Packages
SYNCHRONOUS RECTIFIER DRIVER
Features
Provides constant and proper gate drive to power
MOSFETs regardless of transformer output
Minimizes loss due to power MOSFET body
drain diode conduction
Stand alone operation - no ties to primary side
Schmitt trigger input with double pulse suppress-
ion allows operation in noisy environments
High peak current drive capability - 4A
High speed operation - 2MHz
Adaptable to multiple topologies
Description
The IR1176 is a high speed CMOS controller designed
to drive N-channel power MOSFETs used as synchro-
nous rectifiers in high current, high frequency forward
converters with output voltages equal or below 5VDC.
Schmitt trigger inputs with double pulse suppression
allow the controller to operate in noisy environments.
The circuit does not require any ties to the primary
side and derives its operating power directly from
the secondary. The circuit functions by anticipating
transformer output transitions, then turns the power
MOSFETs on or off before the transitions of the trans-
former to minimize body drain diode conduction and
reduce associated losses. Turn on/off lead time can
be adjusted to accommodate a variety of power
MOSFET sizes and circuit conditions. The IR1176 also
provides gate drive overlap/dead-time control via
external components to further minimize diode con-
duction by nulling effects of secondary loop and de-
vice package inductance.
Vdd 5Vdc
IO+/- (peak) 4A/4A
Fmax 2MHz
Max lead time 500nsec
Product Summary
IR1176S
20 Lead Surface Mount
(SSOP-20)
IR1176
20 Lead PDIP
(MS-001AD)
IR1176SS
20 Lead SOIC (MS-013AC)
IR1176
Preliminary Data Sheet PD60185-C
2www.irf.com
IR1176
Symbol Definition Min. Max. Units
Vdd Supply voltage 7VDC
Iin Input clamp current +/- 10 mADC
PDPower dissipation (SSOP-20) 400 mW
(SOIC)
(PDIP)
RthJC Thermal resistance (SSOP-20) junction-to-case 28.5
(SOIC) junction-to-case 20
(PDIP) junction-to-case 28.1
RthJA Thermal resistance (SSOP-20) junction-to-ambient 90.5
(SOIC) junction-to-ambient 45
(PDIP) junction-to-ambient 62.4
TJJunction temperature 150
TSStorage temperature -55 150
TLLead temperature (soldering, 10 seconds) 300
Absolute Maximum Ratings
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur.
Symbol Definition Min. Typ. Max. Units
Vdd Supply voltage operating range 5VDC
TAAmbient temperature -40 85 °C
Freq Operating frequency 250 500 KHz
Rbias Required bias resistor (+/- 1%) 34.0 K
UV Voltage at UVSET pin 1.75 2.25 VDC
Xin Maximum voltage at X1 and X2 inputs 5.6 VDC
Cd1/Cd2 Capacitance at pins DTIN1 and DTIN2 100 pF
Recommended Operating Conditions
°C
°C/W
www.irf.com 3
IR1176
Dynamic Electrical Characteristics
Vdd=5V, TA = 25oC, Rbias = 34.0K unless otherwise specified.
Symbol Definition Min. Typ. Max. Units
Vdd Supply voltage operating range 4.0 5.25 VDC
Iqdd Vdd quiescent current (x1 = x2 = 0V or 5V, Iout = 0) 4 5 A
Freq Operating frequency 100 2000 KHz
UVSET+ UVSET positive going threshold 1.10 1.4 V
UVSET- UVSET negative going threshold 0.8 1.1 V
Vxth+ X1/X2 Input positive going threshold 1.4 VDC
Vxth- X1/X2 Input negative going threshold 1.0 VDC
Tadv Externally adjustable lead time (advance) 500 nsec
Td Externally adjustable dead-time for Q1 and Q2 20 nsec
Isink Q1,Q2 output sink current (Vdd=5.0V, 4
(peak) pulsed, 10 usec)
Isource Q1,Q2 output source current (Vdd=5.0V, 4
(peak) pulsed, 10 usec)
VOH Q1, Q2 High level voltage (Iout = 20mA) Vdd- 0.20
VOL Q1, Q2 Low level voltage (Iout = 20mA) 0.10
tio Input to output delay (PLL bypassed, cross coupled 20 nsec
mode)
tr Gate turn-on rise time (C1=1000pf, Vdd=5V) 20 nsec
tf Gate turn-off fall time (C1=1000pf, Vdd=5V) 20 nsec
Vtr Cross-over voltage (Vdd=5Vdc, DTIN shorted to 2.5 VDC
DTOUT, C1=1000pf) Fig. 3
Rbias Required bias resistor (1%) 34.0 K
Vbias Voltage at Rbias pin 1.25 VDC
Tjitter Phase-lock loop output jitter -20 20 nsec
Ichgpump Charge pump output current (at VFLTR pin) 50 µADC
Vchgpump Charge pump output voltage (at VFLTR pin) 1.3 1.5 1.7 VDC
Kvco_dc PLL Vco DC gain (per design) 62 KHz/
Volt
V
A
4www.irf.com
IR1176
20
19
18
4
3
2
1
DTOUT2
VFLTRI
DTIN2
RADV1
VFLTR2
DTIN1
DTOUT1
RADV2
17
5
7
6
8
16
15
14
13
RVCO1
X1
RVCO2
X2
VSS
Q2*VDD
Q1
9
10
12
11
AVDD
UVSET
AVSS
RBIAS
IR1176S
(SSOP-20) IR1176SS
SOIC (wide body)
Lead Definitions and Assignments
Symbol Description
AVDD Power - + 5 VDC to MOSFET drivers
Q1 Output - gate drive for Q1 power MOSFET
DTOUT1 Output - sets dead time for Q1 output - used with DTIN1
DTIN1 Input - sets dead time for Q1 - used with DTOUT1
RADV1 Output - sets lead time (advance) for Q1
VFLTR1 Output - PLL loop filter for Q1 output
RVCO1 Output - sets PLL center frequency for Q1 output
X1 Input - transformer input for Q1
VDD Power - +5 Vdc for internal logic
UVSET Input - sets UVLO+ If this pin is pulled below 1.25VDC externally, then both Q1 and Q2
outputs will be at Vss (disabled)
RBIAS Output - connected to 34.0K +/- 1% resistor - sets operating current
AVSS Ground for MOSFET driver supply (VDD)
X2 Input - transformer input for Q2
RVCO2 Output - sets PLL center frequency for Q2 output
VFLTR2 Output - PLL loop filter for Q2
RADV2 Output - sets lead time (advance) for Q2
DTIN2 Input - sets dead time for Q2 - used with DTOUT2
DTOUT2 Output - sets dead time for Q2 - used with DTIN2
VSS Ground for logic supply (AVDD)
Q2 Output - gate drive for Q2 power MOSFET
IR1176
PDIP
20
19
18
4
3
2
1
DTOUT2
VFLTRI
DTIN2
RADV1
VFLTR2
DTIN1
DTOUT1
RADV2
17
5
7
6
8
16
15
14
13
RVCO1
X1
RVCO2
X2
VSS
Q2
*VDD
Q1
9
10
12
11
AVDD
UVSET
AVSS
RBIAS
20
19
18
4
3
2
1
DTOUT2
VFLTRI
DTIN2
RADV1
VFLTR2
DTIN1
DTOUT1
RADV2
17
5
7
6
8
16
15
14
13
RVCO1
X1
RVCO2
X2
VSS
Q2*VDD
Q1
9
10
12
11
AVDD
UVSET
AVSS
RBIAS
www.irf.com 5
IR1176
Fig. 1 Typical application circuit when supply Vout < 5.0 VDC
Fig. 2 Typical application circuit when supply Vout = 5.0 VDC
6www.irf.com
IR1176
Fig. 3 Gate drive characteristics and definitions
Phase Lock Loop Design Equations:
1 - Resistor to set VCO Ceter Frequency:
Rvco (K) = [1E2 x Vchgpump(VDC) / fvco(KHz)] x Kvco _ dc(KHz/Volt)
Example (A): Choose Vchgpump = 1.5V, desired frequency (fvco) = 300KHz
Rvco = [1E2 x 1.5 /300] x 62 Hz = 31 K
2 - Small Signal gain for VCO:
Kvco_ac (KHz/Volt) = 1E2 x Kvco_dc (KHz/Volt)/Rvco(K)
Example (B): Choosing same conditions as in example A:
Kvco_ac = 1E2 x 62 / 31 = 200 KHz/volt
www.irf.com 7
IR1176
Fig. 4 PLL loop filter component definitions
4 - PLL Damping factor calculations:
P = ππE-3 x Rf (KOhms) x C(nF) x fn(KHz)
Typical value for P is 0.707. (Critically damped)
5 - Advance timing:
Tadv(nsec) = RADV (KOhms)*10 - 10
Where RADV is resistance from RADV1 or RADV2 to ground.
Example C: RADV=10Kohms will result in Tadv=10*10 - 10 =90 nsec .
6- Dead time calculations:
Td(nsec)=0.69*Rdt(KOhms)*Cdt(pF) + 5 (For Vdd=5 V)
Where Rdt is resistance between pins DTIN1 and DTOUT1 or DTIN2 and
DTOUT2. Cdt is capacitance from DTIN1 or DTIN2 to ground.
3 - PLL Natural frequency:
ωωn =2ππfn(KHz)= Ichpump(uA) x Kvco_ac(KHz/V) / C(nF)
Choose Cf such that
Cf=C/16
+ 6=106 nsec.
Example D: Rd=2KW and Cdt=100pF will result in Td=148.35nsec.
+ 6
Td(nsec)=0.69*Cdt(pF)*(Rdt(K)+0.15) (For Vdd=5V)
8www.irf.com
IR1176
Fig. 5 IR1176 Block Diagram
IR1176
www.irf.com 9
IR1176
0
100
200
300
400
500
time
0
100
200
300
400
500
-60 -30 030 60 90 120
T_DT (ns)@R=1K
T_DT (ns)@R=5K
T_DT (ns)@R=10K
0
100
200
300
400
500
time
temperature
Temperature Response
T_DT vs R_DT, C = 100pF
resistance
Response at 25oC
T_ADV vs R_ADV
temperature
Temperature Response
T_ADV vs R_ADV
resistance
Response at 25oC
T_DT vs R_DT, C = 100pF
0 2K 4K 6K 8K 10K
0 10K 20K 30K 40K 50K
time
0
100
200
300
400
500
-60 -30 030 60 90 120
temperature
time
T_ADV (ns)R=5K
T_ADV (ns)R=10K
T_ADV (ns)R=20K
T_ADV (ns)R=45K
10 www.irf.com
IR1176
01-6057 00
01-3078 00 (MS013AC)
20 Lead Surface Mount (SSOP-20)
Case Outline
www.irf.com 11
IR1176
01-6070 00
01-3080 00 (MS013AC)
20 Lead SOIC
Case Outline
12 www.irf.com
IR1176
01-6069 00
01-3079 00 (MS001AD)
20 Lead PDIP
Case Outline
WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105
Data and specifications subject to change without notice. 1/7/2002