AMMC-6442
37 - 40 GHz 1W Power Amplier
Data Sheet
Description
The AMMC-6442 is a 1W power amplier MMIC die for
use in transmitters that operate at frequencies between
37GHz and 40GHz. In the operational band, it provides
typical 30 dBm of output power (P-1dB) and 23dB of
small-signal gain. This MMIC is suitable for high linear ap-
plications, with typical performance of 37dBm OIP3 at
18dBm SCL output.
Features
x MMIC die using 4mil thickness
x 1 watt output power
x 50 : match on input and output
x ESD protection (50V MM, and 250V HBM)
Typical Performance (Vd=5V, Idsq=0.7A)
x Frequency range 37 to 40 GHz
x Small signal Gain of 23dB
x Output power @P-1 of 30dBm (Typ.)
x Output IP3 37dBm (Typ.) @Po=18dBm
x Input and Output return losses -8dB
Applications
x Point-to-Point Radio systems
x mmW Communications
Attention: Observe Precautions for
handling electrostatic sensitive devices.
ESD Machine Model (Class A): 50V
ESD Human Body Model (Class 1A): 250V
Refer to Avago Application Note A004R:
Electrostatic Discharge Damage and Control.
Note:
1. This MMIC uses depletion mode pHEMT devices. Negative supply is
used for DC gate biasing.
Chip Dimensions
Chip Size: 2650 x 2000 Pm (100 x 80 mils)
Chip Size Tolerance: ± 10Pm (±0.4 mils)
Chip Thickness: 100 ± 10Pm (4 ± 0.4 mils)
Pad Dimensions: 100 x 100 Pm (4 x 4 ± 0.4 mils)
2
Absolute Maximum Ratings[1,2,3,4]
Symbol Parameters Unit Max
VdPositive Supply Voltage[2] V 5.5
VgGate Supply Voltage V -2 to 0
PDPower Dissipation[2] W6
Pin CW Input Power[2] dBm 20
Tch Operating Channel Temp.[3,4] °C +150
Tstg Storage Case Temp. °C -65 to +155
Tmax Maximum Assembly Temp (30 sec max) °C +260
Note:
1. Operation in excess of any one of these conditions may result in permanent damage to this device.
2. Combinations of supply voltage, drain current, input power, and output power shall not exceed PD.
3. These ratings apply to each individual FET
4. The operating channel temperature will directly aect the device MTTF. For maximum life, it is recommended that junction temperatures be
maintained at the lowest possible levels.
DC Specications/ Physical Properties [1]
Symbol Parameters and Test Conditions Unit Min Typ Max
Id(q) Drain Supply Current
(Vd=5 V, Vg set for Id(q)Typical)
mA 700
VgGate Supply Operating Voltage
(Id(q) = 700 (mA))
V -1.3 -1 -0.7
Tch-bs Thermal Resistance
(Channel-to-Base Plate)
°C/W 12
Tch Channel Temperature °C 150
Note:
1. Assume die epoxied to evaluation RF module at 92.25°C base plate temperature.
RF Specications [1, 2]
TA= 25°C, Vdd = 5.0 V, Idq =0.7 A, Vg = -1V, Zo=50 :
Symbol Parameters and Test Conditions Units Minimum Typical Maximum
Freq Operational Frequency GHz 37 40
Gain Small-signal Gain [2] dB 20 23
P-1dB Output Power at 1dB [2] Gain Compression dBm 28 30
IM3 Relative third Order Inter-modulation Level
'f=20MHz, Po=+18dBm, SCL
dBc 37
RLin Input Return Loss dB 8
RLout Output Return Loss dB 8
Isolation Reverse Isolation dB 50
Note:
1. Small/Large -signal data measured at TA = 25°C.
2. 100% on wafer RF test is done at frequency= 37, 38 and 40GHz.
3
Figure 1. Typical gain and reverse Isolation
Figure 3. Typical output power (P-1 and P-3) vs. frequency
Figure 2. Typical return Loss (input and output)
Figure 4. Typical noise gure
Figure 5. Typical third order inter-modulation product level vs. frequency at
dierent single carrier output level (SCL)
Figure 6. Typical output power, PAE, and drain current versus Input power
at 38GHz
Typical Performance (Measured data includes approximately 0.2nH bonding wire for RF input and RF output ports.)
(T
A = 25°C, Vdd = 5V, Idq = 0.7 A, Vg = -1 V, Zin = Zout = 50 :)
0
2
4
6
8
10
35 37 39 41 43 45
Frequency [GHz]
Noise Figure [dB]
0
5
10
15
20
25
30
20 25 30 35 40 45 50
Frequency [GHz]
S21[dB]
-60
-55
-50
-45
-40
-35
-30
S12 [dB]
0
5
10
15
20
25
30
35
34 35 36 37 38 39 40 41 42
Frequency[GHz]
P1, P3 [dBm], PAE[%]
-5
0
5
10
15
20
25
30
35
40
-15 -10 -5 0 5 10 15
Pin [dBm]
Po[dBm], and, PAE[%]
500
600
700
800
900
1000
1100
1200
1300
1400
Ids [mA]
-20
-15
-10
-5
0
20 25 30 35 40 45 50
Frequency [GHz]
Return Loss [dB]
S21[dB]
S12[dB]
S11[dB]
S22[dB]
P-1
PAE@P1
P-3
PAE@P3
Pout(dBm)
PAE[%]
Id(total)
-60
-55
-50
-45
-40
-35
-30
-25
-20
34 35 36 37 38 39 40 41
Frequency [GHz]
Relative IM3 level [dBc]
SCL=[10dBc]
SCL=[15dBc]
SCL=[18dBc]
SCL=[20dBc]
4
Figure 7. Typical S11 over temperature
Figure 9. Typical S22 over temperature
Figure 8. Typical Gain over temperature
Figure 10. Typical P1 over temperature
Figure 11. Typical K-factor over temperature Figure 12. Typical IM3 level over temperature at Po=18dBm, SCL
Typical over temperature dependencies (This test has been done by a chip-on-module environment.)
(T
A = 25°C, Vdd = 5 V, Id(q) = 0.7 A, Zin = Zout = 50 :)
K_factor
S21[dB]
Frequency (GHz)
-20
-15
-10
-5
0
20 25 30 35 40 45 50
Frequency[GHz]
S22[dB]
25
26
27
28
29
30
31
32
33
34
35
34 35 36 37 38 39 40 41 42
Frequency [GHz]
P-1 [dBm]
10
12
14
16
18
20
22
24
26
28
30
20 25 30 35 40 45 50
Frequency[GHz]
-20
-15
-10
-5
0
20 25 30 35 40 45 50
Frequency[GHz]
S11[dB]
0
5
10
15
20
25
30
35
40
45
34 35 36 37 38 39 40 41 42
Frequency [GHz]
OIP3 [dBm]
-55
-50
-45
-40
-35
-30
-25
-20
-15
-10
IM3 Level [dBc]
S11_25
S11_-40
S11_85
S21_25
S21_-40
S21_85
P-1_-40deg
P-1_25deg
P-1_85deg
S22_25
S22_-40
S22_85
OIP3(-40C) OIP3(25C)
OIP3(85C) IM3(-40C)
IM3(25C) IM3(85C)
20 25 30 35 40 45 50
0
5
10
15
20
K() Meas_25C
K() Meas_85C
K() Meas_n40C
5
Typical Scattering Parameters [1], (T
A = 25°C, Vd = 5 V, ID = 0.7A, Zin = Zout = 50 :)
Freq
S11
[dB]
S11
Mag.
S11
Ang.
S21
[dB]
S21
Mag.
S21
Ang.
S12
[dB]
S12
Mag.
S12
Ang.
S22
[dB]
S22
Mag.
S22
Ang.
20 -1.98 0.80 -162.60 -23.67 0.07 -70.83 -53.79 2.04E-03 60.16 -1.76 0.82 42.11
21 -2.10 0.79 -172.27 -15.54 0.17 -118.13 -51.86 2.55E-03 43.77 -1.52 0.84 32.76
22 -2.20 0.78 177.22 -6.91 0.45 -177.73 -54.11 1.97E-03 12.05 -1.29 0.86 20.76
23 -2.35 0.76 164.63 -0.36 0.96 106.90 -51.77 2.58E-03 2.58 -1.72 0.82 7.75
24 -2.43 0.76 152.29 3.51 1.50 35.80 -53.86 2.03E-03 -15.98 -2.37 0.76 -0.32
25 -2.51 0.75 140.18 6.93 2.22 -30.19 -54.72 1.84E-03 -21.05 -2.44 0.76 -8.00
26 -2.79 0.73 127.42 9.58 3.01 -96.01 -52.80 2.29E-03 -30.10 -2.31 0.77 -17.39
27 -2.90 0.72 113.96 11.57 3.79 -156.30 -52.44 2.39E-03 -39.63 -2.38 0.76 -29.13
28 -2.77 0.73 98.12 14.02 5.02 148.66 -51.53 2.65E-03 -44.10 -2.58 0.74 -42.00
29 -2.64 0.74 80.74 17.48 7.48 91.27 -50.63 2.94E-03 -63.53 -2.86 0.72 -55.04
30 -3.06 0.70 60.69 21.20 11.48 23.71 -50.95 2.83E-03 -63.05 -3.43 0.67 -70.00
31 -4.42 0.60 38.62 23.10 14.28 -53.25 -49.48 3.36E-03 -84.29 -4.04 0.63 -86.88
32 -6.02 0.50 24.17 23.31 14.63 -123.77 -50.23 3.08E-03 -114.02 -4.90 0.57 -106.93
33 -7.22 0.44 12.92 23.55 15.04 172.04 -52.01 2.51E-03 -118.15 -5.99 0.50 -131.80
34 -7.75 0.41 -0.90 24.10 16.03 107.61 -53.34 2.15E-03 -145.73 -7.86 0.40 -164.40
35 -7.80 0.41 -17.10 24.48 16.74 40.77 -53.03 2.23E-03 169.78 -10.09 0.31 152.89
36 -8.41 0.38 -45.04 24.21 16.23 -25.74 -51.86 2.55E-03 158.04 -11.90 0.25 108.71
37 -9.59 0.33 -78.60 23.77 15.43 -90.78 -52.60 2.34E-03 131.86 -12.03 0.25 70.77
38 -11.03 0.28 -121.28 23.59 15.12 -154.92 -54.53 1.88E-03 84.13 -10.77 0.29 44.48
39 -10.87 0.29 -167.81 23.47 14.91 137.66 -58.23 1.23E-03 134.51 -9.02 0.35 20.62
40 -9.38 0.34 149.81 23.20 14.45 67.14 -59.62 1.04E-03 80.24 -7.65 0.41 -3.15
41 -7.55 0.42 115.59 22.60 13.49 -7.76 -54.15 1.96E-03 131.10 -7.17 0.44 -31.16
42 -6.41 0.48 85.95 21.52 11.92 -88.85 -54.99 1.78E-03 85.64 -7.97 0.40 -64.60
43 -6.92 0.45 63.21 19.07 8.98 -179.14 -56.12 1.56E-03 157.70 -9.80 0.32 -96.97
44 -7.55 0.42 57.34 13.35 4.65 91.28 -53.62 2.08E-03 124.82 -11.56 0.26 -139.97
45 -6.13 0.49 54.28 6.04 2.00 16.93 -54.40 1.91E-03 120.31 -11.18 0.28 171.25
46 -4.85 0.57 46.36 -1.24 0.87 -45.80 -47.20 4.36E-03 55.90 -8.94 0.36 124.43
47 -3.77 0.65 35.82 -8.39 0.38 -103.32 -55.39 1.70E-03 44.65 -5.98 0.50 91.95
48 -2.83 0.72 26.24 -15.48 0.17 -157.72 -67.79 4.08E-04 -34.88 -4.07 0.63 67.05
49 -2.10 0.78 17.00 -23.02 0.07 150.75 -55.43 1.69E-03 -89.47 -2.90 0.72 46.03
50 -1.44 0.85 7.21 -32.04 0.03 115.26 -53.98 2.00E-03 -1.66 -1.83 0.81 29.63
Note:
1. Data obtained with approximately 0.2nH bonding wire for RF in and RF out ports.
6
Application and Usage
Recommended quiescent DC bias condition for optimum
power and linearity performances is Vd=5 volts with Vg
(-1V) set for Id=700 mA. Minor improvements in per-
formance are possible depending on applications. The
quiescent drain current range is 500 to 900mA. Muting
can be accomplished by setting Vg1, Vg2, and Vg3 to the
pinch-o voltage Vp (-2V).
Notes:
1. Vd3 can be biased from either side.
2. 1uF capacitors, not shown on gate
and drain lines are required.
A typical DC bias conguration is shown in Figure 13. Vd3
can be biased from either side. The RF input and output
are DC decoupled internally. No ground wires are needed
since ground connections are made with plated through-
holes to the backside of the device. Figure 14 illustrates a
simplied schematic of the AMMC-6442 MMIC.
Figure 14. Schematic and recommended assemble example
RFin RFout
Vg3Vg2Vg1 Vd3
Vd1 Vd2 Vd3
Figure 13. Typical Assembly and bias conguration
Note: No RF performance degradation is seen due to ESD up to 250V
HBM and 50V MM. The DC characteristics in general show increased
leakage at lower ESD discharge voltages. The user is reminded that this
device is ESD sensitive and needs to be handled with all necessary ESD
protocols.
RFout
>68pf>68pf>68pf
>68pf>68pf>68pf
Vd1, Vd2, Vd3
Vd3
Vg
0.1uF
0.1uF 0.1uF
RFin
y and bias conguration
7
Recommended Assembly Techniques
The chip should be attached directly to the ground plane
using electrically conductive epoxy (Note 1). For conduc-
tive epoxy, the amount should be just enough to provide
a thin llet around the bottom perimeter of the die. The
ground plane should be free of any residue that may
jeopardize electrical or mechanical attachment. Caution
should be taken to not exceed the Absolute Maximum
Rating for assembly temperature and time.
Thermo-sonic wedge bonding is the preferred method
for wire attachment to the bond pads. To optimize perfor-
mance for this device, the RF connections should be kept
at approximately 9mils in length using 1mil gold bond
wire. The recommended wire bonding stage temperature
is 150±2˚C.
Figure 15. Die dimensions
0
0
0
0
96
300
260
550
580
800
Vd3
GND
GND
GND Vg2 Vg3
Vd1 GND Vd2 Vd3
Vg1
1800
1000
2650
2000
2070 2650
1000
2000
2070
1075 1800
RF_IN
RF_OUT
The chip is 100Pm thick and should be handled with care.
This chip has exposed air bridges on the top surface.
Handle at the edges or with a custom collet, (do not pick
up die with vacuum on die center).
This MMIC is static sensitive and ESD handling precau-
tions should be taken.
For more detailed information, see Avago Application
Note 54 GaAs MMIC ESD, Die Attach and Bonding Guide-
lines.
Notes:
1. Sumitomo 1295SA silver epoxy is recommended.
2. Eutectic attach is not recommended any may jeopardize reliability of
the device
For product information and a complete list of distributors, please go to our web site: www.avagotech.com
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.
Data subject to change. Copyright © 2005-2010 Avago Technologies. All rights reserved.
AV02-2237EN - August 19, 2010
Ordering Information:
AMMC-6442-W10 = 10 devices per tray
AMMC-6442-W50 = 50 devices per tray