I
MPC5200B Data Sheet, Rev. 4
68 Freescale Semiconductor
To reset the MPC5200B via the COP connector, the HRESET pin of the COP should be connected to the HRESET pin of the
MPC5200B. The circuitry shown in Figure 54 allows the COP to assert HRESET or JTAG_TRST separately, while any other
board sources can drive PORRESET.
Figure 54. COP Connector Diagram
3.4.2.2 Boards Without COP Connector
If the JTAG interface is not used, JTAG_TRST should be tied to PORRESET, so that it is asserted when the system reset signal
(PORRESET) is asserted. This ensures that the JTAG scan chain is initialized during power on. Figure 55 shows the connection
of the JTAG interface without COP connector.
1
3
5
7
9
11
13
15
2
4
6
8
10
12
K
16
Key
Key 14
HRESET
SRESET
VDD
VDD
JTAG_TRST
VDD
JTAG_TMS
VDD
JTAG_TCK
VDD
JTAG_TDI
TEST_SEL_0
JTAG_TDO
3
11
16
4
9
12
7
6
(2)
15
1
10
8
5
(3)
2
(4)
13
NC
NC
NC
NC
TDO
HRESET
SRESET
TRST
TMS
TCK
TDI
CKSTP_OUT
VDD
10Kohm
10Kohm
10Kohm
10Kohm
10Kohm
COP Header
COP Connector
Physical Pinout
halted
qack
MPC5200B
VDD
10Kohm
PORRESET PORRESET
MPC5200B Data Sheet, Rev. 4
Freescale Semiconductor 69
Figure 55. JTAG_TRST Wiring for Boards without COP Connector
4 Ordering Information
Table 54. Ordering Information
Part Number1
1Shipped in trays. Add “R2” suffix for Tape & Reel.
Speed Ambient Temp Qu al ificatio n2
2 Commercial Qualified to < 250 PPM level. Industrial/Automotive Qualified to AEC-Q100.
Automotive has Zero Defect flow.
Packaging3
3 Standard is halide-free with Pb solder balls.
MPC5200VR400B 400 0 °C to 70 °C Commercial RoHS & Pb-free
MPC5200CVR466B 400 40 °C to 85 °C Industrial RoHS & Pb-free
SPC5200CBV400B 400 –40 °C to 85 °C Automotive – AEC Standard
SPC5200CVR400B 400 –40 °C to 85 °C Automotive – AEC RoHS & Pb-free
SC103335VR400B 400 –40 °C to 85 °C Automotiv e – AEC RoHS & Pb-free
HRESET
SRESET
VDD
VDD
JTAG_TRST
VDD
JTAG_TMS
VDD
JTAG_TCK
VDD
JTAG_TDI
TEST_SEL_0
JTAG_TDO
HRESET
SRESET
10Kohm
10Kohm
MPC5200B
PORRESET PORRESET
10Kohm
10Kohm
10Kohm
MPC5200B Data Sheet, Rev. 4
70 Freescale Semiconductor
5 Document Revision History
Table 55 provides a revision history for this hardw a re specification.
Table 55. Document Revision History
Rev. No. Differences
1 Clock Frequencies table: 466 MHz was changed to 400 MHz for the e300 Processor Core
2 Added description for PCI CLK Slew Rate for PCI CLK Specifications table.
Added description fo r minim um r ates in the DDR SDRAM Memory Write Timing table.
3 Added one item to table “DDR SDRAM Memory Read Timing.
4 Updated table “Ordering Information.
MPC5200B Data Sheet, Rev. 4
Freescale Semiconductor 71
Document Number : MPC5200BDS
Rev. 4
02/2010
How to Reach Us:
Home Page:
www.freescale.com
Web Support:
http://www.freescale.com/support
USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1-800-521-6274 or +1-480-768-2130
www.freescale.com/support
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support
Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com
Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or +1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com
Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no e xpress or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.
Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
F reescale Semiconductor assume any liability arising out of the application or use of an y
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freesca le Semiconductor data sheets and/or sp ecifications can and do v ary
in different applications and actual performance may vary over time. All operat i ng
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, int ended, or authorized for use as components in systems intended for
surgical implant into the body, or other applicat ions intended to support or sustain life,
or f or any oth er application in which the failure of the Freesca le Semiconductor prod uct
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized appli cation, Buyer shall indemnif y and hold Freescale Semi conductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs , damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free
counterparts. For further inf ormation, see http://www.freescale.com or contact your
Freescale sales representativ e.
F or information on Freescale’s Environmental Products program, go to
http://www.freescale.com/epp.
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2008, 2010. All rights reserved.