Data Sheet AD7770
Rev. E | Page 31 of 97
TERMINOLOGY
Common-Mode Rejection Ratio (CMRR)
CMRR is the ratio of the power in the ADC output of a
100 mV p-p differential input (AINx+ − AINx−), at a fixed
frequency, f = 1 kHz, to the power of a 100 mV p-p sine wave
applied to the common-mode voltage of AINx+ and AINx− at
frequency, fS.
CMRR (dB) = 10 log(Pf/PfS)
where:
Pf is the power at frequency, f, in the ADC output.
PfS is the power at frequency, fS, in the ADC output.
Differential Nonlinearity (DNL) Error
In an ideal ADC, code transitions are 1 LSB apart. Differential
nonlinearity is the maximum deviation from this ideal value.
DNL error is often specified in terms of resolution for which no
missing codes are guaranteed.
Integral Nonlinearity (INL) Error
Integral nonlinearity error refers to the deviation of each individual
code from a line drawn from negative full scale through positive
full scale. The point used as negative full scale occurs ½ LSB before
the first code transition. Positive full scale is a level 1½ LSB beyond
the last code transition. The deviation is measured from the middle
of each code to the true straight line.
Dynamic Range
Dynamic range is the ratio of the rms value of the full-scale
input signal to the rms noise measured for an input. The value
for dynamic range is expressed in decibels.
Channel to Channel Isolation
Channel to channel isolation is a measure of the level of crosstalk
between channels. It is measured by applying a full-scale frequency
sweep sine wave signal to all seven unselected input channels and
determining how much that signal is attenuated in the selected
channel. The value is given for worst case scenarios across all
eight channels of the AD7770.
Intermodulation Distortion
With inputs consisting of sine waves at two frequencies, fA
and fB, any active device with nonlinearities creates distortion
products at sum and difference frequencies of mfA and nfB,
where m, n = 0,1, 2, 3, and so on. Intermodulation distortion
terms are those for which neither m nor n is equal to 0. For
example, the second-order terms include (fA + fB) and (fA – fb)
and the third-order terms include (2fA + fB), (2fA − fb), (fA + 2fB),
and (fA − 2fB). The AD7770 is tested using the CCIF standard,
where two input frequencies near the top end of the input
bandwidth are used. In this case, the second-order terms are
usually distanced in frequency from the original sine waves, and
the third-order terms are usually at a frequency close to the input
frequencies. As a result, the second-order and third-order terms
are specified separately.
The calculation of the intermodulation distortion is per the
THD specification, where it is the ratio of the rms sum of the
individual distortion products to the rms amplitude of the sum of
the fundamentals, expressed in decibels.
Gain Error
The first transition (from 100 … 000 to 100 … 001) occurs at a
level ½ LSB above nominal negative full scale (−2.49999 V for the
±2.5 V range). The last transition (from 011 … 110 to 011 …
111) occurs for an analog voltage 1½ LSB below the nominal
full scale (2.49999 V for the ±2.5 V range). The gain error is the
deviation of the difference between the actual level of the last
transition and the actual level of the first transition from the
difference between the ideal levels.
Gain Error Drift
Gain error drift is the ratio of the gain error change due to a
temperature change of 1°C and the full-scale range (2N). It is
expressed in parts per million.
Least Significant Bit (LSB)
The least significant bit, or LSB, is the smallest increment that
can be represented by a converter. For a fully differential input
ADC with N bits of resolution, the LSB expressed in volts is
LSB (V) = N
REF
V
2
2
The LSB referred to the input is
LSB (VIN) =
2
2
REF
GAIN
N
V
PGA
Power Supply Rejection Ratio (PSRR)
Variations in power supply affect the full-scale transition but not
the linearity of the converter. PSRR is the maximum change in the
full-scale transition point due to a change in the power supply
voltage from the nominal value.
Signal-to-Noise Ratio (SNR)
SNR is the ratio of the rms value of the actual input signal to the
rms sum of all other spectral components below the Nyquist
frequency, excluding harmonics and dc. The value for SNR is
expressed in decibels.
Signal-to-(Noise + Distortion) Ratio (SINAD)
SINAD is the ratio of the rms value of the actual input signal to
the rms sum of all other spectral components below the Nyquist
frequency, including harmonics but excluding dc. The value for
SINAD is expressed in decibels.
Spurious-Free Dynamic Range (SFDR)
SFDR is the difference, in decibels, between the rms amplitude of
the input signal and the peak spurious signal (including
harmonics).
Total Harmonic Distortion (THD)
THD is the ratio of the rms sum of the first five harmonic
components to the rms value of a full-scale input signal and
is expressed in decibels.