2012 Microchip Technology Inc. Preliminary DS41639A
PIC16(L)F1454/5/9
Data Sheet
14/20-Pin Flash, 8-Bit USB Microcontrollers
with XLP Technology
DS41639A-page 2 Preliminary 2012 Microchip Technology Inc.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.
Trademarks
The Microchip name and logo, the Microchip logo, dsPIC,
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,
PIC32 logo, rfPIC and UNI/O are registered trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,
MXDEV, MXLAB, SEEVAL and The Embedded Control
Solutions Company are registered trademarks of Microchip
Technology Incorporated in the U.S.A.
Analog-for-the-Digital Age, Application Maestro, chipKIT,
chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net,
dsPICworks, dsSPEAK, ECAN, ECONOMONITOR,
FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP,
Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB,
MPLINK, mTouch, Omniscient Code Generation, PICC,
PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE,
rfLAB, Select Mode, Total Endurance, TSHARC,
UniWinDriver, WiperLock and ZENA are trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.
SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.
All other trademarks mentioned herein are property of their
respective companies.
© 2012, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.
Printed on recycled paper.
ISBN: 9781620763476
Note the following details of the code protection feature on Microchip devices:
Microchip products meet the specification contained in their particular Microchip Data Sheet.
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
Microchip is willing to work with the customer who is concerned about the integrity of their code.
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Microchip received ISO/TS-16949:2009 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.
QUALITY MANAGEMENT S
YSTEM
CERTIFIED BY DNV
== ISO/TS 16949 ==
2012 Microchip Technology Inc. Preliminary DS41639A-page 3
High-Performance RISC CPU:
C Compiler Optimized Architecture
Only 49 Instructions
14 Kbytes Linear Program Memory Addressing
1024 Bytes Linear Data Memory Addressing
Operating Speed:
- DC – 48 MHz clock input
- DC – 83 ns instruction cycle
- Selectable 3x or 4x PLL for specific frequencies
Interrupt Capability with Automatic Context
Saving
16-Level Deep Hardware Stack with Optional
Overflow/Underflow Reset
Direct, Indirect and Relative Addressing modes:
- Two full 16-bit File Select Registers (FSRs)
capable of accessing both data or program
memory
- FSRs can read program and data memory
Special Microcontroller Features:
Operating Voltage Range:
- 1.8V to 3.6V (PIC16LF145X)
- 2.3V to 5.5V (PIC16F145X)
Self-Programmable under Software Control
Power-on Reset (POR)
Power-up Timer (PWRT)
Programmable Brown-Out Reset (BOR)
Low-Power BOR (LPBOR)
Extended Watchdog Timer (WDT):
- Programmable period from 1 ms to 256s
Programmable Code Protection
In-Circuit Serial Programming™ (ICSP™) via Two
Pins
Enhanced Low-Voltage Programming (LVP)
Power-Saving Sleep mode:
Universal Serial Bus (USB) Features:
Self-Tuning from USB Host
(eliminates need for external crystal)
USB V2.0 Compliant SIE
Low Speed (1.5 Mb/s) and Full Speed (12 Mb/s)
Supports Control, Interrupt, Isochronous and Bulk
Transfers
Supports up to Eight Bidirectional Endpoints
512-Byte Dual Access RAM for USB
Interrupt-on-Change (IOC) on D+/D- for USB Host
Detection
Configurable Internal Pull-up Resistors for use
with USB
Extreme Low-Power Management
PIC16LF145X with XLP:
Sleep mode: 25 nA @ 1.8V, typical
Watchdog Timer Current: 290 nA @ 1.8V, typical
Timer1 Oscillator: 600 nA @ 32 kHz, typical
Operating Current: 25 A/MHz @ 1.8V, typical
Flexible Oscillator Structure:
16 MHz Internal Oscillator Block:
- Factory calibrated to ±0.25%, typical
- Software selectable frequency range from
16 MHz to 31 kHz
- Tunable to 0.25% across temperature range
- 48 MHz with 3x PLL
31 kHz Low-Power Internal Oscillator
Clock Switching with run from:
- Primary Oscillator
- Secondary Oscillator (SOSC)
- Internal Oscillator
Clock Reference Output:
- Clock Prescaler
-CLKOUT
Analog Features(1):
Analog-to-Digital Converter (ADC):
- 10-bit resolution
- Up to nine external channels
- Two internal channels:
- Fixed Voltage Reference channel
- DAC output channel
- Auto acquisition capability
- Conversion available during Sleep
Two Comparators:
- Rail-to-rail inputs
- Power mode control
- Software controllable hysteresis
Voltage Reference module:
- Fixed Voltage Reference (FVR) with 1.024V,
2.048V and 4.096V output levels
Up to One Rail-to-Rail Resistive 5-Bit DAC with
Positive Reference Selection
Note 1: Analog features are not available on
PIC16(L)F1454 devices.
14/20-Pin, 8-Bit Flash USB Microcontroller with
XLP Technology
PIC16(L)F1454/5/9
PIC16(L)F145X
DS41639A-page 4 Preliminary 2012 Microchip Technology Inc.
Peripheral Features:
Up to 14 I/O Pins and Three Input-only Pins:
- High current sink/source 25 mA/25 mA
- Individually programmable weak pull-ups
- Individually programmable
Interrupt-On-Change (IOC) pins
Timer0: 8-Bit Timer/Counter with 8-Bit
Programmable Prescaler
Enhanced Timer1:
- 16-bit timer/counter with prescaler
- External Gate Input mode
Timer2: 8-Bit Timer/Counter with 8-Bit Period
Register, Prescaler and Postscaler
Two 10-bit PWM modules
Complementary Waveform Generator (CWG)(1):
- Up to four selectable signal sources
- Selectable falling and rising edge dead-band
control
- Polarity control
- Up to four auto-shutdown sources
- Multiple input sources: PWM, Comparators
Master Synchronous Serial Port (MSSP) with SPI
and I2C™ with:
- 7-bit address masking
- SMBus/PMBus™ compatibility
Enhanced Universal Synchronous
Asynchronous Receiver Transmitter (EUSART):
- RS-232, RS-485 and LIN compatible
- Auto-baud detect
- Auto-wake-up on Start
PIC16(L)F145X Family Types
Note 1: Not available on PIC16(L)F1454 devices.
Device
Data Sheet Index
Program Memory
Flash (words)
Data SRAM
(bytes)
I/Os(2)
10-bit ADC (ch)
Comparators
DAC
Timers
(8/16-bit)
PWM
EUSART
MSSP (I2C™/SPI)
CWG
USB
Clock Reference
Debug(1)
XLP
PIC16(L)F1454 (1) 8192 1024 11 2/1 2 1 1 1 1 I/H Y
PIC16(L)F1455 (1) 8192 1024 11 5 2 1 2/1 2 1 1 1 1 1 I/H Y
PIC16(L)F1459 (1) 8192 1024 17 9 2 1 2/1 2 1 1 1 1 1 I/H Y
Note 1: I - Debugging, Integrated on Chip; H - Debugging, Available using Debug Header;
E - Emulation, Available using Emulation Header.
2: Three pins are input-only.
Data Sheet Index:
1: DS41639 PIC16(L)F1454/1455/1459 Data Sheet, 14/20-Pin Flash, 8-Bit USB Microcontrollers.
Note: For other small form-factor package availability and marking information, please visit
www.microchip.com/packaging or contact your local sales office.
2012 Microchip Technology Inc. Preliminary DS41639A-page 5
PIC16(L)F145X
FIGURE 1: 14-PIN PDIP, SOIC, TSSOP DIAGRAM FOR PIC16(L)F1454/1455
FIGURE 2: 16-PIN QFN DIAGRAM FOR PIC16(L)F1454/1455
PDIP, SOIC, TSSOP
PIC16(L)F1454
PIC16(L)F1455
1
2
3
4
14
13
12
11
5
6
7
10
9
8
VDD
RA5
RA4
MCLR/VPP/RA3
RC5
RC4
RC3
VSS
RA0/D+/ICSPDAT(1)
RA1/D-/ICSPCLK(1)
VUSB3V3
RC0/ICSPDAT
RC1/ICSPCLK
RC2
Note 1: LVP support for PIC18(L)F1XK50 legacy designs.
2: See Table 1 and Ta bl e 2 for location of all peripheral functions.
78
2
3
1
11
12
5
9
10
13141516
6
4
RA5
RA4
MCLR/VPP/RA3
RC4
RC3
ICSPCLK/RC1
RC2
RC0/ICSPDAT
RA0/D+/ICSPDAT(1)
VUSB3V3
RA1/D-/ICSPCLK(1)
Vss
VDD
NC
RC5
NC
QFN (4x4)
Note 1: LVP support for PIC18(L)F1XK50 legacy designs.
2: See Table 1 and Table 2 for location of all peripheral functions.
PIC16(L)F1454
PIC16(L)F1455
PIC16(L)F145X
DS41639A-page 6 Preliminary 2012 Microchip Technology Inc.
FIGURE 3: 20-PIN PDIP, SOIC, SSOP DIAGRAM FOR PIC16(L)F1459
FIGURE 4: 20-PIN QFN DIAGRAM FOR PIC16(L)F1459
PIC16(L)F1459
1
2
3
4
14
13
12
11
5
6
7
10
9
8
VDD
RA5
RA4
MCLR/VPP/RA3
RC5
RC4
VSS
RA0/D+/ICSPDAT(1)
RA1/D-/ICSPCLK(1)
VUSB3V3
RC0/ICSPDAT
RC1/ICSPCLK
RC2
RC3
PDIP, SOIC, SSOP
Note 1: LVP support for PIC18(L)F1XK50 legacy designs.
2: See Table 3 for location of all peripheral functions.
18
17
16
15
20
19
RC6
RC7
RB7
RB4
RB5
RB6
89
2
3
1
14
15
16
10
11
6
12
13
17181920
7
5
4
MCLR/VPP/RA3
RC5
RC4
RC3
RC6
RC7
RB7
RB4
RB5
RB6
RC1/ICSPCLK
RC0/ICSPDAT
VUSB3V3
RA1/D-/ICSPCLK(1)
RA0/D+/ICSPDAT(1)
Vss
VDD
RA4
RA5
RC2
QFN (4x4)
Note 1: LVP support for PIC18(L)F1XK50 legacy designs.
2: See Table 3 for location of all peripheral functions.
PIC16(L)F1459
2012 Microchip Technology Inc. Preliminary DS41639A-page 7
PIC16(L)F145X
TABLE 1: 14-PIN ALLOCATION TABLE (PIC16(L)F1454)
I/O
14-Pin PDIP/SOIC/TSSOP
16-Pin QFN
ADC
Reference
Comparator
Timer
CWG
USB
EUSART
PWM
MSSP
Interrupt
Basic
RA0 13 12 D+ IOC ICSPDAT(3)
RA1 12 11 D- IOC ICSPCLK(3)
RA2
RA3 4 3 T1G(2) SS(2) IOC MCLR
VPP
RA4 3 2 SOSCO
T1G(1) SDO(2) IOC CLKOUT
OSC2
CLKR(1)
RA5 2 1 SOSCI
T1CKI
PWM2(2) IOC CLKIN
OSC1
RC0 10 9 SCL
SCK
ICSPDAT
RC1 9 8 SDA
SDI
INT ICSPCLK
RC2 8 7 SDO(1)
RC3 7 6 PWM2(1) SS(1) CLKR(2)
RC4 6 5 TK
CK
RC5 5 4 T0CKI RX
DT
PWM1
VDD 116 VDD
VSS 14 13 VSS
VUSB3V311 10 VUSB3V3
Note 1: Default location for peripheral pin function. Alternate location can be selected using the APFCON register.
2: Alternate location for peripheral pin function selected by the APFCON register.
3: LVP support for PIC18(L)F1XK50 legacy designs.
PIC16(L)F145X
DS41639A-page 8 Preliminary 2012 Microchip Technology Inc.
TABLE 2: 14-PIN ALLOCATION TABLE (PIC16(L)F1455)
I/O
14-Pin PDIP/SOIC/TSSOP
16-Pin QFN
ADC
Reference
Comparator
Timer
CWG
USB
EUSART
PWM
MSSP
Interrupt
Basic
RA0 13 12 D+ IOC ICSPDAT(3)
RA1 12 11 D- IOC ICSPCLK(3)
RA2
RA3 4 3 T1G(2) SS(2) IOC MCLR
VPP
RA4 3 2 AN3 SOSCO
T1G(1) SDO(2) IOC CLKOUT
OSC2
CLKR(1)
RA5 2 1 SOSCI
T1CKI
PWM2(2) IOC CLKIN
OSC1
RC0 10 9AN4 VREF+C1IN+
C2IN+
SCL
SCK
ICSPDAT
RC1 9 8 AN5 C1IN1-
C2IN1-
CWGFLT SDA
SDI
INT ICSPCLK
RC2 8 7 AN6 DACOUT1 C1IN2-
C2IN2-
SDO(1)
RC3 7 6 AN7 DACOUT2 C1IN3-
C2IN3-
PWM2(1) SS(1) CLKR(2)
RC4 6 5 C1OUT
C2OUT
CWG1B TK
CK
RC5 5 4 T0CKI CWG1A RX
DT
PWM1
VDD 116 VDD
VSS 14 13 VSS
VUSB3V311 10 VUSB3V3
Note 1: Default location for peripheral pin function. Alternate location can be selected using the APFCON register.
2: Alternate location for peripheral pin function selected by the APFCON register.
3: LVP support for PIC18(L)F1XK50 legacy designs.
2012 Microchip Technology Inc. Preliminary DS41639A-page 9
PIC16(L)F145X
TABLE 3: 20-PIN ALLOCATION TABLE (PIC16(L)F1459)
I/O
20-Pin PDIP/SOIC/SSOP
20-Pin QFN
ADC
Reference
Comparator
Timer
CWG
USB
EUSART
PWM
MSSP
Interrupt
Basic
RA0 19 16 D+ IOC ICSPDAT(3)
RA1 18 15 D- IOC ICSPCLK(3)
RA2
RA3 4 1 T1G(2) SS(2) IOC MCLR
VPP
RA4 320 AN3 SOSCO
T1G(1) IOC OSC2
CLKOUT
CLKR(1)
RA5 219 SOSCI
T1CKI
IOC OSC1
CLKIN
RB4 13 10 AN10 SDA
SDI
IOC
RB5 12 9AN11 RX
DX
IOC
RB6 11 8 SCL
SCK
IOC
RB7 10 7 TX
CK
IOC
RC0 16 13 AN4 VREF+ C1IN+
C2IN+
ICSPDAT
RC1 15 12 AN5 C1IN1-
C2IN1-
CWGFLT INT ICSPCLK
RC2 14 11 AN6 DACOUT1 C1IN2-
C2IN2-
RC3 7 4 AN7 DACOUT2 C1IN3-
C2IN3-
—— CLKR(2)
RC4 6 3 C1OUT
C2OUT
CWG1B
RC5 5 2 T0CKI CWG1A PWM1
RC6 8 5 AN8 PWM2 SS(1)
RC7 9 6 AN9 SDO
VDD 118 VDD
VSS 20 17 VSS
VUSB3V317 14 VUSB3V3
Note 1: Default location for peripheral pin function. Alternate location can be selected using the APFCON register.
2: Alternate location for peripheral pin function selected by the APFCON register.
3: LVP support for PIC18(L)F1XK50 legacy designs.
PIC16(L)F145X
DS41639A-page 10 Preliminary 2012 Microchip Technology Inc.
Table of Contents
1.0 Device Overview ........................................................................................................................................................................ 13
2.0 Enhanced Mid-Range CPU ........................................................................................................................................................ 21
3.0 Memory Organization ................................................................................................................................................................. 23
4.0 Device Configuration .................................................................................................................................................................. 51
5.0 Oscillator Module (With Fail-Safe Clock Monitor)....................................................................................................................... 57
6.0 Resets ........................................................................................................................................................................................ 79
7.0 Reference Clock Module ............................................................................................................................................................ 87
8.0 Interrupts .................................................................................................................................................................................... 91
9.0 Power-Down Mode (Sleep) ...................................................................................................................................................... 103
10.0 Watchdog Timer (WDT) ........................................................................................................................................................... 107
11.0 Flash Program Memory Control ............................................................................................................................................... 112
12.0 I/O Ports ................................................................................................................................................................................... 129
13.0 Interrupt-On-Change ................................................................................................................................................................ 143
14.0 Fixed Voltage Reference (FVR) (PIC16(L)F1455/9 only)......................................................................................................... 149
15.0 Temperature Indicator Module (PIC16(L)F1455/9 only)........................................................................................................... 151
16.0 Analog-to-Digital Converter (ADC) Module
(PIC16(L)F1455/9 only) ............................................................................................................................................................. 153
17.0 Digital-to-Analog Converter (DAC) Module
(PIC16(L)F1455/9 only) ............................................................................................................................................................. 169
18.0 Comparator Module
(PIC16(L)F1455/9 only) ............................................................................................................................................................. 173
19.0 Timer0 Module ......................................................................................................................................................................... 183
20.0 Timer1 Module with Gate Control............................................................................................................................................. 187
21.0 Timer2 Module ......................................................................................................................................................................... 199
22.0 Master Synchronous Serial Port (MSSP) Module .................................................................................................................... 203
23.0 Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART) ............................................................... 257
24.0 Pulse Width Modulation (PWM) Module................................................................................................................................... 287
25.0 Complementary Waveform Generator (CWG) Module
(PIC16(L)F1455/9 only)293
26.0 Universal Serial Bus (USB) ...................................................................................................................................................... 309
27.0 In-Circuit Serial Programming™ (ICSP™) ............................................................................................................................... 337
28.0 Instruction Set Summary .......................................................................................................................................................... 339
29.0 Electrical Specifications............................................................................................................................................................ 353
30.0 DC and AC Characteristics Graphs and Charts ....................................................................................................................... 383
31.0 Development Support............................................................................................................................................................... 385
32.0 Packaging Information.............................................................................................................................................................. 389
Appendix A: Data Sheet Revision History.......................................................................................................................................... 407
Index .................................................................................................................................................................................................. 409
The Microchip Web Site..................................................................................................................................................................... 415
Customer Change Notification Service .............................................................................................................................................. 415
Customer Support .............................................................................................................................................................................. 415
Reader Response .............................................................................................................................................................................. 416
Product Identification System............................................................................................................................................................. 417
2012 Microchip Technology Inc. Preliminary DS41639A-page 11
PIC16(L)F145X
TO OUR VALUED CUSTOMERS
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and
enhanced as new volumes and updates are introduced.
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via
E-mail at docerrors@microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150. We
welcome your feedback.
Most Current Data Sheet
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:
http://www.microchip.com
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.
The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).
Errata
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision
of silicon and revision of document to which it applies.
To determine if an errata sheet exists for a particular device, please check with one of the following:
Microchip’s Worldwide Web site; http://www.microchip.com
Your local Microchip sales office (see last page)
When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are
using.
Customer Notification System
Register on our web site at www.microchip.com to receive the most current information on all of our products.
PIC16(L)F145X
DS41639A-page 12 Preliminary 2012 Microchip Technology Inc.
NOTES:
2012 Microchip Technology Inc. Preliminary DS41639A-page 13
PIC16(L)F1454/5/9
1.0 DEVICE OVERVIEW
The PIC16(L)F1454/5/9 are described within this data
sheet. They are available in 14/20-pin packages.
Figure 1-1 shows a block diagram of the
PIC16(L)F1454/5/9 devices. Tables 1-2, 1-3 and 1-4
show the pinout descriptions.
Reference Tab l e 1 - 1 for peripherals available per
device.
TABLE 1-1: DEVICE PERIPHERAL SUMMARY
Peripheral
PIC16F1454
PIC16LF1454
PIC16F1455
PIC16LF1455
PIC16F1459
PIC16LF1459
Analog-to-Digital Converter (ADC) ●●
Clock Reference ●●●
Complementary Wave Generator (CWG) ●●
Digital-to-Analog Converter (DAC) ●●
Enhanced Universal Synchronous/Asynchronous Receiver/Transmitter
(EUSART)
●●●
Fixed Voltage Reference (FVR) ●●
Temperature Indicator ●●
Universal Serial Bus (USB) ●●●
Comparators
C1 ●●
C2 ●●
Master Synchronous Serial Ports
MSSP1 ●●●
PWM Modules
PWM1 ●●●
PWM2 ●●●
Timers
Timer0 ●●●
Timer1 ●●●
Timer2 ●●●
PIC16(L)F1454/5/9
DS41639A-page 14 Preliminary 2012 Microchip Technology Inc.
FIGURE 1-1: PIC16(L)F1454/5/9 BLOCK DIAGRAM
PORTC
Note 1: PIC16(L)F1455/9 only.
2: PIC16(L)F1459 only.
CPU
Program
Flash Memory
RAM
Timing
Generation
INTRC
Oscillator
MCLR
(Figure 2-1)
Timer2Timer1Timer0
PWM1 PWM2
PORTA
CWG1
(1)
ADC
10-Bit(1) FVR(1)
Tem p.
Indicator(1)
OSC1/CLKIN
OSC2/CLKOUT
MSSP1
C2(1)
C1(1)
DAC(1)
PORTB(2)
EUSART
CLKRUSB
2012 Microchip Technology Inc. Preliminary DS41639A-page 15
PIC16(L)F1454/5/9
TABLE 1-2: PIC16(L)F1454 PINOUT DESCRIPTION
Name Function Input
Type
Output
Type Description
RA0/D+/ICSPDAT(3) RA0 TTL CMOS General purpose I/O.
D+ XTAL XTAL USB differential plus line.
ICSPDAT ST CMOS ICSP™ Data I/O.
RA1/D-/ICSPCLK(3) RA1 TTL CMOS General purpose I/O.
D- XTAL XTAL USB differential minus line.
ICSPCLK ST ICSP Programming Clock.
RA3/VPP/T1G(2)/SS(2)/MCLR RA3 TTL General purpose input with IOC and WPU.
VPP HV Programming voltage.
T1G ST Timer1 Gate input.
SS ST Slave Select input.
MCLR ST Master Clear with internal pull-up.
RA4/SOSCO/CLKOUT/
T1G(1)/SDO(2)/CLKR(1)/OSC2
RA4 TTL CMOS General purpose I/O.
SOSCO XTAL XTAL Secondary Oscillator Connection.
CLKOUT CMOS FOSC/4 output.
T1G ST Timer1 Gate input.
SDO CMOS SPI data output.
CLKR CMOS Clock reference output.
OSC2 XTAL XTAL Primary Oscillator connection.
RA5/CLKIN/SOSCI/T1CKI/
PWM2(2)/OSC1
RA5 TTL CMOS General purpose I/O.
CLKIN CMOS External clock input (EC mode).
SOSCI XTAL XTAL Secondary Oscillator Connection.
T1CKI ST Timer1 clock input.
PWM2 CMOS PWM output.
OSC1 XTAL XTAL Primary Oscillator Connection.
RC0/SCL/SCK/ICSPDAT RC0 TTL CMOS General purpose I/O.
SCL I2CODI
2C™ clock.
SCK ST CMOS SPI clock.
ICSPDAT ST CMOS ICSP™ Data I/O.
RC1/SDA/SDI/INT/ICSPCLK RC1 TTL CMOS General purpose I/O.
SDA I2CODI
2C data input/output.
SDI CMOS SPI data input.
INT ST External input.
ICSPCLK ST ICSP Programming Clock.
RC2/SDO(1) RC2 TTL CMOS General purpose I/O.
SDO CMOS SPI data output.
RC3/PWM2(1)/SS(1)/CLKR(2) RC3 TTL CMOS General purpose I/O.
PWM2 CMOS PWM output.
SS ST Slave Select input.
CLKR CMOS Clock reference output.
Legend: AN = Analog input or output CMOS= CMOS compatible input or output OD = Open Drain
TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels I2C™ = Schmitt Trigger input with I2C
HV = High Voltage XTAL = Crystal levels
Note 1: Default location for peripheral pin function. Alternate location can be selected using the APFCON register.
2: Alternate location for peripheral pin function selected by the APFCON register.
3: LVP support for PIC18(L)F1XK50 legacy designs.
PIC16(L)F1454/5/9
DS41639A-page 16 Preliminary 2012 Microchip Technology Inc.
RC4/TX/CK RC4 TTL CMOS General purpose I/O.
TX CMOS USART asynchronous transmit.
CK ST CMOS USART synchronous clock.
RC5/T0CKI/RX/DT/PWM1 RC5 TTL CMOS General purpose I/O.
T0CKI ST Timer0 clock input.
RX ST USART asynchronous input.
DT ST CMOS USART synchronous data.
PWM1 CMOS PWM output.
VDD VDD Power Positive supply.
VSS VSS Power Ground reference.
VUSB3V3VUSB3V3Power Positive supply for USB transceiver.
TABLE 1-2: PIC16(L)F1454 PINOUT DESCRIPTION (CONTINUED)
Name Function Input
Type
Output
Type Description
Legend: AN = Analog input or output CMOS= CMOS compatible input or output OD = Open Drain
TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels I2C™ = Schmitt Trigger input with I2C
HV = High Voltage XTAL = Crystal levels
Note 1: Default location for peripheral pin function. Alternate location can be selected using the APFCON register.
2: Alternate location for peripheral pin function selected by the APFCON register.
3: LVP support for PIC18(L)F1XK50 legacy designs.
2012 Microchip Technology Inc. Preliminary DS41639A-page 17
PIC16(L)F1454/5/9
TABLE 1-3: PIC16(L)F1455 PINOUT DESCRIPTION
Name Function Input
Type
Output
Type Description
RA0/D+/ICSPDAT(3) RA0 TTL CMOS General purpose I/O.
D+ XTAL XTAL USB differential plus line.
ICSPDAT ST CMOS ICSP™ Data I/O.
RA1/D-/ICSPCLK(3) RA1 TTL CMOS General purpose I/O.
D- XTAL XTAL USB differential minus line.
ICSPCLK ST ICSP Programming Clock.
RA3/VPP/T1G(2)/SS(2)/MCLR RA3 TTL General purpose input with IOC and WPU.
VPP HV Programming voltage.
T1G ST Timer1 Gate input.
SS ST Slave Select input.
MCLR ST Master Clear with internal pull-up.
RA4/AN3/SOSCO/CLKOUT/
T1G(1)/SDO(2)/CLKR(1)/OSC2
RA4 TTL CMOS General purpose I/O.
AN3 AN A/D Channel input.
SOSCO XTAL XTAL Secondary Oscillator Connection.
CLKOUT CMOS FOSC/4 output.
T1G ST Timer1 Gate input.
SDO CMOS SPI data output.
CLKR CMOS Clock reference output.
OSC2 XTAL XTAL Primary Oscillator connection.
RA5/CLKIN/SOSCI/T1CKI/
PWM2(2)/OSC1
RA5 TTL CMOS General purpose I/O.
CLKIN CMOS External clock input (EC mode).
SOSCI XTAL XTAL Secondary Oscillator Connection.
T1CKI ST Timer1 clock input.
PWM2 CMOS PWM output.
OSC1 XTAL XTAL Primary Oscillator Connection.
RC0/AN4/VREF+/C1IN+/C2IN+/
SCL/SCK/ICSPDAT
RC0 TTL CMOS General purpose I/O.
AN4 AN A/D Channel input.
VREF+ AN Positive Voltage Reference input.
C1IN+ AN Comparator positive input.
C2IN+ AN Comparator positive input.
SCL I2CODI
2C™ clock.
SCK ST CMOS SPI clock.
ICSPDAT ST CMOS ICSP™ Data I/O.
Legend: AN = Analog input or output CMOS= CMOS compatible input or output OD = Open Drain
TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels I2C™ = Schmitt Trigger input with I2C
HV = High Voltage XTAL = Crystal levels
Note 1: Default location for peripheral pin function. Alternate location can be selected using the APFCON register.
2: Alternate location for peripheral pin function selected by the APFCON register.
3: LVP support for PIC18(L)F1XK50 legacy designs.
PIC16(L)F1454/5/9
DS41639A-page 18 Preliminary 2012 Microchip Technology Inc.
RC1/AN5/C1IN1-/
C2IN1-/CWGFLT/SDA/
SDI/INT/ICSPCLK
RC1 TTL CMOS General purpose I/O.
AN5 AN A/D Channel input.
C1IN1- AN Comparator negative input.
C2IN1- AN Comparator negative input.
CWGFLT ST Complementary Waveform Generator Fault input.
SDA I2CODI
2C™ data input/output.
SDI CMOS SPI data input.
INT ST External input.
ICSPCLK ST ICSP™ Programming Clock.
RC2/AN6/DACOUT1/
C1IN2-/C2IN2-/SDO(1)
RC2 TTL CMOS General purpose I/O.
AN6 AN A/D Channel input.
DACOUT1 AN Digital-to-Analog Converter output.
C1IN2- AN Comparator negative input.
C2IN2- AN Comparator negative input.
SDO CMOS SPI data output.
RC3/AN7/DACOUT2/
C1IN3-/C2IN3-/PWM2(1)/
SS(1)/CLKR(2)
RC3 TTL CMOS General purpose I/O.
AN7 AN A/D Channel input.
DACOUT2 AN Digital-to-Analog Converter output.
C1IN3- AN Comparator negative input.
C2IN3- AN Comparator negative input.
PWM2 CMOS PWM output.
CLC2IN0 ST Configurable Logic Cell source input.
CLKR CMOS Clock reference output.
RC4/C1OUT/C2OUT/
CWG1B/TX/CK
RC4 TTL CMOS General purpose I/O.
C1OUT CMOS Comparator output.
C2OUT CMOS Comparator output.
CWG1B CMOS CWG complementary output.
TX CMOS USART asynchronous transmit.
CK ST CMOS USART synchronous clock.
RC5/T0CKI/CWG1A/RX/DT/
PWM1
RC5 TTL CMOS General purpose I/O.
T0CKI ST Timer0 clock input.
CWG1A CMOS CWG complementary output.
RX ST USART asynchronous input.
DT ST CMOS USART synchronous data.
PWM1 CMOS PWM output.
VDD VDD Power Positive supply.
VSS VSS Power Ground reference.
VUSB3V3VUSB3V3Power Positive supply for USB transceiver.
TABLE 1-3: PIC16(L)F1455 PINOUT DESCRIPTION (CONTINUED)
Name Function Input
Type
Output
Type Description
Legend: AN = Analog input or output CMOS= CMOS compatible input or output OD = Open Drain
TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels I2C™ = Schmitt Trigger input with I2C
HV = High Voltage XTAL = Crystal levels
Note 1: Default location for peripheral pin function. Alternate location can be selected using the APFCON register.
2: Alternate location for peripheral pin function selected by the APFCON register.
3: LVP support for PIC18(L)F1XK50 legacy designs.
2012 Microchip Technology Inc. Preliminary DS41639A-page 19
PIC16(L)F1454/5/9
TABLE 1-4: PIC16(L)F1459 PINOUT DESCRIPTION
Name Function Input
Type
Output
Type Description
RA0/D+/ICSPDAT(3) RA0 TTL CMOS General purpose I/O.
D+ XTAL XTAL USB differential plus line.
ICSPDAT ST CMOS ICSP™ Data I/O.
RA1/D-/ICSPCLK(3) RA1 TTL CMOS General purpose I/O.
D- XTAL XTAL USB differential minus line.
ICSPCLK ST ICSP Programming Clock.
RA3/VPP/T1G(2)/SS(2)/MCLR RA3 TTL General purpose input with IOC and WPU.
VPP HV Programming voltage.
T1G ST Timer1 Gate input.
SS ST Slave Select input.
MCLR ST Master Clear with internal pull-up.
RA4/AN3/SOSCO/CLKOUT/
T1G(1)/CLKR(1)/OSC2
RA4 TTL CMOS General purpose I/O.
AN3 AN A/D Channel input.
SOSCO XTAL XTAL Secondary Oscillator Connection.
CLKOUT CMOS FOSC/4 output.
T1G ST Timer1 Gate input.
CLKR CMOS Clock reference output.
OSC2 XTAL XTAL Primary Oscillator connection.
RA5/CLKIN/SOSCI/T1CKI/
OSC1
RA5 TTL CMOS General purpose I/O.
CLKIN CMOS External clock input (EC mode).
SOSCI XTAL XTAL Secondary Oscillator Connection.
T1CKI ST Timer1 clock input.
OSC1 XTAL XTAL Primary Oscillator Connection.
RB4/AN10/SDA/SDI RB4 TTL CMOS General purpose I/O.
AN10 AN A/D Channel input.
SDA I2CODI
2C data input/output.
SDI CMOS SPI data input.
RB5/AN11/RX/DT RB5 TTL CMOS General purpose I/O.
AN11 AN A/D Channel input.
RX ST USART asynchronous input.
DT ST CMOS USART synchronous data.
RB6/SCL/SCK RB6 TTL CMOS General purpose I/O.
SCL I2CODI
2C™ clock.
SCK ST CMOS SPI clock.
RB7/TX/CK RB7 TTL CMOS General purpose I/O.
TX CMOS USART asynchronous transmit.
CK ST CMOS USART synchronous clock.
Legend: AN = Analog input or output CMOS= CMOS compatible input or output OD = Open Drain
TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels I2C™ = Schmitt Trigger input with I2C
HV = High Voltage XTAL = Crystal levels
Note 1: Default location for peripheral pin function. Alternate location can be selected using the APFCON register.
2: Alternate location for peripheral pin function selected by the APFCON register.
3: LVP support for PIC18(L)F1XK50 legacy designs.
PIC16(L)F1454/5/9
DS41639A-page 20 Preliminary 2012 Microchip Technology Inc.
RC0/AN4/VREF+/C1IN+/C2IN+/
ICSPDAT
RC0 TTL CMOS General purpose I/O.
AN4 AN A/D Channel input.
VREF+ AN Positive Voltage Reference input.
C1IN+ AN Comparator positive input.
C2IN+ AN Comparator positive input.
ICSPDAT ST CMOS ICSP™ Data I/O.
RC1/AN5/C1IN1-/C2IN1-/
CWGFLT/INT/ICSPCLK
RC1 TTL CMOS General purpose I/O.
AN5 AN A/D Channel input.
C1IN1- AN Comparator negative input.
C2IN1- AN Comparator negative input.
CWGFLT ST Complementary Waveform Generator Fault input.
INT ST External input.
ICSPCLK ST ICSP Programming Clock.
RC2/AN6/DACOUT1/
C1IN2-/C2IN2-
RC2 TTL CMOS General purpose I/O.
AN6 AN A/D Channel input.
DACOUT1 AN Digital-to-Analog Converter output.
C1IN2- AN Comparator negative input.
C2IN2- AN Comparator negative input.
RC3/AN7/DACOUT2/
C1IN3-/C2IN3-/CLKR(2)
RC3 TTL CMOS General purpose I/O.
AN7 AN A/D Channel input.
DACOUT2 AN Digital-to-Analog Converter output.
C1IN3- AN Comparator negative input.
C2IN3- AN Comparator negative input.
CLKR CMOS Clock reference output.
RC4/C1OUT/C2OUT/
CWG1B
RC4 TTL CMOS General purpose I/O.
C1OUT CMOS Comparator output.
C2OUT CMOS Comparator output.
CWG1B CMOS CWG complementary output.
RC5/T0CKI/CWG1A/PWM1 RC5 TTL CMOS General purpose I/O.
T0CKI ST Timer0 clock input.
CWG1A CMOS CWG complementary output.
PWM1 CMOS PWM output.
RC6/AN8/SS(1)/PWM2 RC6 TTL CMOS General purpose I/O.
AN8 AN A/D Channel input.
SS ST Slave Select input.
PWM2 CMOS PWM output.
RC7/AN9/SDO RC7 TTL CMOS General purpose I/O.
AN9 AN A/D Channel input.
SDO CMOS SPI data output.
VDD VDD Power Positive supply.
VSS VSS Power Ground reference.
VUSB3V3VUSB3V3Power Positive supply for USB transceiver.
TABLE 1-4: PIC16(L)F1459 PINOUT DESCRIPTION (CONTINUED)
Name Function Input
Type
Output
Type Description
Legend: AN = Analog input or output CMOS= CMOS compatible input or output OD = Open Drain
TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels I2C™ = Schmitt Trigger input with I2C
HV = High Voltage XTAL = Crystal levels
Note 1: Default location for peripheral pin function. Alternate location can be selected using the APFCON register.
2: Alternate location for peripheral pin function selected by the APFCON register.
3: LVP support for PIC18(L)F1XK50 legacy designs.
2012 Microchip Technology Inc. Preliminary DS41639A-page 21
PIC16(L)F1454/5/9
2.0 ENHANCED MID-RANGE CPU
This family of devices contain an enhanced mid-range
8-bit CPU core. The CPU has 49 instructions. Interrupt
capability includes automatic context saving. The
hardware stack is 16 levels deep and has Overflow and
Underflow Reset capability. Direct, Indirect, and
Relative Addressing modes are available. Two File
Select Registers (FSRs) provide the ability to read
program and data memory.
Automatic Interrupt Context Saving
16-level Stack with Overflow and Underflow
File Select Registers
Instruction Set
FIGURE 2-1: CORE BLOCK DIAGRAM
Data Bus 8
14
Program
Bus
Instruction reg
Program Counter
8 Level Stack
(13-bit)
Direct Addr 7
12
Addr MUX
FSR reg
STATUS reg
MUX
ALU
Instruction
Decode &
Control
Timing
Generation
OSC1/CLKIN
OSC2/CLKOUT
8
8
12
3
Internal
Oscillator
Block
Configuration Data Bus 8
14
Program
Bus
Instruction reg
Program Counter
8 Level Stack
(13-bit)
Direct Addr 7
Addr MUX
FSR reg
STATUS reg
MUX
ALU
W Reg
Instruction
Decode &
Control
Timing
Generation
8
8
3
Internal
Oscillator
Block
Configuration 15 Data Bus 8
14
Program
Bus
Instruction Reg
Program Counter
16-Level Stack
(15-bit)
Direct Addr 7
RAM Addr
Addr MUX
Indirect
Addr
FSR0 Reg
STATUS Reg
MUX
ALU
Instruction
Decode and
Control
Timing
Generation
8
8
3
Internal
Oscillator
Block
Configuration
Flash
Program
Memory RAM
FSR regFSR reg
FSR1 Reg
15
15
MUX
15
Program Memory
Read (PMR)
12
FSR regFSR reg
BSR Reg
5
Power-up
Timer
Power-on
Reset
Watchdog
Timer
VDD
Brown-out
Reset
VSSVDD VSSVDD VSS
PIC16(L)F1454/5/9
DS41639A-page 22 Preliminary 2012 Microchip Technology Inc.
2.1 Automatic Interrupt Context
Saving
During interrupts, certain registers are automatically
saved in shadow registers and restored when returning
from the interrupt. This saves stack space and user
code. See Section 8.5 “Automatic Context Saving”,
for more information.
2.2 16-Level Stack with Overflow and
Underflow
These devices have an external stack memory 15 bits
wide and 16 words deep. A Stack Overflow or Under-
flow will set the appropriate bit (STKOVF or STKUNF)
in the PCON register, and if enabled will cause a soft-
ware Reset. See section Section 3.5 “Stack” for more
details.
2.3 File Select Registers
There are two 16-bit File Select Registers (FSR). FSRs
can access all file registers and program memory,
which allows one Data Pointer for all memory. When an
FSR points to program memory, there is one additional
instruction cycle in instructions using INDF to allow the
data to be fetched. General purpose memory can now
also be addressed linearly, providing the ability to
access contiguous data larger than 80 bytes. There are
also new instructions to support the FSRs. See
Section 3.6 “Indirect Addressing” for more details.
2.4 Instruction Set
There are 49 instructions for the enhanced mid-range
CPU to support the features of the CPU. See
Section 28.0 “Instruction Set Summary for more
details.
2012 Microchip Technology Inc. Preliminary DS41639A-page 23
PIC16(L)F1454/5/9
3.0 MEMORY ORGANIZATION
These devices contain the following types of memory:
Program Memory
- Configuration Words
- Device ID
-User ID
- Flash Program Memory
Data Memory
- Core Registers
- Special Function Registers
- Dual-Port General Purpose RAM
- General Purpose RAM
- Common RAM
The following features are associated with access and
control of program memory and data memory:
PCL and PCLATH
•Stack
Indirect Addressing
3.1 Program Memory Organization
The enhanced mid-range core has a 15-bit program
counter capable of addressing a 32K x 14 program
memory space. Table 3-1 shows the memory sizes
implemented. Accessing a location above these
boundaries will cause a wrap-around within the
implemented memory space. The Reset vector is at
0000h and the interrupt vector is at 0004h (See
Figure 3-1).
TABLE 3-1: DEVICE SIZES AND ADDRESSES
Device Program Memory
Space (Words)
Last Program Memory
Address
High-Endurance Flash
Memory Address Range (1)
PIC16F1454
PIC16LF1454 8,192 1FFFh 1F80h-1FFFh
PIC16F1455
PIC16LF1455 8,192 1FFFh 1F80h-1FFFh
PIC16F1459
PIC16LF1459 8,192 1FFFh 1F80h-1FFFh
Note 1: High-endurance Flash applies to low byte of each address in the range.
PIC16(L)F1454/5/9
DS41639A-page 24 Preliminary 2012 Microchip Technology Inc.
FIGURE 3-1: PROGRAM MEMORY MAP
AND STACK FOR
PIC16(L)F1454/5/9
3.1.1 READING PROGRAM MEMORY AS
DATA
There are two methods of accessing constants in pro-
gram memory. The first method is to use tables of
RETLW instructions. The second method is to set an
FSR to point to the program memory.
3.1.1.1 RETLW Instruction
The RETLW instruction can be used to provide access
to tables of constants. The recommended way to create
such a table is shown in Example 3-1.
EXAMPLE 3-1: RETLW INSTRUCTION
The BRW instruction makes this type of table very sim-
ple to implement. If your code must remain portable
with previous generations of microcontrollers, then the
BRW instruction is not available so the older table read
method must be used.
PC<14:0>
15
0000h
0004h
Stack Level 0
Stack Level 15
Reset Vector
Interrupt Vector
Stack Level 1
0005h
On-chip
Program
Memory
Page 0
07FFh
Rollover to Page 0
0800h
0FFFh
1000h
7FFFh
Page 1
Rollover to Page 3
Page 2
Page 3
17FFh
1800h
1FFFh
2000h
CALL, CALLW
RETURN, RETLW
Interrupt, RETFIE
constants
BRW ;Add Index in W to
;program counter to
;select data
RETLW DATA0 ;Index0 data
RETLW DATA1 ;Index1 data
RETLW DATA2
RETLW DATA3
my_function
;… LOTS OF CODE…
MOVLW DATA_INDEX
call constants
;… THE CONSTANT IS IN W
2012 Microchip Technology Inc. Preliminary DS41639A-page 25
PIC16(L)F1454/5/9
3.1.1.2 Indirect Read with FSR
The program memory can be accessed as data by set-
ting bit 7 of the FSRxH register and reading the match-
ing INDFx register. The MOVIW instruction will place the
lower eight bits of the addressed word in the W register.
Writes to the program memory cannot be performed via
the INDF registers. Instructions that access the pro-
gram memory via the FSR require one extra instruction
cycle to complete. Example 3-2 demonstrates access-
ing the program memory via an FSR.
The High directive will set bit<7> if a label points to a
location in program memory.
EXAMPLE 3-2: ACCESSING PROGRAM
MEMORY VIA FSR
constants
RETLW DATA0 ;Index0 data
RETLW DATA1 ;Index1 data
RETLW DATA2
RETLW DATA3
my_function
;… LOTS OF CODE…
MOVLW LOW constants
MOVWF FSR1L
MOVLW HIGH constants
MOVWF FSR1H
MOVIW 0[FSR1]
;THE PROGRAM MEMORY IS IN W
PIC16(L)F1454/5/9
DS41639A-page 26 Preliminary 2012 Microchip Technology Inc.
3.2 Data Memory Organization
The data memory is partitioned in 32 memory banks
with 128 bytes in a bank. Each bank consists of
(Figure 3-2):
12 core registers
20 Special Function Registers (SFR)
Up to 80 bytes of General Purpose RAM (GPR)
Up to 80 bytes of Dual-Port General Purpose
RAM (DPR)
16 bytes of common RAM
The active bank is selected by writing the bank number
into the Bank Select Register (BSR). Unimplemented
memory will read as0’. All data memory can be
accessed either directly (via instructions that use the
file registers) or indirectly via the two File Select
Registers (FSR). See Section 3.6 “Indirect
Addressing for more information.
Data memory uses a 12-bit address. The upper 7-bits
of the address define the Bank address and the lower
5-bits select the registers/RAM in that bank.
3.2.1 CORE REGISTERS
The core registers contain the registers that directly
affect the basic operation. The core registers occupy
the first 12 addresses of every data memory bank
(addresses x00h/x08h through x0Bh/x8Bh). These
registers are listed below in Ta ble 3 - 2 . For detailed
information, see Table 3-11 .
TABLE 3-2: CORE REGISTERS
Addresses BANKx
x00h or x80h INDF0
x01h or x81h INDF1
x02h or x82h PCL
x03h or x83h STATUS
x04h or x84h FSR0L
x05h or x85h FSR0H
x06h or x86h FSR1L
x07h or x87h FSR1H
x08h or x88h BSR
x09h or x89h WREG
x0Ah or x8Ah PCLATH
x0Bh or x8Bh INTCON
2012 Microchip Technology Inc. Preliminary DS41639A-page 27
PIC16(L)F1454/5/9
3.2.1.1 STATUS Register
The STATUS register, shown in Register 3-1, contains:
the arithmetic status of the ALU
the Reset status
The STATUS register can be the destination for any
instruction, like any other register. If the STATUS
register is the destination for an instruction that affects
the Z, DC or C bits, then the write to these three bits is
disabled. These bits are set or cleared according to the
device logic. Furthermore, the TO and PD bits are not
writable. Therefore, the result of an instruction with the
STATUS register as destination may be different than
intended.
For example, CLRF STATUS will clear the upper three
bits and set the Z bit. This leaves the STATUS register
as ‘000u u1uu’ (where u = unchanged).
It is recommended, therefore, that only BCF, BSF,
SWAPF and MOVWF instructions are used to alter the
STATUS register, because these instructions do not
affect any Status bits. For other instructions not
affecting any Status bits (Refer to Section 28.0
“Instruction Set Summary”).
3.3 Register Definitions: Status
Note 1: The C and DC bits operate as Borrow
and Digit Borrow out bits, respectively, in
subtraction.
REGISTER 3-1: STATUS: STATUS REGISTER
U-0 U-0 U-0 R-1/q R-1/q R/W-0/u R/W-0/u R/W-0/u
TO PD ZDC
(1) C(1)
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared q = Value depends on condition
bit 7-5 Unimplemented: Read as ‘0
bit 4 TO: Time-Out bit
1 = After power-up, CLRWDT instruction or SLEEP instruction
0 = A WDT time-out occurred
bit 3 PD: Power-Down bit
1 = After power-up or by the CLRWDT instruction
0 = By execution of the SLEEP instruction
bit 2 Z: Zero bit
1 = The result of an arithmetic or logic operation is zero
0 = The result of an arithmetic or logic operation is not zero
bit 1 DC: Digit Carry/Digit Borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions)(1)
1 = A carry-out from the 4th low-order bit of the result occurred
0 = No carry-out from the 4th low-order bit of the result
bit 0 C: Carry/Borrow bit(1) (ADDWF, ADDLW, SUBLW, SUBWF instructions)(1)
1 = A carry-out from the Most Significant bit of the result occurred
0 = No carry-out from the Most Significant bit of the result occurred
Note 1: For Borrow, the polarity is reversed. A subtraction is executed by adding the two’s complement of the
second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high-order or low-order
bit of the source register.
PIC16(L)F1454/5/9
DS41639A-page 28 Preliminary 2012 Microchip Technology Inc.
3.3.1 SPECIAL FUNCTION REGISTER
The Special Function Registers are registers used by
the application to control the desired operation of
peripheral functions in the device. The Special Function
Registers occupy the 20 bytes after the core registers of
every data memory bank (addresses x0Ch/x8Ch
through x1Fh/x9Fh). The registers associated with the
operation of the peripherals are described in the appro-
priate peripheral chapter of this data sheet.
3.3.2 GENERAL PURPOSE RAM
There are up to 80 bytes of GPR in each data memory
bank. The Special Function Registers occupy the 20
bytes after the core registers of every data memory
bank (addresses x0Ch/x8Ch through x1Fh/x9Fh).
3.3.2.1 Linear Access to GPR
The general purpose RAM can be accessed in a
non-banked method via the FSRs. This can simplify
access to large memory structures. See Section 3.6.2
“Linear Data Memory” for more information.
Refer to Table 3-3 for Dual Port and USB addressing
information.
3.3.3 DUAL-PORT RAM
Part of the data memory is mapped to a special dual
access RAM. When the USB module is disabled, the
GPRs in these banks are used like any other GPR in
the data memory space.
When the USB module is enabled, the memory in these
banks is allocated as buffer RAM for USB operation.
This area is shared between the microcontroller core
and the USB Serial Interface Engine (SIE) and is used
to transfer data directly between the two.
It is theoretically possible to use the areas of USB RAM
that are not allocated as USB buffers for normal
scratchpad memory or other variable storage. In practice,
the dynamic nature of buffer allocation makes this risky at
best. Additional information on USB RAM and buffer
operation is provided in Section 26.0 “Universal Serial
Bus (USB)”.
3.3.4 COMMON RAM
There are 16 bytes of common RAM accessible from all
banks.
TABLE 3-3: DUAL PORT RAM ADDRESSING
Port 0 Port 1
CPU Banked Address CPU Linear Address USB Banked Address USB Linear Address
020 - 06F 2000 - 204F 020 - 06F 2000 - 204F
0A0 - 0EF 2050 - 209F 0A0 - 0EF 2050 - 209F
120 - 16F 20A0 - 20EF 120 - 16F 20A0 - 20EF
1A0 - 1EF 20F0 - 213F 1A0 - 1EF 20F0 - 213F
220 - 26F 2140 - 218F 220 - 26F 2140 - 218F
2A0 - 2EF 2190 - 21DF 2A0 - 2EF 2190 - 21DF
320 - 32F 21E0 - 21EF 320 - 32F 21E0 - 21EF
370 - 37F (1) 370 - 37F (1)
Note 1: Accessible from banked memory only.
2012 Microchip Technology Inc. Preliminary DS41639A-page 29
PIC16(L)F1454/5/9
FIGURE 3-2: BANKED MEMORY
PARTITIONING
3.3.5 DEVICE MEMORY MAPS
The memory maps for PIC16(L)F1454/5/9 are as
shown in Table 3-8 and Table 3-9.
0Bh
0Ch
1Fh
20h
6Fh
70h
7Fh
00h
Common RAM
(16 bytes)
Dual Port RAM
(80 bytes maximum)
Core Registers
(12 bytes)
Special Function Registers
(20 bytes maximum)
Memory Region
7-bit Bank Offset
(1)
General Purpose RAM
(80 bytes maximum)
OR
Note 1: If the USB module is disabled, data
memory is GPR. If enabled, data
memory can be DPR. Refer to Mem-
ory Map for RAM type details.
PIC16(L)F1454/5/9
DS41639A-page 30 Preliminary 2012 Microchip Technology Inc.
TABLE 3-4: PIC16(L)F1454 MEMORY MAP, BANK 0-7
BANK 0 BANK 1 BANK 2 BANK 3 BANK 4 BANK 5 BANK 6 BANK 7
000h
Core Registers
(Tab l e 3- 2)
080h
Core Registers
(Tab l e 3- 2)
100h
Core Registers
(Table 3-2)
180h
Core Registers
(Table 3-2)
200h
Core Registers
(Table 3-2)
280h
Core Registers
(Table 3-2)
300h
Core Registers
(Table 3-2)
380h
Core Registers
(Table 3-2)
00Bh 08Bh 10Bh 18Bh 20Bh 28Bh 30Bh 38Bh
00Ch PORTA 08Ch TRISA 10Ch LATA 18Ch 20Ch WPUA 28Ch 30Ch 38Ch
00Dh 08Dh 10Dh 18Dh 20Dh 28Dh 30Dh 38Dh
00Eh PORTC 08Eh TRISC 10Eh LATC 18Eh —20Eh—28Eh—30Eh—38Eh
00Fh —08Fh—10Fh—18Fh—20Fh—28Fh—30Fh—38Fh
010h —090h—110h—190h—210h—290h310h 390h
011h PIR1 091h PIE1 111h 191h PMADRL 211h SSP1BUF 291h 311h 391h IOCAP
012h PIR2 092h PIE2 112h 192h PMADRH 212h SSP1ADD 292h 312h 392h IOCAN
013h —093h—113h193h PMDATL 213h SSP1MSK 293h 313h 393h IOCAF
014h —094h—114h194h PMDATH 214h SSP1STAT 294h 314h 394h
015h TMR0 095h OPTION_REG 115h 195h PMCON1 215h SSP1CON1 295h 315h 395h
016h TMR1L 096h PCON 116h BORCON 196h PMCON2 216h SSP1CON2 296h 316h 396h
017h TMR1H 097h WDTCON 117h 197h VREGCON 217h SSP1CON3 297h 317h 397h
018h T1CON 098h OSCTUNE 118h —198h—218h298h 318h 398h
019h T1GCON 099h OSCCON 119h —199h
RCREG 219h —299h 319h 399h
01Ah TMR2 09Ah OSCSTAT 11Ah —19Ah
TXREG 21Ah —29Ah—31Ah—39Ah
CLKRCON
01Bh PR2 09Bh —11Bh—19Bh
SPBRG 21Bh —29Bh—31Bh39Bh CRCON
01Ch T2CON 09Ch 11Ch 19Ch SPBRGH 21Ch 29Ch 31Ch 39Ch
01Dh 09Dh 11Dh APFCON 19Dh RCSTA 21Dh 29Dh 31Dh 39Dh
01Eh 09Eh 11Eh 19Eh TXSTA 21Eh 29Eh 31Eh 39Eh
01Fh 09Fh 11Fh —19Fh
BAUDCON 21Fh 29Fh 31Fh 39Fh
020h
Dual-Port
General
Purpose
Register
80 Bytes
0A0h
Dual-Port
General
Purpose
Register
80 Bytes
120h
Dual-Port
General
Purpose
Register
80 Bytes
1A0h
Dual-Port
General
Purpose
Register
80 Bytes
220h
Dual-Port
General
Purpose
Register
80 Bytes
2A0h
Dual-Port
General
Purpose
Register
80 Bytes
320h Dual-Port
General
Purpose
Register
16Bytes
3A0h
General
Purpose
Register
80 Bytes
0EFh
32Fh
330h General
Purpose
Register
64 Bytes
06Fh 16Fh 1EFh 26Fh 2EFh 36Fh 3EFh
070h
Dual-Port
Common RAM
0F0h Common RAM
(Accesses
70h – 7Fh)
170h Common RAM
(Accesses
70h – 7Fh)
1F0h Common RAM
(Accesses
70h – 7Fh)
270h Common RAM
(Accesses
70h – 7Fh)
2F0h Common RAM
(Accesses
70h – 7Fh)
370h Common RAM
(Accesses
70h – 7Fh)
3F0h Common RAM
(Accesses
70h – 7Fh)
07Fh 0FFh 17Fh 1FFh 27Fh 2FFh 37Fh 3FFh
Legend: = Unimplemented data memory locations, read as ‘0’.
2012 Microchip Technology Inc. Preliminary DS41639A-page 31
PIC16(L)F1454/5/9
TABLE 3-5: PIC16(L)F1455 MEMORY MAP, BANK 0-7
BANK 0 BANK 1 BANK 2 BANK 3 BANK 4 BANK 5 BANK 6 BANK 7
000h
Core Registers
(Tab l e 3- 2)
080h
Core Registers
(Tab l e 3- 2)
100h
Core Registers
(Table 3-2)
180h
Core Registers
(Table 3-2)
200h
Core Registers
(Table 3-2)
280h
Core Registers
(Table 3-2)
300h
Core Registers
(Table 3-2)
380h
Core Registers
(Table 3-2)
00Bh 08Bh 10Bh 18Bh 20Bh 28Bh 30Bh 38Bh
00Ch PORTA 08Ch TRISA 10Ch LATA 18Ch ANSELA 20Ch WPUA 28Ch 30Ch 38Ch
00Dh 08Dh 10Dh 18Dh 20Dh 28Dh 30Dh 38Dh
00Eh PORTC 08Eh TRISC 10Eh LATC 18Eh ANSELC 20Eh —28Eh—30Eh—38Eh
00Fh —08Fh—10Fh—18Fh—20Fh—28Fh—30Fh—38Fh
010h —090h—110h—190h—210h—290h310h 390h
011h PIR1 091h PIE1 111h CM1CON0 191h PMADRL 211h SSP1BUF 291h 311h 391h IOCAP
012h PIR2 092h PIE2 112h CM1CON1 192h PMADRH 212h SSP1ADD 292h 312h 392h IOCAN
013h —093h 113h CM2CON0 193h PMDATL 213h SSP1MSK 293h 313h 393h IOCAF
014h —094h 114h CM2CON1 194h PMDATH 214h SSP1STAT 294h 314h 394h
015h TMR0 095h OPTION_REG 115h CMOUT 195h PMCON1 215h SSP1CON1 295h 315h 395h
016h TMR1L 096h PCON 116h BORCON 196h PMCON2 216h SSP1CON2 296h 316h 396h
017h TMR1H 097h WDTCON 117h FVRCON 197h VREGCON 217h SSP1CON3 297h 317h 397h
018h T1CON 098h OSCTUNE 118h DACCON0 198h —218h298h 318h 398h
019h T1GCON 099h OSCCON 119h DACCON1 199h RCREG 219h —299h 319h 399h
01Ah TMR2 09Ah OSCSTAT 11Ah —19Ah
TXREG 21Ah —29Ah—31Ah—39Ah
CLKRCON
01Bh PR2 09BhADRESL11Bh —19Bh
SPBRG 21Bh —29Bh—31Bh39Bh CRCON
01Ch T2CON 09Ch ADRESH 11Ch 19Ch SPBRGH 21Ch 29Ch 31Ch 39Ch
01Dh 09Dh ADCON0 11Dh APFCON 19Dh RCSTA 21Dh 29Dh 31Dh 39Dh
01Eh 09Eh ADCON1 11Eh 19Eh TXSTA 21Eh 29Eh 31Eh 39Eh
01Fh 09Fh ADCON2 11Fh —19Fh
BAUDCON 21Fh 29Fh 31Fh 39Fh
020h
Dual-Port
General
Purpose
Register
80 Bytes
0A0h
Dual-Port
General
Purpose
Register
80 Bytes
120h
Dual-Port
General
Purpose
Register
80 Bytes
1A0h
Dual-Port
General
Purpose
Register
80 Bytes
220h
Dual-Port
General
Purpose
Register
80 Bytes
2A0h
Dual-Port
General
Purpose
Register
80 Bytes
320h Dual-Port
General
Purpose
Register
16Bytes
3A0h
General
Purpose
Register
80 Bytes
0EFh
32Fh
330h General
Purpose
Register
64 Bytes
06Fh 16Fh 1EFh 26Fh 2EFh 36Fh 3EFh
070h
Dual-Port
Common RAM
0F0h Common RAM
(Accesses
70h – 7Fh)
170h Common RAM
(Accesses
70h – 7Fh)
1F0h Common RAM
(Accesses
70h – 7Fh)
270h Common RAM
(Accesses
70h – 7Fh)
2F0h Common RAM
(Accesses
70h – 7Fh)
370h Common RAM
(Accesses
70h – 7Fh)
3F0h Common RAM
(Accesses
70h – 7Fh)
07Fh 0FFh 17Fh 1FFh 27Fh 2FFh 37Fh 3FFh
Legend: = Unimplemented data memory locations, read as ‘0’.
PIC16(L)F1454/5/9
DS41639A-page 32 Preliminary 2012 Microchip Technology Inc.
TABLE 3-6: PIC16(L)F1459 MEMORY MAP, BANK 0-7
BANK 0 BANK 1 BANK 2 BANK 3 BANK 4 BANK 5 BANK 6 BANK 7
000h
Core Registers
(Tab l e 3- 2)
080h
Core Registers
(Tab l e 3- 2)
100h
Core Registers
(Table 3-2)
180h
Core Registers
(Table 3-2)
200h
Core Registers
(Table 3-2)
280h
Core Registers
(Table 3-2)
300h
Core Registers
(Table 3-2)
380h
Core Registers
(Table 3-2)
00Bh 08Bh 10Bh 18Bh 20Bh 28Bh 30Bh 38Bh
00Ch PORTA 08Ch TRISA 10Ch LATA 18Ch ANSELA 20Ch WPUA 28Ch 30Ch 38Ch
00Dh PORTB 08Dh TRISB 10Dh LATB 18Dh ANSELB 20Dh WPUB 28Dh 30Dh 38Dh
00Eh PORTC 08Eh TRISC 10Eh LATC 18Eh ANSELC 20Eh —28Eh—30Eh—38Eh
00Fh —08Fh—10Fh—18Fh—20Fh—28Fh—30Fh—38Fh
010h —090h—110h—190h—210h—290h310h 390h
011h PIR1 091h PIE1 111h CM1CON0 191h PMADRL 211h SSP1BUF 291h 311h 391h IOCAP
012h PIR2 092h PIE2 112h CM1CON1 192h PMADRH 212h SSP1ADD 292h 312h 392h IOCAN
013h —093h 113h CM2CON0 193h PMDATL 213h SSP1MSK 293h 313h 393h IOCAF
014h —094h 114h CM2CON1 194h PMDATH 214h SSP1STAT 294h 314h 394h IOCBP
015h TMR0 095h OPTION_REG 115h CMOUT 195h PMCON1 215h SSP1CON1 295h 315h 395h IOCBN
016h TMR1L 096h PCON 116h BORCON 196h PMCON2 216h SSP1CON2 296h 316h 396h IOCBF
017h TMR1H 097h WDTCON 117h FVRCON 197h VREGCON 217h SSP1CON3 297h 317h 397h
018h T1CON 098h OSCTUNE 118h DACCON0 198h —218h298h 318h 398h
019h T1GCON 099h OSCCON 119h DACCON1 199h RCREG 219h —299h 319h 399h
01Ah TMR2 09Ah OSCSTAT 11Ah —19Ah
TXREG 21Ah —29Ah—31Ah—39Ah
CLKRCON
01Bh PR2 09BhADRESL11Bh —19Bh
SPBRG 21Bh —29Bh—31Bh39Bh CRCON
01Ch T2CON 09Ch ADRESH 11Ch 19Ch SPBRGH 21Ch 29Ch 31Ch 39Ch
01Dh 09Dh ADCON0 11Dh APFCON 19Dh RCSTA 21Dh 29Dh 31Dh 39Dh
01Eh 09Eh ADCON1 11Eh 19Eh TXSTA 21Eh 29Eh 31Eh 39Eh
01Fh 09Fh ADCON2 11Fh —19Fh
BAUDCON 21Fh 29Fh 31Fh 39Fh
020h
Dual-Port
General
Purpose
Register
80 Bytes
0A0h
Dual-Port
General
Purpose
Register
80 Bytes
120h
Dual-Port
General
Purpose
Register
80 Bytes
1A0h
Dual-Port
General
Purpose
Register
80 Bytes
220h
Dual-Port
General
Purpose
Register
80 Bytes
2A0h
Dual-Port
General
Purpose
Register
80 Bytes
320h Dual-Port
General
Purpose
Register
16Bytes
3A0h
General
Purpose
Register
80 Bytes
32Fh
330h General
Purpose
Register
64 Bytes
06Fh 0EFh 16Fh 1EFh 26Fh 2EFh 36Fh 3EFh
070h
Dual-Port
Common RAM
0F0h Common RAM
(Accesses
70h – 7Fh)
170h Common RAM
(Accesses
70h – 7Fh)
1F0h Common RAM
(Accesses
70h – 7Fh)
270h Common RAM
(Accesses
70h – 7Fh)
2F0h Common RAM
(Accesses
70h – 7Fh)
370h Common RAM
(Accesses
70h – 7Fh)
3F0h Common RAM
(Accesses
70h – 7Fh)
07Fh 0FFh 17Fh 1FFh 27Fh 2FFh 37Fh 3FFh
Legend: = Unimplemented data memory locations, read as ‘0’.
2012 Microchip Technology Inc. Preliminary DS41639A-page 33
PIC16(L)F1454/5/9
TABLE 3-7: PIC16(L)F1454 MEMORY MAP, BANK 8-23
BANK 8 BANK 9 BANK 10 BANK 11 BANK 12 BANK 13 BANK 14 BANK 15
400h
40Bh
Core Registers
(Tab l e 3- 2)
480h
48Bh
Core Registers
(Tab l e 3- 2)
500h
50Bh
Core Registers
(Table 3-2)
580h
58Bh
Core Registers
(Table 3-2)
600h
60Bh
Core Registers
(Table 3-2)
680h
68Bh
Core Registers
(Table 3-2)
700h
70Bh
Core Registers
(Table 3-2)
780h
78Bh
Core Registers
(Table 3-2)
40Ch 48Ch 50Ch 58Ch 60Ch 68Ch 70Ch 78Ch
40Dh 48Dh 50Dh 58Dh 60Dh 68Dh 70Dh 78Dh
40Eh —48Eh—50Eh—58Eh—60Eh—68Eh—70Eh—78Eh
40Fh —48Fh—50Fh—58Fh—60Fh—68Fh—70Fh—78Fh
410h —490h—510h—590h—610h—690h 710h 790h
411h —491h—511h—591h 611h PWM1DCL 691h —711h 791h
412h —492h—512h—592h 612h PWM1DCH 692h 712h 792h
413h —493h—513h—593h 613h PWM1CON 693h 713h 793h
414h —494h—514h—594h 614h PWM2DCL 694h 714h 794h
415h —495h—515h—595h 615h PWM2DCH 695h 715h 795h
416h —496h—516h—596h 616h PWM2CON 696h 716h 796h
417h —497h—517h—597h—617h—697h 717h 797h
418h —498h—518h—598h—618h—698h 718h 798h
419h —499h—519h—599h—619h—699h 719h 799h
41Ah —49Ah—51Ah—59Ah—61Ah—69Ah—71Ah—79Ah
41Bh —49Bh—51Bh—59Bh—61Bh—69Bh—71Bh—79Bh
41Ch 49Ch 51Ch 59Ch 61Ch 69Ch 71Ch 79Ch
41Dh 49Dh 51Dh 59Dh 61Dh 69Dh 71Dh 79Dh
41Eh —49Eh—51Eh—59Eh—61Eh—69Eh—71Eh—79Eh
41Fh —49Fh—51Fh—59Fh—61Fh—69Fh—71Fh—79Fh
420h
General
Purpose
Register
80 Bytes
4A0h
General
Purpose
Register
80 Bytes
520h
General
Purpose
Register
80 Bytes
5A0h
General
Purpose
Register
80 Bytes
620h General
Purpose
Register
48 Bytes
6A0h
Unimplemented
Read as ‘0
720h
Unimplemented
Read as ‘0
7A0h
Unimplemented
Read as ‘0
64Fh
650h Unimplemented
Read as ‘0
46Fh 4EFh 56Fh 5EFh 66Fh 6EFh 76Fh 7EFh
470h
Common RAM
(Accesses
70h – 7Fh)
4F0h
Common RAM
(Accesses
70h – 7Fh)
570h
Common RAM
(Accesses
70h – 7Fh)
5F0h
Common RAM
(Accesses
70h – 7Fh)
670h
Common RAM
(Accesses
70h – 7Fh)
6F0h
Common RAM
(Accesses
70h – 7Fh)
770h
Common RAM
(Accesses
70h – 7Fh)
7F0h
Common RAM
(Accesses
70h – 7Fh)
47Fh 4FFh 57Fh 5FFh 67Fh 6FFh 77Fh 7FFh
BANK 16 BANK 17 BANK 18 BANK 19 BANK 20 BANK 21 BANK 22 BANK 23
800h
80Bh
Core Registers
(Tab l e 3- 2 )
880h
88Bh
Core Registers
(Tab l e 3- 2)
900h
90Bh
Core Registers
(Table 3-2)
980h
98Bh
Core Registers
(Table 3-2)
A00h
A0Bh
Core Registers
(Table 3-2)
A80h
A8Bh
Core Registers
(Table 3-2)
B00h
B0Bh
Core Registers
(Table 3-2)
B80h
B8Bh
Core Registers
(Table 3-2)
80Ch
Unimplemented
Read as ‘0
88Ch
Unimplemented
Read as ‘0
90Ch
Unimplemented
Read as ‘0
98Ch
Unimplemented
Read as ‘0
A0Ch
Unimplemented
Read as ‘0
A8Ch
Unimplemented
Read as ‘0
B0Ch
Unimplemented
Read as ‘0
B8Ch
Unimplemented
Read as ‘0
86Fh 8EFh 96Fh 9EFh A6Fh AEFh B6Fh BEFh
870h Common RAM
(Accesses
70h – 7Fh)
8F0h Common RAM
(Accesses
70h – 7Fh)
970h Common RAM
(Accesses
70h – 7Fh)
9F0h Common RAM
(Accesses
70h – 7Fh)
A70h Common RAM
(Accesses
70h – 7Fh)
AF0h Common RAM
(Accesses
70h – 7Fh)
B70h Common RAM
(Accesses
70h – 7Fh)
BF0h Common RAM
(Accesses
70h – 7Fh)
87Fh 8FFh 97Fh 9FFh A7Fh AFFh B7Fh BFFh
Legend: = Unimplemented data memory locations, read as ‘0’.
PIC16(L)F1454/5/9
DS41639A-page 34 Preliminary 2012 Microchip Technology Inc.
TABLE 3-8: PIC16(L)F1455/9 MEMORY MAP, BANK 8-23
BANK 8 BANK 9 BANK 10 BANK 11 BANK 12 BANK 13 BANK 14 BANK 15
400h
40Bh
Core Registers
(Tab l e 3- 2)
480h
48Bh
Core Registers
(Tab l e 3- 2)
500h
50Bh
Core Registers
(Table 3-2)
580h
58Bh
Core Registers
(Table 3-2)
600h
60Bh
Core Registers
(Table 3-2)
680h
68Bh
Core Registers
(Table 3-2)
700h
70Bh
Core Registers
(Table 3-2)
780h
78Bh
Core Registers
(Table 3-2)
40Ch 48Ch 50Ch 58Ch 60Ch 68Ch 70Ch 78Ch
40Dh 48Dh 50Dh 58Dh 60Dh 68Dh 70Dh 78Dh
40Eh —48Eh—50Eh—58Eh—60Eh—68Eh—70Eh—78Eh
40Fh —48Fh—50Fh—58Fh—60Fh—68Fh—70Fh—78Fh
410h —490h—510h—590h—610h—690h 710h 790h
411h —491h—511h—591h 611h PWM1DCL 691h CWG1DBR 711h 791h
412h —492h—512h—592h 612h PWM1DCH 692h CWG1DBF 712h 792h
413h —493h—513h—593h 613h PWM1CON 693h CWG1CON0 713h 793h
414h —494h—514h—594h 614h PWM2DCL 694h CWG1CON1 714h 794h
415h —495h—515h—595h 615h PWM2DCH 695h CWG1CON2 715h 795h
416h —496h—516h—596h 616h PWM2CON 696h 716h 796h
417h —497h—517h—597h—617h—697h 717h 797h
418h —498h—518h—598h—618h—698h 718h 798h
419h —499h—519h—599h—619h—699h 719h 799h
41Ah —49Ah—51Ah—59Ah—61Ah—69Ah—71Ah—79Ah
41Bh —49Bh—51Bh—59Bh—61Bh—69Bh—71Bh—79Bh
41Ch 49Ch 51Ch 59Ch 61Ch 69Ch 71Ch 79Ch
41Dh 49Dh 51Dh 59Dh 61Dh 69Dh 71Dh 79Dh
41Eh —49Eh—51Eh—59Eh—61Eh—69Eh—71Eh—79Eh
41Fh —49Fh—51Fh—59Fh—61Fh—69Fh—71Fh—79Fh
420h
General
Purpose
Register
80 Bytes
4A0h
General
Purpose
Register
80 Bytes
520h
General
Purpose
Register
80 Bytes
5A0h
General
Purpose
Register
80 Bytes
620h General
Purpose
Register
48 Bytes
6A0h
Unimplemented
Read as ‘0
720h
Unimplemented
Read as ‘0
7A0h
Unimplemented
Read as ‘0
64Fh
650h Unimplemented
Read as ‘0
46Fh 4EFh 56Fh 5EFh 66Fh 6EFh 76Fh 7EFh
470h
Common RAM
(Accesses
70h – 7Fh)
4F0h
Common RAM
(Accesses
70h – 7Fh)
570h
Common RAM
(Accesses
70h – 7Fh)
5F0h
Common RAM
(Accesses
70h – 7Fh)
670h
Common RAM
(Accesses
70h – 7Fh)
6F0h
Common RAM
(Accesses
70h – 7Fh)
770h
Common RAM
(Accesses
70h – 7Fh)
7F0h
Common RAM
(Accesses
70h – 7Fh)
47Fh 4FFh 57Fh 5FFh 67Fh 6FFh 77Fh 7FFh
BANK 16 BANK 17 BANK 18 BANK 19 BANK 20 BANK 21 BANK 22 BANK 23
800h
80Bh
Core Registers
(Tab l e 3- 2 )
880h
88Bh
Core Registers
(Tab l e 3- 2)
900h
90Bh
Core Registers
(Table 3-2)
980h
98Bh
Core Registers
(Table 3-2)
A00h
A0Bh
Core Registers
(Table 3-2)
A80h
A8Bh
Core Registers
(Table 3-2)
B00h
B0Bh
Core Registers
(Table 3-2)
B80h
B8Bh
Core Registers
(Table 3-2)
80Ch
Unimplemented
Read as ‘0
88Ch
Unimplemented
Read as ‘0
90Ch
Unimplemented
Read as ‘0
98Ch
Unimplemented
Read as ‘0
A0Ch
Unimplemented
Read as ‘0
A8Ch
Unimplemented
Read as ‘0
B0Ch
Unimplemented
Read as ‘0
B8Ch
Unimplemented
Read as ‘0
86Fh 8EFh 96Fh 9EFh A6Fh AEFh B6Fh BEFh
870h Common RAM
(Accesses
70h – 7Fh)
8F0h Common RAM
(Accesses
70h – 7Fh)
970h Common RAM
(Accesses
70h – 7Fh)
9F0h Common RAM
(Accesses
70h – 7Fh)
A70h Common RAM
(Accesses
70h – 7Fh)
AF0h Common RAM
(Accesses
70h – 7Fh)
B70h Common RAM
(Accesses
70h – 7Fh)
BF0h Common RAM
(Accesses
70h – 7Fh)
87Fh 8FFh 97Fh 9FFh A7Fh AFFh B7Fh BFFh
Legend: = Unimplemented data memory locations, read as ‘0’.
2012 Microchip Technology Inc. Preliminary DS41639A-page 35
PIC16(L)F1454/5/9
TABLE 3-9: PIC16(L)F1454/5/9 MEMORY MAP, BANK 24-31
Legend: = Unimplemented data memory locations, read as ‘0’.
BANK 24 BANK 25 BANK 26 BANK 27 BANK 28 BANK 29 BANK 30 BANK 31
C00h
C0Bh
Core Registers
(Ta b l e 3 -2 )
C80h
C8Bh
Core Registers
(Ta b l e 3 -2 )
D00h
D0Bh
Core Registers
(Ta b l e 3 -2 )
D80h
D8Bh
Core Registers
(Ta b l e 3 -2 )
E00h
E0Bh
Core Registers
(Ta b l e 3 -2 )
E80h
E8Bh
Core Registers
(Ta b l e 3 -2 )
F00h
F0Bh
Core Registers
(Ta b l e 3 -2 )
F80h
F8Bh
Core Registers
(Ta b l e 3 -2 )
C0Ch —C8Ch—D0Ch—D8Ch—E0Ch—E8Ch—F0Ch—F8Ch
See Tab l e 3 - 10
for register map-
ping details
C0Dh —C8Dh—D0Dh—D8Dh—E0Dh—E8Dh—F0Dh—F8Dh
C0Eh —C8Eh—D0Eh—D8Eh—E0Eh E8Eh UCON F0Eh —F8Eh
C0Fh —C8Fh—D0Fh—D8Fh—E0Fh—E8FhUSTATF0Fh—F8Fh
C10h —C90h—D10h—D90h—E10h E90h UIR F10h —F90h
C11h —C91h—D11h—D91h—E11h E91h UCFG F11h —F91h
C12h —C92h—D12h—D92h—E12h E92h UIE F12h —F92h
C13h —C93h—D13h—D93h—E13h—E93hUEIRF13h—F93h
C14h —C94h—D14h—D94h—E14h E94h UFRMH F14h —F94h
C15h —C95h—D15h—D95h—E15h E95h UFRML F15h —F95h
C16h —C96h—D16h—D96h—E16h E96h UADDR F16h —F96h
C17h —C97h—D17h—D97h—E17h—E97hUEIEF17h—F97h
C18h —C98h—D18h—D98h—E18h E98h UEP0 F18h —F98h
C19h —C99h—D19h—D99h—E19h E99h UEP1 F19h —F99h
C1Ah —C9Ah—D1Ah—D9Ah—E1Ah E9Ah UEP2 F1Ah —F9Ah
C1Bh —C9Bh—D1Bh—D9Bh—E1Bh E9Bh UEP3 F1Bh —F9Bh
C1Ch —C9Ch—D1Ch—D9Ch—E1Ch E9Ch UEP4 F1Ch —F9Ch
C1Dh —C9Dh—D1Dh—D9Dh—E1Dh E9Dh UEP5 F1Dh —F9Dh
C1Eh —C9Eh—D1Eh—D9Eh—E1Eh E9Eh UEP6 F1Eh —F9Eh
C1Fh —C9Fh—D1Fh—D9Fh—E1Fh E9Fh UEP7 F1Fh —F9Fh
C20h
Unimplemented
Read as ‘0
CA0h
Unimplemented
Read as ‘0
D20h
Unimplemented
Read as ‘0
DA0h
Unimplemented
Read as ‘0
E20h
Unimplemented
Read as ‘0
EA0h
Unimplemented
Read as ‘0
F20h
Unimplemented
Read as ‘0
FA0h
C6Fh CEFh D6Fh DEFh E6Fh EEFh F6Fh FEFh
C70h Common RAM
(Accesses
70h – 7Fh)
CF0h Common RAM
(Accesses
70h – 7Fh)
D70h Common RAM
(Accesses
70h – 7Fh)
DF0h Common RAM
(Accesses
70h – 7Fh)
E70h Common RAM
(Accesses
70h – 7Fh)
EF0h Common RAM
(Accesses
70h – 7Fh)
F70h Common RAM
(Accesses
70h – 7Fh)
FF0h Common RAM
(Accesses
70h – 7Fh)
CFFh CFFh D7Fh DFFh E7Fh EFFh F7Fh FFFh
PIC16(L)F1454/5/9
DS41639A-page 36 Preliminary 2012 Microchip Technology Inc.
TABLE 3-10: PIC16(L)F1454/5/9 MEMORY
MAP, BANK 30-31
Bank 31
F8Ch
FE3h
Unimplemented
Read as0
FE4h STATUS_SHAD
FE5h WREG_SHAD
FE6h BSR_SHAD
FE7h PCLATH_SHAD
FE8h FSR0L_SHAD
FE9h FSR0H_SHAD
FEAh FSR1L_SHAD
FEBh FSR1H_SHAD
FECh
FEDh STKPTR
FEEh TOSL
FEFh TOSH
Legend: = Unimplemented data memory locations,
read as ‘0’.
2012 Microchip Technology Inc. Preliminary DS41639A-page 37
PIC16(L)F1454/5/9
3.3.6 CORE FUNCTION REGISTERS
SUMMARY
The Core Function registers listed in Tab l e 3 - 11 can be
addressed from any Bank.
TABLE 3-11: CORE FUNCTION REGISTERS SUMMARY
Addr Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on
POR, BOR
Value on all
other Resets
Bank 0-31
x00h or
x80h INDF0 Addressing this location uses contents of FSR0H/FSR0L to address data memory
(not a physical register) xxxx xxxx uuuu uuuu
x01h or
x81h INDF1 Addressing this location uses contents of FSR1H/FSR1L to address data memory
(not a physical register) xxxx xxxx uuuu uuuu
x02h or
x82h PCL Program Counter (PC) Least Significant Byte 0000 0000 0000 0000
x03h or
x83h STATUS —TOPD ZDCC---1 1000 ---q quuu
x04h or
x84h FSR0L Indirect Data Memory Address 0 Low Pointer 0000 0000 uuuu uuuu
x05h or
x85h FSR0H Indirect Data Memory Address 0 High Pointer 0000 0000 0000 0000
x06h or
x86h FSR1L Indirect Data Memory Address 1 Low Pointer 0000 0000 uuuu uuuu
x07h or
x87h FSR1H Indirect Data Memory Address 1 High Pointer 0000 0000 0000 0000
x08h or
x88h BSR —BSR<4:0>---0 0000 ---0 0000
x09h or
x89h WREG Working Register 0000 0000 uuuu uuuu
x0Ah or
x8Ah PCLATH Write Buffer for the upper 7 bits of the Program Counter -000 0000 -000 0000
x0Bh or
x8Bh INTCON GIE PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF 0000 0000 0000 0000
Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as ‘0’, r = reserved.
Shaded locations are unimplemented, read as ‘0’.
PIC16(L)F1454/5/9
DS41639A-page 38 Preliminary 2012 Microchip Technology Inc.
TABLE 3-12: SPECIAL FUNCTION REGISTER SUMMARY
Addres
sName Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on
POR, BOR
Value on all
other
Resets
Bank 0
00Ch PORTA RA5 RA4 RA3 —RA1 RA0--xx x-xx --xx x-xx
00Dh PORTB(1) RB7 RB6 RB5 RB4 xxxx ---- xxxx ----
00Eh PORTC RC7(1) RC6(1) RC5 RC4 RC3 RC2 RC1 RC0 xxxx xxxx xxxx xxxx
00Fh Unimplemented
010h Unimplemented
011h PIR1 TMR1GIF ADIF RCIF TXIF SSP1IF TMR2IF TMR1IF 0000 0-00 0000 0-00
012h PIR2 OSFIF C2IF C1IF BCL1IF USBIF ACTIF 000- 000- 000- 000-
013h Unimplemented
014h Unimplemented
015h TMR0 Holding Register for the 8-bit Timer0 Count xxxx xxxx uuuu uuuu
016h TMR1L Holding Register for the Least Significant Byte of the 16-bit TMR1 Count xxxx xxxx uuuu uuuu
017h TMR1H Holding Register for the Most Significant Byte of the 16-bit TMR1 Count xxxx xxxx uuuu uuuu
018h T1CON TMR1CS<1:0> T1CKPS<1:0> T1OSCEN T1SYNC —TMR1ON0000 00-0 uuuu uu-u
019h T1GCON TMR1GE T1GPOL T1GTM T1GSPM T1GGO/
DONE
T1GVAL T1GSS<1:0> 0000 0x00 uuuu uxuu
01Ah TMR2 Timer2 Module Register 0000 0000 0000 0000
01Bh PR2 Timer2 Period Register 1111 1111 1111 1111
01Ch T2CON T2OUTPS<3:0> TMR2ON T2CKPS<1:0> -000 0000 -000 0000
01Dh Unimplemented
01Eh Unimplemented
01Fh Unimplemented
Bank 1
08Ch TRISA TRISA5 TRISA4 (2) (2) (2) --11 ---- --11 ----
08Dh TRISB(1) TRISB7 TRISB6 TRISB5 TRISB4 1111 ---- 1111 ----
08Eh TRISC TRISC7(1) TRISC6(1) TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 1111 1111 1111 1111
08Fh Unimplemented
090h Unimplemented
091h PIE1 TMR1GIE ADIE RCIE TXIE SSP1IE TMR2IE TMR1IE 0000 0-00 0000 0-00
092h PIE2 OSFIE C2IE C1IE —BCL1IEUSBIEACTIE 000- 000- 000- 000-
093h Unimplemented
094h Unimplemented
095h
OPTION_REG
WPUEN INTEDG TMR0CS TMR0SE PSA PS<2:0> 1111 1111 1111 1111
096h PCON STKOVF STKUNF —RWDTRMCLR RI POR BOR 00-1 11qq qq-q qquu
097h WDTCON WDTPS<4:0> SWDTEN --01 0110 --01 0110
098h OSCTUNE TUN<6:0> -000 0000 -uuu uuuu
099h OSCCON SPLLEN SPLLMULT IRCF<3:0> SCS<1:0> 0011 1100 0011 1100
09Ah OSCSTAT SOSCR PLLRDY OSTS HFIOFR LFIOFR HFIOFS 00q0 --00 qqqq --qq
09Bh ADRESL(2) A/D Result Register Low xxxx xxxx uuuu uuuu
09Ch ADRESH(2) A/D Result Register High xxxx xxxx uuuu uuuu
09Dh ADCON0(2) CHS<4:0>
GO/DONE
ADON -000 0000 -000 0000
09Eh ADCON1(2) ADFM ADCS<2:0>
ADPREF<1:0>
0000 --00 0000 --00
09Fh ADCON2(2) TRIGSEL<2:0> -000 ---- -000 ----
Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as ‘0’.
Note 1: PIC16(L)F1459 only.
2: PIC16(L)F1455/9 only.
3: Unimplemented, read as ‘1’.
2012 Microchip Technology Inc. Preliminary DS41639A-page 39
PIC16(L)F1454/5/9
Bank 2
10Ch LATA —LATA5LATA4 --xx ---- --uu ----
10Dh LATB(1) LATB7 LATB6 LATB5 LATB4 xxxx ---- uuuu ----
10Eh LATC LATC7(1) LATC6(1) LATC5 LATC4 LATC3 LATC2 LATC1 LATC0 xxxx xxxx uuuu uuuu
10Fh Unimplemented
110h Unimplemented
111h CM1CON0(2) C1ON C1OUT C1OE C1POL C1SP C1HYS C1SYNC 0000 -100 0000 -100
112h CM1CON1(2) C1INTP C1INTN C1PCH<1:0> C1NCH<2:0> 0000 -000 0000 -000
113h CM2CON0(2) C2ON C2OUT C2OE C2POL C2SP C2HYS C2SYNC 0000 -100 0000 -100
114h CM2CON1(2) C2INTP C2INTN C2PCH<1:0> C2NCH<2:0> 0000 -000 0000 -000
115h CMOUT(2) ——————MC2OUT MC1OUT---- --00 ---- --00
116h BORCON SBOREN BORFS ———— BORRDY 10-- ---q uu-- ---u
117h FVRCON(2) FVREN FVRRDY TSEN TSRNG CDAFVR<1:0> ADFVR<1:0> 0q00 0000 0q00 0000
118h DACCON0(2) DACEN DACOE1 DACOE2 DACPSS<1:0> 0-00 00-- 0-00 00--
119h DACCON1(2) —— DACR<4:0> ---0 0000 ---0 0000
11Ah
to
11Ch
Unimplemented
11Dh APFCON CLKRSEL SDOSEL(1) SSSEL T1GSEL P2SEL(1) 000- --00 000- --00
11Eh Unimplemented
11Fh Unimplemented
Bank 3
18Ch ANSELA(2) —— ANSA4 ---1 ---- ---1 ----
18Dh ANSELB(1) ANSB5 ANSB4 --11 ---- --11 ----
18Eh ANSELC(2) ANSC7(1) ANSC6(1) ANSC3 ANSC2 ANSC1 ANSC0 11-- 1111 11-- 1111
18Fh Unimplemented
190h Unimplemented
191h PMADRL Flash Program Memory Address Register Low Byte 0000 0000 0000 0000
192h PMADRH (2) Flash Program Memory Address Register High Byte 1000 0000 1000 0000
193h PMDATL Flash Program Memory Read Data Register Low Byte xxxx xxxx uuuu uuuu
194h PMDATH Flash Program Memory Read Data Register High Byte --xx xxxx --uu uuuu
195h PMCON1 (2) CFGS LWLO FREE WRERR WREN WR RD 1000 x000 1000 q000
196h PMCON2 Flash Program Memory Control Register 2 0000 0000 0000 0000
197h VREGCON(1) ——————VREGPMReserved ---- --01 ---- --01
198h Unimplemented
199h RCREG USART Receive Data Register 0000 0000 0000 0000
19Ah TXREG USART Transmit Data Register 0000 0000 0000 0000
19Bh SPBRGL Baud Rate Generator Data Register Low 0000 0000 0000 0000
19Ch SPBRGH Baud Rate Generator Data Register High 0000 0000 0000 0000
19Dh RCSTA SPEN RX9 SREN CREN ADDEN FERR OERR RX9D 0000 000x 0000 000x
19Eh TXSTA CSRC TX9 TXEN SYNC SENDB BRGH TRMT TX9D 0000 0010 0000 0010
19Fh BAUDCON ABDOVF RCIDL SCKP BRG16 WUE ABDEN 01-0 0-00 01-0 0-00
TABLE 3-12: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)
Addres
sName Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on
POR, BOR
Value on all
other
Resets
Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as ‘0’.
Note 1: PIC16(L)F1459 only.
2: PIC16(L)F1455/9 only.
3: Unimplemented, read as ‘1’.
PIC16(L)F1454/5/9
DS41639A-page 40 Preliminary 2012 Microchip Technology Inc.
Bank 4
20Ch WPUA WPUA5 WPUA4 WPUA3 --11 1--- --11 1---
20Dh WPUB(1) WPUB7 WPUB6 WPUB5 WPUB4 1111 ---- 1111 ----
20Eh
to
210h
Unimplemented
211h SSP1BUF Synchronous Serial Port Receive Buffer/Transmit Register xxxx xxxx uuuu uuuu
212h SSP1ADD ADD<7:0> 0000 0000 0000 0000
213h SSP1MSK MSK<7:0> 1111 1111 1111 1111
214h SSP1STAT SMP CKE D/A PSR/WUA BF 0000 0000 0000 0000
215h SSP1CON1 WCOL SSPOV SSPEN CKP SSPM<3:0> 0000 0000 0000 0000
216h SSP1CON2 GCEN ACKSTAT ACKDT ACKEN RCEN PEN RSEN SEN 0000 0000 0000 0000
217h SSP1CON3 ACKTIM PCIE SCIE BOEN SDAHT SBCDE AHEN DHEN 0000 0000 0000 0000
218h
to
21Fh
Unimplemented
Bank 5
28Ch
to
29Fh
Unimplemented
Bank 6
30Ch
to
31Fh
Unimplemented
Bank 7
38Ch
to
390h
Unimplemented
391h IOCAP IOCAP5 IOCAP4 IOCAP3
IOCAP1 IOCAP0
--00 0-00 --00 0-00
392h IOCAN IOCAN5 IOCAN4 IOCAN3
IOCAN1 IOCAN0
--00 0-00 --00 0-00
393h IOCAF IOCAF5 IOCAF4 IOCAF3
IOCAF1 IOCAF0
--00 0-00 --00 0-00
394h IOCBP(1) IOCBP7 IOCBP6 IOCBP5 IOCBP4 0000 ---- 0000 ----
395h IOCBN(1) IOCBN7 IOCBN6 IOCBN5 IOCBN4 0000 ---- 0000 ----
396h IOCBF(1) IOCBF7 IOCBF6 IOCBF5 IOCBF4 0000 ---- 0000 ----
397h
to
399h
Unimplemented
39Ah CLKRCON CLKREN CLKROE CLKRSLR CLKRDC<1:0> CLKRDIV<2:0> 0011 0000 0011 0000
39Bh ACTCON ACTEN ACTUD ACTSRC ACTLOCK —ACTORS 00-0 0-0- 00-0 0-0-
39Ch
to
39Fh
Unimplemented
Bank 8
40Ch
to
41Fh
Unimplemented
Bank 9
48Ch
to
49Fh
Unimplemented
TABLE 3-12: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)
Addres
sName Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on
POR, BOR
Value on all
other
Resets
Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as ‘0’.
Note 1: PIC16(L)F1459 only.
2: PIC16(L)F1455/9 only.
3: Unimplemented, read as ‘1’.
2012 Microchip Technology Inc. Preliminary DS41639A-page 41
PIC16(L)F1454/5/9
Bank 10
50Ch
to
51Fh
Unimplemented
Bank 11
58Ch
to
59Fh
Unimplemented
Bank 12
60Ch
to
610h
Unimplemented
611h PWM1DCL PWM1DCL<7:6> 00-- ---- 00-- ----
612h PWM1DCH PWM1DCH<7:0> xxxx xxxx uuuu uuuu
613h PWM1CON0 PWM1EN PWM1OE PWM1OUT PWM1POL 0000 ---- 0000 ----
614h PWM2DCL PWM2DCL<7:6> 00-- ---- 00-- ----
615h PWM2DCH PWM2DCH<7:0> xxxx xxxx uuuu uuuu
616h PWM2CON0 PWM2EN PWM2OE PWM2OUT PWM2POL 0000 ---- 0000 ----
617h
to
61Fh
Unimplemented
Bank 13
68Ch
to
690h
Unimplemented
691h CWG1DBR(2) —CWG1DBR<5:0>--00 0000 --00 0000
692h CWG1DBF(2) —CWG1DBF<5:0>--xx xxxx --xx xxxx
693h CWG1CON0(2) G1EN G1OEB G1OEA G1POLB G1POLA —G1CS00000 0--0 0000 0--0
694h CWG1CON1(2) G1ASDLB<1:0> G1ASDLA<1:0> G1IS<1:0> 0000 --00 0000 --00
695h CWG1CON2(2) G1ASE G1ARSEN G1ASDC2 G1ASDC1 G1ASDSFLT 00-- 0001 00-- 000-
696h
to
69Fh
Unimplemented
Banks 14-28
x0Ch/
x8Ch
x1Fh/
x9Fh
Unimplemented
TABLE 3-12: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)
Addres
sName Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on
POR, BOR
Value on all
other
Resets
Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as ‘0’.
Note 1: PIC16(L)F1459 only.
2: PIC16(L)F1455/9 only.
3: Unimplemented, read as ‘1’.
PIC16(L)F1454/5/9
DS41639A-page 42 Preliminary 2012 Microchip Technology Inc.
Bank 29
E8Ch Unimplemented
E8Dh Unimplemented
E8Eh UCON PPBRST SE0 PKTDIS USBEN RESUME SUSPND -0x0 000- -0u0 000-
E8Fh USTAT ENDP<3:0> DIR PPBI -xxx xxx- -uuu uuu-
E90h UIR SOFIF STALLIF IDLEIF TRNIF ACTVIF UERRIF URSTIF -000 0000 -000 0000
E91h UCFG UTEYE Reserved UPUEN Reserved FSEN PPB<1:0> 00-0 -000 00-0 -000
E92h UIE SOFIE STALLIE IDLEIE TRNIE ACTVIE UERRIE URSTIE -000 0000 -000 0000
E93h UEIR BTSEF BTOEF DFN8EF CRC16EF CRC5EF PIDEF 0--0 -000 0--0 -000
E94h UFRMH —————FRM10 FRM9 FRM8 ---- -xxx ---- -uuu
E95h UFRML FRM7 FRM6 FRM5 FRM4 FRM3 FRM2 FRM1 FRM0 xxxx xxxx uuuu uuuu
E96h UADDR ADDR6 ADDR5 ADDR4 ADDR3 ADDR2 ADDR1 ADDR0 -000 0000 -000 0000
E97h UEIE BTSEE BTOEE DFN8EE CRC16EE CRC5EE PIDEE 0--0 0000 0--0 0000
E98h UEP7 –––EPHSHK EPCONDIS EPOUTEN EPINEN EPSTALL ---0 0000 ---0 0000
E99h UEP6 –––EPHSHK EPCONDIS EPOUTEN EPINEN EPSTALL ---0 0000 ---0 0000
E9Ah UEP5 –––EPHSHK EPCONDIS EPOUTEN EPINEN EPSTALL ---0 0000 ---0 0000
E9Bh UEP4 –––EPHSHK EPCONDIS EPOUTEN EPINEN EPSTALL ---0 0000 ---0 0000
E9Ch UEP3 –––EPHSHK EPCONDIS EPOUTEN EPINEN EPSTALL ---0 0000 ---0 0000
E9Dh UEP2 –––EPHSHK EPCONDIS EPOUTEN EPINEN EPSTALL ---0 0000 ---0 0000
E9Eh UEP1 –––EPHSHK EPCONDIS EPOUTEN EPINEN EPSTALL ---0 0000 ---0 0000
E9Fh UEP0 –––EPHSHK EPCONDIS EPOUTEN EPINEN EPSTALL ---0 0000 ---0 0000
Bank 30
F0Ch
F1Fh
Unimplemented
TABLE 3-12: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)
Addres
sName Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on
POR, BOR
Value on all
other
Resets
Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as ‘0’.
Note 1: PIC16(L)F1459 only.
2: PIC16(L)F1455/9 only.
3: Unimplemented, read as ‘1’.
2012 Microchip Technology Inc. Preliminary DS41639A-page 43
PIC16(L)F1454/5/9
Bank 31
F8Ch
FE3h
Unimplemented
FE4h STATUS_
SHAD
———— Z_SHAD DC_SHAD C_SHAD ---- -xxx ---- -uuu
FE5h WREG_
SHAD
Working Register Shadow xxxx xxxx uuuu uuuu
FE6h BSR_
SHAD
—— Bank Select Register Shadow ---x xxxx ---u uuuu
FE7h PCLATH_
SHAD
Program Counter Latch High Register Shadow -xxx xxxx uuuu uuuu
FE8h FSR0L_
SHAD
Indirect Data Memory Address 0 Low Pointer Shadow xxxx xxxx uuuu uuuu
FE9h FSR0H_
SHAD
Indirect Data Memory Address 0 High Pointer Shadow xxxx xxxx uuuu uuuu
FEAh FSR1L_
SHAD
Indirect Data Memory Address 1 Low Pointer Shadow xxxx xxxx uuuu uuuu
FEBh FSR1H_
SHAD
Indirect Data Memory Address 1 High Pointer Shadow xxxx xxxx uuuu uuuu
FECh Unimplemented
FEDh STKPTR —— Current Stack Pointer ---1 1111 ---1 1111
FEEh TOSL Top-of-Stack Low byte xxxx xxxx uuuu uuuu
FEFh TOSH Top-of-Stack High byte -xxx xxxx -uuu uuuu
TABLE 3-12: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)
Addres
sName Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on
POR, BOR
Value on all
other
Resets
Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as ‘0’.
Note 1: PIC16(L)F1459 only.
2: PIC16(L)F1455/9 only.
3: Unimplemented, read as ‘1’.
PIC16(L)F1454/5/9
DS41639A-page 44 Preliminary 2012 Microchip Technology Inc.
3.4 PCL and PCLATH
The Program Counter (PC) is 15 bits wide. The low byte
comes from the PCL register, which is a readable and
writable register. The high byte (PC<14:8>) is not directly
readable or writable and comes from PCLATH. On any
Reset, the PC is cleared. Figure 3-3 shows the five
situations for the loading of the PC.
FIGURE 3-3: LOADING OF PC IN
DIFFERENT SITUATIONS
3.4.1 MODIFYING PCL
Executing any instruction with the PCL register as the
destination simultaneously causes the Program Coun-
ter PC<14:8> bits (PCH) to be replaced by the contents
of the PCLATH register. This allows the entire contents
of the program counter to be changed by writing the
desired upper seven bits to the PCLATH register. When
the lower eight bits are written to the PCL register, all
15 bits of the program counter will change to the values
contained in the PCLATH register and those being writ-
ten to the PCL register.
3.4.2 COMPUTED GOTO
A computed GOTO is accomplished by adding an offset to
the program counter (ADDWF PCL). When performing a
table read using a computed GOTO method, care should
be exercised if the table location crosses a PCL memory
boundary (each 256-byte block). Refer to Application
Note AN556, Implementing a Table Read” (DS00556).
3.4.3 COMPUTED FUNCTION CALLS
A computed function CALL allows programs to maintain
tables of functions and provide another way to execute
state machines or look-up tables. When performing a
table read using a computed function CALL, care
should be exercised if the table location crosses a PCL
memory boundary (each 256-byte block).
If using the CALL instruction, the PCH<2:0> and PCL
registers are loaded with the operand of the CALL
instruction. PCH<6:3> is loaded with PCLATH<6:3>.
The CALLW instruction enables computed calls by com-
bining PCLATH and W to form the destination address.
A computed CALLW is accomplished by loading the W
register with the desired address and executing CALLW.
The PCL register is loaded with the value of W and
PCH is loaded with PCLATH.
3.4.4 BRANCHING
The branching instructions add an offset to the PC.
This allows relocatable code and code that crosses
page boundaries. There are two forms of branching,
BRW and BRA. The PC will have incremented to fetch
the next instruction in both cases. When using either
branching instruction, a PCL memory boundary may be
crossed.
If using BRW, load the W register with the desired
unsigned address and execute BRW. The entire PC will
be loaded with the address PC + 1 + W.
If using BRA, the entire PC will be loaded with PC + 1 +,
the signed value of the operand of the BRA instruction.
2012 Microchip Technology Inc. Preliminary DS41639A-page 45
PIC16(L)F1454/5/9
3.5 Stack
All devices have a 16-level x 15-bit wide hardware
stack (refer to Figures 3-4 through 3-7). The stack
space is not part of either program or data space. The
PC is PUSHed onto the stack when CALL or CALLW
instructions are executed or an interrupt causes a
branch. The stack is POPed in the event of a RETURN,
RETLW or a RETFIE instruction execution. PCLATH is
not affected by a PUSH or POP operation.
The stack operates as a circular buffer if the STVREN
bit is programmed to0‘(Configuration Words). This
means that after the stack has been PUSHed sixteen
times, the seventeenth PUSH overwrites the value that
was stored from the first PUSH. The eighteenth PUSH
overwrites the second PUSH (and so on). The
STKOVF and STKUNF flag bits will be set on an Over-
flow/Underflow, regardless of whether the Reset is
enabled.
3.5.1 ACCESSING THE STACK
The stack is available through the TOSH, TOSL and
STKPTR registers. STKPTR is the current value of the
Stack Pointer. TOSH:TOSL register pair points to the
TOP of the stack. Both registers are read/writable. TOS
is split into TOSH and TOSL due to the 15-bit size of the
PC. To access the stack, adjust the value of STKPTR,
which will position TOSH:TOSL, then read/write to
TOSH:TOSL. STKPTR is five bits to allow detection of
overflow and underflow.
During normal program operation, CALL, CALLW and
Interrupts will increment STKPTR while RETLW,
RETURN, and RETFIE will decrement STKPTR. At any
time STKPTR can be inspected to see how much stack
is left. The STKPTR always points at the currently used
place on the stack. Therefore, a CALL or CALLW will
increment the STKPTR and then write the PC, and a
return will unload the PC and then decrement the
STKPTR.
Reference Figure 3-4 through Figure 3-7 for examples
of accessing the stack.
FIGURE 3-4: ACCESSING THE STACK EXAMPLE 1
Note 1: There are no instructions/mnemonics
called PUSH or POP. These are actions
that occur from the execution of the
CALL, CALLW, RETURN, RETLW and
RETFIE instructions or the vectoring to
an interrupt address.
Note: Care should be taken when modifying the
STKPTR while interrupts are enabled.
0x0F
0x0E
0x0D
0x0C
0x0B
0x0A
0x09
0x08
0x07
0x06
0x05
0x04
0x03
0x02
0x01
0x00
0x0000
STKPTR = 0x1F
Initial Stack Configuration:
After Reset, the stack is empty. The
empty stack is initialized so the Stack
Pointer is pointing at 0x1F. If the Stack
Overflow/Underflow Reset is enabled, the
TOSH/TOSL registers will return ‘0’. If
the Stack Overflow/Underflow Reset is
disabled, the TOSH/TOSL registers will
return the contents of stack address 0x0F.
0x1F STKPTR = 0x1F
Stack Reset Disabled
(STVREN = 0)
Stack Reset Enabled
(STVREN = 1)
TOSH:TOSL
TOSH:TOSL
PIC16(L)F1454/5/9
DS41639A-page 46 Preliminary 2012 Microchip Technology Inc.
FIGURE 3-5: ACCESSING THE STACK EXAMPLE 2
FIGURE 3-6: ACCESSING THE STACK EXAMPLE 3
0x0F
0x0E
0x0D
0x0C
0x0B
0x0A
0x09
0x08
0x07
0x06
0x05
0x04
0x03
0x02
0x01
Return Address0x00 STKPTR = 0x00
This figure shows the stack configuration
after the first CALL or a single interrupt.
If a RETURN instruction is executed, the
return address will be placed in the
Program Counter and the Stack Pointer
decremented to the empty state (0x1F).
TOSH:TOSL
0x0F
0x0E
0x0D
0x0C
0x0B
0x0A
0x09
0x08
0x07
Return Address0x06
Return Address0x05
Return Address0x04
Return Address0x03
Return Address0x02
Return Address0x01
Return Address0x00
STKPTR = 0x06
After seven CALLs or six CALLs and an
interrupt, the stack looks like the figure
on the left. A series of RETURN instructions
will repeatedly place the return addresses
into the Program Counter and pop the stack.
TOSH:TOSL
2012 Microchip Technology Inc. Preliminary DS41639A-page 47
PIC16(L)F1454/5/9
FIGURE 3-7: ACCESSING THE STACK EXAMPLE 4
3.5.2 OVERFLOW/UNDERFLOW RESET
If the STVREN bit in Configuration Words is
programmed to ‘1’, the device will be reset if the stack
is PUSHed beyond the sixteenth level or POPed
beyond the first level, setting the appropriate bits
(STKOVF or STKUNF, respectively) in the PCON
register.
3.6 Indirect Addressing
The INDFn registers are not physical registers. Any
instruction that accesses an INDFn register actually
accesses the register at the address specified by the
File Select Registers (FSR). If the FSRn address
specifies one of the two INDFn registers, the read will
return ‘0’ and the write will not occur (though Status bits
may be affected). The FSRn register value is created
by the pair FSRnH and FSRnL.
The FSR registers form a 16-bit address that allows an
addressing space with 65536 locations. These locations
are divided into three memory regions:
Traditional Data Memory
Linear Data Memory
Program Flash Memory
0x0F
0x0E
0x0D
0x0C
0x0B
0x0A
0x09
0x08
0x07
0x06
0x05
0x04
0x03
0x02
0x01
Return Address0x00 STKPTR = 0x10
When the stack is full, the next CALL or
an interrupt will set the Stack Pointer to
0x10. This is identical to address 0x00
so the stack will wrap and overwrite the
return address at 0x00. If the Stack
Overflow/Underflow Reset is enabled, a
Reset will occur and location 0x00 will
not be overwritten.
Return Address
Return Address
Return Address
Return Address
Return Address
Return Address
Return Address
Return Address
Return Address
Return Address
Return Address
Return Address
Return Address
Return Address
Return Address
TOSH:TOSL
PIC16(L)F1454/5/9
DS41639A-page 48 Preliminary 2012 Microchip Technology Inc.
FIGURE 3-8: INDIRECT ADDRESSING
0x0000
0x0FFF
Traditional
FSR
Address
Range
Data Memory
0x1000 Reserved
Linear
Data Memory
Reserved
0x2000
0x29AF
0x29B0
0x7FFF
0x8000
0xFFFF
0x0000
0x0FFF
0x0000
0x7FFF
Program
Flash Memory
Note: Not all memory regions are completely implemented. Consult device memory tables for memory limits.
0x1FFF
2012 Microchip Technology Inc. Preliminary DS41639A-page 49
PIC16(L)F1454/5/9
3.6.1 TRADITIONAL DATA MEMORY
The traditional data memory is a region from FSR
address 0x000 to FSR address 0xFFF. The addresses
correspond to the absolute addresses of all SFR, GPR,
DPR and common registers.
FIGURE 3-9: TRADITIONAL DATA MEMORY MAP
Indirect AddressingDirect Addressing
Bank Select Location Select
4BSR 6 0
From Opcode FSRxL70
Bank Select Location Select
00000 00001 00010 11111
0x00
0x7F
Bank 0 Bank 1 Bank 2 Bank 31
0FSRxH70
0000
PIC16(L)F1454/5/9
DS41639A-page 50 Preliminary 2012 Microchip Technology Inc.
3.6.2 LINEAR DATA MEMORY
The linear data memory is the region from FSR
address 0x2000 to FSR address 0x29AF. This region is
a virtual region that points back to the 80-byte blocks of
DPR or GPR memory in all the banks.
Unimplemented memory reads as 0x00. Use of the
linear data memory region allows buffers to be larger
than 80 bytes because incrementing the FSR beyond
one bank will go directly to the DPR or GPR memory of
the next bank.
The 16 bytes of common memory are not included in
the linear data memory region.
FIGURE 3-10: LINEAR DATA MEMORY
MAP
3.6.3 PROGRAM FLASH MEMORY
To make constant data access easier, the entire
program Flash memory is mapped to the upper half of
the FSR address space. When the MSB of FSRnH is
set, the lower 15 bits are the address in program
memory which will be accessed through INDF. Only the
lower eight bits of each memory location is accessible
via INDF. Writing to the program Flash memory cannot
be accomplished via the FSR/INDF interface. All
instructions that access program Flash memory via the
FSR/INDF interface will require one additional
instruction cycle to complete.
FIGURE 3-11: PROGRAM FLASH
MEMORY MAP
7
01
7
00
Location Select 0x2000
FSRnH FSRnL
0x020
Bank 0
0x06F
0x0A0
Bank 1
0x0EF
0x120
Bank 2
0x16F
0xF20
Bank 30
0xF6F
0x29AF
0
7
1
7
00
Location Select 0x8000
FSRnH FSRnL
0x0000
0x7FFF
0xFFFF
Program
Flash
Memory
(low 8
bits)
2012 Microchip Technology Inc. Preliminary DS41639A-page 51
PIC16(L)F1454/5/9
4.0 DEVICE CONFIGURATION
Device configuration consists of Configuration Words,
Code Protection and Device ID.
4.1 Configuration Words
There are several Configuration Word bits that allow
different oscillator and memory protection options.
These are implemented as Configuration Word 1 at
8007h and Configuration Word 2 at 8008h.
Note: The DEBUG bit in Configuration Words is
managed automatically by device
development tools including debuggers
and programmers. For normal device
operation, this bit should be maintained as
a '1'.
PIC16(L)F1454/5/9
DS41639A-page 52 Preliminary 2012 Microchip Technology Inc.
4.2 Register Definitions: Configuration Words
REGISTER 4-1: CONFIG1: CONFIGURATION WORD 1
R/P-1 R/P-1 R/P-1 R/P-1 R/P-1 U-1
FCMEN IESO CLKOUTEN BOREN<1:0>
bit 13 bit 8
R/P-1 R/P-1 R/P-1 R/P-1 R/P-1 R/P-1 R/P-1 R/P-1
CP MCLRE PWRTE WDTE<1:0> FOSC<2:0>
bit 7 bit 0
Legend:
R = Readable bit P = Programmable bit U = Unimplemented bit, read as ‘1’
‘0’ = Bit is cleared ‘1’ = Bit is set -n = Value when blank or after Bulk Erase
bit 13 FCMEN: Fail-Safe Clock Monitor Enable bit
1 = Fail-Safe Clock Monitor is enabled
0 = Fail-Safe Clock Monitor is disabled
bit 12 IESO: Internal External Switchover bit
1 = Internal/External Switchover mode is enabled
0 = Internal/External Switchover mode is disabled
bit 11 CLKOUTEN: Clock Out Enable bit
1 = CLKOUT function is disabled. I/O or oscillator function on the CLKOUT pin
0 = CLKOUT function is enabled on the CLKOUT pin
bit 10-9 BOREN<1:0>: Brown-out Reset Enable bits(1)
11 = BOR enabled
10 = BOR enabled during operation and disabled in Sleep
01 = BOR controlled by SBOREN bit of the BORCON register
00 = BOR disabled
bit 8 Unimplemented: Read as1
bit 7 CP: Code Protection bit(2)
1 = Program memory code protection is disabled
0 = Program memory code protection is enabled
bit 6 MCLRE: MCLR/VPP Pin Function Select bit
If LVP bit = 1:
This bit is ignored.
If LVP bit = 0:
1 =MCLR
/VPP pin function is MCLR; Weak pull-up enabled.
0 =MCLR
/VPP pin function is digital input; MCLR internally disabled; Weak pull-up under control of
WPUA register.
bit 5 PWRTE: Power-Up Timer Enable bit
1 = PWRT disabled
0 = PWRT enabled
bit 4-3 WDTE<1:0>: Watchdog Timer Enable bits
11 = WDT enabled
10 = WDT enabled while running and disabled in Sleep
01 = WDT controlled by the SWDTEN bit in the WDTCON register
00 = WDT disabled
2012 Microchip Technology Inc. Preliminary DS41639A-page 53
PIC16(L)F1454/5/9
bit 2-0 FOSC<2:0>: Oscillator Selection bits
111 = ECH: External clock, High-Power mode: on CLKIN pin
110 = ECM: External clock, Medium-Power mode: on CLKIN pin
101 = ECL: External clock, Low-Power mode: on CLKIN pin
100 = INTOSC oscillator: I/O function on OSC1 pin
011 = EXTRC oscillator: RC function connected to CLKIN pin
010 = HS oscillator: High-speed crystal/resonator on OSC1 and OSC2 pins
001 = XT oscillator: Crystal/resonator on OSC1 and OSC2 pins
000 = LP oscillator: Low-power crystal on OSC1 and OSC2 pins
Note 1: Enabling Brown-out Reset does not automatically enable Power-up Timer.
2: Once enabled (CP = 0), code-protect can only be disabled by bulk erasing the device.
REGISTER 4-1: CONFIG1: CONFIGURATION WORD 1 (CONTINUED)
PIC16(L)F1454/5/9
DS41639A-page 54 Preliminary 2012 Microchip Technology Inc.
REGISTER 4-2: CONFIG2: CONFIGURATION WORD 2
R/P-1 R/P-1 R/P-1 R/P-1 R/P-1 R/P-1
LVP DEBUG(3) LPBOR BORV STVREN PLLEN
bit 13 bit 8
R/P-1 R/P-1 R/P-1 R/P-1 U-1 U-1 R/P-1 R/P-1
PLLMULT USBLSCLK CPUDIV<1:0> —WRT<1:0>
bit 7 bit 0
Legend:
R = Readable bit P = Programmable bit U = Unimplemented bit, read as ‘1’
‘0’ = Bit is cleared ‘1’ = Bit is set -n = Value when blank or after Bulk Erase
bit 13 LVP: Low-Voltage Programming Enable bit(1)
1 = Low-voltage programming enabled
0 = High-voltage on MCLR must be used for programming
bit 12 DEBUG: In-Circuit Debugger Mode bit(3)
1 = In-Circuit Debugger disabled, ICSPCLK and ICSPDAT are general purpose I/O pins
0 = In-Circuit Debugger enabled, ICSPCLK and ICSPDAT are dedicated to the debugger
bit 11 LPBOR: Low-Power BOR Enable bit
1 = Low-Power Brown-out Reset is disabled
0 = Low-Power Brown-out Reset is enabled
bit 10 BORV: Brown-out Reset Voltage Selection bit(2)
1 = Brown-out Reset voltage (Vbor), low trip point selected
0 = Brown-out Reset voltage (Vbor, high trip point selected
bit 9 STVREN: Stack Overflow/Underflow Reset Enable bit
1 = Stack Overflow or Underflow will cause a Reset
0 = Stack Overflow or Underflow will not cause a Reset
bit 8 PLLEN: PLL Enable bit
1 = PLL is enabled
0 = PLL is disabled
bit 7 PLLMULT: PLL Multiplier Selection bit
1 = 3x PLL Output Frequency is selected
0 = 4x PLL Output Frequency is selected
bit 6 USBLSCLK: USB Low-Speed Clock Selection bit
1 = USB Clock divide-by 8 (48 MHz system input clock expected)
0 = USB Clock divide-by 4 (24 MHz system input clock expected)
bit 5-4 CPUDIV<1:0>: CPU System Clock Selection bits
11 = CPU system clock divided by 6
10 = CPU system clock divided by 3
01 = CPU system clock divided by 2
00 = No CPU system clock divide
bit 3-2 Unimplemented: Read as ‘1
bit 1-0 WRT<1:0>: Flash Memory Self-Write Protection bits
8 kW Flash memory:
11 = Write protection off
10 = 000h to 01FFh write-protected, 0200h to 1FFFh may be modified
01 = 000h to 0FFFh write-protected, 1000h to 1FFFh may be modified
00 = 000h to 1FFFh write-protected, no addresses may be modified
Note 1: The LVP bit cannot be programmed to ‘0’ when Programming mode is entered via LVP.
2: See Vbor parameter for specific trip point voltages.
3: The DEBUG bit in Configuration Words is managed automatically by device development tools including
debuggers and programmers. For normal device operation, this bit should be maintained as a '1'.
2012 Microchip Technology Inc. Preliminary DS41639A-page 55
PIC16(L)F1454/5/9
4.3 Code Protection
Code protection allows the device to be protected from
unauthorized access. Internal access to the program
memory is unaffected by any code protection setting.
4.3.1 PROGRAM MEMORY PROTECTION
The entire program memory space is protected from
external reads and writes by the CP bit in Configuration
Words. When CP = 0, external reads and writes of
program memory are inhibited and a read will return all
0s. The CPU can continue to read program memory,
regardless of the protection bit settings. Writing the
program memory is dependent upon the write
protection setting. See Section 4.4 “Write
Protection” for more information.
4.4 Write Protection
Write protection allows the device to be protected from
unintended self-writes. Applications, such as
bootloader software, can be protected while allowing
other regions of the program memory to be modified.
The WRT<1:0> bits in Configuration Words define the
size of the program memory block that is protected.
4.5 User ID
Four memory locations (8000h-8003h) are designated as
ID locations where the user can store checksum or other
code identification numbers. These locations are
readable and writable during normal execution. See
Section 11.4 “User ID, Device ID and Configuration
Word Access” for more information on accessing these
memory locations. For more information on checksum
calculation, see the PIC16(L)F1454/5/9 Memory
Programming Specification (DS41620).
PIC16(L)F1454/5/9
DS41639A-page 56 Preliminary 2012 Microchip Technology Inc.
4.6 Device ID and Revision ID
The memory location 8005h and 8006h are where the
Device ID and Revision ID are stored. See
Section 11.4 “User ID, Device ID and Configuration
Word Access for more information on accessing
these memory locations.
Development tools, such as device programmers and
debuggers, may be used to read the Device ID and
Revision ID.
4.7 Register Definitions: Revision and Device
REGISTER 4-3: DEVID: DEVICE ID REGISTER
RRRRRR
DEV<13:8>
bit 13 bit 8
RRRRRRRR
DEV<7:0>
bit 7 bit 0
Legend:
R = Readable bit
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 13-0 DEV<13:0>: Device ID bits
REGISTER 4-4: REVID: REVISION ID REGISTER
RRRRRR
REV<13:8>
bit 13 bit 8
RRRRRRRR
REV<7:0>
bit 7 bit 0
Legend:
R = Readable bit
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 13-0 REV<13:0>: Revision ID bits
Device DEVICEID<13:0> Values
PIC16F1454 11 0000 0010 0000 (3020h)
PIC16LF1454 11 0000 0010 0100 (3024h)
PIC16F1455 11 0000 0010 0001 (3021h)
PIC16LF1455 11 0000 0010 0101 (3025h)
PIC16F1459 11 0000 0010 0011 (3023h)
PIC16LF1459 11 0000 0010 0111 (3027h)
2012 Microchip Technology Inc. Preliminary DS41639A-page 57
PIC16(L)F1454/5/9
5.0 OSCILLATOR MODULE (WITH
FAIL-SAFE CLOCK MONITOR)
5.1 Overview
The oscillator module has a wide variety of clock
sources and selection features that allow it to be used
in a wide range of applications while maximizing perfor-
mance and minimizing power consumption. Figure 5-1
illustrates a block diagram of the oscillator module.
Clock sources can be supplied from external oscillators,
quartz crystal resonators, ceramic resonators and
Resistor-Capacitor (RC) circuits. In addition, the system
clock source can be supplied from one of two internal
oscillators, with a choice of speeds selectable via
software. Additional clock features include:
Selectable system clock source between external
or internal sources via software.
Two-Speed Start-up mode, which minimizes
latency between external oscillator start-up and
code execution.
Fail-Safe Clock Monitor (FSCM) designed to
detect a failure of the external clock source (LP,
XT, HS, EC or RC modes) and switch
automatically to the internal oscillator.
Oscillator Start-up Timer (OST) ensures stability
of crystal oscillator sources
Fast start-up oscillator allows internal circuits to
power up and stabilize before switching to the 16
MHz HFINTOSC
3x/4x selectable Phase Lock Frequency Multiplier
allows operation at 24, 32 or 48 MHz.
USB with configurable Full/Low speed operation.
The oscillator module can be configured in one of eight
clock modes.
1. ECL – External Clock Low-Power mode
(0 MHz to 0.5 MHz)
2. ECM – External Clock Medium-Power mode
(0.5 MHz to 4 MHz)
3. ECH – External Clock High-Power mode
(4 MHz to 20 MHz)
4. LP – 32 kHz Low-Power Crystal mode.
5. XT – Medium Gain Crystal or Ceramic Resonator
Oscillator mode (up to 4 MHz)
6. HS – High Gain Crystal or Ceramic Resonator
mode (4 MHz to 20 MHz)
7. RC – External Resistor-Capacitor (RC).
8. INTOSC – Internal oscillator (31 kHz to 16 MHz).
Clock Source modes are selected by the FOSC<2:0>
bits in the Configuration Words. The FOSC bits
determine the type of oscillator that will be used when
the device is first powered.
The EC clock mode relies on an external logic level
signal as the device clock source. The LP, XT, and HS
clock modes require an external crystal or resonator to
be connected to the device. Each mode is optimized for
a different frequency range. The RC clock mode
requires an external resistor and capacitor to set the
oscillator frequency.
The INTOSC internal oscillator block produces a low
and high-frequency clock source, designated
LFINTOSC and HFINTOSC. (see Internal Oscillator
Block, Figure 5-1). A wide selection of device clock
frequencies may be derived from these two clock
sources.
PIC16(L)F1454/5/9
DS41639A-page 58 Preliminary 2012 Microchip Technology Inc.
FIGURE 5-1: SIMPLIFIED PIC® MCU CLOCK SOURCE BLOCK DIAGRAM
Primary
Oscillator
(OSC)
Secondary
Oscillator
(SOSC)
Postscaler
16 MHz
8 MHz
4 MHz
2 MHz
1 MHz
500 kHz
250 kHz
125 kHz
62.5 kHz
31.25 kHz
31 kHz
to WDT, PWRT
and other Modules
Clock
Control
SCS<1:0>
FOSC<2:0>
CLKIN/ OSC1/
SOSCI/ T1CKI
CLKOUT / OSC2
SOSCO/ T1G
Primary Clock
Secondary Clock
INTOSC
IRCF<3:0>
Start-up
Control Logic
16 MHz
Internal OSC
31 kHz
Source
Start-Up
OSC
3
4
3x/4x PLL
FOSC<2:0>
3
LFINTOSC
HFINTOSC
2
SPLLEN
PLLEN
Active Clock
Tuning
SOSC_clk
Sleep
PLLMULT
INTOSC
(16 or 8 MHz)
LFINTOSC
SPLLMULT
FOSC
to
CPU and
Peripherals
CPU
Divider
CPUDIV<1:0>
USBLSCLK
USB
Divider
1
0
USB
Clock
Source
1
0
FSEN
48 MHz
6 MHz
2012 Microchip Technology Inc. Preliminary DS41639A-page 59
PIC16(L)F1454/5/9
5.2 Clock Source Types
Clock sources can be classified as external or internal.
External clock sources rely on external circuitry for the
clock source to function. Examples are: oscillator mod-
ules (EC mode), quartz crystal resonators or ceramic
resonators (LP, XT and HS modes) and Resis-
tor-Capacitor (RC) mode circuits.
Internal clock sources are contained within the oscillator
module. The internal oscillator block has two internal
oscillators that are used to generate the internal system
clock sources: the 16 MHz High-Frequency Internal
Oscillator and the 31 kHz Low-Frequency Internal
Oscillator (LFINTOSC).
The system clock can be selected between external or
internal clock sources via the System Clock Select
(SCS) bits in the OSCCON register. See Section 5.3
“CPU Clock Divider” for additional information.
5.2.1 EXTERNAL CLOCK SOURCES
An external clock source can be used as the device
system clock by performing one of the following
actions:
Program the FOSC<2:0> bits in the Configuration
Words to select an external clock source that will
be used as the default system clock upon a
device Reset.
Write the SCS<1:0> bits in the OSCCON register
to switch the system clock source to:
- Secondary oscillator during run-time, or
- An external clock source determined by the
value of the FOSC bits.
See Section 5.3 “CPU Clock Divider”for more infor-
mation.
5.2.1.1 EC Mode
The External Clock (EC) mode allows an externally
generated logic level signal to be the system clock
source. When operating in this mode, an external clock
source is connected to the OSC1 input.
OSC2/CLKOUT is available for general purpose I/O or
CLKOUT. Figure 5-2 shows the pin connections for EC
mode.
EC mode has three power modes to select from through
Configuration Words:
High power, 4-20 MHz (FOSC = 111)
Medium power, 0.5-4 MHz (FOSC = 110)
Low power, 0-0.5 MHz (FOSC = 101)
The Oscillator Start-up Timer (OST) is disabled when
EC mode is selected. Therefore, there is no delay in
operation after a Power-on Reset (POR) or wake-up
from Sleep. Because the PIC® MCU design is fully
static, stopping the external clock input will have the
effect of halting the device while leaving all data intact.
Upon restarting the external clock, the device will
resume operation as if no time had elapsed.
FIGURE 5-2: EXTERNAL CLOCK (EC)
MODE OPERATION
5.2.1.2 LP, XT, HS Modes
The LP, XT and HS modes support the use of quartz
crystal resonators or ceramic resonators connected to
OSC1 and OSC2 (Figure 5-3). The three modes select
a low, medium or high gain setting of the internal
inverter-amplifier to support various resonator types
and speed.
LP Oscillator mode selects the lowest gain setting of the
internal inverter-amplifier. LP mode current consumption
is the least of the three modes. This mode is designed to
drive only 32.768 kHz tuning-fork type crystals (watch
crystals).
XT Oscillator mode selects the intermediate gain
setting of the internal inverter-amplifier. XT mode
current consumption is the medium of the three modes.
This mode is best suited to drive resonators with a
medium drive level specification.
HS Oscillator mode selects the highest gain setting of the
internal inverter-amplifier. HS mode current consumption
is the highest of the three modes. This mode is best
suited for resonators that require a high drive setting.
Figure 5-3 and Figure 5-4 show typical circuits for
quartz crystal and ceramic resonators, respectively.
OSC1/CLKIN
OSC2/CLKOUT
Clock from
Ext. System
PIC® MCU
FOSC/4 or I/O(1)
Note 1: Output depends upon CLKOUTEN bit of the
Configuration Words.
PIC16(L)F1454/5/9
DS41639A-page 60 Preliminary 2012 Microchip Technology Inc.
FIGURE 5-3: QUARTZ CRYSTAL
OPERATION (LP, XT OR
HS MODE)
FIGURE 5-4: CERAMIC RESONATOR
OPERATION
(XT OR HS MODE)
5.2.1.3 Oscillator Start-up Timer (OST)
If the oscillator module is configured for LP, XT or HS
modes, the Oscillator Start-up Timer (OST) counts 1024
oscillations from OSC1. This occurs following a
Power-on Reset (POR) and when the Power-up Timer
(PWRT) has expired (if configured), or a wake-up from
Sleep. During this time, the program counter does not
increment and program execution is suspended unless
either FSCM or Two-Speed Start-Up are enabled. In this
case, code will continue to execute at the selected
INTOSC frequency while the OST is counting . The OST
ensures that the oscillator circuit, using a quartz crystal
resonator or ceramic resonator, has started and is
providing a stable system clock to the oscillator module.
In order to minimize latency between external oscillator
start-up and code execution, the Two-Speed Clock
Start-up mode can be selected (see Section 5.6
“Two-Speed Clock Start-up Mode”).
Note 1: Quartz crystal characteristics vary
according to type, package and
manufacturer. The user should consult the
manufacturer data sheets for specifications
and recommended application.
2: Always verify oscillator performance over
the VDD and temperature range that is
expected for the application.
3: For oscillator design assistance, reference
the following Microchip Applications Notes:
• AN826, “Crystal Oscillator Basics and
Crystal Selection for rfPIC® and PIC®
Devices” (DS00826)
• AN849, “Basic PIC® Oscillator Design
(DS00849)
• AN943, “Practical PIC® Oscillator
Analysis and Design” (DS00943)
• AN949, “Making Your Oscillator Work
(DS00949)
Note 1: A series resistor (RS) may be required for
quartz crystals with low drive level.
2: The value of RF varies with the Oscillator mode
selected (typically between 2 M to 10 M.
C1
C2
Quartz
RS(1)
OSC1/CLKIN
RF(2) Sleep
To Internal
Logic
PIC® MCU
Crystal
OSC2/CLKOUT
Note 1: A series resistor (RS) may be required for
ceramic resonators with low drive level.
2: The value of RF varies with the Oscillator mode
selected (typically between 2 M to 10 M.
3: An additional parallel feedback resistor (RP)
may be required for proper ceramic resonator
operation.
C1
C2 Ceramic RS(1)
OSC1/CLKIN
RF(2) Sleep
To Internal
Logic
PIC® MCU
RP(3)
Resonator
OSC2/CLKOUT
2012 Microchip Technology Inc. Preliminary DS41639A-page 61
PIC16(L)F1454/5/9
5.2.1.4 3x PLL or 4x PLL
The oscillator module contains a PLL that can be used
with both external and internal clock sources to provide a
system clock source. By setting the SPLLMULT bit of the
OSCCON register, 3x PLL is selected. By clearing the
SPLLMULT bit of the OSCCON register, 4x PLL is
selected. The input frequency for the PLL must fall within
specifications. See the PLL Clock Timing Specifications in
Section 29.0 “Electrical Specifications”.
The PLL may be enabled for use by one of two methods:
1. Program the PLLEN bit in Configuration Words
to a ‘1’.
2. Write the SPLLEN bit in the OSCCON register to
a ‘1’. If the PLLEN bit in Configuration Words is
programmed to a ‘1’, then the value of SPLLEN
is ignored.
5.2.1.5 Secondary Oscillator
The secondary oscillator is a separate crystal oscillator
that is associated with the Timer1 peripheral. It is opti-
mized for timekeeping operations with a 32.768 kHz
crystal connected between the SOSCO and SOSCI
device pins.
The secondary oscillator can be used as an alternate
system clock source and can be selected during
run-time using clock switching. Refer to Section 5.3
“CPU Clock Divider” for more information.
FIGURE 5-5: QUARTZ CRYSTAL
OPERATION
(SECONDARY
OSCILLATOR)
PLL HFINTOSC
(MHz)
ECH/HS
(MHz)
System
Clock (MHz)
4x 8 8 - 12 32 - 48
3x 16, 8 8 - 16 24 - 48
C1
C2
32.768 kHz
SOSCI
To Internal
Logic
PIC® MCU
Crystal
SOSCO
Quartz
Note 1: Quartz crystal characteristics vary
according to type, package and
manufacturer. The user should consult the
manufacturer data sheets for specifications
and recommended application.
2: Always verify oscillator performance over
the VDD and temperature range that is
expected for the application.
3: For oscillator design assistance, reference
the following Microchip Applications Notes:
• AN826, “Crystal Oscillator Basics and
Crystal Selection for rfPIC® and PIC®
Devices” (DS00826)
• AN849, “Basic PIC® Oscillator Design
(DS00849)
• AN943, “Practical PIC® Oscillator
Analysis and Design” (DS00943)
• AN949, “Making Your Oscillator Work
(DS00949)
• TB097, “Interfacing a Micro Crystal
MS1V-T1K 32.768 kHz Tuning Fork
Crystal to a PIC16F690/SS” (DS91097)
• AN1288, “Design Practices for
Low-Power External Oscillators
(DS01288)
PIC16(L)F1454/5/9
DS41639A-page 62 Preliminary 2012 Microchip Technology Inc.
5.2.1.6 External RC Mode
The external Resistor-Capacitor (RC) modes support
the use of an external RC circuit. This allows the
designer maximum flexibility in frequency choice while
keeping costs to a minimum when clock accuracy is not
required.
The RC circuit connects to OSC1. OSC2/CLKOUT is
available for general purpose I/O or CLKOUT. The
function of the OSC2/CLKOUT pin is determined by the
CLKOUTEN bit in Configuration Words.
Figure 5-6 shows the external RC mode connections.
FIGURE 5-6: EXTERNAL RC MODES
The RC oscillator frequency is a function of the supply
voltage, the resistor (REXT) and capacitor (CEXT) values
and the operating temperature. Other factors affecting
the oscillator frequency are:
threshold voltage variation
component tolerances
packaging variations in capacitance
The user also needs to take into account variation due
to tolerance of the external RC components used.
5.2.2 INTERNAL CLOCK SOURCES
The device may be configured to use the internal oscil-
lator block as the system clock by performing one of the
following actions:
Program the FOSC<2:0> bits in Configuration
Words to select the INTOSC clock source, which
will be used as the default system clock upon a
device Reset.
Write the SCS<1:0> bits in the OSCCON register
to switch the system clock source to the internal
oscillator during run-time. See Section 5.3 “CPU
Clock Divider”for more information.
In INTOSC mode, OSC1/CLKIN is available for general
purpose I/O. OSC2/CLKOUT is available for general
purpose I/O or CLKOUT.
The function of the OSC2/CLKOUT pin is determined
by the CLKOUTEN bit in Configuration Words.
The internal oscillator block has two independent
oscillators that provides the internal system clock
source.
1. The HFINTOSC (High-Frequency Internal
Oscillator) is factory calibrated and operates at
16 MHz. The frequency of the HFINTOSC can be
user-adjusted via software using the OSCTUNE
register (Register 5-3).
2. The LFINTOSC (Low-Frequency Internal
Oscillator) is uncalibrated and operates at
31 kHz.
5.2.2.1 HFINTOSC
The High-Frequency Internal Oscillator (HFINTOSC) is
a factory calibrated 16 MHz internal clock source. The
frequency of the HFINTOSC can be altered via
software using the OSCTUNE register (Register 5-3).
The output of the HFINTOSC connects to a postscaler
and multiplexer (see Figure 5-1). The frequency derived
from the HFINTOSC can be selected via software using
the IRCF<3:0> bits of the OSCCON register. See
Section 5.2.2.4 “Internal Oscillator Frequency
Selection” for more information.
The HFINTOSC is enabled by:
Configure the IRCF<3:0> bits of the OSCCON
register for the desired HF frequency, and
•FOSC<2:0> = 100, or
Set the System Clock Source (SCS) bits of the
OSCCON register to ‘1x’.
A fast start-up oscillator allows internal circuits to
power-up and stabilize before switching to HFINTOSC.
The High-Frequency Internal Oscillator Ready bit
(HFIOFR) of the OSCSTAT register indicates when the
HFINTOSC is running.
The High-Frequency Internal Oscillator Stable bit
(HFIOFS) of the OSCSTAT register indicates when the
HFINTOSC is running within 0.5% of its final value.
OSC2/CLKOUT
CEXT
REXT
PIC® MCU
OSC1/CLKIN
FOSC/4 or
Internal
Clock
VDD
VSS
Recommended values: 10 k REXT 100 k, <3V
3 k REXT 100 k, 3-5V
CEXT > 20 pF, 2-5V
Note 1: Output depends upon CLKOUTEN bit of the
Configuration Words.
I/O(1)
2012 Microchip Technology Inc. Preliminary DS41639A-page 63
PIC16(L)F1454/5/9
5.2.2.2 Internal Oscillator Frequency
Adjustment
The 16 MHz internal oscillator is factory calibrated.
This internal oscillator can be adjusted in software by
writing to the OSCTUNE register (Register 5-3). Since
all HFINTOSC clock sources are derived from the
16 MHz internal oscillator a change in the OSCTUNE
register value will apply to all HFINTOSC frequencies.
The default value of the OSCTUNE register is ‘0’. The
value is a 7-bit two’s complement number. A value of
3Fh will provide an adjustment to the maximum
frequency. A value of 40h will provide an adjustment to
the minimum frequency.
When the OSCTUNE register is modified, the oscillator
frequency will begin shifting to the new frequency. Code
execution continues during this shift. There is no
indication that the shift has occurred.
OSCTUNE does not affect the LFINTOSC frequency.
Operation of features that depend on the LFINTOSC
clock source frequency, such as the Power-up Timer
(PWRT), Watchdog Timer (WDT), Fail-Safe Clock
Monitor (FSCM) and peripherals, are not affected by the
change in frequency.
5.2.2.3 LFINTOSC
The Low-Frequency Internal Oscillator (LFINTOSC) is
an uncalibrated 31 kHz internal clock source.
The output of the LFINTOSC connects to a postscaler
and multiplexer (see Figure 5-1). Select 31 kHz, via
software, using the IRCF<3:0> bits of the OSCCON
register. See Section 5.2.2.4 “Internal Oscillator
Frequency Selection” for more information. The
LFINTOSC is also the frequency for the Power-up Timer
(PWRT), Watchdog Timer (WDT) and Fail-Safe Clock
Monitor (FSCM).
The LFINTOSC is enabled by selecting 31 kHz
(IRCF<3:0> bits of the OSCCON register = 000) as the
system clock source (SCS bits of the OSCCON
register = 1x), or when any of the following are
enabled:
Configure the IRCF<3:0> bits of the OSCCON
register for the desired LF frequency, and
•FOSC<2:0> = 100, or
Set the System Clock Source (SCS) bits of the
OSCCON register to ‘1x
Peripherals that use the LFINTOSC are:
Power-up Timer (PWRT)
Watchdog Timer (WDT)
Fail-Safe Clock Monitor (FSCM)
The Low-Frequency Internal Oscillator Ready bit
(LFIOFR) of the OSCSTAT register indicates when the
LFINTOSC is running.
5.2.2.4 Internal Oscillator Frequency
Selection
The system clock speed can be selected via software
using the Internal Oscillator Frequency Select bits
IRCF<3:0> of the OSCCON register.
The output of the 16 MHz HFINTOSC and 31 kHz
LFINTOSC connects to a postscaler and multiplexer
(see Figure 5-1). The Internal Oscillator Frequency
Select bits IRCF<3:0> of the OSCCON register select
the frequency output of the internal oscillators. One of
the following frequencies can be selected via software:
•HFINTOSC
- 48 MHz (requires 3x PLL)
- 32 MHz (requires 4x PLL)
- 24 MHz (requires 3x PLL)
-16 MHz
-8 MHz
-4 MHz
-2 MHz
-1 MHz
- 500 kHz (Default after Reset)
-250 kHz
-125 kHz
-62.5 kHz
-31.25 kHz
•LFINTOSC
-31 kHz
The IRCF<3:0> bits of the OSCCON register allow
duplicate selections for some frequencies. These dupli-
cate choices can offer system design trade-offs. Lower
power consumption can be obtained when changing
oscillator sources for a given frequency. Faster transi-
tion times can be obtained between frequency changes
that use the same oscillator source.
Note: Following any Reset, the IRCF<3:0> bits
of the OSCCON register are set to0111
and the frequency selection is set to
500 kHz. The user can modify the IRCF
bits to select a different frequency.
PIC16(L)F1454/5/9
DS41639A-page 64 Preliminary 2012 Microchip Technology Inc.
5.2.2.5 Internal Oscillator Frequency
Selection Using the PLL
The Internal Oscillator Block can be used with the PLL
associated with the External Oscillator Block to
produce a 24 MHz, 32 MHz or 48 MHz internal system
clock source. The following settings are required to use
the PLL internal clock sources:
The FOSC bits of the Configuration Words must
be set to use the INTOSC source as the device
system clock (FOSC<2:0> = 100).
The SCS bits of the OSCCON register must be
cleared to use the clock determined by
FOSC<2:0> in Configuration Words
(SCS<1:0> = 00).
For 24 MHz or 32 MHz, the IRCF bits of the
OSCCON register must be set to the 8 MHz
HFINTOSC set to use (IRCF<3:0> = 1110).
For 48 MHz, the IRCF bits of the OSCCON regis-
ter must be set to the 16 MHz HFINTOSC set to
use (IRCF<3:0> = 1111).
For 24 MHz or 48 MHz, the 3x PLL is required.
The SPLLMULT of the OSCCON register must be
set to use (SPLLMULT = 1).
For 32 MHz, the 4x PLL is required. The
SPLLMULT of the OSCCON register must be
clear to use (SPLLMULT = 0).
The SPLLEN bit of the OSCCON register must be
set to enable the PLL, or the PLLEN bit of the
Configuration Words must be programmed to a
'1'.
The PLL is not available for use with the internal oscil-
lator when the SCS bits of the OSCCON register are
set to '1x'. The SCS bits must be set to '00' to use the
PLL with the internal oscillator.
5.2.2.6 Internal Oscillator Clock Switch
Timing
When switching between the HFINTOSC and the
LFINTOSC, the new oscillator may already be shut
down to save power (see Figure 5-7). If this is the case,
there is a delay after the IRCF<3:0> bits of the
OSCCON register are modified before the frequency
selection takes place. The OSCSTAT register will
reflect the current active status of the HFINTOSC and
LFINTOSC oscillators. The sequence of a frequency
selection is as follows:
1. IRCF<3:0> bits of the OSCCON register are
modified.
2. If the new clock is shut down, a clock start-up
delay is started.
3. Clock switch circuitry waits for a falling edge of
the current clock.
4. The current clock is held low and the clock
switch circuitry waits for a rising edge in the new
clock.
5. The new clock is now active.
6. The OSCSTAT register is updated as required.
7. Clock switch is complete.
See Figure 5-7 for more details.
If the internal oscillator speed is switched between two
clocks of the same source, there is no start-up delay
before the new frequency is selected. Clock switching
time delays are shown in Table 5-3.
Start-up delay specifications are located in the
oscillator tables of Section 29.0 “Electrical
Specifications”.
Note: When using the PLLEN bit of the
Configuration Words, the PLL cannot be
disabled by software. The 8 MHz and 16
MHz HFINTOSC options will no longer be
available.
2012 Microchip Technology Inc. Preliminary DS41639A-page 65
PIC16(L)F1454/5/9
FIGURE 5-7: INTERNAL OSCILLATOR SWITCH TIMING
HFINTOSC
LFINTOSC
IRCF <3:0>
System Clock
HFINTOSC
LFINTOSC
IRCF <3:0>
System Clock
00
00
Start-up Time 2-cycle Sync Running
2-cycle Sync Running
HFINTOSC LFINTOSC (FSCM and WDT disabled)
HFINTOSC LFINTOSC (Either FSCM or WDT enabled)
LFINTOSC
HFINTOSC
IRCF <3:0>
System Clock
= 0 0
Start-up Time 2-cycle Sync Running
LFINTOSC HFINTOSC LFINTOSC turns off unless WDT or FSCM is enabled
PIC16(L)F1454/5/9
DS41639A-page 66 Preliminary 2012 Microchip Technology Inc.
5.3 CPU Clock Divider
The CPU Clock divider allows the system clock to run
at a slower speed than the Low/Full-Speed USB
module clock, while sharing the same clock source.
Only the oscillator defined by the settings of the FOSC
bits of the Configuration Words may be used with the
CPU clock divider. the CPU clock divider is controlled
by the CPUDIV<1:0> bits of the Configuration Words.
Setting the CPUDIV bits will set the system clock to:
Equal the clock speed of the USB module
Half the clock speed of the USB module
One third the clock speed of the USB Module
One sixth clock speed of the USB module
For more information on the CPU Clock Divider, see
Figure 5-1 and Configuration Words.
5.4 USB Operation
The USB module is designed to operate in two different
modes:
Low Speed
Full Speed
To achieve the timing requirements imposed by the
USB specifications, the internal oscillator or the primary
external oscillator are required for the USB module.
The FOSC bits of the Configuration Words must be set
to INTOSC, ECH or HS mode with a clock frequency of
6, 12, or 16 MHz.
5.4.1 LOW-SPEED OPERATION
For low-speed USB Operation, a 24 MHz clock is
required for the USB module. To generate the 24 MHz
clock, the following Oscillator modes are allowed:
HFINTOSC with PLL
ECH mode
•HS mode
Table 5-1 shows the recommended Clock mode for
low-speed operation.
5.4.2 HIGH-SPEED OPERATION
For full-speed USB operation, a 48 MHz clock is
required for the USB module. To generate the 48 MHz
clock, the following oscillator modes are allowed:
HFINTOSC with PLL
ECH mode
•HS mode
Table 5-1 shows the recommended Clock mode for
full-speed operation.
TABLE 5-1: LOW-SPEED USB CLOCK SETTINGS
Clock Mode Clock
Frequency PLL Value USBLSCLK CPUDIV<1:0>
System Clock
Frequency
(MHz)
HFINTOSC
16 MHz 3x 1
11
10
01
00
8
16
24
48
8 MHz 3x 0
11
10
01
00
4
8
12
24
ECH or HS mode
16 MHz 3x 1
11
10
01
00
8
16
24
48
12 MHz 4x 1
11
10
01
00
8
16
24
48
8 MHz 3x 0
11
10
01
00
4
8
12
24
2012 Microchip Technology Inc. Preliminary DS41639A-page 67
PIC16(L)F1454/5/9
TABLE 5-2: HIGH-SPEED USB CLOCK SETTINGS
Clock Mode Clock
Frequency PLL Value USBLSCLK CPUDIV<1:0>
System Clock
Frequency
(MHz)
HFINTOSC 16 MHz 3x 0
11
10
01
00
8
16
24
48
ECH or HS mode
16 MHz 3x 0
11
10
01
00
8
16
24
48
12 MHz 4x 0
11
10
01
00
8
16
24
48
PIC16(L)F1454/5/9
DS41639A-page 68 Preliminary 2012 Microchip Technology Inc.
5.5 Clock Switching
The system clock source can be switched between
external and internal clock sources via software using
the System Clock Select (SCS) bits of the OSCCON
register. The following clock sources can be selected
using the SCS bits:
Default system oscillator determined by FOSC
bits in Configuration Words
Secondary oscillator 32 kHz crystal
Internal Oscillator Block (INTOSC)
5.5.1 SYSTEM CLOCK SELECT (SCS)
BITS
The System Clock Select (SCS) bits of the OSCCON
register selects the system clock source that is used for
the CPU and peripherals.
When the SCS bits of the OSCCON register = 00,
the system clock source is determined by value of
the FOSC<2:0> bits in the Configuration Words.
When the SCS bits of the OSCCON register = 01,
the system clock source is the secondary
oscillator.
When the SCS bits of the OSCCON register = 1x,
the system clock source is chosen by the internal
oscillator frequency selected by the IRCF<3:0>
bits of the OSCCON register. After a Reset, the
SCS bits of the OSCCON register are always
cleared.
When switching between clock sources, a delay is
required to allow the new clock to stabilize. These oscil-
lator delays are shown in Table 5-3.
5.5.2 OSCILLATOR START-UP TIMER
STATUS (OSTS) BIT
The Oscillator Start-up Timer Status (OSTS) bit of the
OSCSTAT register indicates whether the system clock
is running from the external clock source, as defined by
the FOSC<2:0> bits in the Configuration Words, or
from the internal clock source. In particular, OSTS
indicates that the Oscillator Start-up Timer (OST) has
timed out for LP, XT or HS modes. The OST does not
reflect the status of the secondary oscillator.
5.5.3 SECONDARY OSCILLATOR
The secondary oscillator is a separate crystal oscillator
associated with the Timer1 peripheral. It is optimized
for timekeeping operations with a 32.768 kHz crystal
connected between the SOSCO and SOSCI device
pins.
The secondary oscillator is enabled using the
T1OSCEN control bit in the T1CON register. See
Section 20.0 “Timer1 Module with Gate Control” for
more information about the Timer1 peripheral.
5.5.4 SECONDARY OSCILLATOR READY
(SOSCR) BIT
The user must ensure that the secondary oscillator is
ready to be used before it is selected as a system clock
source. The Secondary Oscillator Ready (SOSCR) bit
of the OSCSTAT register indicates whether the
secondary oscillator is ready to be used. After the
SOSCR bit is set, the SCS bits can be configured to
select the secondary oscillator.
Note: Any automatic clock switch, which may
occur from Two-Speed Start-up or
Fail-Safe Clock Monitor, does not update
the SCS bits of the OSCCON register. The
user can monitor the OSTS bit of the
OSCSTAT register to determine the current
system clock source.
2012 Microchip Technology Inc. Preliminary DS41639A-page 69
PIC16(L)F1454/5/9
5.6 Two-Speed Clock Start-up Mode
Two-Speed Start-up mode provides additional power
savings by minimizing the latency between external
oscillator start-up and code execution. In applications
that make heavy use of the Sleep mode, Two-Speed
Start-up will remove the external oscillator start-up
time from the time spent awake and can reduce the
overall power consumption of the device. This mode
allows the application to wake-up from Sleep, perform
a few instructions using the INTOSC internal oscillator
block as the clock source and go back to Sleep without
waiting for the external oscillator to become stable.
Two-Speed Start-up provides benefits when the oscil-
lator module is configured for LP, XT, or HS modes.
The Oscillator Start-up Timer (OST) is enabled for
these modes and must count 1024 oscillations before
the oscillator can be used as the system clock source.
If the oscillator module is configured for any mode
other than LP, XT or HS mode, then Two-Speed
Start-up is disabled. This is because the external clock
oscillator does not require any stabilization time after
POR or an exit from Sleep.
If the OST count reaches 1024 before the device
enters Sleep mode, the OSTS bit of the OSCSTAT reg-
ister is set and program execution switches to the
external oscillator. However, the system may never
operate from the external oscillator if the time spent
awake is very short.
5.6.1 TWO-SPEED START-UP MODE
CONFIGURATION
Two-Speed Start-up mode is configured by the
following settings:
IESO (of the Configuration Words) = 1; Inter-
nal/External Switchover bit (Two-Speed Start-up
mode enabled).
SCS (of the OSCCON register) = 00.
FOSC<2:0> bits in the Configuration Words
configured for LP, XT or HS mode.
Two-Speed Start-up mode is entered after:
Power-on Reset (POR) and, if enabled, after
Power-up Timer (PWRT) has expired, or
Wake-up from Sleep.
TABLE 5-3: OSCILLATOR SWITCHING DELAYS
Note: Executing a SLEEP instruction will abort
the oscillator start-up time and will cause
the OSTS bit of the OSCSTAT register to
remain clear.
Note: When FSCM is enabled, Two-Speed
Start-Up will automatically be enabled.
Switch From Switch To Frequency Oscillator Delay
Sleep/POR LFINTOSC(1)
HFINTOSC
31 kHz
31.25kHz-16MHz Oscillator Warm-up Delay (TWARM)
Sleep/POR EC, RC DC – 20 MHz 2 cycles
LFINTOSC EC, RC DC – 20 MHz 1 cycle of each
Sleep/POR Secondary Oscillator,
LP, XT, HS(1) 32 kHz-20 MHz 1024 Clock Cycles (OST)
Any clock source HFINTOSC(1) 31.25kHz-16MHz 2s (approx.)
Any clock source LFINTOSC(1) 31 kHz 1 cycle of each
Any clock source Secondary Oscillator 32 kHz 1024 Clock Cycles (OST)
PLL Inactive PLL Active 24-48 MHz 2 ms (approx.)
Note 1: PLL inactive.
PIC16(L)F1454/5/9
DS41639A-page 70 Preliminary 2012 Microchip Technology Inc.
5.6.2 TWO-SPEED START-UP
SEQUENCE
1. Wake-up from Power-on Reset or Sleep.
2. Instructions begin execution by the internal
oscillator at the frequency set in the IRCF<3:0>
bits of the OSCCON register.
3. OST enabled to count 1024 clock cycles.
4. OST timed out, wait for falling edge of the
internal oscillator.
5. OSTS is set.
6. System clock held low until the next falling edge
of new clock (LP, XT or HS mode).
7. System clock is switched to external clock
source.
5.6.3 CHECKING TWO-SPEED CLOCK
STATUS
Checking the state of the OSTS bit of the OSCSTAT
register will confirm if the microcontroller is running
from the external clock source, as defined by the
FOSC<2:0> bits in the Configuration Words, or the
internal oscillator.
FIGURE 5-8: TWO-SPEED START-UP
0 1 1022 1023
PC + 1
TOSTT
INTOSC
OSC1
OSC2
Program Counter
System Clock
PC - N PC
2012 Microchip Technology Inc. Preliminary DS41639A-page 71
PIC16(L)F1454/5/9
5.7 Fail-Safe Clock Monitor
The Fail-Safe Clock Monitor (FSCM) allows the device
to continue operating should the external oscillator fail.
The FSCM can detect oscillator failure any time after
the Oscillator Start-up Timer (OST) has expired. The
FSCM is enabled by setting the FCMEN bit in the
Configuration Words. The FSCM is applicable to all
external Oscillator modes (LP, XT, HS, EC, RC and
secondary oscillator).
FIGURE 5-9: FSCM BLOCK DIAGRAM
5.7.1 FAIL-SAFE DETECTION
The FSCM module detects a failed oscillator by
comparing the external oscillator to the FSCM sample
clock. The sample clock is generated by dividing the
LFINTOSC by 64. See Figure 5-9. Inside the fail
detector block is a latch. The external clock sets the
latch on each falling edge of the external clock. The
sample clock clears the latch on each rising edge of the
sample clock. A failure is detected when an entire
half-cycle of the sample clock elapses before the
external clock goes low.
5.7.2 FAIL-SAFE OPERATION
When the external clock fails, the FSCM switches the
device clock to an internal clock source and sets the bit
flag OSFIF of the PIR2 register. Setting this flag will
generate an interrupt if the OSFIE bit of the PIE2
register is also set. The device firmware can then take
steps to mitigate the problems that may arise from a
failed clock. The system clock will continue to be
sourced from the internal clock source until the device
firmware successfully restarts the external oscillator
and switches back to external operation.
The internal clock source chosen by the FSCM is
determined by the IRCF<3:0> bits of the OSCCON
register. This allows the internal oscillator to be
configured before a failure occurs.
5.7.3 FAIL-SAFE CONDITION CLEARING
The Fail-Safe condition is cleared after a Reset,
executing a SLEEP instruction or changing the SCS bits
of the OSCCON register. When the SCS bits are
changed, the OST is restarted. While the OST is
running, the device continues to operate from the
INTOSC selected in OSCCON. When the OST times
out, the Fail-Safe condition is cleared after successfully
switching to the external clock source. The OSFIF bit
should be cleared prior to switching to the external
clock source. If the Fail-Safe condition still exists, the
OSFIF flag will again become set by hardware.
5.7.4 RESET OR WAKE-UP FROM SLEEP
The FSCM is designed to detect an oscillator failure
after the Oscillator Start-up Timer (OST) has expired.
The OST is used after waking up from Sleep and after
any type of Reset. The OST is not used with the EC or
RC Clock modes so that the FSCM will be active as
soon as the Reset or wake-up has completed. When
the FSCM is enabled, the Two-Speed Start-up is also
enabled. Therefore, the device will always be executing
code while the OST is operating.
External
LFINTOSC ÷ 64
S
R
Q
31 kHz
(~32 s)
488 Hz
(~2 ms)
Clock Monitor
Latch
Clock
Failure
Detected
Oscillator
Clock
Q
Sample Clock
Note: Due to the wide range of oscillator start-up
times, the Fail-Safe circuit is not active
during oscillator start-up (i.e., after exiting
Reset or Sleep). After an appropriate
amount of time, the user should check the
Status bits in the OSCSTAT register to
verify the oscillator start-up and that the
system clock switchover has successfully
completed.
PIC16(L)F1454/5/9
DS41639A-page 72 Preliminary 2012 Microchip Technology Inc.
FIGURE 5-10: FSCM TIMING DIAGRAM
OSCFIF
System
Clock
Output
Sample Clock
Failure
Detected
Oscillator
Failure
Note: The system clock is normally at a much higher frequency than the sample clock. The relative frequencies in
this example have been chosen for clarity.
(Q)
Te s t Test Test
Clock Monitor Output
2012 Microchip Technology Inc. Preliminary DS41639A-page 73
PIC16(L)F1454/5/9
5.8 Active Clock Tuning (ACT)
The Active Clock Tuning (ACT) continuously adjusts
the 16 MHz Internal Oscillator, using an available
external reference, to achieve ± 0.20% accuracy. This
eliminates the need for a high-speed, high-accuracy
external crystal when the system has an available
lower speed, lower power, high-accuracy clock source
available.
Systems implementing a Real-Time Clock Calendar
(RTCC) or a full-speed USB application can take full
advantage of the ACT.
5.8.1 ACTIVE CLOCK TUNING
OPERATION
The ACT defaults to the disabled state after any Reset.
When the ACT is disabled, the user can write to the
TUN<6:0> bits in the OSCTUNE register to manually
adjust the 16 MHz Internal Oscillator.
The ACT is enabled by setting the ACTEN bit of the
ACTCON register. When enabled, the ACT takes
control of the OSCTUNE register. The ACT uses the
selected ACT reference clock to tune the 16 MHz
Internal Oscillator to an accuracy of 16MHz ± 0.2%.
The tuning automatically adjusts the OSCTUNE
register every reference clock cycle.
5.8.2 ACTIVE CLOCK TUNING SOURCE
SELECTION
The ACT reference clock is selected with the ACTSRC
bit of the ACTCON register. The reference clock
sources are provided by the:
USB module in full-speed operation (ACT_clk)
Secondary clock at 32.768 kHz (SOSC_clk)
5.8.3 ACT LOCK STATUS
The ACTLOCK bit will be set to '1', when the 16 MHz
Internal Oscillator is successfully tuned.
The bit will be cleared by the following conditions:
Out of Lock condition
Device Reset
ACT is disabled
5.8.4 ACT OUT-OF-RANGE STATUS
If the ACT requires an OSCTUNE value outside the
range to achieve ± 0.20% accuracy, then
the ACT Out-of-Range (ACTOR) Status bit will be set
to '1'.
An out-of-range status can occur:
When the 16 MHz internal oscillator is tuned to its
lowest frequency and the next ACT_clk event
requests a lower frequency.
When the 16 MHz internal oscillator is tuned to its
highest frequency and the next ACT_clk event
requests a higher frequency.
When the ACT out-of-range event occurs, the 16 MHz
internal oscillator will continue to use the last written
OSCTUNE value. When the OSCTUNE value moves
back within the tunable range and ACTLOCK is
established, the ACTOR bit is cleared to '0'.
FIGURE 5-11: ACTIVE CLOCK TUNING BLOCK DIAGRAM
Note 1: When the ACT is enabled, the
OSCTUNE register is only updated by
the ACT. Writes to the OSCTUNE regis-
ter by the user are inhibited, but reading
the register is permitted.
2: After disabling the ACT, the user should
wait three instructions before writing to
the OSCTUNE register.
ACTSRC
FSUSB_clk
SOSC_clk
ACTEN
Active
Clock
Tuning
ACT_clk Enable
ACTEN
Write
OSCTUNE
ACTEN
ACTUD
16 MHz
Internal OSC
1
0
OSCTUNE<6:0>
7
7
ACT data sfr data
PIC16(L)F1454/5/9
DS41639A-page 74 Preliminary 2012 Microchip Technology Inc.
5.8.5 ACTIVE CLOCK TUNING UPDATE
DISABLE
When the ACT is enabled, the OSCTUNE register is
continuously updated every ACT_clk period. Setting
the ACT Update Disable bit can be used to suspend
updates to the OSCTUNE register, without disabling
the ACT. If the 16 MHz internal oscillator drifts out of the
accuracy range, the ACT Status bits will change and an
interrupt can be generated to notify the application.
Clearing the ACTUD bit will engage the ACT updates
to OSCTUNE and an interrupt can be generated to
notify the application.
5.8.6 INTERRUPTS
The ACT will set the ACT Interrupt Flag, (ACTIF) when
either of the ACT Status bits (ACTLOCK or ACTORS)
change state, regardless if the interrupt is enabled,
(ACTIE = 1). The ACTIF and ACTIE bits are in the PIRx
and PIEx registers, respectively. When ACTIE = 1, an
interrupt will be generated whenever the ACT Status
bits change.
The ACTIF bit must be cleared in software, regardless
of the interrupt enable setting.
5.8.7 OPERATION DURING SLEEP
This ACT does not run during Sleep and will not gener-
ate interrupts during Sleep.
2012 Microchip Technology Inc. Preliminary DS41639A-page 75
PIC16(L)F1454/5/9
5.9 Register Definitions: Oscillator Control
REGISTER 5-1: OSCCON: OSCILLATOR CONTROL REGISTER
R/W-0/0 R/W-0/0 R/W-0/0 R/W-1/1 R/W-1/1 R/W-1/1 R/W-0/0 R/W-0/0
SPLLEN SPLLMULT IRCF<3:0> SCS<1:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7 SPLLEN: Software PLL Enable bit
If PLLEN in Configuration Words = 1:
SPLLEN bit is ignored. PLL is always enabled (subject to oscillator requirements)
If PLLEN in Configuration Words = 0:
1 = PLL is enabled
0 = PLL is disabled
bit 6 SPLLMULT: Software PLL Multiplier Select bit
1 = 3x PLL is enabled
0 = 4x PLL is enabled
bit 5-2 IRCF<3:0>: Internal Oscillator Frequency Select bits
1111 = 16 MHz or 48 MHz HF (see Section 5.2.2.1 “HFINTOSC”)
1110 = 8 MHz or 24 MHz HF (3x PLL) or 32 MHz HF (4x PLL) (see Section 5.2.2.1 “HFINTOSC”)
1101 =4MHz
1100 =2MHz
1011 =1MHz
1010 =500kHz
(1)
1001 =250kHz
(1)
1000 =125kHz
(1)
0111 = 500 kHz (default upon Reset)
0110 =250kHz
0101 =125kHz
0100 =62.5kHz
001x =31.25kHz
(1)
000x =31kHz LF
bit 1-0 SCS<1:0>: System Clock Select bits
1x = Internal oscillator block
01 = Secondary oscillator
00 = Clock determined by FOSC<2:0> in Configuration Words.
Note 1: Duplicate frequency derived from HFINTOSC.
PIC16(L)F1454/5/9
DS41639A-page 76 Preliminary 2012 Microchip Technology Inc.
REGISTER 5-2: OSCSTAT: OSCILLATOR STATUS REGISTER
R-1/q R-0/q R-q/q R-0/q U-0 U-0 R-0/q R-0/q
SOSCR PLLRDY OSTS HFIOFR LFIOFR HFIOFS
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared q = Conditional
bit 7 SOSCR: Secondary Oscillator Ready bit
If T1OSCEN = 1:
1 = Secondary oscillator is ready
0 = Secondary oscillator is not ready
If T1OSCEN = 0:
1 = Timer1 clock source is always ready
bit 6 PLLRDY: PLL Ready bit
1 = PLL is ready
0 = PLL is not ready
bit 5 OSTS: Oscillator Start-up Timer Status bit
1 = Running from the clock defined by the FOSC<2:0> bits of the Configuration Words
0 = Running from an internal oscillator (FOSC<2:0> = 100)
bit 4 HFIOFR: High-Frequency Internal Oscillator Ready bit
1 = HFINTOSC is ready
0 = HFINTOSC is not ready
bit 3-2 Unimplemented: Read as ‘0
bit 1 LFIOFR: Low-Frequency Internal Oscillator Ready bit
1 = LFINTOSC is ready
0 = LFINTOSC is not ready
bit 0 HFIOFS: High-Frequency Internal Oscillator Stable bit
1 = HFINTOSC 16 MHz Oscillator is stable and is driving the INTOSC
0 = HFINTOSC 16 MHz is not stable, the Start-up Oscillator is driving INTOSC
2012 Microchip Technology Inc. Preliminary DS41639A-page 77
PIC16(L)F1454/5/9
REGISTER 5-3: OSCTUNE: OSCILLATOR TUNING REGISTER(1,2)
U-0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0
TUN<6:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7 Unimplemented: Read as0
bit 6-0 TUN<6:0>: Frequency Tuning bits
1000000 = Minimum frequency
1111111 =
0000000 = Oscillator module is running at the factory-calibrated frequency.
0000001 =
0111110 =
0111111 = Maximum frequency
Note 1: When active clock tuning is enabled (ACTSEL = 1) the oscillator is tuned automatically, the user cannot
write to OSCTUNE.
2: Oscillator is tuned monotonically.
PIC16(L)F1454/5/9
DS41639A-page 78 Preliminary 2012 Microchip Technology Inc.
TABLE 5-4: SUMMARY OF REGISTERS ASSOCIATED WITH CLOCK SOURCES
TABLE 5-5: SUMMARY OF CONFIGURATION WORD WITH CLOCK SOURCES
REGISTER 5-4: ACTCON: ACTIVE CLOCK TUNING (ACT) CONTROL REGISTER
R/W-0/0 R/W-0/0 U-0 R/W-0/0 R-0/0 U-0 R-0/0 U-0
ACTEN ACTUD —ACTSRC
(1) ACTLOCK —ACTORS
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7 ACTEN: Active Clock Tuning Selection bit
1 = ACT is enabled, updates to OSCTUNE are exclusive to the ACT
0 = ACT is disabled
bit 6 ACTUD: Active Clock Tuning Update Disable bit
1 = Updates to the OSCTUNE register from ACT are disabled
0 = Updates to the OSCTUNE register from ACT are enabled
bit 5 Unimplemented: Read as0
bit 4 ACTSRC: Active Clock Tuning Source Selection bit
1 = The HFINTOSC oscillator is tuned using Fll-speed USB events
0 = The HFINTOSC oscillator is tuned using the 32.768 kHz oscillator (SOSC) clock source
bit 3 ACTLOCK: Active Clock Tuning Lock Status bit
1 = Locked; 16 MHz internal oscillator is within ± 0.20%.Locked
0 = Not locked; 16 MHz internal oscillator tuning has not stabilized within ± 0.20%
bit 2 Unimplemented: Read as0
bit 1 ACTORS: Active Clock Tuning Out-of-Range Status bit
1 = Out-of-range; oscillator frequency is outside of the OSCTUNE range
0 = In-range; oscillator frequency is within the OSCTUNE range
bit 0 Unimplemented: Read as0
Note 1: The ACTSRC bit should only be changed when ACTEN = 0.
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register
on Page
ACTCON ACTEN ACTUD ACTSRC ACTLOCK —ACTORS75
OSCCON SPLLEN SPLLMULT IRCF<3:0> SCS<1:0> 75
OSCSTAT SOSCR PLLRDY OSTS HFIOFR LFIOFR HFIOFS 76
OSCTUNE TUNE<6:0> 77
PIR2 OSFIF C2IF C1IF BCL1IF USBIF ACTIF 98
PIE2 OSFIE C2IE C1IE BCL1IE USBIE ACTIE 100
T1CON TMR1CS<1:0> T1CKPS<1:0> T1OSCEN T1SYNC TMR1ON 195
Legend: = unimplemented location, read as ‘0’. Shaded cells are not used by clock sources.
Name Bits Bit -/7 Bit -/6 Bit 13/5 Bit 12/4 Bit 11/3 Bit 10/2 Bit 9/1 Bit 8/0 Register
on Page
CONFIG1 13:8 FCMEN IESO CLKOUTEN BOREN<1:0> 52
7:0 CP MCLRE PWRTE WDTE<1:0> FOSC<2:0>
Legend: — = unimplemented location, read as0’. Shaded cells are not used by clock sources.
2012 Microchip Technology Inc. Preliminary DS41639A-page 79
PIC16(L)F1454/5/9
6.0 RESETS
There are multiple ways to reset this device:
Power-on Reset (POR)
Brown-out Reset (BOR)
Low-Power Brown-out Reset (LPBOR)
•MCLR Reset
•WDT Reset
RESET instruction
Stack Overflow
Stack Underflow
Programming mode exit
To allow VDD to stabilize, an optional Power-up Timer
can be enabled to extend the Reset time after a BOR
or POR event.
A simplified block diagram of the on-chip Reset circuit
is shown in Figure 6-1.
FIGURE 6-1: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT
Note 1: See Table 6-1 for BOR active conditions.
Device
Reset
Power-on
Reset
WDT
Time-out
Brown-out
Reset
LPBOR
Reset
RESET Instruction
MCLRE
Sleep
BOR
Active(1)
PWRT
R
Done
PWRTE
LFINTOSC
VDD
ICSP™ Programming Mode Exit
Stack
Pointer
MCLR
PIC16(L)F1454/5/9
DS41639A-page 80 Preliminary 2012 Microchip Technology Inc.
6.1 Power-On Reset (POR)
The POR circuit holds the device in Reset until VDD has
reached an acceptable level for minimum operation.
Slow rising VDD, fast operating speeds or analog
performance may require greater than minimum VDD.
The PWRT, BOR or MCLR features can be used to
extend the start-up period until all device operation
conditions have been met.
6.1.1 POWER-UP TIMER (PWRT)
The Power-up Timer provides a nominal 64 ms time-
out on POR or Brown-out Reset.
The device is held in Reset as long as PWRT is active.
The PWRT delay allows additional time for the VDD to
rise to an acceptable level. The Power-up Timer is
enabled by clearing the PWRTE bit in Configuration
Words.
The Power-up Timer starts after the release of the POR
and BOR.
For additional information, refer to Application Note
AN607, “Power-up Trouble Shooting” (DS00607).
6.2 Brown-Out Reset (BOR)
The BOR circuit holds the device in Reset when VDD
reaches a selectable minimum level. Between the
POR and BOR, complete voltage range coverage for
execution protection can be implemented.
The Brown-out Reset module has four operating
modes controlled by the BOREN<1:0> bits in Configu-
ration Words. The four operating modes are:
BOR is always on
BOR is off when in Sleep
BOR is controlled by software
BOR is always off
Refer to Table 6-1 for more information.
The Brown-out Reset voltage level is selectable by
configuring the BORV bit in Configuration Words.
A VDD noise rejection filter prevents the BOR from trig-
gering on small events. If VDD falls below VBOR for a
duration greater than parameter TBORDC, the device
will reset. See Figure 6-2 for more information.
TABLE 6-1: BOR OPERATING MODES
6.2.1 BOR IS ALWAYS ON
When the BOREN bits of Configuration Words are pro-
grammed to ‘11’, the BOR is always on. The device
start-up will be delayed until the BOR is ready and VDD
is higher than the BOR threshold.
BOR protection is active during Sleep. The BOR does
not delay wake-up from Sleep.
6.2.2 BOR IS OFF IN SLEEP
When the BOREN bits of Configuration Words are pro-
grammed to ‘10’, the BOR is on, except in Sleep. The
device start-up will be delayed until the BOR is ready
and VDD is higher than the BOR threshold.
BOR protection is not active during Sleep. The device
wake-up will be delayed until the BOR is ready.
6.2.3 BOR CONTROLLED BY SOFTWARE
When the BOREN bits of Configuration Words are
programmed to01’, the BOR is controlled by the
SBOREN bit of the BORCON register. The device
start-up is not delayed by the BOR ready condition or
the VDD level.
BOR protection begins as soon as the BOR circuit is
ready. The status of the BOR circuit is reflected in the
BORRDY bit of the BORCON register.
BOR protection is unchanged by Sleep.
BOREN<1:0> SBOREN Device Mode BOR Mode Instruction Execution upon:
Release of POR or Wake-up from Sleep
11 X X Active Waits for BOR ready(1)
(BORRDY = 1)
10 X
Awake Active Waits for BOR ready
(BORRDY = 1)
Sleep Disabled
01
1XActive Waits for BOR ready(1)
(BORRDY = 1)
0X Disabled Begins immediately
(BORRDY = x)
00 X XDisabled
Note 1: In these specific cases, “release of POR” and “wake-up from Sleep,” there is no delay in start-up. The BOR
ready flag, (BORRDY = 1), will be set before the CPU is ready to execute instructions because the BOR
circuit is forced on by the BOREN<1:0> bits.
2012 Microchip Technology Inc. Preliminary DS41639A-page 81
PIC16(L)F1454/5/9
FIGURE 6-2: BROWN-OUT SITUATIONS
6.3 Register Definitions: BOR Control
REGISTER 6-1: BORCON: BROWN-OUT RESET CONTROL REGISTER
R/W-1/u R/W-0/u U-0 U-0 U-0 U-0 U-0 R-q/u
SBOREN BORFS —BORRDY
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared q = Value depends on condition
bit 7 SBOREN: Software Brown-out Reset Enable bit
If BOREN <1:0> in Configuration Words = 01:
1 = BOR Enabled
0 = BOR Disabled
If BOREN <1:0> in Configuration Words 00:
SBOREN is read/write, but has no effect on the BOR.
bit 6 BORFS: Brown-out Reset Fast Start bit(1)
If BOREN <1:0> = 10 (Disabled in Sleep) or BOREN<1:0> = 01 (Under software control):
1 = Band gap is forced on always (covers sleep/wake-up/operating cases)
0 = Band gap operates normally, and may turn off
If BOREN<1:0> = 11 (Always on) or BOREN<1:0> = 00 (Always off)
BORFS is Read/Write, but has no effect.
bit 5-1 Unimplemented: Read as ‘0
bit 0 BORRDY: Brown-out Reset Circuit Ready Status bit
1 = The Brown-out Reset circuit is active
0 = The Brown-out Reset circuit is inactive
Note 1: BOREN<1:0> bits are located in Configuration Words.
TPWRT(1)
VBOR
VDD
Internal
Reset
VBOR
VDD
Internal
Reset TPWRT(1)
< TPWRT
TPWRT(1)
VBOR
VDD
Internal
Reset
Note 1: TPWRT delay only if PWRTE bit is programmed to ‘0’.
PIC16(L)F1454/5/9
DS41639A-page 82 Preliminary 2012 Microchip Technology Inc.
6.4 Low-Power Brown-out Reset
(LPBOR)
The Low-Power Brown-Out Reset (LPBOR) is an
essential part of the Reset subsystem. Refer to
Figure 6-1 to see how the BOR interacts with other
modules.
The LPBOR is used to monitor the external VDD pin.
When too low of a voltage is detected, the device is
held in Reset. When this occurs, a register bit (BOR) is
changed to indicate that a BOR Reset has occurred.
The same bit is set for both the BOR and the LPBOR.
Refer to Register 6-2.
6.4.1 ENABLING LPBOR
The LPBOR is controlled by the LPBOR bit of
Configuration Words. When the device is erased, the
LPBOR module defaults to disabled.
6.4.1.1 LPBOR Module Output
The output of the LPBOR module is a signal indicating
whether or not a Reset is to be asserted. This signal is
OR’d together with the Reset signal of the BOR mod-
ule to provide the generic BOR signal which goes to
the PCON register and to the power control block.
6.5 MCLR
The MCLR is an optional external input that can reset
the device. The MCLR function is controlled by the
MCLRE bit of Configuration Words and the LVP bit of
Configuration Words (Table 6-2).
6.5.1 MCLR ENABLED
When MCLR is enabled and the pin is held low, the
device is held in Reset. The MCLR pin is connected to
VDD through an internal weak pull-up.
The device has a noise filter in the MCLR Reset path.
The filter will detect and ignore small pulses.
6.5.2 MCLR DISABLED
When MCLR is disabled, the pin functions as a general
purpose input and the internal weak pull-up is under
software control. See Section 12.3 “PORTA Regis-
ters” for more information.
6.6 Watchdog Timer (WDT) Reset
The Watchdog Timer generates a Reset if the firmware
does not issue a CLRWDT instruction within the time-out
period. The TO and PD bits in the STATUS register are
changed to indicate the WDT Reset. See Section 10.0
“Watchdog Timer (WDT)” for more information.
6.7 RESET Instruction
A RESET instruction will cause a device Reset. The RI
bit in the PCON register will be set to ‘0. See Ta b l e 6 - 4
for default conditions after a RESET instruction has
occurred.
6.8 Stack Overflow/Underflow Reset
The device can reset when the Stack Overflows or
Underflows. The STKOVF or STKUNF bits of the PCON
register indicate the Reset condition. These Resets are
enabled by setting the STVREN bit in Configuration
Words. See Section 3.5.2 “Overflow/Underflow
Reset” for more information.
6.9 Programming Mode Exit
Upon exit of Programming mode, the device will
behave as if a POR had just occurred.
6.10 Power-Up Timer
The Power-up Timer optionally delays device execution
after a BOR or POR event. This timer is typically used to
allow VDD to stabilize before allowing the device to start
running.
The Power-up Timer is controlled by the PWRTE bit of
Configuration Words.
6.11 Start-up Sequence
Upon the release of a POR or BOR, the following must
occur before the device will begin executing:
1. Power-up Timer runs to completion (if enabled).
2. MCLR must be released (if enabled).
The total time-out will vary based on oscillator configu-
ration and Power-up Timer configuration. See
Section 6.0 “Active Clock Tuning (ACT) Module” for
more information.
The Power-up Timer runs independently of MCLR
Reset. If MCLR is kept low long enough, the Power-up
Timer will expire. Upon bringing MCLR high, the device
will begin execution immediately (see Figure 6-3). This
is useful for testing purposes or to synchronize more
than one device operating in parallel.
TABLE 6-2: MCLR CONFIGURATION
MCLRE LVP MCLR
00Disabled
10Enabled
x1Enabled
Note: A Reset does not drive the MCLR pin low.
2012 Microchip Technology Inc. Preliminary DS41639A-page 83
PIC16(L)F1454/5/9
FIGURE 6-3: RESET START-UP SEQUENCE
TMCLR
TPWRT
VDD
Internal POR
Power-Up Timer
MCLR
Internal RESET
Internal Oscillator
Oscillator
FOSC
External Clock (EC)
CLKIN
FOSC
PIC16(L)F1454/5/9
DS41639A-page 84 Preliminary 2012 Microchip Technology Inc.
6.12 Determining the Cause of a Reset
Upon any Reset, multiple bits in the STATUS and
PCON registers are updated to indicate the cause of
the Reset. Tabl e 6 - 3 and Table 6 - 4 show the Reset
conditions of these registers.
TABLE 6-3: RESET STATUS BITS AND THEIR SIGNIFICANCE
TABLE 6-4: RESET CONDITION FOR SPECIAL REGISTERS(2)
STKOVF STKUNF RWDT RMCLR RI POR BOR TO PD Condition
0 0 1 1 10 x11Power-on Reset
0 0 1 1 10 x0xIllegal, TO is set on POR
0 0 1 1 10 xx0Illegal, PD is set on POR
0 0 u 1 1u 011Brown-out Reset
u u 0 u uu u0uWDT Reset
u u u u uu u00WDT Wake-up from Sleep
u u u u uu u10Interrupt Wake-up from Sleep
u u u 0 uu uuuMCLR Reset during normal operation
u u u 0 uu u10MCLR Reset during Sleep
u u u u 0 u u u u RESET Instruction Executed
1 u u u uu uuuStack Overflow Reset (STVREN = 1)
u 1 u u uu uuuStack Underflow Reset (STVREN = 1)
Condition Program
Counter
STATUS
Register
PCON
Register
Power-on Reset 0000h ---1 1000 00-- 110x
MCLR Reset during normal operation 0000h ---u uuuu uu-- 0uuu
MCLR Reset during Sleep 0000h ---1 0uuu uu-- 0uuu
WDT Reset 0000h ---0 uuuu uu-- uuuu
WDT Wake-up from Sleep PC + 1 ---0 0uuu uu-- uuuu
Brown-out Reset 0000h ---1 1uuu 00-- 11u0
Interrupt Wake-up from Sleep PC + 1(1) ---1 0uuu uu-- uuuu
RESET Instruction Executed 0000h ---u uuuu uu-- u0uu
Stack Overflow Reset (STVREN = 1) 0000h ---u uuuu 1u-- uuuu
Stack Underflow Reset (STVREN = 1) 0000h ---u uuuu u1-- uuuu
Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as ‘0’.
Note 1: When the wake-up is due to an interrupt and Global Interrupt Enable bit (GIE) is set, the return address is
pushed on the stack and PC is loaded with the interrupt vector (0004h) after execution of PC + 1.
2: If a Status bit is not implemented, that bit will be read as ‘0’.
2012 Microchip Technology Inc. Preliminary DS41639A-page 85
PIC16(L)F1454/5/9
6.13 Power Control (PCON) Register
The Power Control (PCON) register contains flag bits
to differentiate between a:
Power-on Reset (POR)
Brown-out Reset (BOR)
Reset Instruction Reset (RI)
•MCLR Reset (RMCLR)
Watchdog Timer Reset (RWDT)
Stack Underflow Reset (STKUNF)
Stack Overflow Reset (STKOVF)
The PCON register bits are shown in Register 6-2.
6.14 Register Definitions: Power Control
REGISTER 6-2: PCON: POWER CONTROL REGISTER
R/W/HS-0/q R/W/HS-0/q U-0 R/W/HC-1/q R/W/HC-1/q R/W/HC-1/q R/W/HC-q/u R/W/HC-q/u
STKOVF STKUNF RWDT RMCLR RI POR BOR
bit 7 bit 0
Legend:
HC = Bit is cleared by hardware HS = Bit is set by hardware
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared q = Value depends on condition
bit 7 STKOVF: Stack Overflow Flag bit
1 = A Stack Overflow occurred
0 = A Stack Overflow has not occurred or cleared by firmware
bit 6 STKUNF: Stack Underflow Flag bit
1 = A Stack Underflow occurred
0 = A Stack Underflow has not occurred or cleared by firmware
bit 5 Unimplemented: Read as ‘0
bit 4 RWDT: Watchdog Timer Reset Flag bit
1 = A Watchdog Timer Reset has not occurred or set by firmware
0 = A Watchdog Timer Reset has occurred (cleared by hardware)
bit 3 RMCLR: MCLR Reset Flag bit
1 = A MCLR Reset has not occurred or set by firmware
0 = A MCLR Reset has occurred (cleared by hardware)
bit 2 RI: RESET Instruction Flag bit
1 = A RESET instruction has not been executed or set by firmware
0 = A RESET instruction has been executed (cleared by hardware)
bit 1 POR: Power-on Reset Status bit
1 = No Power-on Reset occurred
0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)
bit 0 BOR: Brown-out Reset Status bit
1 = No Brown-out Reset occurred
0 = A Brown-out Reset occurred (must be set in software after a Power-on Reset or Brown-out Reset
occurs)
PIC16(L)F1454/5/9
DS41639A-page 86 Preliminary 2012 Microchip Technology Inc.
TABLE 6-5: SUMMARY OF REGISTERS ASSOCIATED WITH RESETS
TABLE 6-6: SUMMARY OF CONFIGURATION WORD WITH RESETS
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register
on Page
BORCON SBOREN BORFS ———— BORRDY 81
PCON STKOVF STKUNF —RWDTRMCLR RI POR BOR 85
STATUS —TOPD ZDC C27
WDTCON WDTPS<4:0> SWDTEN 110
Legend: — = unimplemented bit, reads as ‘0’. Shaded cells are not used by Resets.
Note 1: Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.
Name Bits Bit -/7 Bit -/6 Bit 13/5 Bit 12/4 Bit 11/3 Bit 10/2 Bit 9/1 Bit 8/0 Register
on Page
CONFIG1 13:8 FCMEN IESO CLKOUTEN BOREN<1:0> 52
7:0 CP MCLRE PWRTE WDTE<1:0> FOSC<2:0>
CONFIG2 13:8 LVP DEBUG LPBOR BORV STVREN PLLEN 54
7:0 PLLMULT USBLSCLK CPUDIV<1:0> WRT<1:0>
Legend: = unimplemented location, read as 0’. Shaded cells are not used by Resets.
2012 Microchip Technology Inc. Preliminary DS41639A-page 87
PIC16(L)F1454/5/9
7.0 REFERENCE CLOCK MODULE
The reference clock module provides the ability to send
a divided clock to the clock output pin of the device
(CLKR). This module is available in all oscillator config-
urations and allows the user to select a greater range
of clock submultiples to drive external devices in the
application. The reference clock module includes the
following features:
System clock is the source
Available in all oscillator configurations
Programmable clock divider
Output enable to a port pin
Selectable duty cycle
Slew rate control
The reference clock module is controlled by the
CLKRCON register (Register 7-1) and is enabled when
setting the CLKREN bit. To output the divided clock sig-
nal to the CLKR port pin, the CLKROE bit must be set.
The CLKRDIV<2:0> bits enable the selection of eight
different clock divider options. The CLKRDC<1:0> bits
can be used to modify the duty cycle of the output
clock(1). The CLKRSLR bit controls slew rate limiting.
7.1 Slew Rate
The slew rate limitation on the output port pin can be
disabled. The slew rate limitation can be removed by
clearing the CLKRSLR bit in the CLKRCON register.
7.2 Effects of a Reset
Upon any device Reset, the reference clock module is
disabled. The user's firmware is responsible for
initializing the module before enabling the output. The
registers are reset to their default values.
7.3 Conflicts with the CLKR Pin
There are two cases when the reference clock output
signal cannot be output to the CLKR pin, if:
LP, XT or HS Oscillator mode is selected.
CLKOUT function is enabled.
7.3.1 OSCILLATOR MODES
If LP, XT or HS Oscillator modes are selected, the
OSC2/CLKR pin must be used as an oscillator input pin
and the CLKR output cannot be enabled. See
Section 5.2 “Clock Source Types” for more informa-
tion on different oscillator modes.
7.3.2 CLKOUT FUNCTION
The CLKOUT function has a higher priority than the ref-
erence clock module. Therefore, if the CLKOUT func-
tion is enabled by the CLKOUTEN bit in Configuration
Words, FOSC/4 will always be output on the port pin.
Reference Section 4.0 “Device Configuration” for
more information.
7.4 Operation During Sleep
As the reference clock module relies on the system
clock as its source, and the system clock is disabled in
Sleep, the module does not function in Sleep, even if
an external clock source or the Timer1 clock source is
configured as the system clock. The module outputs
will remain in their current state until the device exits
Sleep.
Note 1: If the base clock rate is selected without
a divider, the output clock will always
have a duty cycle equal to that of the
source clock, unless a 0% duty cycle is
selected. If the clock divider is set to base
clock/2, then 25% and 75% duty cycle
accuracy will be dependent upon the
source clock.
PIC16(L)F1454/5/9
DS41639A-page 88 Preliminary 2012 Microchip Technology Inc.
7.5 Register Definition: Reference Clock Control
REGISTER 7-1: CLKRCON: REFERENCE CLOCK CONTROL REGISTER
R/W-0/0 R/W-0/0 R/W-1/1 R/W-1/1 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0
CLKREN CLKROE CLKRSLR CLKRDC<1:0> CLKRDIV<2:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7 CLKREN: Reference Clock Module Enable bit
1 = Reference clock module is enabled
0 = Reference clock module is disabled
bit 6 CLKROE: Reference Clock Output Enable bit(3)
1 = Reference clock output is enabled on CLKR pin
0 = Reference clock output disabled on CLKR pin
bit 5 CLKRSLR: Reference Clock Slew Rate Control limiting enable bit
1 = Slew rate limiting is enabled
0 = Slew rate limiting is disabled
bit 4-3 CLKRDC<1:0>: Reference Clock Duty Cycle bits
11 = Clock outputs duty cycle of 75%
10 = Clock outputs duty cycle of 50%
01 = Clock outputs duty cycle of 25%
00 = Clock outputs duty cycle of 0%
bit 2-0 CLKRDIV<2:0> Reference Clock Divider bits
111 = Base clock value divided by 128
110 = Base clock value divided by 64
101 = Base clock value divided by 32
100 = Base clock value divided by 16
011 = Base clock value divided by 8
010 = Base clock value divided by 4
001 = Base clock value divided by 2(1)
000 = Base clock value(2)
Note 1: In this mode, the 25% and 75% duty cycle accuracy will be dependent on the source clock duty cycle.
2: In this mode, the duty cycle will always be equal to the source clock duty cycle, unless a duty cycle of 0%
is selected.
3: To route CLKR to pin, CLKOUTEN of Configuration Words = 1 is required. CLKOUTEN of Configuration
Words = 0 will result in FOSC/4. See Section 7.3 “Conflicts with the CLKR Pin” for details.
2012 Microchip Technology Inc. Preliminary DS41639A-page 89
PIC16(L)F1454/5/9
TABLE 7-1: SUMMARY OF REGISTERS ASSOCIATED WITH REFERENCE CLOCK SOURCES
TABLE 7-2: SUMMARY OF CONFIGURATION WORD WITH REFERENCE CLOCK SOURCES
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register
on Page
CLKRCON CLKREN CLKROE CLKRSLR CLKRDC<1:0>
CLKRDIV<2:0>
88
Legend: = unimplemented locations read as0’. Shaded cells are not used by reference clock sources.
Name Bits Bit -/7 Bit -/6 Bit 13/5 Bit 12/4 Bit 11/3 Bit 10/2 Bit 9/1 Bit 8/0 Register
on Page
CONFIG1 13:8 FCMEN IESO CLKOUTEN BOREN<1:0> CPD 52
7:0 CP MCLRE PWRTE WDTE<1:0> FOSC<2:0>
Legend: — = unimplemented locations read as0’. Shaded cells are not used by reference clock sources.
PIC16(L)F1454/5/9
DS41639A-page 90 Preliminary 2012 Microchip Technology Inc.
NOTES:
2012 Microchip Technology Inc. Preliminary DS41639A-page 91
PIC16(L)F1454/5/9
8.0 INTERRUPTS
The interrupt feature allows certain events to preempt
normal program flow. Firmware is used to determine
the source of the interrupt and act accordingly. Some
interrupts can be configured to wake the MCU from
Sleep mode.
This chapter contains the following information for
Interrupts:
Operation
Interrupt Latency
Interrupts During Sleep
•INT Pin
Automatic Context Saving
Many peripherals produce interrupts. Refer to the
corresponding chapters for details.
A block diagram of the interrupt logic is shown in
Figure 8-1.
FIGURE 8-1: INTERRUPT LOGIC
TMR0IF
TMR0IE
INTF
INTE
IOCIF
IOCIE Interrupt
to CPU
Wake-up
(If in Sleep mode)
GIE
(TMR1IF) PIR1<0>
PIRn<7>
PIEn<7>
PEIE
Peripheral Interrupts
(TMR1IF) PIR1<0>
PIC16(L)F1454/5/9
DS41639A-page 92 Preliminary 2012 Microchip Technology Inc.
8.1 Operation
Interrupts are disabled upon any device Reset. They
are enabled by setting the following bits:
GIE bit of the INTCON register
Interrupt Enable bit(s) for the specific interrupt
event(s)
PEIE bit of the INTCON register (if the Interrupt
Enable bit of the interrupt event is contained in the
PIE1 and PIE2 registers)
The INTCON, PIR1 and PIR2 registers record individ-
ual interrupts via interrupt flag bits. Interrupt flag bits will
be set, regardless of the status of the GIE, PEIE and
individual interrupt enable bits.
The following events happen when an interrupt event
occurs while the GIE bit is set:
Current prefetched instruction is flushed
GIE bit is cleared
Current Program Counter (PC) is pushed onto the
stack
Critical registers are automatically saved to the
shadow registers (See Section 8.5 “Automatic
Context Saving”.”)
PC is loaded with the interrupt vector 0004h
The firmware within the Interrupt Service Routine (ISR)
should determine the source of the interrupt by polling
the interrupt flag bits. The interrupt flag bits must be
cleared before exiting the ISR to avoid repeated
interrupts. Because the GIE bit is cleared, any interrupt
that occurs while executing the ISR will be recorded
through its interrupt flag, but will not cause the
processor to redirect to the interrupt vector.
The RETFIE instruction exits the ISR by popping the
previous address from the stack, restoring the saved
context from the shadow registers and setting the GIE
bit.
For additional information on a specific interrupt’s
operation, refer to its peripheral chapter.
8.2 Interrupt Latency
Interrupt latency is defined as the time from when the
interrupt event occurs to the time code execution at the
interrupt vector begins. The latency for synchronous
interrupts is three or four instruction cycles. For asyn-
chronous interrupts, the latency is three to five instruc-
tion cycles, depending on when the interrupt occurs.
See Figure 8-2 and Figure 8.3 for more details.
Note 1: Individual interrupt flag bits are set,
regardless of the state of any other
enable bits.
2: All interrupts will be ignored while the GIE
bit is cleared. Any interrupt occurring
while the GIE bit is clear will be serviced
when the GIE bit is set again.
2012 Microchip Technology Inc. Preliminary DS41639A-page 93
PIC16(L)F1454/5/9
FIGURE 8-2: INTERRUPT LATENCY
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
Fosc
CLKR
PC 0004h 0005h
PC
Inst(0004h)NOP
GIE
Q1 Q2 Q3 Q4Q1 Q2 Q3 Q4
1 Cycle Instruction at PC
PC
Inst(0004h)NOP
2 Cycle Instruction at PC
FSR ADDR PC+1 PC+2 0004h 0005h
PC
Inst(0004h)NOP
GIE
PCPC-1
3 Cycle Instruction at PC
Execute
Interrupt
Inst(PC)
Interrupt Sampled
during Q1
Inst(PC)
PC-1 PC+1
NOP
PC New PC/
PC+1 0005hPC-1 PC+1/FSR
ADDR 0004h
NOP
Interrupt
GIE
Interrupt
INST(PC) NOPNOP
FSR ADDR PC+1 PC+2 0004h 0005h
PC
Inst(0004h)NOP
GIE
PCPC-1
3 Cycle Instruction at PC
Interrupt
INST(PC) NOPNOP NOP
Inst(0005h)
Execute
Execute
Execute
PIC16(L)F1454/5/9
DS41639A-page 94 Preliminary 2012 Microchip Technology Inc.
FIGURE 8-3: INT PIN INTERRUPT TIMING
Q2Q1 Q3 Q4 Q2Q1 Q3 Q4 Q2Q1 Q3 Q4 Q2Q1 Q3 Q4 Q2Q1 Q3 Q4
OSC1
CLKOUT
INT pin
INTF
GIE
INSTRUCTION FLOW
PC
Instruction
Fetched
Instruction
Executed
Interrupt Latency
PC PC + 1 PC + 1 0004h 0005h
Inst (0004h) Inst (0005h)
Forced NOP
Inst (PC) Inst (PC + 1)
Inst (PC – 1) Inst (0004h)
Forced NOP
Inst (PC)
Note 1: INTF flag is sampled here (every Q1).
2: Asynchronous interrupt latency = 3-5 TCY. Synchronous latency = 3-4 TCY, where TCY = instruction cycle time.
Latency is the same whether Inst (PC) is a single cycle or a 2-cycle instruction.
3: CLKOUT not available in all oscillator modes.
4: For minimum width of INT pulse, refer to AC specifications in Section 29.0 “Electrical Specifications”
5: INTF is enabled to be set any time during the Q4-Q1 cycles.
(1)
(2)
(3)
(4)
(5)
(1)
2012 Microchip Technology Inc. Preliminary DS41639A-page 95
PIC16(L)F1454/5/9
8.3 Interrupts During Sleep
Some interrupts can be used to wake from Sleep. To
wake from Sleep, the peripheral must be able to
operate without the system clock. The interrupt source
must have the appropriate Interrupt Enable bit(s) set
prior to entering Sleep.
On waking from Sleep, if the GIE bit is also set, the
processor will branch to the interrupt vector. Otherwise,
the processor will continue executing instructions after
the SLEEP instruction. The instruction directly after the
SLEEP instruction will always be executed before
branching to the ISR. Refer to Section 9.0 “Power-
Down Mode (Sleep)” for more details.
8.4 INT Pin
The INT pin can be used to generate an asynchronous
edge-triggered interrupt. This interrupt is enabled by
setting the INTE bit of the INTCON register. The
INTEDG bit of the OPTION_REG register determines on
which edge the interrupt will occur. When the INTEDG
bit is set, the rising edge will cause the interrupt. When
the INTEDG bit is clear, the falling edge will cause the
interrupt. The INTF bit of the INTCON register will be set
when a valid edge appears on the INT pin. If the GIE and
INTE bits are also set, the processor will redirect
program execution to the interrupt vector.
8.5 Automatic Context Saving
Upon entering an interrupt, the return PC address is
saved on the stack. Additionally, the following registers
are automatically saved in the shadow registers:
W register
STATUS register (except for TO and PD)
BSR register
FSR registers
PCLATH register
Upon exiting the Interrupt Service Routine, these regis-
ters are automatically restored. Any modifications to
these registers during the ISR will be lost. If modifica-
tions to any of these registers are desired, the corre-
sponding shadow register should be modified and the
value will be restored when exiting the ISR. The
shadow registers are available in Bank 31 and are
readable and writable. Depending on the user’s appli-
cation, other registers may also need to be saved.
PIC16(L)F1454/5/9
DS41639A-page 96 Preliminary 2012 Microchip Technology Inc.
8.6 Register Definitions: Interrupt Control
REGISTER 8-1: INTCON: INTERRUPT CONTROL REGISTER
R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R-0/0
GIE PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF(1)
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7 GIE: Global Interrupt Enable bit
1 = Enables all active interrupts
0 = Disables all interrupts
bit 6 PEIE: Peripheral Interrupt Enable bit
1 = Enables all active peripheral interrupts
0 = Disables all peripheral interrupts
bit 5 TMR0IE: Timer0 Overflow Interrupt Enable bit
1 = Enables the Timer0 interrupt
0 = Disables the Timer0 interrupt
bit 4 INTE: INT External Interrupt Enable bit
1 = Enables the INT external interrupt
0 = Disables the INT external interrupt
bit 3 IOCIE: Interrupt-on-Change Enable bit
1 = Enables the interrupt-on-change
0 = Disables the interrupt-on-change
bit 2 TMR0IF: Timer0 Overflow Interrupt Flag bit
1 = TMR0 register has overflowed
0 = TMR0 register did not overflow
bit 1 INTF: INT External Interrupt Flag bit
1 = The INT external interrupt occurred
0 = The INT external interrupt did not occur
bit 0 IOCIF: Interrupt-on-Change Interrupt Flag bit(1)
1 = When at least one of the interrupt-on-change pins changed state
0 = None of the interrupt-on-change pins have changed state
Note 1: The IOCIF Flag bit is read-only and cleared when all the interrupt-on-change flags in the IOCBF register
have been cleared by software.
Note: Interrupt flag bits are set when an interrupt
condition occurs, regardless of the state of
its corresponding enable bit or the Global
Interrupt Enable bit, GIE, of the INTCON
register. User software should ensure the
appropriate interrupt flag bits are clear
prior to enabling an interrupt.
2012 Microchip Technology Inc. Preliminary DS41639A-page 97
PIC16(L)F1454/5/9
REGISTER 8-2: PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1
R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 U-0 R/W-0/0 R/W-0/0
TMR1GIE ADIE(1) RCIE TXIE SSP1IE TMR2IE TMR1IE
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7 TMR1GIE: Timer1 Gate Interrupt Enable bit
1 = Enables the Timer1 gate acquisition interrupt
0 = Disables the Timer1 gate acquisition interrupt
bit 6 ADIE: A/D Converter (ADC) Interrupt Enable bit
1 = Enables the ADC interrupt
0 = Disables the ADC interrupt
bit 5 RCIE: USART Receive Interrupt Enable bit
1 = Enables the USART receive interrupt
0 = Disables the USART receive interrupt
bit 4 TXIE: USART Transmit Interrupt Enable bit
1 = Enables the USART transmit interrupt
0 = Disables the USART transmit interrupt
bit 3 SSP1IE: Synchronous Serial Port (MSSP) Interrupt Enable bit
1 = Enables the MSSP interrupt
0 = Disables the MSSP interrupt
bit 2 Unimplemented: Read as ‘0
bit 1 TMR2IE: TMR2 to PR2 Match Interrupt Enable bit
1 = Enables the Timer2 to PR2 match interrupt
0 = Disables the Timer2 to PR2 match interrupt
bit 0 TMR1IE: Timer1 Overflow Interrupt Enable bit
1 = Enables the Timer1 overflow interrupt
0 = Disables the Timer1 overflow interrupt
Note 1: PIC16(L)F1455/9 only.
Note: Bit PEIE of the INTCON register must be
set to enable any peripheral interrupt.
PIC16(L)F1454/5/9
DS41639A-page 98 Preliminary 2012 Microchip Technology Inc.
REGISTER 8-3: PIE2: PERIPHERAL INTERRUPT ENABLE REGISTER 2
R/W-0/0 R/W-0/0 R/W-0/0 U-0 R/W-0/0 R/W-0/0 R/W-0/0 U-0
OSFIE C2IE C1IE BCL1IE USBIE ACTIE
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7 OSFIE: Oscillator Fail Interrupt Enable bit
1 = Enables the Oscillator Fail interrupt
0 = Disables the Oscillator Fail interrupt
bit 6 C2IE: Comparator C2 Interrupt Enable bit
1 = Enables the Comparator C2 interrupt
0 = Disables the Comparator C2 interrupt
bit 5 C1IE: Comparator C1 Interrupt Enable bit
1 = Enables the Comparator C1 interrupt
0 = Disables the Comparator C1 interrupt
bit 4 Unimplemented: Read as ‘0
bit 3 BCL1IE: MSSP Bus Collision Interrupt Enable bit
1 = Enables the MSSP Bus Collision Interrupt
0 = Disables the MSSP Bus Collision Interrupt
bit 2 USBIE: USB Interrupt Enable bit
1 = Enables the USB interrupt
0 = Disables the USB interrupt
bit 1 ACTIE: Active Clock Tuning Interrupt Enable bit
1 = Enables the Active Clock Tuning interrupt
0 = Disables the Active Clock Tuning interrupt
bit 0 Unimplemented: Read as ‘0
Note: Bit PEIE of the INTCON register must be
set to enable any peripheral interrupt.
2012 Microchip Technology Inc. Preliminary DS41639A-page 99
PIC16(L)F1454/5/9
REGISTER 8-4: PIR1: PERIPHERAL INTERRUPT REQUEST REGISTER 1
R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 U-0 R/W-0/0 R/W-0/0
TMR1GIF ADIF(1) RCIF TXIF SSP1IF TMR2IF TMR1IF
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7 TMR1GIF: Timer1 Gate Interrupt Flag bit
1 = Interrupt is pending
0 = Interrupt is not pending
bit 6 ADIF: A/D Converter Interrupt Flag bit
1 = Interrupt is pending
0 = Interrupt is not pending
bit 5 RCIF: USART Receive Interrupt Flag bit
1 = Interrupt is pending
0 = Interrupt is not pending
bit 4 TXIF: USART Transmit Interrupt Flag bit
1 = Interrupt is pending
0 = Interrupt is not pending
bit 3 SSP1IF: Synchronous Serial Port (MSSP) Interrupt Flag bit
1 = Interrupt is pending
0 = Interrupt is not pending
bit 2 Unimplemented: Read as ‘0
bit 1 TMR2IF: Timer2 to PR2 Interrupt Flag bit
1 = Interrupt is pending
0 = Interrupt is not pending
bit 0 TMR1IF: Timer1 Overflow Interrupt Flag bit
1 = Interrupt is pending
0 = Interrupt is not pending
Note 1: PIC16(L)F1455/9 only.
Note: Interrupt flag bits are set when an interrupt
condition occurs, regardless of the state of
its corresponding enable bit or the Global
Interrupt Enable bit, GIE, of the INTCON
register. User software should ensure the
appropriate interrupt flag bits are clear prior
to enabling an interrupt.
PIC16(L)F1454/5/9
DS41639A-page 100 Preliminary 2012 Microchip Technology Inc.
REGISTER 8-5: PIR2: PERIPHERAL INTERRUPT REQUEST REGISTER 2
R/W-0/0 R/W-0/0 R/W-0/0 U-0 R/W-0/0 R/W-0/0 R/W-0/0 U-0
OSFIF C2IF C1IF BCL1IF USBIF ACTIF
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7 OSFIF: Oscillator Fail Interrupt Flag bit
1 = Interrupt is pending
0 = Interrupt is not pending
bit 6 C2IF: Numerically Controlled Oscillator Flag bit
1 = Interrupt is pending
0 = Interrupt is not pending
bit 5 C1IF: Numerically Controlled Oscillator Flag bit
1 = Interrupt is pending
0 = Interrupt is not pending
bit 4 Unimplemented: Read as ‘0
bit 3 BCL1IF: MSSP Bus Collision Interrupt Flag bit
1 = Interrupt is pending
0 = Interrupt is not pending
bit 2 USBIF: USB Flag bit
1 = Interrupt is pending
0 = Interrupt is not pending
bit 1 ACTIF: Active Clock Tuning Interrupt Flag bit
1 = Interrupt is pending
0 = Interrupt is not pending
bit 0 Unimplemented: Read as ‘0
Note: Interrupt flag bits are set when an interrupt
condition occurs, regardless of the state of
its corresponding enable bit or the Global
Interrupt Enable bit, GIE, of the INTCON
register. User software should ensure the
appropriate interrupt flag bits are clear prior
to enabling an interrupt.
2012 Microchip Technology Inc. Preliminary DS41639A-page 101
PIC16(L)F1454/5/9
TABLE 8-1: SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPTS
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register
on Page
INTCON GIE PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF 96
OPTION_REG WPUEN INTEDG TMR0CS TMR0SE PSA PS<2:0> 185
PIE1 TMR1GIE ADIE(1) RCIE TXIE SSP1IE TMR2IE TMR1IE 97
PIE2 OSFIE C2IE C1IE BCL1IE USBIE ACTIE 98
PIR1 TMR1GIF ADIF(1) RCIF TXIF SSP1IF TMR2IF TMR1IF 99
PIR2 OSFIF C2IF C1IF BCL1IF USBIF ACTIF 100
Legend: — = unimplemented location, read as ‘0’. Shaded cells are not used by interrupts.
Note 1: PIC16(L)F1455/9 only.
PIC16(L)F1454/5/9
DS41639A-page 102 Preliminary 2012 Microchip Technology Inc.
NOTES:
2012 Microchip Technology Inc. Preliminary DS41639A-page 103
PIC16(L)F1454/5/9
9.0 POWER-DOWN MODE (SLEEP)
The Power-Down mode is entered by executing a
SLEEP instruction.
Upon entering Sleep mode, the following conditions exist:
1. WDT will be cleared but keeps running, if
enabled for operation during Sleep.
2. PD bit of the STATUS register is cleared.
3. TO bit of the STATUS register is set.
4. CPU clock is disabled.
5. 31 kHz LFINTOSC is unaffected and peripherals
that operate from it may continue operation in
Sleep.
6. ADC is unaffected, if the dedicated FRC clock is
selected.
7. I/O ports maintain the status they had before
SLEEP was executed (driving high, low or high-
impedance).
8. Resets other than WDT are not affected by
Sleep mode.
Refer to individual chapters for more details on
peripheral operation during Sleep.
To minimize current consumption, the following
conditions should be considered:
I/O pins should not be floating
External circuitry sinking current from I/O pins
Internal circuitry sourcing current from I/O pins
Current draw from pins with internal weak pull-ups
Modules using 31 kHz LFINTOSC
CWG module using HFINTOSC
I/O pins that are high-impedance inputs should be
pulled to VDD or VSS externally to avoid switching
currents caused by floating inputs.
Examples of internal circuitry that might be sourcing
current include the FVR module. See Section 14.0
“Fixed Voltage Reference (FVR) (PIC16(L)F1455/9
only)” for more information on this module.
9.1 Wake-up from Sleep
The device can wake-up from Sleep through one of the
following events:
1. External Reset input on MCLR pin, if enabled
2. BOR Reset, if enabled
3. POR Reset
4. Watchdog Timer, if enabled
5. Any external interrupt
6. Interrupts by peripherals capable of running dur-
ing Sleep (see individual peripheral for more
information)
The first three events will cause a device Reset. The
last three events are considered a continuation of pro-
gram execution. To determine whether a device Reset
or wake-up event occurred, refer to Section 6.12
“Determining the Cause of a Reset”.
When the SLEEP instruction is being executed, the next
instruction (PC + 1) is prefetched. For the device to
wake-up through an interrupt event, the corresponding
interrupt enable bit must be enabled. Wake-up will
occur regardless of the state of the GIE bit. If the GIE
bit is disabled, the device continues execution at the
instruction after the SLEEP instruction. If the GIE bit is
enabled, the device executes the instruction after the
SLEEP instruction, the device will then call the Interrupt
Service Routine. In cases where the execution of the
instruction following SLEEP is not desirable, the user
should have a NOP after the SLEEP instruction.
The WDT is cleared when the device wakes up from
Sleep, regardless of the source of wake-up.
PIC16(L)F1454/5/9
DS41639A-page 104 Preliminary 2012 Microchip Technology Inc.
9.1.1 WAKE-UP USING INTERRUPTS
When global interrupts are disabled (GIE cleared) and
any interrupt source has both its interrupt enable bit
and interrupt flag bit set, one of the following will occur:
If the interrupt occurs before the execution of a
SLEEP instruction
-SLEEP instruction will execute as a NOP.
- WDT and WDT prescaler will not be cleared
-TO
bit of the STATUS register will not be set
-PD
bit of the STATUS register will not be
cleared.
If the interrupt occurs during or after the execu-
tion of a SLEEP instruction
-SLEEP instruction will be completely exe-
cuted
- Device will immediately wake-up from Sleep
- WDT and WDT prescaler will be cleared
-TO
bit of the STATUS register will be set
-PD
bit of the STATUS register will be cleared
Even if the flag bits were checked before executing a
SLEEP instruction, it may be possible for flag bits to
become set before the SLEEP instruction completes. To
determine whether a SLEEP instruction executed, test
the PD bit. If the PD bit is set, the SLEEP instruction
was executed as a NOP.
FIGURE 9-1: WAKE-UP FROM SLEEP THROUGH INTERRUPT
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
CLKIN(1)
CLKOUT(2)
Interrupt flag
GIE bit
(INTCON reg.)
Instruction Flow
PC
Instruction
Fetched
Instruction
Executed
PC PC + 1 PC + 2
Inst(PC) = Sleep
Inst(PC - 1)
Inst(PC + 1)
Sleep
Processor in
Sleep
Interrupt Latency(4)
Inst(PC + 2)
Inst(PC + 1)
Inst(0004h) Inst(0005h)
Inst(0004h)
Forced NOP
PC + 2 0004h 0005h
Forced NOP
T1OSC(3)
PC + 2
Note 1: External clock. High, Medium, Low mode assumed.
2: CLKOUT is shown here for timing reference.
3: T1OSC; See Section 29.0 “Electrical Specifications”.
4: GIE = 1 assumed. In this case after wake-up, the processor calls the ISR at 0004h. If GIE = 0, execution will continue in-line.
2012 Microchip Technology Inc. Preliminary DS41639A-page 105
PIC16(L)F1454/5/9
9.2 Low-Power Sleep Mode
The PIC16F1454/5/9 device contains an internal Low
Dropout (LDO) voltage regulator, which allows the
device I/O pins to operate at voltages up to 5.5V while
the internal device logic operates at a lower voltage.
The LDO and its associated reference circuitry must
remain active when the device is in Sleep mode. The
PIC16F1454/5/9 allows the user to optimize the
operating current in Sleep, depending on the
application requirements.
A Low-Power Sleep mode can be selected by setting
the VREGPM bit of the VREGCON register. With this
bit set, the LDO and reference circuitry are placed in a
low-power state when the device is in Sleep.
9.2.1 SLEEP CURRENT VS. WAKE-UP
TIME
In the default operating mode, the LDO and reference
circuitry remain in the normal configuration while in
Sleep. The device is able to exit Sleep mode quickly
since all circuits remain active. In Low-Power Sleep
mode, when waking up from Sleep, an extra delay time
is required for these circuits to return to the normal con-
figuration and stabilize.
The Low-Power Sleep mode is beneficial for applica-
tions that stay in Sleep mode for long periods of time.
The Normal mode is beneficial for applications that
need to wake from Sleep quickly and frequently.
9.2.2 PERIPHERAL USAGE IN SLEEP
Some peripherals that can operate in Sleep mode will
not operate properly with the Low-Power Sleep mode
selected. The LDO will remain in the Normal-Power
mode when those peripherals are enabled. The Low-
Power Sleep mode is intended for use with these
peripherals:
Brown-Out Reset (BOR)
Watchdog Timer (WDT)
External interrupt pin/Interrupt-on-change pins
Timer1 (with external clock source)
The Complementary Waveform Generator (CWG)
module can utilize the HFINTOSC oscillator as either
a clock source or as an input source. Under certain
conditions, when the HFINTOSC is selected for use
with the CWG module, the HFINTOSC will remain
active during Sleep. This will have a direct effect on
the Sleep mode current.
Please refer to section 25.10 “Operation During
Sleep” for more information.
Note: The PIC16LF1454/5/9 does not have a
configurable Low-Power Sleep mode.
PIC16LF1454/5/9 is an unregulated
device and is always in the lowest power
state when in Sleep, with no wake-up time
penalty. This device has a lower maximum
VDD and I/O voltage than the
PIC16LF1454/5/9. See Section 29.0
“Electrical Specifications” for more
information.
PIC16(L)F1454/5/9
DS41639A-page 106 Preliminary 2012 Microchip Technology Inc.
9.3 Register Definitions: Voltage Regulator Control
TABLE 9-1: SUMMARY OF REGISTERS ASSOCIATED WITH POWER-DOWN MODE
REGISTER 9-1: VREGCON: VOLTAGE REGULATOR CONTROL REGISTER(1)
U-0 U-0 U-0 U-0 U-0 U-0 R/W-0/0 R/W-1/1
—VREGPMReserved
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-2 Unimplemented: Read as ‘0
bit 1 VREGPM: Voltage Regulator Power Mode Selection bit
1 = Low-Power Sleep mode enabled in Sleep(2)
Draws lowest current in Sleep, slower wake-up
0 = Normal-Power mode enabled in Sleep(2)
Draws higher current in Sleep, faster wake-up
bit 0 Reserved: Read as ‘1’. Maintain this bit set.
Note 1: PIC16LF1454/5/9 only.
2: See Section 29.0 “Electrical Specifications”.
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register on
Page
INTCON GIE PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF 96
IOCAF IOCAF5 IOCAF4 IOCAF3 IOCAF1 IOCAF0 146
IOCAN IOCAN5 IOCAN4 IOCAN3 IOCAN1 IOCAN0 145
IOCAP IOCAP5 IOCAP4 IOCAP3 IOCAP1 IOCAP0 145
IOCBF(2) IOCBF7 IOCBF6 IOCBF5 IOCBF4 147
IOCBN(2) IOCBN7 IOCBN6 IOCBN5 IOCBN4 147
IOCBP(2) IOCBP7 IOCBP6 IOCBP5 IOCBP4 146
PIE1 TMR1GIE ADIE(1) RCIE TXIE SSP1IE TMR2IE TMR1IE 97
PIE2 OSFIE C2IE C1IE BCL1IE USBIE ACTIE 98
PIR1 TMR1GIF ADIF(1) RCIF TXIF SSP1IF TMR2IF TMR1IF 99
PIR2 OSFIF C2IF C1IF BCL1IF USBIF ACTIF 100
STATUS —TOPD ZDC C27
WDTCON WDTPS<4:0> SWDTEN 110
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used in Power-Down mode.
Note 1: PIC16(L)F1455/9 only.
2: PIC16(L)F1459 only.
2012 Microchip Technology Inc. Preliminary DS41639A-page 107
PIC16(L)F1454/5/9
10.0 WATCHDOG TIMER (WDT)
The Watchdog Timer is a system timer that generates
a Reset if the firmware does not issue a CLRWDT
instruction within the time-out period. The Watchdog
Timer is typically used to recover the system from
unexpected events.
The WDT has the following features:
Independent clock source
Multiple operating modes
- WDT is always on
- WDT is off when in Sleep
- WDT is controlled by software
- WDT is always off
Configurable time-out period is from 1 ms to 256
seconds (nominal)
Multiple Reset conditions
Operation during Sleep
FIGURE 10-1: WATCHDOG TIMER BLOCK DIAGRAM
LFINTOSC 23-bit Programmable
Prescaler WDT WDT Time-out
WDTPS<4:0>
SWDTEN
Sleep
WDTE<1:0> = 11
WDTE<1:0> = 01
WDTE<1:0> = 10
PIC16(L)F1454/5/9
DS41639A-page 108 Preliminary 2012 Microchip Technology Inc.
10.1 Independent Clock Source
The WDT derives its time base from the 31 kHz
LFINTOSC internal oscillator. Time intervals in this
chapter are based on a nominal interval of 1 ms. See
Section 29.0 “Electrical Specifications” for the
LFINTOSC tolerances.
10.2 WDT Operating Modes
The Watchdog Timer module has four operating modes
controlled by the WDTE<1:0> bits in Configuration
Words. See Table 10-1.
10.2.1 WDT IS ALWAYS ON
When the WDTE bits of Configuration Words are set to
11’, the WDT is always on.
WDT protection is active during Sleep.
10.2.2 WDT IS OFF IN SLEEP
When the WDTE bits of Configuration Words are set to
10’, the WDT is on, except in Sleep.
WDT protection is not active during Sleep.
10.2.3 WDT CONTROLLED BY SOFTWARE
When the WDTE bits of Configuration Words are set to
01’, the WDT is controlled by the SWDTEN bit of the
WDTCON register.
WDT protection is unchanged by Sleep. See
Table 10-1 for more details.
TABLE 10-1: WDT OPERATING MODES
10.3 Time-Out Period
The WDTPS bits of the WDTCON register set the
time-out period from 1 ms to 256 seconds (nominal).
After a Reset, the default time-out period is two
seconds.
10.4 Clearing the WDT
The WDT is cleared when any of the following condi-
tions occur:
•Any Reset
CLRWDT instruction is executed
Device enters Sleep
Device wakes up from Sleep
Oscillator fail
WDT is disabled
Oscillator Start-up Timer (OST) is running
See Table 10-2 for more information.
10.5 Operation During Sleep
When the device enters Sleep, the WDT is cleared. If
the WDT is enabled during Sleep, the WDT resumes
counting.
When the device exits Sleep, the WDT is cleared
again. The WDT remains clear until the OST, if
enabled, completes. See Section 5.0 “Oscillator
Module (With Fail-Safe Clock Monitor)” for more
information on the OST.
The WDT remains clear until the OST, if enabled, com-
pletes. See Section 5.0 “Oscillator Module (With
Fail-Safe Clock Monitor)” for more information on the
OST. (add with start-up timer oscillators)
When a WDT time-out occurs while the device is in
Sleep, no Reset is generated. Instead, the device
wakes up and resumes operation. The TO and PD bits
in the STATUS register are changed to indicate the
event. The RWDT bit in the PCON register can also be
used. See Section 3.0 “Memory Organization for
more information.
WDTE<1:0> SWDTEN Device
Mode
WDT
Mode
11 X XActive
10 X
Awake Active
Sleep Disabled
01 1XActive
0Disabled
00 X X Disabled
2012 Microchip Technology Inc. Preliminary DS41639A-page 109
PIC16(L)F1454/5/9
TABLE 10-2: WDT CLEARING CONDITIONS
Conditions WDT
WDTE<1:0> = 00
Cleared
WDTE<1:0> = 01 and SWDTEN = 0
WDTE<1:0> = 10 and enter Sleep
CLRWDT Command
Oscillator Fail Detected
Exit Sleep + System Clock = EXTRC, INTOSC, EXTCLK
Exit Sleep + System Clock = XT, HS, LP Cleared until the end of OST
Change INTOSC divider (IRCF bits) Unaffected
PIC16(L)F1454/5/9
DS41639A-page 110 Preliminary 2012 Microchip Technology Inc.
10.6 Register Definitions: Watchdog Control
REGISTER 10-1: WDTCON: WATCHDOG TIMER CONTROL REGISTER
U-0 U-0 R/W-0/0 R/W-1/1 R/W-0/0 R/W-1/1 R/W-1/1 R/W-0/0
WDTPS<4:0> SWDTEN
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-6 Unimplemented: Read as ‘0
bit 5-1 WDTPS<4:0>: Watchdog Timer Period Select bits(1)
Bit Value = Prescale Rate
00000 = 1:32 (Interval 1 ms nominal)
00001 = 1:64 (Interval 2 ms nominal)
00010 = 1:128 (Interval 4 ms nominal)
00011 = 1:256 (Interval 8 ms nominal)
00100 = 1:512 (Interval 16 ms nominal)
00101 = 1:1024 (Interval 32 ms nominal)
00110 = 1:2048 (Interval 64 ms nominal)
00111 = 1:4096 (Interval 128 ms nominal)
01000 = 1:8192 (Interval 256 ms nominal)
01001 = 1:16384 (Interval 512 ms nominal)
01010 = 1:32768 (Interval 1s nominal)
01011 = 1:65536 (Interval 2s nominal) (Reset value)
01100 = 1:131072 (217) (Interval 4s nominal)
01101 = 1:262144 (218) (Interval 8s nominal)
01110 = 1:524288 (219) (Interval 16s nominal)
01111 = 1:1048576 (220) (Interval 32s nominal)
10000 = 1:2097152 (221) (Interval 64s nominal)
10001 = 1:4194304 (222) (Interval 128s nominal)
10010 = 1:8388608 (223) (Interval 256s nominal)
10011 = Reserved. Results in minimum interval (1:32)
11111 = Reserved. Results in minimum interval (1:32)
bit 0 SWDTEN: Software Enable/Disable for Watchdog Timer bit
If WDTE<1:0> = 00:
This bit is ignored.
If WDTE<1:0> = 01:
1 = WDT is turned on
0 = WDT is turned off
If WDTE<1:0> = 1x:
This bit is ignored.
Note 1: Times are approximate. WDT time is based on 31 kHz LFINTOSC.
2012 Microchip Technology Inc. Preliminary DS41639A-page 111
PIC16(L)F1454/5/9
TABLE 10-3: SUMMARY OF REGISTERS ASSOCIATED WITH WATCHDOG TIMER
TABLE 10-4: SUMMARY OF CONFIGURATION WORD WITH WATCHDOG TIMER
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register
on Page
OSCCON SPLLEN SPLLMULT IRCF<3:0> SCS<1:0> 75
PCON STKOVF STKUNF —RWDTRMCLR RI POR BOR 85
STATUS ———TOPD ZDC C27
WDTCON —WDTPS<4:0>SWDTEN
110
Legend: x = unknown, u = unchanged, – = unimplemented locations read as 0’. Shaded cells are not used by Watchdog Timer.
Name Bits Bit -/7 Bit -/6 Bit 13/5 Bit 12/4 Bit 11/3 Bit 10/2 Bit 9/1 Bit 8/0 Register
on Page
CONFIG1 13:8 FCMEN IESO CLKOUTEN BOREN<1:0> 52
7:0 CP MCLRE PWRTE WDTE<1:0> FOSC<2:0>
Legend: = unimplemented location, read as 0’. Shaded cells are not used by Watchdog Timer.
PIC16(L)F1454/5/9
DS41639A-page 112 Preliminary 2012 Microchip Technology Inc.
11.0 FLASH PROGRAM MEMORY
CONTROL
The Flash program memory is readable and writable
during normal operation over the full VDD range.
Program memory is indirectly addressed using Special
Function Registers (SFRs). The SFRs used to access
program memory are:
•PMCON1
•PMCON2
•PMDATL
•PMDATH
PMADRL
•PMADRH
When accessing the program memory, the
PMDATH:PMDATL register pair forms a 2-byte word
that holds the 14-bit data for read/write, and the
PMADRH:PMADRL register pair forms a 2-byte word
that holds the 15-bit address of the program memory
location being read.
The write time is controlled by an on-chip timer. The write/
erase voltages are generated by an on-chip charge pump
rated to operate over the operating voltage range of the
device.
The Flash program memory can be protected in two
ways; by code protection (CP bit in Configuration Words)
and write protection (WRT<1:0> bits in Configuration
Words).
Code protection (CP = 0)(1), disables access, reading
and writing, to the Flash program memory via external
device programmers. Code protection does not affect
the self-write and erase functionality. Code protection
can only be reset by a device programmer performing
a Bulk Erase to the device, clearing all Flash program
memory, Configuration bits and User IDs.
Write protection prohibits self-write and erase to a
portion or all of the Flash program memory as defined
by the bits WRT<1:0>. Write protection does not affect
a device programmers ability to read, write or erase the
device.
11.1 PMADRL and PMADRH Registers
The PMADRH:PMADRL register pair can address up
to a maximum of 32K words of program memory. When
selecting a program address value, the MSB of the
address is written to the PMADRH register and the LSB
is written to the PMADRL register.
11.1.1 PMCON1 AND PMCON2
REGISTERS
PMCON1 is the control register for Flash program
memory accesses.
Control bits RD and WR initiate read and write,
respectively. These bits cannot be cleared, only set, in
software. They are cleared by hardware at completion
of the read or write operation. The inability to clear the
WR bit in software prevents the accidental, premature
termination of a write operation.
The WREN bit, when set, will allow a write operation to
occur. On power-up, the WREN bit is clear. The
WRERR bit is set when a write operation is interrupted
by a Reset during normal operation. In these situations,
following Reset, the user can check the WRERR bit
and execute the appropriate error handling routine.
The PMCON2 register is a write-only register. Attempting
to read the PMCON2 register will return all ‘0’s.
To enable writes to the program memory, a specific
pattern (the unlock sequence), must be written to the
PMCON2 register. The required unlock sequence
prevents inadvertent writes to the program memory
write latches and Flash program memory.
11.2 Flash Program Memory Overview
It is important to understand the Flash program memory
structure for erase and programming operations. Flash
program memory is arranged in rows. A row consists of
a fixed number of 14-bit program memory words. A row
is the minimum size that can be erased by user software.
After a row has been erased, the user can reprogram
all or a portion of this row. Data to be written into the
program memory row is written to 14-bit wide data write
latches. These write latches are not directly accessible
to the user, but may be loaded via sequential writes to
the PMDATH:PMDATL register pair.
See Table 11-1 for Erase Row size and the number of
write latches for Flash program memory.
Note 1: Code protection of the entire Flash
program memory array is enabled by
clearing the CP bit of Configuration Words.
Note: If the user wants to modify only a portion
of a previously programmed row, then the
contents of the entire row must be read
and saved in RAM prior to the erase.
Then, new data and retained data can be
written into the write latches to reprogram
the row of Flash program memory. How-
ever, any unprogrammed locations can be
written without first erasing the row. In this
case, it is not necessary to save and
rewrite the other previously programmed
locations.
2012 Microchip Technology Inc. Preliminary DS41639A-page 113
PIC16(L)F1454/5/9
11.2.1 READING THE FLASH PROGRAM
MEMORY
To read a program memory location, the user must:
1. Write the desired address to the
PMADRH:PMADRL register pair.
2. Clear the CFGS bit of the PMCON1 register.
3. Then, set control bit RD of the PMCON1 register.
Once the read control bit is set, the program memory
Flash controller will use the second instruction cycle to
read the data. This causes the second instruction
immediately following theBSF PMCON1,RD” instruction
to be ignored. The data is available in the very next cycle,
in the PMDATH:PMDATL register pair; therefore, it can
be read as two bytes in the following instructions.
PMDATH:PMDATL register pair will hold this value until
another read or until it is written to by the user.
FIGURE 11-1: FLASH PROGRAM
MEMORY READ
FLOWCHART
TABLE 11-1: FLASH MEMORY
ORGANIZATION BY DEVICE
Device Row Erase
(words)
Write
Latches
(words)
PIC16(L)F1454/5/9 32 32
Note: The two instructions following a program
memory read are required to be NOPs.
This prevents the user from executing a
two-cycle instruction on the next
instruction after the RD bit is set.
Start
Read Operation
Select
Program or Configuration Memory
(CFGS)
Select
Word Address
(PMADRH:PMADRL)
End
Read Operation
Instruction Fetched ignored
NOP execution forced
Instruction Fetched ignored
NOP execution forced
Initiate Read operation
(RD = 1)
Data read now in
PMDATH:PMDATL
PIC16(L)F1454/5/9
DS41639A-page 114 Preliminary 2012 Microchip Technology Inc.
FIGURE 11-2: FLASH PROGRAM MEMORY READ CYCLE EXECUTION
EXAMPLE 11-1: FLASH PROGRAM MEMORY READ
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
BSF PMCON1,RD
executed here
INSTR(PC + 1)
executed here
PC
PC + 1 PMADRH,PMADRL PC+3 PC + 5
Flash ADDR
RD bit
PMDATH,PMDATL
PC + 3 PC + 4
INSTR (PC + 1)
INSTR(PC - 1)
executed here INSTR(PC + 3)
executed here INSTR(PC + 4)
executed here
Flash Data
PMDATH
PMDATL
Register
INSTR (PC) INSTR (PC + 3) INSTR (PC + 4)
instruction ignored
Forced NOP
INSTR(PC + 2)
executed here
instruction ignored
Forced NOP
* This code block will read 1 word of program
* memory at the memory address:
PROG_ADDR_HI: PROG_ADDR_LO
* data will be returned in the variables;
* PROG_DATA_HI, PROG_DATA_LO
BANKSEL PMADRL ; Select Bank for PMCON registers
MOVLW PROG_ADDR_LO ;
MOVWF PMADRL ; Store LSB of address
MOVLW PROG_ADDR_HI ;
MOVWF PMADRH ; Store MSB of address
BCF PMCON1,CFGS ; Do not select Configuration Space
BSF PMCON1,RD ; Initiate read
NOP ; Ignored (Figure 11-2)
NOP ; Ignored (Figure 11-2)
MOVF PMDATL,W ; Get LSB of word
MOVWF PROG_DATA_LO ; Store in user location
MOVF PMDATH,W ; Get MSB of word
MOVWF PROG_DATA_HI ; Store in user location
2012 Microchip Technology Inc. Preliminary DS41639A-page 115
PIC16(L)F1454/5/9
11.2.2 FLASH MEMORY UNLOCK
SEQUENCE
The unlock sequence is a mechanism that protects the
Flash program memory from unintended self-write pro-
gramming or erasing. The sequence must be executed
and completed without interruption to successfully
complete any of the following operations:
Row Erase
Load program memory write latches
Write of program memory write latches to pro-
gram memory
Write of program memory write latches to User
IDs
The unlock sequence consists of the following steps:
1. Write 55h to PMCON2
2. Write AAh to PMCON2
3. Set the WR bit in PMCON1
4. NOP instruction
5. NOP instruction
Once the WR bit is set, the processor will always force
two NOP instructions. When an Erase Row or Program
Row operation is being performed, the processor will stall
internal operations (typical 2 ms), until the operation is
complete and then resume with the next instruction.
When the operation is loading the program memory write
latches, the processor will always force the two NOP
instructions and continue uninterrupted with the next
instruction.
Since the unlock sequence must not be interrupted,
global interrupts should be disabled prior to the unlock
sequence and re-enabled after the unlock sequence is
completed.
FIGURE 11-3: FLASH PROGRAM
MEMORY UNLOCK
SEQUENCE FLOWCHART
Write 055h to
PMCON2
Start
Unlock Sequence
Write 0AAh to
PMCON2
Initiate
Write or Erase operation
(WR = 1)
Instruction Fetched ignored
NOP execution forced
End
Unlock Sequence
Instruction Fetched ignored
NOP execution forced
PIC16(L)F1454/5/9
DS41639A-page 116 Preliminary 2012 Microchip Technology Inc.
11.2.3 ERASING FLASH PROGRAM
MEMORY
While executing code, program memory can only be
erased by rows. To erase a row:
1. Load the PMADRH:PMADRL register pair with
any address within the row to be erased.
2. Clear the CFGS bit of the PMCON1 register.
3. Set the FREE and WREN bits of the PMCON1
register.
4. Write 55h, then AAh, to PMCON2 (Flash
programming unlock sequence).
5. Set control bit WR of the PMCON1 register to
begin the erase operation.
See Example 11-2.
After theBSF PMCON1,WR” instruction, the processor
requires two cycles to set up the erase operation. The
user must place two NOP instructions immediately fol-
lowing the WR bit set instruction. The processor will
halt internal operations for the typical 2 ms erase time.
This is not Sleep mode as the clocks and peripherals
will continue to run. After the erase cycle, the processor
will resume operation with the third instruction after the
PMCON1 write instruction.
FIGURE 11-4: FLASH PROGRAM
MEMORY ERASE
FLOWCHART
Disable Interrupts
(GIE = 0)
Start
Erase Operation
Select
Program or Configuration Memory
(CFGS)
Select Row Address
(PMADRH:PMADRL)
Select Erase Operation
(FREE = 1)
Enable Write/Erase Operation
(WREN = 1)
Unlock Sequence
(FIGURE x-x)
Disable Write/Erase Operation
(WREN = 0)
Re-enable Interrupts
(GIE = 1)
End
Erase Operation
CPU stalls while
Erase operation completes
(2ms typical)
Figure 11-3
2012 Microchip Technology Inc. Preliminary DS41639A-page 117
PIC16(L)F1454/5/9
EXAMPLE 11-2: ERASING ONE ROW OF PROGRAM MEMORY
; This row erase routine assumes the following:
; 1. A valid address within the erase row is loaded in ADDRH:ADDRL
; 2. ADDRH and ADDRL are located in shared data memory 0x70 - 0x7F (common RAM)
BCF INTCON,GIE ; Disable ints so required sequences will execute properly
BANKSEL PMADRL
MOVF ADDRL,W ; Load lower 8 bits of erase address boundary
MOVWF PMADRL
MOVF ADDRH,W ; Load upper 6 bits of erase address boundary
MOVWF PMADRH
BCF PMCON1,CFGS ; Not configuration space
BSF PMCON1,FREE ; Specify an erase operation
BSF PMCON1,WREN ; Enable writes
MOVLW 55h ; Start of required sequence to initiate erase
MOVWF PMCON2 ; Write 55h
MOVLW 0AAh ;
MOVWF PMCON2 ; Write AAh
BSF PMCON1,WR ; Set WR bit to begin erase
NOP ; NOP instructions are forced as processor starts
NOP ; row erase of program memory.
;
; The processor stalls until the erase process is complete
; after erase processor continues with 3rd instruction
BCF PMCON1,WREN ; Disable writes
BSF INTCON,GIE ; Enable interrupts
Required
Sequence
PIC16(L)F1454/5/9
DS41639A-page 118 Preliminary 2012 Microchip Technology Inc.
11.2.4 WRITING TO FLASH PROGRAM
MEMORY
Program memory is programmed using the following
steps:
1. Load the address in PMADRH:PMADRL of the
row to be programmed.
2. Load each write latch with data.
3. Initiate a programming operation.
4. Repeat steps 1 through 3 until all data is written.
Before writing to program memory, the word(s) to be
written must be erased or previously unwritten. Pro-
gram memory can only be erased one row at a time. No
automatic erase occurs upon the initiation of the write.
Program memory can be written one or more words at
a time. The maximum number of words written at one
time is equal to the number of write latches. See
Figure 11-5 (row writes to program memory with 32
write latches) for more details.
The write latches are aligned to the Flash row address
boundary defined by the upper 10-bits of
PMADRH:PMADRL, (PMADRH<6:0>:PMADRL<7:5>)
with the lower 5-bits of PMADRL, (PMADRL<4:0>)
determining the write latch being loaded. Write opera-
tions do not cross these boundaries. At the completion
of a program memory write operation, the data in the
write latches is reset to contain 0x3FFF.
The following steps should be completed to load the
write latches and program a row of program memory.
These steps are divided into two parts. First, each write
latch is loaded with data from the PMDATH:PMDATL
using the unlock sequence with LWLO = 1. When the
last word to be loaded into the write latch is ready, the
LWLO bit is cleared and the unlock sequence
executed. This initiates the programming operation,
writing all the latches into Flash program memory.
1. Set the WREN bit of the PMCON1 register.
2. Clear the CFGS bit of the PMCON1 register.
3. Set the LWLO bit of the PMCON1 register.
When the LWLO bit of the PMCON1 register is
1’, the write sequence will only load the write
latches and will not initiate the write to Flash
program memory.
4. Load the PMADRH:PMADRL register pair with
the address of the location to be written.
5. Load the PMDATH:PMDATL register pair with
the program memory data to be written.
6. Execute the unlock sequence (Section 11.2.2
“Flash Memory Unlock Sequence). The write
latch is now loaded.
7. Increment the PMADRH:PMADRL register pair
to point to the next location.
8. Repeat steps 5 through 7 until all but the last
write latch has been loaded.
9. Clear the LWLO bit of the PMCON1 register.
When the LWLO bit of the PMCON1 register is
0’, the write sequence will initiate the write to
Flash program memory.
10. Load the PMDATH:PMDATL register pair with
the program memory data to be written.
11. Execute the unlock sequence (Section 11.2.2
“Flash Memory Unlock Sequence”). The
entire program memory latch content is now
written to Flash program memory.
An example of the complete write sequence is shown in
Example 11-3. The initial address is loaded into the
PMADRH:PMADRL register pair; the data is loaded
using indirect addressing.
Note: The special unlock sequence is required
to load a write latch with data or initiate a
Flash programming operation. If the
unlock sequence is interrupted, writing to
the latches or program memory will not be
initiated.
Note: The program memory write latches are
reset to the blank state (0x3FFF) at the
completion of every write or erase
operation. As a result, it is not necessary
to load all the program memory write
latches. Unloaded latches will remain in
the blank state.
PIC16(L)F1454/5/9
DS41639A-page 119 Preliminary 2012 Microchip Technology Inc.
FIGURE 11-5: BLOCK WRITES TO FLASH PROGRAM MEMORY WITH 32 WRITE LATCHES
PMDATH PMDATL
7 5 0 7 0
6 8
14
1414
Write Latch #31
1Fh
1414
PMADRH PMADRL
7 6 0 7 5 4 0
Program Memory Write Latches
14 14 14
510
PMADRH<6:0>
:PMADRL<7:4> Flash Program Memory
Row
Row
Address
Decode
Addr
Write Latch #30
1Eh
Write Latch #1
01h
Write Latch #0
00h
Addr AddrAddr
000h 001Fh001Eh0000h 0001h
001h 003Fh003Eh0010h 0011h
002h 005Fh005Eh0020h 0021h
7FEh 7FDFh7FDEh7FE0h 7FE1h
7FFh 7FFFh7FFEh7FF0h 7FF1h
14
r9 r8 r7 r6 r5 r4 r3-r1 r0 c3 c2 c1 c0r2
PMADRL<4:0>
800h 8009h - 801Fh8000h - 8003h
Configuration
Words
USER ID 0 - 3
8007h – 8008h8006h
DEVIDreserved
8004h
reserved
Configuration Memory
CFGS = 0
CFGS = 1
--
r10
REVID
8005h
PIC16(L)F1454/5/9
DS41639A-page 120 Preliminary 2012 Microchip Technology Inc.
FIGURE 11-6: FLASH PROGRAM MEMORY WRITE FLOWCHART
Disable Interrupts
(GIE = 0)
Start
Write Operation
Select
Program or Config. Memory
(CFGS)
Select Row Address
(PMADRH:PMADRL)
Select Write Operation
(FREE = 0)
Enable Write/Erase
Operation (WREN = 1)
Unlock Sequence
(Figure x-x)
Disable
Write/Erase Operation
(WREN = 0)
Re-enable Interrupts
(GIE = 1)
End
Write Operation
No delay when writing to
Program Memory Latches
Determine number of words
to be written into Program or
Configuration Memory.
The number of words cannot
exceed the number of words
per row.
(word_cnt) Load the value to write
(PMDATH:PMDATL)
Update the word counter
(word_cnt--)
Last word to
write ?
Increment Address
(PMADRH:PMADRL++)
Unlock Sequence
(Figure x-x)
CPU stalls while Write
operation completes
(2ms typical)
Load Write Latches Only
(LWLO = 1)
Write Latches to Flash
(LWLO = 0)
No
Yes
Figure 11-3
Figure 11-3
2012 Microchip Technology Inc. Preliminary DS41639A-page 121
PIC16(L)F1454/5/9
EXAMPLE 11-3: WRITING TO FLASH PROGRAM MEMORY
; This write routine assumes the following:
; 1. 64 bytes of data are loaded, starting at the address in DATA_ADDR
; 2. Each word of data to be written is made up of two adjacent bytes in DATA_ADDR,
; stored in little endian format
; 3. A valid starting address (the least significant bits = 00000) is loaded in ADDRH:ADDRL
; 4. ADDRH and ADDRL are located in shared data memory 0x70 - 0x7F (common RAM)
;
BCF INTCON,GIE ; Disable ints so required sequences will execute properly
BANKSEL PMADRH ; Bank 3
MOVF ADDRH,W ; Load initial address
MOVWF PMADRH ;
MOVF ADDRL,W ;
MOVWF PMADRL ;
MOVLW LOW DATA_ADDR ; Load initial data address
MOVWF FSR0L ;
MOVLW HIGH DATA_ADDR ; Load initial data address
MOVWF FSR0H ;
BCF PMCON1,CFGS ; Not configuration space
BSF PMCON1,WREN ; Enable writes
BSF PMCON1,LWLO ; Only Load Write Latches
LOOP
MOVIW FSR0++ ; Load first data byte into lower
MOVWF PMDATL ;
MOVIW FSR0++ ; Load second data byte into upper
MOVWF PMDATH ;
MOVF PMADRL,W ; Check if lower bits of address are '00000'
XORLW 0x1F ; Check if we're on the last of 32 addresses
ANDLW 0x1F ;
BTFSC STATUS,Z ; Exit if last of 32 words,
GOTO START_WRITE ;
MOVLW 55h ; Start of required write sequence:
MOVWF PMCON2 ; Write 55h
MOVLW 0AAh ;
MOVWF PMCON2 ; Write AAh
BSF PMCON1,WR ; Set WR bit to begin write
NOP ; NOP instructions are forced as processor
; loads program memory write latches
NOP ;
INCF PMADRL,F ; Still loading latches Increment address
GOTO LOOP ; Write next latches
START_WRITE
BCF PMCON1,LWLO ; No more loading latches - Actually start Flash program
; memory write
MOVLW 55h ; Start of required write sequence:
MOVWF PMCON2 ; Write 55h
MOVLW 0AAh ;
MOVWF PMCON2 ; Write AAh
BSF PMCON1,WR ; Set WR bit to begin write
NOP ; NOP instructions are forced as processor writes
; all the program memory write latches simultaneously
NOP ; to program memory.
; After NOPs, the processor
; stalls until the self-write process in complete
; after write processor continues with 3rd instruction
BCF PMCON1,WREN ; Disable writes
BSF INTCON,GIE ; Enable interrupts
Required
Sequence
Required
Sequence
PIC16(L)F1454/5/9
DS41639A-page 122 Preliminary 2012 Microchip Technology Inc.
11.3 Modifying Flash Program Memory
When modifying existing data in a program memory
row, and data within that row must be preserved, it must
first be read and saved in a RAM image. Program
memory is modified using the following steps:
1. Load the starting address of the row to be
modified.
2. Read the existing data from the row into a RAM
image.
3. Modify the RAM image to contain the new data
to be written into program memory.
4. Load the starting address of the row to be
rewritten.
5. Erase the program memory row.
6. Load the write latches with data from the RAM
image.
7. Initiate a programming operation.
FIGURE 11-7: FLASH PROGRAM
MEMORY MODIFY
FLOWCHART
Start
Modify Operation
Read Operation
(Figure x.x)
Erase Operation
(Figure x.x)
Modify Image
The words to be modified are
changed in the RAM image
End
Modify Operation
WRITE Operation
use RAM image
(Figure x.x)
An image of the entire row read
must be stored in RAM
Figure 11-2
Figure 11-4
Figure 11-5
2012 Microchip Technology Inc. Preliminary DS41639A-page 123
PIC16(L)F1454/5/9
11.4 User ID, Device ID and
Configuration Word Access
Instead of accessing program memory, the User ID’s,
Device ID/Revision ID and Configuration Words can be
accessed when CFGS = 1 in the PMCON1 register.
This is the region that would be pointed to by
PC<15> = 1, but not all addresses are accessible.
Different access may exist for reads and writes. Refer
to Table 11-2.
When read access is initiated on an address outside
the parameters listed in Tabl e 11- 2 , the
PMDATH:PMDATL register pair is cleared, reading
back ‘0’s.
TABLE 11-2: USER ID, DEVICE ID AND CONFIGURATION WORD ACCESS (CFGS = 1)
EXAMPLE 11-4: CONFIGURATION WORD AND DEVICE ID ACCESS
Address Function Read Access Write Access
8000h-8003h User IDs Yes Yes
8005h-8006h Revision ID-Device ID Yes No
8007h-8008h Configuration Words 1 and 2 Yes No
* This code block will read 1 word of program memory at the memory address:
* PROG_ADDR_LO (must be 00h-08h) data will be returned in the variables;
* PROG_DATA_HI, PROG_DATA_LO
BANKSEL PMADRL ; Select correct Bank
MOVLW PROG_ADDR_LO ;
MOVWF PMADRL ; Store LSB of address
CLRF PMADRH ; Clear MSB of address
BSF PMCON1,CFGS ; Select Configuration Space
BCF INTCON,GIE ; Disable interrupts
BSF PMCON1,RD ; Initiate read
NOP ; Executed (See Figure 11-2)
NOP ; Ignored (See Figure 11-2)
BSF INTCON,GIE ; Restore interrupts
MOVF PMDATL,W ; Get LSB of word
MOVWF PROG_DATA_LO ; Store in user location
MOVF PMDATH,W ; Get MSB of word
MOVWF PROG_DATA_HI ; Store in user location
PIC16(L)F1454/5/9
DS41639A-page 124 Preliminary 2012 Microchip Technology Inc.
11.5 Write Verify
It is considered good programming practice to verify that
program memory writes agree with the intended value.
Since program memory is stored as a full page then the
stored program memory contents are compared with the
intended data stored in RAM after the last write is
complete.
FIGURE 11-8: FLASH PROGRAM
MEMORY VERIFY
FLOWCHART
Start
Verify Operation
Read Operation
(Figure x.x)
End
Verify Operation
This routine assumes that the last row
of data written was from an image
saved in RAM. This image will be used
to verify the data currently stored in
Flash Program Memory.
PMDAT =
RAM image
?
Last
Word ?
Fail
Verify Operation
No
Yes
Yes
No
Figure 11-2
2012 Microchip Technology Inc. Preliminary DS41639A-page 125
PIC16(L)F1454/5/9
11.6 Register Definitions: Flash Program Memory Control
REGISTER 11-1: PMDATL: PROGRAM MEMORY DATA LOW BYTE REGISTER
R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u
PMDAT<7:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-0 PMDAT<7:0>: Read/write value for Least Significant bits of program memory
REGISTER 11-2: PMDATH: PROGRAM MEMORY DATA HIGH BYTE REGISTER
U-0 U-0 R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u
—PMDAT<13:8>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-6 Unimplemented: Read as ‘0
bit 5-0 PMDAT<13:8>: Read/write value for Most Significant bits of program memory
PIC16(L)F1454/5/9
DS41639A-page 126 Preliminary 2012 Microchip Technology Inc.
REGISTER 11-3: PMADRL: PROGRAM MEMORY ADDRESS LOW BYTE REGISTER
R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0
PMADR<7:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-0 PMADR<7:0>: Specifies the Least Significant bits for program memory address
REGISTER 11-4: PMADRH: PROGRAM MEMORY ADDRESS HIGH BYTE REGISTER
U-1(1) R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0
PMADR<14:8>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7 Unimplemented: Read as ‘1
bit 6-0 PMADR<14:8>: Specifies the Most Significant bits for program memory address
Note 1: Unimplemented bit, read as1’.
2012 Microchip Technology Inc. Preliminary DS41639A-page 127
PIC16(L)F1454/5/9
REGISTER 11-5: PMCON1: PROGRAM MEMORY CONTROL 1 REGISTER
U-1(1) R/W-0/0 R/W-0/0 R/W/HC-0/0 R/W/HC-x/q(2) R/W-0/0 R/S/HC-0/0 R/S/HC-0/0
CFGS LWLO FREE WRERR WREN WR RD
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
S = Bit can only be set x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared HC = Bit is cleared by hardware
bit 7 Unimplemented: Read as ‘1
bit 6 CFGS: Configuration Select bit
1 = Access Configuration, User ID and Device ID Registers
0 = Access Flash program memory
bit 5 LWLO: Load Write Latches Only bit(3)
1 = Only the addressed program memory write latch is loaded/updated on the next WR command
0 = The addressed program memory write latch is loaded/updated and a write of all program memory
write latches will be initiated on the next WR command
bit 4 FREE: Program Flash Erase Enable bit
1 = Performs an erase operation on the next WR command (hardware cleared upon completion)
0 = Performs a write operation on the next WR command
bit 3 WRERR: Program/Erase Error Flag bit
1 = Condition indicates an improper program or erase sequence attempt or termination (bit is set
automatically on any set attempt (write ‘1’) of the WR bit).
0 = The program or erase operation completed normally.
bit 2 WREN: Program/Erase Enable bit
1 = Allows program/erase cycles
0 = Inhibits programming/erasing of program Flash
bit 1 WR: Write Control bit
1 = Initiates a program Flash program/erase operation.
The operation is self-timed and the bit is cleared by hardware once operation is complete.
The WR bit can only be set (not cleared) in software.
0 = Program/erase operation to the Flash is complete and inactive.
bit 0 RD: Read Control bit
1 = Initiates a program Flash read. Read takes one cycle. RD is cleared in hardware. The RD bit can
only be set (not cleared) in software.
0 = Does not initiate a program Flash read.
Note 1: Unimplemented bit, read as1’.
2: The WRERR bit is automatically set by hardware when a program memory write or erase operation is
started (WR = 1).
3: The LWLO bit is ignored during a program memory erase operation (FREE = 1).
PIC16(L)F1454/5/9
DS41639A-page 128 Preliminary 2012 Microchip Technology Inc.
TABLE 11-3: SUMMARY OF REGISTERS ASSOCIATED WITH FLASH PROGRAM MEMORY
TABLE 11-4: SUMMARY OF CONFIGURATION WORD WITH FLASH PROGRAM MEMORY
REGISTER 11-6: PMCON2: PROGRAM MEMORY CONTROL 2 REGISTER
W-0/0 W-0/0 W-0/0 W-0/0 W-0/0 W-0/0 W-0/0 W-0/0
Program Memory Control Register 2
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
S = Bit can only be set x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-0 Flash Memory Unlock Pattern bits
To unlock writes, a 55h must be written first, followed by an AAh, before setting the WR bit of the
PMCON1 register. The value written to this register is used to unlock the writes. There are specific
timing requirements on these writes.
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register on
Page
INTCON GIE PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF 96
PMCON1 (1) CFGS LWLO FREE WRERR WREN WR RD 127
PMCON2 Program Memory Control Register 2 128
PMADRL PMADRL<7:0> 126
PMADRH (1) PMADRH<6:0> 126
PMDATL PMDATL<7:0> 125
PMDATH PMDATH<5:0> 125
Legend: = unimplemented location, read as ‘0’. Shaded cells are not used by Flash program memory.
Note 1: Unimplemented, read as ‘1’.
Name Bits Bit -/7 Bit -/6 Bit 13/5 Bit 12/4 Bit 11/3 Bit 10/2 Bit 9/1 Bit 8/0 Register
on Page
CONFIG1 13:8 FCMEN IESO CLKOUTEN BOREN<1:0> 52
7:0 CP MCLRE PWRTE WDTE<1:0> FOSC<2:0>
CONFIG2 13:8 LVP DEBUG LPBOR BORV STVREN PLLEN 54
7:0 PLLMULT USBLSCLK CPUDIV<1:0> —WRT<1:0>
Legend: — = unimplemented location, read as0’. Shaded cells are not used by Flash program memory.
2012 Microchip Technology Inc. Preliminary DS41639A-page 129
PIC16(L)F1454/5/9
12.0 I/O PORTS
Each port has three standard registers for its operation.
These registers are:
TRISx registers (data direction)
PORTx registers (reads the levels on the pins of
the device)
LATx registers (output latch)
Some ports may have one or more of the following
additional registers. These registers are:
ANSELx (analog select)
WPUx (weak pull-up)
In general, when a peripheral is enabled on a port pin,
that pin cannot be used as a general purpose output.
However, the pin can still be read.
The Data Latch (LATx registers) is useful for
read-modify-write operations on the value that the I/O
pins are driving.
A write operation to the LATx register has the same
effect as a write to the corresponding PORTx register.
A read of the LATx register reads of the values held in
the I/O PORT latches, while a read of the PORTx
register reads the actual I/O pin value.
Ports that support analog inputs have an associated
ANSELx register. When an ANSEL bit is set, the digital
input buffer associated with that bit is disabled.
Disabling the input buffer prevents analog signal levels
on the pin between a logic high and low from causing
excessive current in the logic input circuitry. A
simplified model of a generic I/O port, without the
interfaces to other peripherals, is shown in Figure 12-1.
FIGURE 12-1: GENERIC I/O PORT
OPERATION
EXAMPLE 12-1: INITIALIZING PORTA
TABLE 12-1: PORT AVAILABILITY PER
DEVICE
Device
PORTA
PORTB
PORTC
PIC16(L)F1454/5 ●●
PIC16(L)F1459 ●●●
QD
CK
Write LATx
Data Register
I/O pin
Read PORTx
Write PORTx
TRISx
Read LATx
Data Bus
To peripherals
ANSELx
VDD
VSS
; This code example illustrates
; initializing the PORTA register. The
; other ports are initialized in the same
; manner.
BANKSEL PORTA ;
CLRF PORTA ;Init PORTA
BANKSEL LATA ;Data Latch
CLRF LATA ;
BANKSEL ANSELA ;
CLRF ANSELA ;digital I/O
BANKSEL TRISA ;
MOVLW B'00111000' ;Set RA<5:3> as inputs
MOVWF TRISA ;and set RA<2:0> as
;outputs
PIC16(L)F1454/5/9
DS41639A-page 130 Preliminary 2012 Microchip Technology Inc.
12.1 Alternate Pin Function
The Alternate Pin Function Control register is used to
steer specific peripheral input and output functions
between different pins. The APFCON register is shown
in Register 12-1. For this device family, the following
functions can be moved between different pins.
•CLKR
•SDO
•SS
•T1G
•P2
These bits have no effect on the values of any TRIS
register. PORT and TRIS overrides will be routed to the
correct pin. The unselected pin will be unaffected.
12.2 Register Definitions: Alternate Pin Function Control
REGISTER 12-1: APFCON: ALTERNATE PIN FUNCTION CONTROL REGISTER
R/W-0/0 R/W-0/0 R/W-0/0 U-0 R/W-0/0 R/W-0/0 U-0 U-0
CLKRSEL SDOSEL(1) SSSEL T1GSEL P2SEL(1)
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7 CLKRSEL: Pin Selection bit
1 = CLKR function is on RC3
0 = CLKR function is on RA4
bit 6 SDOSEL: Pin Selection bit(1)
1 = SDO function is on RA4
0 = SDO function is on RC2
bit 5 SSSEL: Pin Selection bit
For 14-Pin Devices (PIC16(L)F1454/5):
1 =SS function is on RA3
0 =SS
function is on RC3
For 20-Pin Devices (PIC16(L)F1455/9):
1 =SS
function is on RA3
0 =SS
function is on RC6
bit 4 Unimplemented: Read as ‘0
bit 3 T1GSEL: Pin Selection bit
1 = T1G function is on RA3
0 = T1G function is on RA4
bit 2 P2SEL: Pin Selection bit(1)
1 = T1G function is on RA5
0 = T1G function is on RC3
bit 1-0 Unimplemented: Read as ‘0
Note 1: PIC16(L)F1454/5 only.
2012 Microchip Technology Inc. Preliminary DS41639A-page 131
PIC16(L)F1454/5/9
12.3 PORTA Registers
12.3.1 DATA REGISTER
PORTA is a 5-bit wide, bidirectional port. The
corresponding data direction register is TRISA
(Register 12-3). Setting a TRISA bit (= 1) will make the
corresponding PORTA pin an input (i.e., disable the
output driver). Clearing a TRISA bit (= 0) will make the
corresponding PORTA pin an output (i.e., enables
output driver and puts the contents of the output latch
on the selected pin). The exception is RA0, RA1 and
RA3, which are input only and its TRIS bit will always
read as ‘1’. Example 12-2 shows how to initialize an I/O
port.
Reading the PORTA register (Register 12-2) reads the
status of the pins, whereas writing to it will write to the
PORT latch. All write operations are read-modify-write
operations. Therefore, a write to a port implies that the
port pins are read, this value is modified and then
written to the PORT data latch (LATA).
12.3.2 DIRECTION CONTROL
The TRISA register (Register 12-3) controls the
PORTA pin output drivers, even when they are being
used as analog inputs. The user should ensure the bits
in the TRISA register are maintained set when using
them as analog inputs. I/O pins configured as analog
input always read ‘0’.
12.3.3 ANALOG CONTROL
The ANSELA register (Register 12-5) is used to
configure the Input mode of an I/O pin to analog.
Setting the appropriate ANSELA bit high will cause all
digital reads on the pin to be read as ‘0’ and allow
analog functions on the pin to operate correctly.
The state of the ANSELA bits has no effect on digital
output functions. A pin with TRIS clear and ANSEL set
will still operate as a digital output, but the Input mode
will be analog. This can cause unexpected behavior
when executing read-modify-write instructions on the
affected port.
EXAMPLE 12-2: INITIALIZING PORTA
12.3.4 PORTA FUNCTIONS AND OUTPUT
PRIORITIES
Each PORTA pin is multiplexed with other functions. The
pins, their combined functions and their output priorities
are shown in Table 12-2.
When multiple outputs are enabled, the actual pin
control goes to the peripheral with the highest priority.
Analog input functions, such as ADC and comparator
inputs, are not shown in the priority lists. These inputs
are active when the I/O pin is set for Analog mode using
the ANSELx registers. Digital output functions may
control the pin when it is in Analog mode with the
priority shown below in Table 12 - 2.
Note: The ANSELA bits default to the Analog
mode after Reset. To use any pins as
digital general purpose or peripheral
inputs, the corresponding ANSEL bits
must be initialized to ‘0’ by user software.
TABLE 12-2: PORTA OUTPUT PRIORITY
Pin Name Function Priority(1)
RA0 ICSPDAT(4)
RA1 ICSPCLK(4)
RA2 VUSB3V3
RA3 None
RA4 CLKOUT
SOSCO
CLKR(2)
SDO(3)
RA4
RA5 PWM2(3)
RA5
Note 1: Priority listed from highest to lowest.
2: Default pin (see APFCON register).
3: Alternate pin (see APFCON register).
4: LVP only.
BANKSEL PORTA ;
CLRF PORTA ;Init PORTA
BANKSEL LATA ;Data Latch
CLRF LATA ;
BANKSEL ANSELA ;
CLRF ANSELA ;digital I/O
BANKSEL TRISA ;
MOVLW B'00111000' ;Set RA<5:3> as inputs
MOVWF TRISA ;and set RA<2:0> as
;outputs
PIC16(L)F1454/5/9
DS41639A-page 132 Preliminary 2012 Microchip Technology Inc.
12.4 Register Definitions: PORTA
REGISTER 12-2: PORTA: PORTA REGISTER
U-0 U-0 R/W-x/x R/W-x/x R-x/x U-0 R-x/x R-x/x
—RA5RA4RA3—RA1RA0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-6 Unimplemented: Read as ‘0
bit 5-3 RA<5:3>: PORTA I/O Value bits(1)
1 = Port pin is > VIH
0 = Port pin is < VIL
bit 2 Unimplemented: Read as ‘0
bit 1-0 RA<1:0>: PORTA I/O Value bits(1)
1 = Port pin is > VIH
0 = Port pin is < VIL
Note 1: Writes to PORTA are actually written to corresponding LATA register. Reads from PORTA register is return
of actual I/O pin values.
REGISTER 12-3: TRISA: PORTA TRI-STATE REGISTER
U-0 U-0 R/W-1/1 R/W-1/1 U-1 U-0 U-1 U-1
TRISA5 TRISA4 (1) (1) (1)
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-6 Unimplemented: Read as ‘0
bit 5-4 TRISA<5:4>: PORTA Tri-State Control bit
1 = PORTA pin configured as an input (tri-stated)
0 = PORTA pin configured as an output
bit 3 Unimplemented: Read as ‘1
bit 2 Unimplemented: Read as ‘0
bit 1-0 Unimplemented: Read as ‘1
Note 1: Unimplemented, read as ‘1’.
2012 Microchip Technology Inc. Preliminary DS41639A-page 133
PIC16(L)F1454/5/9
REGISTER 12-4: LATA: PORTA DATA LATCH REGISTER
U-0 U-0 R/W-x/u R/W-x/u U-0 U-0 U-0 U-0
—LATA5LATA4
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-6 Unimplemented: Read as ‘0
bit 5-4 LATA<5:4>: RA<5:4> Output Latch Value bits(1)
bit 3-0 Unimplemented: Read as ‘0
Note 1: Writes to PORTA are actually written to corresponding LATA register. Reads from PORTA register is return
of actual I/O pin values.
REGISTER 12-5: ANSELA: PORTA ANALOG SELECT REGISTER(2)
U-0 U-0 U-0 R/W-1/1 U-0 U-0 U-0 U-0
ANSA4
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-5 Unimplemented: Read as ‘0
bit 4 ANSA4: Analog Select between Analog or Digital Function on pins RA4, respectively
1 = Analog input. Pin is assigned as analog input(1). Digital input buffer disabled.
0 = Digital I/O. Pin is assigned to port or digital special function.
bit 3-0 Unimplemented: Read as ‘0
Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to
allow external control of the voltage on the pin.
2: PIC16(L)F1455/9 only.
PIC16(L)F1454/5/9
DS41639A-page 134 Preliminary 2012 Microchip Technology Inc.
TABLE 12-3: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA
TABLE 12-4: SUMMARY OF CONFIGURATION WORD WITH PORTA
REGISTER 12-6: WPUA: WEAK PULL-UP PORTA REGISTER
U-0 U-0 R/W-1/1 R/W-1/1 R/W-1/1 U-0 U-0 U-0
WPUA5 WPUA4 WPUA3
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-6 Unimplemented: Read as ‘0
bit 5-3 WPUA<5:3>: Weak Pull-up Register bits(3)
1 = Pull-up enabled
0 = Pull-up disabled
bit 2-0 Unimplemented: Read as ‘0
Note 1: Global WPUEN bit of the OPTION_REG register must be cleared for individual pull-ups to be enabled.
2: The weak pull-up device is automatically disabled if the pin is configured as an output.
3: For the WPUA3 bit, when MCLRE = 1, weak pull-up is internally enabled, but not reported here.
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register
on Page
ANSELA(3) —ANSA4 133
APFCON CLKRSEL SDOSEL(2) SSSEL T1GSEL P2SEL(2) 130
LATA —LATA5LATA4 133
OPTION_REG WPUEN INTEDG TMR0CS TMR0SE PSA PS<2:0> 185
PORTA —RA5RA4RA3—RA1RA0132
TRISA TRISA5 TRISA4 (1) (1) (1) 132
WPUA WPUA5 WPUA4 WPUA3 ———134
Legend: x = unknown, u = unchanged, – = unimplemented locations read as ‘0’. Shaded cells are not used by PORTA.
Note 1: Unimplemented, read as ‘1’.
2: PIC16(L)F1454/5 only.
3: PIC16(L)F1455/9 only.
Name Bits Bit -/7 Bit -/6 Bit 13/5 Bit 12/4 Bit 11/3 Bit 10/2 Bit 9/1 Bit 8/0 Register
on Page
CONFIG1 13:8 FCMEN IESO CLKOUTEN BOREN<1:0> 52
7:0 CP MCLRE PWRTE WDTE<1:0> FOSC<2:0>
Legend: — = unimplemented location, read as0’. Shaded cells are not used by PORTA.
2012 Microchip Technology Inc. Preliminary DS41639A-page 135
PIC16(L)F1454/5/9
12.5 PORTB Registers
(PIC16(L)F1455/9 only)
12.5.1 DATA REGISTER
PORTB is a 4-bit wide, bidirectional port. The
corresponding data direction register is TRISB
(Register 12-3). Setting a TRISB bit (= 1) will make the
corresponding PORTB pin an input (i.e., disable the
output driver). Clearing a TRISB bit (= 0) will make the
corresponding PORTB pin an output (i.e., enables
output driver and puts the contents of the output latch
on the selected pin). Example 12-2 shows how to
initialize an I/O port.
Reading the PORTB register (Register 12-2) reads the
status of the pins, whereas writing to it will write to the
PORT latch. All write operations are read-modify-write
operations. Therefore, a write to a port implies that the
port pins are read, this value is modified and then
written to the PORT data latch (LATB).
12.5.2 DIRECTION CONTROL
The TRISB register (Register 12-3) controls the
PORTB pin output drivers, even when they are being
used as analog inputs. The user should ensure the bits
in the TRISB register are maintained set when using
them as analog inputs. I/O pins configured as analog
input always read ‘0’.
12.5.3 ANALOG CONTROL
The ANSELB register (Register 12-5) is used to
configure the Input mode of an I/O pin to analog.
Setting the appropriate ANSELB bit high will cause all
digital reads on the pin to be read as ‘0’ and allow
analog functions on the pin to operate correctly.
The state of the ANSELB bits has no effect on digital
output functions. A pin with TRIS clear and ANSEL set
will still operate as a digital output, but the Input mode
will be analog. This can cause unexpected behavior
when executing read-modify-write instructions on the
affected port.
12.5.4 PORTB FUNCTIONS AND OUTPUT
PRIORITIES
Each PORTB pin is multiplexed with other functions. The
pins, their combined functions and their output priorities
are shown in Table 12-2.
When multiple outputs are enabled, the actual pin
control goes to the peripheral with the highest priority.
Analog input functions, such as ADC and comparator
inputs, are not shown in the priority lists. These inputs
are active when the I/O pin is set for Analog mode using
the ANSELx registers. Digital output functions may
control the pin when it is in Analog mode with the
priority shown below in Table 12 - 2.
Note: The ANSELB bits default to the Analog
mode after Reset. To use any pins as
digital general purpose or peripheral
inputs, the corresponding ANSEL bits
must be initialized to ‘0’ by user software.
TABLE 12-5: PORTB OUTPUT PRIORITY
Pin Name Function Priority(1)
RB4 SDA
RB4
RB5 RX
RB5
RB6 SCL
SCK
RB6
RB7 TX
RB7
Note 1: Priority listed from highest to lowest.
2: Default pin (see APFCON register).
3: Alternate pin (see APFCON register).
PIC16(L)F1454/5/9
DS41639A-page 136 Preliminary 2012 Microchip Technology Inc.
12.6 Register Definitions: PORTB
REGISTER 12-7: PORTB: PORTB REGISTER
R/W-x/x R/W-x/x R/W-x/x R/W-x/x U-0 U-0 U-0 U-0
RB7 RB6 RB5 RB4
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-4 RB<7:4>: PORTB I/O Value bits(1)
1 = Port pin is > VIH
0 = Port pin is < VIL
bit 3-0 Unimplemented: Read as ‘0
Note 1: Writes to PORTB are actually written to corresponding LATB register. Reads from PORTB register is
return of actual I/O pin values.
REGISTER 12-8: TRISB: PORTB TRI-STATE REGISTER
R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 U-0 U-0 U-0 U-0
TRISB7 TRISB6 TRISB5 TRISB4
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-4 TRISB<7:4>: PORTB Tri-State Control bits
1 = PORTB pin configured as an input (tri-stated)
0 = PORTB pin configured as an output
bit 3-0 Unimplemented: Read as ‘0
2012 Microchip Technology Inc. Preliminary DS41639A-page 137
PIC16(L)F1454/5/9
REGISTER 12-9: LATB: PORTB DATA LATCH REGISTER
R/W-x/u R/W-x/u R/W-x/u R/W-x/u U-0 U-0 U-0 U-0
LATB7 LATB6 LATB5 LATB4
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-4 LATB<7:4>: RB<7:4> Output Latch Value bits(1)
bit 3-0 Unimplemented: Read as ‘0
Note 1: Writes to PORTB are actually written to corresponding LATB register. Reads from PORTB register is
return of actual I/O pin values.
REGISTER 12-10: ANSELB: PORTB ANALOG SELECT REGISTER
U-0 U-0 R/W-1/1 R/W-1/1 U-0 U-0 U-0 U-0
ANSB5 ANSB4
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-6 Unimplemented: Read as ‘0
bit 5-4 ANSB<5:4>: Analog Select between Analog or Digital Function on pins RB<5:4>, respectively
1 = Analog input. Pin is assigned as analog input(1). Digital input buffer disabled.
0 = Digital I/O. Pin is assigned to port or digital special function.
bit 3-0 Unimplemented: Read as ‘0
Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to
allow external control of the voltage on the pin.
PIC16(L)F1454/5/9
DS41639A-page 138 Preliminary 2012 Microchip Technology Inc.
TABLE 12-6: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB(1)
TABLE 12-7: SUMMARY OF CONFIGURATION WORD WITH PORTB
REGISTER 12-11: WPUB: WEAK PULL-UP PORTB REGISTER
R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 U-0 U-0 U-0 U-0
WPUB7 WPUB6 WPUB5 WPUB4
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-4 WPUB<7:4>: Weak Pull-up Register bits
1 = Pull-up enabled
0 = Pull-up disabled
bit 3-0 Unimplemented: Read as ‘0
Note 1: Global WPUEN bit of the OPTION_REG register must be cleared for individual pull-ups to be enabled.
2: The weak pull-up device is automatically disabled if the pin is configured as an output.
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register
on Page
ANSELB ANSB5 ANSB4 137
APFCON CLKRSEL SDOSEL(1) SSSEL T1GSEL P2SEL(1) 130
LATB LATB7 LATB6 LATB5 LATB4 137
OPTION_REG WPUEN INTEDG TMR0CS TMR0SE PSA PS<2:0> 185
PORTB RB7 RB6 RB5 RB4 136
TRISB TRISB7 TRISB6 TRISB5 TRISB4 136
WPUB WPUB7 WPUB6 WPUB5 WPUB4 138
Legend: x = unknown, u = unchanged, – = unimplemented locations read as ‘0’. Shaded cells are not used by PORTB.
Note 1: PIC16(L)F1459 only.
Name Bits Bit -/7 Bit -/6 Bit 13/5 Bit 12/4 Bit 11/3 Bit 10/2 Bit 9/1 Bit 8/0 Register
on Page
CONFIG1 13:8 FCMEN IESO CLKOUTEN BOREN<1:0> 52
7:0 CP MCLRE PWRTE WDTE<1:0> FOSC<2:0>
Legend: — = unimplemented location, read as0’. Shaded cells are not used by PORTB.
2012 Microchip Technology Inc. Preliminary DS41639A-page 139
PIC16(L)F1454/5/9
12.7 PORTC Registers
12.7.1 DATA REGISTER
PORTC is a 8-bit wide, bidirectional port. The
corresponding data direction register is TRISC
(Register 12-13). Setting a TRISC bit (= 1) will make
the corresponding PORTC pin an input (i.e., put the
corresponding output driver in a High-Impedance
mode). Clearing a TRISC bit (= 0) will make the
corresponding PORTC pin an output (i.e., enable the
output driver and put the contents of the output latch
on the selected pin). Example 12-2 shows how to
initialize an I/O port.
Reading the PORTC register (Register 12-12) reads the
status of the pins, whereas writing to it will write to the
PORT latch. All write operations are read-modify-write
operations. Therefore, a write to a port implies that the
port pins are read, this value is modified and then written
to the PORT data latch (LATC).
12.7.2 DIRECTION CONTROL
The TRISC register (Register 12-13) controls the
PORTC pin output drivers, even when they are being
used as analog inputs. The user should ensure the bits in
the TRISC register are maintained set when using them
as analog inputs. I/O pins configured as analog input
always read ‘0’.
12.7.3 ANALOG CONTROL
The ANSELC register (Register 12-15) is used to
configure the Input mode of an I/O pin to analog.
Setting the appropriate ANSELC bit high will cause all
digital reads on the pin to be read as ‘0’ and allow
analog functions on the pin to operate correctly.
The state of the ANSELC bits has no effect on digital out-
put functions. A pin with TRIS clear and ANSELC set will
still operate as a digital output, but the Input mode will be
analog. This can cause unexpected behavior when exe-
cuting read-modify-write instructions on the affected
port.
12.7.4 PORTC FUNCTIONS AND OUTPUT
PRIORITIES
Each PORTC pin is multiplexed with other functions. The
pins, their combined functions and their output priorities
are shown in Table 12-8.
When multiple outputs are enabled, the actual pin
control goes to the peripheral with the highest priority.
Analog input and some digital input functions are not
included in the output priority list. These input functions
can remain active when the pin is configured as an
output. Certain digital input functions override other
port functions and are included in the output priority list.
Note: The ANSELC bits default to the Analog
mode after Reset. To use any pins as
digital general purpose or peripheral
inputs, the corresponding ANSEL bits
must be initialized to ‘0’ by user software.
TABLE 12-8: PORTC OUTPUT PRIORITY
Pin Name Function Priority(1)
RC0 ICSPDAT
SCL(4)
SCK(4)
RC1 ICSPCLK
SDA(4)
SDI(4)
RC1
RC2 DACOUT1
SDO(2)
RC2
RC3 DACOUT2
CLKR(3)
PWM2(2)
RC3
RC4 CWG1B
C1OUT
C2OUT
TX(4)
RC4
RC5 CWG1A
PWM1
RX(4)
RC5
RC6 PWM2(5)
RC6
RC7 SDO(5)
RC7
Note 1: Priority listed from highest to lowest.
2: Default pin (see APFCON register).
3: Alternate pin (see APFCON register).
4: PIC16(L)F1454/5 only.
5: PIC16(L)F1455/9 only.
PIC16(L)F1454/5/9
DS41639A-page 140 Preliminary 2012 Microchip Technology Inc.
12.8 Register Definitions: PORTC
REGISTER 12-12: PORTC: PORTC REGISTER
R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u
RC7(1) RC6(1) RC5 RC4 RC3 RC2 RC1 RC0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-0 RC<7:0>: PORTC General Purpose I/O Pin bits
1 = Port pin is > VIH
0 = Port pin is < VIL
Note 1: PIC16(L)F1459 only.
REGISTER 12-13: TRISC: PORTC TRI-STATE REGISTER
R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1
TRISC7(1) TRISC6(1) TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-0 TRISC<7:0>: PORTC Tri-State Control bits
1 = PORTC pin configured as an input (tri-stated)
0 = PORTC pin configured as an output
Note 1: PIC16(L)F1459 only.
2012 Microchip Technology Inc. Preliminary DS41639A-page 141
PIC16(L)F1454/5/9
TABLE 12-9: SUMMARY OF REGISTERS ASSOCIATED WITH PORTC
REGISTER 12-14: LATC: PORTC DATA LATCH REGISTER
R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u
LATC7(1) LATC6(1) LATC5 LATC4 LATC3 LATC2 LATC1 LATC0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-0 LATC<7:0>: PORTC Output Latch Value bits(1)
Note 1: Writes to PORTC are actually written to corresponding LATC register. Reads from PORTC register is
return of actual I/O pin values.
2: PIC16(L)F1459 only.
REGISTER 12-15: ANSELC: PORTC ANALOG SELECT REGISTER
R/W-1/1 R/W-1/1 U-0 U-0 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1
ANSC7(1) ANSC6(1) ANSC3 ANSC2 ANSC1 ANSC0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-6 ANSC<7:6>: Analog Select between Analog or Digital Function on pins RC<7:6>, respectively
1 = Analog input. Pin is assigned as analog input(1). Digital input buffer disabled.
0 = Digital I/O. Pin is assigned to port or digital special function.
bit 5-4 Unimplemented: Read as ‘0
bit 3-0 ANSC<3:0>: Analog Select between Analog or Digital Function on pins RC<3:0>, respectively
1 = Analog input. Pin is assigned as analog input(1). Digital input buffer disabled.
0 = Digital I/O. Pin is assigned to port or digital special function.
Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to
allow external control of the voltage on the pin.
2: PIC16(L)F1459 only.
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register
on Page
ANSELC(2) ANSC7(1) ANSC6(1) ANSC3 ANSC2 ANSC1 ANSC0 141
LATC LATC7(1) LATC6(1) LATC5 LATC4 LATC3 LATC2 LATC1 LATC0 141
PORTC RC7(1) RC6(1) RC5 RC4 RC3 RC2 RC1 RC0 140
TRISC TRISC7(1) TRISC6(1) TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 140
Legend: x = unknown, u = unchanged, - = unimplemented locations read as 0’. Shaded cells are not used by PORTC.
Note 1: PIC16(L)F1459 only.
2: PIC16(L)F1455/9 only.
PIC16(L)F1454/5/9
DS41639A-page 142 Preliminary 2012 Microchip Technology Inc.
NOTES:
2012 Microchip Technology Inc. Preliminary DS41639A-page 143
PIC16(L)F1454/5/9
13.0 INTERRUPT-ON-CHANGE
The PORTA and PORTB pins can be configured to
operate as Interrupt-On-Change (IOC) pins. An interrupt
can be generated by detecting a signal that has either a
rising edge or a falling edge. Any individual port pin, or
combination of port pins, can be configured to generate
an interrupt. The interrupt-on-change module has the
following features:
Interrupt-on-Change enable (Master Switch)
Individual pin configuration
Rising and falling edge detection
Individual pin interrupt flags
Figure 13-1 is a block diagram of the IOC module.
13.1 Enabling the Module
To allow individual port pins to generate an interrupt, the
IOCIE bit of the INTCON register must be set. If the
IOCIE bit is disabled, the edge detection on the pin will
still occur, but an interrupt will not be generated.
13.2 Individual Pin Configuration
For each port pin, a rising edge detector and a falling
edge detector are present. To enable a pin to detect a
rising edge, the associated bit of the IOCxP register is
set. To enable a pin to detect a falling edge, the
associated bit of the IOCxN register is set.
A pin can be configured to detect rising and falling
edges simultaneously by setting both associated bits of
the IOCxP and IOCxN registers, respectively.
13.3 Interrupt Flags
The IOCAFx and IOCBFx bits located in the IOCAF and
IOCBF registers, respectively, are status flags that
correspond to the interrupt-on-change pins of the
associated port. If an expected edge is detected on an
appropriately enabled pin, then the status flag for that pin
will be set, and an interrupt will be generated if the IOCIE
bit is set. The IOCIF bit of the INTCON register reflects
the status of all IOCAFx and IOCBFx bits.
13.4 Clearing Interrupt Flags
The individual status flags, (IOCAFx and IOCBFx bits),
can be cleared by resetting them to zero. If another edge
is detected during this clearing operation, the associated
status flag will be set at the end of the sequence,
regardless of the value actually being written.
In order to ensure that no detected edge is lost while
clearing flags, only AND operations masking out known
changed bits should be performed. The following
sequence is an example of what should be performed.
EXAMPLE 13-1: CLEARING INTERRUPT
FLAGS
(PORTA EXAMPLE)
13.5 Operation in Sleep
The interrupt-on-change interrupt sequence will wake
the device from Sleep mode, if the IOCIE bit is set.
If an edge is detected while in Sleep mode, the IOCxF
register will be updated prior to the first instruction
executed out of Sleep.
MOVLW 0xff
XORWF IOCAF, W
ANDWF IOCAF, F
PIC16(L)F1454/5/9
DS41639A-page 144 Preliminary 2012 Microchip Technology Inc.
FIGURE 13-1: INTERRUPT-ON-CHANGE BLOCK DIAGRAM (PORTA EXAMPLE)
D
CK
R
Q
D
CK
R
Q
RAx
IOCANx
IOCAPx
Q2
D
CK
SQ
Q4Q1
Data Bus =
0 or 1
Write IOCAFx
IOCIE
To Data Bus
IOCAFx
Edge
Detect
IOC interrupt
to CPU core
From all other
IOCAFx individual
Pin Detectors
Q1
Q2
Q3
Q4
Q4Q1
Q1
Q2
Q3
Q4
Q1
Q2
Q3
Q4
Q4
Q4Q1 Q4Q1 Q4Q1
2012 Microchip Technology Inc. Preliminary DS41639A-page 145
PIC16(L)F1454/5/9
13.6 Register Definitions: Interrupt-on-change Control
REGISTER 13-1: IOCAP: INTERRUPT-ON-CHANGE PORTA POSITIVE EDGE REGISTER
U-0 U-0 R/W-0/0 R/W-0/0 R/W-0/0 U-0 R/W-0/0 R/W-0/0
IOCAP5 IOCAP4 IOCAP3 IOCAP1 IOCAP0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-6 Unimplemented: Read as ‘0
bit 5-3 IOCAP<5:3>: Interrupt-on-Change PORTA Positive Edge Enable bits
1 = Interrupt-on-Change enabled on the pin for a positive going edge. IOCAFx bit and IOCIF flag will
be set upon detecting an edge.
0 = Interrupt-on-Change disabled for the associated pin.
bit 2 Unimplemented: Read as ‘0
bit 1-0 IOCAP<1:0>: Interrupt-on-Change PORTA Positive Edge Enable bits
1 = Interrupt-on-Change enabled on the pin for a positive going edge. IOCAFx bit and IOCIF flag will
be set upon detecting an edge.
0 = Interrupt-on-Change disabled for the associated pin.
REGISTER 13-2: IOCAN: INTERRUPT-ON-CHANGE PORTA NEGATIVE EDGE REGISTER
U-0 U-0 R/W-0/0 R/W-0/0 R/W-0/0 U-0 R/W-0/0 R/W-0/0
IOCAN5 IOCAN4 IOCAN3 IOCAN1 IOCAN0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-6 Unimplemented: Read as ‘0
bit 5-3 IOCAN<5:3>: Interrupt-on-Change PORTA Negative Edge Enable bits
1 = Interrupt-on-Change enabled on the pin for a negative going edge. IOCAFx bit and IOCIF flag will
be set upon detecting an edge.
0 = Interrupt-on-Change disabled for the associated pin.
bit 2 Unimplemented: Read as ‘0
bit 1-0 IOCAN<1:0>: Interrupt-on-Change PORTA Negative Edge Enable bits
1 = Interrupt-on-Change enabled on the pin for a negative going edge. IOCAFx bit and IOCIF flag will
be set upon detecting an edge.
0 = Interrupt-on-Change disabled for the associated pin.
PIC16(L)F1454/5/9
DS41639A-page 146 Preliminary 2012 Microchip Technology Inc.
REGISTER 13-3: IOCAF: INTERRUPT-ON-CHANGE PORTA FLAG REGISTER
U-0 U-0 R/W/HS-0/0 R/W/HS-0/0 R/W/HS-0/0 U-0 R/W/HS-0/0 R/W/HS-0/0
IOCAF5 IOCAF4 IOCAF3 IOCAF1 IOCAF0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared HS - Bit is set in hardware
bit 7-6 Unimplemented: Read as ‘0
bit 5-3 IOCAF<5:3>: Interrupt-on-Change PORTA Flag bits
1 = An enabled change was detected on the associated pin.
Set when IOCAPx = 1 and a rising edge was detected on RAx, or when IOCANx = 1 and a falling
edge was detected on RAx.
0 = No change was detected, or the user cleared the detected change.
bit 2 Unimplemented: Read as ‘0
bit 1-0 IOCAF<‘:0>: Interrupt-on-Change PORTA Flag bits
1 = An enabled change was detected on the associated pin.
Set when IOCAPx = 1 and a rising edge was detected on RAx, or when IOCANx = 1 and a falling
edge was detected on RAx.
0 = No change was detected, or the user cleared the detected change.
REGISTER 13-4: IOCBP: INTERRUPT-ON-CHANGE PORTB POSITIVE EDGE REGISTER(1)
R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 U-0 U-0 U-0 U-0
IOCBP7 IOCBP6 IOCBP5 IOCBP4
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-4 IOCBP<7:4>: Interrupt-on-Change PORTB Positive Edge Enable bits
1 = Interrupt-on-Change enabled on the pin for a positive going edge. IOCBFx bit and IOCIF flag will
be set upon detecting an edge.
0 = Interrupt-on-Change disabled for the associated pin.
bit 3-0 Unimplemented: Read as ‘0
Note 1: PIC16(L)F1459 only.
2012 Microchip Technology Inc. Preliminary DS41639A-page 147
PIC16(L)F1454/5/9
REGISTER 13-5: IOCBN: INTERRUPT-ON-CHANGE PORTB NEGATIVE EDGE REGISTER(1)
R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 U-0 U-0 U-0 U-0
IOCBN7 IOCBN6 IOCBN5 IOCBN4
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-4 IOCBN<7:4>: Interrupt-on-Change PORTB Negative Edge Enable bits
1 = Interrupt-on-Change enabled on the pin for a negative going edge. IOCBFx bit and IOCIF flag will
be set upon detecting an edge.
0 = Interrupt-on-Change disabled for the associated pin.
bit 3-0 Unimplemented: Read as ‘0
Note 1: PIC16(L)F1459 only.
REGISTER 13-6: IOCBF: INTERRUPT-ON-CHANGE PORTB FLAG REGISTER(1)
R/W/HS-0/0 R/W/HS-0/0 R/W/HS-0/0 R/W/HS-0/0 U-0 U-0 U-0 U-0
IOCBF7 IOCBF6 IOCBF5 IOCBF4
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared HS - Bit is set in hardware
bit 7-4 IOCBF<7:4>: Interrupt-on-Change PORTB Flag bits
1 = An enabled change was detected on the associated pin.
Set when IOCBPx = 1 and a rising edge was detected on RBx, or when IOCBNx = 1 and a falling
edge was detected on RBx.
0 = No change was detected, or the user cleared the detected change.
bit 3-0 Unimplemented: Read as ‘0
Note 1: PIC16(L)F1459 only.
PIC16(L)F1454/5/9
DS41639A-page 148 Preliminary 2012 Microchip Technology Inc.
TABLE 13-1: SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPT-ON-CHANGE
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register
on Page
ANSELA(3) ———ANSA4————133
INTCON GIE PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF 96
IOCAF IOCAF5 IOCAF4 IOCAF3 IOCAF1 IOCAF0 146
IOCAN IOCAN5 IOCAN4 IOCAN3 IOCAN1 IOCAN0 145
IOCAP IOCAP5 IOCAP4 IOCAP3 IOCAP1 IOCAP0 145
IOCBF(2) IOCBF7 IOCBF6 IOCBF5 IOCBF4 ————147
IOCBN(2) IOCBN7 IOCBN6 IOCBN5 IOCBN4 ————147
IOCBP(2) IOCBP7 IOCBP6 IOCBP5 IOCBP4 ————146
TRISA TRISA5 TRISA4 —(1) —(1) —(1) 132
TRISB(2) TRISB7 TRISB6 TRISB5 TRISB4 ————136
Legend: = unimplemented location, read as ‘0’. Shaded cells are not used by interrupt-on-change.
Note 1: Unimplemented, read as ‘1’.
2: PIC16(L)F1459 only.
3: PIC16(L)F1455/9 only.
2012 Microchip Technology Inc. Preliminary DS41639A-page 149
PIC16(L)F1454/5/9
14.0 FIXED VOLTAGE REFERENCE
(FVR) (PIC16(L)F1455/9 ONLY)
The Fixed Voltage Reference, or FVR, is a stable
voltage reference, independent of VDD, with 1.024V,
2.048V or 4.096V selectable output levels. The output
of the FVR can be configured to supply a reference
voltage to the following:
ADC input channel
ADC positive reference
DAC input channel
Comparator positive input
Comparator negative input
The FVR can be enabled by setting the FVREN bit of
the FVRCON register.
14.1 Independent Gain Amplifier
The output of the FVR supplied to the ADC and
comparators is routed through a programmable gain
amplifier. Each amplifier can be programmed for a gain
of 1x, 2x or 4x, to produce the three possible voltage
levels.
The ADFVR<1:0> bits of the FVRCON register are
used to enable and configure the gain amplifier settings
for the reference supplied to the ADC module. Refer-
ence Section 16.0 “Analog-to-Digital Converter
(ADC) Module (PIC16(L)F1455/9 only)” for additional
information.
The CDAFVR<1:0> bits of the FVRCON register are
used to enable and configure the gain amplifier settings
for the reference supplied to the comparator modules.
Reference Section 18.0 “Comparator Module
(PIC16(L)F1455/9 only) for additional information.
14.2 FVR Stabilization Period
When the Fixed Voltage Reference module is enabled, it
requires time for the reference and amplifier circuits to
stabilize. Once the circuits stabilize and are ready for use,
the FVRRDY bit of the FVRCON register will be set. See
Section 29.0 “Electrical Specifications” for the
minimum delay requirement.
FIGURE 14-1: VOLTAGE REFERENCE BLOCK DIAGRAM
ADFVR<1:0>
CDAFVR<1:0>
X1
X2
X4
X1
X2
X4
2
2
FVR BUFFER1
(To ADC Module)
FVR BUFFER2
(To Comparators, DAC)
+
_
FVREN FVRRDY
Any peripheral requiring the
Fixed Reference
(See Table 14-1)
TABLE 14-1: PERIPHERALS REQUIRING THE FIXED VOLTAGE REFERENCE (FVR)
Peripheral Conditions Description
HFINTOSC FOSC<2:0> = 010 and
IRCF<3:0> = 000x
INTOSC is active and device is not in Sleep.
BOR
BOREN<1:0> = 11 BOR always enabled.
BOREN<1:0> = 10 and BORFS = 1BOR disabled in Sleep mode, BOR Fast Start enabled.
BOREN<1:0> = 01 and BORFS = 1BOR under software control, BOR Fast Start enabled.
LDO All PIC16F1454/5/9 devices, when
VREGPM = 1 and not in Sleep
The device runs off of the Low-Power Regulator when in
Sleep mode.
PIC16(L)F1454/5/9
DS41639A-page 150 Preliminary 2012 Microchip Technology Inc.
14.3 Register Definitions: FVR Control
TABLE 14-2: SUMMARY OF REGISTERS ASSOCIATED WITH THE FIXED VOLTAGE REFERENCE
REGISTER 14-1: FVRCON: FIXED VOLTAGE REFERENCE CONTROL REGISTER
R/W-0/0 R-q/q R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0
FVREN FVRRDY(1) TSEN TSRNG CDAFVR<1:0> ADFVR<1:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared q = Value depends on condition
bit 7 FVREN: Fixed Voltage Reference Enable bit
1 = Fixed Voltage Reference is enabled
0 = Fixed Voltage Reference is disabled
bit 6 FVRRDY: Fixed Voltage Reference Ready Flag bit(1)
1 = Fixed Voltage Reference output is ready for use
0 = Fixed Voltage Reference output is not ready or not enabled
bit 5 TSEN: Temperature Indicator Enable bit(3)
1 = Temperature Indicator is enabled
0 = Temperature Indicator is disabled
bit 4 TSRNG: Temperature Indicator Range Selection bit(3)
1 =VOUT = VDD - 4VT (High Range)
0 =V
OUT = VDD - 2VT (Low Range)
bit 3-2 CDAFVR<1:0>: Comparator Fixed Voltage Reference Selection bits
11 = Comparator Fixed Voltage Reference Peripheral output is 4x (4.096V)(2)
10 = Comparator Fixed Voltage Reference Peripheral output is 2x (2.048V)(2)
01 = Comparator Fixed Voltage Reference Peripheral output is 1x (1.024V)
00 = Comparator Fixed Voltage Reference Peripheral output is off
bit 1-0 ADFVR<1:0>: ADC Fixed Voltage Reference Selection bit
11 = ADC Fixed Voltage Reference Peripheral output is 4x (4.096V)(2)
10 = ADC Fixed Voltage Reference Peripheral output is 2x (2.048V)(2)
01 = ADC Fixed Voltage Reference Peripheral output is 1x (1.024V)
00 = ADC Fixed Voltage Reference Peripheral output is off
Note 1: FVRRDY is always ‘1’ for the PIC16F1455/9 devices.
2: Fixed Voltage Reference output cannot exceed VDD.
3: See Section 15.0 “Temperature Indicator Module (PIC16(L)F1455/9 only)” for additional information.
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register
on page
FVRCON FVREN FVRRDY TSEN TSRNG CDAFVR>1:0> ADFVR<1:0> 150
Legend: Shaded cells are unused by the Fixed Voltage Reference module.
2012 Microchip Technology Inc. Preliminary DS41639A-page 151
PIC16(L)F1454/5/9
15.0 TEMPERATURE INDICATOR
MODULE (PIC16(L)F1455/9
ONLY)
This family of devices is equipped with a temperature
circuit designed to measure the operating temperature
of the silicon die. The circuit’s range of operating
temperature falls between -40°C and +85°C. The
output is a voltage that is proportional to the device
temperature. The output of the temperature indicator is
internally connected to the device ADC.
The circuit may be used as a temperature threshold
detector or a more accurate temperature indicator,
depending on the level of calibration performed. A one-
point calibration allows the circuit to indicate a
temperature closely surrounding that point. A two-point
calibration allows the circuit to sense the entire range
of temperature more accurately. Reference Application
Note AN1333, “Use and Calibration of the Internal
Temperature Indicator” (DS01333) for more details
regarding the calibration process.
15.1 Circuit Operation
Figure 15-1 shows a simplified block diagram of the
temperature circuit. The proportional voltage output is
achieved by measuring the forward voltage drop across
multiple silicon junctions.
Equation 15-1 describes the output characteristics of
the temperature indicator.
EQUATION 15-1: VOUT RANGES
The temperature sense circuit is integrated with the
Fixed Voltage Reference (FVR) module. See
Section Register 14-1: “FVRCON: Fixed Voltage
Reference Control Register for more information.
The circuit is enabled by setting the TSEN bit of the
FVRCON register. When disabled, the circuit draws no
current.
The circuit operates in either high or low range. The high
range, selected by setting the TSRNG bit of the
FVRCON register, provides a wider output voltage. This
provides more resolution over the temperature range,
but may be less consistent from part to part. This range
requires a higher bias voltage to operate and thus, a
higher VDD is needed.
The low range is selected by clearing the TSRNG bit of
the FVRCON register. The low range generates a lower
voltage drop and thus, a lower bias voltage is needed to
operate the circuit. The low range is provided for low
voltage operation.
FIGURE 15-1: TEMPERATURE CIRCUIT
DIAGRAM
15.2 Minimum Operating VDD
When the temperature circuit is operated in low range,
the device may be operated at any operating voltage
that is within specifications.
When the temperature circuit is operated in high range,
the device operating voltage, VDD, must be high
enough to ensure that the temperature circuit is cor-
rectly biased.
Table 15-1 shows the recommended minimum VDD vs.
range setting.
TABLE 15-1: RECOMMENDED VDD VS.
RANGE
15.3 Temperature Output
The output of the circuit is measured using the internal
Analog-to-Digital Converter. A channel is reserved for
the temperature circuit output. Refer to Section 16.0
“Analog-to-Digital Converter (ADC) Module
(PIC16(L)F1455/9 only)” for detailed information.
15.4 ADC Acquisition Time
To ensure accurate temperature measurements, the
user must wait at least 200 s after the ADC input
multiplexer is connected to the temperature indicator
output before the conversion is performed. In addition,
the user must wait 200 s between sequential
conversions of the temperature indicator output.
High Range: VOUT = VDD - 4VT
Low Range: VOUT = VDD - 2VT
Min. VDD, TSRNG = 1Min. VDD, TSRNG = 0
3.6V 1.8V
TSEN
TSRNG
VDD
VOUT To AD C
PIC16(L)F1454/5/9
DS41639A-page 152 Preliminary 2012 Microchip Technology Inc.
TABLE 15-2: SUMMARY OF REGISTERS ASSOCIATED WITH THE TEMPERATURE INDICATOR
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register
on page
FVRCON FVREN FVRRDY TSEN TSRNG CDAFVR<1:0> ADFVR<1:0> 118
Legend: Shaded cells are unused by the temperature indicator module.
2012 Microchip Technology Inc. Preliminary DS41639A-page 153
PIC16(L)F1454/5/9
16.0 ANALOG-TO-DIGITAL
CONVERTER (ADC) MODULE
(PIC16(L)F1455/9 ONLY)
The Analog-to-Digital Converter (ADC) allows
conversion of an analog input signal to a 10-bit binary
representation of that signal. This device uses analog
inputs, which are multiplexed into a single sample and
hold circuit. The output of the sample and hold is
connected to the input of the converter. The converter
generates a 10-bit binary result via successive
approximation and stores the conversion result into the
ADC result registers (ADRESH:ADRESL register pair).
Figure 16-1 shows the block diagram of the ADC.
The ADC voltage reference is software selectable to be
either internally generated or externally supplied.
The ADC can generate an interrupt upon completion of
a conversion. This interrupt can be used to wake-up the
device from Sleep.
PIC16(L)F1454/5/9
DS41639A-page 154 Preliminary 2012 Microchip Technology Inc.
FIGURE 16-1: ADC BLOCK DIAGRAM
VDD
VREF+ADPREF = 10
ADPREF = 00
FVR Buffer1
Note 1: When ADON = 0, all multiplexer inputs are disconnected.
ADON
GO/DONE
VSS
ADC
00000
00001
00010
00011
00100
00101
00111
00110
CHS<4:0>
Reserved
Reserved
Reserved
VREF+/AN4
AN5
AN6
AN7
AN3
11111
ADRESH ADRESL
10
16
ADFM 0 = Left Justify
1 = Right Justify
DAC 11110
VREF- = VSS
VREF+
11101 Temp Indicator
Reserved 11100
Reserved 01100
01000
01001
01011
01010
AN8
AN9
AN10
AN11
ref+ ref-
2012 Microchip Technology Inc. Preliminary DS41639A-page 155
PIC16(L)F1454/5/9
16.1 ADC Configuration
When configuring and using the ADC the following
functions must be considered:
Port configuration
Channel selection
ADC voltage reference selection
ADC conversion clock source
Interrupt control
Result formatting
16.1.1 PORT CONFIGURATION
The ADC can be used to convert both analog and
digital signals. When converting analog signals, the I/O
pin should be configured for analog by setting the
associated TRIS and ANSEL bits. Refer to
Section 12.0 “I/O Ports” for more information.
16.1.2 CHANNEL SELECTION
There are 12 channel selections available:
•AN<11:3> pins
Temperature Indicator
•DAC
FVR (Fixed Voltage Reference) Output
Refer to Section 14.0 “Fixed Voltage Reference (FVR)
(PIC16(L)F1455/9 only)” and Section 15.0 “Tempera-
ture Indicator Module (PIC16(L)F1455/9 only)” for
more information on these channel selections.
The CHS bits of the ADCON0 register determine which
channel is connected to the sample and hold circuit.
When changing channels, a delay is required before
starting the next conversion. Refer to Section 16.2
“ADC Operation” for more information.
16.1.3 ADC VOLTAGE REFERENCE
The ADPREF bits of the ADCON1 register provides
control of the positive voltage reference. The positive
voltage reference can be:
•V
REF+ pin
•V
DD
See Section 14.0 “Fixed Voltage Reference (FVR)
(PIC16(L)F1455/9 only)” for more details on the Fixed
Voltage Reference.
16.1.4 CONVERSION CLOCK
The source of the conversion clock is software select-
able via the ADCS bits of the ADCON1 register. There
are seven possible clock options:
•F
OSC/2
•F
OSC/4
•F
OSC/8
•F
OSC/16
•F
OSC/32
•F
OSC/64
•F
RC (dedicated internal oscillator)
The time to complete one bit conversion is defined as
TAD. One full 10-bit conversion requires 11.5 TAD peri-
ods as shown in Figure 16-2.
For correct conversion, the appropriate TAD specifica-
tion must be met. Refer to the A/D conversion require-
ments in Section 29.0 “Electrical Specifications” for
more information. Table 16-1 gives examples of appro-
priate ADC clock selections.
Note: Analog voltages on any pin that is defined
as a digital input may cause the input buf-
fer to conduct excess current.
Note: Unless using the FRC, any changes in the
system clock frequency will change the
ADC clock frequency, which may
adversely affect the ADC result.
PIC16(L)F1454/5/9
DS41639A-page 156 Preliminary 2012 Microchip Technology Inc.
TABLE 16-1: ADC CLOCK PERIOD (TAD) VS. DEVICE OPERATING FREQUENCIES
FIGURE 16-2: ANALOG-TO-DIGITAL CONVERSION TAD CYCLES
ADC Clock Period (TAD) Device Frequency (FOSC)
ADC
Clock Source ADCS<2:0> 20 MHz 16 MHz 8 MHz 4 MHz 1 MHz
Fosc/2 000 100 ns(2) 125 ns(2) 250 ns(2) 500 ns(2) 2.0 s
Fosc/4 100 200 ns(2) 250 ns(2) 500 ns(2) 1.0 s4.0 s
Fosc/8 001 400 ns(2) 0.5 s(2) 1.0 s2.0 s8.0 s(3)
Fosc/16 101 800 ns 1.0 s2.0 s4.0 s16.0 s(3)
Fosc/32 010 1.6 s2.0 s4.0 s8.0 s(3) 32.0 s(3)
Fosc/64 110 3.2 s4.0 s8.0 s(3) 16.0 s(3) 64.0 s(3)
FRC x11 1.0-6.0 s(1,4) 1.0-6.0 s(1,4) 1.0-6.0 s(1,4) 1.0-6.0 s(1,4) 1.0-6.0 s(1,4)
Legend: Shaded cells are outside of recommended range.
Note 1: The FRC source has a typical TAD time of 1.6 s for VDD.
2: These values violate the minimum required TAD time.
3: For faster conversion times, the selection of another clock source is recommended.
4: The ADC clock period (TAD) and total ADC conversion time can be minimized when the ADC clock is derived from the
system clock FOSC. However, the FRC clock source must be used when conversions are to be performed with the
device in Sleep mode.
TAD1 TAD2TAD3TAD4 TAD5TAD6 TAD7TAD8TAD11
Set GO bit
Holding capacitor is disconnected from analog input (typically 100 ns)
TAD9 TAD10
TCY - TAD
ADRESH:ADRESL is loaded, GO bit is cleared,
ADIF bit is set, holding capacitor is connected to analog input.
Conversion starts
b0
b9 b6 b5 b4 b3 b2 b1
b8 b7
On the following cycle:
2012 Microchip Technology Inc. Preliminary DS41639A-page 157
PIC16(L)F1454/5/9
16.1.5 INTERRUPTS
The ADC module allows for the ability to generate an
interrupt upon completion of an Analog-to-Digital
conversion. The ADC Interrupt Flag is the ADIF bit in
the PIR1 register. The ADC Interrupt Enable is the
ADIE bit in the PIE1 register. The ADIF bit must be
cleared in software.
This interrupt can be generated while the device is
operating or while in Sleep. If the device is in Sleep, the
interrupt will wake-up the device. Upon waking from
Sleep, the next instruction following the SLEEP instruc-
tion is always executed. If the user is attempting to
wake-up from Sleep and resume in-line code execu-
tion, the GIE and PEIE bits of the INTCON register
must be disabled. If the GIE and PEIE bits of the
INTCON register are enabled, execution will switch to
the Interrupt Service Routine.
16.1.6 RESULT FORMATTING
The 10-bit A/D conversion result can be supplied in two
formats, left justified or right justified. The ADFM bit of
the ADCON1 register controls the output format.
Figure 16-3 shows the two output formats.
FIGURE 16-3: 10-BIT A/D CONVERSION RESULT FORMAT
Note 1: The ADIF bit is set at the completion of
every conversion, regardless of whether
or not the ADC interrupt is enabled.
2: The ADC operates during Sleep only
when the FRC oscillator is selected.
ADRESH ADRESL
(ADFM = 0)MSB LSB
bit 7 bit 0 bit 7 bit 0
10-bit A/D Result Unimplemented: Read as ‘0
(ADFM = 1)MSB LSB
bit 7 bit 0 bit 7 bit 0
Unimplemented: Read as ‘0 10-bit A/D Result
PIC16(L)F1454/5/9
DS41639A-page 158 Preliminary 2012 Microchip Technology Inc.
16.2 ADC Operation
16.2.1 STARTING A CONVERSION
To enable the ADC module, the ADON bit of the
ADCON0 register must be set to a1’. Setting the GO/
DONE bit of the ADCON0 register to a ‘1’ will start the
Analog-to-Digital conversion.
16.2.2 COMPLETION OF A CONVERSION
When the conversion is complete, the ADC module will:
Clear the GO/DONE bit
Set the ADIF Interrupt Flag bit
Update the ADRESH and ADRESL registers with
new conversion result
16.2.3 TERMINATING A CONVERSION
If a conversion must be terminated before completion,
the GO/DONE bit can be cleared in software. The
ADRESH and ADRESL registers will be updated with
the partially complete Analog-to-Digital conversion
sample. Incomplete bits will match the last bit
converted.
16.2.4 ADC OPERATION DURING SLEEP
The ADC module can operate during Sleep. This
requires the ADC clock source to be set to the FRC
option. When the FRC clock source is selected, the
ADC waits one additional instruction before starting the
conversion. This allows the SLEEP instruction to be
executed, which can reduce system noise during the
conversion. If the ADC interrupt is enabled, the device
will wake-up from Sleep when the conversion
completes. If the ADC interrupt is disabled, the ADC
module is turned off after the conversion completes,
although the ADON bit remains set.
When the ADC clock source is something other than
FRC, a SLEEP instruction causes the present conver-
sion to be aborted and the ADC module is turned off,
although the ADON bit remains set.
16.2.5 AUTO-CONVERSION TRIGGER
The auto-conversion trigger allows periodic ADC mea-
surements without software intervention. When a rising
edge of the selected source occurs, the GO/DONE bit
is set by hardware.
The auto-conversion trigger source is selected with the
TRIGSEL<2:0> bits of the ADCON2 register.
Using the auto-conversion trigger does not assure
proper ADC timing. It is the user’s responsibility to
ensure that the ADC timing requirements are met.
Auto-Conversion sources are:
•TMR0
•TMR1
•TMR2
•C1
•C2
Note: The GO/DONE bit should not be set in the
same instruction that turns on the ADC.
Refer to Section 16.2.6 “A/D Conver-
sion Procedure”.
Note: A device Reset forces all registers to their
Reset state. Thus, the ADC module is
turned off and any pending conversion is
terminated.
2012 Microchip Technology Inc. Preliminary DS41639A-page 159
PIC16(L)F1454/5/9
16.2.6 A/D CONVERSION PROCEDURE
This is an example procedure for using the ADC to
perform an Analog-to-Digital conversion:
1. Configure Port:
Disable pin output driver (Refer to the TRIS
register)
Configure pin as analog (Refer to the ANSEL
register)
2. Configure the ADC module:
Select ADC conversion clock
Configure voltage reference
Select ADC input channel
Turn on ADC module
3. Configure ADC interrupt (optional):
Clear ADC interrupt flag
Enable ADC interrupt
Enable peripheral interrupt
Enable global interrupt(1)
4. Wait the required acquisition time(2).
5. Start conversion by setting the GO/DONE bit.
6. Wait for ADC conversion to complete by one of
the following:
Polling the GO/DONE bit
Waiting for the ADC interrupt (interrupts
enabled)
7. Read ADC Result.
8. Clear the ADC interrupt flag (required if interrupt
is enabled).
EXAMPLE 16-1: A/D CONVERSION
Note 1: The global interrupt can be disabled if the
user is attempting to wake-up from Sleep
and resume in-line code execution.
2: Refer to Section 16.4 “A/D Acquisition
Requirements”.
;This code block configures the ADC
;for polling, Vdd and Vss references, Frc
;clock and AN0 input.
;
;Conversion start & polling for completion
; are included.
;
BANKSEL ADCON1 ;
MOVLW B’11110000’ ;Right justify, Frc
;clock
MOVWF ADCON1 ;Vdd and Vss Vref+
BANKSEL TRISA ;
BSF TRISA,0 ;Set RA0 to input
BANKSEL ANSEL ;
BSF ANSEL,0 ;Set RA0 to analog
BANKSEL ADCON0 ;
MOVLW B’00000001’ ;Select channel AN0
MOVWF ADCON0 ;Turn ADC On
CALL SampleTime ;Acquisiton delay
BSF ADCON0,ADGO ;Start conversion
BTFSC ADCON0,ADGO ;Is conversion done?
GOTO $-1 ;No, test again
BANKSEL ADRESH ;
MOVF ADRESH,W ;Read upper 2 bits
MOVWF RESULTHI ;store in GPR space
BANKSEL ADRESL ;
MOVF ADRESL,W ;Read lower 8 bits
MOVWF RESULTLO ;Store in GPR space
PIC16(L)F1454/5/9
DS41639A-page 160 Preliminary 2012 Microchip Technology Inc.
16.3 Register Definitions: ADC Control
REGISTER 16-1: ADCON0: A/D CONTROL REGISTER 0
U-0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0
CHS<4:0> GO/DONE ADON
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7 Unimplemented: Read as0
bit 6-2 CHS<4:0>: Analog Channel Select bits
00000 = Reserved. No channel connected.
00001 = Reserved. No channel connected.
00010 = Reserved. No channel connected.
00011 =AN3
00100 =AN4
00101 =AN5
00110 =AN6
00111 =AN7
01000 =AN8
01001 =AN9
01010 =AN10
01011 =AN11
01100 = Reserved. No channel connected.
11100 = Reserved. No channel connected.
11101 = Temperature Indicator(1)
11110 = DAC (Digital-to-Analog Converter)(2)
11111 = FVR (Fixed Voltage Reference) Buffer 1 Output(3)
bit 1 GO/DONE: A/D Conversion Status bit
1 = A/D conversion cycle in progress. Setting this bit starts an A/D conversion cycle.
This bit is automatically cleared by hardware when the A/D conversion has completed.
0 = A/D conversion completed/not in progress
bit 0 ADON: ADC Enable bit
1 = ADC is enabled
0 = ADC is disabled and consumes no operating current
Note 1: See Section 15.0 “Temperature Indicator Module (PIC16(L)F1455/9 only)” for more information.
2: See Section 17.0 “Digital-to-Analog Converter (DAC) Module (PIC16(L)F1455/9 only)” for more infor-
mation.
3: See Section 14.0 “Fixed Voltage Reference (FVR) (PIC16(L)F1455/9 only)” for more information.
2012 Microchip Technology Inc. Preliminary DS41639A-page 161
PIC16(L)F1454/5/9
REGISTER 16-2: ADCON1: A/D CONTROL REGISTER 1
R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 U-0 U-0 R/W-0/0 R/W-0/0
ADFM ADCS<2:0> ADPREF<1:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7 ADFM: A/D Result Format Select bit
1 = Right justified. Six Most Significant bits of ADRESH are set to ‘0’ when the conversion result is
loaded.
0 = Left justified. Six Least Significant bits of ADRESL are set to ‘0 when the conversion result is
loaded.
bit 6-4 ADCS<2:0>: A/D Conversion Clock Select bits
000 =F
OSC/2
001 =F
OSC/8
010 =F
OSC/32
011 =F
RC (clock supplied from a dedicated RC oscillator)
100 =F
OSC/4
101 =F
OSC/16
110 =F
OSC/64
111 =F
RC (clock supplied from a dedicated RC oscillator)
bit 3-2 Unimplemented: Read as0
bit 1-0 ADPREF<1:0>: A/D Positive Voltage Reference Configuration bits
00 =V
REF+ is connected to VDD
01 = Reserved
10 =V
REF+ is connected to external VREF+ pin(1)
11 =VREF+ is connected to internal Fixed Voltage Reference (FVR) module
Note 1: When selecting the VREF+ pin as the source of the positive reference, be aware that a minimum voltage
specification exists. See Section 29.0 “Electrical Specifications” for details.
PIC16(L)F1454/5/9
DS41639A-page 162 Preliminary 2012 Microchip Technology Inc.
REGISTER 16-3: ADCON2: A/D CONTROL REGISTER 2
R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 U-0 U-0 U-0 U-0
—TRIGSEL<2:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7 Unimplemented: Read as0
bit 6-4 TRIGSEL<2:0>: Auto-Conversion Trigger Selection bits(1)
000 = No auto-conversion trigger selected
001 =Reserved
010 =Reserved
011 = TMR0 Overflow(2)
100 = TMR1 Overflow(2)
101 = TMR2 Match to PR2(2)
110 = sync_C1OUT
111 = sync_C2OUT
bit 3-0 Unimplemented: Read as ‘0
Note 1: This is a rising edge sensitive input for all sources.
2: Signal also sets its corresponding interrupt flag.
2012 Microchip Technology Inc. Preliminary DS41639A-page 163
PIC16(L)F1454/5/9
REGISTER 16-4: ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 0
R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u
ADRES<9:2>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-0 ADRES<9:2>: ADC Result Register bits
Upper eight bits of 10-bit conversion result
REGISTER 16-5: ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 0
R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u
ADRES<1:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-6 ADRES<1:0>: ADC Result Register bits
Lower two bits of 10-bit conversion result
bit 5-0 Reserved: Do not use.
PIC16(L)F1454/5/9
DS41639A-page 164 Preliminary 2012 Microchip Technology Inc.
REGISTER 16-6: ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 1
R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u
ADRES<9:8>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-2 Reserved: Do not use.
bit 1-0 ADRES<9:8>: ADC Result Register bits
Upper two bits of 10-bit conversion result
REGISTER 16-7: ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 1
R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u
ADRES<7:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-0 ADRES<7:0>: ADC Result Register bits
Lower eight bits of 10-bit conversion result
2012 Microchip Technology Inc. Preliminary DS41639A-page 165
PIC16(L)F1454/5/9
16.4 A/D Acquisition Requirements
For the ADC to meet its specified accuracy, the charge
holding capacitor (CHOLD) must be allowed to fully
charge to the input channel voltage level. The Analog
Input model is shown in Figure 16-4. The source
impedance (RS) and the internal sampling switch (RSS)
impedance directly affect the time required to charge
the capacitor CHOLD. The sampling switch (RSS)
impedance varies over the device voltage (VDD), refer
to Figure 16-4. The maximum recommended
impedance for analog sources is 10 k. As the
source impedance is decreased, the acquisition time
may be decreased. After the analog input channel is
selected (or changed), an A/D acquisition must be
done before the conversion can be started. To calculate
the minimum acquisition time, Equation 16-1 may be
used. This equation assumes that 1/2 LSb error is used
(1,024 steps for the ADC). The 1/2 LSb error is the
maximum error allowed for the ADC to meet its
specified resolution.
EQUATION 16-1: ACQUISITION TIME EXAMPLE
TACQ Amplifier Settling Time Hold Capacitor Charging Time Temperature Coefficient++=
TAMP TCTCOFF++=
2µs TCTemperature - 25°C0.05µs/°C++=
TCCHOLD RIC RSS RS++ ln(1/2047)=
12.5pF 1k
7k
10k
++ ln(0.0004885)=
1.12=µs
VAPPLIED 1e
Tc
RC
---------



VAPPLIED 11
2n1+
1
--------------------------


=
VAPPLIED 11
2n1+
1
--------------------------


VCHOLD=
VAPPLIED 1e
TC
RC
----------



VCHOLD=
;[1] VCHOLD charged to within 1/2 lsb
;[2] VCHOLD charge response to VAPPLIED
;combining [1] and [2]
The value for TC can be approximated with the following equations:
Solving for TC:
Therefore:
Temperature 50°C and external impedance of 10k
5.0V VDD=
Assumptions:
Note: Where n = number of bits of the ADC.
TACQ s 1.12µs 50°C- 25°C0.05µs/°C++=
7.37µs=
Note 1: The reference voltage (VREF+) has no effect on the equation, since it cancels itself out.
2: The charge holding capacitor (CHOLD) is not discharged after each conversion.
3: The maximum recommended impedance for analog sources is 10 k. This is required to meet the pin
leakage specification.
PIC16(L)F1454/5/9
DS41639A-page 166 Preliminary 2012 Microchip Technology Inc.
FIGURE 16-4: ANALOG INPUT MODEL
FIGURE 16-5: ADC TRANSFER FUNCTION
CPIN
VA
Rs
Analog
5 pF
VDD
VT 0.6V
VT 0.6V I LEAKAGE(1)
RIC 1k
Sampling
Switch
SS Rss
CHOLD = 10 pF
VREF-
6V
Sampling Switch
5V
4V
3V
2V
567891011
(k)
VDD
Legend:
CPIN
VT
I LEAKAGE
RIC
SS
CHOLD
= Input Capacitance
= Threshold Voltage
= Leakage current at the pin due to
= Interconnect Resistance
= Sampling Switch
= Sample/Hold Capacitance
various junctions
RSS
Note 1: Refer to Section 29.0 “Electrical Specifications”.
RSS = Resistance of Sampling Switch
Input
pin
3FFh
3FEh
ADC Output Code
3FDh
3FCh
03h
02h
01h
00h
Full-Scale
3FBh
0.5 LSB
VREF-Zero-Scale
Transition VREF+
Transition
1.5 LSB
Full-Scale Range
Analog Input Voltage
2012 Microchip Technology Inc. Preliminary DS41639A-page 167
PIC16(L)F1454/5/9
TABLE 16-2: SUMMARY OF REGISTERS ASSOCIATED WITH ADC(3)
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register
on Page
ADCON0 CHS<4:0> GO/DONE ADON 160
ADCON1 ADFM ADCS<2:0> ADPREF<1:0> 161
ADCON2 TRIGSEL<2:0> 162
ADRESH 163, 164
ADRESL A/D Result Register Low 163, 164
ANSELA(3) ———ANSA4 133
ANSELB(2) ANSB5 ANSB4 137
ANSELC(3) ANSC7(1) ANSC6(1) ANSC3 ANSC2 ANSC1 ANSC0 141
INTCON GIE PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF 96
PIE1 TMR1GIE ADIE(3) RCIE TXIE SSP1IE TMR2IE TMR1IE 97
PIR1 TMR1GIF ADIF(3) RCIF TXIF SSP1IF TMR2IF TMR1IF 99
TRISA TRISA5 TRISA4 —(1) —(1) —(1) 132
TRISB(2) TRISB7 TRISB6 TRISB5 TRISB4 136
TRISC TRISC7(2) TRISC6(2) TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 140
FVRCON FVREN FVRRDY TSEN TSRNG CDAFVR<1:0> ADFVR<1:0> 150
Legend: x = unknown, u = unchanged, = unimplemented read as ‘0’, q = value depends on condition. Shaded cells are not
used for ADC module.
Note 1: Unimplemented, read as ‘1’.
2: PIC16(L)F1459 only.
3: PIC16(L)F1455/9 only.
PIC16(L)F1454/5/9
DS41639A-page 168 Preliminary 2012 Microchip Technology Inc.
NOTES:
2012 Microchip Technology Inc. Preliminary DS41639A-page 169
PIC16(L)F1454/5/9
17.0 DIGITAL-TO-ANALOG
CONVERTER (DAC) MODULE
(PIC16(L)F1455/9 ONLY)
The Digital-to-Analog Converter supplies a variable
voltage reference, ratiometric with the input source,
with 32 selectable output levels.
The input of the DAC can be connected to:
•External V
REF+ pin
•V
DD supply voltage
The output of the DAC can be configured to supply a
reference voltage to the following:
Comparator positive input
ADC input channel
•DACOUT1 pin
•DACOUT2 pin
The Digital-to-Analog Converter (DAC) can be enabled
by setting the DACEN bit of the DACCON0 register.
17.1 Output Voltage Selection
The DAC has 32 voltage level ranges. The 32 levels
are set with the DACR<4:0> bits of the DACCON1
register.
The DAC output voltage is determined by the following
equations:
EQUATION 17-1: DAC OUTPUT VOLTAGE
17.2 Ratiometric Output Level
The DAC output value is derived using a resistor ladder
with each end of the ladder tied to a positive and
negative voltage reference input source. If the voltage
of either input source fluctuates, a similar fluctuation will
result in the DAC output value.
The value of the individual resistors within the ladder
can be found in Section 29.0 “Electrical
Specifications”.
17.3 DAC Voltage Reference Output
The DAC voltage can be output to the DACOUT1 and
DACOUT2 pins by setting the respective DACOE1 and
DACOE2 pins of the DACCON0 register. Selecting the
DAC reference voltage for output on either DACOUTx
pin automatically overrides the digital output buffer and
digital input threshold detector functions of that pin.
Reading the DACOUTx pin when it has been config-
ured for DAC reference voltage output will always
return a ‘0’.
Due to the limited current drive capability, a buffer must
be used on the DAC voltage reference output for
external connections to either DACOUTx pin.
Figure 17-2 shows an example buffering technique.
IF DACEN = 1
IF DACEN = 0 and DACLPS = 1 and DACR[4:0] = 11111
VOUT VSOURCE +=
IF DACEN = 0 and DACLPS = 0 and DACR[4:0] = 00000
VOUT VSOURCE =
VSOURCE+ = VDD, VREF, or FVR BUFFER 2
VSOURCE- = VSS
VOUT VSOURCE+VSOURCE-
DACR 4:0
25
-----------------------------


VSOURCE-+=
PIC16(L)F1454/5/9
DS41639A-page 170 Preliminary 2012 Microchip Technology Inc.
FIGURE 17-1: DIGITAL-TO-ANALOG CONVERTER BLOCK DIAGRAM
FIGURE 17-2: VOLTAGE REFERENCE OUTPUT BUFFER EXAMPLE
32-to-1 MUX
DACR<4:0>
R
R
R
R
R
R
R
32 DAC
DACOUT1
5
(To Comparator and
ADC Module)
DACOE1
VDD
VREF+
DACPSS
DACEN
Steps
Digital-to-Analog Converter (DAC)
R
VSOURCE-
VSOURCE+
DACOUT2
DACOE2
DACOUTXBuffered DAC Output
+
DAC
Module
Voltage
Reference
Output
Impedance
R
PIC® MCU
2012 Microchip Technology Inc. Preliminary DS41639A-page 171
PIC16(L)F1454/5/9
17.4 Operation During Sleep
When the device wakes up from Sleep through an
interrupt or a Watchdog Timer time-out, the contents of
the DACCON0 register are not affected. To minimize
current consumption in Sleep mode, the voltage
reference should be disabled.
17.5 Effects of a Reset
A device Reset affects the following:
DAC is disabled.
DAC output voltage is removed from the
DACOUT pin.
The DACR<4:0> range select bits are cleared.
PIC16(L)F1454/5/9
DS41639A-page 172 Preliminary 2012 Microchip Technology Inc.
17.6 Register Definitions: DAC Control
TABLE 17-1: SUMMARY OF REGISTERS ASSOCIATED WITH THE DAC MODULE(1)
REGISTER 17-1: DACCON0: VOLTAGE REFERENCE CONTROL REGISTER 0
R/W-0/0 U-0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 U-0 U-0
DACEN DACOE1 DACOE2 DACPSS<1:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7 DACEN: DAC Enable bit
1 = DAC is enabled
0 = DAC is disabled
bit 6 Unimplemented: Read as ‘0
bit 5 DACOE1: DAC Voltage Output Enable bit
1 = DAC voltage level is also an output on the DACOUT1 pin
0 = DAC voltage level is disconnected from the DACOUT1 pin
bit 4 DACOE2: DAC Voltage Output Enable bit
1 = DAC voltage level is also an output on the DACOUT2 pin
0 = DAC voltage level is disconnected from the DACOUT2 pin
bit 3-2 DACPSS<1:0>: DAC Positive Source Select bit
11 = Reserved
10 = Comparator FVR output
01 =VREF+ pin
00 =VDD
bit 1-0 Unimplemented: Read as ‘0
REGISTER 17-2: DACCON1: VOLTAGE REFERENCE CONTROL REGISTER 1
U-0 U-0 U-0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0
DACR<4:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-5 Unimplemented: Read as ‘0
bit 4-0 DACR<4:0>: DAC Voltage Output Select bits
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register
on page
FVRCON FVREN FVRRDY TSEN TSRNG CDAFVR<1:0> ADFVR<1:0> 356
DACCON0 DACEN DACOE1 DACOE2 DACPSS<1:0> 172
DACCON1 DACR<4:0> 172
Legend: = Unimplemented location, read as ‘0’. Shaded cells are not used with the DAC module.
Note 1: PIC16(L)F1455/9 only.
2012 Microchip Technology Inc. Preliminary DS41639A-page 173
PIC16(L)F1454/5/9
18.0 COMPARATOR MODULE
(PIC16(L)F1455/9 ONLY)
Comparators are used to interface analog circuits to a
digital circuit by comparing two analog voltages and
providing a digital indication of their relative magnitudes.
Comparators are very useful mixed signal building
blocks because they provide analog functionality
independent of program execution. The analog
comparator module includes the following features:
Independent comparator control
Programmable input selection
Comparator output is available internally/externally
Programmable output polarity
Interrupt-on-change
Wake-up from Sleep
Programmable Speed/Power optimization
•PWM shutdown
Programmable and fixed voltage reference
18.1 Comparator Overview
A single comparator is shown in Figure 18-1 along with
the relationship between the analog input levels and
the digital output. When the analog voltage at VIN+ is
less than the analog voltage at VIN-, the output of the
comparator is a digital low level. When the analog
voltage at VIN+ is greater than the analog voltage at
VIN-, the output of the comparator is a digital high level.
The comparators available for this device are located in
Table 18-1.
FIGURE 18-1: SINGLE COMPARATOR
TABLE 18-1: COMPARATOR AVAILABILITY
PER DEVICE
Device C1 C2
PIC16(L)F1455 ●●
PIC16(L)F1459 ●●
+
VIN+
VIN-Output
Output
VIN+
VIN-
Note: The black areas of the output of the
comparator represents the uncertainty
due to input offsets and response time.
PIC16(L)F1454/5/9
DS41639A-page 174 Preliminary 2012 Microchip Technology Inc.
FIGURE 18-2: COMPARATOR MODULES SIMPLIFIED BLOCK DIAGRAM
Note 1: When CxON = 0, the Comparator will produce a ‘0’ at the output
2: When CxON = 0, all multiplexer inputs are disconnected.
MUX
Cx
0
1
2
3
CxON(1)
CxNCH<2:0>
3
0
1
CXPCH<1:0>
CXIN1-
CXIN2-
CXIN3-
CXIN+
MUX
-
+
CxVN
CxVP
CXOUT
Q1
D
EN
Q
CXPOL
MCXOUT
Set CxIF
0
1
CXSYNC CXOE
CXOUT
DQ
SYNCCXOUT
DAC
FVR Buffer2
Reserved
2
CxSP
CxHYS
det
Interrupt
det
Interrupt
CxINTN
CxINTP
2
3
TRIS bit
CxON
(2)
(2)
(from Timer1)
T1CLK
To Tim er 1 ,
4
FVR Buffer2
To CWG
async_CxOUT
ADC
2012 Microchip Technology Inc. Preliminary DS41639A-page 175
PIC16(L)F1454/5/9
18.2 Comparator Control
Each comparator has two control registers: CMxCON0
and CMxCON1.
The CMxCON0 registers (see Register 18-1) contain
Control and Status bits for the following:
Enable
•Output selection
Output polarity
Speed/Power selection
Hysteresis enable
Output synchronization
The CMxCON1 registers (see Register 18-2) contain
Control bits for the following:
Interrupt enable
Interrupt edge polarity
Positive input channel selection
Negative input channel selection
18.2.1 COMPARATOR ENABLE
Setting the CxON bit of the CMxCON0 register enables
the comparator for operation. Clearing the CxON bit
disables the comparator resulting in minimum current
consumption.
18.2.2 COMPARATOR OUTPUT
SELECTION
The output of the comparator can be monitored by
reading either the CxOUT bit of the CMxCON0 register
or the MCxOUT bit of the CMOUT register. In order to
make the output available for an external connection,
the following conditions must be true:
CxOE bit of the CMxCON0 register must be set
Corresponding TRIS bit must be cleared
CxON bit of the CMxCON0 register must be set
18.2.3 COMPARATOR OUTPUT POLARITY
Inverting the output of the comparator is functionally
equivalent to swapping the comparator inputs. The
polarity of the comparator output can be inverted by
setting the CxPOL bit of the CMxCON0 register.
Clearing the CxPOL bit results in a non-inverted output.
Table 18-2 shows the output state versus input
conditions, including polarity control.
18.2.4 COMPARATOR SPEED/POWER
SELECTION
The trade-off between speed or power can be opti-
mized during program execution with the CxSP control
bit. The default state for this bit is ‘1’ which selects the
Normal-Speed mode. Device power consumption can
be optimized at the cost of slower comparator propaga-
tion delay by clearing the CxSP bit to ‘0’.
Note 1: The CxOE bit of the CMxCON0 register
overrides the PORT data latch. Setting
the CxON bit of the CMxCON0 register
has no impact on the port override.
2: The internal output of the comparator is
latched with each instruction cycle.
Unless otherwise specified, external
outputs are not latched.
TABLE 18-2: COMPARATOR OUTPUT
STATE VS. INPUT
CONDITIONS
Input Condition CxPOL CxOUT
CxVN > CxVP00
CxVN < CxVP01
CxVN > CxVP11
CxVN < CxVP10
PIC16(L)F1454/5/9
DS41639A-page 176 Preliminary 2012 Microchip Technology Inc.
18.3 Comparator Hysteresis
A selectable amount of separation voltage can be
added to the input pins of each comparator to provide a
hysteresis function to the overall operation. Hysteresis
is enabled by setting the CxHYS bit of the CMxCON0
register.
See Section 29.0 “Electrical Specifications” for
more information.
18.4 Timer1 Gate Operation
The output resulting from a comparator operation can
be used as a source for gate control of Timer1. See
Section 20.6 “Timer1 Gate” for more information.
This feature is useful for timing the duration or interval
of an analog event.
It is recommended that the comparator output be syn-
chronized to Timer1. This ensures that Timer1 does not
increment while a change in the comparator is occur-
ring.
18.4.1 COMPARATOR OUTPUT
SYNCHRONIZATION
The output from either comparator, C1 or C2, can be
synchronized with Timer1 by setting the CxSYNC bit of
the CMxCON0 register.
Once enabled, the comparator output is latched on the
falling edge of the Timer1 source clock. If a prescaler is
used with Timer1, the comparator output is latched after
the prescaling function. To prevent a race condition, the
comparator output is latched on the falling edge of the
Timer1 clock source and Timer1 increments on the
rising edge of its clock source. See the Comparator
Block Diagram (Figure 18-2) and the Timer1 Block
Diagram (Figure 20-1) for more information.
18.5 Comparator Interrupt
An interrupt can be generated upon a change in the
output value of the comparator for each comparator, a
rising edge detector and a falling edge detector are
present.
When either edge detector is triggered and its associ-
ated enable bit is set (CxINTP and/or CxINTN bits of
the CMxCON1 register), the Corresponding Interrupt
Flag bit (CxIF bit of the PIR2 register) will be set.
To enable the interrupt, you must set the following bits:
CxON, CxPOL and CxSP bits of the CMxCON0
register
CxIE bit of the PIE2 register
CxINTP bit of the CMxCON1 register (for a rising
edge detection)
CxINTN bit of the CMxCON1 register (for a falling
edge detection)
PEIE and GIE bits of the INTCON register
The associated interrupt flag bit, CxIF bit of the PIR2
register, must be cleared in software. If another edge is
detected while this flag is being cleared, the flag will still
be set at the end of the sequence.
18.6 Comparator Positive Input
Selection
Configuring the CxPCH<1:0> bits of the CMxCON1
register directs an internal voltage reference or an
analog pin to the non-inverting input of the comparator:
CxIN+ analog pin
DAC output
FVR (Fixed Voltage Reference)
•V
SS (Ground)
See Section 14.0 “Fixed Voltage Reference (FVR)
(PIC16(L)F1455/9 only)” for more information on the
Fixed Voltage Reference module.
See Section 17.0 “Digital-to-Analog Converter
(DAC) Module (PIC16(L)F1455/9 only)” for more
information on the DAC input signal.
Any time the comparator is disabled (CxON = 0), all
comparator inputs are disabled.
Note: Although a comparator is disabled, an
interrupt can be generated by changing
the output polarity with the CxPOL bit of
the CMxCON0 register, or by switching
the comparator on or off with the CxON bit
of the CMxCON0 register.
2012 Microchip Technology Inc. Preliminary DS41639A-page 177
PIC16(L)F1454/5/9
18.7 Comparator Negative Input
Selection
The CxNCH<2:0> bits of the CMxCON0 register direct
one of the input sources to the comparator inverting
input.
18.8 Comparator Response Time
The comparator output is indeterminate for a period of
time after the change of an input source or the selection
of a new reference voltage. This period is referred to as
the response time. The response time of the comparator
differs from the settling time of the voltage reference.
Therefore, both of these times must be considered when
determining the total response time to a comparator
input change. See the Comparator and Voltage Refer-
ence Specifications in Section 29.0 “Electrical Specifi-
cations” for more details.
18.9 Interaction with ECCP Logic
The C1 and C2 comparators can be used as general
purpose comparators. Their outputs can be brought
out to the C1OUT and C2OUT pins. When the ECCP
Auto-Shutdown is active it can use one or both
comparator signals. If auto-restart is also enabled, the
comparators can be configured as a closed loop
analog feedback to the ECCP, thereby, creating an
analog controlled PWM.
18.10 Analog Input Connection
Considerations
A simplified circuit for an analog input is shown in
Figure 18-3. Since the analog input pins share their
connection with a digital input, they have reverse
biased ESD protection diodes to VDD and VSS. The
analog input, therefore, must be between VSS and VDD.
If the input voltage deviates from this range by more
than 0.6V in either direction, one of the diodes is for-
ward biased and a latch-up may occur.
A maximum source impedance of 10 k is recommended
for the analog sources. Also, any external component
connected to an analog input pin, such as a capacitor or
a Zener diode, should have very little leakage current to
minimize inaccuracies introduced.
Note: To use CxIN+ and CxINx- pins as analog
input, the appropriate bits must be set in
the ANSEL register and the correspond-
ing TRIS bits must also be set to disable
the output drivers.
Note: When the comparator module is first
initialized the output state is unknown.
Upon initialization, the user should verify
the output state of the comparator prior to
relying on the result, primarily when using
the result in connection with other
peripheral features, such as the ECCP
Auto-Shutdown mode.
Note 1: When reading a PORT register, all pins
configured as analog inputs will read as a
0’. Pins configured as digital inputs will
convert as an analog input, according to
the input specification.
2: Analog levels on any pin defined as a
digital input, may cause the input buffer to
consume more current than is specified.
PIC16(L)F1454/5/9
DS41639A-page 178 Preliminary 2012 Microchip Technology Inc.
FIGURE 18-3: ANALOG INPUT MODEL
VA
Rs < 10K
CPIN
5 pF
VDD
VT 0.6V
VT 0.6V
RIC
ILEAKAGE(1)
Vss
Legend: CPIN = Input Capacitance
ILEAKAGE = Leakage Current at the pin due to various junctions
RIC = Interconnect Resistance
RS= Source Impedance
VA= Analog Voltage
VT= Threshold Voltage
To Comparator
Note 1: See Section 29.0 “Electrical Specifications”.
Analog
Input
pin
2012 Microchip Technology Inc. Preliminary DS41639A-page 179
PIC16(L)F1454/5/9
18.11 Register Definitions: Comparator Control
REGISTER 18-1: CMxCON0: COMPARATOR Cx CONTROL REGISTER 0
R/W-0/0 R-0/0 R/W-0/0 R/W-0/0 U-0 R/W-1/1 R/W-0/0 R/W-0/0
CxON CxOUT CxOE CxPOL CxSP CxHYS CxSYNC
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7 CxON: Comparator Enable bit
1 = Comparator is enabled and consumes no active power
0 = Comparator is disabled
bit 6 CxOUT: Comparator Output bit
If CxPOL = 1 (inverted polarity):
1 = CxVP < CxVN
0 = CxVP > CxVN
If CxPOL = 0 (non-inverted polarity):
1 = CxVP > CxVN
0 = CxVP < CxVN
bit 5 CxOE: Comparator Output Enable bit
1 = CxOUT is present on the CxOUT pin. Requires that the associated TRIS bit be cleared to actually
drive the pin. Not affected by CxON.
0 = CxOUT is internal only
bit 4 CxPOL: Comparator Output Polarity Select bit
1 = Comparator output is inverted
0 = Comparator output is not inverted
bit 3 Unimplemented: Read as0
bit 2 CxSP: Comparator Speed/Power Select bit
1 = Comparator operates in Normal-Power, Higher Speed mode
0 = Comparator operates in Low-Power, Low-Speed mode
bit 1 CxHYS: Comparator Hysteresis Enable bit
1 = Comparator hysteresis enabled
0 = Comparator hysteresis disabled
bit 0 CxSYNC: Comparator Output Synchronous Mode bit
1 = Comparator output to Timer1 and I/O pin is synchronous to changes on Timer1 clock source.
Output updated on the falling edge of Timer1 clock source.
0 = Comparator output to Timer1 and I/O pin is asynchronous
PIC16(L)F1454/5/9
DS41639A-page 180 Preliminary 2012 Microchip Technology Inc.
REGISTER 18-2: CMxCON1: COMPARATOR Cx CONTROL REGISTER 1
R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 U-0 R/W-0/0 R/W-0/0 R/W-0/0
CxINTP CxINTN CxPCH<1:0> CxNCH<2:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7 CxINTP: Comparator Interrupt on Positive Going Edge Enable bits
1 = The CxIF interrupt flag will be set upon a positive going edge of the CxOUT bit
0 = No interrupt flag will be set on a positive going edge of the CxOUT bit
bit 6 CxINTN: Comparator Interrupt on Negative Going Edge Enable bits
1 = The CxIF interrupt flag will be set upon a negative going edge of the CxOUT bit
0 = No interrupt flag will be set on a negative going edge of the CxOUT bit
bit 5-4 CxPCH<1:0>: Comparator Positive Input Channel Select bits
11 = CxVP connects to VSS
10 = CxVP connects to FVR Voltage Reference
01 = CxVP connects to DAC Voltage Reference
00 = CxVP connects to CxIN+ pin
bit 3 Unimplemented: Read as0
bit 2-0 CxNCH<2:0>: Comparator Negative Input Channel Select bits
111 = Reserved
110 = Reserved
101 = Reserved
100 = CxVN connects to FVR Voltage reference
011 = CxVN connects to CxIN3- pin
010 = CxVN connects to CxIN2- pin
001 = CxVN connects to CxIN1- pin
000 = Reserved
REGISTER 18-3: CMOUT: COMPARATOR OUTPUT REGISTER
U-0 U-0 U-0 U-0 U-0 U-0 R-0/0 R-0/0
MC2OUT MC1OUT
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-2 Unimplemented: Read as ‘0
bit 1 MC2OUT: Mirror Copy of C2OUT bit
bit 0 MC1OUT: Mirror Copy of C1OUT bit
2012 Microchip Technology Inc. Preliminary DS41639A-page 181
PIC16(L)F1454/5/9
TABLE 18-3: SUMMARY OF REGISTERS ASSOCIATED WITH COMPARATOR MODULE(3)
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register
on Page
ANSELA ANSA4 133
ANSELC ANSC7(2) ANSC6(2) ANSC3 ANSC2 ANSC1 ANSC0 141
CM1CON0 C1ON C1OUT C1OE C1POL C1SP C1HYS C1SYNC 179
CM2CON0 C2ON C2OUT C2OE C2POL C2SP C2HYS C2SYNC 179
CM1CON1 C1NTP C1INTN C1PCH<1:0> C1NCH<2:0> 180
CM2CON1 C2NTP C2INTN C2PCH<1:0> C2NCH<2:0> 180
CMOUT MC2OUT MC1OUT 180
DACCON0 DACEN DACOE1 DACOE2 DACPSS<1:0> 172
DACCON1 DACR<4:0> 172
FVRCON FVREN FVRRDY TSEN TSRNG CDAFVR<1:0> ADFVR<1:0> 150
INTCON GIE PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF 96
PIE2 OSFIE C2IE C1IE BCL1IE USBIE ACTIE 98
PIR2 OSFIF C2IF C1IF BCL1IF USBIF ACTIF 100
PORTA RA5 RA4 RA3 RA1 RA0 132
PORTC RC7(2) RC6(2) RC5 RC4 RC3 RC2 RC1 RC0 140
LATA LATA5 LATA4 133
LATC LATC7(2) LATC6(2) LATC5 LATC4 LATC3 LATC2 LATC1 LATC0 141
TRISA TRISA5 TRISA4 (1) (1) (1) 132
TRISC TRISC7(2) TRISC6(2) TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 140
Legend: = unimplemented location, read as ‘0’. Shaded cells are unused by the comparator module.
Note 1: Unimplemented, read as ‘1’.
2: PIC16(L)F1459 only.
3: PIC16(L)F1455/9 only,
PIC16(L)F1454/5/9
DS41639A-page 182 Preliminary 2012 Microchip Technology Inc.
NOTES:
2012 Microchip Technology Inc. Preliminary DS41639A-page 183
PIC16(L)F1454/5/9
19.0 TIMER0 MODULE
The Timer0 module is an 8-bit timer/counter with the
following features:
8-bit timer/counter register (TMR0)
8-bit prescaler (independent of Watchdog Timer)
Programmable internal or external clock source
Programmable external clock edge selection
Interrupt on overflow
TMR0 can be used to gate Timer1
Figure 19-1 is a block diagram of the Timer0 module.
19.1 Timer0 Operation
The Timer0 module can be used as either an 8-bit timer
or an 8-bit counter.
19.1.1 8-BIT TIMER MODE
The Timer0 module will increment every instruction
cycle, if used without a prescaler. 8-bit Timer mode is
selected by clearing the TMR0CS bit of the
OPTION_REG register.
When TMR0 is written, the increment is inhibited for
two instruction cycles immediately following the write.
19.1.2 8-BIT COUNTER MODE
In 8-Bit Counter mode, the Timer0 module will increment
on every rising or falling edge of the T0CKI pin.
8-Bit Counter mode using the T0CKI pin is selected by
setting the TMR0CS bit in the OPTION_REG register to
1’.
The rising or falling transition of the incrementing edge
for either input source is determined by the TMR0SE bit
in the OPTION_REG register.
FIGURE 19-1: BLOCK DIAGRAM OF THE TIMER0
Note: The value written to the TMR0 register
can be adjusted, in order to account for
the two instruction cycle delay when
TMR0 is written.
T0CKI
TMR0SE
TMR0
PS<2:0>
Data Bus
Set Flag bit TMR0IF
on Overflow
TMR0CS
0
1
0
1
8
8
8-bit
Prescaler
FOSC/4
PSA
Sync
2 TCY
Overflow to Timer1
PIC16(L)F1454/5/9
DS41639A-page 184 Preliminary 2012 Microchip Technology Inc.
19.1.3 SOFTWARE PROGRAMMABLE
PRESCALER
A software programmable prescaler is available for
exclusive use with Timer0. The prescaler is enabled by
clearing the PSA bit of the OPTION_REG register.
There are eight prescaler options for the Timer0 mod-
ule ranging from 1:2 to 1:256. The prescale values are
selectable via the PS<2:0> bits of the OPTION_REG
register. In order to have a 1:1 prescaler value for the
Timer0 module, the prescaler must be disabled by set-
ting the PSA bit of the OPTION_REG register.
The prescaler is not readable or writable. All instructions
writing to the TMR0 register will clear the prescaler.
19.1.4 TIMER0 INTERRUPT
Timer0 will generate an interrupt when the TMR0
register overflows from FFh to 00h. The TMR0IF
interrupt flag bit of the INTCON register is set every
time the TMR0 register overflows, regardless of
whether or not the Timer0 interrupt is enabled. The
TMR0IF bit can only be cleared in software. The Timer0
interrupt enable is the TMR0IE bit of the INTCON
register.
19.1.5 8-BIT COUNTER MODE
SYNCHRONIZATION
When in 8-Bit Counter mode, the incrementing edge on
the T0CKI pin must be synchronized to the instruction
clock. Synchronization can be accomplished by
sampling the prescaler output on the Q2 and Q4 cycles
of the instruction clock. The high and low periods of the
external clocking source must meet the timing
requirements as shown in Section 29.0 “Electrical
Specifications.
19.1.6 OPERATION DURING SLEEP
Timer0 cannot operate while the processor is in Sleep
mode. The contents of the TMR0 register will remain
unchanged while the processor is in Sleep mode.
Note: The Watchdog Timer (WDT) uses its own
independent prescaler.
Note: The Timer0 interrupt cannot wake the
processor from Sleep since the timer is
frozen during Sleep.
2012 Microchip Technology Inc. Preliminary DS41639A-page 185
PIC16(L)F1454/5/9
19.2 Register Definitions: Option Register
TABLE 19-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER0
REGISTER 19-1: OPTION_REG: OPTION REGISTER
R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1
WPUEN INTEDG TMR0CS TMR0SE PSA PS<2:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7 WPUEN: Weak Pull-Up Enable bit
1 = All weak pull-ups are disabled (except MCLR, if it is enabled)
0 = Weak pull-ups are enabled by individual WPUx latch values
bit 6 INTEDG: Interrupt Edge Select bit
1 = Interrupt on rising edge of INT pin
0 = Interrupt on falling edge of INT pin
bit 5 TMR0CS: Timer0 Clock Source Select bit
1 = Transition on T0CKI pin
0 = Internal instruction cycle clock (FOSC/4)
bit 4 TMR0SE: Timer0 Source Edge Select bit
1 = Increment on high-to-low transition on T0CKI pin
0 = Increment on low-to-high transition on T0CKI pin
bit 3 PSA: Prescaler Assignment bit
1 = Prescaler is not assigned to the Timer0 module
0 = Prescaler is assigned to the Timer0 module
bit 2-0 PS<2:0>: Prescaler Rate Select bits
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register
on Page
ADCON2(2) TRIGSEL<2:0> 162
INTCON GIE PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF 96
OPTION_REG WPUEN INTEDG TMR0CS TMR0SE PSA PS<2:0> 185
TMR0 Holding Register for the 8-bit Timer0 Count 183*
TRISA TRISA5 TRISA4 (1) (1) (1) 132
Legend: — = Unimplemented location, read as ‘0’. Shaded cells are not used by the Timer0 module.
* Page provides register information.
Note 1: Unimplemented, read as ‘1’.
2: PIC16(L)F1455/9 only.
000
001
010
011
100
101
110
111
1 : 2
1 : 4
1 : 8
1 : 16
1 : 32
1 : 64
1 : 128
1 : 256
Bit Value Timer0 Rate
PIC16(L)F1454/5/9
DS41639A-page 186 Preliminary 2012 Microchip Technology Inc.
NOTES:
2012 Microchip Technology Inc. Preliminary DS41639A-page 187
PIC16(L)F1454/5/9
20.0 TIMER1 MODULE WITH GATE
CONTROL
The Timer1 module is a 16-bit timer/counter with the
following features:
16-bit timer/counter register pair (TMR1H:TMR1L)
Programmable internal or external clock source
2-bit prescaler
Optionally synchronized comparator out
Multiple Timer1 gate (count enable) sources
Interrupt on overflow
Wake-up on overflow (external clock,
Asynchronous mode only)
Auto-conversion Trigger (with CCP)
Selectable Gate Source Polarity
Gate Toggle mode
Gate Single-pulse mode
Gate Value Status
Gate Event Interrupt
Figure 20-1 is a block diagram of the Timer1 module.
FIGURE 20-1: TIMER1 BLOCK DIAGRAM
TMR1H TMR1L
T1SYNC
T1CKPS<1:0>
Prescaler
1, 2, 4, 8
0
1
Synchronized
clock input
2
TMR1(2)
TMR1ON
Note 1: ST Buffer is high speed type when using T1CKI.
2: Timer1 register increments on rising edge.
3: Synchronize does not operate while in Sleep.
4: PIC16(L)F1455/9 only.
T1G
T1OSC
FOSC/4
Internal
Clock
T1OSO
T1OSI
T1OSCEN
1
0
T1CKI
TMR1CS<1:0>
(1)
Synchronize(3)
det
Sleep input
TMR1GE
0
1
00
01
10
11
T1GPOL
D
Q
CK
Q
0
1
T1GVAL
T1GTM
Single-Pulse
Acq. Control
T1GSPM
T1GGO/DONE
T1GSS<1:0>
EN
OUT
10
11
00
01
FOSC
Internal
Clock
R
D
EN
Q
Q1
RD
T1GCON
Data Bus
det
Interrupt
TMR1GIF
Set
T1CLK
FOSC/2
Internal
Clock
D
EN
Q
t1g_in
TMR1ON
LFINTOSC
From Timer0
Overflow
sync_C2OUT
sync_C1OUT
To Comparator Module(4)
To Clock Switching Modules
Set flag bit
TMR1IF on
Overflow
To ADC Auto-Conversion
PIC16(L)F1454/5/9
DS41639A-page 188 Preliminary 2012 Microchip Technology Inc.
20.1 Timer1 Operation
The Timer1 module is a 16-bit incrementing counter
which is accessed through the TMR1H:TMR1L register
pair. Writes to TMR1H or TMR1L directly update the
counter.
When used with an internal clock source, the module is
a timer and increments on every instruction cycle.
When used with an external clock source, the module
can be used as either a timer or counter and incre-
ments on every selected edge of the external source.
Timer1 is enabled by configuring the TMR1ON and
TMR1GE bits in the T1CON and T1GCON registers,
respectively. Table 20-1 displays the Timer1 enable
selections.
20.2 Clock Source Selection
The TMR1CS<1:0> bits of the T1CON register are used
to select the clock source for Timer1. Tab l e 2 0-2
displays the clock source selections.
20.2.1 INTERNAL CLOCK SOURCE
When the internal clock source is selected, the
TMR1H:TMR1L register pair will increment on multiples
of FOSC as determined by the Timer1 prescaler.
When the FOSC internal clock source is selected, the
Timer1 register value will increment by four counts every
instruction clock cycle. Due to this condition, a two LSB
error in resolution will occur when reading the Timer1
value. To utilize the full resolution of Timer1, an
asynchronous input signal must be used to gate the
Timer1 clock input.
The following asynchronous sources may be used:
Asynchronous event on the T1G pin to Timer1
gate
C1 or C2 comparator input to Timer1 gate
20.2.2 EXTERNAL CLOCK SOURCE
When the external clock source is selected, the Timer1
module may work as a timer or a counter.
When enabled to count, Timer1 is incremented on the
rising edge of the external clock input T1CKI, The
external clock source can be synchronized to the
microcontroller system clock or it can run
asynchronously.
When used as a timer with a clock oscillator, an
external 32.768 kHz crystal can be used in conjunction
with the dedicated internal oscillator circuit.
TABLE 20-1: TIMER1 ENABLE
SELECTIONS
TMR1ON TMR1GE Timer1
Operation
00Off
01Off
10Always On
11Count Enabled
Note: In Counter mode, a falling edge must be
registered by the counter prior to the first
incrementing rising edge after any one or
more of the following conditions:
Timer1 enabled after POR
Write to TMR1H or TMR1L
Timer1 is disabled
Timer1 is disabled (TMR1ON = 0)
when T1CKI is high then Timer1 is
enabled (TMR1ON=1) when T1CKI is
low.
TABLE 20-2: CLOCK SOURCE SELECTIONS
TMR1CS<1:0> T1OSCEN Clock Source
11 x LFINTOSC
10 0 External Clocking on T1CKI Pin
01 x System Clock (FOSC)
00 x Instruction Clock (FOSC/4)
2012 Microchip Technology Inc. Preliminary DS41639A-page 189
PIC16(L)F1454/5/9
20.3 Timer1 Prescaler
Timer1 has four prescaler options allowing 1, 2, 4 or 8
divisions of the clock input. The T1CKPS bits of the
T1CON register control the prescale counter. The
prescale counter is not directly readable or writable;
however, the prescaler counter is cleared upon a write to
TMR1H or TMR1L.
20.4 Timer1 Oscillator
A dedicated low-power 32.768 kHz oscillator circuit is
built-in between pins T1OSI (input) and T1OSO
(amplifier output). This internal circuit is to be used in
conjunction with an external 32.768 kHz crystal.
The oscillator circuit is enabled by setting the
T1OSCEN bit of the T1CON register. The oscillator will
continue to run during Sleep.
20.5 Timer1 Operation in
Asynchronous Counter Mode
If the control bit T1SYNC of the T1CON register is set,
the external clock input is not synchronized. The timer
increments asynchronously to the internal phase
clocks. If the external clock source is selected then the
timer will continue to run during Sleep and can
generate an interrupt on overflow, which will wake-up
the processor. However, special precautions in
software are needed to read/write the timer (see
Section 20.5.1 “Reading and Writing Timer1 in
Asynchronous Counter Mode”).
20.5.1 READING AND WRITING TIMER1 IN
ASYNCHRONOUS COUNTER
MODE
Reading TMR1H or TMR1L while the timer is running
from an external asynchronous clock will ensure a valid
read (taken care of in hardware). However, the user
should keep in mind that reading the 16-bit timer in two
8-bit values itself, poses certain problems, since the
timer may overflow between the reads.
For writes, it is recommended that the user simply stop
the timer and write the desired values. A write
contention may occur by writing to the timer registers,
while the register is incrementing. This may produce an
unpredictable value in the TMR1H:TMR1L register pair.
20.6 Timer1 Gate
Timer1 can be configured to count freely or the count
can be enabled and disabled using Timer1 gate
circuitry. This is also referred to as Timer1 Gate Enable.
Timer1 gate can also be driven by multiple selectable
sources.
20.6.1 TIMER1 GATE ENABLE
The Timer1 Gate Enable mode is enabled by setting
the TMR1GE bit of the T1GCON register. The polarity
of the Timer1 Gate Enable mode is configured using
the T1GPOL bit of the T1GCON register.
When Timer1 Gate Enable mode is enabled, Timer1
will increment on the rising edge of the Timer1 clock
source. When Timer1 Gate Enable mode is disabled,
no incrementing will occur and Timer1 will hold the
current count. See Figure 20-4 for timing details.
Note: The oscillator requires a start-up and
stabilization time before use. Thus,
T1OSCEN should be set and a suitable
delay observed prior to using Timer1. A
suitable delay similar to the OST delay
can be implemented in software by
clearing the TMR1IF bit then presetting
the TMR1H:TMR1L register pair to
FC00h. The TMR1IF flag will be set when
1024 clock cycles have elapsed, thereby
indicating that the oscillator is running and
reasonably stable.
Note: When switching from synchronous to
asynchronous operation, it is possible to
skip an increment. When switching from
asynchronous to synchronous operation,
it is possible to produce an additional
increment.
TABLE 20-3: TIMER1 GATE ENABLE
SELECTIONS
T1CLK T1GPOL T1G Timer1 Operation
00Counts
01Holds Count
10Holds Count
11Counts
PIC16(L)F1454/5/9
DS41639A-page 190 Preliminary 2012 Microchip Technology Inc.
20.6.2 TIMER1 GATE SOURCE
SELECTION
Timer1 gate source selections are shown in Table 20-4.
Source selection is controlled by the T1GSS bits of the
T1GCON register. The polarity for each available source
is also selectable. Polarity selection is controlled by the
T1GPOL bit of the T1GCON register.
TABLE 20-4: TIMER1 GATE SOURCES
20.6.2.1 T1G Pin Gate Operation
The T1G pin is one source for Timer1 gate control. It
can be used to supply an external source to the Timer1
gate circuitry.
20.6.2.2 Timer0 Overflow Gate Operation
When Timer0 increments from FFh to 00h, a low-to-
high pulse will automatically be generated and inter-
nally supplied to the Timer1 gate circuitry.
20.6.2.3 Comparator C1 Gate Operation
The output resulting from a Comparator 1 operation can
be selected as a source for Timer1 gate control. The
Comparator 1 output (sync_C1OUT) can be
synchronized to the Timer1 clock or left asynchronous.
For more information see Section 18.4.1 “Comparator
Output Synchronization”.
20.6.2.4 Comparator C2 Gate Operation
The output resulting from a Comparator 2 operation
can be selected as a source for Timer1 gate control.
The Comparator 2 output (sync_C2OUT) can be
synchronized to the Timer1 clock or left asynchronous.
For more information see Section 18.4.1 “Comparator
Output Synchronization”
20.6.3 TIMER1 GATE TOGGLE MODE
When Timer1 Gate Toggle mode is enabled, it is possi-
ble to measure the full-cycle length of a Timer1 gate
signal, as opposed to the duration of a single level
pulse.
The Timer1 gate source is routed through a flip-flop that
changes state on every incrementing edge of the sig-
nal. See Figure 20-4 for timing details.
Timer1 Gate Toggle mode is enabled by setting the
T1GTM bit of the T1GCON register. When the T1GTM
bit is cleared, the flip-flop is cleared and held clear. This
is necessary in order to control which edge is
measured.
20.6.4 TIMER1 GATE SINGLE-PULSE
MODE
When Timer1 Gate Single-Pulse mode is enabled, it is
possible to capture a single-pulse gate event. Timer1
Gate Single-Pulse mode is first enabled by setting the
T1GSPM bit in the T1GCON register. Next, the T1GGO/
DONE bit in the T1GCON register must be set. The
Timer1 will be fully enabled on the next incrementing
edge. On the next trailing edge of the pulse, the T1GGO/
DONE bit will automatically be cleared. No other gate
events will be allowed to increment Timer1 until the
T1GGO/DONE bit is once again set in software. See
Figure 20-5 for timing details.
If the Single-Pulse Gate mode is disabled by clearing the
T1GSPM bit in the T1GCON register, the T1GGO/DONE
bit should also be cleared.
Enabling the Toggle mode and the Single-Pulse mode
simultaneously will permit both sections to work
together. This allows the cycle times on the Timer1 gate
source to be measured. See Figure 20-6 for timing
details.
20.6.5 TIMER1 GATE VALUE STATUS
When Timer1 Gate Value Status is utilized, it is possible
to read the most current level of the gate control value.
The value is stored in the T1GVAL bit in the T1GCON
register. The T1GVAL bit is valid even when the Timer1
gate is not enabled (TMR1GE bit is cleared).
20.6.6 TIMER1 GATE EVENT INTERRUPT
When Timer1 Gate Event Interrupt is enabled, it is pos-
sible to generate an interrupt upon the completion of a
gate event. When the falling edge of T1GVAL occurs,
the TMR1GIF flag bit in the PIR1 register will be set. If
the TMR1GIE bit in the PIE1 register is set, then an
interrupt will be recognized.
The TMR1GIF flag bit operates even when the Timer1
gate is not enabled (TMR1GE bit is cleared).
T1GSS Timer1 Gate Source
00 Timer1 Gate Pin
01 Overflow of Timer0
(TMR0 increments from FFh to 00h)
10 Comparator 1 Output sync_C1OUT
(optionally Timer1 synchronized output)
11 Comparator 2 Output sync_C2OUT
(optionally Timer1 synchronized output)
Note: Enabling Toggle mode at the same time
as changing the gate polarity may result in
indeterminate operation.
2012 Microchip Technology Inc. Preliminary DS41639A-page 191
PIC16(L)F1454/5/9
20.7 Timer1 Interrupt
The Timer1 register pair (TMR1H:TMR1L) increments
to FFFFh and rolls over to 0000h. When Timer1 rolls
over, the Timer1 interrupt flag bit of the PIR1 register is
set. To enable the interrupt on rollover, you must set
these bits:
TMR1ON bit of the T1CON register
TMR1IE bit of the PIE1 register
PEIE bit of the INTCON register
GIE bit of the INTCON register
The interrupt is cleared by clearing the TMR1IF bit in
the Interrupt Service Routine.
20.8 Timer1 Operation During Sleep
Timer1 can only operate during Sleep when setup in
Asynchronous Counter mode. In this mode, an external
crystal or clock source can be used to increment the
counter. To set up the timer to wake the device:
TMR1ON bit of the T1CON register must be set
TMR1IE bit of the PIE1 register must be set
PEIE bit of the INTCON register must be set
T1SYNC bit of the T1CON register must be set
TMR1CS bits of the T1CON register must be
configured
T1OSCEN bit of the T1CON register must be
configured
The device will wake-up on an overflow and execute
the next instructions. If the GIE bit of the INTCON
register is set, the device will call the Interrupt Service
Routine.
Timer1 oscillator will continue to operate in Sleep
regardless of the T1SYNC bit setting.
FIGURE 20-2: TIMER1 INCREMENTING EDGE
Note: The TMR1H:TMR1L register pair and the
TMR1IF bit should be cleared before
enabling interrupts.
T1CKI = 1
when TMR1
Enabled
T1CKI = 0
when TMR1
Enabled
Note 1: Arrows indicate counter increments.
2: In Counter mode, a falling edge must be registered by the counter prior to the first incrementing rising edge of the clock.
PIC16(L)F1454/5/9
DS41639A-page 192 Preliminary 2012 Microchip Technology Inc.
FIGURE 20-3: TIMER1 GATE ENABLE MODE
FIGURE 20-4: TIMER1 GATE TOGGLE MODE
TMR1GE
T1GPOL
t1g_in
T1CKI
T1GVAL
Timer1 N N + 1 N + 2 N + 3 N + 4
TMR1GE
T1GPOL
T1GTM
t1g_in
T1CKI
T1GVAL
Timer1 N N + 1 N + 2 N + 3 N + 4 N + 5 N + 6 N + 7 N + 8
2012 Microchip Technology Inc. Preliminary DS41639A-page 193
PIC16(L)F1454/5/9
FIGURE 20-5: TIMER1 GATE SINGLE-PULSE MODE
TMR1GE
T1GPOL
t1g_in
T1CKI
T1GVAL
Timer1 N N + 1 N + 2
T1GSPM
T1GGO/
DONE
Set by software
Cleared by hardware on
falling edge of T1GVAL
Set by hardware on
falling edge of T1GVAL
Cleared by software
Cleared by
software
TMR1GIF
Counting enabled on
rising edge of T1G
PIC16(L)F1454/5/9
DS41639A-page 194 Preliminary 2012 Microchip Technology Inc.
FIGURE 20-6: TIMER1 GATE SINGLE-PULSE AND TOGGLE COMBINED MODE
TMR1GE
T1GPOL
t1g_in
T1CKI
T1GVAL
Timer1 NN + 1
N + 2
T1GSPM
T1GGO/
DONE
Set by software
Cleared by hardware on
falling edge of T1GVAL
Set by hardware on
falling edge of T1GVAL
Cleared by software
Cleared by
software
TMR1GIF
T1GTM
Counting enabled on
rising edge of T1G
N + 4
N + 3
2012 Microchip Technology Inc. Preliminary DS41639A-page 195
PIC16(L)F1454/5/9
20.9 Register Definitions: Timer1 Control
REGISTER 20-1: T1CON: TIMER1 CONTROL REGISTER
R/W-0/u R/W-0/u R/W-0/u R/W-0/u R/W-0/u R/W-0/u U-0 R/W-0/u
TMR1CS<1:0> T1CKPS<1:0> T1OSCEN T1SYNC —TMR1ON
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-6 TMR1CS<1:0>: Timer1 Clock Source Select bits
11 = Timer1 clock source is Capacitive Sensing Oscillator (CAPOSC)
10 = Timer1 clock source is pin or oscillator:
If T1OSCEN = 0:
External clock from T1CKI pin (on the rising edge)
If T1OSCEN = 1:
Crystal oscillator on T1OSI/T1OSO pins
01 = Timer1 clock source is system clock (FOSC)
00 = Timer1 clock source is instruction clock (FOSC/4)
bit 5-4 T1CKPS<1:0>: Timer1 Input Clock Prescale Select bits
11 = 1:8 Prescale value
10 = 1:4 Prescale value
01 = 1:2 Prescale value
00 = 1:1 Prescale value
bit 3 T1OSCEN: LP Oscillator Enable Control bit
1 = Dedicated Timer1 oscillator circuit enabled
0 = Dedicated Timer1 oscillator circuit disabled
bit 2 T1SYNC: Timer1 Synchronization Control bit
1 = Do not synchronize asynchronous clock input
0 = Synchronize asynchronous clock input with system clock (FOSC)
bit 1 Unimplemented: Read as0
bit 0 TMR1ON: Timer1 On bit
1 = Enables Timer1
0 = Stops Timer1 and clears Timer1 gate flip-flop
PIC16(L)F1454/5/9
DS41639A-page 196 Preliminary 2012 Microchip Technology Inc.
REGISTER 20-2: T1GCON: TIMER1 GATE CONTROL REGISTER
R/W-0/u R/W-0/u R/W-0/u R/W-0/u R/W/HC-0/u R-x/x R/W-0/u R/W-0/u
TMR1GE T1GPOL T1GTM T1GSPM T1GGO/
DONE
T1GVAL T1GSS<1:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared HC = Bit is cleared by hardware
bit 7 TMR1GE: Timer1 Gate Enable bit
If TMR1ON = 0:
This bit is ignored
If TMR1ON = 1:
1 = Timer1 counting is controlled by the Timer1 gate function
0 = Timer1 counts regardless of Timer1 gate function
bit 6 T1GPOL: Timer1 Gate Polarity bit
1 = Timer1 gate is active-high (Timer1 counts when gate is high)
0 = Timer1 gate is active-low (Timer1 counts when gate is low)
bit 5 T1GTM: Timer1 Gate Toggle Mode bit
1 = Timer1 Gate Toggle mode is enabled
0 = Timer1 Gate Toggle mode is disabled and toggle flip-flop is cleared
Timer1 gate flip-flop toggles on every rising edge.
bit 4 T1GSPM: Timer1 Gate Single-Pulse Mode bit
1 = Timer1 Gate Single-Pulse mode is enabled and is controlling Timer1 gate
0 = Timer1 Gate Single-Pulse mode is disabled
bit 3 T1GGO/DONE: Timer1 Gate Single-Pulse Acquisition Status bit
1 = Timer1 gate single-pulse acquisition is ready, waiting for an edge
0 = Timer1 gate single-pulse acquisition has completed or has not been started
bit 2 T1GVAL: Timer1 Gate Current State bit
Indicates the current state of the Timer1 gate that could be provided to TMR1H:TMR1L.
Unaffected by Timer1 Gate Enable (TMR1GE).
bit 1-0 T1GSS<1:0>: Timer1 Gate Source Select bits
11 = Comparator 2 optionally synchronized output (sync_C2OUT)
10 = Comparator 1 optionally synchronized output (sync_C1OUT)
01 = Timer0 overflow output
00 = Timer1 gate pin
2012 Microchip Technology Inc. Preliminary DS41639A-page 197
PIC16(L)F1454/5/9
TABLE 20-5: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER1
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register
on Page
ANSELA(3) —ANSA4 133
APFCON CLKRSEL SDOSEL(2) SSSEL —T1GSELP2SEL(2) 130
INTCON GIE PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF 96
PIE1 TMR1GIE ADIE(3) RCIE TXIE SSP1IE TMR2IE TMR1IE 97
PIR1 TMR1GIF ADIF(3) RCIF TXIF SSP1IF TMR2IF TMR1IF 99
TMR1H Holding Register for the Most Significant Byte of the 16-bit TMR1 Count 187*
TMR1L Holding Register for the Least Significant Byte of the 16-bit TMR1 Count 187*
TRISA TRISA5 TRISA4 (1) (1) (1) 132
T1CON TMR1CS<1:0> T1CKPS<1:0> T1OSCEN T1SYNC —TMR1ON195
T1GCON TMR1GE T1GPOL T1GTM T1GSPM T1GGO/
DONE
T1GVAL T1GSS<1:0> 196
Legend: = unimplemented location, read as ‘0’. Shaded cells are not used by the Timer1 module.
* Page provides register information.
Note 1: Unimplemented, read as ‘1’.
2: PIC16(L)F1455 only.
3: PIC16(L)F1455/9 only.
PIC16(L)F1454/5/9
DS41639A-page 198 Preliminary 2012 Microchip Technology Inc.
NOTES:
2012 Microchip Technology Inc. Preliminary DS41639A-page 199
PIC16(L)F1454/5/9
21.0 TIMER2 MODULE
The Timer2 module incorporates the following features:
8-bit Timer and Period registers (TMR2 and PR2,
respectively)
Readable and writable (both registers)
Software programmable prescaler (1:1, 1:4, 1:16,
and 1:64)
Software programmable postscaler (1:1 to 1:16)
Interrupt on TMR2 match with PR2, respectively
Optional use as the shift clock for the MSSP
module (Timer2 only)
See Figure 21-1 for a block diagram of Timer2.
FIGURE 21-1: TIMER2 BLOCK DIAGRAM
Comparator
TMR2 Sets Flag
TMR2
Output
Reset
Postscaler
Prescaler
PR2
2
FOSC/4
1:1 to 1:16
1:1, 1:4, 1:16, 1:64
EQ
4
bit TMR2IF
T2OUTPS<3:0>
T2CKPS<1:0>
PIC16(L)F1454/5/9
DS41639A-page 200 Preliminary 2012 Microchip Technology Inc.
21.1 Timer2 Operation
The clock input to the Timer2 module is the system
instruction clock (FOSC/4).
TMR2 increments from 00h on each clock edge.
A 4-bit counter/prescaler on the clock input allows direct
input, divide-by-4 and divide-by-16 prescale options.
These options are selected by the prescaler control bits,
T2CKPS<1:0> of the T2CON register. The value of
TMR2 is compared to that of the Period register, PR2, on
each clock cycle. When the two values match, the
comparator generates a match signal as the timer
output. This signal also resets the value of TMR2 to 00h
on the next cycle and drives the output counter/
postscaler (see Section 21.2 “Timer2 Interrupt”).
The TMR2 and PR2 registers are both directly readable
and writable. The TMR2 register is cleared on any
device Reset, whereas the PR2 register initializes to
FFh. Both the prescaler and postscaler counters are
cleared on the following events:
a write to the TMR2 register
a write to the T2CON register
Power-on Reset (POR)
Brown-out Reset (BOR)
•MCLR
Reset
Watchdog Timer (WDT) Reset
Stack Overflow Reset
Stack Underflow Reset
RESET Instruction
21.2 Timer2 Interrupt
Timer2 can also generate an optional device interrupt.
The Timer2 output signal (TMR2-to-PR2 match)
provides the input for the 4-bit counter/postscaler. This
counter generates the TMR2 match interrupt flag which
is latched in TMR2IF of the PIR1 register. The interrupt
is enabled by setting the TMR2 Match Interrupt Enable
bit, TMR2IE of the PIE1 register.
A range of 16 postscale options (from 1:1 through 1:16
inclusive) can be selected with the postscaler control
bits, T2OUTPS<3:0>, of the T2CON register.
21.3 Timer2 Output
The unscaled output of TMR2 is available primarily to
the PWM module, where it is used as a time base for
operation.
Timer2 can be optionally used as the shift clock source
for the MSSP module operating in SPI mode.
Additional information is provided in Section 22.1
“Master SSP (MSSP) Module Overview”.
21.4 Timer2 Operation During Sleep
Timer2 cannot be operated while the processor is in
Sleep mode. The contents of the TMR2 and PR2
registers will remain unchanged while the processor is
in Sleep mode.
Note: TMR2 is not cleared when T2CON is
written.
2012 Microchip Technology Inc. Preliminary DS41639A-page 201
PIC16(L)F1454/5/9
21.5 Register Definitions: Timer2 Control
REGISTER 21-1: T2CON: TIMER2 CONTROL REGISTER
U-0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0
T2OUTPS<3:0> TMR2ON T2CKPS<1:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7 Unimplemented: Read as0
bit 6-3 T2OUTPS<3:0>: Timer2 Output Postscaler Select bits
1111 = 1:16 Postscaler
1110 = 1:15 Postscaler
1101 = 1:14 Postscaler
1100 = 1:13 Postscaler
1011 = 1:12 Postscaler
1010 = 1:11 Postscaler
1001 = 1:10 Postscaler
1000 = 1:9 Postscaler
0111 = 1:8 Postscaler
0110 = 1:7 Postscaler
0101 = 1:6 Postscaler
0100 = 1:5 Postscaler
0011 = 1:4 Postscaler
0010 = 1:3 Postscaler
0001 = 1:2 Postscaler
0000 = 1:1 Postscaler
bit 2 TMR2ON: Timer2 On bit
1 = Timer2 is on
0 = Timer2 is off
bit 1-0 T2CKPS<1:0>: Timer2 Clock Prescale Select bits
11 = Prescaler is 64
10 = Prescaler is 16
01 =Prescaler is 4
00 =Prescaler is 1
PIC16(L)F1454/5/9
DS41639A-page 202 Preliminary 2012 Microchip Technology Inc.
TABLE 21-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER2
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register
on Page
INTCON GIE PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF 96
PIE1 TMR1GIE ADIE(1) RCIE TXIE SSP1IE —TMR2IETMR1IE 97
PIR1 TMR1GIF ADIF(1) RCIF TXIF SSP1IF TMR2IF TMR1IF 99
PR2 Timer2 Module Period Register 199*
PWM1CON PWM1EN PWM1OE PWM1OUT PWM1POL 291
PWM2CON PWM2EN PWM2OE PWM2OUT PWM2POL 291
T2CON T2OUTPS<3:0> TMR2ON T2CKPS<1:0> 201
TMR2 Holding Register for the 8-bit TMR2 Count 199*
Legend: — = unimplemented location, read as ‘0’. Shaded cells are not used for Timer2 module.
* Page provides register information.
Note 1: PIC16(L)F1455/9 only.
2012 Microchip Technology Inc. Preliminary DS41639A-page 203
PIC16(L)F1454/5/9
22.0 MASTER SYNCHRONOUS
SERIAL PORT (MSSP)
MODULE
22.1 Master SSP (MSSP) Module
Overview
The Master Synchronous Serial Port (MSSP) module is
a serial interface useful for communicating with other
peripheral or microcontroller devices. These peripheral
devices may be serial EEPROMs, shift registers, dis-
play drivers, A/D converters, etc. The MSSPx module
can operate in one of two modes:
Serial Peripheral Interface (SPI)
Inter-Integrated Circuit (I2C™)
The SPI interface supports the following modes and
features:
•Master mode
Slave mode
Clock Parity
Slave Select Synchronization (Slave mode only)
Daisy-chain connection of slave devices
Figure 22-1 is a block diagram of the SPI interface
module.
FIGURE 22-1: MSSP BLOCK DIAGRAM (SPI MODE)
( )
Read Write
Data Bus
SSPSR Reg
SSPM<3:0>
bit 0 Shift
Clock
SS Control
Enable
Edge
Select
Clock Select
TMR2 Output
2
Edge
Select
2 (CKP, CKE)
4
TRIS bit
SDO
SSPBUF Reg
SDI
SS
SCK TOSC
Prescaler
4, 16, 64
Baud Rate
Generator
(SSPADD)
SCK_out
SDO_out
PIC16(L)F1454/5/9
DS41639A-page 204 Preliminary 2012 Microchip Technology Inc.
The I2C interface supports the following modes and
features:
•Master mode
Slave mode
Byte NACKing (Slave mode)
Limited Multi-master support
7-bit and 10-bit addressing
Start and Stop interrupts
Interrupt masking
Clock stretching
Bus collision detection
General call address matching
•Address masking
Address Hold and Data Hold modes
Selectable SDA hold times
Figure 22-2 is a block diagram of the I2C interface mod-
ule in Master mode. Figure 22-3 is a diagram of the I2C
interface module in Slave mode.
FIGURE 22-2: MSSP BLOCK DIAGRAM (I2C™ MASTER MODE)
Read Write
SSPSR
Start bit, Stop bit,
Start bit detect,
SSP1BUF
Internal
Data Bus
Set/Reset: S, P, SSP1STAT, WCOL, SSPOV
Shift
Clock
MSb LSb
SDA
Acknowledge
Generate (SSPCON2)
Stop bit detect
Write collision detect
Clock arbitration
State counter for
end of XMIT/RCV
SCL
SCL in
Bus Collision
SDA in
Receive Enable (RCEN)
Clock Cntl
Clock arbitrate/BCOL detect
(Hold off clock source)
[SSPM<3:0>]
Baud Rate
Reset SEN, PEN (SSPCON2)
Generator
(SSPADD)
Address Match detect
Set SSPIF, BCLIF
2012 Microchip Technology Inc. Preliminary DS41639A-page 205
PIC16(L)F1454/5/9
FIGURE 22-3: MSSP BLOCK DIAGRAM (I2C™ SLAVE MODE)
Read Write
SSPSR Reg
Match Detect
SSPADD Reg
Start and
Stop bit Detect
SSPBUF Reg
Internal
Data Bus
Addr Match
Set, Reset
S, P bits
(SSPSTAT Reg)
SCL
SDA
Shift
Clock
MSb LSb
SSPMSK Reg
PIC16(L)F1454/5/9
DS41639A-page 206 Preliminary 2012 Microchip Technology Inc.
22.2 SPI Mode Overview
The Serial Peripheral Interface (SPI) bus is a
synchronous serial data communication bus that
operates in Full-Duplex mode. Devices communicate
in a master/slave environment where the master device
initiates the communication. A slave device is
controlled through a Chip Select known as Slave
Select.
The SPI bus specifies four signal connections:
Serial Clock (SCK)
Serial Data Out (SDO)
Serial Data In (SDI)
Slave Select (SS)
Figure 22-1 shows the block diagram of the MSSP
module when operating in SPI mode.
The SPI bus operates with a single master device and
one or more slave devices. When multiple slave
devices are used, an independent Slave Select con-
nection is required from the master device to each
slave device.
Figure 22-4 shows a typical connection between a
master device and multiple slave devices.
The master selects only one slave at a time. Most slave
devices have tri-state outputs so their output signal
appears disconnected from the bus when they are not
selected.
Transmissions involve two shift registers, eight bits in
size, one in the master and one in the slave. With either
the master or the slave device, data is always shifted
out one bit at a time, with the Most Significant bit (MSb)
shifted out first. At the same time, a new Least
Significant bit (LSb) is shifted into the same register.
Figure 22-5 shows a typical connection between two
processors configured as master and slave devices.
Data is shifted out of both shift registers on the pro-
grammed clock edge and latched on the opposite edge
of the clock.
The master device transmits information out on its SDO
output pin which is connected to, and received by, the
slave's SDI input pin. The slave device transmits infor-
mation out on its SDO output pin, which is connected
to, and received by, the master's SDI input pin.
To begin communication, the master device first sends
out the clock signal. Both the master and the slave
devices should be configured for the same clock polar-
ity.
The master device starts a transmission by sending out
the MSb from its shift register. The slave device reads
this bit from that same line and saves it into the LSb
position of its shift register.
During each SPI clock cycle, a full-duplex data
transmission occurs. This means that while the master
device is sending out the MSb from its shift register (on
its SDO pin) and the slave device is reading this bit and
saving it as the LSb of its shift register, that the slave
device is also sending out the MSb from its shift register
(on its SDO pin) and the master device is reading this
bit and saving it as the LSb of its shift register.
After eight bits have been shifted out, the master and
slave have exchanged register values.
If there is more data to exchange, the shift registers are
loaded with new data and the process repeats itself.
Whether the data is meaningful or not (dummy data),
depends on the application software. This leads to
three scenarios for data transmission:
Master sends useful data and slave sends dummy
data.
Master sends useful data and slave sends useful
data.
Master sends dummy data and slave sends useful
data.
Transmissions may involve any number of clock
cycles. When there is no more data to be transmitted,
the master stops sending the clock signal and it dese-
lects the slave.
Every slave device connected to the bus that has not
been selected through its slave select line must disre-
gard the clock and transmission signals and must not
transmit out any data of its own.
2012 Microchip Technology Inc. Preliminary DS41639A-page 207
PIC16(L)F1454/5/9
FIGURE 22-4: SPI MASTER AND MULTIPLE SLAVE CONNECTION
22.2.1 SPI MODE REGISTERS
The MSSP module has five registers for SPI mode
operation. These are:
MSSP STATUS register (SSPSTAT)
MSSP Control Register 1 (SSPCON1)
MSSP Control Register 3 (SSPCON3)
MSSP Data Buffer register (SSPBUF)
MSSP Address register (SSPADD)
MSSP Shift register (SSPSR)
(Not directly accessible)
SSPCON1 and SSPSTAT are the control and STATUS
registers in SPI mode operation. The SSPCON1 regis-
ter is readable and writable. The lower six bits of the
SSPSTAT are read-only. The upper two bits of the
SSPSTAT are read/write.
In one SPI master mode, SSPADD can be loaded with
a value used in the Baud Rate Generator. More infor-
mation on the Baud Rate Generator is available in
Section 22.7 “Baud Rate Generator”.
SSPSR is the shift register used for shifting data in and
out. SSPBUF provides indirect access to the SSPSR
register. SSPBUF is the buffer register to which data
bytes are written, and from which data bytes are read.
In receive operations, SSPSR and SSPBUF together
create a buffered receiver. When SSPSR receives a
complete byte, it is transferred to SSPBUF and the
SSPIF interrupt is set.
During transmission, the SSPBUF is not buffered. A
write to SSPBUF will write to both SSPBUF and
SSPSR.
SPI Master SCK
SDO
SDI
General I/O
General I/O
General I/O
SCK
SDI
SDO
SS
SPI Slave
#1
SCK
SDI
SDO
SS
SPI Slave
#2
SCK
SDI
SDO
SS
SPI Slave
#3
PIC16(L)F1454/5/9
DS41639A-page 208 Preliminary 2012 Microchip Technology Inc.
22.2.2 SPI MODE OPERATION
When initializing the SPI, several options need to be
specified. This is done by programming the appropriate
control bits (SSPCON1<5:0> and SSPSTAT<7:6>).
These control bits allow the following to be specified:
Master mode (SCK is the clock output)
Slave mode (SCK is the clock input)
Clock Polarity (Idle state of SCK)
Data Input Sample Phase (middle or end of data
output time)
Clock Edge (output data on rising/falling edge of
SCK)
Clock Rate (Master mode only)
Slave Select mode (Slave mode only)
To enable the serial port, SSP Enable bit, SSPEN of the
SSPCON1 register, must be set. To reset or reconfig-
ure SPI mode, clear the SSPEN bit, re-initialize the
SSPCONx registers and then set the SSPEN bit. This
configures the SDI, SDO, SCK and SS pins as serial
port pins. For the pins to behave as the serial port func-
tion, some must have their data direction bits (in the
TRIS register) appropriately programmed as follows:
SDI must have corresponding TRIS bit set
SDO must have corresponding TRIS bit cleared
SCK (Master mode) must have corresponding
TRIS bit cleared
SCK (Slave mode) must have corresponding
TRIS bit set
•SS
must have corresponding TRIS bit set
Any serial port function that is not desired may be
overridden by programming the corresponding data
direction (TRIS) register to the opposite value.
The MSSP consists of a transmit/receive shift register
(SSPSR) and a buffer register (SSPBUF). The SSPSR
shifts the data in and out of the device, MSb first. The
SSPBUF holds the data that was written to the SSPSR
until the received data is ready. Once the eight bits of
data have been received, that byte is moved to the
SSPBUF register. Then, the Buffer Full Detect bit, BF
of the SSPSTAT register, and the interrupt flag bit,
SSPIF, are set. This double-buffering of the received
data (SSPBUF) allows the next byte to start reception
before reading the data that was just received. Any
write to the SSPBUF register during
transmission/reception of data will be ignored and the
write collision detect bit WCOL of the SSPCON1
register, will be set. User software must clear the
WCOL bit to allow the following write(s) to the SSPBUF
register to complete successfully.
When the application software is expecting to receive
valid data, the SSPBUF should be read before the next
byte of data to transfer is written to the SSPBUF. The
Buffer Full bit, BF of the SSPSTAT register, indicates
when SSPBUF has been loaded with the received data
(transmission is complete). When the SSPBUF is read,
the BF bit is cleared. This data may be irrelevant if the
SPI is only a transmitter. Generally, the MSSP interrupt
is used to determine when the transmission/reception
has completed. If the interrupt method is not going to
be used, then software polling can be done to ensure
that a write collision does not occur.
The SSPSR is not directly readable or writable and can
only be accessed by addressing the SSPBUF register.
Additionally, the SSPSTAT register indicates the
various Status conditions.
FIGURE 22-5: SPI MASTER/SLAVE CONNECTION
Serial Input Buffer
(BUF)
Shift Register
(SSPSR)
MSb LSb
SDO
SDI
Processor 1
SCK
SPI Master SSPM<3:0> = 00xx
Serial Input Buffer
(SSPBUF)
Shift Register
(SSPSR)
LSb
MSb
SDI
SDO
Processor 2
SCK
SPI Slave SSPM<3:0> = 010x
Serial Clock
SS
Slave Select
General I/O (optional)
= 1010
2012 Microchip Technology Inc. Preliminary DS41639A-page 209
PIC16(L)F1454/5/9
22.2.3 SPI MASTER MODE
The master can initiate the data transfer at any time
because it controls the SCK line. The master
determines when the slave (Processor 2, Figure 22-5)
is to broadcast data by the software protocol.
In Master mode, the data is transmitted/received as
soon as the SSPBUF register is written to. If the SPI is
only going to receive, the SDO output could be dis-
abled (programmed as an input). The SSPSR register
will continue to shift in the signal present on the SDI pin
at the programmed clock rate. As each byte is
received, it will be loaded into the SSPBUF register as
if a normal received byte (interrupts and Status bits
appropriately set).
The clock polarity is selected by appropriately
programming the CKP bit of the SSPCON1 register
and the CKE bit of the SSPSTAT register. This then,
would give waveforms for SPI communication as
shown in Figure 22-6, Figure 22-8, Figure 22-9 and
Figure 22-10, where the MSB is transmitted first. In
Master mode, the SPI clock rate (bit rate) is user
programmable to be one of the following:
•F
OSC/4 (or TCY)
•F
OSC/16 (or 4 * TCY)
•F
OSC/64 (or 16 * TCY)
Timer2 output/2
Fosc/(4 * (SSPADD + 1))
Figure 22-6 shows the waveforms for Master mode.
When the CKE bit is set, the SDO data is valid before
there is a clock edge on SCK. The change of the input
sample is shown based on the state of the SMP bit. The
time when the SSPBUF is loaded with the received
data is shown.
FIGURE 22-6: SPI MODE WAVEFORM (MASTER MODE)
SCK
(CKP = 0
SCK
(CKP = 1
SCK
(CKP = 0
SCK
(CKP = 1
4 Clock
Modes
Input
Sample
Input
Sample
SDI
bit 7 bit 0
SDO bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
bit 7
SDI
SSPIF
(SMP = 1)
(SMP = 0)
(SMP = 1)
CKE = 1)
CKE = 0)
CKE = 1)
CKE = 0)
(SMP = 0)
Write to
SSPBUF
SSPSR to
SSPBUF
SDO bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
(CKE = 0)
(CKE = 1)
bit 0
PIC16(L)F1454/5/9
DS41639A-page 210 Preliminary 2012 Microchip Technology Inc.
22.2.4 SPI SLAVE MODE
In Slave mode, the data is transmitted and received as
external clock pulses appear on SCK. When the last
bit is latched, the SSPIF interrupt flag bit is set.
Before enabling the module in SPI Slave mode, the clock
line must match the proper Idle state. The clock line can
be observed by reading the SCK pin. The Idle state is
determined by the CKP bit of the SSPCON1 register.
While in Slave mode, the external clock is supplied by
the external clock source on the SCK pin. This external
clock must meet the minimum high and low times as
specified in the electrical specifications.
While in Sleep mode, the slave can transmit/receive
data. The shift register is clocked from the SCK pin
input and when a byte is received, the device will gen-
erate an interrupt. If enabled, the device will wake-up
from Sleep.
22.2.4.1 Daisy-Chain Configuration
The SPI bus can sometimes be connected in a
daisy-chain configuration. The first slave output is con-
nected to the second slave input, the second slave
output is connected to the third slave input, and so on.
The final slave output is connected to the master input.
Each slave sends out, during a second group of clock
pulses, an exact copy of what was received during the
first group of clock pulses. The whole chain acts as
one large communication shift register. The
daisy-chain feature only requires a single Slave Select
line from the master device.
Figure 22-7 shows the block diagram of a typical
daisy-chain connection when operating in SPI Mode.
In a daisy-chain configuration, only the most recent
byte on the bus is required by the slave. Setting the
BOEN bit of the SSPCON3 register will enable writes
to the SSPBUF register, even if the previous byte has
not been read. This allows the software to ignore data
that may not apply to it.
22.2.5 SLAVE SELECT
SYNCHRONIZATION
The Slave Select can also be used to synchronize com-
munication. The Slave Select line is held high until the
master device is ready to communicate. When the
Slave Select line is pulled low, the slave knows that a
new transmission is starting.
If the slave fails to receive the communication properly,
it will be reset at the end of the transmission, when the
Slave Select line returns to a high state. The slave is
then ready to receive a new transmission when the
Slave Select line is pulled low again. If the Slave Select
line is not used, there is a risk that the slave will even-
tually become out of sync with the master. If the slave
misses a bit, it will always be one bit off in future trans-
missions. Use of the Slave Select line allows the slave
and master to align themselves at the beginning of
each transmission.
The SS pin allows a Synchronous Slave mode. The
SPI must be in Slave mode with SS pin control enabled
(SSPCON1<3:0> = 0100).
When the SS pin is low, transmission and reception are
enabled and the SDO pin is driven.
When the SS pin goes high, the SDO pin is no longer
driven, even if in the middle of a transmitted byte and
becomes a floating output. External pull-up/pull-down
resistors may be desirable depending on the applica-
tion.
When the SPI module resets, the bit counter is forced
to ‘0’. This can be done by either forcing the SS pin to
a high level or clearing the SSPEN bit.
Note 1: When the SPI is in Slave mode with SS pin
control enabled (SSPCON1<3:0> =
0100), the SPI module will reset if the SS
pin is set to VDD.
2: When the SPI is used in Slave mode with
CKE set; the user must enable SS pin
control.
3: While operated in SPI Slave mode the
SMP bit of the SSPSTAT register must
remain clear.
2012 Microchip Technology Inc. Preliminary DS41639A-page 211
PIC16(L)F1454/5/9
FIGURE 22-7: SPI DAISY-CHAIN CONNECTION
FIGURE 22-8: SLAVE SELECT SYNCHRONOUS WAVEFORM
SPI Master SCK
SDO
SDI
General I/O
SCK
SDI
SDO
SS
SPI Slave
#1
SCK
SDI
SDO
SS
SPI Slave
#2
SCK
SDI
SDO
SS
SPI Slave
#3
SCK
(CKP = 1
SCK
(CKP = 0
Input
Sample
SDI
bit 7
SDO bit 7 bit 6 bit 7
SSPIF
Interrupt
CKE = 0)
CKE = 0)
Write to
SSPBUF
SSPSR to
SSPBUF
SS
Flag
bit 0
bit 7
bit 0
bit 6
SSPBUF to
SSPSR
Shift register SSPSR
and bit count are reset
PIC16(L)F1454/5/9
DS41639A-page 212 Preliminary 2012 Microchip Technology Inc.
FIGURE 22-9: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 0)
FIGURE 22-10: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)
SCK
(CKP = 1
SCK
(CKP = 0
Input
Sample
SDI
bit 7
SDO bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
SSPIF
Interrupt
CKE = 0)
CKE = 0)
Write to
SSPBUF
SSPSR to
SSPBUF
SS
Flag
Optional
bit 0
detection active
Write Collision
Valid
SCK
(CKP = 1
SCK
(CKP = 0
Input
Sample
SDI
bit 7 bit 0
SDO bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
SSPIF
Interrupt
CKE = 1)
CKE = 1)
Write to
SSPBUF
SSPSR to
SSPBUF
SS
Flag
Not Optional
Write Collision
detection active
Valid
2012 Microchip Technology Inc. Preliminary DS41639A-page 213
PIC16(L)F1454/5/9
22.2.6 SPI OPERATION IN SLEEP MODE
In SPI Master mode, module clocks may be operating
at a different speed than when in full power mode; in
the case of the Sleep mode, all clocks are halted.
Special care must be taken by the user when the MSSP
clock is much faster than the system clock.
In Slave mode, when MSSP interrupts are enabled,
after the master completes sending data, an MSSP
interrupt will wake the controller from Sleep.
If an exit from Sleep mode is not desired, MSSP inter-
rupts should be disabled.
In SPI Master mode, when the Sleep mode is selected,
all module clocks are halted and the transmis-
sion/reception will remain in that state until the device
wakes. After the device returns to Run mode, the mod-
ule will resume transmitting and receiving data.
In SPI Slave mode, the SPI Transmit/Receive Shift
register operates asynchronously to the device. This
allows the device to be placed in Sleep mode and data
to be shifted into the SPI Transmit/Receive Shift
register. When all eight bits have been received, the
MSSP interrupt flag bit will be set and if enabled, will
wake the device.
TABLE 22-1: SUMMARY OF REGISTERS ASSOCIATED WITH SPI OPERATION
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register
on Page
ANSELA(3) ANSA4 133
INTCON GIE PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF 96
PIE1 TMR1GIE ADIE(3) RCIE TXIE SSP1IE TMR2IE TMR1IE 97
PIR1 TMR1GIF ADIF(3) RCIF TXIF SSP1IF TMR2IF TMR1IF 99
SSP1BUF Synchronous Serial Port Receive Buffer/Transmit Register 207*
SSP1CON1 WCOL SSPOV SSPEN CKP SSPM<3:0> 253
SSP1CON3 ACKTIM PCIE SCIE BOEN SDAHT SBCDE AHEN DHEN 255
SSP1STAT SMP CKE D/A P S R/W UA BF 251
TRISA TRISA5 TRISA4 (1) (1) (1) 132
TRISC TRISC7(2) TRISC6(2) TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 140
Legend: — = Unimplemented location, read as ‘0’. Shaded cells are not used by the MSSP in SPI mode.
* Page provides register information.
Note 1: Unimplemented, read as ‘1’.
2: PIC16(L)F1459 only.
3: PIC16(L)F1455/9 only.
PIC16(L)F1454/5/9
DS41639A-page 214 Preliminary 2012 Microchip Technology Inc.
22.3 I2C MODE OVERVIEW
The Inter-Integrated Circuit Bus (I²C) is a multi-master
serial data communication bus. Devices communicate
in a master/slave environment where the master
devices initiate the communication. A Slave device is
controlled through addressing.
The I2C bus specifies two signal connections:
Serial Clock (SCL)
Serial Data (SDA)
Figure 22-11 shows the block diagram of the MSSP
module when operating in I2C mode.
Both the SCL and SDA connections are bidirectional
open-drain lines, each requiring pull-up resistors for the
supply voltage. Pulling the line to ground is considered
a logical zero and letting the line float is considered a
logical one.
Figure 22-11 shows a typical connection between two
processors configured as master and slave devices.
The I2C bus can operate with one or more master
devices and one or more slave devices.
There are four potential modes of operation for a given
device:
Master Transmit mode
(master is transmitting data to a slave)
Master Receive mode
(master is receiving data from a slave)
•Slave Transmit mode
(slave is transmitting data to a master)
Slave Receive mode
(slave is receiving data from the master)
To begin communication, a master device starts out in
Master Transmit mode. The master device sends out a
Start bit followed by the address byte of the slave it
intends to communicate with. This is followed by a sin-
gle Read/Write bit, which determines whether the mas-
ter intends to transmit to or receive data from the slave
device.
If the requested slave exists on the bus, it will respond
with an Acknowledge bit, otherwise known as an ACK.
The master then continues in either Transmit mode or
Receive mode and the slave continues in the comple-
ment, either in Receive mode or Transmit mode,
respectively.
A Start bit is indicated by a high-to-low transition of the
SDA line while the SCL line is held high. Address and
data bytes are sent out, Most Significant bit (MSb) first.
The Read/Write bit is sent out as a logical one when the
master intends to read data from the slave, and is sent
out as a logical zero when it intends to write data to the
slave.
FIGURE 22-11: I2C MASTER/
SLAVE CONNECTION
The Acknowledge bit (ACK) is an active-low signal,
which holds the SDA line low to indicate to the transmit-
ter that the slave device has received the transmitted
data and is ready to receive more.
The transition of a data bit is always performed while
the SCL line is held low. Transitions that occur while the
SCL line is held high are used to indicate Start and Stop
bits.
If the master intends to write to the slave, then it repeat-
edly sends out a byte of data, with the slave responding
after each byte with an ACK bit. In this example, the
master device is in Master Transmit mode and the
slave is in Slave Receive mode.
If the master intends to read from the slave, then it
repeatedly receives a byte of data from the slave, and
responds after each byte with an ACK bit. In this exam-
ple, the master device is in Master Receive mode and
the slave is Slave Transmit mode.
On the last byte of data communicated, the master
device may end the transmission by sending a Stop bit.
If the master device is in Receive mode, it sends the
Stop bit in place of the last ACK bit. A Stop bit is indi-
cated by a low-to-high transition of the SDA line while
the SCL line is held high.
In some cases, the master may want to maintain con-
trol of the bus and re-initiate another transmission. If
so, the master device may send another Start bit in
place of the Stop bit or last ACK bit when it is in receive
mode.
The I2C bus specifies three message protocols;
Single message where a master writes data to a
slave.
Single message where a master reads data from
a slave.
Combined message where a master initiates a
minimum of two writes, or two reads, or a
combination of writes and reads, to one or more
slaves.
Master
SCL
SDA
SCL
SDA
Slave
VDD
VDD
2012 Microchip Technology Inc. Preliminary DS41639A-page 215
PIC16(L)F1454/5/9
When one device is transmitting a logical one, or letting
the line float, and a second device is transmitting a log-
ical zero, or holding the line low, the first device can
detect that the line is not a logical one. This detection,
when used on the SCL line, is called clock stretching.
Clock stretching gives slave devices a mechanism to
control the flow of data. When this detection is used on
the SDA line, it is called arbitration. Arbitration ensures
that there is only one master device communicating at
any single time.
22.3.1 CLOCK STRETCHING
When a slave device has not completed processing
data, it can delay the transfer of more data through the
process of Clock Stretching. An addressed slave
device may hold the SCL clock line low after receiving
or sending a bit, indicating that it is not yet ready to con-
tinue. The master that is communicating with the slave
will attempt to raise the SCL line in order to transfer the
next bit, but will detect that the clock line has not yet
been released. Because the SCL connection is
open-drain, the slave has the ability to hold that line low
until it is ready to continue communicating.
Clock stretching allows receivers that cannot keep up
with a transmitter to control the flow of incoming data.
22.3.2 ARBITRATION
Each master device must monitor the bus for Start and
Stop bits. If the device detects that the bus is busy, it
cannot begin a new message until the bus returns to an
Idle state.
However, two master devices may try to initiate a trans-
mission on or about the same time. When this occurs,
the process of arbitration begins. Each transmitter
checks the level of the SDA data line and compares it
to the level that it expects to find. The first transmitter to
observe that the two levels do not match, loses arbitra-
tion, and must stop transmitting on the SDA line.
For example, if one transmitter holds the SDA line to a
logical one (lets it float) and a second transmitter holds
it to a logical zero (pulls it low), the result is that the
SDA line will be low. The first transmitter then observes
that the level of the line is different than expected and
concludes that another transmitter is communicating.
The first transmitter to notice this difference is the one
that loses arbitration and must stop driving the SDA
line. If this transmitter is also a master device, it also
must stop driving the SCL line. It then can monitor the
lines for a Stop condition before trying to reissue its
transmission. In the meantime, the other device that
has not noticed any difference between the expected
and actual levels on the SDA line continues with its
original transmission. It can do so without any compli-
cations, because so far, the transmission appears
exactly as expected with no other transmitter disturbing
the message.
Slave Transmit mode can also be arbitrated, when a
master addresses multiple slaves, but this is less com-
mon.
If two master devices are sending a message to two dif-
ferent slave devices at the address stage, the master
sending the lower slave address always wins arbitra-
tion. When two master devices send messages to the
same slave address, and addresses can sometimes
refer to multiple slaves, the arbitration process must
continue into the data stage.
Arbitration usually occurs very rarely, but it is a neces-
sary process for proper multi-master support.
PIC16(L)F1454/5/9
DS41639A-page 216 Preliminary 2012 Microchip Technology Inc.
22.4 I2C MODE OPERATION
All MSSP I2C communication is byte oriented and
shifted out MSb first. Six SFR registers and two
interrupt flags interface the module with the PIC®
microcontroller and user software. Two pins, SDA and
SCL, are exercised by the module to communicate
with other external I2C devices.
22.4.1 BYTE FORMAT
All communication in I2C is done in 9-bit segments. A
byte is sent from a master to a slave or vice-versa, fol-
lowed by an Acknowledge bit sent back. After the 8th
falling edge of the SCL line, the device outputting data
on the SDA changes that pin to an input and reads in
an acknowledge value on the next clock pulse.
The clock signal, SCL, is provided by the master. Data
is valid to change while the SCL signal is low, and
sampled on the rising edge of the clock. Changes on
the SDA line while the SCL line is high define special
conditions on the bus, explained below.
22.4.2 DEFINITION OF I2C TERMINOLOGY
There is language and terminology in the description
of I2C communication that have definitions specific to
I2C. That word usage is defined below and may be
used in the rest of this document without explanation.
This table was adapted from the Philips I2C
specification.
22.4.3 SDA AND SCL PINS
Selection of any I2C mode with the SSPEN bit set,
forces the SCL and SDA pins to be open-drain. These
pins should be set by the user to inputs by setting the
appropriate TRIS bits.
22.4.4 SDA HOLD TIME
The hold time of the SDA pin is selected by the SDAHT
bit of the SSPCON3 register. Hold time is the time SDA
is held valid after the falling edge of SCL. Setting the
SDAHT bit selects a longer 300 ns minimum hold time
and may help on buses with large capacitance.
TABLE 22-2: I2C BUS TERMS
Note: Data is tied to output zero when an I2C
mode is enabled.
TERM Description
Transmitter The device which shifts data out
onto the bus.
Receiver The device which shifts data in
from the bus.
Master The device that initiates a transfer,
generates clock signals and termi-
nates a transfer.
Slave The device addressed by the mas-
ter.
Multi-master A bus with more than one device
that can initiate data transfers.
Arbitration Procedure to ensure that only one
master at a time controls the bus.
Winning arbitration ensures that
the message is not corrupted.
Synchronization Procedure to synchronize the
clocks of two or more devices on
the bus.
Idle No master is controlling the bus,
and both SDA and SCL lines are
high.
Active Any time one or more master
devices are controlling the bus.
Addressed
Slave
Slave device that has received a
matching address and is actively
being clocked by a master.
Matching
Address
Address byte that is clocked into a
slave that matches the value
stored in SSPADD.
Write Request Slave receives a matching
address with R/W bit clear, and is
ready to clock in data.
Read Request Master sends an address byte with
the R/W bit set, indicating that it
wishes to clock data out of the
Slave. This data is the next and all
following bytes until a Restart or
Stop.
Clock Stretching When a device on the bus hold
SCL low to stall communication.
Bus Collision Any time the SDA line is sampled
low by the module while it is out-
putting and expected high state.
2012 Microchip Technology Inc. Preliminary DS41639A-page 217
PIC16(L)F1454/5/9
22.4.5 START CONDITION
The I2C specification defines a Start condition as a
transition of SDA from a high to a low state while SCL
line is high. A Start condition is always generated by
the master and signifies the transition of the bus from
an Idle to an Active state. Figure 22-12 shows wave
forms for Start and Stop conditions.
A bus collision can occur on a Start condition if the
module samples the SDA line low before asserting it
low. This does not conform to the I2C Specification that
states no bus collision can occur on a Start.
22.4.6 STOP CONDITION
A Stop condition is a transition of the SDA line from
low-to-high state while the SCL line is high.
22.4.7 RESTART CONDITION
A Restart is valid any time that a Stop would be valid.
A master can issue a Restart if it wishes to hold the
bus after terminating the current transfer. A Restart
has the same effect on the slave that a Start would,
resetting all slave logic and preparing it to clock in an
address. The master may want to address the same or
another slave. Figure 22-13 shows wave forms for a
Restart condition.
In 10-bit Addressing Slave mode a Restart is required
for the master to clock data out of the addressed
slave. Once a slave has been fully addressed, match-
ing both high and low address bytes, the master can
issue a Restart and the high address byte with the
R/W bit set. The slave logic will then hold the clock
and prepare to clock out data.
After a full match with R/W clear in 10-bit mode, a prior
match flag is set and maintained. Until a Stop condi-
tion, a high address with R/W clear, or high address
match fails.
22.4.8 START/STOP CONDITION INTERRUPT
MASKING
The SCIE and PCIE bits of the SSPCON3 register can
enable the generation of an interrupt in Slave modes
that do not typically support this function. Slave modes
where interrupt on Start and Stop detect are already
enabled, these bits will have no effect.
FIGURE 22-12: I2C START AND STOP CONDITIONS
Note: At least one SCL low time must appear
before a Stop is valid, therefore, if the SDA
line goes low then high again while the SCL
line stays high, only the Start condition is
detected.
SDA
SCL
P
Stop
Condition
S
Start
Condition
Change of
Data Allowed
Change of
Data Allowed
PIC16(L)F1454/5/9
DS41639A-page 218 Preliminary 2012 Microchip Technology Inc.
FIGURE 22-13: I2C RESTART CONDITION
Restart
Condition
Sr
Change of
Data Allowed
Change of
Data Allowed
2012 Microchip Technology Inc. Preliminary DS41639A-page 219
PIC16(L)F1454/5/9
22.4.9 ACKNOWLEDGE SEQUENCE
The 9th SCL pulse for any transferred byte in I2C is
dedicated as an Acknowledge. It allows receiving
devices to respond back to the transmitter by pulling
the SDA line low. The transmitter must release control
of the line during this time to shift in the response. The
Acknowledge (ACK) is an active-low signal, pulling the
SDA line low indicated to the transmitter that the
device has received the transmitted data and is ready
to receive more.
The result of an ACK is placed in the ACKSTAT bit of
the SSPCON2 register.
Slave software, when the AHEN and DHEN bits are
set, allow the user to set the ACK value sent back to
the transmitter. The ACKDT bit of the SSPCON2 regis-
ter is set/cleared to determine the response.
Slave hardware will generate an ACK response if the
AHEN and DHEN bits of the SSPCON3 register are
clear.
There are certain conditions where an ACK will not be
sent by the slave. If the BF bit of the SSPSTAT register
or the SSPOV bit of the SSPCON1 register are set
when a byte is received.
When the module is addressed, after the 8th falling
edge of SCL on the bus, the ACKTIM bit of the
SSPCON3 register is set. The ACKTIM bit indicates
the acknowledge time of the active bus. The ACKTIM
Status bit is only active when the AHEN bit or DHEN
bit is enabled.
22.5 I2C SLAVE MODE OPERATION
The MSSP Slave mode operates in one of four modes
selected in the SSPM bits of SSPCON1 register. The
modes can be divided into 7-bit and 10-bit Addressing
mode. 10-bit Addressing modes operate the same as
7-bit with some additional overhead for handling the
larger addresses.
Modes with Start and Stop bit interrupts operated the
same as the other modes with SSPIF additionally get-
ting set upon detection of a Start, Restart, or Stop
condition.
22.5.1 SLAVE MODE ADDRESSES
The SSPADD register (Register 22-6) contains the
Slave mode address. The first byte received after a
Start or Restart condition is compared against the
value stored in this register. If the byte matches, the
value is loaded into the SSPBUF register and an inter-
rupt is generated. If the value does not match, the
module goes idle and no indication is given to the soft-
ware that anything happened.
The SSP Mask register (Register 22-5) affects the
address matching process. See Section 22.5.9 “SSP
Mask Register” for more information.
22.5.1.1 I2C Slave 7-bit Addressing Mode
In 7-bit Addressing mode, the LSb of the received data
byte is ignored when determining if there is an address
match.
22.5.1.2 I2C Slave 10-bit Addressing Mode
In 10-bit Addressing mode, the first received byte is
compared to the binary value of ‘1 1 1 1 0 A9 A8 0’. A9
and A8 are the two MSb of the 10-bit address and
stored in bits 2 and 1 of the SSPADD register.
After the acknowledge of the high byte the UA bit is set
and SCL is held low until the user updates SSPADD
with the low address. The low address byte is clocked
in and all eight bits are compared to the low address
value in SSPADD. Even if there is not an address
match; SSPIF and UA are set, and SCL is held low
until SSPADD is updated to receive a high byte again.
When SSPADD is updated the UA bit is cleared. This
ensures the module is ready to receive the high
address byte on the next communication.
A high and low address match as a write request is
required at the start of all 10-bit addressing communi-
cation. A transmission can be initiated by issuing a
Restart once the slave is addressed, and clocking in
the high address with the R/W bit set. The slave hard-
ware will then acknowledge the read request and pre-
pare to clock out data. This is only valid for a slave
after it has received a complete high and low address
byte match.
PIC16(L)F1454/5/9
DS41639A-page 220 Preliminary 2012 Microchip Technology Inc.
22.5.2 SLAVE RECEPTION
When the R/W bit of a matching received address byte
is clear, the R/W bit of the SSPSTAT register is cleared.
The received address is loaded into the SSPBUF reg-
ister and acknowledged.
When the overflow condition exists for a received
address, then not Acknowledge is given. An overflow
condition is defined as either bit BF of the SSPSTAT
register is set, or bit SSPOV of the SSPCON1 register
is set. The BOEN bit of the SSPCON3 register modifies
this operation. For more information see Register 22-4.
An MSSP interrupt is generated for each transferred
data byte. Flag bit, SSPIF, must be cleared by software.
When the SEN bit of the SSPCON2 register is set, SCL
will be held low (clock stretch) following each received
byte. The clock must be released by setting the CKP
bit of the SSPCON1 register, except sometimes in
10-bit mode. See Section 22.2.3 “SPI Master Mode”
for more detail.
22.5.2.1 7-bit Addressing Reception
This section describes a standard sequence of events
for the MSSP module configured as an I2C Slave in
7-bit Addressing mode. All decisions made by hard-
ware or software and their effect on reception.
Figure 22-14 and Figure 22-15 is used as a visual
reference for this description.
This is a step by step process of what typically must
be done to accomplish I2C communication.
1. Start bit detected.
2. S bit of SSPSTAT is set; SSPIF is set if interrupt
on Start detect is enabled.
3. Matching address with R/W bit clear is received.
4. The slave pulls SDA low sending an ACK to the
master, and sets SSPIF bit.
5. Software clears the SSPIF bit.
6. Software reads received address from SSPBUF
clearing the BF flag.
7. If SEN = 1; Slave software sets CKP bit to
release the SCL line.
8. The master clocks out a data byte.
9. Slave drives SDA low sending an ACK to the
master, and sets SSPIF bit.
10. Software clears SSPIF.
11. Software reads the received byte from SSPBUF
clearing BF.
12. Steps 8-12 are repeated for all received bytes
from the master.
13. Master sends Stop condition, setting P bit of
SSPSTAT, and the bus goes idle.
22.5.2.2 7-bit Reception with AHEN and DHEN
Slave device reception with AHEN and DHEN set
operate the same as without these options with extra
interrupts and clock stretching added after the 8th fall-
ing edge of SCL. These additional interrupts allow the
slave software to decide whether it wants to ACK the
receive address or data byte, rather than the hard-
ware. This functionality adds support for PMBus™ that
was not present on previous versions of this module.
This list describes the steps that need to be taken by
slave software to use these options for I2C commun-
cation. Figure 22-16 displays a module using both
address and data holding. Figure 22-17 includes the
operation with the SEN bit of the SSPCON2 register
set.
1. S bit of SSPSTAT is set; SSPIF is set if interrupt
on Start detect is enabled.
2. Matching address with R/W bit clear is clocked
in. SSPIF is set and CKP cleared after the 8th
falling edge of SCL.
3. Slave clears the SSPIF.
4. Slave can look at the ACKTIM bit of the
SSPCON3 register to determine if the SSPIF
was after or before the ACK.
5. Slave reads the address value from SSPBUF,
clearing the BF flag.
6. Slave sets ACK value clocked out to the master
by setting ACKDT.
7. Slave releases the clock by setting CKP.
8. SSPIF is set after an ACK, not after a NACK.
9. If SEN = 1 the slave hardware will stretch the
clock after the ACK.
10. Slave clears SSPIF.
11. SSPIF set and CKP cleared after 8th falling
edge of SCL for a received data byte.
12. Slave looks at ACKTIM bit of SSPCON3 to
determine the source of the interrupt.
13. Slave reads the received data from SSPBUF
clearing BF.
14. Steps 7-14 are the same for each received data
byte.
15. Communication is ended by either the slave
sending an ACK =1, or the master sending a
Stop condition. If a Stop is sent and Interrupt on
Stop Detect is disabled, the slave will only know
by polling the P bit of the SSTSTAT register.
Note: SSPIF is still set after the 9th falling edge of
SCL even if there is no clock stretching and
BF has been cleared. Only if NACK is sent
to Master is SSPIF not set
2012 Microchip Technology Inc. Preliminary DS41639A-page 221
PIC16(L)F1454/5/9
FIGURE 22-14: I2C SLAVE, 7-BIT ADDRESS, RECEPTION (SEN = 0, AHEN = 0, DHEN = 0)
Receiving Address
ACK
Receiving Data
ACK
Receiving Data ACK =1
A7 A6 A5 A4 A3 A2 A1 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0
SDA
SCL
SSPIF
BF
SSPOV
12345678 12345678 12345678
999
ACK is not sent.
SSPOV set because
SSPBUF is still full.
Cleared by software
First byte
of data is
available
in SSPBUF
SSPBUF is read
SSPIF set on 9th
falling edge of
SCL
Cleared by software
P
Bus Master sends
Stop condition
S
From Slave to Master
PIC16(L)F1454/5/9
DS41639A-page 222 Preliminary 2012 Microchip Technology Inc.
FIGURE 22-15: I2C SLAVE, 7-BIT ADDRESS, RECEPTION (SEN = 1, AHEN = 0, DHEN = 0)
SEN SEN
A7 A6 A5 A4 A3 A2 A1 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0SDA
SCL 123456789 123456789 123456789 P
SSPIF set on 9th
SCL is not held
CKP is written to 1 in software,
CKP is written to 1’ in software,
ACK
low because
falling edge of SCL
releasing SCL
ACK is not sent.
Bus Master sends
CKP
SSPOV
BF
SSPIF
SSPOV set because
SSPBUF is still full.
Cleared by software
First byte
of data is
available
in SSPBUF
ACK=1
Cleared by software
SSPBUF is read
Clock is held low until CKP is set to ‘1
releasing SCL
Stop condition
S
ACK
ACK
Receive Address Receive Data Receive Data
R/W=0
2012 Microchip Technology Inc. Preliminary DS41639A-page 223
PIC16(L)F1454/5/9
FIGURE 22-16: I2C SLAVE, 7-BIT ADDRESS, RECEPTION (SEN = 0, AHEN = 1, DHEN = 1)
Receiving Address Receiving Data Received Data
P
A7 A6 A5 A4 A3 A2 A1 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0
SDA
SCL
BF
CKP
S
P
12 3 4 56 7 8 912345678 9
12345678
Master sends
Stop condition
S
Data is read from SSPBUF
Cleared by software
SSPIF is set on
9th falling edge of
SCL, after ACK
CKP set by software,
SCL is released
Slave software
9
ACKTIM cleared by
hardware in 9th
rising edge of SCL
sets ACKDT to
not ACK
When DHEN=1:
CKP is cleared by
hardware on 8th falling
edge of SCL
Slave software
clears ACKDT to
ACK the received
byte
ACKTIM set by hardware
on 8th falling edge of SCL
When AHEN=1:
CKP is cleared by hardware
and SCL is stretched
Address is
read from
SSBUF
ACKTIM set by hardware
on 8th falling edge of SCL
ACK
Master Releases SDA
to slave for ACK sequence
No interrupt
after not ACK
from Slave
ACK=1
ACK
ACKDT
ACKTIM
SSPIF
If AHEN = 1:
SSPIF is set
PIC16(L)F1454/5/9
DS41639A-page 224 Preliminary 2012 Microchip Technology Inc.
FIGURE 22-17: I2C SLAVE, 7-BIT ADDRESS, RECEPTION (SEN = 1, AHEN = 1, DHEN = 1)
Receiving Address Receive Data Receive Data
A7 A6 A5 A4 A3 A2 A1 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0
SDA
SCL
SSPIF
BF
ACKDT
CKP
S
P
ACK
S12
345678 912
34567 8 9 1234567 8 9
ACK
ACK
Cleared by software
ACKTIM is cleared by hardware
SSPBUF can be
Set by software,
read any time before
next byte is loaded
release SCL
on 9th rising edge of SCL
Received
address is loaded into
SSPBUF
Slave software clears
ACKDT to ACK
R/W = 0Master releases
SDA to slave for ACK sequence
the received byte
When AHEN = 1;
on the 8th falling edge
of SCL of an address
byte, CKP is cleared
ACKTIM is set by hardware
on 8th falling edge of SCL
When DHEN = 1;
on the 8th falling edge
of SCL of a received
data byte, CKP is cleared
Received data is
available on SSPBUF
Slave sends
not ACK
CKP is not cleared
if not ACK
P
Master sends
Stop condition
No interrupt after
if not ACK
from Slave
ACKTIM
2012 Microchip Technology Inc. Preliminary DS41639A-page 225
PIC16(L)F1454/5/9
22.5.3 SLAVE TRANSMISSION
When the R/W bit of the incoming address byte is set
and an address match occurs, the R/W bit of the
SSPSTAT register is set. The received address is
loaded into the SSPBUF register, and an ACK pulse is
sent by the slave on the ninth bit.
Following the ACK, slave hardware clears the CKP bit
and the SCL pin is held low (see Section 22.5.6
“Clock Stretching for more detail). By stretching the
clock, the master will be unable to assert another clock
pulse until the slave is done preparing the transmit
data.
The transmit data must be loaded into the SSPBUF
register which also loads the SSPSR register. Then the
SCL pin should be released by setting the CKP bit of
the SSPCON1 register. The eight data bits are shifted
out on the falling edge of the SCL input. This ensures
that the SDA signal is valid during the SCL high time.
The ACK pulse from the master-receiver is latched on
the rising edge of the ninth SCL input pulse. This ACK
value is copied to the ACKSTAT bit of the SSPCON2
register. If ACKSTAT is set (not ACK), then the data
transfer is complete. In this case, when the not ACK is
latched by the slave, the slave goes idle and waits for
another occurrence of the Start bit. If the SDA line was
low (ACK), the next transmit data must be loaded into
the SSPBUF register. Again, the SCL pin must be
released by setting bit CKP.
An MSSP interrupt is generated for each data transfer
byte. The SSPIF bit must be cleared by software and
the SSPSTAT register is used to determine the status
of the byte. The SSPIF bit is set on the falling edge of
the ninth clock pulse.
22.5.3.1 Slave Mode Bus Collision
A slave receives a read request and begins shifting
data out on the SDA line. If a bus collision is detected
and the SBCDE bit of the SSPCON3 register is set, the
BCLIF bit of the PIR register is set. Once a bus collision
is detected, the slave goes idle and waits to be
addressed again. User software can use the BCLIF bit
to handle a slave bus collision.
22.5.3.2 7-bit Transmission
A master device can transmit a read request to a
slave, and then clock data out of the slave. The list
below outlines what software for a slave will need to
do to accomplish a standard transmission.
Figure 22-18 can be used as a reference to this list.
1. Master sends a Start condition on SDA and
SCL.
2. S bit of SSPSTAT is set; SSPIF is set if interrupt
on Start detect is enabled.
3. Matching address with R/W bit set is received by
the Slave setting SSPIF bit.
4. Slave hardware generates an ACK and sets
SSPIF.
5. SSPIF bit is cleared by user.
6. Software reads the received address from
SSPBUF, clearing BF.
7. R/W is set so CKP was automatically cleared
after the ACK.
8. The slave software loads the transmit data into
SSPBUF.
9. CKP bit is set releasing SCL, allowing the mas-
ter to clock the data out of the slave.
10. SSPIF is set after the ACK response from the
master is loaded into the ACKSTAT register.
11. SSPIF bit is cleared.
12. The slave software checks the ACKSTAT bit to
see if the master wants to clock out more data.
13. Steps 9-13 are repeated for each transmitted
byte.
14. If the master sends a not ACK; the clock is not
held, but SSPIF is still set.
15. The master sends a Restart condition or a Stop.
16. The slave is no longer addressed.
Note 1: If the master ACKs the clock will be
stretched.
2: ACKSTAT is the only bit updated on the
rising edge of SCL (9th) rather than the
falling.
PIC16(L)F1454/5/9
DS41639A-page 226 Preliminary 2012 Microchip Technology Inc.
FIGURE 22-18: I2C SLAVE, 7-BIT ADDRESS, TRANSMISSION (AHEN = 0)
Receiving Address Automatic Transmitting Data Automatic Transmitting Data
A7 A6 A5 A4 A3 A2 A1 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
SDA
SCL
SSPIF
BF
CKP
ACKSTAT
R/W
D/A
S
P
Received address
When R/W is set
R/W is copied from the
Indicates an address
is read from SSPBUF
SCL is always
held low after 9th SCL
falling edge
matching address byte
has been received
Masters not ACK
is copied to
ACKSTAT
CKP is not
held for not
ACK
BF is automatically
cleared after 8th falling
edge of SCL
Data to transmit is
loaded into SSPBUF
Set by software
Cleared by software
ACK
ACK
ACK
R/W = 1
SP
Master sends
Stop condition
2012 Microchip Technology Inc. Preliminary DS41639A-page 227
PIC16(L)F1454/5/9
22.5.3.3 7-bit Transmission with Address
Hold Enabled
Setting the AHEN bit of the SSPCON3 register
enables additional clock stretching and interrupt gen-
eration after the 8th falling edge of a received match-
ing address. Once a matching address has been
clocked in, CKP is cleared and the SSPIF interrupt is
set.
Figure 22-19 displays a standard waveform of a 7-bit
Address Slave Transmission with AHEN enabled.
1. Bus starts Idle.
2. Master sends Start condition; the S bit of
SSPSTAT is set; SSPIF is set if interrupt on Start
detect is enabled.
3. Master sends matching address with R/W bit
set. After the 8th falling edge of the SCL line the
CKP bit is cleared and SSPIF interrupt is gener-
ated.
4. Slave software clears SSPIF.
5. Slave software reads ACKTIM bit of SSPCON3
register, and R/W and D/A of the SSPSTAT reg-
ister to determine the source of the interrupt.
6. Slave reads the address value from the
SSPBUF register clearing the BF bit.
7. Slave software decides from this information if it
wishes to ACK or not ACK and sets ACKDT bit
of the SSPCON2 register accordingly.
8. Slave sets the CKP bit releasing SCL.
9. Master clocks in the ACK value from the slave.
10. Slave hardware automatically clears the CKP bit
and sets SSPIF after the ACK if the R/W bit is
set.
11. Slave software clears SSPIF.
12. Slave loads value to transmit to the master into
SSPBUF setting the BF bit.
13. Slave sets CKP bit releasing the clock.
14. Master clocks out the data from the slave and
sends an ACK value on the 9th SCL pulse.
15. Slave hardware copies the ACK value into the
ACKSTAT bit of the SSPCON2 register.
16. Steps 10-15 are repeated for each byte transmit-
ted to the master from the slave.
17. If the master sends a not ACK the slave
releases the bus allowing the master to send a
Stop and end the communication.
Note: SSPBUF cannot be loaded until after the
ACK.
Note: Master must send a not ACK on the last byte
to ensure that the slave releases the SCL
line to receive a Stop.
PIC16(L)F1454/5/9
DS41639A-page 228 Preliminary 2012 Microchip Technology Inc.
FIGURE 22-19: I2C SLAVE, 7-BIT ADDRESS, TRANSMISSION (AHEN = 1)
Receiving Address Automatic Transmitting Data Automatic Transmitting Data
A7 A6 A5 A4 A3 A2 A1 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
SDA
SCL
SSPIF
BF
ACKDT
ACKSTAT
CKP
R/W
D/A
Received address
is read from SSPBUF
BF is automatically
cleared after 8th falling
edge of SCL
Data to transmit is
loaded into SSPBUF
Cleared by software
Slave clears
ACKDT to ACK
address
Master’s ACK
response is copied
to SSPSTAT
CKP not cleared
after not ACK
Set by software,
releases SCL
ACKTIM is cleared
on 9th rising edge of SCL
ACKTIM is set on 8th falling
edge of SCL
When AHEN = 1;
CKP is cleared by hardware
after receiving matching
address.
When R/W = 1;
CKP is always
cleared after ACK
SP
Master sends
Stop condition
ACK
R/W = 1
Master releases SDA
to slave for ACK sequence
ACK
ACK
ACKTIM
2012 Microchip Technology Inc. Preliminary DS41639A-page 229
PIC16(L)F1454/5/9
22.5.4 SLAVE MODE 10-BIT ADDRESS
RECEPTION
This section describes a standard sequence of events
for the MSSP module configured as an I2C slave in
10-bit Addressing mode.
Figure 22-20 is used as a visual reference for this
description.
This is a step by step process of what must be done by
slave software to accomplish I2C communication.
1. Bus starts Idle.
2. Master sends Start condition; S bit of SSPSTAT
is set; SSPIF is set if interrupt on Start detect is
enabled.
3. Master sends matching high address with R/W
bit clear; UA bit of the SSPSTAT register is set.
4. Slave sends ACK and SSPIF is set.
5. Software clears the SSPIF bit.
6. Software reads received address from SSPBUF
clearing the BF flag.
7. Slave loads low address into SSPADD,
releasing SCL.
8. Master sends matching low address byte to the
slave; UA bit is set.
9. Slave sends ACK and SSPIF is set.
10. Slave clears SSPIF.
11. Slave reads the received matching address
from SSPBUF clearing BF.
12. Slave loads high address into SSPADD.
13. Master clocks a data byte to the slave and
clocks out the slaves ACK on the 9th SCL pulse;
SSPIF is set.
14. If SEN bit of SSPCON2 is set, CKP is cleared by
hardware and the clock is stretched.
15. Slave clears SSPIF.
16. Slave reads the received byte from SSPBUF
clearing BF.
17. If SEN is set the slave sets CKP to release the
SCL.
18. Steps 13-17 repeat for each received byte.
19. Master sends Stop to end the transmission.
22.5.5 10-BIT ADDRESSING WITH ADDRESS OR
DATA HOLD
Reception using 10-bit addressing with AHEN or
DHEN set is the same as with 7-bit modes. The only
difference is the need to update the SSPADD register
using the UA bit. All functionality, specifically when the
CKP bit is cleared and SCL line is held low are the
same. Figure 22-21 can be used as a reference of a
slave in 10-bit addressing with AHEN set.
Figure 22-22 shows a standard waveform for a slave
transmitter in 10-bit Addressing mode.
Note: Updates to the SSPADD register are not
allowed until after the ACK sequence.
Note: If the low address does not match, SSPIF
and UA are still set so that the slave soft-
ware can set SSPADD back to the high
address. BF is not set because there is no
match. CKP is unaffected.
PIC16(L)F1454/5/9
DS41639A-page 230 Preliminary 2012 Microchip Technology Inc.
FIGURE 22-20: I2C SLAVE, 10-BIT ADDRESS, RECEPTION (SEN = 1, AHEN = 0, DHEN = 0)
SSPIF
Receive First Address Byte
ACK
Receive Second Address Byte
ACK
Receive Data
ACK
Receive Data
ACK
11110
A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0
SDA
SCL
UA
CKP
12345678912345678
912345678
9123456789P
Master sends
Stop condition
Cleared by software
Receive address is
Software updates SSPADD
Data is read
SCL is held low
Set by software,
while CKP =
0
from SSPBUF
releasing SCL
When SEN =
1
;
CKP is cleared after
9th falling edge of received byte
read from SSPBUF
and releases SCL
When UA =
1
;
If address matches
Set by hardware
on 9th falling edge
SSPADD it is loaded into
SSPBUF
SCL is held low
S
BF
2012 Microchip Technology Inc. Preliminary DS41639A-page 231
PIC16(L)F1454/5/9
FIGURE 22-21: I2C SLAVE, 10-BIT ADDRESS, RECEPTION (SEN = 0, AHEN = 1, DHEN = 0)
Receive First Address Byte
UA
Receive Second Address Byte
UA
Receive Data
ACK
Receive Data
1 1 1 1 0
A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5SDA
SCL
SSPIF
BF
ACKDT
UA
CKP
ACKTIM
12345678 9
S
ACK
ACK
12345678 91234567891
2
SSPBUF
is read from
Received data
SSPBUF can be
read anytime before
the next received byte
Cleared by software
falling edge of SCL
not allowed until 9th
Update to SSPADD is
Set CKP with software
releases SCL
SCL
clears UA and releases
Update of SSPADD,
Set by hardware
on 9th falling edge
Slave software clears
ACKDT to ACK
the received byte
If when AHEN = 1;
on the 8th falling edge
of SCL of an address
byte, CKP is cleared
ACKTIM is set by hardware
on 8th falling edge of SCL
Cleared by software
R/W = 0
PIC16(L)F1454/5/9
DS41639A-page 232 Preliminary 2012 Microchip Technology Inc.
FIGURE 22-22: I2C SLAVE, 10-BIT ADDRESS, TRANSMISSION (SEN = 0, AHEN = 0, DHEN = 0)
Receiving Address
ACK
Receiving Second Address Byte
Sr
Receive First Address Byte
ACK
Transmitting Data Byte
1 1 1 1 0
A9 A8 A7 A6 A5 A4 A3 A2 A1 A0
1 1 1 1 0
A9 A8 D7 D6 D5 D4 D3 D2 D1 D0SDA
SCL
SSPIF
BF
UA
CKP
R/W
D/A
123456789 123456789 1234 56789 123456789
ACK = 1
P
Master sends
Stop condition
Master sends
not ACK
Master sends
Restart event
ACK
R/W = 0
S
Cleared by software
After SSPADD is
updated, UA is cleared
and SCL is released
High address is loaded
Received address is Data to transmit is
Set by software
Indicates an address
When R/W = 1;
R/W is copied from the
Set by hardware
UA indicates SSPADD
SSPBUF loaded
with received address
must be updated
has been received
loaded into SSPBUF
releases SCL
Masters not ACK
is copied
matching address byte
CKP is cleared on
9th falling edge of SCL
read from SSPBUF
back into SSPADD
ACKSTAT
Set by hardware
2012 Microchip Technology Inc. Preliminary DS41639A-page 233
PIC16(L)F1454/5/9
22.5.6 CLOCK STRETCHING
Clock stretching occurs when a device on the bus
holds the SCL line low effectively pausing communica-
tion. The slave may stretch the clock to allow more
time to handle data or prepare a response for the mas-
ter device. A master device is not concerned with
stretching as anytime it is active on the bus and not
transferring data it is stretching. Any stretching done
by a slave is invisible to the master software and han-
dled by the hardware that generates SCL.
The CKP bit of the SSPCON1 register is used to con-
trol stretching in software. Any time the CKP bit is
cleared, the module will wait for the SCL line to go low
and then hold it. Setting CKP will release SCL and
allow more communication.
22.5.6.1 Normal Clock Stretching
Following an ACK if the R/W bit of SSPSTAT is set, a
read request, the slave hardware will clear CKP. This
allows the slave time to update SSPBUF with data to
transfer to the master. If the SEN bit of SSPCON2 is
set, the slave hardware will always stretch the clock
after the ACK sequence. Once the slave is ready; CKP
is set by software and communication resumes.
22.5.6.2 10-bit Addressing Mode
In 10-bit Addressing mode, when the UA bit is set the
clock is always stretched. This is the only time, the
SCL is stretched without CKP being cleared. SCL is
released immediately after a write to SSPADD.
22.5.6.3 Byte NACKing
When AHEN bit of SSPCON3 is set; CKP is cleared by
hardware after the 8th falling edge of SCL for a
received matching address byte. When DHEN bit of
SSPCON3 is set; CKP is cleared after the 8th falling
edge of SCL for received data.
Stretching after the 8th falling edge of SCL allows the
slave to look at the received address or data and
decide if it wants to ACK the received data.
22.5.7 CLOCK SYNCHRONIZATION AND
THE CKP BIT
Any time the CKP bit is cleared, the module will wait
for the SCL line to go low and then hold it. However,
clearing the CKP bit will not assert the SCL output low
until the SCL output is already sampled low. There-
fore, the CKP bit will not assert the SCL line until an
external I2C master device has already asserted the
SCL line. The SCL output will remain low until the CKP
bit is set and all other devices on the I2C bus have
released SCL. This ensures that a write to the CKP bit
will not violate the minimum high time requirement for
SCL (see Figure 22-23).
FIGURE 22-23: CLOCK SYNCHRONIZATION TIMING
Note 1: The BF bit has no effect on if the clock will
be stretched or not. This is different than
previous versions of the module that
would not stretch the clock, clear CKP, if
SSPBUF was read before the 9th falling
edge of SCL.
2: Previous versions of the module did not
stretch the clock for a transmission if SSP-
BUF was loaded before the 9th falling
edge of SCL. It is now always cleared for
read requests.
Note: Previous versions of the module did not
stretch the clock if the second address byte
did not match.
SDA
SCL
DX ‚1DX
WR
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
SSPCON1
CKP
Master device
releases clock
Master device
asserts clock
PIC16(L)F1454/5/9
DS41639A-page 234 Preliminary 2012 Microchip Technology Inc.
22.5.8 GENERAL CALL ADDRESS SUPPORT
The addressing procedure for the I2C bus is such that
the first byte after the Start condition usually deter-
mines which device will be the slave addressed by the
master device. The exception is the general call
address which can address all devices. When this
address is used, all devices should, in theory, respond
with an acknowledge.
The general call address is a reserved address in the
I2C protocol, defined as address 0x00. When the
GCEN bit of the SSPCON2 register is set, the slave
module will automatically ACK the reception of this
address regardless of the value stored in SSPADD.
After the slave clocks in an address of all zeros with
the R/W bit clear, an interrupt is generated and slave
software can read SSPBUF and respond.
Figure 22-24 shows a general call reception
sequence.
In 10-bit Address mode, the UA bit will not be set on
the reception of the general call address. The slave
will prepare to receive the second byte as data, just as
it would in 7-bit mode.
If the AHEN bit of the SSPCON3 register is set, just as
with any other address reception, the slave hardware
will stretch the clock after the 8th falling edge of SCL.
The slave must then set its ACKDT value and release
the clock with communication progressing as it would
normally.
FIGURE 22-24: SLAVE MODE GENERAL CALL ADDRESS SEQUENCE
22.5.9 SSP MASK REGISTER
An SSP Mask (SSPMSK) register (Register 22-5) is
available in I2C Slave mode as a mask for the value
held in the SSPSR register during an address
comparison operation. A zero (‘0) bit in the SSPMSK
register has the effect of making the corresponding bit
of the received address a “don’t care”.
This register is reset to all ‘1s upon any Reset
condition and, therefore, has no effect on standard
SSP operation until written with a mask value.
The SSP Mask register is active during:
7-bit Address mode: address compare of A<7:1>.
10-bit Address mode: address compare of A<7:0>
only. The SSP mask has no effect during the
reception of the first (high) byte of the address.
SDA
SCL
S
SSPIF
BF (SSPSTAT<0>)
Cleared by software
SSPBUF is read
R/W = 0
ACK
General Call Address
Address is compared to General Call Address
Receiving Data ACK
123456789123456789
D7 D6 D5 D4 D3 D2 D1 D0
after ACK, set interrupt
GCEN (SSPCON2<7>)
’1’
2012 Microchip Technology Inc. Preliminary DS41639A-page 235
PIC16(L)F1454/5/9
22.6 I2C MASTER MODE
Master mode is enabled by setting and clearing the
appropriate SSPM bits in the SSPCON1 register and
by setting the SSPEN bit. In Master mode, the SDA and
SCK pins must be configured as inputs. The MSSP
peripheral hardware will override the output driver TRIS
controls when necessary to drive the pins low.
Master mode of operation is supported by interrupt
generation on the detection of the Start and Stop con-
ditions. The Stop (P) and Start (S) bits are cleared from
a Reset or when the MSSP module is disabled. Control
of the I2C bus may be taken when the P bit is set, or the
bus is Idle.
In Firmware Controlled Master mode, user code
conducts all I2C bus operations based on Start and
Stop bit condition detection. Start and Stop condition
detection is the only active circuitry in this mode. All
other communication is done by the user software
directly manipulating the SDA and SCL lines.
The following events will cause the SSP Interrupt Flag
bit, SSPIF, to be set (SSP interrupt, if enabled):
Start condition detected
Stop condition detected
Data transfer byte transmitted/received
Acknowledge transmitted/received
Repeated Start generated
22.6.1 I2C MASTER MODE OPERATION
The master device generates all of the serial clock
pulses and the Start and Stop conditions. A transfer is
ended with a Stop condition or with a Repeated Start
condition. Since the Repeated Start condition is also
the beginning of the next serial transfer, the I2C bus will
not be released.
In Master Transmitter mode, serial data is output
through SDA, while SCL outputs the serial clock. The
first byte transmitted contains the slave address of the
receiving device (7 bits) and the Read/Write (R/W) bit.
In this case, the R/W bit will be logic ‘0’. Serial data is
transmitted eight bits at a time. After each byte is trans-
mitted, an Acknowledge bit is received. Start and Stop
conditions are output to indicate the beginning and the
end of a serial transfer.
In Master Receive mode, the first byte transmitted con-
tains the slave address of the transmitting device
(7 bits) and the R/W bit. In this case, the R/W bit will be
logic ‘1’. Thus, the first byte transmitted is a 7-bit slave
address followed by a ‘1’ to indicate the receive bit.
Serial data is received via SDA, while SCL outputs the
serial clock. Serial data is received eight bits at a time.
After each byte is received, an Acknowledge bit is
transmitted. Start and Stop conditions indicate the
beginning and end of transmission.
A Baud Rate Generator is used to set the clock
frequency output on SCL. See Section 22.7 “Baud
Rate Generator” for more detail.
Note 1: The MSSP module, when configured in
I2C Master mode, does not allow queue-
ing of events. For instance, the user is not
allowed to initiate a Start condition and
immediately write the SSPBUF register to
initiate transmission before the Start con-
dition is complete. In this case, the SSP-
BUF will not be written to and the WCOL
bit will be set, indicating that a write to the
SSPBUF did not occur
2: When in Master mode, Start/Stop detec-
tion is masked and an interrupt is gener-
ated when the SEN/PEN bit is cleared and
the generation is complete.
PIC16(L)F1454/5/9
DS41639A-page 236 Preliminary 2012 Microchip Technology Inc.
22.6.2 CLOCK ARBITRATION
Clock arbitration occurs when the master, during any
receive, transmit or Repeated Start/Stop condition,
releases the SCL pin (SCL allowed to float high). When
the SCL pin is allowed to float high, the Baud Rate Gen-
erator (BRG) is suspended from counting until the SCL
pin is actually sampled high. When the SCL pin is sam-
pled high, the Baud Rate Generator is reloaded with
the contents of SSPADD<7:0> and begins counting.
This ensures that the SCL high time will always be at
least one BRG rollover count in the event that the clock
is held low by an external device (Figure 22-25).
FIGURE 22-25: BAUD RATE GENERATOR TIMING WITH CLOCK ARBITRATION
22.6.3 WCOL STATUS FLAG
If the user writes the SSPBUF when a Start, Restart,
Stop, Receive or Transmit sequence is in progress, the
WCOL is set and the contents of the buffer are
unchanged (the write does not occur). Any time the
WCOL bit is set it indicates that an action on SSPBUF
was attempted while the module was not idle.
SDA
SCL
SCL deasserted but slave holds
DX ‚1DX
BRG
SCL is sampled high, reload takes
place and BRG starts its count
03h 02h 01h 00h (hold off) 03h 02h
Reload
BRG
Value
SCL low (clock arbitration)
SCL allowed to transition high
BRG decrements on
Q2 and Q4 cycles
Note: Because queueing of events is not
allowed, writing to the lower five bits of
SSPCON2 is disabled until the Start
condition is complete.
2012 Microchip Technology Inc. Preliminary DS41639A-page 237
PIC16(L)F1454/5/9
22.6.4 I2C MASTER MODE START
CONDITION TIMING
To initiate a Start condition (Figure 22-26), the user
sets the Start Enable bit, SEN bit of the SSPCON2
register. If the SDA and SCL pins are sampled high,
the Baud Rate Generator is reloaded with the contents
of SSPADD<7:0> and starts its count. If SCL and SDA
are both sampled high when the Baud Rate Generator
times out (TBRG), the SDA pin is driven low. The action
of the SDA being driven low while SCL is high is the
Start condition and causes the S bit of the SSPSTAT1
register to be set. Following this, the Baud Rate Gen-
erator is reloaded with the contents of SSPADD<7:0>
and resumes its count. When the Baud Rate Genera-
tor times out (TBRG), the SEN bit of the SSPCON2 reg-
ister will be automatically cleared by hardware; the
Baud Rate Generator is suspended, leaving the SDA
line held low and the Start condition is complete.
FIGURE 22-26: FIRST START BIT TIMING
Note 1: If at the beginning of the Start condition,
the SDA and SCL pins are already sam-
pled low, or if during the Start condition,
the SCL line is sampled low before the
SDA line is driven low, a bus collision
occurs, the Bus Collision Interrupt Flag,
BCLIF, is set, the Start condition is
aborted and the I2C module is reset into
its Idle state.
2: The Philips I2C™ Specification states that
a bus collision cannot occur on a Start.
SDA
SCL
S
TBRG
1st bit 2nd bit
TBRG
SDA = 1, At completion of Start bit,
SCL = 1
Write to SSPBUF occurs here
TBRG
hardware clears SEN bit
TBRG
Write to SEN bit occurs here Set S bit (SSPSTAT<3>)
and sets SSPIF bit
PIC16(L)F1454/5/9
DS41639A-page 238 Preliminary 2012 Microchip Technology Inc.
22.6.5 I2C MASTER MODE REPEATED
START CONDITION TIMING
A Repeated Start condition (Figure 22-27) occurs when
the RSEN bit of the SSPCON2 register is programmed
high and the Master state machine is no longer active.
When the RSEN bit is set, the SCL pin is asserted low.
When the SCL pin is sampled low, the Baud Rate Gen-
erator is loaded and begins counting. The SDA pin is
released (brought high) for one Baud Rate Generator
count (TBRG). When the Baud Rate Generator times
out, if SDA is sampled high, the SCL pin will be deas-
serted (brought high). When SCL is sampled high, the
Baud Rate Generator is reloaded and begins counting.
SDA and SCL must be sampled high for one TBRG.
This action is then followed by assertion of the SDA pin
(SDA = 0) for one TBRG while SCL is high. SCL is
asserted low. Following this, the RSEN bit of the
SSPCON2 register will be automatically cleared and
the Baud Rate Generator will not be reloaded, leaving
the SDA pin held low. As soon as a Start condition is
detected on the SDA and SCL pins, the S bit of the
SSPSTAT register will be set. The SSPIF bit will not be
set until the Baud Rate Generator has timed out.
FIGURE 22-27: REPEAT START CONDITION WAVEFORM
Note 1: If RSEN is programmed while any other
event is in progress, it will not take effect.
2: A bus collision during the Repeated Start
condition occurs if:
SDA is sampled low when SCL
goes from low-to-high.
SCL goes low before SDA is
asserted low. This may indicate
that another master is attempting to
transmit a data ‘1’.
SDA
SCL
Repeated Start
Write to SSPCON2
Write to SSPBUF occurs here
At completion of Start bit,
hardware clears RSEN bit
1st bit
S bit set by hardware
TBRG
TBRG
SDA = 1,SDA = 1,
SCL (no change) SCL = 1
occurs here
TBRG TBRG TBRG
and sets SSPIF
Sr
2012 Microchip Technology Inc. Preliminary DS41639A-page 239
PIC16(L)F1454/5/9
22.6.6 I2C MASTER MODE TRANSMISSION
Transmission of a data byte, a 7-bit address or the
other half of a 10-bit address is accomplished by simply
writing a value to the SSPBUF register. This action will
set the Buffer Full flag bit, BF and allow the Baud Rate
Generator to begin counting and start the next trans-
mission. Each bit of address/data will be shifted out
onto the SDA pin after the falling edge of SCL is
asserted. SCL is held low for one Baud Rate Generator
rollover count (TBRG). Data should be valid before SCL
is released high. When the SCL pin is released high, it
is held that way for TBRG. The data on the SDA pin
must remain stable for that duration and some hold
time after the next falling edge of SCL. After the eighth
bit is shifted out (the falling edge of the eighth clock),
the BF flag is cleared and the master releases SDA.
This allows the slave device being addressed to
respond with an ACK bit during the ninth bit time if an
address match occurred, or if data was received prop-
erly. The status of ACK is written into the ACKSTAT bit
on the rising edge of the ninth clock. If the master
receives an Acknowledge, the Acknowledge Status bit,
ACKSTAT, is cleared. If not, the bit is set. After the ninth
clock, the SSPIF bit is set and the master clock (Baud
Rate Generator) is suspended until the next data byte
is loaded into the SSPBUF, leaving SCL low and SDA
unchanged (Figure 22-28).
After the write to the SSPBUF, each bit of the address
will be shifted out on the falling edge of SCL until all
seven address bits and the R/W bit are completed. On
the falling edge of the eighth clock, the master will
release the SDA pin, allowing the slave to respond with
an Acknowledge. On the falling edge of the ninth clock,
the master will sample the SDA pin to see if the address
was recognized by a slave. The status of the ACK bit is
loaded into the ACKSTAT Status bit of the SSPCON2
register. Following the falling edge of the ninth clock
transmission of the address, the SSPIF is set, the BF
flag is cleared and the Baud Rate Generator is turned
off until another write to the SSPBUF takes place, hold-
ing SCL low and allowing SDA to float.
22.6.6.1 BF Status Flag
In Transmit mode, the BF bit of the SSPSTAT register
is set when the CPU writes to SSPBUF and is cleared
when all eight bits are shifted out.
22.6.6.2 WCOL Status Flag
If the user writes the SSPBUF when a transmit is
already in progress (i.e., SSPSR is still shifting out a
data byte), the WCOL is set and the contents of the buf-
fer are unchanged (the write does not occur).
WCOL must be cleared by software before the next
transmission.
22.6.6.3 ACKSTAT Status Flag
In Transmit mode, the ACKSTAT bit of the SSPCON2
register is cleared when the slave has sent an Acknowl-
edge (ACK =0) and is set when the slave does not
Acknowledge (ACK =1). A slave sends an Acknowl-
edge when it has recognized its address (including a
general call), or when the slave has properly received
its data.
22.6.6.4 Typical transmit sequence:
1. The user generates a Start condition by setting
the SEN bit of the SSPCON2 register.
2. SSPIF is set by hardware on completion of the
Start.
3. SSPIF is cleared by software.
4. The MSSP module will wait the required start
time before any other operation takes place.
5. The user loads the SSPBUF with the slave
address to transmit.
6. Address is shifted out the SDA pin until all eight
bits are transmitted. Transmission begins as
soon as SSPBUF is written to.
7. The MSSP module shifts in the ACK bit from the
slave device and writes its value into the
ACKSTAT bit of the SSPCON2 register.
8. The MSSP module generates an interrupt at the
end of the ninth clock cycle by setting the SSPIF
bit.
9. The user loads the SSPBUF with eight bits of
data.
10. Data is shifted out the SDA pin until all eight bits
are transmitted.
11. The MSSP module shifts in the ACK bit from the
slave device and writes its value into the
ACKSTAT bit of the SSPCON2 register.
12. Steps 8-11 are repeated for all transmitted data
bytes.
13. The user generates a Stop or Restart condition
by setting the PEN or RSEN bits of the
SSPCON2 register. Interrupt is generated once
the Stop/Restart condition is complete.
PIC16(L)F1454/5/9
DS41639A-page 240 Preliminary 2012 Microchip Technology Inc.
FIGURE 22-28: I2C MASTER MODE WAVEFORM (TRANSMISSION, 7 OR 10-BIT ADDRESS)
SDA
SCL
SSPIF
BF (SSPSTAT<0>)
SEN
A7 A6 A5 A4 A3 A2 A1 ACK = 0D7 D6 D5 D4 D3 D2 D1 D0
ACK
Transmitting Data or Second Half
R/W = 0Transmit Address to Slave
123456789 123456789 P
Cleared by software service routine
SSPBUF is written by software
from SSP interrupt
After Start condition, SEN cleared by hardware
S
SSPBUF written with 7-bit address and R/W
start transmit
SCL held low
while CPU
responds to SSPIF
SEN = 0
of 10-bit Address
Write SSPCON2<0> SEN = 1
Start condition begins From slave, clear ACKSTAT bit SSPCON2<6>
ACKSTAT in
SSPCON2 = 1
Cleared by software
SSPBUF written
PEN
R/W
Cleared by software
2012 Microchip Technology Inc. Preliminary DS41639A-page 241
PIC16(L)F1454/5/9
22.6.7 I2C MASTER MODE RECEPTION
Master mode reception (Figure 22-29) is enabled by
programming the Receive Enable bit, RCEN bit of the
SSPCON2 register.
The Baud Rate Generator begins counting and on each
rollover, the state of the SCL pin changes
(high-to-low/low-to-high) and data is shifted into the
SSPSR. After the falling edge of the eighth clock, the
receive enable flag is automatically cleared, the con-
tents of the SSPSR are loaded into the SSPBUF, the
BF flag bit is set, the SSPIF flag bit is set and the Baud
Rate Generator is suspended from counting, holding
SCL low. The MSSP is now in Idle state awaiting the
next command. When the buffer is read by the CPU,
the BF flag bit is automatically cleared. The user can
then send an Acknowledge bit at the end of reception
by setting the Acknowledge Sequence Enable, ACKEN
bit of the SSPCON2 register.
22.6.7.1 BF Status Flag
In receive operation, the BF bit is set when an address
or data byte is loaded into SSPBUF from SSPSR. It is
cleared when the SSPBUF register is read.
22.6.7.2 SSPOV Status Flag
In receive operation, the SSPOV bit is set when eight
bits are received into the SSPSR and the BF flag bit is
already set from a previous reception.
22.6.7.3 WCOL Status Flag
If the user writes the SSPBUF when a receive is
already in progress (i.e., SSPSR is still shifting in a data
byte), the WCOL bit is set and the contents of the buffer
are unchanged (the write does not occur).
22.6.7.4 Typical Receive Sequence:
1. The user generates a Start condition by setting
the SEN bit of the SSPCON2 register.
2. SSPIF is set by hardware on completion of the
Start.
3. SSPIF is cleared by software.
4. User writes SSPBUF with the slave address to
transmit and the R/W bit set.
5. Address is shifted out the SDA pin until all eight
bits are transmitted. Transmission begins as
soon as SSPBUF is written to.
6. The MSSP module shifts in the ACK bit from the
slave device and writes its value into the
ACKSTAT bit of the SSPCON2 register.
7. The MSSP module generates an interrupt at the
end of the ninth clock cycle by setting the SSPIF
bit.
8. User sets the RCEN bit of the SSPCON2 register
and the master clocks in a byte from the slave.
9. After the 8th falling edge of SCL, SSPIF and BF
are set.
10. Master clears SSPIF and reads the received
byte from SSPUF, clears BF.
11. Master sets ACK value sent to slave in ACKDT
bit of the SSPCON2 register and initiates the
ACK by setting the ACKEN bit.
12. Masters ACK is clocked out to the slave and
SSPIF is set.
13. User clears SSPIF.
14. Steps 8-13 are repeated for each received byte
from the slave.
15. Master sends a not ACK or Stop to end
communication.
Note: The MSSP module must be in an Idle
state before the RCEN bit is set or the
RCEN bit will be disregarded.
PIC16(L)F1454/5/9
DS41639A-page 242 Preliminary 2012 Microchip Technology Inc.
FIGURE 22-29: I2C MASTER MODE WAVEFORM (RECEPTION, 7-BIT ADDRESS)
P
9
87
6
5
D0
D1
D2
D3D4
D5
D6D7
S
A7 A6 A5 A4 A3 A2 A1
SDA
SCL 12345678912345678 9 1234
Bus master
terminates
transfer
ACK
Receiving Data from Slave
Receiving Data from Slave
D0
D1
D2
D3D4
D5
D6D7
ACK
R/W
Transmit Address to Slave
SSPIF
BF
ACK is not sent
Write to SSPCON2<0> (SEN = 1),
Write to SSPBUF occurs here, ACK from Slave
Master configured as a receiver
by programming SSPCON2<3> (RCEN = 1)
PEN bit = 1
written here
Data shifted in on falling edge of CLK
Cleared by software
start XMIT
SEN = 0
SSPOV
SDA = 0, SCL = 1
while CPU
(SSPSTAT<0>)
ACK
Cleared by software
Cleared by software
Set SSPIF interrupt
at end of receive
Set P bit
(SSPSTAT<4>)
and SSPIF
Cleared in
software
ACK from Master
Set SSPIF at end
Set SSPIF interrupt
at end of Acknowledge
sequence
Set SSPIF interrupt
at end of Acknow-
ledge sequence
of receive
Set ACKEN, start Acknowledge sequence
SSPOV is set because
SSPBUF is still full
SDA = ACKDT = 1
RCEN cleared
automatically
RCEN = 1, start
next receive
Write to SSPCON2<4>
to start Acknowledge sequence
SDA = ACKDT (SSPCON2<5>) = 0
RCEN cleared
automatically
responds to SSPIF
ACKEN
begin Start condition
Cleared by software
SDA = ACKDT = 0
Last bit is shifted into SSPSR and
contents are unloaded into SSPBUF
RCEN
Master configured as a receiver
by programming SSPCON2<3> (RCEN = 1)
RCEN cleared
automatically
ACK from Master
SDA = ACKDT = 0 RCEN cleared
automatically
2012 Microchip Technology Inc. Preliminary DS41639A-page 243
PIC16(L)F1454/5/9
22.6.8 ACKNOWLEDGE SEQUENCE
TIMING
An Acknowledge sequence is enabled by setting the
Acknowledge Sequence Enable bit, ACKEN bit of the
SSPCON2 register. When this bit is set, the SCL pin is
pulled low and the contents of the Acknowledge data bit
are presented on the SDA pin. If the user wishes to gen-
erate an Acknowledge, then the ACKDT bit should be
cleared. If not, the user should set the ACKDT bit before
starting an Acknowledge sequence. The Baud Rate
Generator then counts for one rollover period (TBRG)
and the SCL pin is deasserted (pulled high). When the
SCL pin is sampled high (clock arbitration), the Baud
Rate Generator counts for TBRG. The SCL pin is then
pulled low. Following this, the ACKEN bit is automatically
cleared, the Baud Rate Generator is turned off and the
MSSP module then goes into Idle mode (Figure 22-30).
22.6.8.1 WCOL Status Flag
If the user writes the SSPBUF when an Acknowledge
sequence is in progress, then WCOL is set and the
contents of the buffer are unchanged (the write does
not occur).
22.6.9 STOP CONDITION TIMING
A Stop bit is asserted on the SDA pin at the end of a
receive/transmit by setting the Stop Sequence Enable
bit, PEN bit of the SSPCON2 register. At the end of a
receive/transmit, the SCL line is held low after the
falling edge of the ninth clock. When the PEN bit is set,
the master will assert the SDA line low. When the SDA
line is sampled low, the Baud Rate Generator is
reloaded and counts down to ‘0’. When the Baud Rate
Generator times out, the SCL pin will be brought high
and one TBRG (Baud Rate Generator rollover count)
later, the SDA pin will be deasserted. When the SDA
pin is sampled high while SCL is high, the P bit of the
SSPSTAT register is set. A TBRG later, the PEN bit is
cleared and the SSPIF bit is set (Figure 22-31).
22.6.9.1 WCOL Status Flag
If the user writes the SSPBUF when a Stop sequence
is in progress, then the WCOL bit is set and the
contents of the buffer are unchanged (the write does
not occur).
FIGURE 22-30: ACKNOWLEDGE SEQUENCE WAVEFORM
FIGURE 22-31: STOP CONDITION RECEIVE OR TRANSMIT MODE
Note: TBRG = one Baud Rate Generator period.
SDA
SCL
SSPIF set at
Acknowledge sequence starts here,
write to SSPCON2 ACKEN automatically cleared
Cleared in
TBRG TBRG
the end of receive
8
ACKEN = 1, ACKDT = 0
D0
9
SSPIF
software SSPIF set at the end
of Acknowledge sequence
Cleared in
software
ACK
SCL
SDA
SDA asserted low before rising edge of clock
Write to SSPCON2,
set PEN
Falling edge of
SCL = 1 for TBRG, followed by SDA = 1 for TBRG
9th clock
SCL brought high after TBRG
Note: TBRG = one Baud Rate Generator period.
TBRG TBRG
after SDA sampled high. P bit (SSPSTAT<4>) is set.
TBRG
to setup Stop condition
ACK
P
TBRG
PEN bit (SSPCON2<2>) is cleared by
hardware and the SSPIF bit is set
PIC16(L)F1454/5/9
DS41639A-page 244 Preliminary 2012 Microchip Technology Inc.
22.6.10 SLEEP OPERATION
While in Sleep mode, the I2C slave module can receive
addresses or data and when an address match or
complete byte transfer occurs, wake the processor
from Sleep (if the MSSP interrupt is enabled).
22.6.11 EFFECTS OF A RESET
A Reset disables the MSSP module and terminates the
current transfer.
22.6.12 MULTI-MASTER MODE
In Multi-Master mode, the interrupt generation on the
detection of the Start and Stop conditions allows the
determination of when the bus is free. The Stop (P) and
Start (S) bits are cleared from a Reset or when the
MSSP module is disabled. Control of the I2C bus may
be taken when the P bit of the SSPSTAT register is set,
or the bus is Idle, with both the S and P bits clear. When
the bus is busy, enabling the SSP interrupt will gener-
ate the interrupt when the Stop condition occurs.
In multi-master operation, the SDA line must be
monitored for arbitration to see if the signal level is the
expected output level. This check is performed by
hardware with the result placed in the BCLIF bit.
The states where arbitration can be lost are:
Address Transfer
Data Transfer
A Start Condition
A Repeated Start Condition
An Acknowledge Condition
22.6.13 MULTI -MASTER COMMUNICATION,
BUS COLLISION AND BUS
ARBITRATION
Multi-Master mode support is achieved by bus arbitra-
tion. When the master outputs address/data bits onto
the SDA pin, arbitration takes place when the master
outputs a 1’ on SDA, by letting SDA float high and
another master asserts a ‘0’. When the SCL pin floats
high, data should be stable. If the expected data on
SDA is a ‘1’ and the data sampled on the SDA pin is ‘0’,
then a bus collision has taken place. The master will set
the Bus Collision Interrupt Flag, BCLIF and reset the
I2C port to its Idle state (Figure 22-32).
If a transmit was in progress when the bus collision
occurred, the transmission is halted, the BF flag is
cleared, the SDA and SCL lines are deasserted and the
SSPBUF can be written to. When the user services the
bus collision Interrupt Service Routine and if the I2C
bus is free, the user can resume communication by
asserting a Start condition.
If a Start, Repeated Start, Stop or Acknowledge condi-
tion was in progress when the bus collision occurred, the
condition is aborted, the SDA and SCL lines are deas-
serted and the respective control bits in the SSPCON2
register are cleared. When the user services the bus col-
lision Interrupt Service Routine and if the I2C bus is free,
the user can resume communication by asserting a Start
condition.
The master will continue to monitor the SDA and SCL
pins. If a Stop condition occurs, the SSPIF bit will be set.
A write to the SSPBUF will start the transmission of
data at the first data bit, regardless of where the
transmitter left off when the bus collision occurred.
In Multi-Master mode, the interrupt generation on the
detection of Start and Stop conditions allows the deter-
mination of when the bus is free. Control of the I2C bus
can be taken when the P bit is set in the SSPSTAT
register, or the bus is Idle and the S and P bits are
cleared.
FIGURE 22-32: BUS COLLISION TIMING FOR TRANSMIT AND ACKNOWLEDGE
SDA
SCL
BCLIF
SDA released
SDA line pulled low
by another source
Sample SDA. While SCL is high,
data does not match what is driven
Bus collision has occurred.
Set bus collision
interrupt (BCLIF)
by the master.
by master
Data changes
while SCL = 0
2012 Microchip Technology Inc. Preliminary DS41639A-page 245
PIC16(L)F1454/5/9
22.6.13.1 Bus Collision During a Start
Condition
During a Start condition, a bus collision occurs if:
a) SDA or SCL are sampled low at the beginning of
the Start condition (Figure 22-33).
b) SCL is sampled low before SDA is asserted low
(Figure 22-34).
During a Start condition, both the SDA and the SCL
pins are monitored.
If the SDA pin is already low, or the SCL pin is already
low, then all of the following occur:
the Start condition is aborted,
the BCLIF flag is set and
the MSSP module is reset to its Idle state
(Figure 22-33).
The Start condition begins with the SDA and SCL pins
deasserted. When the SDA pin is sampled high, the
Baud Rate Generator is loaded and counts down. If the
SCL pin is sampled low while SDA is high, a bus colli-
sion occurs because it is assumed that another master
is attempting to drive a data ‘1’ during the Start
condition.
If the SDA pin is sampled low during this count, the
BRG is reset and the SDA line is asserted early
(Figure 22-35). If, however, a ‘1’ is sampled on the SDA
pin, the SDA pin is asserted low at the end of the BRG
count. The Baud Rate Generator is then reloaded and
counts down to zero; if the SCL pin is sampled as0
during this time, a bus collision does not occur. At the
end of the BRG count, the SCL pin is asserted low.
FIGURE 22-33: BUS COLLISION DURING START CONDITION (SDA ONLY)
Note: The reason that bus collision is not a fac-
tor during a Start condition is that no two
bus masters can assert a Start condition
at the exact same time. Therefore, one
master will always assert SDA before the
other. This condition does not cause a bus
collision because the two masters must be
allowed to arbitrate the first address fol-
lowing the Start condition. If the address is
the same, arbitration must be allowed to
continue into the data portion, Repeated
Start or Stop conditions.
SDA
SCL
SEN
SDA sampled low before
SDA goes low before the SEN bit is set.
S bit and SSPIF set because
SSP module reset into Idle state.
SEN cleared automatically because of bus collision.
S bit and SSPIF set because
Set SEN, enable Start
condition if SDA = 1, SCL = 1
SDA = 0, SCL = 1.
BCLIF
S
SSPIF
SDA = 0, SCL = 1.
SSPIF and BCLIF are
cleared by software
SSPIF and BCLIF are
cleared by software
Set BCLIF,
Start condition. Set BCLIF.
PIC16(L)F1454/5/9
DS41639A-page 246 Preliminary 2012 Microchip Technology Inc.
FIGURE 22-34: BUS COLLISION DURING START CONDITION (SCL = 0)
FIGURE 22-35: BRG RESET DUE TO SDA ARBITRATION DURING START CONDITION
SDA
SCL
SEN bus collision occurs. Set BCLIF.
SCL = 0 before SDA = 0,
Set SEN, enable Start
sequence if SDA = 1, SCL = 1
TBRG TBRG
SDA = 0, SCL = 1
BCLIF
S
SSPIF
Interrupt cleared
by software
bus collision occurs. Set BCLIF.
SCL = 0 before BRG time-out,
0’’0
00
SDA
SCL
SEN
Set S
Less than TBRG TBRG
SDA = 0, SCL = 1
BCLIF
S
SSPIF
S
Interrupts cleared
by software
set SSPIF
SDA = 0, SCL = 1,
SCL pulled low after BRG
time-out
Set SSPIF
0
SDA pulled low by other master.
Reset BRG and assert SDA.
Set SEN, enable Start
sequence if SDA = 1, SCL = 1
2012 Microchip Technology Inc. Preliminary DS41639A-page 247
PIC16(L)F1454/5/9
22.6.13.2 Bus Collision During a Repeated
Start Condition
During a Repeated Start condition, a bus collision
occurs if:
a) A low level is sampled on SDA when SCL goes
from low level to high level (Case 1).
b) SCL goes low before SDA is asserted low,
indicating that another master is attempting to
transmit a data ‘1’ (Case 2).
When the user releases SDA and the pin is allowed to
float high, the BRG is loaded with SSPADD and counts
down to zero. The SCL pin is then deasserted and
when sampled high, the SDA pin is sampled.
If SDA is low, a bus collision has occurred (i.e., another
master is attempting to transmit a data ‘0’, Figure 22-36).
If SDA is sampled high, the BRG is reloaded and begins
counting. If SDA goes from high-to-low before the BRG
times out, no bus collision occurs because no two
masters can assert SDA at exactly the same time.
If SCL goes from high-to-low before the BRG times out
and SDA has not already been asserted, a bus collision
occurs. In this case, another master is attempting to
transmit a data ‘1’ during the Repeated Start condition,
see Figure 22-37.
If, at the end of the BRG time-out, both SCL and SDA
are still high, the SDA pin is driven low and the BRG is
reloaded and begins counting. At the end of the count,
regardless of the status of the SCL pin, the SCL pin is
driven low and the Repeated Start condition is
complete.
FIGURE 22-36: BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)
FIGURE 22-37: BUS COLLISION DURING REPEATED START CONDITION (CASE 2)
SDA
SCL
RSEN
BCLIF
S
SSPIF
Sample SDA when SCL goes high.
If SDA = 0, set BCLIF and release SDA and SCL.
Cleared by software
0
0
SDA
SCL
BCLIF
RSEN
S
SSPIF
Interrupt cleared
by software
SCL goes low before SDA,
set BCLIF. Release SDA and SCL.
TBRG TBRG
0
PIC16(L)F1454/5/9
DS41639A-page 248 Preliminary 2012 Microchip Technology Inc.
22.6.13.3 Bus Collision During a Stop
Condition
Bus collision occurs during a Stop condition if:
a) After the SDA pin has been deasserted and
allowed to float high, SDA is sampled low after
the BRG has timed out (Case 1).
b) After the SCL pin is deasserted, SCL is sampled
low before SDA goes high (Case 2).
The Stop condition begins with SDA asserted low.
When SDA is sampled low, the SCL pin is allowed to
float. When the pin is sampled high (clock arbitration),
the Baud Rate Generator is loaded with SSPADD and
counts down to zero. After the BRG times out, SDA is
sampled. If SDA is sampled low, a bus collision has
occurred. This is due to another master attempting to
drive a data ‘0’ (Figure 22-34). If the SCL pin is sampled
low before SDA is allowed to float high, a bus collision
occurs. This is another case of another master
attempting to drive a data ‘0’ (Figure 22-34).
FIGURE 22-38: BUS COLLISION DURING A STOP CONDITION (CASE 1)
FIGURE 22-39: BUS COLLISION DURING A STOP CONDITION (CASE 2)
SDA
SCL
BCLIF
PEN
P
SSPIF
TBRG TBRG TBRG
SDA asserted low
SDA sampled
low after TBRG,
set BCLIF
0
0
SDA
SCL
BCLIF
PEN
P
SSPIF
TBRG TBRG TBRG
Assert SDA SCL goes low before SDA goes high,
set BCLIF
0
0
2012 Microchip Technology Inc. Preliminary DS41639A-page 249
PIC16(L)F1454/5/9
TABLE 22-3: SUMMARY OF REGISTERS ASSOCIATED WITH I2C™ OPERATION
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Reset
Values on
Page:
INTCON GIE PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF 96
PIE1 TMR1GIE ADIE(2) RCIE TXIE SSP1IE TMR2IE TMR1IE 97
PIE2 OSFIE C2IE C1IE BCL1IE USBIE ACTIE 98
PIR1 TMR1GIF ADIF(2) RCIF TXIF SSP1IF TMR2IF TMR1IF 99
PIR2 OSFIF C2IF C1IF BCL1IF USBIF ACTIF 100
TRISA TRISA5 TRISA4 (1) (1) (1) 132
SSP1ADD ADD<7:0> 256
SSP1BUF MSSP Receive Buffer/Transmit Register 207*
SSP1CON1 WCOL SSPOV SSPEN CKP SSPM<3:0> 253
SSP1CON2 GCEN ACKSTAT ACKDT ACKEN RCEN PEN RSEN SEN 254
SSP1CON3 ACKTIM PCIE SCIE BOEN SDAHT SBCDE AHEN DHEN 255
SSP1MSK MSK<7:0> 256
SSP1STAT SMP CKE D/A PSR/WUA BF 251
Legend: — = unimplemented location, read as ‘0’. Shaded cells are not used by the MSSP module in I2C™ mode.
* Page provides register information.
Note 1: Unimplemented, read as ‘1’.
2: PIC16(L)F1455/9 only.
PIC16(L)F1454/5/9
DS41639A-page 250 Preliminary 2012 Microchip Technology Inc.
22.7 BAUD RATE GENERATOR
The MSSP module has a Baud Rate Generator avail-
able for clock generation in both I2C and SPI Master
modes. The Baud Rate Generator (BRG) reload value
is placed in the SSPADD register (Register 22-6).
When a write occurs to SSPBUF, the Baud Rate Gen-
erator will automatically begin counting down.
Once the given operation is complete, the internal clock
will automatically stop counting and the clock pin will
remain in its last state.
An internal signal “Reload” in Figure 22-40 triggers the
value from SSPADD to be loaded into the BRG counter.
This occurs twice for each oscillation of the module
clock line. The logic dictating when the reload signal is
asserted depends on the mode the MSSP is being
operated in.
Table 22-4 demonstrates clock rates based on
instruction cycles and the BRG value loaded into
SSPADD.
EQUATION 22-1:
FIGURE 22-40: BAUD RATE GENERATOR BLOCK DIAGRAM
TABLE 22-4: MSSP CLOCK RATE W/BRG
FCLOCK FOSC
SSPxADD 1+4
-------------------------------------------------=
Note: Values of 0x00, 0x01 and 0x02 are not valid
for SSPADD when used as a Baud Rate
Generator for I2C. This is an implementation
limitation.
FOSC FCY BRG Value FCLOCK
(2 Rollovers of BRG)
16 MHz 4 MHz 09h 400 kHz(1)
16 MHz 4 MHz 0Ch 308 kHz
16 MHz 4 MHz 27h 100 kHz
4 MHz 1 MHz 09h 100 kHz
Note 1: The I2C interface does not conform to the 400 kHz I2C specification (which applies to rates greater than
100 kHz) in all details, but may be used with care where higher rates are required by the application.
SSPM<3:0>
BRG Down Counter
SSPCLK FOSC/2
SSPADD<7:0>
SSPM<3:0>
SCL
Reload
Control
Reload
2012 Microchip Technology Inc. Preliminary DS41639A-page 251
PIC16(L)F1454/5/9
22.8 Register Definitions: MSSP Control
REGISTER 22-1: SSPSTAT: SSP STATUS REGISTER
R/W-0/0 R/W-0/0 R-0/0 R-0/0 R-0/0 R-0/0 R-0/0 R-0/0
SMP CKE D/A PSR/WUA BF
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7 SMP: SPI Data Input Sample bit
SPI Master mode:
1 = Input data sampled at end of data output time
0 = Input data sampled at middle of data output time
SPI Slave mode:
SMP must be cleared when SPI is used in Slave mode
In I2 C Master or Slave mode:
1 = Slew rate control disabled for Standard-Speed mode (100 kHz and 1 MHz)
0 = Slew rate control enabled for High-Speed mode (400 kHz)
bit 6 CKE: SPI Clock Edge Select bit (SPI mode only)
In SPI Master or Slave mode:
1 = Transmit occurs on transition from active to Idle clock state
0 = Transmit occurs on transition from Idle to active clock state
In I2 Cmode only:
1 = Enable input logic so that thresholds are compliant with SMbus specification
0 = Disable SMbus specific inputs
bit 5 D/A: Data/Address bit (I2C mode only)
1 = Indicates that the last byte received or transmitted was data
0 = Indicates that the last byte received or transmitted was address
bit 4 P: Stop bit
(I2C mode only. This bit is cleared when the MSSP module is disabled, SSPEN is cleared.)
1 = Indicates that a Stop bit has been detected last (this bit is 0’ on Reset)
0 = Stop bit was not detected last
bit 3 S: Start bit
(I2C mode only. This bit is cleared when the MSSP module is disabled, SSPEN is cleared.)
1 = Indicates that a Start bit has been detected last (this bit is ‘0’ on Reset)
0 = Start bit was not detected last
bit 2 R/W: Read/Write bit information (I2C mode only)
This bit holds the R/W bit information following the last address match. This bit is only valid from the address match
to the next Start bit, Stop bit, or not ACK bit.
In I2 C Slave mode:
1 = Read
0 =Write
In I2 C Master mode:
1 = Transmit is in progress
0 = Transmit is not in progress
OR-ing this bit with SEN, RSEN, PEN, RCEN or ACKEN will indicate if the MSSP is in Idle mode.
bit 1 UA: Update Address bit (10-bit I2C mode only)
1 = Indicates that the user needs to update the address in the SSPADD register
0 = Address does not need to be updated
PIC16(L)F1454/5/9
DS41639A-page 252 Preliminary 2012 Microchip Technology Inc.
bit 0 BF: Buffer Full Status bit
Receive (SPI and I2 C modes):
1 = Receive complete, SSPBUF is full
0 = Receive not complete, SSPBUF is empty
Transmit (I2 C mode only):
1 = Data transmit in progress (does not include the ACK and Stop bits), SSPBUF is full
0 = Data transmit complete (does not include the ACK and Stop bits), SSPBUF is empty
REGISTER 22-1: SSPSTAT: SSP STATUS REGISTER (CONTINUED)
2012 Microchip Technology Inc. Preliminary DS41639A-page 253
PIC16(L)F1454/5/9
REGISTER 22-2: SSPCON1: SSP CONTROL REGISTER 1
R/C/HS-0/0 R/C/HS-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0
WCOL SSPOV SSPEN CKP SSPM<3:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared HS = Bit is set by hardware C = User cleared
bit 7 WCOL: Write Collision Detect bit
Master mode:
1 = A write to the SSPBUF register was attempted while the I2C conditions were not valid for a transmission to be started
0 = No collision
Slave mode:
1 = The SSPBUF register is written while it is still transmitting the previous word (must be cleared in software)
0 = No collision
bit 6 SSPOV: Receive Overflow Indicator bit(1)
In SPI mode:
1 = A new byte is received while the SSPBUF register is still holding the previous data. In case of overflow, the data in SSPSR is lost.
Overflow can only occur in Slave mode. In Slave mode, the user must read the SSPBUF, even if only transmitting data, to avoid
setting overflow. In Master mode, the overflow bit is not set since each new reception (and transmission) is initiated by writing to the
SSPBUF register (must be cleared in software).
0 = No overflow
In I2 C mode:
1 = A byte is received while the SSPBUF register is still holding the previous byte. SSPOV is a “don’t care” in Transmit mode
(must be cleared in software).
0 = No overflow
bit 5 SSPEN: Synchronous Serial Port Enable bit
In both modes, when enabled, these pins must be properly configured as input or output
In SPI mode:
1 = Enables serial port and configures SCK, SDO, SDI and SS as the source of the serial port pins(2)
0 = Disables serial port and configures these pins as I/O port pins
In I2 C mode:
1 = Enables the serial port and configures the SDA and SCL pins as the source of the serial port pins(3)
0 = Disables serial port and configures these pins as I/O port pins
bit 4 CKP: Clock Polarity Select bit
In SPI mode:
1 = Idle state for clock is a high level
0 = Idle state for clock is a low level
In I2 C Slave mode:
SCL release control
1 = Enable clock
0 = Holds clock low (clock stretch). (Used to ensure data setup time.)
In I2 C Master mode:
Unused in this mode
bit 3-0 SSPM<3:0>: Synchronous Serial Port Mode Select bits
0000 = SPI Master mode, clock = FOSC/4
0001 = SPI Master mode, clock = FOSC/16
0010 = SPI Master mode, clock = FOSC/64
0011 = SPI Master mode, clock = TMR2 output/2
0100 = SPI Slave mode, clock = SCK pin, SS pin control enabled
0101 = SPI Slave mode, clock = SCK pin, SS pin control disabled, SS can be used as I/O pin
0110 = I2C Slave mode, 7-bit address
0111 = I2C Slave mode, 10-bit address
1000 = I2C Master mode, clock = FOSC / (4 * (SSPADD+1))(4)
1001 = Reserved
1010 = SPI Master mode, clock = FOSC/(4 * (SSPADD+1))(5)
1011 = I2C firmware controlled Master mode (Slave idle)
1100 = Reserved
1101 = Reserved
1110 = I2C Slave mode, 7-bit address with Start and Stop bit interrupts enabled
1111 = I2C Slave mode, 10-bit address with Start and Stop bit interrupts enabled
Note 1: In Master mode, the overflow bit is not set since each new reception (and transmission) is initiated by writing to the SSPBUF register.
2: When enabled, these pins must be properly configured as input or output.
3: When enabled, the SDA and SCL pins must be configured as inputs.
4: SSPADD values of 0, 1 or 2 are not supported for I2C mode.
5: SSPADD value of ‘0’ is not supported. Use SSPM = 0000 instead.
PIC16(L)F1454/5/9
DS41639A-page 254 Preliminary 2012 Microchip Technology Inc.
REGISTER 22-3: SSPCON2: SSP CONTROL REGISTER 2
R/W-0/0 R-0/0 R/W-0/0 R/S/HS-0/0 R/S/HS-0/0 R/S/HS-0/0 R/S/HS-0/0 R/W/HS-0/0
GCEN ACKSTAT ACKDT ACKEN RCEN PEN RSEN SEN
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared HC = Cleared by hardware S = User set
bit 7 GCEN: General Call Enable bit (in I2C Slave mode only)
1 = Enable interrupt when a general call address (0x00 or 00h) is received in the SSPSR
0 = General call address disabled
bit 6 ACKSTAT: Acknowledge Status bit (in I2C mode only)
1 = Acknowledge was not received
0 = Acknowledge was received
bit 5 ACKDT: Acknowledge Data bit (in I2C mode only)
In Receive mode:
Value transmitted when the user initiates an Acknowledge sequence at the end of a receive
1 = Not Acknowledge
0 = Acknowledge
bit 4 ACKEN: Acknowledge Sequence Enable bit (in I2C Master mode only)
In Master Receive mode:
1 = Initiate Acknowledge sequence on SDA and SCL pins, and transmit ACKDT data bit.
Automatically cleared by hardware.
0 = Acknowledge sequence idle
bit 3 RCEN: Receive Enable bit (in I2C Master mode only)
1 = Enables Receive mode for I2C
0 = Receive idle
bit 2 PEN: Stop Condition Enable bit (in I2C Master mode only)
SCKMSSP Release Control:
1 = Initiate Stop condition on SDA and SCL pins. Automatically cleared by hardware.
0 = Stop condition Idle
bit 1 RSEN: Repeated Start Condition Enable bit (in I2C Master mode only)
1 = Initiate Repeated Start condition on SDA and SCL pins. Automatically cleared by hardware.
0 = Repeated Start condition Idle
bit 0 SEN: Start Condition Enable/Stretch Enable bit
In Master mode:
1 = Initiate Start condition on SDA and SCL pins. Automatically cleared by hardware.
0 = Start condition Idle
In Slave mode:
1 = Clock stretching is enabled for both slave transmit and slave receive (stretch enabled)
0 = Clock stretching is disabled
Note 1: For bits ACKEN, RCEN, PEN, RSEN, SEN: If the I2C module is not in the Idle mode, this bit may not be
set (no spooling) and the SSPBUF may not be written (or writes to the SSPBUF are disabled).
2012 Microchip Technology Inc. Preliminary DS41639A-page 255
PIC16(L)F1454/5/9
REGISTER 22-4: SSPCON3: SSP CONTROL REGISTER 3
R-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0
ACKTIM PCIE SCIE BOEN SDAHT SBCDE AHEN DHEN
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7 ACKTIM: Acknowledge Time Status bit (I2C mode only)(3)
1 = Indicates the I2C bus is in an Acknowledge sequence, set on 8TH falling edge of SCL clock
0 = Not an Acknowledge sequence, cleared on 9TH rising edge of SCL clock
bit 6 PCIE: Stop Condition Interrupt Enable bit (I2C mode only)
1 = Enable interrupt on detection of Stop condition
0 = Stop detection interrupts are disabled(2)
bit 5 SCIE: Start Condition Interrupt Enable bit (I2C mode only)
1 = Enable interrupt on detection of Start or Restart conditions
0 = Start detection interrupts are disabled(2)
bit 4 BOEN: Buffer Overwrite Enable bit
In SPI Slave mode:(1)
1 = SSPBUF updates every time that a new data byte is shifted in ignoring the BF bit
0 = If new byte is received with BF bit of the SSPSTAT register already set, SSPOV bit of the
SSPCON1 register is set, and the buffer is not updated
In I2C Master mode and SPI Master mode:
This bit is ignored.
In I2C Slave mode:
1 = SSPBUF is updated and ACK is generated for a received address/data byte, ignoring the state
of the SSPOV bit only if the BF bit = 0.
0 = SSPBUF is only updated when SSPOV is clear
bit 3 SDAHT: SDA Hold Time Selection bit (I2C mode only)
1 = Minimum of 300 ns hold time on SDA after the falling edge of SCL
0 = Minimum of 100 ns hold time on SDA after the falling edge of SCL
bit 2 SBCDE: Slave Mode Bus Collision Detect Enable bit (I2C Slave mode only)
If on the rising edge of SCL, SDA is sampled low when the module is outputting a high state, the
BCL1IF bit of the PIR2 register is set, and bus goes idle
1 = Enable slave bus collision interrupts
0 = Slave bus collision interrupts are disabled
bit 1 AHEN: Address Hold Enable bit (I2C Slave mode only)
1 = Following the 8th falling edge of SCL for a matching received address byte; CKP bit of the
SSPCON1 register will be cleared and the SCL will be held low.
0 = Address holding is disabled
bit 0 DHEN: Data Hold Enable bit (I2C Slave mode only)
1 = Following the 8th falling edge of SCL for a received data byte; slave hardware clears the CKP bit
of the SSPCON1 register and SCL is held low.
0 = Data holding is disabled
Note 1: For daisy-chained SPI operation; allows the user to ignore all but the last received byte. SSPOV is still set
when a new byte is received and BF = 1, but hardware continues to write the most recent byte to SSPBUF.
2: This bit has no effect in Slave modes that Start and Stop condition detection is explicitly listed as enabled.
3: The ACKTIM Status bit is only active when the AHEN bit or DHEN bit is set.
PIC16(L)F1454/5/9
DS41639A-page 256 Preliminary 2012 Microchip Technology Inc.
REGISTER 22-5: SSPMSK: SSP MASK REGISTER
R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1
MSK<7:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-1 MSK<7:1>: Mask bits
1 = The received address bit n is compared to SSPADD<n> to detect I2C address match
0 = The received address bit n is not used to detect I2C address match
bit 0 MSK<0>: Mask bit for I2C Slave mode, 10-bit Address
I2C Slave mode, 10-bit address (SSPM<3:0> = 0111 or 1111):
1 = The received address bit 0 is compared to SSPADD<0> to detect I2C address match
0 = The received address bit 0 is not used to detect I2C address match
I2C Slave mode, 7-bit address, the bit is ignored
REGISTER 22-6: SSPADD: MSSP ADDRESS AND BAUD RATE REGISTER (I2C MODE)
R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0
ADD<7:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
Master mode:
bit 7-0 ADD<7:0>: Baud Rate Clock Divider bits
SCL pin clock period = ((ADD<7:0> + 1) *4)/FOSC
10-Bit Slave mode — Most Significant Address Byte:
bit 7-3 Not used: Unused for Most Significant Address Byte. Bit state of this register is a “don’t care”. Bit pat-
tern sent by master is fixed by I2C specification and must be equal to ‘11110’. However, those bits are
compared by hardware and are not affected by the value in this register.
bit 2-1 ADD<2:1>: Two Most Significant bits of 10-bit address
bit 0 Not used: Unused in this mode. Bit state is a “don’t care”.
10-Bit Slave mode — Least Significant Address Byte:
bit 7-0 ADD<7:0>: Eight Least Significant bits of 10-bit address
7-Bit Slave mode:
bit 7-1 ADD<7:1>: 7-bit address
bit 0 Not used: Unused in this mode. Bit state is a “don’t care”.
2012 Microchip Technology Inc. Preliminary DS41639A-page 257
PIC16(L)F1454/5/9
23.0 ENHANCED UNIVERSAL
SYNCHRONOUS
ASYNCHRONOUS RECEIVER
TRANSMITTER (EUSART)
The Enhanced Universal Synchronous Asynchronous
Receiver Transmitter (EUSART) module is a serial I/O
communications peripheral. It contains all the clock
generators, shift registers and data buffers necessary
to perform an input or output serial data transfer
independent of device program execution. The
EUSART, also known as a Serial Communications
Interface (SCI), can be configured as a full-duplex
asynchronous system or half-duplex synchronous
system. Full-Duplex mode is useful for
communications with peripheral systems, such as CRT
terminals and personal computers. Half-Duplex
Synchronous mode is intended for communications
with peripheral devices, such as A/D or D/A integrated
circuits, serial EEPROMs or other microcontrollers.
These devices typically do not have internal clocks for
baud rate generation and require the external clock
signal provided by a master synchronous device.
The EUSART module includes the following capabilities:
Full-duplex asynchronous transmit and receive
Two-character input buffer
One-character output buffer
Programmable 8-bit or 9-bit character length
Address detection in 9-bit mode
Input buffer overrun error detection
Received character framing error detection
Half-duplex synchronous master
Half-duplex synchronous slave
Programmable clock polarity in Synchronous
modes
Sleep operation
The EUSART module implements the following
additional features, making it ideally suited for use in
Local Interconnect Network (LIN) bus systems:
Automatic detection and calibration of the baud rate
Wake-up on Break reception
13-bit Break character transmit
Block diagrams of the EUSART transmitter and
receiver are shown in Figure 23-1 and Figure 23-2.
FIGURE 23-1: EUSART TRANSMIT BLOCK DIAGRAM
TXIF
TXIE
Interrupt
TXEN
TX9D
MSb LSb
Data Bus
TXREG Register
Transmit Shift Register (TSR)
(8) 0
TX9
TRMT SPEN
TX/CK pin
Pin Buffer
and Control
8
SPBRGL
SPBRGH
BRG16
FOSC ÷ n
n
+ 1 Multiplier x4 x16 x64
SYNC 1X00 0
BRGH X110 0
BRG16 X101 0
Baud Rate Generator
••
PIC16(L)F1454/5/9
DS41639A-page 258 Preliminary 2012 Microchip Technology Inc.
FIGURE 23-2: EUSART RECEIVE BLOCK DIAGRAM
The operation of the EUSART module is controlled
through three registers:
Transmit Status and Control (TXSTA)
Receive Status and Control (RCSTA)
Baud Rate Control (BAUDCON)
These registers are detailed in Register 23-1,
Register 23-2 and Register 23-3, respectively.
When the receiver or transmitter section is not enabled
then the corresponding RX or TX pin may be used for
general purpose input and output.
RX/DT pin
Pin Buffer
and Control
SPEN
Data
Recovery
CREN OERR
FERR
RSR Register
MSb LSb
RX9D RCREG Register FIFO
Interrupt
RCIF
RCIE
Data Bus
8
Stop START
(8) 7 1 0
RX9
• • •
SPBRGLSPBRGH
BRG16
RCIDL
FOSC ÷ n
n
+ 1 Multiplier x4 x16 x64
SYNC 1X00 0
BRGH X110 0
BRG16 X101 0
Baud Rate Generator
2012 Microchip Technology Inc. Preliminary DS41639A-page 259
PIC16(L)F1454/5/9
23.1 EUSART Asynchronous Mode
The EUSART transmits and receives data using the
standard non-return-to-zero (NRZ) format. NRZ is
implemented with two levels: a VOH mark state which
represents a ‘1’ data bit, and a VOL space state which
represents a ‘0’ data bit. NRZ refers to the fact that
consecutively transmitted data bits of the same value
stay at the output level of that bit without returning to a
neutral level between each bit transmission. An NRZ
transmission port idles in the Mark state. Each character
transmission consists of one Start bit followed by eight
or nine data bits and is always terminated by one or
more Stop bits. The Start bit is always a space and the
Stop bits are always marks. The most common data
format is eight bits. Each transmitted bit persists for a
period of 1/(Baud Rate). An on-chip dedicated
8-bit/16-bit Baud Rate Generator is used to derive
standard baud rate frequencies from the system
oscillator. See Table 23-5 for examples of baud rate
configurations.
The EUSART transmits and receives the LSb first. The
EUSART’s transmitter and receiver are functionally
independent, but share the same data format and baud
rate. Parity is not supported by the hardware, but can
be implemented in software and stored as the ninth
data bit.
23.1.1 EUSART ASYNCHRONOUS
TRANSMITTER
The EUSART transmitter block diagram is shown in
Figure 23-1. The heart of the transmitter is the serial
Transmit Shift Register (TSR), which is not directly
accessible by software. The TSR obtains its data from
the transmit buffer, which is the TXREG register.
23.1.1.1 Enabling the Transmitter
The EUSART transmitter is enabled for asynchronous
operations by configuring the following three control
bits:
•TXEN = 1
SYNC = 0
SPEN = 1
All other EUSART control bits are assumed to be in
their default state.
Setting the TXEN bit of the TXSTA register enables the
transmitter circuitry of the EUSART. Clearing the SYNC
bit of the TXSTA register configures the EUSART for
asynchronous operation. Setting the SPEN bit of the
RCSTA register enables the EUSART and automatically
configures the TX/CK I/O pin as an output. If the TX/CK
pin is shared with an analog peripheral, the analog I/O
function must be disabled by clearing the corresponding
ANSEL bit.
23.1.1.2 Transmitting Data
A transmission is initiated by writing a character to the
TXREG register. If this is the first character, or the
previous character has been completely flushed from
the TSR, the data in the TXREG is immediately
transferred to the TSR register. If the TSR still contains
all or part of a previous character, the new character
data is held in the TXREG until the Stop bit of the
previous character has been transmitted. The pending
character in the TXREG is then transferred to the TSR
in one TCY immediately following the Stop bit
transmission. The transmission of the Start bit, data bits
and Stop bit sequence commences immediately
following the transfer of the data to the TSR from the
TXREG.
23.1.1.3 Transmit Data Polarity
The polarity of the transmit data can be controlled with
the SCKP bit of the BAUDCON register. The default
state of this bit is ‘0’ which selects high true transmit idle
and data bits. Setting the SCKP bit to ‘1’ will invert the
transmit data resulting in low true Idle and data bits. The
SCKP bit controls transmit data polarity in
Asynchronous mode only. In Synchronous mode, the
SCKP bit has a different function. See Section 23.5.1.2
“Clock Polarity.
23.1.1.4 Transmit Interrupt Flag
The TXIF interrupt flag bit of the PIR1 register is set
whenever the EUSART transmitter is enabled and no
character is being held for transmission in the TXREG.
In other words, the TXIF bit is only clear when the TSR
is busy with a character and a new character has been
queued for transmission in the TXREG. The TXIF flag bit
is not cleared immediately upon writing TXREG. TXIF
becomes valid in the second instruction cycle following
the write execution. Polling TXIF immediately following
the TXREG write will return invalid results. The TXIF bit
is read-only, it cannot be set or cleared by software.
The TXIF interrupt can be enabled by setting the TXIE
interrupt enable bit of the PIE1 register. However, the
TXIF flag bit will be set whenever the TXREG is empty,
regardless of the state of TXIE enable bit.
To use interrupts when transmitting data, set the TXIE
bit only when there is more data to send. Clear the
TXIE interrupt enable bit upon writing the last character
of the transmission to the TXREG.
Note: The TXIF Transmitter Interrupt flag is set
when the TXEN enable bit is set.
PIC16(L)F1454/5/9
DS41639A-page 260 Preliminary 2012 Microchip Technology Inc.
23.1.1.5 TSR Status
The TRMT bit of the TXSTA register indicates the
status of the TSR register. This is a read-only bit. The
TRMT bit is set when the TSR register is empty and is
cleared when a character is transferred to the TSR
register from the TXREG. The TRMT bit remains clear
until all bits have been shifted out of the TSR register.
No interrupt logic is tied to this bit, so the user has to
poll this bit to determine the TSR status.
23.1.1.6 Transmitting 9-Bit Characters
The EUSART supports 9-bit character transmissions.
When the TX9 bit of the TXSTA register is set, the
EUSART will shift nine bits out for each character trans-
mitted. The TX9D bit of the TXSTA register is the ninth,
and Most Significant, data bit. When transmitting 9-bit
data, the TX9D data bit must be written before writing
the eight Least Significant bits into the TXREG. All nine
bits of data will be transferred to the TSR shift register
immediately after the TXREG is written.
A special 9-bit Address mode is available for use with
multiple receivers. See Section 23.1.2.7 “Address
Detection” for more information on the address mode.
23.1.1.7 Asynchronous Transmission Set-up:
1. Initialize the SPBRGH, SPBRGL register pair and
the BRGH and BRG16 bits to achieve the desired
baud rate (see Section 23.4 “EUSART Baud
Rate Generator (BRG)”).
2. Enable the asynchronous serial port by clearing
the SYNC bit and setting the SPEN bit.
3. If 9-bit transmission is desired, set the TX9 con-
trol bit. A set ninth data bit will indicate that the
eight Least Significant data bits are an address
when the receiver is set for address detection.
4. Set SCKP bit if inverted transmit is desired.
5. Enable the transmission by setting the TXEN
control bit. This will cause the TXIF interrupt bit
to be set.
6. If interrupts are desired, set the TXIE interrupt
enable bit of the PIE1 register. An interrupt will
occur immediately provided that the GIE and
PEIE bits of the INTCON register are also set.
7. If 9-bit transmission is selected, the ninth bit
should be loaded into the TX9D data bit.
8. Load 8-bit data into the TXREG register. This
will start the transmission.
FIGURE 23-3: ASYNCHRONOUS TRANSMISSION
FIGURE 23-4: ASYNCHRONOUS TRANSMISSION (BACK-TO-BACK)
Note: The TSR register is not mapped in data
memory, so it is not available to the user.
Word 1
Stop bit
Word 1
Transmit Shift Reg.
Start bit bit 0 bit 1 bit 7/8
Write to TXREG
Word 1
BRG Output
(Shift Clock)
TX/CK
TXIF bit
(Transmit Buffer
Reg. Empty Flag)
TRMT bit
(Transmit Shift
Reg. Empty Flag)
1 TCY
pin
Transmit Shift Reg.
Write to TXREG
BRG Output
(Shift Clock)
TX/CK
TRMT bit
(Transmit Shift
Reg. Empty Flag)
Word 1 Word 2
Word 1 Word 2
Start bit Stop bit Start bit
Transmit Shift Reg.
Word 1 Word 2
bit 0 bit 1 bit 7/8 bit 0
Note: This timing diagram shows two consecutive transmissions.
1 TCY
1 TCY
pin
TXIF bit
(Transmit Buffer
Reg. Empty Flag)
2012 Microchip Technology Inc. Preliminary DS41639A-page 261
PIC16(L)F1454/5/9
TABLE 23-1: SUMMARY OF REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register
on Page
BAUDCON ABDOVF RCIDL SCKP BRG16 WUE ABDEN 269
INTCON GIE PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF 96
PIE1 TMR1GIE ADIE(2) RCIE TXIE SSP1IE TMR2IE TMR1IE 97
PIR1 TMR1GIF ADIF(2) RCIF TXIF SSP1IF TMR2IF TMR1IF 99
RCSTA SPEN RX9 SREN CREN ADDEN FERR OERR RX9D 268*
SPBRGL BRG<7:0> 270*
SPBRGH BRG<15:8> 270*
TRISC TRISC7(1) TRISC6(1) TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 140
TXREG EUSART Transmit Data Register 259
TXSTA CSRC TX9 TXEN SYNC SENDB BRGH TRMT TX9D 267
Legend: — = unimplemented location, read as0’. Shaded cells are not used for asynchronous transmission.
* Page provides register information.
Note 1: PIC16(L)F1459 only.
2: PIC16(L)F1455/9 only.
PIC16(L)F1454/5/9
DS41639A-page 262 Preliminary 2012 Microchip Technology Inc.
23.1.2 EUSART ASYNCHRONOUS
RECEIVER
The Asynchronous mode is typically used in RS-232
systems. The receiver block diagram is shown in
Figure 23-2. The data is received on the RX/DT pin and
drives the data recovery block. The data recovery block
is actually a high-speed shifter operating at 16 times
the baud rate, whereas the serial Receive Shift
Register (RSR) operates at the bit rate. When all eight
or nine bits of the character have been shifted in, they
are immediately transferred to a two character
First-In-First-Out (FIFO) memory. The FIFO buffering
allows reception of two complete characters and the
start of a third character before software must start
servicing the EUSART receiver. The FIFO and RSR
registers are not directly accessible by software.
Access to the received data is via the RCREG register.
23.1.2.1 Enabling the Receiver
The EUSART receiver is enabled for asynchronous
operation by configuring the following three control bits:
CREN = 1
SYNC = 0
SPEN = 1
All other EUSART control bits are assumed to be in
their default state.
Setting the CREN bit of the RCSTA register enables the
receiver circuitry of the EUSART. Clearing the SYNC bit
of the TXSTA register configures the EUSART for
asynchronous operation. Setting the SPEN bit of the
RCSTA register enables the EUSART. The programmer
must set the corresponding TRIS bit to configure the
RX/DT I/O pin as an input.
23.1.2.2 Receiving Data
The receiver data recovery circuit initiates character
reception on the falling edge of the first bit. The first bit,
also known as the Start bit, is always a zero. The data
recovery circuit counts one-half bit time to the center of
the Start bit and verifies that the bit is still a zero. If it is
not a zero then the data recovery circuit aborts
character reception, without generating an error, and
resumes looking for the falling edge of the Start bit. If
the Start bit zero verification succeeds then the data
recovery circuit counts a full bit time to the center of the
next bit. The bit is then sampled by a majority detect
circuit and the resulting 0’ or ‘1’ is shifted into the RSR.
This repeats until all data bits have been sampled and
shifted into the RSR. One final bit time is measured and
the level sampled. This is the Stop bit, which is always
a ‘1’. If the data recovery circuit samples a 0’ in the
Stop bit position, then a framing error is set for this
character, otherwise, the framing error is cleared for
this character. See Section 23.1.2.4 “Receive
Framing Error” for more information on framing
errors.
Immediately after all data bits and the Stop bit have
been received, the character in the RSR is transferred
to the EUSART receive FIFO and the RCIF interrupt
flag bit of the PIR1 register is set. The top character in
the FIFO is transferred out of the FIFO by reading the
RCREG register.
23.1.2.3 Receive Interrupts
The RCIF interrupt flag bit of the PIR1 register is set
whenever the EUSART receiver is enabled and there is
an unread character in the receive FIFO. The RCIF
interrupt flag bit is read-only, it cannot be set or cleared
by software.
RCIF interrupts are enabled by setting all of the
following bits:
RCIE interrupt enable bit of the PIE1 register
PEIE peripheral interrupt enable bit of the
INTCON register
GIE Global Interrupt Enable bit of the INTCON
register
The RCIF interrupt flag bit will be set when there is an
unread character in the FIFO, regardless of the state of
interrupt enable bits.
Note: If the RX/DT function is on an analog pin,
the corresponding ANSEL bit must be
cleared for the receiver to function.
Note: If the receive FIFO is overrun, no additional
characters will be received until the overrun
condition is cleared. See Section 23.1.2.5
“Receive Overrun Error” for more
information on overrun errors.
2012 Microchip Technology Inc. Preliminary DS41639A-page 263
PIC16(L)F1454/5/9
23.1.2.4 Receive Framing Error
Each character in the receive FIFO buffer has a
corresponding framing error Status bit. A framing error
indicates that a Stop bit was not seen at the expected
time. The framing error status is accessed via the
FERR bit of the RCSTA register. The FERR bit
represents the status of the top unread character in the
receive FIFO. Therefore, the FERR bit must be read
before reading the RCREG.
The FERR bit is read-only and only applies to the top
unread character in the receive FIFO. A framing error
(FERR = 1) does not preclude reception of additional
characters. It is not necessary to clear the FERR bit.
Reading the next character from the FIFO buffer will
advance the FIFO to the next character and the next
corresponding framing error.
The FERR bit can be forced clear by clearing the SPEN
bit of the RCSTA register which resets the EUSART.
Clearing the CREN bit of the RCSTA register does not
affect the FERR bit. A framing error by itself does not
generate an interrupt.
23.1.2.5 Receive Overrun Error
The receive FIFO buffer can hold two characters. An
overrun error will be generated if a third character, in its
entirety, is received before the FIFO is accessed. When
this happens the OERR bit of the RCSTA register is set.
The characters already in the FIFO buffer can be read
but no additional characters will be received until the
error is cleared. The error must be cleared by either
clearing the CREN bit of the RCSTA register or by
resetting the EUSART by clearing the SPEN bit of the
RCSTA register.
23.1.2.6 Receiving 9-bit Characters
The EUSART supports 9-bit character reception. When
the RX9 bit of the RCSTA register is set the EUSART
will shift nine bits into the RSR for each character
received. The RX9D bit of the RCSTA register is the
ninth and Most Significant data bit of the top unread
character in the receive FIFO. When reading 9-bit data
from the receive FIFO buffer, the RX9D data bit must
be read before reading the eight Least Significant bits
from the RCREG.
23.1.2.7 Address Detection
A special Address Detection mode is available for use
when multiple receivers share the same transmission
line, such as in RS-485 systems. Address detection is
enabled by setting the ADDEN bit of the RCSTA
register.
Address detection requires 9-bit character reception.
When address detection is enabled, only characters
with the ninth data bit set will be transferred to the
receive FIFO buffer, thereby setting the RCIF interrupt
bit. All other characters will be ignored.
Upon receiving an address character, user software
determines if the address matches its own. Upon
address match, user software must disable address
detection by clearing the ADDEN bit before the next
Stop bit occurs. When user software detects the end of
the message, determined by the message protocol
used, software places the receiver back into the
Address Detection mode by setting the ADDEN bit.
Note: If all receive characters in the receive
FIFO have framing errors, repeated reads
of the RCREG will not clear the FERR bit.
PIC16(L)F1454/5/9
DS41639A-page 264 Preliminary 2012 Microchip Technology Inc.
23.1.2.8 Asynchronous Reception Set-up:
1. Initialize the SPBRGH, SPBRGL register pair
and the BRGH and BRG16 bits to achieve the
desired baud rate (see Section 23.4 “EUSART
Baud Rate Generator (BRG)”).
2. Clear the ANSEL bit for the RX pin (if applicable).
3. Enable the serial port by setting the SPEN bit.
The SYNC bit must be clear for asynchronous
operation.
4. If interrupts are desired, set the RCIE bit of the
PIE1 register and the GIE and PEIE bits of the
INTCON register.
5. If 9-bit reception is desired, set the RX9 bit.
6. Enable reception by setting the CREN bit.
7. The RCIF interrupt flag bit will be set when a
character is transferred from the RSR to the
receive buffer. An interrupt will be generated if
the RCIE interrupt enable bit was also set.
8. Read the RCSTA register to get the error flags
and, if 9-bit data reception is enabled, the ninth
data bit.
9. Get the received eight Least Significant data bits
from the receive buffer by reading the RCREG
register.
10. If an overrun occurred, clear the OERR flag by
clearing the CREN receiver enable bit.
23.1.2.9 9-bit Address Detection Mode Set-up
This mode would typically be used in RS-485 systems.
To set up an Asynchronous Reception with Address
Detect Enable:
1. Initialize the SPBRGH, SPBRGL register pair
and the BRGH and BRG16 bits to achieve the
desired baud rate (see Section 23.4 “EUSART
Baud Rate Generator (BRG)”).
2. Clear the ANSEL bit for the RX pin (if applicable).
3. Enable the serial port by setting the SPEN bit.
The SYNC bit must be clear for asynchronous
operation.
4. If interrupts are desired, set the RCIE bit of the
PIE1 register and the GIE and PEIE bits of the
INTCON register.
5. Enable 9-bit reception by setting the RX9 bit.
6. Enable address detection by setting the ADDEN
bit.
7. Enable reception by setting the CREN bit.
8. The RCIF interrupt flag bit will be set when a
character with the ninth bit set is transferred
from the RSR to the receive buffer. An interrupt
will be generated if the RCIE interrupt enable bit
was also set.
9. Read the RCSTA register to get the error flags.
The ninth data bit will always be set.
10. Get the received eight Least Significant data bits
from the receive buffer by reading the RCREG
register. Software determines if this is the
device’s address.
11. If an overrun occurred, clear the OERR flag by
clearing the CREN receiver enable bit.
12. If the device has been addressed, clear the
ADDEN bit to allow all received data into the
receive buffer and generate interrupts.
FIGURE 23-5: ASYNCHRONOUS RECEPTION
Start
bit bit 7/8
bit 1bit 0 bit 7/8 bit 0Stop
bit
Start
bit
Start
bit
bit 7/8 Stop
bit
RX/DT pin
Reg
Rcv Buffer Reg.
Rcv Shift
Read Rcv
Buffer Reg.
RCREG
RCIF
(Interrupt Flag)
OERR bit
CREN
Word 1
RCREG
Word 2
RCREG
Stop
bit
Note: This timing diagram shows three words appearing on the RX input. The RCREG (receive buffer) is read after the third word,
causing the OERR (overrun) bit to be set.
RCIDL
2012 Microchip Technology Inc. Preliminary DS41639A-page 265
PIC16(L)F1454/5/9
TABLE 23-2: SUMMARY OF REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register
on Page
BAUDCON ABDOVF RCIDL SCKP BRG16 —WUEABDEN 269
INTCON GIE PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF 96
PIE1 TMR1GIE ADIE(2) RCIE TXIE SSP1IE TMR2IE TMR1IE 97
PIR1 TMR1GIF ADIF(2) RCIF TXIF SSP1IF TMR2IF TMR1IF 99
RCREG EUSART Receive Data Register 262*
RCSTA SPEN RX9 SREN CREN ADDEN FERR OERR RX9D 268*
SPBRGL BRG<7:0> 270*
SPBRGH BRG<15:8> 270*
TRISC TRISC7(1) TRISC6(1) TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 140
TXSTA CSRC TX9 TXEN SYNC SENDB BRGH TRMT TX9D 267
Legend: — = unimplemented location, read as0’. Shaded cells are not used for asynchronous reception.
* Page provides register information.
Note 1: PIC16(L)F1459 only.
2: PIC16(L)F1455/9 only.
PIC16(L)F1454/5/9
DS41639A-page 266 Preliminary 2012 Microchip Technology Inc.
23.2 Clock Accuracy with
Asynchronous Operation
The factory calibrates the internal oscillator block out-
put (INTOSC). However, the INTOSC frequency may
drift as VDD or temperature changes, and this directly
affects the asynchronous baud rate. Two methods may
be used to adjust the baud rate clock, but both require
a reference clock source of some kind.
The first (preferred) method uses the OSCTUNE
register to adjust the INTOSC output. Adjusting the
value in the OSCTUNE register allows for fine resolution
changes to the system clock source. See Section 5.2.2
“Internal Clock Sources” for more information.
The other method adjusts the value in the Baud Rate
Generator. This can be done automatically with the
Auto-Baud Detect feature (see Section 23.4.1
“Auto-Baud Detect”). There may not be fine enough
resolution when adjusting the Baud Rate Generator to
compensate for a gradual change in the peripheral
clock frequency.
2012 Microchip Technology Inc. Preliminary DS41639A-page 267
PIC16(L)F1454/5/9
23.3 Register Definitions: EUSART Control
REGISTER 23-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER
R/W-/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R-1/1 R/W-0/0
CSRC TX9 TXEN(1) SYNC SENDB BRGH TRMT TX9D
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7 CSRC: Clock Source Select bit
Asynchronous mode:
Don’t care
Synchronous mode:
1 = Master mode (clock generated internally from BRG)
0 = Slave mode (clock from external source)
bit 6 TX9: 9-bit Transmit Enable bit
1 = Selects 9-bit transmission
0 = Selects 8-bit transmission
bit 5 TXEN: Transmit Enable bit(1)
1 = Transmit enabled
0 = Transmit disabled
bit 4 SYNC: EUSART Mode Select bit
1 = Synchronous mode
0 = Asynchronous mode
bit 3 SENDB: Send Break Character bit
Asynchronous mode:
1 = Send Sync Break on next transmission (cleared by hardware upon completion)
0 = Sync Break transmission completed
Synchronous mode:
Don’t care
bit 2 BRGH: High Baud Rate Select bit
Asynchronous mode:
1 = High speed
0 = Low speed
Synchronous mode:
Unused in this mode
bit 1 TRMT: Transmit Shift Register Status bit
1 = TSR empty
0 = TSR full
bit 0 TX9D: Ninth bit of Transmit Data
Can be address/data bit or a parity bit.
Note 1: SREN/CREN overrides TXEN in Sync mode.
PIC16(L)F1454/5/9
DS41639A-page 268 Preliminary 2012 Microchip Technology Inc.
REGISTER 23-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER(1)
R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R-0/0 R-0/0 R-0/0
SPEN RX9 SREN CREN ADDEN FERR OERR RX9D
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7 SPEN: Serial Port Enable bit
1 = Serial port enabled (configures RX/DT and TX/CK pins as serial port pins)
0 = Serial port disabled (held in Reset)
bit 6 RX9: 9-bit Receive Enable bit
1 = Selects 9-bit reception
0 = Selects 8-bit reception
bit 5 SREN: Single Receive Enable bit
Asynchronous mode:
Don’t care
Synchronous mode – Master:
1 = Enables single receive
0 = Disables single receive
This bit is cleared after reception is complete.
Synchronous mode – Slave
Don’t care
bit 4 CREN: Continuous Receive Enable bit
Asynchronous mode:
1 = Enables receiver
0 = Disables receiver
Synchronous mode:
1 = Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN)
0 = Disables continuous receive
bit 3 ADDEN: Address Detect Enable bit
Asynchronous mode 9-bit (RX9 = 1):
1 = Enables address detection, enable interrupt and load the receive buffer when RSR<8> is set
0 = Disables address detection, all bytes are received and ninth bit can be used as parity bit
Asynchronous mode 8-bit (RX9 = 0):
Don’t care
bit 2 FERR: Framing Error bit
1 = Framing error (can be updated by reading RCREG register and receive next valid byte)
0 = No framing error
bit 1 OERR: Overrun Error bit
1 = Overrun error (can be cleared by clearing bit CREN)
0 = No overrun error
bit 0 RX9D: Ninth bit of Received Data
This can be address/data bit or a parity bit and must be calculated by user firmware.
2012 Microchip Technology Inc. Preliminary DS41639A-page 269
PIC16(L)F1454/5/9
REGISTER 23-3: BAUDCON: BAUD RATE CONTROL REGISTER
R-0/0 R-1/1 U-0 R/W-0/0 R/W-0/0 U-0 R/W-0/0 R/W-0/0
ABDOVF RCIDL SCKP BRG16 WUE ABDEN
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7 ABDOVF: Auto-Baud Detect Overflow bit
Asynchronous mode:
1 = Auto-baud timer overflowed
0 = Auto-baud timer did not overflow
Synchronous mode:
Don’t care
bit 6 RCIDL: Receive Idle Flag bit
Asynchronous mode:
1 = Receiver is idle
0 = Start bit has been received and the receiver is receiving
Synchronous mode:
Don’t care
bit 5 Unimplemented: Read as ‘0
bit 4 SCKP: Synchronous Clock Polarity Select bit
Asynchronous mode:
1 = Transmit inverted data to the TX/CK pin
0 = Transmit non-inverted data to the TX/CK pin
Synchronous mode:
1 = Data is clocked on rising edge of the clock
0 = Data is clocked on falling edge of the clock
bit 3 BRG16: 16-bit Baud Rate Generator bit
1 = 16-bit Baud Rate Generator is used
0 = 8-bit Baud Rate Generator is used
bit 2 Unimplemented: Read as ‘0
bit 1 WUE: Wake-up Enable bit
Asynchronous mode:
1 = Receiver is waiting for a falling edge. No character will be received, byte RCIF will be set. WUE
will automatically clear after RCIF is set.
0 = Receiver is operating normally
Synchronous mode:
Don’t care
bit 0 ABDEN: Auto-Baud Detect Enable bit
Asynchronous mode:
1 = Auto-Baud Detect mode is enabled (clears when auto-baud is complete)
0 = Auto-Baud Detect mode is disabled
Synchronous mode:
Don’t care
PIC16(L)F1454/5/9
DS41639A-page 270 Preliminary 2012 Microchip Technology Inc.
23.4 EUSART Baud Rate Generator
(BRG)
The Baud Rate Generator (BRG) is an 8-bit or 16-bit
timer that is dedicated to the support of both the
asynchronous and synchronous EUSART operation.
By default, the BRG operates in 8-bit mode. Setting the
BRG16 bit of the BAUDCON register selects 16-bit
mode.
The SPBRGH, SPBRGL register pair determines the
period of the free running baud rate timer. In
Asynchronous mode the multiplier of the baud rate
period is determined by both the BRGH bit of the TXSTA
register and the BRG16 bit of the BAUDCON register. In
Synchronous mode, the BRGH bit is ignored.
Table 23-3 contains the formulas for determining the
baud rate. Example 23-1 provides a sample calculation
for determining the baud rate and baud rate error.
Typical baud rates and error values for various
Asynchronous modes have been computed for your
convenience and are shown in Table 23-3. It may be
advantageous to use the high baud rate (BRGH = 1),
or the 16-bit BRG (BRG16 = 1) to reduce the baud rate
error. The 16-bit BRG mode is used to achieve slow
baud rates for fast oscillator frequencies.
Writing a new value to the SPBRGH, SPBRGL register
pair causes the BRG timer to be reset (or cleared). This
ensures that the BRG does not wait for a timer overflow
before outputting the new baud rate.
If the system clock is changed during an active receive
operation, a receive error or data loss may result. To
avoid this problem, check the status of the RCIDL bit to
make sure that the receive operation is idle before
changing the system clock.
EXAMPLE 23-1: CALCULATING BAUD
RATE ERROR
For a device with FOSC of 16 MHz, desired baud rate
of 9600, Asynchronous mode, 8-bit BRG:
Solving for SPBRGH:SPBRGL:
X
FOSC
Desired Baud Rate
---------------------------------------------
64
--------------------------------------------- 1=
Desired Baud Rate FOSC
64 [SPBRGH:SPBRGL] 1+
------------------------------------------------------------------------=
16000000
9600
------------------------
64
------------------------1=
25.04225==
Calculated Baud Rate 16000000
64 25 1+
---------------------------=
9615=
Error Calc. Baud Rate Desired Baud Rate
Desired Baud Rate
--------------------------------------------------------------------------------------------=
9615 9600
9600
---------------------------------- 0 . 1 6 %==
2012 Microchip Technology Inc. Preliminary DS41639A-page 271
PIC16(L)F1454/5/9
TABLE 23-3: BAUD RATE FORMULAS
TABLE 23-4: SUMMARY OF REGISTERS ASSOCIATED WITH THE BAUD RATE GENERATOR
Configuration Bits
BRG/EUSART Mode Baud Rate Formula
SYNC BRG16 BRGH
000 8-bit/Asynchronous FOSC/[64 (n+1)]
001 8-bit/Asynchronous FOSC/[16 (n+1)]
010 16-bit/Asynchronous
011 16-bit/Asynchronous
FOSC/[4 (n+1)]10x 8-bit/Synchronous
11x 16-bit/Synchronous
Legend: x = Don’t care, n = value of SPBRGH, SPBRGL register pair.
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register
on Page
BAUDCON ABDOVF RCIDL SCKP BRG16 WUE ABDEN 269
RCSTA SPEN RX9 SREN CREN ADDEN FERR OERR RX9D 268
SPBRGL BRG<7:0> 270*
SPBRGH BRG<15:8> 270*
TXSTA CSRC TX9 TXEN SYNC SENDB BRGH TRMT TX9D 267
Legend: — = unimplemented location, read as0’. Shaded cells are not used for the Baud Rate Generator.
* Page provides register information.
PIC16(L)F1454/5/9
DS41639A-page 272 Preliminary 2012 Microchip Technology Inc.
TABLE 23-5: BAUD RATES FOR ASYNCHRONOUS MODES
BAUD
RATE
SYNC = 0, BRGH = 0, BRG16 = 0
FOSC = 20.000 MHz FOSC = 18.432 MHz FOSC = 16.000 MHz FOSC = 11.0592 MHz
Actual
Rate
%
Error
SPBRG
value
(decimal)
Actual
Rate
%
Error
SPBRG
value
(decimal)
Actual
Rate
%
Error
SPBRG
value
(decimal)
Actual
Rate
%
Error
SPBRG
value
(decimal)
300—— —— —— ——
1200 1221 1.73 255 1200 0.00 239 1202 0.16 207 1200 0.00 143
2400 2404 0.16 129 2400 0.00 119 2404 0.16 103 2400 0.00 71
9600 9470 -1.36 32 9600 0.00 29 9615 0.16 25 9600 0.00 17
10417 10417 0.00 29 10286 -1.26 27 10417 0.00 23 10165 -2.42 16
19.2k 19.53k 1.73 15 19.20k 0.00 14 19.23k 0.16 12 19.20k 0.00 8
57.6k 57.60k 0.00 7—
57.60k 0.00 2
115.2k
BAUD
RATE
SYNC = 0, BRGH = 0, BRG16 = 0
FOSC = 8.000 MHz FOSC = 4.000 MHz FOSC = 3.6864 MHz FOSC = 1.000 MHz
Actual
Rate
%
Error
SPBRG
value
(decimal)
Actual
Rate
%
Error
SPBRG
value
(decimal)
Actual
Rate
%
Error
SPBRG
value
(decimal)
Actual
Rate
%
Error
SPBRG
value
(decimal)
300 300 0.16 207 300 0.00 191 300 0.16 51
1200 1202 0.16 103 1202 0.16 51 1200 0.00 47 1202 0.16 12
2400 2404 0.16 51 2404 0.16 25 2400 0.00 23
9600 9615 0.16 12 9600 0.00 5
10417 10417 0.00 11 10417 0.00 5
19.2k 19.20k 0.00 2
57.6k 57.60k 0.00 0
115.2k
BAUD
RATE
SYNC = 0, BRGH = 1, BRG16 = 0
FOSC = 20.000 MHz FOSC = 18.432 MHz FOSC = 16.000 MHz FOSC = 11.0592 MHz
Actual
Rate
%
Error
SPBRG
value
(decimal)
Actual
Rate
%
Error
SPBRG
value
(decimal)
Actual
Rate
%
Error
SPBRG
value
(decimal)
Actual
Rate
%
Error
SPBRG
value
(decimal)
300 —— —— —— ——
1200
2400 ——
9600 9615 0.16 129 9600 0.00 119 9615 0.16 103 9600 0.00 71
10417 10417 0.00 119 10378 -0.37 110 10417 0.00 95 10473 0.53 65
19.2k 19.23k 0.16 64 19.20k 0.00 59 19.23k 0.16 51 19.20k 0.00 35
57.6k 56.82k -1.36 21 57.60k 0.00 19 58.82k 2.12 16 57.60k 0.00 11
115.2k 113.64k -1.36 10 115.2k 0.00 9 111.1k -3.55 8 115.2k 0.00 5
2012 Microchip Technology Inc. Preliminary DS41639A-page 273
PIC16(L)F1454/5/9
BAUD
RATE
SYNC = 0, BRGH = 1, BRG16 = 0
FOSC = 8.000 MHz FOSC = 4.000 MHz FOSC = 3.6864 MHz FOSC = 1.000 MHz
Actual
Rate
%
Error
SPBRG
value
(decimal)
Actual
Rate
%
Error
SPBRG
value
(decimal)
Actual
Rate
%
Error
SPBRG
value
(decimal)
Actual
Rate
%
Error
SPBRG
value
(decimal)
300 —— 300 0.16 207
1200 1202 0.16 207 1200 0.00 191 1202 0.16 51
2400 2404 0.16 207 2404 0.16 103 2400 0.00 95 2404 0.16 25
9600 9615 0.16 51 9615 0.16 25 9600 0.00 23
10417 10417 0.00 47 10417 0.00 23 10473 0.53 21 10417 0.00 5
19.2k 19231 0.16 25 19.23k 0.16 12 19.2k 0.00 11
57.6k 55556 -3.55 8 57.60k 0.00 3
115.2k 115.2k 0.00 1
BAUD
RATE
SYNC = 0, BRGH = 0, BRG16 = 1
FOSC = 20.000 MHz FOSC = 18.432 MHz FOSC = 16.000 MHz FOSC = 11.0592 MHz
Actual
Rate
%
Error
SPBRG
value
(decimal)
Actual
Rate
%
Error
SPBRG
value
(decimal)
Actual
Rate
%
Error
SPBRG
value
(decimal)
Actual
Rate
%
Error
SPBRG
value
(decimal)
300 300.0 -0.01 4166 300.0 0.00 3839 300.03 0.01 3332 300.0 0.00 2303
1200 1200 -0.03 1041 1200 0.00 959 1200.5 0.04 832 1200 0.00 575
2400 2399 -0.03 520 2400 0.00 479 2398 -0.08 416 2400 0.00 287
9600 9615 0.16 129 9600 0.00 119 9615 0.16 103 9600 0.00 71
10417 10417 0.00 119 10378 -0.37 110 10417 0.00 95 10473 0.53 65
19.2k 19.23k 0.16 64 19.20k 0.00 59 19.23k 0.16 51 19.20k 0.00 35
57.6k 56.818 -1.36 21 57.60k 0.00 19 58.82k 2.12 16 57.60k 0.00 11
115.2k 113.636 -1.36 10 115.2k 0.00 9 111.11k -3.55 8 115.2k 0.00 5
BAUD
RATE
SYNC = 0, BRGH = 0, BRG16 = 1
FOSC = 8.000 MHz FOSC = 4.000 MHz FOSC = 3.6864 MHz FOSC = 1.000 MHz
Actual
Rate
%
Error
SPBRG
value
(decimal)
Actual
Rate
%
Error
SPBRG
value
(decimal)
Actual
Rate
%
Error
SPBRG
value
(decimal)
Actual
Rate
%
Error
SPBRG
value
(decimal)
300 299.9 -0.02 1666 300.1 0.04 832 300.0 0.00 767 300.5 0.16 207
1200 1199 -0.08 416 1202 0.16 207 1200 0.00 191 1202 0.16 51
2400 2404 0.16 207 2404 0.16 103 2400 0.00 95 2404 0.16 25
9600 9615 0.16 51 9615 0.16 25 9600 0.00 23
10417 10417 0.00 47 10417 0.00 23 10473 0.53 21 10417 0.00 5
19.2k 19.23k 0.16 25 19.23k 0.16 12 19.20k 0.00 11
57.6k 55556 -3.55 8 57.60k 0.00 3
115.2k 115.2k 0.00 1
TABLE 23-5: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)
PIC16(L)F1454/5/9
DS41639A-page 274 Preliminary 2012 Microchip Technology Inc.
BAUD
RATE
SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1
FOSC = 20.000 MHz FOSC = 18.432 MHz FOSC = 16.000 MHz FOSC = 11.0592 MHz
Actual
Rate
%
Error
SPBRG
value
(decimal)
Actual
Rate
%
Error
SPBRG
value
(decimal)
Actual
Rate
%
Error
SPBRG
value
(decimal)
Actual
Rate
%
Error
SPBRG
value
(decimal)
300 300.0 0.00 16665 300.0 0.00 15359 300.0 0.00 13332 300.0 0.00 9215
1200 1200 -0.01 4166 1200 0.00 3839 1200.1 0.01 3332 1200 0.00 2303
2400 2400 0.02 2082 2400 0.00 1919 2399.5 -0.02 1666 2400 0.00 1151
9600 9597 -0.03 520 9600 0.00 479 9592 -0.08 416 9600 0.00 287
10417 10417 0.00 479 10425 0.08 441 10417 0.00 383 10433 0.16 264
19.2k 19.23k 0.16 259 19.20k 0.00 239 19.23k 0.16 207 19.20k 0.00 143
57.6k 57.47k -0.22 86 57.60k 0.00 79 57.97k 0.64 68 57.60k 0.00 47
115.2k 116.3k 0.94 42 115.2k 0.00 39 114.29k -0.79 34 115.2k 0.00 23
BAUD
RATE
SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1
FOSC = 8.000 MHz FOSC = 4.000 MHz FOSC = 3.6864 MHz FOSC = 1.000 MHz
Actual
Rate
%
Error
SPBRG
value
(decimal)
Actual
Rate
%
Error
SPBRG
value
(decimal)
Actual
Rate
%
Error
SPBRG
value
(decimal)
Actual
Rate
%
Error
SPBRG
value
(decimal)
300 300.0 0.00 6666 300.0 0.01 3332 300.0 0.00 3071 300.1 0.04 832
1200 1200 -0.02 1666 1200 0.04 832 1200 0.00 767 1202 0.16 207
2400 2401 0.04 832 2398 0.08 416 2400 0.00 383 2404 0.16 103
9600 9615 0.16 207 9615 0.16 103 9600 0.00 95 9615 0.16 25
10417 10417 0 191 10417 0.00 95 10473 0.53 87 10417 0.00 23
19.2k 19.23k 0.16 103 19.23k 0.16 51 19.20k 0.00 47 19.23k 0.16 12
57.6k 57.14k -0.79 34 58.82k 2.12 16 57.60k 0.00 15
115.2k 117.6k 2.12 16 111.1k -3.55 8 115.2k 0.00 7
TABLE 23-5: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)
2012 Microchip Technology Inc. Preliminary DS41639A-page 275
PIC16(L)F1454/5/9
23.4.1 AUTO-BAUD DETECT
The EUSART module supports automatic detection
and calibration of the baud rate.
In the Auto-Baud Detect (ABD) mode, the clock to the
BRG is reversed. Rather than the BRG clocking the
incoming RX signal, the RX signal is timing the BRG.
The Baud Rate Generator is used to time the period of
a received 55h (ASCII “U”) which is the Sync character
for the LIN bus. The unique feature of this character is
that it has five rising edges including the Stop bit edge.
Setting the ABDEN bit of the BAUDCON register starts
the auto-baud calibration sequence (Figure 23-6).
While the ABD sequence takes place, the EUSART
state machine is held in Idle. On the first rising edge of
the receive line, after the Start bit, the SPBRG begins
counting up using the BRG counter clock as shown in
Table 23-6. The fifth rising edge will occur on the RX pin
at the end of the eighth bit period. At that time, an
accumulated value totaling the proper BRG period is
left in the SPBRGH, SPBRGL register pair, the ABDEN
bit is automatically cleared and the RCIF interrupt flag
is set. The value in the RCREG needs to be read to
clear the RCIF interrupt. RCREG content should be
discarded. When calibrating for modes that do not use
the SPBRGH register the user can verify that the
SPBRGL register did not overflow by checking for 00h
in the SPBRGH register.
The BRG auto-baud clock is determined by the BRG16
and BRGH bits as shown in Tab le 23-6. During ABD,
both the SPBRGH and SPBRGL registers are used as
a 16-bit counter, independent of the BRG16 bit setting.
While calibrating the baud rate period, the SPBRGH
and SPBRGL registers are clocked at 1/8th the BRG
base clock rate. The resulting byte measurement is the
average bit time when clocked at full speed.
TABLE 23-6: BRG COUNTER CLOCK RATES
FIGURE 23-6: AUTOMATIC BAUD RATE CALIBRATION
Note 1: If the WUE bit is set with the ABDEN bit,
auto-baud detection will occur on the byte
following the Break character (see
Section 23.4.3 “Auto-Wake-up on
Break”).
2: It is up to the user to determine that the
incoming character baud rate is within the
range of the selected BRG clock source.
Some combinations of oscillator frequency
and EUSART baud rates are not possible.
3: During the auto-baud process, the
auto-baud counter starts counting at one.
Upon completion of the auto-baud
sequence, to achieve maximum accuracy,
subtract one from the SPBRGH:SPBRGL
register pair.
BRG16 BRGH BRG Base
Clock
BRG ABD
Clock
00FOSC/64 FOSC/512
01FOSC/16 FOSC/128
10FOSC/16 FOSC/128
11 FOSC/4 FOSC/32
Note: During the ABD sequence, SPBRGL and
SPBRGH registers are both used as a 16-bit
counter, independent of BRG16 setting.
BRG Value
RX pin
ABDEN bit
RCIF bit
bit 0 bit 1
(Interrupt)
Read
RCREG
BRG Clock
Start
Auto Cleared
Set by User
XXXXh 0000h
Edge #1
bit 2 bit 3
Edge #2
bit 4 bit 5
Edge #3
bit 6 bit 7
Edge #4
Stop bit
Edge #5
001Ch
Note 1: The ABD sequence requires the EUSART module to be configured in Asynchronous mode.
SPBRGL XXh 1Ch
SPBRGH XXh 00h
RCIDL
PIC16(L)F1454/5/9
DS41639A-page 276 Preliminary 2012 Microchip Technology Inc.
23.4.2 AUTO-BAUD OVERFLOW
During the course of automatic baud detection, the
ABDOVF bit of the BAUDCON register will be set if the
baud rate counter overflows before the fifth rising edge
is detected on the RX pin. The ABDOVF bit indicates
that the counter has exceeded the maximum count that
can fit in the 16 bits of the SPBRGH:SPBRGL register
pair. After the ABDOVF bit has been set, the counter
continues to count until the fifth rising edge is detected
on the RX pin. Upon detecting the fifth RX edge, the
hardware will set the RCIF interrupt flag and clear the
ABDEN bit of the BAUDCON register. The RCIF flag
can be subsequently cleared by reading the RCREG
register. The ABDOVF flag of the BAUDCON register
can be cleared by software directly.
To terminate the auto-baud process before the RCIF
flag is set, clear the ABDEN bit then clear the ABDOVF
bit of the BAUDCON register. The ABDOVF bit will
remain set if the ABDEN bit is not cleared first.
23.4.3 AUTO-WAKE-UP ON BREAK
During Sleep mode, all clocks to the EUSART are
suspended. Because of this, the Baud Rate Generator
is inactive and a proper character reception cannot be
performed. The Auto-Wake-up feature allows the
controller to wake-up due to activity on the RX/DT line.
This feature is available only in Asynchronous mode.
The Auto-Wake-up feature is enabled by setting the
WUE bit of the BAUDCON register. Once set, the normal
receive sequence on RX/DT is disabled, and the
EUSART remains in an Idle state, monitoring for a
wake-up event independent of the CPU mode. A
wake-up event consists of a high-to-low transition on the
RX/DT line. (This coincides with the start of a Sync Break
or a wake-up signal character for the LIN protocol.)
The EUSART module generates an RCIF interrupt
coincident with the wake-up event. The interrupt is
generated synchronously to the Q clocks in normal CPU
operating modes (Figure 23-7), and asynchronously if
the device is in Sleep mode (Figure 23-8). The interrupt
condition is cleared by reading the RCREG register.
The WUE bit is automatically cleared by the low-to-high
transition on the RX line at the end of the Break. This
signals to the user that the Break event is over. At this
point, the EUSART module is in Idle mode waiting to
receive the next character.
23.4.3.1 Special Considerations
Break Character
To avoid character errors or character fragments during
a wake-up event, the wake-up character must be all
zeros.
When the wake-up is enabled the function works
independent of the low time on the data stream. If the
WUE bit is set and a valid non-zero character is
received, the low time from the Start bit to the first rising
edge will be interpreted as the wake-up event. The
remaining bits in the character will be received as a
fragmented character and subsequent characters can
result in framing or overrun errors.
Therefore, the initial character in the transmission must
be all0’s. This must be ten or more bit times, 13-bit
times recommended for LIN bus, or any number of bit
times for standard RS-232 devices.
Oscillator Start-up Time
Oscillator start-up time must be considered, especially
in applications using oscillators with longer start-up
intervals (i.e., LP, XT or HS/PLL mode). The Sync
Break (or wake-up signal) character must be of
sufficient length, and be followed by a sufficient
interval, to allow enough time for the selected oscillator
to start and provide proper initialization of the EUSART.
WUE Bit
The wake-up event causes a receive interrupt by
setting the RCIF bit. The WUE bit is cleared in
hardware by a rising edge on RX/DT. The interrupt
condition is then cleared in software by reading the
RCREG register and discarding its contents.
To ensure that no actual data is lost, check the RCIDL
bit to verify that a receive operation is not in process
before setting the WUE bit. If a receive operation is not
occurring, the WUE bit may then be set just prior to
entering the Sleep mode.
2012 Microchip Technology Inc. Preliminary DS41639A-page 277
PIC16(L)F1454/5/9
FIGURE 23-7: AUTO-WAKE-UP BIT (WUE) TIMING DURING NORMAL OPERATION
FIGURE 23-8: AUTO-WAKE-UP BIT (WUE) TIMINGS DURING SLEEP
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
OSC1
WUE bit
RX/DT Line
RCIF
Bit set by user Auto Cleared
Cleared due to User Read of RCREG
Note 1: The EUSART remains in Idle while the WUE bit is set.
Q1Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
OSC1
WUE bit
RX/DT Line
RCIF
Bit Set by User Auto Cleared
Cleared due to User Read of RCREG
Sleep Command Executed
Note 1
Note 1: If the wake-up event requires long oscillator warm-up time, the automatic clearing of the WUE bit can occur while the stposc signal is
still active. This sequence should not depend on the presence of Q clocks.
2: The EUSART remains in Idle while the WUE bit is set.
Sleep Ends
PIC16(L)F1454/5/9
DS41639A-page 278 Preliminary 2012 Microchip Technology Inc.
23.4.4 BREAK CHARACTER SEQUENCE
The EUSART module has the capability of sending the
special Break character sequences that are required by
the LIN bus standard. A Break character consists of a
Start bit, followed by 12 ‘0’ bits and a Stop bit.
To send a Break character, set the SENDB and TXEN
bits of the TXSTA register. The Break character trans-
mission is then initiated by a write to the TXREG. The
value of data written to TXREG will be ignored and all
0’s will be transmitted.
The SENDB bit is automatically reset by hardware after
the corresponding Stop bit is sent. This allows the user
to preload the transmit FIFO with the next transmit byte
following the Break character (typically, the Sync
character in the LIN specification).
The TRMT bit of the TXSTA register indicates when the
transmit operation is active or idle, just as it does during
normal transmission. See Figure 23-9 for the timing of
the Break character sequence.
23.4.4.1 Break and Sync Transmit Sequence
The following sequence will start a message frame
header made up of a Break, followed by an auto-baud
Sync byte. This sequence is typical of a LIN bus
master.
1. Configure the EUSART for the desired mode.
2. Set the TXEN and SENDB bits to enable the
Break sequence.
3. Load the TXREG with a dummy character to
initiate transmission (the value is ignored).
4. Write ‘55h’ to TXREG to load the Sync character
into the transmit FIFO buffer.
5. After the Break has been sent, the SENDB bit is
reset by hardware and the Sync character is
then transmitted.
When the TXREG becomes empty, as indicated by the
TXIF, the next data byte can be written to TXREG.
23.4.5 RECEIVING A BREAK CHARACTER
The Enhanced EUSART module can receive a Break
character in two ways.
The first method to detect a Break character uses the
FERR bit of the RCSTA register and the Received data
as indicated by RCREG. The Baud Rate Generator is
assumed to have been initialized to the expected baud
rate.
A Break character has been received when;
RCIF bit is set
FERR bit is set
RCREG = 00h
The second method uses the Auto-Wake-up feature
described in Section 23.4.3 “Auto-Wake-up on
Break”. By enabling this feature, the EUSART will
sample the next two transitions on RX/DT, cause an
RCIF interrupt, and receive the next data byte followed
by another interrupt.
Note that following a Break character, the user will
typically want to enable the Auto-Baud Detect feature.
For both methods, the user can set the ABDEN bit of
the BAUDCON register before placing the EUSART in
Sleep mode.
FIGURE 23-9: SEND BREAK CHARACTER SEQUENCE
Write to TXREG Dummy Write
BRG Output
(Shift Clock)
Start bit bit 0 bit 1 bit 11 Stop bit
Break
TXIF bit
(Transmit
Interrupt Flag)
TX (pin)
TRMT bit
(Transmit Shift
Empty Flag)
SENDB
(send Break
control bit)
SENDB Sampled Here Auto Cleared
2012 Microchip Technology Inc. Preliminary DS41639A-page 279
PIC16(L)F1454/5/9
23.5 EUSART Synchronous Mode
Synchronous serial communications are typically used
in systems with a single master and one or more
slaves. The master device contains the necessary cir-
cuitry for baud rate generation and supplies the clock
for all devices in the system. Slave devices can take
advantage of the master clock by eliminating the
internal clock generation circuitry.
There are two signal lines in Synchronous mode: a bidi-
rectional data line and a clock line. Slaves use the
external clock supplied by the master to shift the serial
data into and out of their respective receive and trans-
mit shift registers. Since the data line is bidirectional,
synchronous operation is half-duplex only. Half-duplex
refers to the fact that master and slave devices can
receive and transmit data but not both simultaneously.
The EUSART can operate as either a master or slave
device.
Start and Stop bits are not used in synchronous
transmissions.
23.5.1 SYNCHRONOUS MASTER MODE
The following bits are used to configure the EUSART
for synchronous master operation:
SYNC = 1
CSRC = 1
SREN = 0 (for transmit); SREN = 1 (for receive)
CREN = 0 (for transmit); CREN = 1 (for receive)
SPEN = 1
Setting the SYNC bit of the TXSTA register configures
the device for synchronous operation. Setting the CSRC
bit of the TXSTA register configures the device as a
master. Clearing the SREN and CREN bits of the RCSTA
register ensures that the device is in the Transmit mode;
otherwise, the device will be configured to receive.
Setting the SPEN bit of the RCSTA register enables the
EUSART.
23.5.1.1 Master Clock
Synchronous data transfers use a separate clock line,
which is synchronous with the data. A device config-
ured as a master transmits the clock on the TX/CK line.
The TX/CK pin output driver is automatically enabled
when the EUSART is configured for synchronous
transmit or receive operation. Serial data bits change
on the leading edge to ensure they are valid at the trail-
ing edge of each clock. One clock cycle is generated
for each data bit. Only as many clock cycles are
generated as there are data bits.
23.5.1.2 Clock Polarity
A clock polarity option is provided for Microwire
compatibility. Clock polarity is selected with the SCKP
bit of the BAUDCON register. Setting the SCKP bit sets
the clock Idle state as high. When the SCKP bit is set,
the data changes on the falling edge of each clock.
Clearing the SCKP bit sets the Idle state as low. When
the SCKP bit is cleared, the data changes on the rising
edge of each clock.
23.5.1.3 Synchronous Master Transmission
Data is transferred out of the device on the RX/DT pin.
The RX/DT and TX/CK pin output drivers are
automatically enabled when the EUSART is configured
for synchronous master transmit operation.
A transmission is initiated by writing a character to the
TXREG register. If the TSR still contains all or part of a
previous character, the new character data is held in
the TXREG until the last bit of the previous character
has been transmitted. If this is the first character, or the
previous character has been completely flushed from
the TSR, the data in the TXREG is immediately trans-
ferred to the TSR. The transmission of the character
commences immediately following the transfer of the
data to the TSR from the TXREG.
Each data bit changes on the leading edge of the mas-
ter clock and remains valid until the subsequent leading
clock edge.
23.5.1.4 Synchronous Master Transmission
Set-up:
1. Initialize the SPBRGH, SPBRGL register pair
and the BRGH and BRG16 bits to achieve the
desired baud rate (see Section 23.4 “EUSART
Baud Rate Generator (BRG)”).
2. Enable the synchronous master serial port by
setting bits SYNC, SPEN and CSRC.
3. Disable Receive mode by clearing bits SREN
and CREN.
4. Enable Transmit mode by setting the TXEN bit.
5. If 9-bit transmission is desired, set the TX9 bit.
6. If interrupts are desired, set the TXIE bit of the
PIE1 register and the GIE and PEIE bits of the
INTCON register.
7. If 9-bit transmission is selected, the ninth bit
should be loaded in the TX9D bit.
8. Start transmission by loading data to the TXREG
register.
Note: The TSR register is not mapped in data
memory so it is not available to the user.
PIC16(L)F1454/5/9
DS41639A-page 280 Preliminary 2012 Microchip Technology Inc.
FIGURE 23-10: SYNCHRONOUS TRANSMISSION
FIGURE 23-11: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)
TABLE 23-7: SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER
TRANSMISSION
Name Bit 7 Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1Bit 0
Register on
Page
BAUDCON ABDOVF RCIDL —SCKPBRG16WUE ABDEN 269
INTCON GIE PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF 96
PIE1 TMR1GIE ADIE(2) RCIE TXIE SSP1IE TMR2IE TMR1IE 97
PIR1 TMR1GIF ADIF(2) RCIF TXIF SSP1IF TMR2IF TMR1IF 99
RCSTA SPEN RX9 SREN CREN ADDEN FERR OERR RX9D 268
SPBRGL BRG<7:0> 270*
SPBRGH BRG<15:8> 270*
TRISC TRISC7(1) TRISC6(1) TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 140
TXREG EUSART Transmit Data Register 259*
TXSTA CSRC TX9 TXEN SYNC SENDB BRGH TRMT TX9D 267
Legend: — = unimplemented location, read as ‘0’. Shaded cells are not used for synchronous master transmission.
* Page provides register information.
Note 1: PIC16(L)F1459 only.
2: PIC16(L)F1455/9 only.
bit 0 bit 1 bit 7
Word 1
bit 2 bit 0 bit 1 bit 7
RX/DT
Write to
TXREG Reg
TXIF bit
(Interrupt Flag)
TXEN bit 1 1
Word 2
TRMT bit
Write Word 1 Write Word 2
Note: Sync Master mode, SPBRGL = 0, continuous transmission of two 8-bit words.
pin
TX/CK pin
TX/CK pin
(SCKP = 0)
(SCKP = 1)
RX/DT pin
TX/CK pin
Write to
TXREG reg
TXIF bit
TRMT bit
bit 0 bit 1 bit 2 bit 6 bit 7
TXEN bit
2012 Microchip Technology Inc. Preliminary DS41639A-page 281
PIC16(L)F1454/5/9
23.5.1.5 Synchronous Master Reception
Data is received at the RX/DT pin. The RX/DT pin
output driver is automatically disabled when the
EUSART is configured for synchronous master receive
operation.
In Synchronous mode, reception is enabled by setting
either the Single Receive Enable bit (SREN of the
RCSTA register) or the Continuous Receive Enable bit
(CREN of the RCSTA register).
When SREN is set and CREN is clear, only as many
clock cycles are generated as there are data bits in a
single character. The SREN bit is automatically cleared
at the completion of one character. When CREN is set,
clocks are continuously generated until CREN is
cleared. If CREN is cleared in the middle of a character,
the CK clock stops immediately and the partial charac-
ter is discarded. If SREN and CREN are both set, then
SREN is cleared at the completion of the first character
and CREN takes precedence.
To initiate reception, set either SREN or CREN. Data is
sampled at the RX/DT pin on the trailing edge of the
TX/CK clock pin and is shifted into the Receive Shift
Register (RSR). When a complete character is
received into the RSR, the RCIF bit is set and the char-
acter is automatically transferred to the two character
receive FIFO. The Least Significant eight bits of the top
character in the receive FIFO are available in RCREG.
The RCIF bit remains set as long as there are unread
characters in the receive FIFO.
23.5.1.6 Slave Clock
Synchronous data transfers use a separate clock line,
which is synchronous with the data. A device configured
as a slave receives the clock on the TX/CK line. The
TX/CK pin output driver is automatically disabled when
the device is configured for synchronous slave transmit
or receive operation. Serial data bits change on the
leading edge to ensure they are valid at the trailing edge
of each clock. One data bit is transferred for each clock
cycle. Only as many clock cycles should be received as
there are data bits.
23.5.1.7 Receive Overrun Error
The receive FIFO buffer can hold two characters. An
overrun error will be generated if a third character, in its
entirety, is received before RCREG is read to access
the FIFO. When this happens, the OERR bit of the
RCSTA register is set. Previous data in the FIFO will
not be overwritten. The two characters in the FIFO
buffer can be read; however, no additional characters
will be received until the error is cleared. The OERR bit
can only be cleared by clearing the overrun condition.
If the overrun error occurred when the SREN bit is set
and CREN is clear, then the error is cleared by reading
RCREG. If the overrun occurred when the CREN bit is
set, then the error condition is cleared by either clearing
the CREN bit of the RCSTA register, or by clearing the
SPEN bit which resets the EUSART.
23.5.1.8 Receiving 9-bit Characters
The EUSART supports 9-bit character reception. When
the RX9 bit of the RCSTA register is set, the EUSART
will shift 9 bits into the RSR for each character
received. The RX9D bit of the RCSTA register is the
ninth, and Most Significant, data bit of the top unread
character in the receive FIFO. When reading 9-bit data
from the receive FIFO buffer, the RX9D data bit must
be read before reading the eight Least Significant bits
from the RCREG.
23.5.1.9 Synchronous Master Reception
Set-up:
1. Initialize the SPBRGH, SPBRGL register pair for
the appropriate baud rate. Set or clear the
BRGH and BRG16 bits, as required, to achieve
the desired baud rate.
2. Clear the ANSEL bit for the RX pin (if applicable).
3. Enable the synchronous master serial port by
setting bits SYNC, SPEN and CSRC.
4. Ensure bits CREN and SREN are clear.
5. If interrupts are desired, set the RCIE bit of the
PIE1 register and the GIE and PEIE bits of the
INTCON register.
6. If 9-bit reception is desired, set bit RX9.
7. Start reception by setting the SREN bit or, for
continuous reception, set the CREN bit.
8. Interrupt flag bit RCIF will be set when reception
of a character is complete. An interrupt will be
generated if the enable bit RCIE was set.
9. Read the RCSTA register to get the ninth bit (if
enabled) and determine if any error occurred
during reception.
10. Read the 8-bit received data by reading the
RCREG register.
11. If an overrun error occurs, clear the error by
either clearing the CREN bit of the RCSTA
register or by clearing the SPEN bit which resets
the EUSART.
Note: If the RX/DT function is on an analog pin,
the corresponding ANSEL bit must be
cleared for the receiver to function.
Note: If the device is configured as a slave and
the TX/CK function is on an analog pin, the
corresponding ANSEL bit must be
cleared.
PIC16(L)F1454/5/9
DS41639A-page 282 Preliminary 2012 Microchip Technology Inc.
FIGURE 23-12: SYNCHRONOUS RECEPTION (MASTER MODE, SREN)
TABLE 23-8: SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER
RECEPTION
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register
on Page
BAUDCON ABDOVF RCIDL SCKP BRG16 WUE ABDEN 269
INTCON GIE PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF 96
PIE1 TMR1GIE ADIE(2) RCIE TXIE SSP1IE TMR2IE TMR1IE 97
PIR1 TMR1GIF ADIF(2) RCIF TXIF SSP1IF TMR2IF TMR1IF 99
RCREG EUSART Receive Data Register 262*
RCSTA SPEN RX9 SREN CREN ADDEN FERR OERR RX9D 268
SPBRGL BRG<7:0> 270*
SPBRGH BRG<15:8> 270*
TRISC TRISC7(1) TRISC6(1) TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 140
TXSTA CSRC TX9 TXEN SYNC SENDB BRGH TRMT TX9D 267
Legend: — = unimplemented location, read as0’. Shaded cells are not used for synchronous master reception.
* Page provides register information.
Note 1: PIC16(L)F1459 only.
2: PIC16(L)F1455/9 only.
CREN bit
RX/DT
Write to
bit SREN
SREN bit
RCIF bit
(Interrupt)
Read
RCREG
0
bit 0 bit 1 bit 2 bit 3 bit 4 bit 5 bit 6 bit 7
0
Note: Timing diagram demonstrates Sync Master mode with bit SREN = 1 and bit BRGH = 0.
TX/CK pin
TX/CK pin
pin
(SCKP = 0)
(SCKP = 1)
2012 Microchip Technology Inc. Preliminary DS41639A-page 283
PIC16(L)F1454/5/9
23.5.2 SYNCHRONOUS SLAVE MODE
The following bits are used to configure the EUSART
for synchronous slave operation:
SYNC = 1
CSRC = 0
SREN = 0 (for transmit); SREN = 1 (for receive)
CREN = 0 (for transmit); CREN = 1 (for receive)
SPEN = 1
Setting the SYNC bit of the TXSTA register configures the
device for synchronous operation. Clearing the CSRC bit
of the TXSTA register configures the device as a slave.
Clearing the SREN and CREN bits of the RCSTA register
ensures that the device is in the Transmit mode;
otherwise, the device will be configured to receive.
Setting the SPEN bit of the RCSTA register enables the
EUSART.
23.5.2.1 EUSART Synchronous Slave
Transmit
The operation of the Synchronous Master and Slave
modes are identical (see Section 23.5.1.3
“Synchronous Master Transmission), except in the
case of the Sleep mode.
If two words are written to the TXREG and then the
SLEEP instruction is executed, the following will occur:
1. The first character will immediately transfer to
the TSR register and transmit.
2. The second word will remain in the TXREG
register.
3. The TXIF bit will not be set.
4. After the first character has been shifted out of
TSR, the TXREG register will transfer the second
character to the TSR and the TXIF bit will now be
set.
5. If the PEIE and TXIE bits are set, the interrupt
will wake the device from Sleep and execute the
next instruction. If the GIE bit is also set, the
program will call the Interrupt Service Routine.
23.5.2.2 Synchronous Slave Transmission
Set-up:
1. Set the SYNC and SPEN bits and clear the
CSRC bit.
2. Clear the ANSEL bit for the CK pin (if applicable).
3. Clear the CREN and SREN bits.
4. If interrupts are desired, set the TXIE bit of the
PIE1 register, and the GIE and PEIE bits of the
INTCON register.
5. If 9-bit transmission is desired, set the TX9 bit.
6. Enable transmission by setting the TXEN bit.
7. If 9-bit transmission is selected, insert the Most
Significant bit into the TX9D bit.
8. Start transmission by writing the Least
Significant 8 bits to the TXREG register.
TABLE 23-9: SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE
TRANSMISSION
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register
on Page
BAUDCON ABDOVF RCIDL —SCKPBRG16 WUE ABDEN 269
INTCON GIE PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF 96
PIE1 TMR1GIE ADIE(2) RCIE TXIE SSP1IE TMR2IE TMR1IE 97
PIR1 TMR1GIF ADIF(2) RCIF TXIF SSP1IF TMR2IF TMR1IF 99
RCSTA SPEN RX9 SREN CREN ADDEN FERR OERR RX9D 268
TRISC TRISC7(1) TRISC6(1) TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 140
TXREG EUSART Transmit Data Register 259*
TXSTA CSRC TX9 TXEN SYNC SENDB BRGH TRMT TX9D 267
Legend: — = unimplemented location, read as0’. Shaded cells are not used for synchronous slave transmission.
* Page provides register information.
Note 1: PIC16(L)F1459 only.
2: PIC16(L)F1455/9 only.
PIC16(L)F1454/5/9
DS41639A-page 284 Preliminary 2012 Microchip Technology Inc.
23.5.2.3 EUSART Synchronous Slave
Reception
The operation of the Synchronous Master and Slave
modes is identical (Section 23.5.1.5 “Synchronous
Master Reception”), with the following exceptions:
Sleep
CREN bit is always set, therefore the receiver is
never idle
SREN bit, which is a “don’t care” in Slave mode
A character may be received while in Sleep mode by
setting the CREN bit prior to entering Sleep. Once the
word is received, the RSR register will transfer the data
to the RCREG register. If the RCIE enable bit is set, the
interrupt generated will wake the device from Sleep
and execute the next instruction. If the GIE bit is also
set, the program will branch to the interrupt vector.
23.5.2.4 Synchronous Slave Reception
Set-up:
1. Set the SYNC and SPEN bits and clear the
CSRC bit.
2. Clear the ANSEL bit for both the CK and DT pins
(if applicable).
3. If interrupts are desired, set the RCIE bit of the
PIE1 register, and the GIE and PEIE bits of the
INTCON register.
4. If 9-bit reception is desired, set the RX9 bit.
5. Set the CREN bit to enable reception.
6. The RCIF bit will be set when reception is
complete. An interrupt will be generated if the
RCIE bit was set.
7. If 9-bit mode is enabled, retrieve the Most
Significant bit from the RX9D bit of the RCSTA
register.
8. Retrieve the 8 Least Significant bits from the
receive FIFO by reading the RCREG register.
9. If an overrun error occurs, clear the error by
either clearing the CREN bit of the RCSTA
register or by clearing the SPEN bit which resets
the EUSART.
TABLE 23-10: SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE
RECEPTION
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register
on Page
BAUDCON ABDOVF RCIDL —SCKPBRG16 WUE ABDEN 269
INTCON GIE PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF 96
PIE1 TMR1GIE ADIE(2) RCIE TXIE SSP1IE TMR2IE TMR1IE 97
PIR1 TMR1GIF ADIF(2) RCIF TXIF SSP1IF TMR2IF TMR1IF 99
RCREG EUSART Receive Data Register 262*
RCSTA SPEN RX9 SREN CREN ADDEN FERR OERR RX9D 268
TRISC TRISC7(1) TRISC6(1) TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 140
TXSTA CSRC TX9 TXEN SYNC SENDB BRGH TRMT TX9D 267
Legend: — = unimplemented location, read as0’. Shaded cells are not used for synchronous slave reception.
* Page provides register information.
Note 1: PIC16(L)F1459 only.
2: PIC16(L)F1455/9 only.
2012 Microchip Technology Inc. Preliminary DS41639A-page 285
PIC16(L)F1454/5/9
23.6 EUSART Operation During Sleep
The EUSART will remain active during Sleep only in the
Synchronous Slave mode. All other modes require the
system clock and therefore cannot generate the
necessary signals to run the Transmit or Receive Shift
registers during Sleep.
Synchronous Slave mode uses an externally generated
clock to run the Transmit and Receive Shift registers.
23.6.1 SYNCHRONOUS RECEIVE DURING
SLEEP
To receive during Sleep, all the following conditions
must be met before entering Sleep mode:
RCSTA and TXSTA Control registers must be
configured for Synchronous Slave Reception (see
Section 23.5.2.4 “Synchronous Slave
Reception Set-up:”).
If interrupts are desired, set the RCIE bit of the
PIE1 register, and the GIE and PEIE bits of the
INTCON register.
The RCIF interrupt flag must be cleared by read-
ing RCREG to unload any pending characters in
the receive buffer.
Upon entering Sleep mode, the device will be ready to
accept data and clocks on the RX/DT and TX/CK pins,
respectively. When the data word has been completely
clocked in by the external device, the RCIF interrupt
flag bit of the PIR1 register will be set. Thereby, waking
the processor from Sleep.
Upon waking from Sleep, the instruction following the
SLEEP instruction will be executed. If the Global Inter-
rupt Enable (GIE) bit of the INTCON register is also set,
then the Interrupt Service Routine at address 004h will
be called.
23.6.2 SYNCHRONOUS TRANSMIT
DURING SLEEP
To transmit during Sleep, all the following conditions
must be met before entering Sleep mode:
RCSTA and TXSTA Control registers must be
configured for synchronous slave transmission
(see Section 23.5.2.2 “Synchronous Slave
Transmission Set-up:”).
The TXIF interrupt flag must be cleared by writing
the output data to the TXREG, thereby filling the
TSR and transmit buffer.
If interrupts are desired, set the TXIE bit of the
PIE1 register and the PEIE bit of the INTCON
register.
Interrupt enable bits TXIE of the PIE1 register and
PEIE of the INTCON register must set.
Upon entering Sleep mode, the device will be ready to
accept clocks on the TX/CK pin and transmit data on
the RX/DT pin. When the data word in the TSR has
been completely clocked out by the external device, the
pending byte in the TXREG will transfer to the TSR and
the TXIF flag will be set, which wakes the processor
from Sleep. At this point, the TXREG is available to
accept another character for transmission, which will
clear the TXIF flag.
Upon waking from Sleep, the instruction following the
SLEEP instruction will be executed. If the Global
Interrupt Enable (GIE) bit is also set, then the Interrupt
Service Routine at address 0004h will be called.
23.6.3 ALTERNATE PIN LOCATIONS
This module incorporates I/O pins that can be moved to
other locations with the use of the alternate pin function
register, APFCON. To determine which pins can be
moved and what their default locations are upon a
Reset, see Section 12.1 “Alternate Pin Function” for
more information.
PIC16(L)F1454/5/9
DS41639A-page 286 Preliminary 2012 Microchip Technology Inc.
NOTES:
2012 Microchip Technology Inc. Preliminary DS41639A-page 287
PIC16(L)F1454/5/9
24.0 PULSE WIDTH MODULATION
(PWM) MODULE
The PWM module generates a Pulse-Width Modulated
signal determined by the duty cycle, period, and
resolution that are configured by the following registers:
•PR2
•T2CON
PWMxDCH
PWMxDCL
•PWMxCON
Figure 24-1 shows a typical waveform of the PWM
signal. Figure 24-2 shows a simplified block diagram of
PWM operation.
For a step-by-step procedure on how to set up this
module for PWM operation, refer to Section 24.1.9
“Setup for PWM Operation using PWMx Pins.
FIGURE 24-1: PWM OUTPUT
FIGURE 24-2: SIMPLIFIED PWM BLOCK DIAGRAM
Period
Pulse Width
TMR2 = 0
TMR2 =
TMR2 = PR2
PWMxDCH<7:0>:PWMxDCL<7:6>
PWMxDCH
Comparator
TMR2
Comparator
PR2
(1)
RQ
S
Duty Cycle registers PWMxDCL<7:6>
Clear Timer,
PWMx pin and
latch Duty Cycle
Note 1: 8-bit timer is concatenated with the two Least Significant bits of 1/FOSC adjusted by
the Timer2 prescaler to create a 10-bit time base.
Latched
(Not visible to user)
Q
Output Polarity (PWMxPOL)
TMR2 Module
0
1
PWMxOUT
to other peripherals: CWG
PWMx
Output Enable (PWMxOE)
TRIS Control
PIC16(L)F1454/5/9
DS41639A-page 288 Preliminary 2012 Microchip Technology Inc.
24.1 PWMx Pin Configuration
All PWM outputs are multiplexed with the PORT data
latch. The user must configure the pins as outputs by
clearing the associated TRIS bits.
24.1.1 FUNDAMENTAL OPERATION
The PWM module produces a 10-bit resolution output.
Timer2 and PR2 set the period of the PWM. The
PWMxDCL and PWMxDCH registers configure the
duty cycle. The period is common to all PWM modules,
whereas the duty cycle is independently controlled.
All PWM outputs associated with Timer2 are set when
TMR2 is cleared. Each PWMx is cleared when TMR2
is equal to the value specified in the corresponding
PWMxDCH (8 MSb) and PWMxDCL<7:6> (2 LSb) reg-
isters. When the value is greater than or equal to PR2,
the PWM output is never cleared (100% duty cycle).
24.1.2 PWM OUTPUT POLARITY
The output polarity is inverted by setting the PWMxPOL
bit of the PWMxCON register.
24.1.3 PWM PERIOD
The PWM period is specified by the PR2 register of
Timer2. The PWM period can be calculated using the
formula of Equation 24-1.
EQUATION 24-1: PWM PERIOD
When TMR2 is equal to PR2, the following three events
occur on the next increment cycle:
•TMR2 is cleared
The PWM output is active. (Exception: When the
PWM duty cycle = 0%, the PWM output will
remain inactive.)
The PWMxDCH and PWMxDCL register values
are latched into the buffers.
24.1.4 PWM DUTY CYCLE
The PWM duty cycle is specified by writing a 10-bit
value to the PWMxDCH and PWMxDCL register pair.
The PWMxDCH register contains the eight MSbs and
the PWMxDCL<7:6>, the two LSbs. The PWMxDCH
and PWMxDCL registers can be written to at any time.
Equation 24-2 is used to calculate the PWM pulse
width. Equation 24-3 is used to calculate the PWM duty
cycle ratio.
EQUATION 24-2: PULSE WIDTH
EQUATION 24-3: DUTY CYCLE RATIO
The 8-bit timer TMR2 register is concatenated with the
two Least Significant bits of 1/FOSC, adjusted by the
Timer2 prescaler to create the 10-bit time base. The
system clock is used if the Timer2 prescaler is set to
1:1.
Note: Clearing the PWMxOE bit will relinquish
control of the PWMx pin.
Note: The Timer2 postscaler is not used in the
determination of the PWM frequency. The
postscaler could be used to have a servo
update rate at a different frequency than
the PWM output.
Note: The PWMxDCH and PWMxDCL registers
are double buffered. The buffers are
updated when Timer2 matches PR2. Care
should be taken to update both registers
before the timer match occurs.
PWM Period PR21+4TOSC =
(TMR2 Prescale Value)
Note: TOSC = 1/FOSC
Note: The Timer2 postscaler has no effect on
the PWM operation.
Pulse Width PWMxDCH :PWMxDCL<7:6>
=
TOSC
(TMR2 Prescale Value)
Note: TOSC = 1/FOSC
Duty Cycle Ratio PWMxDCH:PWMxDCL<7:6>
4 PR2 1+
-----------------------------------------------------------------------------------=
2012 Microchip Technology Inc. Preliminary DS41639A-page 289
PIC16(L)F1454/5/9
24.1.5 PWM RESOLUTION
The resolution determines the number of available duty
cycles for a given period. For example, a 10-bit resolu-
tion will result in 1024 discrete duty cycles, whereas an
8-bit resolution will result in 256 discrete duty cycles.
The maximum PWM resolution is 10 bits when PR2 is
255. The resolution is a function of the PR2 register
value as shown by Equation 24-4.
EQUATION 24-4: PWM RESOLUTION
24.1.6 OPERATION IN SLEEP MODE
In Sleep mode, the TMR2 register will not increment
and the state of the module will not change. If the
PWMx pin is driving a value, it will continue to drive that
value. When the device wakes up, TMR2 will continue
from its previous state.
24.1.7 CHANGES IN SYSTEM CLOCK
FREQUENCY
The PWM frequency is derived from the system clock
frequency (FOSC). Any changes in the system clock fre-
quency will result in changes to the PWM frequency.
Refer to Section 6.0 “Active Clock Tuning (ACT)
Module” for additional details.
24.1.8 EFFECTS OF RESET
Any Reset will force all ports to Input mode and the
PWM registers to their Reset states.
Note: If the pulse width value is greater than the
period, the assigned PWM pin(s) will
remain unchanged.
Resolution 4PR2 1+log
2log
------------------------------------------ bits=
TABLE 24-1: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (FOSC = 20 MHz)
PWM Frequency 0.31 kHz 4.88 kHz 19.53 kHz 78.12 kHz 156.3 kHz 208.3 kHz
Timer Prescale (1, 4, 64) 64 4 1 1 1 1
PR2 Value 0xFF 0xFF 0xFF 0x3F 0x1F 0x17
Maximum Resolution (bits) 10 10 10 8 7 6.6
TABLE 24-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (FOSC = 8 MHz)
PWM Frequency 0.31 kHz 4.90 kHz 19.61 kHz 76.92 kHz 153.85 kHz 200.0 kHz
Timer Prescale (1, 4, 64) 64 4 1 1 1 1
PR2 Value 0x65 0x65 0x65 0x19 0x0C 0x09
Maximum Resolution (bits) 8 8 8 6 5 5
PIC16(L)F1454/5/9
DS41639A-page 290 Preliminary 2012 Microchip Technology Inc.
24.1.9 SETUP FOR PWM OPERATION
USING PWMx PINS
The following steps should be taken when configuring
the module for PWM operation using the PWMx pins:
1. Disable the PWMx pin output driver(s) by setting
the associated TRIS bit(s).
2. Clear the PWMxCON register.
3. Load the PR2 register with the PWM period
value.
4. Clear the PWMxDCH register and bits <7:6> of
the PWMxDCL register.
5. Configure and start Timer2:
Clear the TMR2IF interrupt flag bit of the
PIR1 register. See note below.
Configure the T2CKPS bits of the T2CON
register with the Timer2 prescale value.
Enable Timer2 by setting the TMR2ON bit of
the T2CON register.
6. Enable PWM output pin and wait until Timer2
overflows; TMR2IF bit of the PIR1 register is set.
See note below.
7. Enable the PWMx pin output driver(s) by clear-
ing the associated TRIS bit(s) and setting the
PWMxOE bit of the PWMxCON register.
8. Configure the PWM module by loading the
PWMxCON register with the appropriate values.
Note 1: In order to send a complete duty cycle
and period on the first PWM output, the
above steps must be followed in the order
given. If it is not critical to start with a
complete PWM signal, then replace Step
4 with Step 8.
2: For operation with other peripherals only,
disable PWMx pin outputs.
2012 Microchip Technology Inc. Preliminary DS41639A-page 291
PIC16(L)F1454/5/9
24.2 Register Definitions: PWM Control
REGISTER 24-1: PWMxCON: PWM CONTROL REGISTER
R/W-0/0 R/W-0/0 R-0/0 R/W-0/0 U-0 U-0 U-0 U-0
PWMxEN PWMxOE PWMxOUT PWMxPOL
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7 PWMxEN: PWM Module Enable bit
1 = PWM module is enabled
0 = PWM module is disabled
bit 6 PWMxOE: PWM Module Output Enable bit
1 = Output to PWMx pin is enabled
0 = Output to PWMx pin is disabled
bit 5 PWMxOUT: PWM Module Output Value bit
bit 4 PWMxPOL: PWMx Output Polarity Select bit
1 = PWM output is active low
0 = PWM output is active high
bit 3-0 Unimplemented: Read as ‘0
PIC16(L)F1454/5/9
DS41639A-page 292 Preliminary 2012 Microchip Technology Inc.
REGISTER 24-2: PWMxDCH: PWM DUTY CYCLE HIGH BITS
R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u
PWMxDCH<7:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-0 PWMxDCH<7:0>: PWM Duty Cycle Most Significant bits
These bits are the MSbs of the PWM duty cycle. The two LSbs are found in the PWMxDCL register.
REGISTER 24-3: PWMxDCL: PWM DUTY CYCLE LOW BITS
R/W-x/u R/W-x/u U-0 U-0 U-0 U-0 U-0 U-0
PWMxDCL<7:6>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-6 PWMxDCL<7:6>: PWM Duty Cycle Least Significant bits
These bits are the LSbs of the PWM duty cycle. The MSbs are found in the PWMxDCH register.
bit 5-0 Unimplemented: Read as ‘0
TABLE 24-3: SUMMARY OF REGISTERS ASSOCIATED WITH PWM
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register
on Page
PR2 Timer2 module Period Register 199*
PWM1CON PWM1EN PWM1OE PWM1OUT PWM1POL 291
PWM1DCH PWM1DCH<7:0> 292
PWM1DCL PWM1DCL<7:6> 292
PWM2CON PWM2EN PWM2OE PWM2OUT PWM2POL 292
PWM2DCH PWM2DCH<7:0> 292
PWM2DCL PWM2DCL<7:6> 292
T2CON T2OUTPS<3:0> TMR2ON T2CKPS<1:0> 201
TMR2 Timer2 module Register 199*
TRISA TRISA5 TRISA4 —(1) —(1) —(1) 132
TRISC TRISC7(2) TRISC6(2) TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 140
Legend: - = Unimplemented locations, read as ‘0’, u = unchanged, x = unknown. Shaded cells are not used by the PWM.
* Page provides register information.
Note 1: Unimplemented, read as ‘1’.
2: PIC16(L)F1459 only.
2012 Microchip Technology Inc. Preliminary DS41639A-page 293
PIC16(L)F1454/5/9
25.0 COMPLEMENTARY WAVEFORM
GENERATOR (CWG) MODULE
(PIC16(L)F1455/9 ONLY)
The Complementary Waveform Generator (CWG) pro-
duces a complementary waveform with dead-band
delay from a selection of input sources.
The CWG module has the following features:
Selectable dead-band clock source control
Selectable input sources
Output enable control
Output polarity control
Dead-band control with independent 6-bit rising
and falling edge dead-band counters
Auto-shutdown control with:
- Selectable shutdown sources
- Auto-restart enable
- Auto-shutdown pin override control
2012 Microchip Technology Inc. Preliminary DS41639A-page 294
PIC16(L)F1454/5/9
FIGURE 25-1: SIMPLIFIED CWG BLOCK DIAGRAM
cwg_clock
GxCS
Input Source
PWM1OUT
PWM2OUT
CWG1FLT (INT pin)
GxASDFLT
FOSC
HFINTOSC
GxIS
Auto-Shutdown
Source
G
x
POLA
1
1
2
QS
RQ
EN
R
GxARSEN
CWGxDBR
G
x
POLB
6
CWGxDBF
0
1
0
1
00
10
11
0
1
00
10
11
0
1
G
x
ASDLB
2
GxASDLA
2
CWGxA
CWGxB
GxASDLA = 01
GxASDLB = 01
GxASE
GxOEA
GxOEB
=
EN
R
6
=TRISx
TRISx
x = CWG module number
QS
RQ
QD S
WRITE
GxASE Data Bit
shutdown
set dominate
async_C1OUT
async_C2OUT
async_C2OUT
GxASDC2
async_C1OUT
GxASDC1
2012 Microchip Technology Inc. Preliminary DS41639A-page 295
PIC16(L)F1454/5/9
FIGURE 25-2: TYPICAL CWG OPERATION WITH PWM1 (NO AUTO-SHUTDOWN)
Rising Edge D
Falling Edge Deadband
Rising Edge Deadband
Falling Edge Deadband
cwg_clock
PWM1
CWGxA
CWGxB
Rising Edge
Deadband
PIC16(L)F1454/5/9
DS41639A-page 296 Preliminary 2012 Microchip Technology Inc.
25.1 Fundamental Operation
The CWG generates a two output complementary
waveform from one of four selectable input sources.
The off-to-on transition of each output can be delayed
from the on-to-off transition of the other output thereby
creating an immediate time delay where neither output
is driven. This is referred to as dead time and is covered
in Section 25.5 “Dead-Band Control. A typical
operating waveform, with dead band, generated from a
single input signal is shown in Figure 25-2.
It may be necessary to guard against the possibility of
circuit faults or a feedback event arriving too late or not
at all. In this case, the active drive must be terminated
before the Fault condition causes damage. This is
referred to as auto-shutdown and is covered in
Section 25.9 “Auto-Shutdown Control”.
25.2 Clock Source
The CWG module allows the following clock sources
to be selected:
Fosc (system clock)
HFINTOSC (16 MHz only)
The clock sources are selected using the G1CS0 bit of
the CWGxCON0 register (Register 25-1).
25.3 Selectable Input Sources
The CWG can generate the complementary waveform
for the following input sources:
async_C1OUT
async_C2OUT
•PWM1OUT
•PWM2OUT
The input sources are selected using the GxIS<1:0>
bits in the CWGxCON1 register (Register 25-2).
25.4 Output Control
Immediately after the CWG module is enabled, the
complementary drive is configured with both CWGxA
and CWGxB drives cleared.
25.4.1 OUTPUT ENABLES
Each CWG output pin has individual output enable
control. Output enables are selected with the GxOEA
and GxOEB bits of the CWGxCON0 register. When an
output enable control is cleared, the module asserts no
control over the pin. When an output enable is set, the
override value or active PWM waveform is applied to
the pin per the port priority selection. The output pin
enables are dependent on the module enable bit,
GxEN. When GxEN is cleared, CWG output enables
and CWG drive levels have no effect.
25.4.2 POLARITY CONTROL
The polarity of each CWG output can be selected
independently. When the output polarity bit is set, the
corresponding output is active high. Clearing the output
polarity bit configures the corresponding output as
active low. However, polarity does not affect the
override levels. Output polarity is selected with the
GxPOLA and GxPOLB bits of the CWGxCON0 register.
25.5 Dead-Band Control
Dead-band control provides for non-overlapping output
signals to prevent shoot-through current in power
switches. The CWG contains two 6-bit dead-band
counters. One dead-band counter is used for the rising
edge of the input source control. The other is used for
the falling edge of the input source control.
Dead band is timed by counting CWG clock periods
from zero up to the value in the rising or falling dead-
band counter registers. See CWGxDBR and
CWGxDBF registers (Register 25-4 and Register 25-5,
respectively).
25.6 Rising Edge Dead Band
The rising edge dead-band delays the turn-on of the
CWGxA output from when the CWGxB output is turned
off. The rising edge dead-band time starts when the
rising edge of the input source signal goes true. When
this happens, the CWGxB output is immediately turned
off and the rising edge dead-band delay time starts.
When the rising edge dead-band delay time is reached,
the CWGxA output is turned on.
The CWGxDBR register sets the duration of the dead-
band interval on the rising edge of the input source
signal. This duration is from 0 to 64 counts of dead band.
Dead band is always counted off the edge on the input
source signal. A count of 0 (zero), indicates that no
dead band is present.
If the input source signal is not present long enough for
the count to complete, no output will be seen on the
respective output.
2012 Microchip Technology Inc. Preliminary DS41639A-page 297
PIC16(L)F1454/5/9
25.7 Falling Edge Dead Band
The falling edge dead band delays the turn-on of the
CWGxB output from when the CWGxA output is turned
off. The falling edge dead-band time starts when the
falling edge of the input source goes true. When this
happens, the CWGxA output is immediately turned off
and the falling edge dead-band delay time starts. When
the falling edge dead-band delay time is reached, the
CWGxB output is turned on.
The CWGxDBF register sets the duration of the dead-
band interval on the falling edge of the input source sig-
nal. This duration is from 0 to 64 counts of dead band.
Dead band is always counted off the edge on the input
source signal. A count of 0 (zero), indicates that no
dead band is present.
If the input source signal is not present long enough for
the count to complete, no output will be seen on the
respective output.
Refer to Figure 25-5 and Figure 25-6 for examples.
25.8 Dead-Band Uncertainty
When the rising and falling edges of the input source
trigger the dead-band counters, the input may be asyn-
chronous. This will create some uncertainty in the dead-
band time delay. The maximum uncertainty is equal to
one CWG clock period. Refer to Equation 25-1 for more
detail.
2012 Microchip Technology Inc. Preliminary DS41639A-page 298
PIC16(L)F1454/5/9
FIGURE 25-3: DEAD-BAND OPERATION, CWGxDBR = 01H, CWGxDBF = 02H
FIGURE 25-4: DEAD-BAND OPERATION, CWGxDBR = 03H, CWGxDBF = 04H, SOURCE SHORTER THAN DEAD BAND
Input Source
CWGxA
CWGxB
cwg_clock
source shorter than dead band
Input Source
CWGxA
CWGxB
cwg_clock
2012 Microchip Technology Inc. Preliminary DS41639A-page 299
PIC16(L)F1454/5/9
EQUATION 25-1: DEAD-BAND
UNCERTAINTY
TDEADBAND_UNCERTAINTY 1
Fcwg_clock
-----------------------------=
Therefore:
Fcwg_clock 16 MHz=
1
16 MHz
-------------------=
625ns=
TDEADBAND_UNCERTAINTY 1
Fcwg_clock
-----------------------------=
Example:
PIC16(L)F1454/5/9
DS41639A-page 300 Preliminary 2012 Microchip Technology Inc.
25.9 Auto-Shutdown Control
Auto-shutdown is a method to immediately override the
CWG output levels with specific overrides that allow for
the safe shutdown of the circuit. The shutdown state
can be either cleared automatically or held until cleared
by software.
25.9.1 SHUTDOWN
The shutdown state can be entered by either of the
following two methods:
Software generated
External Input
25.9.1.1 Software Generated Shutdown
Setting the GxASE bit of the CWGxCON2 register will
force the CWG into the shutdown state.
When auto-restart is disabled, the shutdown state will
persist as long as the GxASE bit is set.
When auto-restart is enabled, the GxASE bit will clear
automatically and resume operation on the next rising
edge event. See Figure 25-6.
25.9.1.2 External Input Source
External shutdown inputs provide the fastest way to
safely suspend CWG operation in the event of a Fault
condition. When any of the selected shutdown inputs
go active, the CWG outputs will immediately go to the
selected override levels without a software delay. Any
combination of two input sources can be selected to
cause a shutdown condition. The sources are:
async_C1OUT
async_C2OUT
•CWG1FLT
Shutdown inputs are selected using the GxASDS0 and
GxASDS1 bits of the CWGxCON2 register
(Register 25-3).
25.10 Operation During Sleep
The CWG module operates independently from the
system clock and will continue to run during Sleep,
provided that the clock and input sources selected
remain active.
The HFINTOSC remains active during Sleep, provided
that the CWG module is enabled, the input source is
active, and the HFINTOSC is selected as the clock
source, regardless of the system clock source selected.
In other words, if the HFINTOSC is simultaneously
selected as the system clock and the CWG clock
source, when the CWG is enabled and the input source
is active, the CPU will go idle during Sleep, but the CWG
will continue to operate and the HFINTOSC will remain
active. This will have a direct effect on the Sleep mode
current.
Note: Shutdown inputs are level sensitive, not
edge sensitive. The shutdown state can-
not be cleared, except by disabling
auto-shutdown, as long as the shutdown
input level persists.
2012 Microchip Technology Inc. Preliminary DS41639A-page 301
PIC16(L)F1454/5/9
25.11 Configuring the CWG
The following steps illustrate how to properly configure
the CWG to ensure a synchronous start:
1. Ensure that the TRIS control bits corresponding
to CWGxA and CWGxB are set so that both are
configured as inputs.
2. Clear the GxEN bit, if not already cleared.
3. Set desired dead-band times with the CWGxDBR
and CWGxDBF registers.
4. Setup the following controls in the CWGxCON2
auto-shutdown register:
Select desired shutdown source.
Select both output overrides to the desired
levels (this is necessary even if not using
auto-shutdown because start-up will be from
a shutdown state).
Set the GxASE bit and clear the GxARSEN
bit.
5. Select the desired input source using the
CWGxCON1 register.
6. Configure the following controls in the
CWGxCON0 register:
Select desired clock source.
Select the desired output polarities.
Set the output enables for the outputs to be
used.
7. Set the GxEN bit.
8. Clear TRIS control bits corresponding to
CWGxA and CWGxB to be used to configure
those pins as outputs.
9. If auto-restart is to be used, set the GxARSEN
bit and the GxASE bit will be cleared automati-
cally. Otherwise, clear the GxASE bit to start the
CWG.
25.11.1 PIN OVERRIDE LEVELS
The levels driven to the output pins, while the shutdown
input is true, are controlled by the GxASDLA and
GxASDLB bits of the CWGxCON1 register
(Register 25-2). GxASDLA controls the CWG1A
override level and GxASDLB controls the CWG1B
override level. The control bit logic level corresponds to
the output logic drive level while in the shutdown state.
The polarity control does not apply to the override level.
25.11.2 AUTO-SHUTDOWN RESTART
After an auto-shutdown event has occurred, there are
two ways to have resume operation:
Software controlled
Auto-restart
The restart method is selected with the GxARSEN bit
of the CWGxCON2 register. Waveforms of software
controlled and automatic restarts are shown in
Figure 25-5 and Figure 25-6.
25.11.2.1 Software Controlled Restart
When the GxARSEN bit of the CWGxCON2 register is
cleared, the CWG must be restarted after an auto-shut-
down event by software.
Clearing the shutdown state requires all selected shut-
down inputs to be low; otherwise, the GxASE bit will
remain set. The overrides will remain in effect until the
first rising edge event after the GxASE bit is cleared.
The CWG will then resume operation.
25.11.2.2 Auto-Restart
When the GxARSEN bit of the CWGxCON2 register is
set, the CWG will restart from the auto-shutdown state
automatically.
The GxASE bit will clear automatically when all shut-
down sources go low. The overrides will remain in
effect until the first rising edge event after the GxASE
bit is cleared. The CWG will then resume operation.
2012 Microchip Technology Inc. Preliminary DS41639A-page 302
PIC16(L)F1454/5/9
FIGURE 25-5: SHUTDOWN FUNCTIONALITY, AUTO-RESTART DISABLED (GxARSEN = 0,GxASDLA = 01, GxASDLB = 01)
FIGURE 25-6: SHUTDOWN FUNCTIONALITY, AUTO-RESTART ENABLED (GxARSEN = 1,GxASDLA = 01, GxASDLB = 01)
Shutdown
GxASE Cleared by Software
Output Resumes
No Shutdown
CWG Input
GxASE
CWG1A
Source
Shutdown Source
Shutdown Event Ceases
Tri-State (No Pulse)
CWG1B Tri-State (No Pulse)
Shutdown
Tri-State (No Pulse)
GxASE auto-cleared by hardware
Output Resumes
No Shutdown
CWG Input
GxASE
CWG1A
Source
Shutdown Source
Shutdown Event Ceases
CWG1B
Tri-State (No Pulse)
2012 Microchip Technology Inc. Preliminary DS41639A-page 303
PIC16(L)F1454/5/9
25.12 Register Definitions: CWG Control
REGISTER 25-1: CWGxCON0: CWG CONTROL REGISTER 0
R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 U-0 U-0 R/W-0/0
GxEN GxOEB GxOEA GxPOLB GxPOLA —GxCS0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared q = Value depends on condition
bit 7 GxEN: CWGx Enable bit
1 = Module is enabled
0 = Module is disabled
bit 6 GxOEB: CWGxB Output Enable bit
1 = CWGxB is available on appropriate I/O pin
0 = CWGxB is not available on appropriate I/O pin
bit 5 GxOEA: CWGxA Output Enable bit
1 = CWGxA is available on appropriate I/O pin
0 = CWGxA is not available on appropriate I/O pin
bit 4 GxPOLB: CWGxB Output Polarity bit
1 = Output is inverted polarity
0 = Output is normal polarity
bit 3 GxPOLA: CWGxA Output Polarity bit
1 = Output is inverted polarity
0 = Output is normal polarity
bit 2-1 Unimplemented: Read as ‘0
bit 0 GxCS0: CWGx Clock Source Select bit
1 =HFINTOSC
0 =F
OSC
PIC16(L)F1454/5/9
DS41639A-page 304 Preliminary 2012 Microchip Technology Inc.
REGISTER 25-2: CWGxCON1: CWG CONTROL REGISTER 1
R/W-x/u R/W-x/u R/W-x/u R/W-x/u U-0 U-0 R/W-0/0 R/W-0/0
GxASDLB<1:0> GxASDLA<1:0> GxIS<1:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared q = Value depends on condition
bit 7-6 GxASDLB<1:0>: CWGx Shutdown State for CWGxB
When an auto-shutdown event is present (GxASE = 1):
11 = CWGxB pin is driven to 1’, regardless of the setting of the GxPOLB bit
10 = CWGxB pin is driven to 0’, regardless of the setting of the GxPOLB bit
01 = CWGxB pin is tri-stated
00 = CWGxB pin is driven to its inactive state after the selected dead-band interval. GxPOLB still will
control the polarity of the output
bit 5-4 GxASDLA<1:0>: CWGx Shutdown State for CWGxA
When an auto shutdown event is present (GxASE = 1):
11 = CWGxA pin is driven to ‘1’, regardless of the setting of the GxPOLA bit
10 = CWGxA pin is driven to 0’, regardless of the setting of the GxPOLA bit
01 = CWGxA pin is tri-stated
00 = CWGxA pin is driven to its inactive state after the selected dead-band interval. GxPOLA still will
control the polarity of the output
bit 3-2 Unimplemented: Read as ‘0
bit 1-0 GxIS<2:0>: CWGx Input Source Select bits
11 =PWM2OUT
10 =PWM1OUT
01 = async_C1OUT
00 = async_C2OUT
2012 Microchip Technology Inc. Preliminary DS41639A-page 305
PIC16(L)F1454/5/9
REGISTER 25-3: CWGxCON2: CWG CONTROL REGISTER 2
R/W-0/0 R/W-0/0 U-0 U-0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0
GxASE GxARSEN GxASDC2 GxASDC1 GxASDFLT
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared q = Value depends on condition
bit 7 GxASE: Auto-Shutdown Event Status bit
1 = An auto-shutdown event has occurred
0 = No auto-shutdown event has occurred
bit 6 GxARSEN: Auto-Restart Enable bit
1 = Auto-restart is enabled
0 = Auto-restart is disabled
bit 5-4 Unimplemented: Read as ‘0
bit 3 GxASDC2: CWG Auto-Shutdown on Comparator 2 Enable
1 = Shutdown when Comparator 2 output is high
0 = Comparator 2 output has no effect on shutdown
bit 2 GxASDC1: CWG Auto-Shutdown on Comparator 1 Enable
1 = Shutdown when Comparator 1 output is high
0 = Comparator 1 output has no effect on shutdown
bit 1 GxASDFLT: CWG Auto-Shutdown on FLT Enable bit
1 = Shutdown when CWG1FLT input is low
0 =CWG1FLT
input has no effect on shutdown
bit 0 Unimplemented: Read as0
PIC16(L)F1454/5/9
DS41639A-page 306 Preliminary 2012 Microchip Technology Inc.
REGISTER 25-4: CWGxDBR: COMPLEMENTARY WAVEFORM GENERATOR (CWGx) RISING
DEAD-BAND COUNT REGISTER
REGISTER 25-5: CWGxDBF: COMPLEMENTARY WAVEFORM GENERATOR (CWGx) FALLING
DEAD-BAND COUNT REGISTER
U-0 U-0 R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u
CWGxDBR<5:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared q = Value depends on condition
bit 7-6 Unimplemented: Read as ‘0
bit 5-0 CWGxDBR<5:0>: Complementary Waveform Generator (CWGx) Rising Counts bits
11 1111 = 63-64 counts of dead band
11 1110 = 62-63 counts of dead band


00 0010 = 2-3 counts of dead band
00 0001 = 1-2 counts of dead band
00 0000 = 0 counts of dead band
U-0 U-0 R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u
CWGxDBF<5:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared q = Value depends on condition
bit 7-6 Unimplemented: Read as ‘0
bit 5-0 CWGxDBF<5:0>: Complementary Waveform Generator (CWGx) Falling Counts bits
11 1111 = 63-64 counts of dead band
11 1110 = 62-63 counts of dead band


00 0010 = 2-3 counts of dead band
00 0001 = 1-2 counts of dead band
00 0000 = 0 counts of dead band. Dead-band generation is bypassed
2012 Microchip Technology Inc. Preliminary DS41639A-page 307
PIC16(L)F1454/5/9
TABLE 25-1: SUMMARY OF REGISTERS ASSOCIATED WITH CWG(2)
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Registe
r on
Page
ANSELA ANSA4 133
CWGxCON0 GxEN GxOEB GxOEA GxPOLB GxPOLA —G1CS0303
CWGxCON1 GxASDLB<1:0> GxASDLA<1:0> GxIS<1:0> 304
CWGxCON2 GxASE GxARSEN GxASDC2 GxASDC1 GxASDFLT 305
CWGxDBF CWGxDBF<5:0> 306
CWGxDBR CWGxDBR<5:0> 306
LATA —LATA5LATA4 133
TRISA TRISA5 TRISA4 (1) (1) (1) 132
TRISC TRISC7(1) TRISC6(1) TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 140
Legend: x = unknown, u = unchanged, = unimplemented locations read as ‘0’. Shaded cells are not used by CWG.
Note 1: Unimplemented, read as ‘1’.
2: PIC16(L)F1455/9 only.
PIC16(L)F1454/5/9
DS41639A-page 308 Preliminary 2012 Microchip Technology Inc.
NOTES:
2012 Microchip Technology Inc. Preliminary DS41639A-page 309
PIC16(L)F1454/5/9
26.0 UNIVERSAL SERIAL BUS
(USB)
This section describes the details of the USB
peripheral. Because of the very specific nature of the
module, knowledge of USB is expected. Some high-
level USB information is provided in Section 26.1
“Overview” only for application design reference.
Designers are encouraged to refer to the official
specification published by the USB Implementers
Forum (USB-IF) for the latest information. USB
Specification Revision 2.0 is the most current
specification at the time of publication of this document.
26.1 Overview
This device contains a full-speed and low-speed
compatible USB Serial Interface Engine (SIE) that
allows fast communication between any USB host and
the microcontroller. The SIE can be interfaced directly
to the USB by utilizing the internal transceiver. Some
special hardware features have been included to
improve performance. Dual access port memory in the
device's data memory space (USB RAM) has been
supplied to share direct memory access between the
microcontroller core and the SIE. Buffer descriptors are
also provided, allowing users to freely program
endpoint memory usage within the USB RAM space.
Figure 26-1 presents a general overview of the USB
peripheral and its features.
FIGURE 26-1: USB PERIPHERAL AND OPTIONS
3.3V LDO Regulator
P
P
FS
EN
D+
D-
USB
SIE
USB Clock from the
Oscillator Module
USB Control and
Configuration
512 byte
USB RAM
USB
FSEN
UPUEN
USB PIC® Microcontroller
Note 1: Possible optional setup for LF parts only. F parts should use internal LDO to power VUSB3V3.
2: On F devices the regulator is powered by Vdd. On LF devices the regulator is internally bypassed to Vdd.
Vcap
VUSB3V3
(2)
Transceiver
Internal Pull-ups
VDD
(1)
External 3.3V
Supply
3: 496 bytes accessible in both linear and banked data space. 16 bytes accessible in access data space only.
(3)
PIC16(L)F1454/5/9
DS41639A-page 310 Preliminary 2012 Microchip Technology Inc.
26.2 USB Status and Control
The operation of the USB module is configured and
managed through three control registers. In addition, a
total of 14 registers are used to manage the actual USB
transactions. The registers are:
USB Control register (UCON)
USB Configuration register (UCFG)
USB Transfer Status register (USTAT)
USB Device Address register (UADDR)
Frame Number registers (UFRMH:UFRML)
Endpoint Enable registers 0 through 7 (UEPn)
26.2.1 USB CONTROL (UCON) REGISTER
The USB Control register (Register 26-1) contains bits
needed to control the module behavior during
transfers. The register contains bits that control the
following:
Main USB Peripheral Enable
Ping-Pong Buffer Pointer Reset
Control of the Suspend mode
Packet Transfer Disable
The SE0 bit of the UCON register is used to indicate the
occurrence of a single-ended zero on the bus. When
the USB module is enabled, this bit should be
monitored to determine whether the differential data
lines have come out of a single-ended zero condition.
This helps to differentiate the initial power-up state from
the USB Reset signal.
The USBEN bit of the UCON register is used to enable
and disable the module. Setting this bit activates the
module and resets all of the PPBI bits in the Buffer
Descriptor Table to ‘0’. If enabled, this bit will also
activate the USB internal pull-up resistors. Thus, this bit
can be used as a soft attach/detach to the USB. The
USB module needs to be supplied with an active clock
source before the USBEN bit can be set. Also, the USB
module needs to be fully preconfigured prior to
enabling the USB module.
The PPBRST bit of the UCON register controls the
Reset status when Double-Buffering mode (ping-pong
buffering) is used. When the PPBRST bit is set, all
Ping-Pong Buffer Pointers are set to the Even buffers.
The PPBRST bit must be cleared by firmware. This bit
is ignored in buffering modes not using ping-pong
buffering.
The PKTDIS bit of the UCON register is a flag indicating
that the SIE has disabled packet transmission and
reception. This bit is set by the SIE when a SETUP token
is received to allow setup processing. This bit cannot be
set by the microcontroller, only cleared. Clearing the bit
to ‘0’ allows the SIE to continue transmission and/or
reception. Any pending events within the Buffer
Descriptor Table will still be available, indicated within
the USTAT register's FIFO buffer ENDP bits.
The RESUME bit of the UCON register configures the
peripheral to perform a remote wake-up by executing
Resume signaling. To generate a valid remote wake-up,
firmware must set the RESUME bit for 10 ms and then
automatically clear the bit. For more information on
“resume signaling”, see the USB 2.0 specification.
The SUSPND bit of the UCON register places the
module and supporting circuitry in a Low-Power mode.
The input clock to the SIE is also disabled. This bit must
be set by the firmware in response to an IDLEIF
interrupt. It should be reset by the microcontroller
firmware after an ACTVIF interrupt is observed. When
this bit is active, the device remains attached to the bus
but the transceiver outputs remain Idle. The voltage on
the VUSB3V3 pin may vary depending on the value of
this bit. Setting this bit before a IDLEIF request will
result in unpredictable bus behavior.
26.2.2 USB CONFIGURATION (UCFG)
REGISTER
The UCFG register (Register 26-2) is used in
configuring system level behavior of the USB module.
All internal and external hardware should be configured
prior to attempting communications. The UCFG
register is used for the following USB functions:
Bus Speed (Full/Low Speed)
On-Chip Pull-up Resistor Enable
Ping-Pong Buffer Usage
The UTEYE bit of the UCFG register enables the eye
pattern generation. This bit aids in module testing,
debugging and USB certification processes. Refer to
26.2.2.4 “Eye Pattern Test Enable” for more detail.
Note: If the PLL is being used, wait until the
PLLRDY bit is set in the OSCSTAT register
before attempting to set the USBEN bit.
Note: While in Suspend mode, a typical bus-
powered USB device is limited to the
suspend current discussed in the USB 2.0
specification Chapter 7.2.3. This is the
complete current, which may be drawn by
the microcontroller and its supporting
circuitry. Care should be taken to assure
minimum current draw when the device
enters Suspend mode.
Note: The USB speed, transceiver and pull-up
should only be configured during the mod-
ule setup phase. It is not recommended to
switch these settings while the module is
enabled.
2012 Microchip Technology Inc. Preliminary DS41639A-page 311
PIC16(L)F1454/5/9
26.2.2.1 Internal Transceiver
The USB peripheral has a full-speed and low-speed
USB 2.0 capable transceiver internally built-in and
connected to the SIE. The internal transceiver is
enabled when the USBEN bit of the USBCON register
is set. Full-speed operation is selected by setting the
FSEN bit of the UCFG register.
The on-chip USB pull-up resistors are controlled by the
UPUEN bit of the USFG register. The pull-up resistors
can only be active when the USBEN bit of the USBCON
register is set and the module is configured for use.
The internal USB transceiver is powered from the
VUSB3V3 pin. In order to meet USB signaling level
specifications, VUSB3V3 must be supplied with a voltage
source between 3.0V and 3.6V. The best electrical
signal quality is obtained when a 3.3V supply is used
and locally bypassed with a high quality ceramic
capacitor. The capacitor should be placed as close as
possible to the VUSB3V3 and VSS pins.
The D+ and D- signal lines can be routed directly to
their respective pins on the USB connector or cable (for
hard-wired applications). No additional resistors,
capacitors, or magnetic components are required as
the D+ and D- drivers have controlled slew rate and
output impedance intended to match with the
characteristic impedance of the USB cable. See the
USB specifications for the impedance matching
requirements.
26.2.2.2 Internal Pull-Up Resistors
The PIC® devices have built-in pull-up resistors
designed to meet the requirements for low-speed and
full-speed USB. The UPUEN bit of the UCFG register
enables the internal pull-ups.
26.2.2.3 Ping-Pong Buffer Configuration
The usage of ping-pong buffers is configured using the
PPB bits of the UCFG register. Refer to Section 26.4.4
“Ping-Pong Buffering” for a complete explanation of
the ping-pong buffers.
26.2.2.4 Eye Pattern Test Enable
An automatic eye pattern test can be generated by setting
the UTEYE bit of the USFG register. The eye pattern
output is dependent upon the USB modules settings,
which must be configured prior to use. The module must
be enabled for eye pattern output to function.
Once UTEYE is set, the module emulates a switch from
a receive to transmit state and will start transmitting a
J-K-J-K bit sequence (K-J-K-J for full speed). The
sequence will be repeated indefinitely while the Eye
Pattern Test mode is enabled.
This test mode is intended for board verification to aid
with USB certification tests. It is intended to show a
system developer the noise integrity of the USB signals
which can be affected by board traces, impedance
mismatches and proximity to other system components.
It does not properly test the transition from a receive to
a transmit state. Although the eye pattern is not meant
to replace the more complex USB certification test, it
should aid during first order system debugging.
Note: The VUSB3V3 voltage is supplied.
Note: The official USB specifications require the
that USB devices must never source any
current onto the VBUS line of the USB
cable. Additionally, USB devices must
never source any current on the D+/D-
data lines when the VBUS is below the
required voltage. In order to meet this
requirement, applications which are not
purely bus powered should monitor the
VBUS line and avoid turning on the USB
module and D+/D- internal pull-up resis-
tors until the VBUS meets requirements.
VBUS can be connected to and monitored
by any 5V tolerant I/O pin for this purpose.
Refer to USB Specification 2.0, 7.2.1 for
information.
Note: The UTEYE bit should never be set while
the module is connected to an actual USB
system.
PIC16(L)F1454/5/9
DS41639A-page 312 Preliminary 2012 Microchip Technology Inc.
26.2.3 USB STATUS (USTAT) REGISTER
The USB Status register (Register 26-3) reports the
transaction status within the SIE. When the SIE issues
a USB transaction complete interrupt (TRNIF bit),
USTAT should be read to determine the status of the
transfer. USTAT contains the transfer endpoint number,
direction and Ping-Pong Buffer Pointer value (if used).
The USTAT register is actually a read window into a
four-byte status FIFO, maintained by the SIE. It allows
the microcontroller to process one transfer while the
SIE processes additional endpoints (Figure 26-2).
When the SIE completes using a buffer for reading or
writing data, it updates the USTAT register. If another
USB transfer is performed before the TRNIF bit is
serviced, the SIE will store the status of the next
transaction into the status FIFO.
Clearing the TRNIF bit advances the FIFO. If the next
data in the FIFO holding register is valid, the SIE will
reassert the interrupt within 6 TCY of clearing the
TRNIF bit. If no additional data is present, the TRNIF bit
will remain clear; USTAT data will no longer be reliable.
FIGURE 26-2: USTAT FIFO
26.2.4 USB ENDPOINT CONTROL (UEPN)
REGISTER
Each bidirectional endpoint pair has its own
independent control register, UEPn (where 'n'
represents the endpoint number). Each register has an
identical complement of control bits (see Register 26-4).
The EPHSHK bit configures the USB handshaking for
the endpoint. Typically, this bit is always set except
when using isochronous endpoints.
The EPCONDIS bit configures the USB control
operations through the endpoint. Clearing this bit
enables SETUP transactions. The corresponding
EPINEN and EPOUTEN bits must be set to enable IN
and OUT transactions.
The EPOUTEN bit configures USB OUT transactions
from the host. Setting this bit enables OUT
transactions. Similarly, the EPINEN bit is used to
configure the USB IN transactions from the host.
The EPSTALL bit indicates a STALL condition for the
endpoint. If a STALL is issued on a particular endpoint,
the EPSTALL bit for that endpoint pair will be set by the
SIE. This bit remains set until it is cleared through
firmware, or until the SIE is reset.
26.2.5 USB ADDRESS (UADDR) REGISTER
The USB Address register contains the unique USB
address that the peripheral will decode when active.
The UADDR register is reset to 00h when a USB Reset
is received, indicated by the USB Reset Interrupt bit
(URSTIF), or when a Reset is received from the micro-
controller. The USB address must be written in
response to the USB SET_ADDRESS request.
26.2.6 USB FRAME NUMBER REGISTERS
(UFRMH:UFRML)
The Frame Number registers contain the 11-bit frame
number. The low-order byte is contained in UFRML,
while the three high-order bits are contained in
UFRMH. The register pair is updated with the current
frame number whenever a SOF token is received. For
the microcontroller, these registers are read-only. The
Frame Number registers are primarily used for
isochronous transfers. The contents of the UFRMH and
UFRML registers are only valid when the 48 MHz SIE
clock is active (i.e., contents are inaccurate when
SUSPND bit of the UCON register is set).
Note: The data in the USB Status register is
valid two SIE clocks after the TRNIF bit is
asserted.
In low-speed operation with the system
clock operating at 48 MHz, a delay may
be required between receiving the trans-
action complete interrupt and processing
the data in the USTAT register.
Note: If an endpoint request is received while
the USTAT FIFO is full, the SIE will
automatically issue a NAK back to the
host.
Data Bus
USTAT from SIE
4-Byte FIFO
for USTAT
Clearing TRNIF
Advances FIFO
Note: For Endpoint 0, the EPCONDIS bit should
always be cleared since the USB
specifications identify Endpoint 0 as the
default control endpoint.
2012 Microchip Technology Inc. Preliminary DS41639A-page 313
PIC16(L)F1454/5/9
26.3 USB RAM
USB data moves between the microcontroller core and
the SIE through the dual-port USB RAM. This is a
special dual access memory that is mapped into a
normal data memory space (Figure 26-3).
The dual-port general purpose memory space is used
specifically for endpoint buffer control. Depending on
the type of buffering being used, all but 8 bytes of Bank
0 may also be available for use as USB buffer space.
Although USB RAM is available to the microcontroller as
data memory, the sections that are being accessed by
the SIE should not be accessed by the microcontroller.
A semaphore mechanism is used to determine the
access to a particular buffer at any given time. This is
discussed in Section 26.4.1.1 “Buffer Ownership”.
FIGURE 26-3: IMPLEMENTATION OF
USB RAM IN DATA
MEMORY SPACE
26.4 Buffer Descriptors and the Buffer
Descriptor Table
The dual-port general purpose memory space is used
specifically for endpoint buffer control in a structure
known as the Buffer Descriptor Table (BDT). This
provides a flexible method for users to construct and
control endpoint buffers of various lengths and
configuration.
The BDT is composed of Buffer Descriptors (BDs)
which are used to define and control the actual buffers
in the USB RAM space. Each BD, in turn, consists of
four registers:
BDnSTAT: BD Status register
BDnCNT: BD Byte Count register
BDnADRL: BD Address Low register
BDnADRH: BD Address High register
BDs always occur as a four-byte block in the sequence,
BDnSTAT:BDnCNT:BDnADRL:BDnADRH. The address
of BDnSTAT is accessible in linear data space at 2000h
+ (4n – 1) with n being the buffer descriptor number.
Depending on the buffering configuration used
(Section 26.4.4 “Ping-Pong Buffering”), there are
multiple sets of buffer descriptors. The USB
specification mandates that every device must have
Endpoint 0 with both input and output for initial setup.
Although they can be thought of as Special Function
Registers, the Buffer Descriptor Status and Address
registers are not hardware mapped, as conventional
microcontroller SFRs are. When the endpoint
corresponding to a particular BD is not enabled, then its
registers are not used. Instead of appearing as
unimplemented addresses, however, they appear as
available RAM. Only when an endpoint is enabled by
setting the EPINEN bit of the UEPn register does the
memory at those addresses become functional as BD
registers. As with any address in the data memory
space, the BD registers have an indeterminate value on
any device Reset.
An example of a BD for a 64-byte buffer is shown in
Figure 26-4. A particular set of BD registers is only
valid if the corresponding endpoint has been enabled
using the EPINEN bit. All BD registers are available in
USB RAM. The BD for each endpoint should be set up
prior to enabling the endpoint.
512 Byte
CPU Dual-Port RAM
512 Byte
CPU Single-Port RAM
USB RAM Port Remap
(TSTDPEN = 1)
Unimplemented
Read ‘0
2000h
21FFh
2200h
23FFh
2400h
25FFh
2600h
29AFh
Note: Wherever BDn is identified within this
document, the n represents one of the
possible BDs.
PIC16(L)F1454/5/9
DS41639A-page 314 Preliminary 2012 Microchip Technology Inc.
FIGURE 26-4: EXAMPLE OF A BUFFER
DESCRIPTOR
26.4.1 BD STATUS AND CONFIGURATION
The USB Data memory ownership and the BDnSTAT
bits change functionality depending on the UOWN bit
level.
Unlike other control registers, the bit configuration for
the BDnSTAT register is context sensitive determined
by the UOWN bit. If the UOWN bit is clear, the
microcontroller has the ability to modify the BD and its
corresponding buffer. If the UOWN bit is set, the USB
SIE has the ability to modify the BD and its
corresponding buffer. The UOWN, BC9 and BC8 bit
definitions are contained within the BDnSTAT register,
regardless of the UOWN bit value.
26.4.1.1 Buffer Ownership
A simple semaphore mechanism is used to distinguish
if the CPU or USB module is allowed to update the BD
and associated buffers in memory, which is shared by
both.
The UOWN bit of the BDnSTAT register is used as a
semaphore to distinguish if the USB or CPU is allowed
to update the BD and associated buffers in memory.
Only the UOWN bit shares functionality between the
two configurations of the BDnSTAT register.
When the UOWN bit is clear, the BD entry and buffer
memory are “owned” by the microcontroller core. When
the UOWN bit is set, these are “owned” by the USB
peripheral. The BD and corresponding buffers should
only be modified by the “owner”. However, the
BDnSTAT register can be read by either the
microcontroller or the USB, even if they are not the
“owner”.
Because the buffer descriptor meanings are based
upon the source of the register update, the user must
configure the basic operation of the USB peripheral
through the BDnSTAT register prior to placing
ownership with the USB peripheral. While still owned
by the microcontroller, the byte count and buffer
location registers must also be set.
When the UOWN bit is set, giving ownership to the
USB peripheral, the SIE updates the BDs as
necessary, overwriting the original BD values. Thus,
values written by the user to BD are no longer
dependable. Instead, the BDnSTAT register is updated
automatically by the SIE with the token PID and
transfer count (BDnCNT).
The BDnSTAT byte of the BDT should always be the
last byte updated when preparing to arm an endpoint.
The SIE will clear the UOWN bit when a transaction
has completed.
Because no hardware mechanism exists to block
access to the memory, unexpected behavior can occur
if the microcontroller attempts to modify memory while
the SIE owns it. Also, reading the memory may
produce inaccurate data until the USB peripheral
returns ownership to the microcontroller.
26.4.1.2 BDnSTAT Register (CPU Mode)
When UOWN = 0, the microcontroller core owns the
BD and the other bits of the register become control
functions.
The Data Toggle Sync Enable (DTSEN) bit of the
BDnSTAT register controls data toggle parity checking
and, when set, enables data toggle synchronization by
the SIE. When enabled, the DTSEN checks the data
packet's parity against the value of the Data Toggle
Synchronization (DTS) bit. Packets incorrectly
synchronized are ignored and will not be written to the
USB RAM. The USB TRNIF bit will not be set.
However, the SIE will send an ACK token to the host to
acknowledge receipt. Refer to Table 26-1 for the effects
of the DTSEN bit on the SIE.
The Buffer Stall bit, BSTALL of the BDnSTAT register,
provides support for control transfers, usually one-time
stalls on Endpoint 0. It also provides support for the
SET_FEATURE/CLEAR_FEATURE commands
specified in Chapter 9 of the USB specification.
Typically, these commands are executed by continuous
STALLs to any endpoint other than the default control
endpoint.
The BSTALL bit enables buffer stalls. Setting BSTALL
causes the SIE to return a STALL token to the host if a
received token would use the BD in that location. The
EPSTALL bit in the corresponding UEPn control
register is set and a STALL interrupt is generated when
a STALL is issued to the host. The UOWN bit remains
set and the BDs are not changed unless a SETUP
token is received. In this case, the STALL condition is
cleared and the ownership of the BD is returned to the
microcontroller core.
The BD bits of the BDnSTAT register store the two Most
Significant digits of the SIE byte count; the lower 8 digits
are stored in the corresponding BDnCNT register. See
Section 26.4.2 “BD Byte Count” for more information.
BD0STAT
BD0CNT
BD0ADRL
BD0ADRH
USB Data
2000h
2001h
2002h
2003h
2080h
20BFh
(xxh)
(40h)
(80h)
(20h)
Starting
Address
Size of Block
Buffer
Note: Memory regions not to scale.
2012 Microchip Technology Inc. Preliminary DS41639A-page 315
PIC16(L)F1454/5/9
TABLE 26-1: EFFECT OF DTSEN BIT ON ODD/EVEN (DATA0/DATA1) PACKET RECEPTION
26.4.1.3 BDnSTAT Register (SIE Mode)
When the BD and its buffer are owned by the SIE, most
of the bits in BDnSTAT take on a different meaning. The
configuration is shown in Register 26-6. Once the
UOWN bit is set, any data or control settings previously
written there by the user will be overwritten with data
from the SIE.
The BDnSTAT register is updated by the SIE with the
token Packet Identifier (PID), which is stored in the PID
bits of the BDnSTAT register. The transfer count in the
corresponding BDnCNT register is updated. Values
that overflow the 8-bit register carry over to the two
Most Significant digits of the count, BD bits of the
BDnSTAT register.
26.4.2 BD BYTE COUNT
The byte count represents the total number of bytes
that will be transmitted during an IN transfer. After an IN
transfer, the SIE will return the number of bytes sent to
the host.
For an OUT transfer, the byte count represents the
maximum number of bytes that can be received and
stored in USB RAM. After an OUT transfer, the SIE will
return the actual number of bytes received. If the
number of bytes received exceeds the corresponding
byte count, the data packet will be rejected and a NAK
handshake will be generated. When this happens, the
byte count will not be updated.
The 10-bit byte count is distributed over two registers.
The lower 8 bits of the count reside in the BDnCNT reg-
ister. The upper two bits reside in the BC bits of the
BDnSTAT register. This represents a valid byte range
of 0 to 1023.
26.4.3 BD ADDRESS VALIDATION
The BD Address register pair contains the starting RAM
address location for the corresponding endpoint buffer.
No mechanism is available in hardware to validate the
BD address.
If the value of the BD address does not point to an
address in the USB RAM, or if it points to an address
within another endpoint's buffer, data is likely to be lost
or overwritten. Similarly, overlapping a receive buffer
(OUT endpoint) with a BD location in use can yield
unexpected results. When developing USB applications,
the user may want to consider the inclusion of software-
based address validation in their code.
26.4.4 PING-PONG BUFFERING
An endpoint is defined to have a ping-pong buffer when
it has two sets of BD entries: one set for an Even
transfer and one set for an Odd transfer. This allows the
CPU to process one BD while the SIE is processing the
other BD. Double-buffering BDs in this way allows for
maximum throughput to/from the USB.
The USB module supports four modes of operation:
No ping-pong support
Ping-pong buffer support for OUT Endpoint 0 only
Ping-pong buffer support for all endpoints
Ping-pong buffer support for all other Endpoints
except Endpoint 0
The ping-pong buffer settings are configured using the
PPB bits in the UCFG register.
The USB module keeps track of the Ping-Pong Pointer
individually for each endpoint. All pointers are initially
reset to the Even BD when the module is enabled. After
the completion of a transaction (UOWN cleared by the
SIE), the pointer is toggled to the Odd BD. After the
completion of the next transaction, the pointer is
toggled back to the Even BD and so on.
The Even/Odd status of the last transaction is stored in
the PPBI bit of the USTAT register. The user can reset
all Ping-Pong Pointers to Even using the PPBRST bit.
Figure 26-5 shows the four different modes of opera-
tion and how USB RAM is filled with the BDs. BDs have
a fixed relationship to a particular endpoint depending
on the buffering configuration. The mapping of BDs to
endpoints is detailed in Table 26-2. This relationship
also means that gaps may occur in the BDT if end-
points are not enabled contiguously. This theoretically
means that the BDs for disabled endpoints could be
used as buffer space. In practice, users should avoid
using such spaces in the BDT unless a method of vali-
dating BD addresses is implemented.
OUT Packet
from Host
BDnSTAT Settings Device Response after Receiving Packet
DTSEN DTS Handshake UOWN TRNIF BDnSTAT and USTAT Status
DATA0 10ACK 01 Updated
DATA1 10ACK 10 Not Updated
DATA0 11ACK 10 Not Updated
DATA1 11ACK 01 Updated
Either 0xACK 01 Updated
Either, with error xxNAK 10 Not Updated
Legend: x = don’t care
PIC16(L)F1454/5/9
DS41639A-page 316 Preliminary 2012 Microchip Technology Inc.
FIGURE 26-5: BUFFER DESCRIPTOR TABLE MAPPING FOR BUFFERING MODES
TABLE 26-2: ASSIGNMENT OF BUFFER DESCRIPTORS FOR THE DIFFERENT
BUFFERING MODES
Endpoint
BDs Assigned to Endpoint
Mode 0
(No Ping-Pong)
Mode 1
(Ping-Pong on EP0 OUT)
Mode 2
(Ping-Pong on all EPs)
Mode 3
(Ping-Pong on all other EPs,
except EP0)
Out In Out In Out In Out In
0 0 1 0 (E), 1 (O) 2 0 (E), 1 (O) 2 (E), 3 (O) 0 1
1 2 3 3 4 4 (E), 5 (O) 6 (E), 7 (O) 2 (E), 3 (O) 4 (E), 5 (O)
2 4 5 5 6 8 (E), 9 (O) 10 (E), 11 (O) 6 (E), 7 (O) 8 (E), 9 (O)
3 6 7 7 8 12 (E), 13 (O) 14 (E), 15 (O) 10 (E), 11 (O) 12 (E), 13 (O)
4 8 9 9 10 16 (E), 17 (O) 18 (E), 19 (O) 14 (E), 15 (O) 16 (E), 17 (O)
5 10 11 11 12 20 (E), 21 (O) 22 (E), 23 (O) 18 (E), 19 (O) 20 (E), 21 (O)
6 12 13 13 14 24 (E), 25 (O) 26 (E), 27 (O) 22 (E), 23 (O) 24 (E), 25 (O)
7 14 15 15 16 28 (E), 29 (O) 30 (E), 31 (O) 26 (E), 27 (O) 28 (E), 29 (O)
Legend: (E) = Even transaction buffer, (O) = Odd transaction buffer
2000h EP0 OUT
Descriptor
PPB<1:0> = 00
No Ping-Pong
Buffers
EP0 IN
Descriptor
EP1 OUT
Descriptor
EP1 IN
Descriptor
EP7 IN
Descriptor
Available
as
Data RAM
Maximum Memory
Used: 64 bytes
Maximum BDs:
16 (BD0 to BD15)
Note: Memory area not shown to scale.
2200h
203Fh
2000h EP0 OUT
Even Descriptor
PPB<1:0> = 01
Ping-Pong Buffer
on EP0 OUT
EP0 IN
Descriptor
EP1 OUT
Descriptor
EP7 IN
Descriptor
Maximum Memory
Used: 68 bytes
Maximum BDs:
17 (BD0 to BD15)
2200h
2043h
2000h EP0 OUT
Even Descriptor
PPB<1:0> = 10
Ping-Pong
Buffers on all EPs
EP0 OUT
Odd Descriptor
EP0 IN
Even Descriptor
EP0 IN
Odd Descriptor
EP7 IN
Odd Descriptor
Maximum Memory
Used: 128 bytes
Maximum BDs:
32 (BD0 to BD31)
2000h EP0 OUT
Descriptor
PPB<1:0> = 11
Ping-Pong Buffers on all
other EPs except EP0
EP0 IN
Descriptor
EP7 IN
Odd Descriptor
Maximum Memory
Used: 120 bytes
Maximum BDs:
30 (BD0 to BD14
2200h
2077h
EP0 OUT
Odd Descriptor
EP1 IN
Descriptor EP1 OUT
Even Descriptor
EP1 OUT
Odd Descriptor
EP1 IN
Even Descriptor
EP1 IN
Odd Descriptor
EP1 OUT
Even Descriptor
EP1 OUT
Odd Descriptor
EP1 IN
Even Descriptor
EP1 IN
Odd Descriptor
207Fh
2200h
Available
as
Data RAM
Available
as
Data RAM
Available
as
Data RAM
2012 Microchip Technology Inc. Preliminary DS41639A-page 317
PIC16(L)F1454/5/9
TABLE 26-3: SUMMARY OF USB BUFFER DESCRIPTOR TABLE REGISTERS
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
BDnSTAT(1) UOWN DTS(4) PID3(2) PID2(2) PID1(2)
DTSEN(3)
PID0(2)
BSTALL(3)
BC9 BC8
BDnCNT(1) Byte Count
BDnADRL(1) Buffer Address Low
BDnADRH(1) Buffer Address High
Note 1: For buffer descriptor registers, n may have a value of 0 to 31. For the sake of brevity, all 32 registers are
shown as one generic prototype. All registers have indeterminate Reset values (xxxx xxxx).
2: Bits <5:2> of the BDnSTAT register are used by the SIE to return PID<3:0> values once the register is
turned over to the SIE (UOWN bit is set). Once the registers have been under SIE control, the values
written for DTSEN and BSTALL are no longer valid.
3: Prior to turning the buffer descriptor over to the SIE (UOWN bit is cleared), bits 5 through 2 of the
BDnSTAT register are used to configure the DTSEN and BSTALL settings.
4: This bit is ignored unless DTSEN = 1.
PIC16(L)F1454/5/9
DS41639A-page 318 Preliminary 2012 Microchip Technology Inc.
26.5 USB Interrupts
The USB module can generate multiple interrupt
conditions. To accommodate all of these interrupt
sources, the module is provided with its own interrupt
logic structure, similar to that of the microcontroller.
USB interrupts are enabled with one set of control
registers and trapped with a separate set of flag
registers. All sources are funneled into a single USB
interrupt request, USBIF bit of the PIR2 for use with the
microcontroller's interrupt logic.
Figure 26-6 shows the interrupt logic for the USB
module, which is divided into two registers in the USB
module. USB status interrupts are considered the top
level and interrupts are enabled through the UIE
register, while flags are maintained through the UIF
register. USB error conditions are considered the
second level and interrupts are enabled through the
UEIE register, while flags are maintained through the
UEIF register. Any USB interrupt condition will trigger
the USB Error Interrupt Flag, the UERRIF bit of the UIF
register.
Interrupts may be used to trap routine events in a USB
transaction. Figure 26-7 shows some common events
within a USB frame and their corresponding interrupts.
FIGURE 26-6: USB INTERRUPT LOGIC FUNNEL
FIGURE 26-7: EXAMPLE OF A USB TRANSACTION AND INTERRUPT EVENTS
BTSEF
BTSEE
BTOEF
BTOEE
DFN8EF
DFN8EE
CRC16EF
CRC16EE
CRC5EF
CRC5EE
PIDEF
PIDEE
SOFIF
SOFIE
TRNIF
TRNIE
IDLEIF
IDLEIE
STALLIF
STALLIE
ACTVIF
ACTVIE
URSTIF
URSTIE
UERRIF
UERRIE
USBIF
Second Level USB Interrupts
(USB Error Conditions)
UEIR (Flag) and UEIE (Enable) Registers
Top Level USB Interrupts
(USB Status Interrupts)
UIR (Flag) and UIE (Enable) Registers
USB Reset
SOFRESET SETUP DATA STATUS SOF
SETUP Token Data ACK
OUT Token Empty Data ACK
Start-of-Frame (SOF)
IN Token Data ACK
SOFIF
URSTIF
1ms Frame
Differential Data
From Host From Host To H os t
From Host To Host From Host
From Host From Host To H os t
Transaction
Control Transfer(1)
Transaction
Complete
Note 1: The control transfer shown here is only an example showing events that can occur for every transaction. Typical control transfers
will spread across multiple frames.
Set TRNIF
Set TRNIF
Set TRNIF
2012 Microchip Technology Inc. Preliminary DS41639A-page 319
PIC16(L)F1454/5/9
26.5.1 USB INTERRUPT STATUS (UIR)
REGISTER
The USB Interrupt Status register (Register 26-7) con-
tains the flag bits for each of the USB Status interrupt
sources. Each of these sources has a corresponding
interrupt enable bit in the UIE register. All of the USB
status flags are ORed together to generate the USBIF
interrupt flag for the microcontroller's interrupt funnel.
Once an interrupt bit has been set by the SIE, it must
be cleared by software. The flag bits can also be set in
software which can aid in firmware debugging.
26.5.1.1 Bus Activity Detect Interrupt Bit
(ACTVIF)
The ACTVIF bit cannot be cleared immediately after the
USB module wakes up from Suspend or while the USB
module is suspended. A few clock cycles are required to
synchronize the internal hardware state machine before
the ACTVIF bit can be cleared by firmware. Clearing the
ACTVIF bit in firmware before the internal hardware is
synchronized may not have an effect on the value of
ACTVIF. The USB module may not be immediately oper-
ational after clearing the SUSPND bit if using the 48 MHz
PLL source because the PLL will require time to lock.
The application code should clear the ACTVIF flag as
shown in Example 26-1.
Only one ACTVIF interrupt is generated when resum-
ing from the USB bus Idle condition. If user firmware
clears the ACTVIF bit, even when there is continuous
bus traffic, the bit will not become set again until after a
IDLEIF condition occurs. Bus traffic must cease long
enough to generate another IDLEIF condition before
another ACTVIF interrupt can be generated.
EXAMPLE 26-1: CLEARING ACTVIF BIT
(UIR<2>)
26.5.2 USB INTERRUPT ENABLE
REGISTER (UIE)
The USB Interrupt Enable register (Register 26-8) con-
tains the enable bits for the USB Status interrupt
sources. Setting any of these bits will enable the
respective interrupt source in the UIR register.
The values in this register only affect the propagation of
an interrupt condition to the microcontroller's interrupt
logic. The flag bits are set by their interrupt conditions,
allowing them to be polled and serviced without actu-
ally generating an interrupt.
26.5.3 USB ERROR INTERRUPT STATUS
REGISTER (UEIR)
The USB Error Interrupt Status register (Register 26-9)
contains the flag bits for each of the error sources
within the USB peripheral. Each of these sources is
enabled by a corresponding bit in the UEIE register. All
of the USB error flags are ORed together to generate
the USB Error Interrupt Flag (UERRIF) at the top level
of the interrupt logic.
Each error bit is set as soon as the error condition is
detected. Thus, the interrupt will typically not corre-
spond with the end of a token being processed.
Once an interrupt bit has been set by the SIE, it must
be cleared by software.
26.5.4 USB INTERRUPT (UEIE) ENABLE
REGISTER
The USB Error Interrupt Enable register (Register 26-10)
contains the enable bits for each of the USB error inter-
rupt sources. Setting any of these bits will enable the
respective error interrupt source in the UEIR register. If
enabled, the UERRIF bit of the UIR register will be set
when any USB error interrupt is set.
As with the UIE register, the enable bits only affect the
propagation of an interrupt condition to the
microcontroller's interrupt logic. The flag bits are set by
their interrupt conditions, allowing them to be polled
and serviced without actually generating an interrupt.
Note: All status flags in the UIR register should
be resolved and cleared before the USBIF
bit is cleared.
Assembly:
BCF UCON, SUSPND
LOOP:
BTFSS UIR, ACTVIF
BRA DONE
BCF UIR, ACTVIF
BRA LOOP
DONE:
C:
UCONbits.SUSPND = 0;
while (UIRbits.ACTVIF) { UIRbits.ACTVIF = 0; }
Note: All status flags in the UEIR register should
be resolved and cleared before the
UERRIF bit is cleared.
PIC16(L)F1454/5/9
DS41639A-page 320 Preliminary 2012 Microchip Technology Inc.
26.6 USB Power Modes
The USB peripheral often has different power
requirements and configurations depending on the
application.
The most common cases are presented here:
•Bus Power Only
•Self-Power Only
Dual Power with Self-Power Dominance
Means of estimating the current consumption of the
USB transceiver are also provided.
26.6.1 BUS POWER ONLY
In Bus Power Only mode, all power for the application
is drawn from the USB (Figure 26-8). This is effectively
the simplest power method for the device.
In order to meet the inrush current requirements of the
USB 2.0 specifications, the total effective capacitance
appearing across VBUS and ground must be no more
than 10 F. Circuitry is required to limit inrush current,
see section 7.2.4 of the USB specification for more
detail.
All USB devices must support a Low-Power Suspend
mode which meets the current limits from the 5V VBUS
line of the USB cable according to the USB 2.0 specifi-
cation. For high-powered devices that are remote
wake-up capable, a higher limit is allocated. Refer to
USB Specification 2.0, 7.2.3 for information.
The host signals the USB device to enter the Suspend
mode by stopping all USB traffic to that device for more
than 3 ms. This condition will cause the IDLEIF bit in
the UIR register to become set.
During the USB Suspend mode, the D+ or D- pull-up
resistor must remain active, which will consume some
of the allowed suspend current budget.
FIGURE 26-8: BUS POWER ONLY
26.6.2 SELF-POWER ONLY
In Self-Power Only mode, the USB application provides
its own power, with very little power being pulled from
the USB. Figure 26-9 shows an example.
In order to meet compliance specifications, the USB
module (and the D+ or D- internal pull-ups) should not
be enabled until the host actively drives VBUS high.
The application should never source any current onto
the 5V VBUS pin of the USB cable.
FIGURE 26-9: SELF-POWER ONLY
26.6.3 DUAL POWER WITH SELF-POWER
DOMINANCE
In Dual Power with Self-Power Dominance mode, the
application uses internal power as the primary source,
but can switch power from the USB when no internal
power is available. Figure 26-10 shows a simple Dual
Power with Self-Power Dominance mode example,
which automatically switches between Self-Power Only
and USB Bus Power Only modes.
Dual power devices must also meet all of the special
requirements for inrush current and Suspend mode
current and must not enable the USB module (or the
D+/D- internal pull-ups) until VBUS is driven high. See
Section 26.6.1 “Bus Power Only” and
Section 26.6.2 “Self-Power Only” for descriptions of
those requirements. Additionally, dual power devices
must never source current onto the 5V VBUS pin of the
USB cable.
FIGURE 26-10: DUAL POWER EXAMPLE
VDD
VUSB3V3
VSS
VBUS
Note: Users should keep in mind the limits for
devices drawing power from the USB.
Refer to USB Specification 2.0, 7.2.3 for
more information.
VDD
VUSB3V3
VSS
VSELF
VDD
VUSB3V3
VSS
VBUS
VSELF
~5V
~5V
100 k
2012 Microchip Technology Inc. Preliminary DS41639A-page 321
PIC16(L)F1454/5/9
26.6.4 USB TRANSCEIVER CURRENT
CONSUMPTION
The USB transceiver consumes a variable amount of
current, depending on following factors:
Impedance of USB cable
Length of cable
•V
USB3V3 supply voltage
Data patterns across cable
Data patterns consist of “IN” and “OUT” traffic. “IN”
traffic consumes more current and requires the
microcontroller to drive the USB cable, while “OUT”
traffic requires the host to drive the USB cable.
The data sent across the USB cable is NRZI encoded.
A ‘0’ in the NRZI encoding scheme toggles the output
state of the transceiver (from “J” state to a “K” state, or
vice versa). A ‘1’ in the NRZI does not change the
output state of the transceiver, with the exception of the
effects of bit-stuffing. Because “IN” traffic consists of
data bits of value ‘0’, the transceiver must charge/
discharge the USB cable to change states resulting in
the most current consumption.
More details about NRZI encoding and bit-stuffing can be
found in the USB 2.0 specification's section 7.1, although
knowledge of such details is not required to make USB
applications using PIC® microcontrollers. Among other
things, the SIE handles bit-stuffing/unstuffing, NRZI
encoding/decoding and CRC generation/checking in
hardware.
The total transceiver current consumption will be
application-specific. However, to help estimate how
much current actually may be required in full-speed
applications, Equation 26-1 can be used.
Example 26-2 shows how this equation can be used for
a theoretical application.
Note: Longer cables have larger capacitance
and consume more total energy when
switching output states.
PIC16(L)F1454/5/9
DS41639A-page 322 Preliminary 2012 Microchip Technology Inc.
EQUATION 26-1: ESTIMATING USB TRANSCEIVER CURRENT CONSUMPTION
EXAMPLE 26-2: CALCULATING USB TRANSCEIVER CURRENT
IXCVR = + IPULLUP
(60 mA • VUSB3V3 • PZEROPIN • LCABLE)
(3.3V • 5m)
Legend: VUSB3V3: Voltage on the VUSB3V3 pin in volts.
For F devices, VUSB3V3 = 3.3V supplied from the internal regulator, VDD 3.6V.
For LF devices, VUSB3V3 is supplied by VDD 3.0 VDD 3.6.
PZERO: Percentage of the IN traffic bits sent by the PIC® device that are a value of ‘0’.
PIN: Percentage of total bus bandwidth that is used for IN traffic.
LCABLE: Length (in meters) of the USB cable. The USB 2.0 specification requires that full-speed applications
use cables no longer than 5m.
IPULLUP: Current which the nominal, 1.5 k pull-up resistor (when enabled) must supply to the USB cable. On
the host or hub end of the USB cable, 15 k nominal resistors (14.25 k to 24.8 k) are present which
pull both the D+ and D- lines to ground. During bus Idle conditions (such as between packets or during
USB Suspend mode), this results in up to 218 A of quiescent current drawn at 3.3V.
IPULLUP is also dependant on bus traffic conditions and can be as high as 2.2 mA when the USB bandwidth
is fully utilized (either IN or OUT traffic) for data that drives the lines to the “K” state most of the time.
For this example, the following assumptions are made about the application:
3.3V will be applied to VUSB3V3 and VDD, with the core voltage regulator enabled.
This is a full-speed application that uses one interrupt IN endpoint that can send one packet of 64 bytes every
1 ms, with no restrictions on the values of the bytes being sent. The application may or may not have
additional traffic on OUT endpoints.
A regular USB “B” or “mini-B” connector will be used on the application circuit board.
In this case, PZERO = 100% = 1, because there should be no restriction on the value of the data moving through
the IN endpoint. All 64 kBps of data could potentially be bytes of value, 00h. Since0’ bits cause toggling of the
output state of the transceiver, they cause the USB transceiver to consume extra current charging/discharging the
cable. In this case, 100% of the data bits sent can be of value ‘0’. This should be considered the “max” value, as
normal data will consist of a fair mix of ones and zeros.
This application uses 64 kBps for IN traffic out of the total bus bandwidth of 1.5 MBps (12 Mbps), therefore:
Since a regular “B” or “mini-B” connector is used in this application, the end user may plug in any type of cable up
to the maximum allowed 5 m length. Therefore, we use the worst-case length:
LCABLE = 5 meters
Assume IPULLUP = 2.2 mA. The actual value of IPULLUP will likely be closer to 218 A, but allow for the worst-case.
USB bandwidth is shared between all the devices which are plugged into the root port (via hubs). If the application
is plugged into a USB 1.1 hub that has other devices plugged into it, your device may see host to device traffic on
the bus, even if it is not addressed to your device. Since any traffic, regardless of source, can increase the IPULLUP
current above the base 218 A, it is safest to allow for the worst-case of 2.2 mA.
Therefore:
The calculated value should be considered an approximation and additional guardband or application-specific prod-
uct testing is recommended. The transceiver current is “in addition to” the rest of the current consumed by the
microcontroller.
Pin = 64 kBps
1.5 MBps = 4.3% = 0.043
IXCVR = + 2.2 mA = 4.8 mA
(60 mA • 3.3V • 1 • 0.043 • 5m)
(3.3V • 5m)
2012 Microchip Technology Inc. Preliminary DS41639A-page 323
PIC16(L)F1454/5/9
26.7 Oscillator
The USB module has specific clock requirements. For
full-speed operation, the clock source must be 48 MHz.
Even so, the microcontroller core and other peripherals
are not required to run at that clock speed. Available
clocking options are described in detail in Section 5.4
“USB Operation”.
26.8 Interrupt-On-Change for D+/D-
Pins
The microcontroller has interrupt-on-change function-
ality on both D+ and D- data pins, which allows the
device to detect voltage level changes when first con-
nected to a USB host/hub. This feature is not available
when the USB module is enabled.
The USB host/hub has 15K pull-down resistors on the
D+ and D- pins. When the microcontroller attaches to
the bus, the D+ and D- pins can detect voltage
changes. External resistors are needed for each pin to
maintain a high state on the pins when the
microcontroller is detached.
The USB module must be disabled (USBEN = 0) for the
interrupt-on-change to function. Enabling the USB
module (USBEN = 1) will automatically disable the
interrupt-on-change for D+ and D- pins. Refer to
Section 13.0 “Interrupt-On-Change” for more detail.
26.9 USB Firmware and Drivers
Microchip provides a number of application-specific
resources, such as USB firmware and driver support.
Refer to www.microchip.com for the latest firmware and
driver support.
PIC16(L)F1454/5/9
DS41639A-page 324 Preliminary 2012 Microchip Technology Inc.
26.10 USB Operation Overview
This section presents some of the basic USB concepts
and useful information necessary to design a USB
device. Although a lot of information is provided in this
section, refer to the USB 2.0 specification for more
details, as needed.
26.10.1 LAYERED FRAMEWORK
USB device functionality is structured into a layered
framework, graphically shown in Figure 26-11. Each level
is associated with a functional level within the device. The
highest layer, other than the device, is the configuration. A
device may have multiple configurations. For example, a
particular device may have multiple power requirements
based on Self-Power Only or Bus Power Only modes.
For each configuration, there may be multiple
interfaces. Each interface could support a particular
mode of that configuration.
Below the interface is the endpoint(s). Data is directly
moved at this level. Endpoint 0 is always a control
endpoint and, by default, when the device is on the bus,
Endpoint 0 must be available to configure the device.
26.10.2 FRAMES
Information communicated on the bus is grouped into
1 ms time slots, referred to as frames. Each frame can
contain many transactions to various devices and
endpoints. Figure 26-7 shows an example of a
transaction within a frame.
26.10.3 TRANSFERS
There are four transfer types defined in the USB
specification:
Isochronous: This type provides a transfer method for
large amounts of data (up to 1023 bytes) with timely
delivery ensured; however, the data integrity is not
ensured. This is good for streaming applications where
small data loss is not critical, such as audio.
Bulk: This type of transfer method allows for large
amounts of data to be transferred with ensured data
integrity; however, the delivery timeliness is not
ensured.
Interrupt: This type of transfer provides for ensured
timely delivery for small blocks of data, plus data
integrity is ensured.
Control: This type provides device setup control.
While full-speed devices support all transfer types, low-
speed devices are limited to interrupt and control
transfers only.
FIGURE 26-11: USB LAYERS
To other Configurations (if any)
Device
Configuration
Interface Interface
Endpoint Endpoint Endpoint Endpoint Endpoint Endpoint
To other Interfaces (if any)
2012 Microchip Technology Inc. Preliminary DS41639A-page 325
PIC16(L)F1454/5/9
26.10.4 POWER
Power is available from the USB. The USB specifica-
tion defines the bus power requirements. Devices may
either be self-powered or bus powered. Self-powered
devices draw power from an external source, while bus
powered devices use power supplied from the bus.
The USB specification limits the power taken from the
bus. Refer to USB Specification 2.0, 7.2.3 for power
limits information. Note that power above one unit load
is a request and the host or hub is not obligated to
provide the extra current. Thus, a device capable of
consuming more than one unit load must be able to
maintain a low-power configuration of a one unit load or
less, if necessary.
The USB specification also defines a Suspend mode.
In this situation, current must be limited. A device must
enter a Suspend state after 3 ms of inactivity (i.e., no
SOF tokens for 3 ms). A device entering Suspend
mode must drop current consumption within 10 ms
after Suspend. Likewise, when signaling a wake-up,
the device must signal a wake-up within 10 ms of
drawing current above the suspend limit. Refer to USB
Specification 2.0, 7.2.3 for current limit information.
26.10.5 ENUMERATION
When the device is initially attached to the bus, the host
enters an enumeration process in an attempt to identify
the device. Essentially, the host interrogates the device,
gathering information such as power consumption, data
rates and sizes, protocol and other descriptive
information; descriptors contain this information. A
typical enumeration process could be as follows:
1. USB Reset: Reset the device, which means the
device is not configured and does not have an address
(address 0).
2. Get Device Descriptor: The host requests a small
portion of the device descriptor.
3. USB Reset: Reset the device again.
4. Set Address: The host assigns an address to the
device.
5. Get Device Descriptor: The host retrieves the device
descriptor, gathering info such as manufacturer, type of
device, maximum control packet size.
6. Get configuration descriptors.
7. Get any other descriptors.
8. Set a configuration.
The exact enumeration process depends on the host.
26.10.6 DESCRIPTORS
There are eight different standard descriptor types, of
which five are most important for this device.
26.10.6.1 Device Descriptors
The device descriptor provides general information,
such as manufacturer, product number, serial number,
the class of the device and the number of configurations.
There is only one device descriptor.
26.10.6.2 Configuration Descriptors
The configuration descriptor provides information on the
power requirements of the device and how many different
interfaces are supported when in this configuration. There
may be more than one configuration for a device (i.e., low-
power and high-power configurations).
26.10.6.3 Interface Descriptors
The interface descriptor details the number of endpoints
used in this interface, as well as the class of the interface.
There may be more than one interface for a configuration.
26.10.6.4 Endpoint Descriptors
The interface descriptor details the number of endpoints
used in this interface, as well as the class of the interface.
There may be more than one interface for a configuration.
26.10.6.5 String Descriptors
Many of the previous descriptors reference one or more
string descriptors. String descriptors provide human
readable information about the layer (Section 26.10.1
“Layered Framework”) they describe. Often these
strings show up in the host to help the user identify the
device. String descriptors are generally optional to save
memory and are encoded in a unicode format.
26.10.7 BUS SPEED
Each USB device must indicate its bus presence and
speed to the host. This is accomplished through a pull-
up, which is connected to the bus at the time of the
attachment event. Depending on the speed of the
device, the pull-up connects either the D+ or D- line to
3.3V. For a low-speed device, the pull-up is connected
to the D- line. For a full-speed device, the pull-up is
connected to the D+ line.
26.10.8 CLASS SPECIFICATION AND
DRIVERS SPEED
USB specifications include class specifications, which
operating system vendors optionally support. Examples
of classes include Audio, Mass Storage, Communications
and Human Interface (HID). In most cases, a driver is
required at the host side to ‘talk’ to the USB device. In
custom applications, a driver may need to be developed.
Fortunately, drivers are available for most common host
systems for the most common classes of devices. Thus,
these drivers can be reused.
PIC16(L)F1454/5/9
DS41639A-page 326 Preliminary 2012 Microchip Technology Inc.
26.11 Register Definitions: USB
REGISTER 26-1: UCON: USB CONTROL REGISTER
U-0 R/W-0 R-x R/C-0 R/W-0 R/W-0 R/W-0 U-0
PPBRST SE0 PKTDIS USBEN(1) RESUME SUSPND
bit 7 bit 0
Legend: C = Clearable bit
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 7 Unimplemented: Read as ‘0
bit 6 PPBRST: Ping-Pong Buffers Reset bit
1 = Reset all Ping-Pong Buffer Pointers to the Even Buffer Descriptor (BD) banks
0 = Ping-Pong Buffer Pointers not being reset
bit 5 SE0: Live Single-Ended Zero Flag bit
1 = Single-ended zero active on the USB bus
0 = No single-ended zero detected
bit 4 PKTDIS: Packet Transfer Disable bit
1 = SIE token and packet processing disabled, automatically set when a SETUP token is received
0 = SIE token and packet processing enabled
bit 3 USBEN: USB Module Enable bit(1)
1 = USB module and supporting circuitry enabled (device attached)
0 = USB module and supporting circuitry disabled (device detached)
bit 2 RESUME: Resume Signaling Enable bit
1 = Resume signaling activated
0 = Resume signaling disabled
bit 1 SUSPND: Suspend USB bit
1 = USB module and supporting circuitry in Power Conserve mode, SIE clock inactive
0 = USB module and supporting circuitry in normal operation, SIE clock clocked at the configured rate
bit 0 Unimplemented: Read as0
Note 1: This bit cannot be set if the USB module does not have an appropriate clock source.
2012 Microchip Technology Inc. Preliminary DS41639A-page 327
PIC16(L)F1454/5/9
REGISTER 26-2: UCFG: USB CONFIGURATION REGISTER
R/W-0 R/W-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
UTEYE Reserved UPUEN(1) Reserved FSEN(1) PPB<1:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 7 UTEYE: USB Eye Pattern Test Enable bit
1 = Eye pattern test enabled
0 = Eye pattern test disabled
bit 5 Reserved: Read as0’. Maintain this bit clear
bit 4 UPUEN: USB On-Chip Pull-up Enable bit(1)
1 = On-chip pull-up enabled (pull-up on D+ with FSEN = 1 or D- with FSEN = 0)
0 = On-chip pull-up disabled
bit 3 Reserved: Read as0’. Maintain this bit clear
bit 2 FSEN: Full-Speed Enable bit(1)
1 = Full-speed device: controls transceiver edge rates; requires input clock at 48 MHz
0 = Low-speed device: controls transceiver edge rates; requires input clock at 6 MHz
bit 1-0 PPB<1:0>: Ping-Pong Buffers Configuration bits
11 = Even/Odd ping-pong buffers enabled for Endpoints 1 to 15
10 = Even/Odd ping-pong buffers enabled for all endpoints
01 = Even/Odd ping-pong buffer enabled for OUT Endpoint 0
00 = Even/Odd ping-pong buffers disabled
Note 1: The UPUEN, and FSEN bits should never be changed while the USB module is enabled. These values
must be preconfigured prior to enabling the module.
PIC16(L)F1454/5/9
DS41639A-page 328 Preliminary 2012 Microchip Technology Inc.
REGISTER 26-3: USTAT: USB STATUS REGISTER
U-0 R-x R-x R-x R-x R-x R-x U-0
ENDP<3:0> DIR PPBI(1)
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 7 Unimplemented: Read as ‘0
bit 6-3 ENDP<2:0>: Encoded Number of Last Endpoint Activity bits
(represents the number of the BDT updated by the last USB transfer)
1111 = Endpoint 15
1110 = Endpoint 14
0001 = Endpoint 1
0000 = Endpoint 0
bit 2 DIR: Last BD Direction Indicator bit
1 = The last transaction was an IN token
0 = The last transaction was an OUT or SETUP token
bit 1 PPBI: Ping-Pong BD Pointer Indicator bit(1)
1 = The last transaction was to the Odd BD bank
0 = The last transaction was to the Even BD bank
bit 0 Unimplemented: Read as ‘0
Note 1: This bit is only valid for endpoints with available Even and Odd BD registers.
2012 Microchip Technology Inc. Preliminary DS41639A-page 329
PIC16(L)F1454/5/9
REGISTER 26-4: UEPn: USB ENDPOINT n CONTROL REGISTER (UEP0 THROUGH UEP7)
U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
EPHSHK EPCONDIS EPOUTEN EPINEN EPSTALL(1)
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 7-5 Unimplemented: Read as ‘0
bit 4 EPHSHK: Endpoint Handshake Enable bit
1 = Endpoint handshake enabled
0 = Endpoint handshake disabled (typically used for isochronous endpoints)
bit 3 EPCONDIS: Bidirectional Endpoint Control bit
If EPOUTEN = 1 and EPINEN = 1:
1 = Disable Endpoint n from control transfers; only IN and OUT transfers allowed
0 = Enable Endpoint n for control (SETUP) transfers; IN and OUT transfers also allowed
bit 2 EPOUTEN: Endpoint Output Enable bit
1 = Endpoint n output enabled
0 = Endpoint n output disabled
bit 1 EPINEN: Endpoint Input Enable bit
1 = Endpoint n input enabled
0 = Endpoint n input disabled
bit 0 EPSTALL: Endpoint STALL Enable bit(1)
1 = Endpoint n is stalled
0 = Endpoint n is not stalled
Note 1: Valid only if Endpoint n is enabled; otherwise, the bit is ignored.
PIC16(L)F1454/5/9
DS41639A-page 330 Preliminary 2012 Microchip Technology Inc.
REGISTER 26-5: BDnSTAT: BUFFER DESCRIPTOR n STATUS REGISTER (BD0STAT THROUGH
BD31STAT), CPU MODE (DATA IS WRITTEN TO THE SIDE)
R/W-x R/W-x U-0 U-0 R/W-x R/W-x R/W-x R/W-x
UOWN(1) DTS(2) (3) (3) DTSEN BSTALL BC9 BC8
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 7 UOWN: USB Own bit(1)
1 = Refer to Register 26-6.
0 = The microcontroller core owns the BD and its corresponding buffer
bit 6 DTS: Data Toggle Synchronization bit(2)
1 = Data 1 packet
0 = Data 0 packet
bit 5-4 Unimplemented: Read as ‘0
bit 3 DTSEN: Data Toggle Synchronization Enable bit
1 = Data toggle synchronization is enabled; data packets with incorrect Sync value will be ignored
except for a SETUP transaction, which is accepted even if the data toggle bits do not match
0 = No data toggle synchronization is performed
bit 2 BSTALL: Buffer Stall Enable bit
1 = Buffer stall enabled; STALL handshake issued if a token is received that would use the BD in the
given location (UOWN bit remains set, BD value is unchanged)
0 = Buffer stall disabled
bit 1-0 BC<9:8>: Byte Count 9 and 8 bits
The byte count bits represent the number of bytes that will be transmitted for an IN token or received
during an OUT token. Together with BC<7:0>, the valid byte counts are 0-1023.
Note 1: This bit must be initialized by the user to the desired value prior to enabling the USB module.
2: This bit is ignored unless DTSEN = 1.
3: If these bits are set, USB communication may not work. Hence, these bits should always be maintained as ‘0’.
2012 Microchip Technology Inc. Preliminary DS41639A-page 331
PIC16(L)F1454/5/9
REGISTER 26-6: BDnSTAT: BUFFER DESCRIPTOR n STATUS REGISTER (BD0STAT THROUGH
BD31STAT), SIE MODE (DATA RETURNED BY THE SIDE TO THE MCU)
R/W-x U-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
UOWN PID3 PID2 PID1 PID0 BC9 BC8
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 7 UOWN: USB Own bit
1 = The SIE owns the BD and its corresponding buffer
0 = Refer to Register 26-5.
bit 6 Reserved: Not written by the SIE
bit 5-2 PID<3:0>: Packet Identifier bits
The received token PID value of the last transfer (IN, OUT or SETUP transactions only).
bit 1-0 BC<9:8>: Byte Count 9 and 8 bits
These bits are updated by the SIE to reflect the actual number of bytes received on an OUT transfer
and the actual number of bytes transmitted on an IN transfer.
PIC16(L)F1454/5/9
DS41639A-page 332 Preliminary 2012 Microchip Technology Inc.
REGISTER 26-7: UIR: USB INTERRUPT STATUS REGISTER
U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R-0 R/W-0
SOFIF STALLIF IDLEIF(1) TRNIF(2) ACTVIF(3) UERRIF(4) URSTIF
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 7 Unimplemented: Read as ‘0
bit 6 SOFIF: Start-of-Frame Token Interrupt bit
1 = A Start-of-Frame token received by the SIE
0 = No Start-of-Frame token received by the SIE
bit 5 STALLIF: A STALL Handshake Interrupt bit
1 = A STALL handshake was sent by the SIE
0 = A STALL handshake has not been sent
bit 4 IDLEIF: Idle Detect Interrupt bit(1)
1 = Idle condition detected (constant Idle state of 3 ms or more)
0 = No Idle condition detected
bit 3 TRNIF: Transaction Complete Interrupt bit(2)
1 = Processing of pending transaction is complete; read USTAT register for endpoint information
0 = Processing of pending transaction is not complete or no transaction is pending
bit 2 ACTVIF: Bus Activity Detect Interrupt bit(3)
1 = Activity on the D+/D- lines was detected
0 = No activity detected on the D+/D- lines
bit 1 UERRIF: USB Error Condition Interrupt bit(4)
1 = An unmasked error condition has occurred
0 = No unmasked error condition has occurred
bit 0 URSTIF: USB Reset Interrupt bit
1 = Valid USB Reset occurred; UADDR register is cleared
0 = No USB Reset has occurred
Note 1: Once an Idle state is detected, the user may want to place the USB module in Suspend mode.
2: Clearing this bit will cause the USTAT FIFO to advance (valid only for IN, OUT and SETUP tokens).
3: This bit is typically unmasked only following the detection of a UIDLE interrupt event.
4: Only error conditions enabled through the UEIE register will set this bit. This bit is a status bit only and
cannot be set or cleared by the user.
2012 Microchip Technology Inc. Preliminary DS41639A-page 333
PIC16(L)F1454/5/9
REGISTER 26-8: UIE: USB INTERRUPT ENABLE REGISTER
U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
SOFIE STALLIE IDLEIE TRNIE ACTVIE UERRIE URSTIE
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 7 Unimplemented: Read as ‘0
bit 6 SOFIE: Start-of-Frame Token Interrupt Enable bit
1 = Start-of-Frame token interrupt enabled
0 = Start-of-Frame token interrupt disabled
bit 5 STALLIE: STALL Handshake Interrupt Enable bit
1 = STALL interrupt enabled
0 = STALL interrupt disabled
bit 4 IDLEIE: Idle Detect Interrupt Enable bit
1 = Idle detect interrupt enabled
0 = Idle detect interrupt disabled
bit 3 TRNIE: Transaction Complete Interrupt Enable bit
1 = Transaction interrupt enabled
0 = Transaction interrupt disabled
bit 2 ACTVIE: Bus Activity Detect Interrupt Enable bit
1 = Bus activity detect interrupt enabled
0 = Bus activity detect interrupt disabled
bit 1 UERRIE: USB Error Interrupt Enable bit
1 = USB error interrupt enabled
0 = USB error interrupt disabled
bit 0 URSTIE: USB Reset Interrupt Enable bit
1 = USB Reset interrupt enabled
0 = USB Reset interrupt disabled
PIC16(L)F1454/5/9
DS41639A-page 334 Preliminary 2012 Microchip Technology Inc.
REGISTER 26-9: UEIR: USB ERROR INTERRUPT STATUS REGISTER
R/C-0 U-0 U-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0
BTSEF BTOEF DFN8EF CRC16EF CRC5EF PIDEF
bit 7 bit 0
Legend:
R = Readable bit C = Clearable bit U = Unimplemented bit, read as ‘0
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 7 BTSEF: Bit Stuff Error Flag bit
1 = A bit stuff error has been detected
0 = No bit stuff error
bit 6-5 Unimplemented: Read as ‘0
bit 4 BTOEF: Bus Turnaround Time-out Error Flag bit
1 = Bus turnaround time-out has occurred (more than 16 bit times of Idle from previous EOP elapsed)
0 = No bus turnaround time-out
bit 3 DFN8EF: Data Field Size Error Flag bit
1 = The data field was not an integral number of bytes
0 = The data field was an integral number of bytes
bit 2 CRC16EF: CRC16 Failure Flag bit
1 = The CRC16 failed
0 = The CRC16 passed
bit 1 CRC5EF: CRC5 Host Error Flag bit
1 = The token packet was rejected due to a CRC5 error
0 = The token packet was accepted
bit 0 PIDEF: PID Check Failure Flag bit
1 = PID check failed
0 = PID check passed
2012 Microchip Technology Inc. Preliminary DS41639A-page 335
PIC16(L)F1454/5/9
REGISTER 26-10: UEIE: USB ERROR INTERRUPT ENABLE REGISTER
R/W-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
BTSEE BTOEE DFN8EE CRC16EE CRC5EE PIDEE
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 7 BTSEE: Bit Stuff Error Interrupt Enable bit
1 = Bit stuff error interrupt enabled
0 = Bit stuff error interrupt disabled
bit 6-5 Unimplemented: Read as ‘0
bit 4 BTOEE: Bus Turnaround Time-out Error Interrupt Enable bit
1 = Bus turnaround time-out error interrupt enabled
0 = Bus turnaround time-out error interrupt disabled
bit 3 DFN8EE: Data Field Size Error Interrupt Enable bit
1 = Data field size error interrupt enabled
0 = Data field size error interrupt disabled
bit 2 CRC16EE: CRC16 Failure Interrupt Enable bit
1 = CRC16 failure interrupt enabled
0 = CRC16 failure interrupt disabled
bit 1 CRC5EE: CRC5 Host Error Interrupt Enable bit
1 = CRC5 host error interrupt enabled
0 = CRC5 host error interrupt disabled
bit 0 PIDEE: PID Check Failure Interrupt Enable bit
1 = PID check failure interrupt enabled
0 = PID check failure interrupt disabled
PIC16(L)F1454/5/9
DS41639A-page 336 Preliminary 2012 Microchip Technology Inc.
TABLE 26-4: REGISTERS ASSOCIATED WITH USB MODULE OPERATION(1)
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Details on
Page:
INTCON GIE PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF 96
PIR2 OSFIF C2IF C1IF BCL1IF USBIF ACTIF 100
PIE2 OSFIE C2IE C1IE BCL1IE USBIE ACTIE 98
UCON PPBRST SE0 PKTDIS USBEN RESUME SUSPND 326
UCFG UTEYE Reserved UPUEN Reserved FSEN PPB<1:0> 327
USTAT ENDP<3:0> DIR PPBI 328
UADDR ADDR6 ADDR5 ADDR4 ADDR3 ADDR2 ADDR1 ADDR0 312
UFRML FRM7 FRM6 FRM5 FRM4 FRM3 FRM2 FRM1 FRM0 312*
UFRMH ———— FRM10 FRM9 FRM8 312*
UIR SOFIF STALLIF IDLEIF TRNIF ACTVIF UERRIF URSTIF 332
UIE SOFIE STALLIE IDLEIE TRNIE ACTVIE UERRIE URSTIE 333
UEIR BTSEF BTOEF DFN8EF CRC16EF CRC5EF PIDEF 334
UEIE BTSEE BTOEE DFN8EE CRC16EE CRC5EE PIDEE 335
UEP0 —— EPHSHK EPCONDIS EPOUTEN EPINEN EPSTALL 329
UEP1 —— EPHSHK EPCONDIS EPOUTEN EPINEN EPSTALL 329
UEP2 —— EPHSHK EPCONDIS EPOUTEN EPINEN EPSTALL 329
UEP3 —— EPHSHK EPCONDIS EPOUTEN EPINEN EPSTALL 329
UEP4 —— EPHSHK EPCONDIS EPOUTEN EPINEN EPSTALL 329
UEP5 —— EPHSHK EPCONDIS EPOUTEN EPINEN EPSTALL 329
UEP6 —— EPHSHK EPCONDIS EPOUTEN EPINEN EPSTALL 329
UEP7 —— EPHSHK EPCONDIS EPOUTEN EPINEN EPSTALL 329
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by the USB module.
* Page provides register information.
Note 1: This table includes only those hardware mapped SFRs located in Bank 15 of the data memory space. The Buffer
Descriptor registers, which are mapped into Bank 4 and are not true SFRs, are listed separately in Table 26-3.
2012 Microchip Technology Inc. Preliminary DS41639A-page 337
PIC16(L)F1454/5/9
27.0 IN-CIRCUIT SERIAL
PROGRAMMING™ (ICSP™)
ICSP™ programming allows customers to manufacture
circuit boards with unprogrammed devices. Programming
can be done after the assembly process allowing the
device to be programmed with the most recent firmware
or a custom firmware. Five pins are needed for ICSP
programming:
ICSPCLK
ICSPDAT
•MCLR
/VPP
•VDD
•VSS
In Program/Verify mode the program memory, user IDs
and the Configuration Words are programmed through
serial communications. The ICSPDAT pin is a bidirec-
tional I/O used for transferring the serial data and the
ICSPCLK pin is the clock input. For more information on
ICSP refer to the “PIC16(L)F145X Memory Programming
Specification” (DS41620).
27.1 High-Voltage Programming Entry
Mode
The device is placed into High-Voltage Programming
Entry mode by holding the ICSPCLK and ICSPDAT
pins low then raising the voltage on MCLR/VPP to VIHH.
27.2 Low-Voltage Programming Entry
Mode
The Low-Voltage Programming Entry mode allows the
PIC® Flash MCUs to be programmed using VDD only,
without high voltage. When the LVP bit of Configuration
Words is set to ‘1, the low-voltage ICSP programming
entry is enabled. To disable the Low-Voltage ICSP
mode, the LVP bit must be programmed to0’.
Entry into the Low-Voltage Programming Entry mode
requires the following steps:
1. MCLR is brought to VIL.
2. A 32-bit key sequence is presented on
ICSPDAT, while clocking ICSPCLK.
Once the key sequence is complete, MCLR must be
held at VIL for as long as Program/Verify mode is to be
maintained.
If low-voltage programming is enabled (LVP = 1), the
MCLR Reset function is automatically enabled and
cannot be disabled. See Section 6.5 “MCLR” for more
information.
The LVP bit can only be reprogrammed to ‘0’ by using
the High-Voltage Programming mode.
27.3 Common Programming Interfaces
Connection to a target device is typically done through
an ICSP header. A commonly found connector on
development tools is the RJ-11 in the 6P6C (6-pin, 6
connector) configuration. See Figure 27-1.
FIGURE 27-1: ICD RJ-11 STYLE
CONNECTOR INTERFACE
Another connector often found in use with the PICkit™
programmers is a standard 6-pin header with 0.1 inch
spacing. Refer to Figure 27-2.
1
2
3
4
5
6
Target
Bottom Side
PC Board
VPP/MCLR VSS
ICSPCLK
VDD
ICSPDAT
NC
Pin Description
1 = VPP/MCLR
2 = VDD Target
3 = VSS (ground)
4 = ICSPDAT
5 = ICSPCLK
6 = No Connect
PIC16(L)F1454/5/9
DS41639A-page 338 Preliminary 2012 Microchip Technology Inc.
FIGURE 27-2: PICkit™ PROGRAMMER STYLE CONNECTOR INTERFACE
For additional interface recommendations, refer to your
specific device programmer manual prior to PCB
design.
It is recommended that isolation devices be used to
separate the programming pins from other circuitry.
The type of isolation is highly dependent on the specific
application and may include devices such as resistors,
diodes, or even jumpers. See Figure 27-3 for more
information.
FIGURE 27-3: TYPICAL CONNECTION FOR ICSP™ PROGRAMMING
1
2
3
4
5
6
* The 6-pin header (0.100" spacing) accepts 0.025" square pins.
Pin Description*
1 = VPP/MCLR
2 = VDD Target
3 = VSS (ground)
4 = ICSPDAT
5 = ICSPCLK
6 = No Connect
Pin 1 Indicator
VDD
VPP
VSS
External
Device to be
Data
Clock
VDD
MCLR/VPP
VSS
ICSPDAT
ICSPCLK
**
*
To Normal Connections
*Isolation devices (as required).
Programming
Signals Programmed
VDD
2012 Microchip Technology Inc. Preliminary DS41639A-page 339
PIC16(L)F1454/5/9
28.0 INSTRUCTION SET SUMMARY
Each PIC16 instruction is a 14-bit word containing the
operation code (opcode) and all required operands.
The op codes are broken into three broad categories.
Byte Oriented
Bit Oriented
Literal and Control
The literal and control category contains the most var-
ied instruction word format.
Table 28-3 lists the instructions recognized by the
MPASMTM assembler.
All instructions are executed within a single instruction
cycle, with the following exceptions, which may take
two or three cycles:
Subroutine takes two cycles (CALL, CALLW)
Returns from interrupts or subroutines take two
cycles (RETURN, RETLW, RETFIE)
Program branching takes two cycles (GOTO, BRA,
BRW, BTFSS, BTFSC, DECFSZ, INCSFZ)
One additional instruction cycle will be used when
any instruction references an indirect file register
and the file select register is pointing to program
memory.
One instruction cycle consists of 4 oscillator cycles; for
an oscillator frequency of 4 MHz, this gives a nominal
instruction execution rate of 1 MHz.
All instruction examples use the format0xhh’ to
represent a hexadecimal number, where ‘h’ signifies a
hexadecimal digit.
28.1 Read-Modify-Write Operations
Any instruction that specifies a file register as part of
the instruction performs a Read-Modify-Write (R-M-W)
operation. The register is read, the data is modified,
and the result is stored according to either the instruc-
tion, or the destination designator ‘d’. A read operation
is performed on a register even if the instruction writes
to that register.
TABLE 28-1: OPCODE FIELD
DESCRIPTIONS
TABLE 28-2: ABBREVIATION
DESCRIPTIONS
Field Description
fRegister file address (0x00 to 0x7F)
WWorking register (accumulator)
bBit address within an 8-bit file register
kLiteral field, constant data or label
xDon’t care location (= 0 or 1).
The assembler will generate code with x = 0.
It is the recommended form of use for
compatibility with all Microchip software tools.
dDestination select; d = 0: store result in W,
d = 1: store result in file register f.
Default is d = 1.
nFSR or INDF number. (0-1)
mm Pre-post increment-decrement mode
selection
Field Description
PC Program Counter
TO Time-out bit
CCarry bit
DC Digit carry bit
ZZero bit
PD Power-down bit
PIC16(L)F1454/5/9
DS41639A-page 340 Preliminary 2012 Microchip Technology Inc.
FIGURE 28-1: GENERAL FORMAT FOR
INSTRUCTIONS
Byte-oriented file register operations
13 8 7 6 0
d = 0 for destination W
OPCODE d f (FILE #)
d = 1 for destination f
f = 7-bit file register address
Bit-oriented file register operations
13 10 9 7 6 0
OPCODE b (BIT #) f (FILE #)
b = 3-bit bit address
f = 7-bit file register address
Literal and control operations
13 8 7 0
OPCODE k (literal)
k = 8-bit immediate value
13 11 10 0
OPCODE k (literal)
k = 11-bit immediate value
General
CALL and GOTO instructions only
MOVLP instruction only
13 5 4 0
OPCODE k (literal)
k = 5-bit immediate value
MOVLB instruction only
13 9 8 0
OPCODE k (literal)
k = 9-bit immediate value
BRA instruction only
FSR Offset instructions
13 7 6 5 0
OPCODE n k (literal)
n = appropriate FSR
FSR Increment instructions
13 7 6 0
OPCODE k (literal)
k = 7-bit immediate value
13 3 2 1 0
OPCODE n m (mode)
n = appropriate FSR
m = 2-bit mode value
k = 6-bit immediate value
13 0
OPCODE
OPCODE only
2012 Microchip Technology Inc. Preliminary DS41639A-page 341
PIC16(L)F1454/5/9
TABLE 28-3: PIC16(L)F1454/5/9 ENHANCED INSTRUCTION SET
Mnemonic,
Operands Description Cycles
14-Bit Opcode Status
Affected Notes
MSb LSb
BYTE-ORIENTED FILE REGISTER OPERATIONS
ADDWF
ADDWFC
ANDWF
ASRF
LSLF
LSRF
CLRF
CLRW
COMF
DECF
INCF
IORWF
MOVF
MOVWF
RLF
RRF
SUBWF
SUBWFB
SWAPF
XORWF
f, d
f, d
f, d
f, d
f, d
f, d
f
f, d
f, d
f, d
f, d
f, d
f
f, d
f, d
f, d
f, d
f, d
f, d
Add W and f
Add with Carry W and f
AND W with f
Arithmetic Right Shift
Logical Left Shift
Logical Right Shift
Clear f
Clear W
Complement f
Decrement f
Increment f
Inclusive OR W with f
Move f
Move W to f
Rotate Left f through Carry
Rotate Right f through Carry
Subtract W from f
Subtract with Borrow W from f
Swap nibbles in f
Exclusive OR W with f
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
00
11
00
11
11
11
00
00
00
00
00
00
00
00
00
00
00
11
00
00
0111
1101
0101
0111
0101
0110
0001
0001
1001
0011
1010
0100
1000
0000
1101
1100
0010
1011
1110
0110
dfff
dfff
dfff
dfff
dfff
dfff
lfff
0000
dfff
dfff
dfff
dfff
dfff
1fff
dfff
dfff
dfff
dfff
dfff
dfff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
00xx
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
C, DC, Z
C, DC, Z
Z
C, Z
C, Z
C, Z
Z
Z
Z
Z
Z
Z
Z
C
C
C, DC, Z
C, DC, Z
Z
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
BYTE ORIENTED SKIP OPERATIONS
DECFSZ
INCFSZ
f, d
f, d
Decrement f, Skip if 0
Increment f, Skip if 0
1(2)
1(2)
00
00
1011
1111
dfff
dfff
ffff
ffff
1, 2
1, 2
BIT-ORIENTED FILE REGISTER OPERATIONS
BCF
BSF
f, b
f, b
Bit Clear f
Bit Set f
1
1
01
01
00bb
01bb
bfff
bfff
ffff
ffff
2
2
BIT-ORIENTED SKIP OPERATIONS
BTFSC
BTFSS
f, b
f, b
Bit Test f, Skip if Clear
Bit Test f, Skip if Set
1 (2)
1 (2)
01
01
10bb
11bb
bfff
bfff
ffff
ffff
1, 2
1, 2
LITERAL OPERATIONS
ADDLW
ANDLW
IORLW
MOVLB
MOVLP
MOVLW
SUBLW
XORLW
k
k
k
k
k
k
k
k
Add literal and W
AND literal with W
Inclusive OR literal with W
Move literal to BSR
Move literal to PCLATH
Move literal to W
Subtract W from literal
Exclusive OR literal with W
1
1
1
1
1
1
1
1
11
11
11
00
11
11
11
11
1110
1001
1000
0000
0001
0000
1100
1010
kkkk
kkkk
kkkk
001k
1kkk
kkkk
kkkk
kkkk
kkkk
kkkk
kkkk
kkkk
kkkk
kkkk
kkkk
kkkk
C, DC, Z
Z
Z
C, DC, Z
Z
Note 1: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle
is executed as a NOP.
2: If this instruction addresses an INDF register and the MSb of the corresponding FSR is set, this instruction will require one
additional instruction cycle.
PIC16(L)F1454/5/9
DS41639A-page 342 Preliminary 2012 Microchip Technology Inc.
TABLE 28-3: PIC16(L)F1454/5/9 ENHANCED INSTRUCTION SET (CONTINUED)
Mnemonic,
Operands Description Cycles
14-Bit Opcode Status
Affected Notes
MSb LSb
CONTROL OPERATIONS
BRA
BRW
CALL
CALLW
GOTO
RETFIE
RETLW
RETURN
k
k
k
k
k
Relative Branch
Relative Branch with W
Call Subroutine
Call Subroutine with W
Go to address
Return from interrupt
Return with literal in W
Return from Subroutine
2
2
2
2
2
2
2
2
11
00
10
00
10
00
11
00
001k
0000
0kkk
0000
1kkk
0000
0100
0000
kkkk
0000
kkkk
0000
kkkk
0000
kkkk
0000
kkkk
1011
kkkk
1010
kkkk
1001
kkkk
1000
INHERENT OPERATIONS
CLRWDT
NOP
OPTION
RESET
SLEEP
TRIS
f
Clear Watchdog Timer
No Operation
Load OPTION_REG register with W
Software device Reset
Go into Standby mode
Load TRIS register with W
1
1
1
1
1
1
00
00
00
00
00
00
0000
0000
0000
0000
0000
0000
0110
0000
0110
0000
0110
0110
0100
0000
0010
0001
0011
0fff
TO, PD
TO, PD
C-COMPILER OPTIMIZED
ADDFSR
MOVIW
MOVWI
n, k
n mm
k[n]
n mm
k[n]
Add Literal k to FSRn
Move Indirect FSRn to W with pre/post inc/dec
modifier, mm
Move INDFn to W, Indexed Indirect.
Move W to Indirect FSRn with pre/post inc/dec
modifier, mm
Move W to INDFn, Indexed Indirect.
1
1
1
1
1
11
00
11
00
11
0001
0000
1111
0000
1111
0nkk
0001
0nkk
0001
1nkk
kkkk
0nmm
kkkk
1nmm
kkkk
Z
Z
2, 3
2
2, 3
2
Note 1: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle
is executed as a NOP.
2: If this instruction addresses an INDF register and the MSb of the corresponding FSR is set, this instruction will require
one additional instruction cycle.
3: See Table in the MOVIW and MOVWI instruction descriptions.
2012 Microchip Technology Inc. Preliminary DS41639A-page 343
PIC16(L)F1454/5/9
28.2 Instruction Descriptions
ADDFSR Add Literal to FSRn
Syntax: [ label ] ADDFSR FSRn, k
Operands: -32 k 31
n [ 0, 1]
Operation: FSR(n) + k FSR(n)
Status Affected: None
Description: The signed 6-bit literal ‘k’ is added to
the contents of the FSRnH:FSRnL
register pair.
FSRn is limited to the range 0000h -
FFFFh. Moving beyond these bounds
will cause the FSR to wrap around.
ADDLW Add literal and W
Syntax: [ label ] ADDLW k
Operands: 0 k 255
Operation: (W) + k (W)
Status Affected: C, DC, Z
Description: The contents of the W register are
added to the eight-bit literal ‘k’ and the
result is placed in the W register.
ADDWF Add W and f
Syntax: [ label ] ADDWF f,d
Operands: 0 f 127
d 0,1
Operation: (W) + (f) (destination)
Status Affected: C, DC, Z
Description: Add the contents of the W register
with register ‘f’. If ‘d’ is ‘0’, the result is
stored in the W register. If ‘d’ is ‘1’, the
result is stored back in register ‘f’.
ADDWFC ADD W and CARRY bit to f
Syntax: [ label ] ADDWFC f {,d}
Operands: 0 f 127
d [0,1]
Operation: (W) + (f) + (C) dest
Status Affected: C, DC, Z
Description: Add W, the Carry flag and data mem-
ory location ‘f’. If ‘d’ is ‘0’, the result is
placed in W. If ‘d’ is ‘1’, the result is
placed in data memory location ‘f’.
ANDLW AND literal with W
Syntax: [ label ] ANDLW k
Operands: 0 k 255
Operation: (W) .AND. (k) (W)
Status Affected: Z
Description: The contents of W register are
AND’ed with the eight-bit literal ‘k’.
The result is placed in the W register.
ANDWF AND W with f
Syntax: [ label ] ANDWF f,d
Operands: 0 f 127
d 0,1
Operation: (W) .AND. (f) (destination)
Status Affected: Z
Description: AND the W register with register ‘f’. If
‘d’ is 0’, the result is stored in the W
register. If ‘d’ is ‘1’, the result is stored
back in register ‘f’.
ASRF Arithmetic Right Shift
Syntax: [ label ] ASRF f {,d}
Operands: 0 f 127
d [0,1]
Operation: (f<7>) dest<7>
(f<7:1>) dest<6:0>,
(f<0>) C,
Status Affected: C, Z
Description: The contents of register ‘f’ are shifted
one bit to the right through the Carry
flag. The MSb remains unchanged. If
‘d’ is ‘0’, the result is placed in W. If ‘d’
is ‘1’, the result is stored back in reg-
ister ‘f’.
register f C
PIC16(L)F1454/5/9
DS41639A-page 344 Preliminary 2012 Microchip Technology Inc.
BCF Bit Clear f
Syntax: [ label ] BCF f,b
Operands: 0 f 127
0 b 7
Operation: 0 (f<b>)
Status Affected: None
Description: Bit ‘b’ in register ‘f’ is cleared.
BRA Relative Branch
Syntax: [ label ] BRA label
[ label ] BRA $+k
Operands: -256 label - PC + 1 255
-256 k 255
Operation: (PC) + 1 + k PC
Status Affected: None
Description: Add the signed 9-bit literal ‘k’ to the
PC. Since the PC will have incre-
mented to fetch the next instruction,
the new address will be PC + 1 + k.
This instruction is a two-cycle instruc-
tion. This branch has a limited range.
BRW Relative Branch with W
Syntax: [ label ] BRW
Operands: None
Operation: (PC) + (W) PC
Status Affected: None
Description: Add the contents of W (unsigned) to
the PC. Since the PC will have incre-
mented to fetch the next instruction,
the new address will be PC + 1 + (W).
This instruction is a two-cycle instruc-
tion.
BSF Bit Set f
Syntax: [ label ] BSF f,b
Operands: 0 f 127
0 b 7
Operation: 1 (f<b>)
Status Affected: None
Description: Bit ‘b’ in register ‘f’ is set.
BTFSC Bit Test f, Skip if Clear
Syntax: [ label ] BTFSC f,b
Operands: 0 f 127
0 b 7
Operation: skip if (f<b>) = 0
Status Affected: None
Description: If bit ‘b’ in register ‘f’ is ‘1’, the next
instruction is executed.
If bit ‘b’, in register ‘f’, is ‘0’, the next
instruction is discarded, and a NOP is
executed instead, making this a
2-cycle instruction.
BTFSS Bit Test f, Skip if Set
Syntax: [ label ] BTFSS f,b
Operands: 0 f 127
0 b < 7
Operation: skip if (f<b>) = 1
Status Affected: None
Description: If bit ‘b’ in register ‘f’ is ‘0’, the next
instruction is executed.
If bit ‘b’ is ‘1’, then the next
instruction is discarded and a NOP is
executed instead, making this a
2-cycle instruction.
2012 Microchip Technology Inc. Preliminary DS41639A-page 345
PIC16(L)F1454/5/9
CALL Call Subroutine
Syntax: [ label ] CALL k
Operands: 0 k 2047
Operation: (PC)+ 1 TOS,
k PC<10:0>,
(PCLATH<4:3>) PC<12:11>
Status Affected: None
Description: Call Subroutine. First, return address
(PC + 1) is pushed onto the stack.
The eleven-bit immediate address is
loaded into PC bits <10:0>. The upper
bits of the PC are loaded from
PCLATH. CALL is a two-cycle instruc-
tion.
CALLW Subroutine Call With W
Syntax: [ label ] CALLW
Operands: None
Operation: (PC) +1 TOS,
(W) PC<7:0>,
(PCLATH<6:0>) PC<14:8>
Status Affected: None
Description: Subroutine call with W. First, the
return address (PC + 1) is pushed
onto the return stack. Then, the con-
tents of W is loaded into PC<7:0>,
and the contents of PCLATH into
PC<14:8>. CALLW is a two-cycle
instruction.
CLRF Clear f
Syntax: [ label ] CLRF f
Operands: 0 f 127
Operation: 00h (f)
1 Z
Status Affected: Z
Description: The contents of register ‘f’ are cleared
and the Z bit is set.
CLRW Clear W
Syntax: [ label ] CLRW
Operands: None
Operation: 00h (W)
1 Z
Status Affected: Z
Description: W register is cleared. Zero bit (Z) is
set.
CLRWDT Clear Watchdog Timer
Syntax: [ label ] CLRWDT
Operands: None
Operation: 00h WDT
0 WDT prescaler,
1 TO
1 PD
Status Affected: TO, PD
Description: CLRWDT instruction resets the Watch-
dog Timer. It also resets the prescaler
of the WDT.
Status bits TO and PD are set.
COMF Complement f
Syntax: [ label ] COMF f,d
Operands: 0 f 127
d [0,1]
Operation: (f) (destination)
Status Affected: Z
Description: The contents of register ‘f’ are com-
plemented. If ‘d’ is 0’, the result is
stored in W. If ‘d’ is ‘1’, the result is
stored back in register ‘f’.
DECF Decrement f
Syntax: [ label ] DECF f,d
Operands: 0 f 127
d [0,1]
Operation: (f) - 1 (destination)
Status Affected: Z
Description: Decrement register ‘f’. If ‘d’ is 0’, the
result is stored in the W
register. If ‘d’ is ‘1’, the result is stored
back in register ‘f’.
PIC16(L)F1454/5/9
DS41639A-page 346 Preliminary 2012 Microchip Technology Inc.
DECFSZ Decrement f, Skip if 0
Syntax: [ label ] DECFSZ f,d
Operands: 0 f 127
d [0,1]
Operation: (f) - 1 (destination);
skip if result = 0
Status Affected: None
Description: The contents of register ‘f’ are decre-
mented. If ‘d’ is ‘0’, the result is placed
in the W register. If ‘d’ is ‘1’, the result
is placed back in register ‘f’.
If the result is ‘1’, the next instruction is
executed. If the result is ‘0’, then a
NOP is executed instead, making it a
2-cycle instruction.
GOTO Unconditional Branch
Syntax: [ label ] GOTO k
Operands: 0 k 2047
Operation: k PC<10:0>
PCLATH<4:3> PC<12:11>
Status Affected: None
Description: GOTO is an unconditional branch. The
eleven-bit immediate value is loaded
into PC bits <10:0>. The upper bits of
PC are loaded from PCLATH<4:3>.
GOTO is a two-cycle instruction.
INCF Increment f
Syntax: [ label ] INCF f,d
Operands: 0 f 127
d [0,1]
Operation: (f) + 1 (destination)
Status Affected: Z
Description: The contents of register ‘f’ are incre-
mented. If ‘d’ is ‘0’, the result is placed
in the W register. If ‘d’ is ‘1’, the result
is placed back in register ‘f’.
INCFSZ Increment f, Skip if 0
Syntax: [ label ] INCFSZ f,d
Operands: 0 f 127
d [0,1]
Operation: (f) + 1 (destination),
skip if result = 0
Status Affected: None
Description: The contents of register ‘f’ are incre-
mented. If ‘d’ is ‘0’, the result is placed
in the W register. If ‘d’ is ‘1’, the result
is placed back in register ‘f’.
If the result is1’, the next instruction is
executed. If the result is ‘0’, a NOP is
executed instead, making it a 2-cycle
instruction.
IORLW Inclusive OR literal with W
Syntax: [ label ] IORLW k
Operands: 0 k 255
Operation: (W) .OR. k (W)
Status Affected: Z
Description: The contents of the W register are
OR’ed with the eight-bit literal ‘k’. The
result is placed in the W register.
IORWF Inclusive OR W with f
Syntax: [ label ] IORWF f,d
Operands: 0 f 127
d [0,1]
Operation: (W) .OR. (f) (destination)
Status Affected: Z
Description: Inclusive OR the W register with regis-
ter ‘f’. If ‘d’ is ‘0’, the result is placed in
the W register. If ‘d’ is ‘1’, the result is
placed back in register ‘f’.
2012 Microchip Technology Inc. Preliminary DS41639A-page 347
PIC16(L)F1454/5/9
LSLF Logical Left Shift
Syntax: [ label ] LSLF f {,d}
Operands: 0 f 127
d [0,1]
Operation: (f<7>) C
(f<6:0>) dest<7:1>
0 dest<0>
Status Affected: C, Z
Description: The contents of register ‘f’ are shifted
one bit to the left through the Carry flag.
A ‘0’ is shifted into the LSb. If ‘d’ is ‘0’,
the result is placed in W. If ‘d’ is 1’, the
result is stored back in register ‘f’.
LSRF Logical Right Shift
Syntax: [ label ] LSRF f {,d}
Operands: 0 f 127
d [0,1]
Operation: 0 dest<7>
(f<7:1>) dest<6:0>,
(f<0>) C,
Status Affected: C, Z
Description: The contents of register ‘f’ are shifted
one bit to the right through the Carry
flag. A ‘0’ is shifted into the MSb. If ‘d’ is
0’, the result is placed in W. If ‘d’ is ‘1’,
the result is stored back in register ‘f’.
register f 0
C
register f C0
MOVF Move f
Syntax: [ label ] MOVF f,d
Operands: 0 f 127
d [0,1]
Operation: (f) (dest)
Status Affected: Z
Description: The contents of register f is moved to
a destination dependent upon the
status of d. If d = 0,
destination is W register. If d = 1, the
destination is file register f itself. d = 1
is useful to test a file register since
status flag Z is affected.
Words: 1
Cycles: 1
Example: MOVF FSR, 0
After Instruction
W = value in FSR register
Z=
1
PIC16(L)F1454/5/9
DS41639A-page 348 Preliminary 2012 Microchip Technology Inc.
MOVIW Move INDFn to W
Syntax: [ label ] MOVIW ++FSRn
[ label ] MOVIW --FSRn
[ label ] MOVIW FSRn++
[ label ] MOVIW FSRn--
[ label ] MOVIW k[FSRn]
Operands: n [0,1]
mm [00,01, 10, 11]
-32 k 31
Operation: INDFn W
Effective address is determined by
FSR + 1 (preincrement)
FSR - 1 (predecrement)
FSR + k (relative offset)
After the Move, the FSR value will be
either:
FSR + 1 (all increments)
FSR - 1 (all decrements)
Unchanged
Status Affected: Z
Mode Syntax mm
Preincrement ++FSRn 00
Predecrement --FSRn 01
Postincrement FSRn++ 10
Postdecrement FSRn-- 11
Description: This instruction is used to move data
between W and one of the indirect
registers (INDFn). Before/after this
move, the pointer (FSRn) is updated by
pre/post incrementing/decrementing it.
Note: The INDFn registers are not
physical registers. Any instruction that
accesses an INDFn register actually
accesses the register at the address
specified by the FSRn.
FSRn is limited to the range 0000h -
FFFFh. Incrementing/decrementing it
beyond these bounds will cause it to
wrap-around.
MOVLB Move literal to BSR
Syntax: [ label ] MOVLB k
Operands: 0 k 15
Operation: k BSR
Status Affected: None
Description: The five-bit literal ‘k’ is loaded into the
Bank Select Register (BSR).
MOVLP Move literal to PCLATH
Syntax: [ label ] MOVLP k
Operands: 0 k 127
Operation: k PCLATH
Status Affected: None
Description: The seven-bit literal ‘k’ is loaded into the
PCLATH register.
MOVLW Move literal to W
Syntax: [ label ] MOVLW k
Operands: 0 k 255
Operation: k (W)
Status Affected: None
Description: The eight-bit literal ‘k’ is loaded into W
register. The “don’t cares” will assem-
ble as ‘0’s.
Words: 1
Cycles: 1
Example: MOVLW 0x5A
After Instruction
W = 0x5A
MOVWF Move W to f
Syntax: [ label ] MOVWF f
Operands: 0 f 127
Operation: (W) (f)
Status Affected: None
Description: Move data from W register to register
‘f’.
Words: 1
Cycles: 1
Example: MOVWF OPTION_REG
Before Instruction
OPTION_REG = 0xFF
W = 0x4F
After Instruction
OPTION_REG = 0x4F
W = 0x4F
2012 Microchip Technology Inc. Preliminary DS41639A-page 349
PIC16(L)F1454/5/9
MOVWI Move W to INDFn
Syntax: [ label ] MOVWI ++FSRn
[ label ] MOVWI --FSRn
[ label ] MOVWI FSRn++
[ label ] MOVWI FSRn--
[ label ] MOVWI k[FSRn]
Operands: n [0,1]
mm [00,01, 10, 11]
-32 k 31
Operation: W INDFn
Effective address is determined by
FSR + 1 (preincrement)
FSR - 1 (predecrement)
FSR + k (relative offset)
After the Move, the FSR value will be
either:
FSR + 1 (all increments)
FSR - 1 (all decrements)
Unchanged
Status Affected: None
Mode Syntax mm
Preincrement ++FSRn 00
Predecrement --FSRn 01
Postincrement FSRn++ 10
Postdecrement FSRn-- 11
Description: This instruction is used to move data
between W and one of the indirect
registers (INDFn). Before/after this
move, the pointer (FSRn) is updated by
pre/post incrementing/decrementing it.
Note: The INDFn registers are not
physical registers. Any instruction that
accesses an INDFn register actually
accesses the register at the address
specified by the FSRn.
FSRn is limited to the range 0000h -
FFFFh. Incrementing/decrementing it
beyond these bounds will cause it to
wrap-around.
The increment/decrement operation on
FSRn WILL NOT affect any Status bits.
NOP No Operation
Syntax: [ label ] NOP
Operands: None
Operation: No operation
Status Affected: None
Description: No operation.
Words: 1
Cycles: 1
Example: NOP
OPTION Load OPTION_REG Register
with W
Syntax: [ label ] OPTION
Operands: None
Operation: (W) OPTION_REG
Status Affected: None
Description: Move data from W register to
OPTION_REG register.
RESET Software Reset
Syntax: [ label ] RESET
Operands: None
Operation: Execute a device Reset. Resets the
nRI flag of the PCON register.
Status Affected: None
Description: This instruction provides a way to
execute a hardware Reset by soft-
ware.
PIC16(L)F1454/5/9
DS41639A-page 350 Preliminary 2012 Microchip Technology Inc.
RETFIE Return from Interrupt
Syntax: [ label ] RETFIE
Operands: None
Operation: TOS PC,
1 GIE
Status Affected: None
Description: Return from Interrupt. Stack is POPed
and Top-of-Stack (TOS) is loaded in
the PC. Interrupts are enabled by
setting Global Interrupt Enable bit,
GIE (INTCON<7>). This is a two-cycle
instruction.
Words: 1
Cycles: 2
Example: RETFIE
After Interrupt
PC = TOS
GIE = 1
RETLW Return with literal in W
Syntax: [ label ] RETLW k
Operands: 0 k 255
Operation: k (W);
TOS PC
Status Affected: None
Description: The W register is loaded with the eight
bit literal ‘k’. The program counter is
loaded from the top of the stack (the
return address). This is a two-cycle
instruction.
Words: 1
Cycles: 2
Example:
TABLE
CALL TABLE;W contains table
;offset value
;W now has table value
ADDWF PC ;W = offset
RETLW k1 ;Begin table
RETLW k2 ;
RETLW kn ; End of table
Before Instruction
W = 0x07
After Instruction
W = value of k8
RETURN Return from Subroutine
Syntax: [ label ] RETURN
Operands: None
Operation: TOS PC
Status Affected: None
Description: Return from subroutine. The stack is
POPed and the top of the stack (TOS)
is loaded into the program counter.
This is a two-cycle instruction.
RLF Rotate Left f through Carry
Syntax: [ label ] RLF f,d
Operands: 0 f 127
d [0,1]
Operation: See description below
Status Affected: C
Description: The contents of register ‘f’ are rotated
one bit to the left through the Carry
flag. If ‘d’ is ‘0’, the result is placed in
the W register. If ‘d’ is ‘1’, the result is
stored back in register ‘f’.
Words: 1
Cycles: 1
Example: RLF REG1,0
Before Instruction
REG1 = 1110 0110
C=0
After Instruction
REG1 = 1110 0110
W = 1100 1100
C=1
Register fC
2012 Microchip Technology Inc. Preliminary DS41639A-page 351
PIC16(L)F1454/5/9
RRF Rotate Right f through Carry
Syntax: [ label ] RRF f,d
Operands: 0 f 127
d [0,1]
Operation: See description below
Status Affected: C
Description: The contents of register ‘f’ are rotated
one bit to the right through the Carry
flag. If ‘d’ is0’, the result is placed in
the W register. If ‘d’ is ‘1’, the result is
placed back in register ‘f’.
SLEEP Enter Sleep mode
Syntax: [ label ]SLEEP
Operands: None
Operation: 00h WDT,
0 WDT prescaler,
1 TO,
0 PD
Status Affected: TO, PD
Description: The power-down Status bit, PD is
cleared. Time-out Status bit, TO is
set. Watchdog Timer and its
prescaler are cleared.
The processor is put into Sleep mode
with the oscillator stopped.
Register fC
SUBLW Subtract W from literal
Syntax: [ label ]SUBLW k
Operands: 0 k 255
Operation: k - (W) W)
Status Affected: C, DC, Z
Description: The W register is subtracted (2’s com-
plement method) from the eight-bit
literal ‘k’. The result is placed in the W
register.
SUBWF Subtract W from f
Syntax: [ label ] SUBWF f,d
Operands: 0 f 127
d [0,1]
Operation: (f) - (W) destination)
Status Affected: C, DC, Z
Description: Subtract (2’s complement method) W
register from register ‘f’. If ‘d’ is ‘0’, the
result is stored in the W
register. If ‘d’ is ‘1’, the result is stored
back in register ‘f.
SUBWFB Subtract W from f with Borrow
Syntax: SUBWFB f {,d}
Operands: 0 f 127
d [0,1]
Operation: (f) – (W) – (B) dest
Status Affected: C, DC, Z
Description: Subtract W and the BORROW flag
(CARRY) from register ‘f’ (2’s comple-
ment method). If ‘d’ is ‘0’, the result is
stored in W. If ‘d’ is 1’, the result is
stored back in register ‘f’.
C = 0W k
C = 1W k
DC = 0W<3:0> k<3:0>
DC = 1W<3:0> k<3:0>
C = 0W f
C = 1W f
DC = 0W<3:0> f<3:0>
DC = 1W<3:0> f<3:0>
PIC16(L)F1454/5/9
DS41639A-page 352 Preliminary 2012 Microchip Technology Inc.
SWAPF Swap Nibbles in f
Syntax: [ label ] SWAPF f,d
Operands: 0 f 127
d [0,1]
Operation: (f<3:0>) (destination<7:4>),
(f<7:4>) (destination<3:0>)
Status Affected: None
Description: The upper and lower nibbles of regis-
ter ‘f’ are exchanged. If ‘d’ is ‘0’, the
result is placed in the W register. If ‘d’
is ‘1’, the result is placed in register ‘f’.
TRIS Load TRIS Register with W
Syntax: [ label ] TRIS f
Operands: 5 f 7
Operation: (W) TRIS register ‘f’
Status Affected: None
Description: Move data from W register to TRIS
register.
When ‘f’ = 5, TRISA is loaded.
When ‘f’ = 6, TRISB is loaded.
When ‘f’ = 7, TRISC is loaded.
XORLW Exclusive OR literal with W
Syntax: [ label ]XORLW k
Operands: 0 k 255
Operation: (W) .XOR. k W)
Status Affected: Z
Description: The contents of the W register are
XOR’ed with the eight-bit
literal ‘k’. The result is placed in the
W register.
XORWF Exclusive OR W with f
Syntax: [ label ] XORWF f,d
Operands: 0 f 127
d [0,1]
Operation: (W) .XOR. (f) destination)
Status Affected: Z
Description: Exclusive OR the contents of the W
register with register ‘f’. If ‘d’ is ‘0’, the
result is stored in the W register. If ‘d’
is ‘1’, the result is stored back in regis-
ter ‘f’.
2012 Microchip Technology Inc. Preliminary DS41639A-page 353
PIC16(L)F1454/5/9
29.0 ELECTRICAL SPECIFICATIONS
Absolute Maximum Ratings(†)
Ambient temperature under bias....................................................................................................... -40°C to +125°C
Storage temperature ........................................................................................................................ -65°C to +150°C
Voltage on VDD with respect to VSS, PIC16LF1454/5/9 ..................................................................... -0.3V to +6.5V
Voltage on VDD with respect to VSS, PIC16LF1454/5/9 ..................................................................... -0.3V to +4.0V
Voltage on MCLR with respect to Vss ................................................................................................. -0.3V to +9.0V
Voltage on all other pins with respect to VSS ........................................................................... -0.3V to (VDD + 0.3V)
Total power dissipation(1) ............................................................................................................................... 800 mW
Maximum current out of VSS pin, -40°C TA +85°C for industrial............................................................... 396 mA
Maximum current out of VSS pin, -40°C TA +125°C for extended ............................................................ 114 mA
Maximum current into VDD pin, -40°C TA +85°C for industrial.................................................................. 292 mA
Maximum current into VDD pin, -40°C TA +125°C for extended ............................................................... 107 mA
Clamp current, IK (VPIN < 0 or VPIN > VDD)20 mA
Maximum output current sunk by any I/O pin.................................................................................................... 25 mA
Maximum output current sourced by any I/O pin .............................................................................................. 25 mA
Note 1: Power dissipation is calculated as follows: PDIS = VDD x {IDD IOH} + {(VDD – VOH) x IOH} + (VOl x
IOL).
† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the
device. This is a stress rating only and functional operation of the device at those or any other conditions above those
indicated in the operation listings of this specification is not implied. Exposure above maximum rating conditions for
extended periods may affect device reliability.
PIC16(L)F1454/5/9
DS41639A-page 354 Preliminary 2012 Microchip Technology Inc.
FIGURE 29-1: PIC16F1454/5/9 VOLTAGE FREQUENCY GRAPH, -40°C TA +125°C
FIGURE 29-2: PIC16LF1454/5/9 VOLTAGE FREQUENCY GRAPH, -40°C TA +125°C
Note 1: The shaded region indicates the permissible combinations of voltage and frequency.
2: Refer to Table 29-1 for each Oscillator mode’s supported frequencies.
2.3
0
2.7
Frequency (MHz)
VDD (V)
10 4820 40
5.5
Note 1: The shaded region indicates the permissible combinations of voltage and frequency.
2: Refer to Table 29-1 for each Oscillator mode’s supported frequencies.
1.8
0
2.7
Frequency (MHz)
VDD (V)
10 48
20 40
3.6
2012 Microchip Technology Inc. Preliminary DS41639A-page 355
PIC16(L)F1454/5/9
29.1 DC Characteristics: PIC16(L)F1454/5/9-I/E (Industrial, Extended)
PIC16LF1454/5/9
Standard Operating Conditions (unless otherwise stated)
Operating temperature -40°C TA +85°C for industrial
-40°C TA +125°C for extended
PIC16F1454/5/9
Standard Operating Conditions (unless otherwise stated)
Operating temperature -40°C TA +85°C for industrial
-40°C TA +125°C for extended
Param.
No.
Sym. Characteristic Min. Typ† Max. Units Conditions
D001 VDD Supply Voltage (VDDMIN, VDDMAX)
PIC16LF1454/5/9 1.8
2.5
3.6
3.6
V
V
FOSC 20 MHz
FOSC 48 MHz
D001 PIC16F1454/5/9 2.3
2.5
5.5
5.5
V
V
FOSC 20 MHz
FOSC 48 MHz
D002* VDR RAM Data Retention Voltage(1)
PIC16LF1454/5/9 1.5 V Device in Sleep mode
D002* PIC16F1454/5/9 1.7 V Device in Sleep mode
D002A VPOR*Power-on Reset Release Voltage
PIC16LF1454/5/9 1.6 V
D002A PIC16F1454/5/9 1.7 V
D002B VPORR*Power-on Reset Rearm Voltage
PIC16LF1454/5/9 0.8 V
D002B PIC16F1454/5/9 1.65 V
D003 VADFVR Fixed Voltage Reference Voltage for
ADC, Initial Accuracy
1
1
1
1
1
1
% 1.024V, VDD 2.5V, 85°C (NOTE 2)
1.024V, VDD 2.5V, 125°C (NOTE 2)
2.048V, VDD 2.5V, 85°C
2.048V, VDD 2.5V, 125°C
4.096V, VDD 4.75V, 85°C
4.096V, VDD 4.75V, 125°C
D003C* TCVFVR Temperature Coefficient, Fixed
Voltage Reference
-130 ppm/°C
D003D* VFVR/
VIN
Line Regulation, Fixed Voltage
Reference
0.270 %/V
D004* SVDD VDD Rise Rate to ensure internal
Power-on Reset signal
0.05 V/ms See Section 6.1 “Power-On Reset
(POR)” for details.
* These parameters are characterized but not tested.
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not
tested.
Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.
2: For proper operation, the minimum value of the ADC positive voltage reference must be 1.8V or greater. When selecting
the FVR or the VREF+ pin as the source of the ADC positive voltage reference, be aware that the voltage must be 1.8V or
greater.
PIC16(L)F1454/5/9
DS41639A-page 356 Preliminary 2012 Microchip Technology Inc.
FIGURE 29-3: POR AND POR REARM WITH SLOW RISING VDD
VDD
VPOR
VPORR
VSS
VSS
NPOR
TPOR(3)
POR REARM
Note 1: When NPOR is low, the device is held in Reset.
2: TPOR 1 s typical.
3: TVLOW 2.7 s typical.
TVLOW(2)
2012 Microchip Technology Inc. Preliminary DS41639A-page 357
PIC16(L)F1454/5/9
29.2 DC Characteristics: PIC16(L)F1454/5/9-I/E (Industrial, Extended)
PIC16LF1454/5/9
Standard Operating Conditions (unless otherwise stated)
Operating temperature -40°C TA +85°C for industrial
-40°C TA +125°C for extended
PIC16F1454/5/9
Standard Operating Conditions (unless otherwise stated)
Operating temperature -40°C TA +85°C for industrial
-40°C TA +125°C for extended
Param
No.
Device
Characteristics Min. Typ† Max. Units
Conditions
VDD Note
Supply Current (IDD)(1, 2)
D010 2 A1.8FOSC = 32 kHz LP Oscillator mode
—4 A3.0
D010 16 A2.3 FOSC = 32 kHz LP Oscillator mode
16 A3.0
19 A5.0
D011 40 A1.8FOSC = 1 MHz XT Oscillator mode
—80 A3.0
D011 110 A2.3 FOSC = 1 MHz XT Oscillator mode
130 A3.0
160 A5.0
D012 120 A1.8FOSC = 4 MHz XT Oscillator mode
220 A3.0
D012 230 A2.3 FOSC = 4 MHz XT Oscillator mode
300 A3.0
350 A5.0
D013 30 A1.8FOSC = 1 MHz
EC Oscillator mode, Medium-power mode
—50 A3.0
D013 75 A2.3 FOSC = 1 MHz
EC Oscillator mode
Medium-power mode
100 A3.0
115 A5.0
D014 100 A1.8FOSC = 4 MHz
EC Oscillator mode,
Medium-power mode
180 A3.0
D014 225 A2.3 FOSC = 4 MHz
EC Oscillator mode
Medium-power mode
300 A3.0
350 A5.0
D015 2.3 A1.8FOSC = 31 kHz
LFINTOSC mode
—4.0 A3.0
D015 23 A2.3 FOSC = 31 kHz
LFINTOSC mode
46 A3.0
145 A5.0
* These parameters are characterized but not tested.
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not
tested.
Note 1: The test conditions for all IDD measurements in active operation mode are: CLKIN = external square wave, from
rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.
2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading
and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current
consumption.
3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended
by the formula IR = VDD/2REXT (mA) with REXT in k.
PIC16(L)F1454/5/9
DS41639A-page 358 Preliminary 2012 Microchip Technology Inc.
D016 220 A1.8FOSC = 500 kHz HFINTOSC mode
280 A3.0
D016 340 A2.3 FOSC = 500 kHz HFINTOSC mode
410 A3.0
535 A5.0
D017* 380 A1.8FOSC = 8 MHz
HFINTOSC mode
560 A3.0
D017* 720 A2.3 FOSC = 8 MHz
HFINTOSC mode
920 A3.0
1017 A5.0
D018 520 A1.8FOSC = 16 MHz
HFINTOSC mode
810 A3.0
D018 1000 A2.3 FOSC = 16 MHz
HFINTOSC mode
1300 A3.0
1600 A5.0
D019A 750 A3.0FOSC = 20 MHz
ECH mode
D019A 1400 A3.0 FOSC = 20 MHz
ECH mode
1600 A5.0
D019B 6 A1.8FOSC = 32 kHz ECL mode
—8 A3.0
D019B 11 A2.3 FOSC = 32 kHz ECL mode
15 A3.0
18 A5.0
D019C 15 A1.8FOSC = 500 kHz ECL mode
—20 A3.0
D019C 35 A2.3 FOSC = 500 kHz ECL mode
45 A3.0
55 A5.0
D020 150 A1.8FOSC = 4 MHz EXTRC mode (Note 3)
280 A3.0
D020 230 A2.3 FOSC = 4 MHz EXTRC mode (Note 3)
310 A3.0
370 A5.0
29.2 DC Characteristics: PIC16(L)F1454/5/9-I/E (Industrial, Extended) (Continued)
PIC16LF1454/5/9
Standard Operating Conditions (unless otherwise stated)
Operating temperature -40°C TA +85°C for industrial
-40°C TA +125°C for extended
PIC16F1454/5/9
Standard Operating Conditions (unless otherwise stated)
Operating temperature -40°C TA +85°C for industrial
-40°C TA +125°C for extended
Param
No.
Device
Characteristics Min. Typ† Max. Units
Conditions
VDD Note
* These parameters are characterized but not tested.
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not
tested.
Note 1: The test conditions for all IDD measurements in active operation mode are: CLKIN = external square wave, from
rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.
2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading
and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current
consumption.
3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended
by the formula IR = VDD/2REXT (mA) with REXT in k.
2012 Microchip Technology Inc. Preliminary DS41639A-page 359
PIC16(L)F1454/5/9
D021 1000 A3.0FOSC = 20 MHz HS Oscillator mode
D021 1350 A3.0 FOSC = 20 MHz HS Oscillator mode
1700 A5.0
29.2 DC Characteristics: PIC16(L)F1454/5/9-I/E (Industrial, Extended) (Continued)
PIC16LF1454/5/9
Standard Operating Conditions (unless otherwise stated)
Operating temperature -40°C TA +85°C for industrial
-40°C TA +125°C for extended
PIC16F1454/5/9
Standard Operating Conditions (unless otherwise stated)
Operating temperature -40°C TA +85°C for industrial
-40°C TA +125°C for extended
Param
No.
Device
Characteristics Min. Typ† Max. Units
Conditions
VDD Note
* These parameters are characterized but not tested.
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not
tested.
Note 1: The test conditions for all IDD measurements in active operation mode are: CLKIN = external square wave, from
rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.
2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading
and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current
consumption.
3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended
by the formula IR = VDD/2REXT (mA) with REXT in k.
PIC16(L)F1454/5/9
DS41639A-page 360 Preliminary 2012 Microchip Technology Inc.
29.3 DC Characteristics: PIC16(L)F1454/5/9-I/E (Power-Down)
PIC16LF1454/5/9
Standard Operating Conditions (unless otherwise stated)
Operating temperature -40°C TA +85°C for industrial
-40°C TA +125°C for extended
PIC16F1454/5/9
Standard Operating Conditions (unless otherwise stated)
Operating temperature -40°C TA +85°C for industrial
-40°C TA +125°C for extended
Param
No. Device Characteristics Min. Typ† Max.
+85°C
Max.
+125°C Units
Conditions
VDD Note
Power-down Current (IPD)(2)
D022 0.025 A 1.8 Base Current: WDT, BOR, FVR,
and SOSC disabled, all Peripher-
als inactive
0.035 A3.0
D022 0.20 A2.3 WDT, BOR, FVR, and SOSC dis-
abled, all Peripherals inactive
(VREGPM = 1; Low-Power mode)
0.25 A3.0
0.30 A5.0
D022A 10 A2.3 Base Current: WDT, BOR, FVR
and SOSC disabled, all peripheral
inactive (VREGPM = 0; Normal
Power mode)
11 A3.0
12 A5.0
D023 0.29 A 1.8 LPWDT Current (Note 1)
—0.39 A3.0
D023 10.5 A2.3 LPWDT Current (Note 1)
11.3 A3.0
12.5 A5.0
D023A 14 A 1.8 FVR current (Note 1)
—23 A3.0
D023A 23 A2.3 FVR current (Note 1)
30 A3.0
34 A5.0
D024 7 A 3.0 BOR Current (Note 1)
D024 15 A3.0 BOR Current (Note 1)
17 A5.0
D24A 0.1 A 3.0 LPBOR Current (Note 1)
D24A 11 A3.0 LPBOR Current (Note 1)
12 A5.0
* These parameters are characterized but not tested.
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are
not tested.
Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is
enabled. The peripheral current can be determined by subtracting the base IDD or IPD current from this limit. Max
values should be used when calculating total current consumption.
2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with
the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.
3: A/D oscillator source is FRC.
2012 Microchip Technology Inc. Preliminary DS41639A-page 361
PIC16(L)F1454/5/9
D025 0.6 A 1.8 SOSC Current (Note 1)
—1.8 A3.0
D025 11 A2.3 SOSC Current (Note 1)
13 A3.0
19 A5.0
D026 .025 A 1.8 A/D Current (Note 1, Note 3), no
conversion in progress
.035 A3.0
D026 10 A2.3 A/D Current (Note 1, Note 3), no
conversion in progress
11 A3.0
12 A5.0
D026A* 250 A 1.8 A/D Current (Note 1, Note 3),
conversion in progress
—250 A3.0
D026A* 280 A2.3 A/D Current (Note 1, Note 3),
conversion in progress
280 A3.0
280 A5.0
D027 7 A 1.8 Comparator, Low-Power mode
(Note 1)
—8 A3.0
D027 17 A2.3 Comparator, Low-Power mode
(Note 1)
18 A3.0
19 A5.0
29.3 DC Characteristics: PIC16(L)F1454/5/9-I/E (Power-Down) (Continued)
PIC16LF1454/5/9
Standard Operating Conditions (unless otherwise stated)
Operating temperature -40°C TA +85°C for industrial
-40°C TA +125°C for extended
PIC16F1454/5/9
Standard Operating Conditions (unless otherwise stated)
Operating temperature -40°C TA +85°C for industrial
-40°C TA +125°C for extended
Param
No. Device Characteristics Min. Typ† Max.
+85°C
Max.
+125°C Units
Conditions
VDD Note
* These parameters are characterized but not tested.
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are
not tested.
Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is
enabled. The peripheral current can be determined by subtracting the base IDD or IPD current from this limit. Max
values should be used when calculating total current consumption.
2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with
the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.
3: A/D oscillator source is FRC.
PIC16(L)F1454/5/9
DS41639A-page 362 Preliminary 2012 Microchip Technology Inc.
29.4 DC Characteristics: PIC16(L)F1454/5/9-I/E
DC CHARACTERISTICS
Standard Operating Conditions (unless otherwise stated)
Operating temperature -40°C TA +85°C for industrial
-40°C TA +125°C for extended
Param
No. Sym. Characteristic Min. Typ† Max. Units Conditions
VIL Input Low Voltage
I/O PORT:
D030 with TTL buffer 0.8 V 4.5V VDD 5.5V
D030A 0.15 VDD V1.8V VDD 4.5V
D031 with Schmitt Trigger buffer 0.2 VDD V2.0V VDD 5.5V
with SMBus 0.8 V 3.0 VDD
D032 MCLR ——0.2VDD V
VIH Input High Voltage
I/O ports:
D040 with TTL buffer 2.0 V 4.5V VDD 5.5V
D040A 0.25 VDD +
0.8
——V1.8V VDD 4.5V
D041 with Schmitt Trigger buffer 0.8 VDD ——V2.0V VDD 5.5V
with SMBus 2.1 VDD V3.0 VDD
D042 MCLR 0.8 VDD ——V
IIL Input Leakage Current(1)
D060 I/O ports ± 5
± 5
± 125
± 1000
nA
nA
VSS VPIN VDD, Pin at high-
impedance at 85°C
125°C
D061 MCLR(2) —± 50± 200nAVSS VPIN VDD at 85°C
IPUR Weak Pull-up Current
D070* 25
25
100
140
200
300 A
VDD = 3.3V, VPIN = VSS
VDD = 5.0V, VPIN = VSS
VOL Output Low Voltage(3)
D080 I/O ports
——0.6V
IOL = 8mA, VDD = 5V
IOL = 6mA, VDD = 3.3V
IOL = 1.8mA, VDD = 1.8V
VOH Output High Voltage(3)
D090 I/O ports
VDD - 0.7 V
IOH = 3.5mA, VDD = 5V
IOH = 3mA, VDD = 3.3V
IOH = 1mA, VDD = 1.8V
Capacitive Loading Specs on Output Pins
D101A* CIO All I/O pins 50 pF
* These parameters are characterized but not tested.
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are
not tested.
Note 1: Negative current is defined as current sourced by the pin.
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent
normal operating conditions. Higher leakage current may be measured at different input voltages.
3: Including OSC2 in CLKOUT mode.
2012 Microchip Technology Inc. Preliminary DS41639A-page 363
PIC16(L)F1454/5/9
29.5 Memory Programming Requirements
DC CHARACTERISTICS Standard Operating Conditions (unless otherwise stated)
Operating temperature -40°C TA +125°C
Param
No. Sym. Characteristic Min. Typ† Max. Units Conditions
Program Memory
Programming Specifications
D110 VIHH Voltage on MCLR/VPP pin 8.0 9.0 V (Note 2)
D111 IDDP Supply Current during
Programming
——10mA
D112 VBE VDD for Bulk Erase 2.7 VDDMAX V
D113 VPEW VDD for Write or Row Erase VDDMIN —VDDMAX V
D114 IPPPGM Current on MCLR/VPP during
Erase/Write
—1.0—mA
D115 IDDPGM Current on VDD during Erase/
Write
—5.0—mA
Program Flash Memory
D121 EPCell Endurance 10K —E/W-40C to +85C (Note 1)
D122 VPRW VDD for Read/Write VDDMIN —VDDMAX V
D123 TIW Self-timed Write Cycle Time 2 2.5 ms
D124 TRETD Characteristic Retention 40 Year Provided no other
specifications are violated
D125 EHEFC High-Endurance Flash Cell 100K E/W C to +60°C lower byte,
last 128 addresses
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance
only and are not tested.
Note 1: Self-write and Block Erase.
2: Required only if single-supply programming is disabled.
PIC16(L)F1454/5/9
DS41639A-page 364 Preliminary 2012 Microchip Technology Inc.
29.6 USB Module Specifications
Operating Conditions-40°C TA +85°C (unless otherwise state)
Param
No. Sym Characteristic Min Typ Max Units Conditions
D313 VUSB USB Voltage 3.0 3.6 V Voltage on VUSB3V3 pin must be
in this range for proper USB
operation
D314 IIL Input Leakage on pin ± 1 AVSS VPIN VDD pin athigh
impedance
D315 VILUSB Input Low Voltage for USB
Buffer
——0.8VFor VUSB3V3 range
D316 VIHUSB Input High Voltage for USB
Buffer
2.0 V For VUSB3V3 range
D318 VDIFS Differential Input Sensitivity 0.2 V The difference between D+ and
D- must exceed this value while
VCM is met
D319 VCM Differential Common Mode
Range
0.8 2.5 V
D320 ZOUT Driver Output Impedance(1) 28 44
D321 VOL Voltage Output Low 0.0 0.3 V 1.5 kload connected to 3.6V
D322 VOH Voltage Output High 2.8 3.6 V 1.5 kload connected to ground
Note 1: The D+ and D- signal lines have been built-in impedance matching resistors. No external resistors,
capacitors or magnetic components are necessary on the D+/D- signal paths between the
PIC16(L)F1454/5/9 family device and USB cable.
2012 Microchip Technology Inc. Preliminary DS41639A-page 365
PIC16(L)F1454/5/9
29.7 Thermal Considerations
Standard Operating Conditions (unless otherwise stated)
Operating temperature -40°C TA +125°C
Param
No. Sym. Characteristic Typ. Units Conditions
TH01 JA Thermal Resistance Junction to Ambient 70 C/W 14-Pin PDIP package
95.3 C/W 14-Pin SOIC package
100 C/W 14-Pin TSSOP package
45.7 C/W 16-Pin QFN 4x4mm package
62.2 C/W 20-pin PDIP package
77.7 C/W 20-pin SOIC package
87.3 C/W 20-pin SSOP package
43.0 C/W 20-pin QFN 4x4mm package
TH02 JC Thermal Resistance Junction to Case 32 C/W 14-Pin PDIP package
31 C/W 14-Pin SOIC package
24.4 C/W 14-Pin TSSOP package
6.3 C/W 16-Pin QFN 4x4mm package
27.5 C/W 20-pin PDIP package
23.1 C/W 20-pin SOIC package
31.1 C/W 20-pin SSOP package
5.3 C/W 20-pin QFN 4x4mm package
TH03 TJMAX Maximum Junction Temperature 150 C
TH04 PD Power Dissipation W PD = PINTERNAL + PI/O
TH05 PINTERNAL Internal Power Dissipation W PINTERNAL = IDD x VDD(1)
TH06 PI/OI/O Power Dissipation W PI/O = (IOL * VOL) + (IOH * (VDD - VOH))
TH07 PDER Derated Power W PDER = PDMAX (TJ - TA)/JA(2)
Note 1: IDD is current to run the chip alone without driving any load on the output pins.
2: TA = Ambient Temperature
3: TJ = Junction Temperature
PIC16(L)F1454/5/9
DS41639A-page 366 Preliminary 2012 Microchip Technology Inc.
29.8 Timing Parameter Symbology
The timing parameter symbols have been created with
one of the following formats:
FIGURE 29-4: LOAD CONDITIONS
1. TppS2ppS
2. TppS
T
F Frequency T Time
Lowercase letters (pp) and their meanings:
pp
cc CCP1 osc CLKIN
ck CLKOUT rd RD
cs CS rw RD or WR
di SDIx sc SCKx
do SDO ss SS
dt Data in t0 T0CKI
io I/O PORT t1 T1CKI
mc MCLR wr WR
Uppercase letters and their meanings:
S
FFall PPeriod
HHigh RRise
I Invalid (High-impedance) V Valid
L Low Z High-impedance
V
SS
C
L
Legend: CL = 50 pF for all pins
Load Condition
Pin
2012 Microchip Technology Inc. Preliminary DS41639A-page 367
PIC16(L)F1454/5/9
29.9 AC Characteristics: PIC16(L)F1454/5/9-I/E
FIGURE 29-5: CLOCK TIMING
TABLE 29-1: CLOCK OSCILLATOR TIMING REQUIREMENTS
TABLE 29-2: OSCILLATOR PARAMETERS
Standard Operating Conditions (unless otherwise stated)
Operating temperature -40°C TA +125°C
Param
No. Sym. Characteristic Min. Typ† Max. Units Conditions
OS01 FOSC External CLKIN Frequency(1) DC 0.5 MHz EC Oscillator mode (low)
DC 4 MHz EC Oscillator mode (medium)
DC 20 MHz EC Oscillator mode (high)
OS02 TOSC External CLKIN Period(1) 31.25 ns EC mode
OS03 TCY Instruction Cycle Time(1) 125 DC ns TCY = FOSC/4
* These parameters are characterized but not tested.
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not
tested.
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on
characterization data for that particular oscillator type under standard operating conditions with the device executing code.
Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current con-
sumption. All devices are tested to operate at “min” values with an external clock applied to CLKIN pin. When an external
clock input is used, the “max” cycle time limit is “DC” (no clock) for all devices.
Standard Operating Conditions (unless otherwise stated)
Operating Temperature -40°C TA +125°C
Param
No. Sym. Characteristic Min. Typ† Max. Units Conditions
OS08 HFOSC Internal Calibrated HFINTOSC Frequency(1) 16.0 MHz C TA +85°C
OS08A HFTOL Frequency Tolerance ± 3 % +25°C, 16 MHz
—± 6— %0°C TA +85°C, 16 MHz
OS09 LFOSC Internal LFINTOSC Frequency 31 kHz -40°C TA +125°C
OS10* TIOSC ST HFINTOSC
Wake-up from Sleep Start-up Time
—5 8s
OS11* TUNELOCK HFINTOSC
Self-tune Lock Time
—<5 8mS
NOTE 2
* These parameters are characterized but not tested.
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are
not tested.
Note 1: To ensure these oscillator frequency tolerances, VDD and VSS must be capacitively decoupled as close to the device as
possible. 0.1 F and 0.01 F values in parallel are recommended.
2: Time for reference clock stable and in range to HFINTOSC tuned within range specified by OS08A (with Self-Tune).
CLKIN
CLKOUT
Q4 Q1 Q2 Q3 Q4 Q1
OS02
OS03
(CLKOUT Mode)
Note 1: See Table 29-3 for timing information.
OS11
OS12
PIC16(L)F1454/5/9
DS41639A-page 368 Preliminary 2012 Microchip Technology Inc.
FIGURE 29-6: CLKOUT AND I/O TIMING
TABLE 29-3: CLKOUT AND I/O TIMING PARAMETERS
Standard Operating Conditions (unless otherwise stated)
Operating Temperature -40°C TA +125°C
Param
No. Sym. Characteristic Min. Typ† Max. Units Conditions
OS11 TosH2ckL FOSC to CLKOUT (1) ——70nsVDD = 3.3-5.0V
OS12 TosH2ckH FOSC to CLKOUT (1) ——72nsVDD = 3.3-5.0V
OS13 TckL2ioV CLKOUT to Port out valid(1) ——20ns
OS14 TioV2ckH Port input valid before CLKOUT(1) TOSC + 200 ns ns
OS15 TosH2ioV Fosc (Q1 cycle) to Port out valid 50 70* ns VDD = 3.3-5.0V
OS16 TosH2ioI Fosc (Q2 cycle) to Port input invalid
(I/O in hold time)
50 ns VDD = 3.3-5.0V
OS17 TioV2osH Port input valid to Fosc(Q2 cycle)
(I/O in setup time)
20 ns
OS18* TioR Port output rise time(2)
15
40
32
72
ns VDD = 2.0V
VDD = 5.0V
OS19* TioF Port output fall time(2)
28
15
55
30
ns VDD = 2.0V
VDD = 5.0V
OS20* Tinp INT pin input high or low time 25 ns
OS21* Tioc Interrupt-on-change new input level
time
25 ns
* These parameters are characterized but not tested.
Data in “Typ” column is at 3.0V, 25C unless otherwise stated.
Note 1: Measurements are taken in EC mode where CLKOUT output is 4 x TOSC.
FOSC
CLKOUT
I/O pin
(Input)
I/O pin
(Output)
Q4 Q1 Q2 Q3
OS11
OS19
OS13
OS15
OS18, OS19
OS20
OS21
OS17
OS16
OS14
OS12
OS18
Old Value New Value
Write Fetch Read ExecuteCycle
2012 Microchip Technology Inc. Preliminary DS41639A-page 369
PIC16(L)F1454/5/9
FIGURE 29-7: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP
TIMER TIMING
FIGURE 29-8: BROWN-OUT RESET TIMING AND CHARACTERISTICS
VDD
MCLR
Internal
POR
PWRT
Time-out
Internal Reset(1)
Watchdog Timer
33
30
31
34
I/O pins
34
Note 1: Asserted low.
Reset(1)
VBOR
VDD
(Device in Brown-out Reset) (Device not in Brown-out Reset)
33(1)
Note 1: 64 ms delay only if PWRTE bit in the Configuration Words is programmed to ‘0’.
2 ms delay if PWRTE = 0 and VREGEN = 1.
Reset
(due to BOR)
VBOR and VHYST
37
PIC16(L)F1454/5/9
DS41639A-page 370 Preliminary 2012 Microchip Technology Inc.
TABLE 29-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER
AND BROWN-OUT RESET PARAMETERS
FIGURE 29-9: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS
Standard Operating Conditions (unless otherwise stated)
Operating Temperature -40°C TA +125°C
Param
No. Sym. Characteristic Min. Typ† Max. Units Conditions
30 TMCLMCLR Pulse Width (low) 2
5
s
s
VDD = 3.3-5V, -40°C to +85°C
VDD = 3.3-5V
31 TWDTLP Low-Power Watchdog Timer
Time-out Period
10 16 27 ms VDD = 3.3V-5V,
1:16 Prescaler used
33* TPWRT Power-up Timer Period, PWRTE =040 65 140 ms
34* TIOZ I/O high-impedance from MCLR Low
or Watchdog Timer Reset
——2.0s
35 VBOR Brown-out Reset Voltage(2) 2.55
1.80
2.70
1.90
2.85
2.11
V
V
BORV = 0
BORV = 1
36* VHYST Brown-out Reset Hysteresis 0 25 50 mV -40°C to +85°C
37* TBORDC Brown-out Reset DC Response
Time
135sVDD VBOR
38* VLPOR Low-Power Brown-out 1.8 2.1 2.5 V LPBOR = 1
* These parameters are characterized but not tested.
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance
only and are not tested.
Note 1: To ensure these voltage tolerances, VDD and VSS must be capacitively decoupled as close to the device as
possible. 0.1 F and 0.01 F values in parallel are recommended.
2: To ensure these voltage tolerances, VDD and VSS must be capacitively decoupled as close to the device as
possible. 0.1 F and 0.01 F values in parallel are recommended.
T0CKI
T1CKI
40 41
42
45 46
47 49
TMR0 or
TMR1
2012 Microchip Technology Inc. Preliminary DS41639A-page 371
PIC16(L)F1454/5/9
TABLE 29-5: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS
TABLE 29-6: PIC16(L)F1454/5/9 A/D CONVERTER (ADC) CHARACTERISTICS:
Standard Operating Conditions (unless otherwise stated)
Operating Temperature -40°C TA +125°C
Param
No. Sym. Characteristic Min. Typ† Max. Units Conditions
40* TT0H T0CKI High Pulse Width No Prescaler 0.5 TCY + 20 ns
With Prescaler 10 ns
41* TT0L T0CKI Low Pulse Width No Prescaler 0.5 TCY + 20 ns
With Prescaler 10 ns
42* TT0P T0CKI Period Greater of:
20 or TCY + 40
N
ns N = prescale value
(2, 4, ..., 256)
45* TT1H T1CKI High
Time
Synchronous, No Prescaler 0.5 TCY + 20 ns
Synchronous,
with Prescaler
15 ns
Asynchronous 30 ns
46* TT1L T1CKI Low
Time
Synchronous, No Prescaler 0.5 TCY + 20 ns
Synchronous, with Prescaler 15 ns
Asynchronous 30 ns
47* TT1P T1CKI Input
Period
Synchronous Greater of:
30 or TCY + 40
N
ns N = prescale value
(1, 2, 4, 8)
Asynchronous 60 ns
49* TCKEZTMR1 Delay from External Clock Edge to Timer
Increment
2 TOSC —7 TOSC Timers in Sync
mode
* These parameters are characterized but not tested.
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not
tested.
Note 1: For proper operation, the minimum value of the ADC positive voltage reference must be 1.8V or greater.
Standard Operating Conditions (unless otherwise stated)
Operating temperature Tested at 25°C
Param
No. Sym. Characteristic Min. Typ† Max. Units Conditions
AD01 NRResolution 10 bit
AD02 EIL Integral Error ±1.7 LSb VREF = 3.0V
AD03 EDL Differential Error ±1 LSb No missing codes
VREF = 3.0V
AD04 EOFF Offset Error ±2.5 LSb VREF = 3.0V
AD05 EGN Gain Error ±2.0 LSb VREF = 3.0V
AD06 VREF Reference Voltage(3) 1.8 VDD VVREF = (VREF+ minus VREF-)
AD07 VAIN Full-Scale Range VSS —VREF V
AD08 ZAIN Recommended Impedance of
Analog Voltage Source
—— 10kCan go higher if external 0.01F capacitor is
present on input pin.
* These parameters are characterized but not tested.
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not
tested.
Note 1: Total Absolute Error includes integral, differential, offset and gain errors.
2: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.
3: ADC VREF is from external VREF+ pin, VDD pin, whichever is selected as reference input.
4: When ADC is off, it will not consume any current other than leakage current. The power-down current specification
includes any such leakage from the ADC module.
PIC16(L)F1454/5/9
DS41639A-page 372 Preliminary 2012 Microchip Technology Inc.
TABLE 29-7: PIC16(L)F1454/5/9 A/D CONVERSION REQUIREMENTS
FIGURE 29-10: PIC16(L)F1454/5/9 A/D CONVERSION TIMING (NORMAL MODE)
Standard Operating Conditions (unless otherwise stated)
Operating temperature -40°C TA +125°C
Param
No. Sym. Characteristic Min. Typ† Max. Units Conditions
AD130* TAD A/D Clock Period 1.0 9.0 sTOSC-based
A/D Internal FRC Oscillator
Period
1.0 1.6 6.0 s ADCS<1:0> = 11 (ADFRC mode)
AD131 TCNV Conversion Time (not including
Acquisition Time)(1)
—11—TAD Set GO/DONE bit to conversion
complete
AD132* TACQ Acquisition Time 5.0 s
* These parameters are characterized but not tested.
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not
tested.
Note 1: The ADRES register may be read on the following TCY cycle.
AD131
AD130
BSF ADCON0, GO
Q4
A/D CLK
A/D Data
ADRES
ADIF
GO
Sample
OLD_DATA
Sampling Stopped
DONE
NEW_DATA
987 3210
Note 1: If the A/D clock source is selected as FRC, a time of TCY is added before the A/D clock starts. This allows the
SLEEP instruction to be executed.
1 TCY
6
AD134 (TOSC/2(1))
1 TCY
AD132
2012 Microchip Technology Inc. Preliminary DS41639A-page 373
PIC16(L)F1454/5/9
FIGURE 29-11: PIC16(L)F1454/5/9 A/D CONVERSION TIMING (SLEEP MODE)
AD132
AD131
AD130
BSF ADCON0, GO
Q4
A/D CLK
A/D Data
ADRES
ADIF
GO
Sample
OLD_DATA
Sampling Stopped
DONE
NEW_DATA
9 7 3210
Note 1: If the A/D clock source is selected as FRC, a time of TCY is added before the A/D clock starts. This allows the
SLEEP instruction to be executed.
AD134
6
8
1 TCY
(TOSC/2 + TCY(1))
1 TCY
PIC16(L)F1454/5/9
DS41639A-page 374 Preliminary 2012 Microchip Technology Inc.
TABLE 29-8: COMPARATOR SPECIFICATIONS
TABLE 29-9: DIGITAL-TO-ANALOG CONVERTER (DAC) SPECIFICATIONS
Operating Conditions: 1.8V < VDD < 5.5V, -40°C < TA < +125°C (unless otherwise stated).
Param
No. Sym. Characteristics Min. Typ. Max. Units Comments
CM01 VIOFF Input Offset Voltage ±7.5 ±60 mV High Power mode
VICM = VDD/2
CM02 VICM Input Common Mode Voltage 0 VDD V
CM04A
TRESP
Response Time Rising Edge 400 800 ns High-Power mode
(Note 1)
CM04B Response Time Falling Edge 200 400 ns High-Power mode
(Note 1)
CM04C Response Time Rising Edge 1200 ns Low-Power mode
(Note 1)
CM04D Response Time Falling Edge 550 ns Low-Power mode
(Note 1)
CM05 TMC2OV Comparator Mode Change to
Output Valid*
——10s
CM06 CHYSTER Comparator Hysteresis 65 mV Note 2
* These parameters are characterized but not tested.
Note 1: Response time measured with one comparator input at VDD/2, while the other input transitions
from VSS to VDD.
2: Comparator Hysteresis is available when the CxHYS bit of the CMxCON0 register is enabled.
Operating Conditions: 1.8V < VDD < 5.5V, -40°C < TA < +125°C (unless otherwise stated).
Param
No. Sym. Characteristics Min. Typ. Max. Units Comments
DAC01* CLSB Step Size VDD/32 V
DAC02* CACC Absolute Accuracy 1/2 LSb
DAC03* CRUnit Resistor Value (R) 5K
DAC04* CST Settling Time(1) ——10s
* These parameters are characterized but not tested.
Note 1: Settling time measured while DACR<4:0> transitions from ‘0000’ to ‘1111’.
2012 Microchip Technology Inc. Preliminary DS41639A-page 375
PIC16(L)F1454/5/9
FIGURE 29-12: USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING
TABLE 29-10: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS
FIGURE 29-13: USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING
TABLE 29-11: USART SYNCHRONOUS RECEIVE REQUIREMENTS
Standard Operating Conditions (unless otherwise stated)
Operating Temperature -40°C TA +125°C
Param.
No. Symbol Characteristic Min. Max. Units Conditions
US120 TCKH2DTV SYNC XMIT (Master and Slave)
Clock high to data-out valid
3.0-5.5V 80 ns
1.8-5.5V 100 ns
US121 TCKRF Clock out rise time and fall time
(Master mode)
3.0-5.5V 45 ns
1.8-5.5V 50 ns
US122 TDTRF Data-out rise time and fall time 3.0-5.5V 45 ns
1.8-5.5V 50 ns
Standard Operating Conditions (unless otherwise stated)
Operating Temperature -40°C TA +125°C
Param.
No. Symbol Characteristic Min. Max. Units Conditions
US125 TDTV2CKL SYNC RCV (Master and Slave)
Data-hold before CK (DT hold time) 10 ns
US126 T
CKL2DTL Data-hold after CK (DT hold time) 15 ns
Note: Refer to Figure 29-4 for load conditions.
US121 US121
US120 US122
CK
DT
Note: Refer to Figure 29-4 for load conditions.
US125
US126
CK
DT
PIC16(L)F1454/5/9
DS41639A-page 376 Preliminary 2012 Microchip Technology Inc.
FIGURE 29-14: SPI MASTER MODE TIMING (CKE = 0, SMP = 0)
FIGURE 29-15: SPI MASTER MODE TIMING (CKE = 1, SMP = 1)
SS
SCK
(CKP = 0)
SCK
(CKP = 1)
SDO
SDI
SP70
SP71 SP72
SP73
SP74
SP75, SP76
SP78
SP79
SP80
SP79
SP78
MSb LSb
bit 6 - - - - - -1
MSb In LSb In
bit 6 - - - -1
Note: Refer to Figure 29-4 for load conditions.
SS
SCK
(CKP = 0)
SCK
(CKP = 1)
SDO
SDI
SP81
SP71 SP72
SP74
SP75, SP76
SP78
SP80
MSb
SP79
SP73
MSb In
bit 6 - - - - - -1
LSb In
bit 6 - - - -1
LSb
Note: Refer to Figure 29-4 for load conditions.
2012 Microchip Technology Inc. Preliminary DS41639A-page 377
PIC16(L)F1454/5/9
FIGURE 29-16: SPI SLAVE MODE TIMING (CKE = 0)
FIGURE 29-17: SPI SLAVE MODE TIMING (CKE = 1)
SS
SCK
(CKP = 0)
SCK
(CKP = 1)
SDO
SDI
SP70
SP71 SP72
SP73
SP74
SP75, SP76 SP77
SP78
SP79
SP80
SP79
SP78
MSb LSb
bit 6 - - - - - -1
MSb In bit 6 - - - -1 LSb In
SP83
Note: Refer to Figure 29-4 for load conditions.
SS
SCK
(CKP = 0)
SCK
(CKP = 1)
SDO
SDI
SP70
SP71 SP72
SP82
SP74
SP75, SP76
MSb bit 6 - - - - - -1 LSb
SP77
MSb In bit 6 - - - -1 LSb In
SP80
SP83
Note: Refer to Figure 29-4 for load conditions.
PIC16(L)F1454/5/9
DS41639A-page 378 Preliminary 2012 Microchip Technology Inc.
TABLE 29-12: SPI MODE REQUIREMENTS
Param
No. Symbol Characteristic Min. Typ† Max. Units Conditions
SP70* TSSL2SCH,
TSSL2SCL
SS to SCK or SCK input TCY ——ns
SP71* TSCH SCK input high time (Slave mode) TCY + 20 ns
SP72* TSCL SCK input low time (Slave mode) TCY + 20 ns
SP73* TDIV2SCH,
TDIV2SCL
Setup time of SDI data input to SCK edge 100 ns
SP74* TSCH2DIL,
TSCL2DIL
Hold time of SDI data input to SCK edge 100 ns
SP75* TDOR SDO data output rise time 3.0-5.5V 10 25 ns
1.8-5.5V 25 50 ns
SP76* TDOF SDO data output fall time 10 25 ns
SP77* TSSH2DOZSS to SDO output high-impedance 10 50 ns
SP78* TSCR SCK output rise time
(Master mode)
3.0-5.5V 10 25 ns
1.8-5.5V 25 50 ns
SP79* TSCF SCK output fall time (Master mode) 10 25 ns
SP80* TSCH2DOV,
TSCL2DOV
SDO data output valid after
SCK edge
3.0-5.5V 50 ns
1.8-5.5V 145 ns
SP81* TDOV2SCH,
TDOV2SCL
SDO data output setup to SCK edge Tcy ns
SP82* TSSL2DOV SDO data output valid after SS edge 50 ns
SP83* TSCH2SSH,
TSCL2SSH
SS after SCK edge 1.5TCY + 40 ns
* These parameters are characterized but not tested.
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance
only and are not tested.
2012 Microchip Technology Inc. Preliminary DS41639A-page 379
PIC16(L)F1454/5/9
FIGURE 29-18: I2C™ BUS START/STOP BITS TIMING
TABLE 29-13: I2C™ BUS START/STOP BITS REQUIREMENTS
FIGURE 29-19: I2C™ BUS DATA TIMING
Param
No. Symbol Characteristic Min. Typ Max. Units Conditions
SP90* TSU:STA Start condition 100 kHz mode 4700 ns Only relevant for Repeated
Start condition
Setup time 400 kHz mode 600
SP91* THD:STA Start condition 100 kHz mode 4000 ns After this period, the first
clock pulse is generated
Hold time 400 kHz mode 600
SP92* TSU:STO Stop condition 100 kHz mode 4700 ns
Setup time 400 kHz mode 600
SP93 THD:STO Stop condition 100 kHz mode 4000 ns
Hold time 400 kHz mode 600
* These parameters are characterized but not tested.
Note: Refer to Figure 29-4 for load conditions.
SP91
SP92
SP93
SCL
SDA
Start
Condition
Stop
Condition
SP90
Note: Refer to Figure 29-4 for load conditions.
SP90
SP91 SP92
SP100
SP101
SP103
SP106 SP107
SP109 SP109
SP110
SP102
SCL
SDA
In
SDA
Out
PIC16(L)F1454/5/9
DS41639A-page 380 Preliminary 2012 Microchip Technology Inc.
TABLE 29-14: I2C™ BUS DATA REQUIREMENTS
Param.
No. Symbol Characteristic Min. Max. Units Conditions
SP100* THIGH Clock high time 100 kHz mode 4.0 s Device must operate at a
minimum of 1.5 MHz
400 kHz mode 0.6 s Device must operate at a
minimum of 10 MHz
SSP module 1.5TCY
SP101* TLOW Clock low time 100 kHz mode 4.7 s Device must operate at a
minimum of 1.5 MHz
400 kHz mode 1.3 s Device must operate at a
minimum of 10 MHz
SSP module 1.5TCY
SP102* TRSDA and SCL rise
time
100 kHz mode 1000 ns
400 kHz mode 20 + 0.1CB300 ns CB is specified to be from
10-400 pF
SP103* TFSDA and SCL fall
time
100 kHz mode 250 ns
400 kHz mode 20 + 0.1CB250 ns CB is specified to be from
10-400 pF
SP106* THD:DAT Data input hold time 100 kHz mode 0 ns
400 kHz mode 0 0.9 s
SP107* TSU:DAT Data input setup
time
100 kHz mode 250 ns (Note 2)
400 kHz mode 100 ns
SP109* TAA Output valid from
clock
100 kHz mode 3500 ns (Note 1)
400 kHz mode ns
SP110* TBUF Bus free time 100 kHz mode 4.7 s Time the bus must be free
before a new transmission
can start
400 kHz mode 1.3 s
SP111 CBBus capacitive loading 400 pF
* These parameters are characterized but not tested.
Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region
(min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.
2: A Fast mode (400 kHz) I2C bus device can be used in a Standard mode (100 kHz) I2C bus system, but
the requirement T
SU:DAT 250 ns must then be met. This will automatically be the case if the device does
not stretch the low period of the SCL signal. If such a device does stretch the low period of the SCL signal,
it must output the next data bit to the SDA line TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to
the Standard mode I2C bus specification), before the SCL line is released.
2012 Microchip Technology Inc. Preliminary DS41639A-page 381
PIC16(L)F1454/5/9
NOTES:
PIC16(L)F1454/5/9
DS41639A-page 382 Preliminary 2012 Microchip Technology Inc.
2012 Microchip Technology Inc. Preliminary DS41639A-page 383
PIC16(L)F1454/5/9
30.0 DC AND AC
CHARACTERISTICS GRAPHS
AND CHARTS
Graphs and charts are not available at this time.
PIC16(L)F1454/5/9
DS41639A-page 384 Preliminary 2012 Microchip Technology Inc.
NOTES:
2012 Microchip Technology Inc. Preliminary DS41639A-page 385
PIC16(L)F1454/5/9
31.0 DEVELOPMENT SUPPORT
The PIC® microcontrollers and dsPIC® digital signal
controllers are supported with a full range of software
and hardware development tools:
Integrated Development Environment
- MPLAB® IDE Software
Compilers/Assemblers/Linkers
- MPLAB C Compiler for Various Device
Families
- HI-TECH C® for Various Device Families
- MPASMTM Assembler
-MPLINK
TM Object Linker/
MPLIBTM Object Librarian
- MPLAB Assembler/Linker/Librarian for
Various Device Families
Simulators
- MPLAB SIM Software Simulator
•Emulators
- MPLAB REAL ICE™ In-Circuit Emulator
In-Circuit Debuggers
- MPLAB ICD 3
- PICkit™ 3 Debug Express
Device Programmers
- PICkit™ 2 Programmer
- MPLAB PM3 Device Programmer
Low-Cost Demonstration/Development Boards,
Evaluation Kits, and Starter Kits
31.1 MPLAB Integrated Development
Environment Software
The MPLAB IDE software brings an ease of software
development previously unseen in the 8/16/32-bit
microcontroller market. The MPLAB IDE is a Windows®
operating system-based application that contains:
A single graphical interface to all debugging tools
- Simulator
- Programmer (sold separately)
- In-Circuit Emulator (sold separately)
- In-Circuit Debugger (sold separately)
A full-featured editor with color-coded context
A multiple project manager
Customizable data windows with direct edit of
contents
High-level source code debugging
Mouse over variable inspection
Drag and drop variables from source to watch
windows
Extensive on-line help
Integration of select third party tools, such as
IAR C Compilers
The MPLAB IDE allows you to:
Edit your source files (either C or assembly)
One-touch compile or assemble, and download to
emulator and simulator tools (automatically
updates all project information)
Debug using:
- Source files (C or assembly)
- Mixed C and assembly
- Machine code
MPLAB IDE supports multiple debugging tools in a
single development paradigm, from the cost-effective
simulators, through low-cost in-circuit debuggers, to
full-featured emulators. This eliminates the learning
curve when upgrading to tools with increased flexibility
and power.
PIC16(L)F1454/5/9
DS41639A-page 386 Preliminary 2012 Microchip Technology Inc.
31.2 MPLAB C Compilers for Various
Device Families
The MPLAB C Compiler code development systems
are complete ANSI C compilers for Microchip’s PIC18,
PIC24 and PIC32 families of microcontrollers and the
dsPIC30 and dsPIC33 families of digital signal control-
lers. These compilers provide powerful integration
capabilities, superior code optimization and ease of
use.
For easy source level debugging, the compilers provide
symbol information that is optimized to the MPLAB IDE
debugger.
31.3 HI-TECH C for Various Device
Families
The HI-TECH C Compiler code development systems
are complete ANSI C compilers for Microchip’s PIC
family of microcontrollers and the dsPIC family of digital
signal controllers. These compilers provide powerful
integration capabilities, omniscient code generation
and ease of use.
For easy source level debugging, the compilers provide
symbol information that is optimized to the MPLAB IDE
debugger.
The compilers include a macro assembler, linker, pre-
processor, and one-step driver, and can run on multiple
platforms.
31.4 MPASM Assembler
The MPASM Assembler is a full-featured, universal
macro assembler for PIC10/12/16/18 MCUs.
The MPASM Assembler generates relocatable object
files for the MPLINK Object Linker, Intel® standard HEX
files, MAP files to detail memory usage and symbol
reference, absolute LST files that contain source lines
and generated machine code and COFF files for
debugging.
The MPASM Assembler features include:
Integration into MPLAB IDE projects
User-defined macros to streamline
assembly code
Conditional assembly for multi-purpose
source files
Directives that allow complete control over the
assembly process
31.5 MPLINK Object Linker/
MPLIB Object Librarian
The MPLINK Object Linker combines relocatable
objects created by the MPASM Assembler and the
MPLAB C18 C Compiler. It can link relocatable objects
from precompiled libraries, using directives from a
linker script.
The MPLIB Object Librarian manages the creation and
modification of library files of precompiled code. When
a routine from a library is called from a source file, only
the modules that contain that routine will be linked in
with the application. This allows large libraries to be
used efficiently in many different applications.
The object linker/library features include:
Efficient linking of single libraries instead of many
smaller files
Enhanced code maintainability by grouping
related modules together
Flexible creation of libraries with easy module
listing, replacement, deletion and extraction
31.6 MPLAB Assembler, Linker and
Librarian for Various Device
Families
MPLAB Assembler produces relocatable machine
code from symbolic assembly language for PIC24,
PIC32 and dsPIC devices. MPLAB C Compiler uses
the assembler to produce its object file. The assembler
generates relocatable object files that can then be
archived or linked with other relocatable object files and
archives to create an executable file. Notable features
of the assembler include:
Support for the entire device instruction set
Support for fixed-point and floating-point data
Command line interface
Rich directive set
Flexible macro language
MPLAB IDE compatibility
2012 Microchip Technology Inc. Preliminary DS41639A-page 387
PIC16(L)F1454/5/9
31.7 MPLAB SIM Software Simulator
The MPLAB SIM Software Simulator allows code
development in a PC-hosted environment by simulat-
ing the PIC MCUs and dsPIC® DSCs on an instruction
level. On any given instruction, the data areas can be
examined or modified and stimuli can be applied from
a comprehensive stimulus controller. Registers can be
logged to files for further run-time analysis. The trace
buffer and logic analyzer display extend the power of
the simulator to record and track program execution,
actions on I/O, most peripherals and internal registers.
The MPLAB SIM Software Simulator fully supports
symbolic debugging using the MPLAB C Compilers,
and the MPASM and MPLAB Assemblers. The soft-
ware simulator offers the flexibility to develop and
debug code outside of the hardware laboratory envi-
ronment, making it an excellent, economical software
development tool.
31.8 MPLAB REAL ICE In-Circuit
Emulator System
MPLAB REAL ICE In-Circuit Emulator System is
Microchip’s next generation high-speed emulator for
Microchip Flash DSC and MCU devices. It debugs and
programs PIC® Flash MCUs and dsPIC® Flash DSCs
with the easy-to-use, powerful graphical user interface of
the MPLAB Integrated Development Environment (IDE),
included with each kit.
The emulator is connected to the design engineer’s PC
using a high-speed USB 2.0 interface and is connected
to the target with either a connector compatible with in-
circuit debugger systems (RJ11) or with the new high-
speed, noise tolerant, Low-Voltage Differential Signal
(LVDS) interconnection (CAT5).
The emulator is field upgradable through future firmware
downloads in MPLAB IDE. In upcoming releases of
MPLAB IDE, new devices will be supported, and new
features will be added. MPLAB REAL ICE offers
significant advantages over competitive emulators
including low-cost, full-speed emulation, run-time
variable watches, trace analysis, complex breakpoints, a
ruggedized probe interface and long (up to three meters)
interconnection cables.
31.9 MPLAB ICD 3 In-Circuit Debugger
System
MPLAB ICD 3 In-Circuit Debugger System is Micro-
chip's most cost effective high-speed hardware
debugger/programmer for Microchip Flash Digital Sig-
nal Controller (DSC) and microcontroller (MCU)
devices. It debugs and programs PIC® Flash microcon-
trollers and dsPIC® DSCs with the powerful, yet easy-
to-use graphical user interface of MPLAB Integrated
Development Environment (IDE).
The MPLAB ICD 3 In-Circuit Debugger probe is con-
nected to the design engineer's PC using a high-speed
USB 2.0 interface and is connected to the target with a
connector compatible with the MPLAB ICD 2 or MPLAB
REAL ICE systems (RJ-11). MPLAB ICD 3 supports all
MPLAB ICD 2 headers.
31.10 PICkit 3 In-Circuit Debugger/
Programmer and
PICkit 3 Debug Express
The MPLAB PICkit 3 allows debugging and program-
ming of PIC® and dsPIC® Flash microcontrollers at a
most affordable price point using the powerful graphical
user interface of the MPLAB Integrated Development
Environment (IDE). The MPLAB PICkit 3 is connected
to the design engineer's PC using a full speed USB
interface and can be connected to the target via an
Microchip debug (RJ-11) connector (compatible with
MPLAB ICD 3 and MPLAB REAL ICE). The connector
uses two device I/O pins and the reset line to imple-
ment in-circuit debugging and In-Circuit Serial Pro-
gramming™.
The PICkit 3 Debug Express include the PICkit 3, demo
board and microcontroller, hookup cables and CDROM
with user’s guide, lessons, tutorial, compiler and
MPLAB IDE software.
PIC16(L)F1454/5/9
DS41639A-page 388 Preliminary 2012 Microchip Technology Inc.
31.11 PICkit 2 Development
Programmer/Debugger and
PICkit 2 Debug Express
The PICkit™ 2 Development Programmer/Debugger is
a low-cost development tool with an easy to use inter-
face for programming and debugging Microchip’s Flash
families of microcontrollers. The full featured
Windows® programming interface supports baseline
(PIC10F, PIC12F5xx, PIC16F5xx), midrange
(PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30,
dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit
microcontrollers, and many Microchip Serial EEPROM
products. With Microchip’s powerful MPLAB Integrated
Development Environment (IDE) the PICkit™ 2
enables in-circuit debugging on most PIC® microcon-
trollers. In-Circuit-Debugging runs, halts and single
steps the program while the PIC microcontroller is
embedded in the application. When halted at a break-
point, the file registers can be examined and modified.
The PICkit 2 Debug Express include the PICkit 2, demo
board and microcontroller, hookup cables and CDROM
with user’s guide, lessons, tutorial, compiler and
MPLAB IDE software.
31.12 MPLAB PM3 Device Programmer
The MPLAB PM3 Device Programmer is a universal,
CE compliant device programmer with programmable
voltage verification at VDDMIN and VDDMAX for
maximum reliability. It features a large LCD display
(128 x 64) for menus and error messages and a modu-
lar, detachable socket assembly to support various
package types. The ICSP™ cable assembly is included
as a standard item. In Stand-Alone mode, the MPLAB
PM3 Device Programmer can read, verify and program
PIC devices without a PC connection. It can also set
code protection in this mode. The MPLAB PM3
connects to the host PC via an RS-232 or USB cable.
The MPLAB PM3 has high-speed communications and
optimized algorithms for quick programming of large
memory devices and incorporates an MMC card for file
storage and data applications.
31.13 Demonstration/Development
Boards, Evaluation Kits, and
Starter Kits
A wide variety of demonstration, development and
evaluation boards for various PIC MCUs and dsPIC
DSCs allows quick application development on fully func-
tional systems. Most boards include prototyping areas for
adding custom circuitry and provide application firmware
and source code for examination and modification.
The boards support a variety of features, including LEDs,
temperature sensors, switches, speakers, RS-232
interfaces, LCD displays, potentiometers and additional
EEPROM memory.
The demonstration and development boards can be
used in teaching environments, for prototyping custom
circuits and for learning about various microcontroller
applications.
In addition to the PICDEM™ and dsPICDEM™ demon-
stration/development board series of circuits, Microchip
has a line of evaluation kits and demonstration software
for analog filter design, KEELOQ® security ICs, CAN,
IrDA®, PowerSmart battery management, SEEVAL®
evaluation system, Sigma-Delta ADC, flow rate
sensing, plus many more.
Also available are starter kits that contain everything
needed to experience the specified device. This usually
includes a single application and debug capability, all
on one board.
Check the Microchip web page (www.microchip.com)
for the complete list of demonstration, development
and evaluation kits.
2012 Microchip Technology Inc. Preliminary DS41639A-page 389
PIC16(L)F1454/5/9
32.0 PACKAGING INFORMATION
32.1 Package Marking Information
*Standard PICmicro® device marking consists of Microchip part number, year code, week code and
traceability code. For PICmicro device marking beyond this, certain price adders apply. Please check
with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP
price.
Legend: XX...X Customer-specific information
Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week ‘01’)
NNN Alphanumeric traceability code
Pb-free JEDEC designator for Matte Tin (Sn)
*This package is Pb-free. The Pb-free JEDEC designator ( )
can be found on the outer packaging for this package.
Note: In the event the full Microchip part number cannot be marked on one line, it will
be carried over to the next line, thus limiting the number of available
characters for customer-specific information.
3
e
3
e
14-Lead PDIP (300 mil) Example
14-Lead SOIC (3.90 mm) Example
PIC16F1455
-E/SL
3
e
1220123
PIC16F1454
-E/P
3
e
1220123
PIC16(L)F1454/5/9
DS41639A-page 390 Preliminary 2012 Microchip Technology Inc.
20-Lead PDIP (300 mil) Example
XXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXX
YYWWNNN
PIC16F1459
-E/P
3
e
1220123
14-Lead TSSOP (4.4 mm) Example
YYWW
NNN
XXXXXXXX
16-Lead QFN (4x4x0.9 mm) Example
PIN 1 PIN 1
PIC16
F1455
E/ML
220123
F1454EST
123
1220
3
e
2012 Microchip Technology Inc. Preliminary DS41639A-page 391
PIC16(L)F1454/5/9
20-Lead SSOP (5.30 mm) Example
-E/SS
3
e
1220123
PIC16F1459
20-Lead SOIC (7.50 mm) Example
PIC16F1459
-E/SO
3
e
1220123
20-Lead QFN (4x4x0.9 mm)
PIN 1 PIN 1
Example
PIC16
F1459
E/ML
220123
3
e
PIC16(L)F1454/5/9
DS41639A-page 392 Preliminary 2012 Microchip Technology Inc.
32.2 Package Details
The following sections give the technical details of the packages.


 
 
 
 

 

 
   
 
 
 
    
  
   
    
   
   
   
    
   
  
N
E1
D
NOTE 1
123
E
c
eB
A2
L
A
A1 b1
be
   
2012 Microchip Technology Inc. Preliminary DS41639A-page 393
PIC16(L)F1454/5/9
Note: For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
PIC16(L)F1454/5/9
DS41639A-page 394 Preliminary 2012 Microchip Technology Inc.
Note: For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
2012 Microchip Technology Inc. Preliminary DS41639A-page 395
PIC16(L)F1454/5/9
Note: For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
PIC16(L)F1454/5/9
DS41639A-page 396 Preliminary 2012 Microchip Technology Inc.
Note: For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
2012 Microchip Technology Inc. Preliminary DS41639A-page 397
PIC16(L)F1454/5/9
Note: For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
PIC16(L)F1454/5/9
DS41639A-page 398 Preliminary 2012 Microchip Technology Inc.
!"#$%&'(()*"#

 
 
 
 
 
 

 
   
 
 
   
    
 
 
    
 
    
   
   
 
D
E
N
2
1
EXPOSED
PAD
D2
E2
2
1
e
b
K
N
NOTE 1
A3
A1
A
L
TOP VIEW BOTTOM VIEW
   
2012 Microchip Technology Inc. Preliminary DS41639A-page 399
PIC16(L)F1454/5/9
Note: For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
PIC16(L)F1454/5/9
DS41639A-page 400 Preliminary 2012 Microchip Technology Inc.
+

 
 
 
 
 
 

 
   
 
 
 
    
  
   
    
   
   
   
    
   
  
N
E1
NOTE 1
D
123
A
A1
A2
L
e
b1
b
E
c
eB
   
2012 Microchip Technology Inc. Preliminary DS41639A-page 401
PIC16(L)F1454/5/9
Note: For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
PIC16(L)F1454/5/9
DS41639A-page 402 Preliminary 2012 Microchip Technology Inc.
Note: For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
2012 Microchip Technology Inc. Preliminary DS41639A-page 403
PIC16(L)F1454/5/9
+,-.%,/,,0),,/

 
 
 
 
 
 

 
   
 
 
 
    
  
   
    
   
   
  
  
   
  
φ
L
L1
A2 c
e
b
A1
A
12
NOTE 1
E1
E
D
N
   
PIC16(L)F1454/5/9
DS41639A-page 404 Preliminary 2012 Microchip Technology Inc.
Note: For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
2012 Microchip Technology Inc. Preliminary DS41639A-page 405
PIC16(L)F1454/5/9
+"#$%&'(()*"#

 
 
 
 
 
 

 
   
 
 
   
    
  
 
    
 
    
   
   
 
D
EXPOSED
PAD
E
E2
2
1
N
TOP VIEW NOTE 1
N
L
K
b
e
D2
2
1
A
A1
A3
BOTTOM VIEW
   
PIC16(L)F1454/5/9
DS41639A-page 406 Preliminary 2012 Microchip Technology Inc.
 

2012 Microchip Technology Inc. Preliminary DS41639A-page 407
PIC16(L)F1454/5/9
APPENDIX A: DATA SHEET
REVISION HISTORY
Revision A (06/2012)
Initial release.
PIC16(L)F1454/5/9
DS41639A-page 408 Preliminary 2012 Microchip Technology Inc.
NOTES:
2012 Microchip Technology Inc. Preliminary DS41639A-page 409
PIC16(L)F1454/5/9
INDEX
A
A/D
Specifications.................................................... 371, 372
Absolute Maximum Ratings .............................................. 353
AC Characteristics
Industrial and Extended ............................................ 367
Load Conditions ........................................................ 366
ACKSTAT ......................................................................... 238
ACKSTAT Status Flag ...................................................... 238
ADC .................................................................................. 153
Acquisition Requirements ......................................... 165
Associated registers.................................................. 167
Block Diagram........................................................... 154
Calculating Acquisition Time..................................... 165
Channel Selection..................................................... 155
Configuration............................................................. 155
Configuring Interrupt ................................................. 159
Conversion Clock...................................................... 155
Conversion Procedure .............................................. 159
Internal Sampling Switch (RSS) Impedance.............. 165
Interrupts................................................................... 157
Operation .................................................................. 158
Operation During Sleep ............................................ 158
Port Configuration..................................................... 155
Reference Voltage (VREF)......................................... 155
Source Impedance.................................................... 165
Starting an A/D Conversion ...................................... 157
ADCON0 Register....................................................... 38, 160
ADCON1 Register....................................................... 38, 161
ADCON2 Register............................................................. 162
ADDFSR ........................................................................... 343
ADDWFC .......................................................................... 343
ADRESH Register............................................................... 38
ADRESH Register (ADFM = 0)......................................... 163
ADRESH Register (ADFM = 1)......................................... 164
ADRESL Register (ADFM = 0).......................................... 163
ADRESL Register (ADFM = 1).......................................... 164
Alternate Pin Function....................................................... 130
Analog-to-Digital Converter. See ADC
ANSELA Register ............................................................. 133
ANSELB Register ............................................................. 137
ANSELC Register ............................................................. 141
APFCON Register............................................................. 130
Assembler
MPASM Assembler................................................... 386
Automatic Context Saving................................................... 95
B
Bank 10............................................................................... 41
Bank 11............................................................................... 41
Bank 12............................................................................... 41
Bank 13............................................................................... 41
Bank 14-28.......................................................................... 41
Bank 2................................................................................. 39
Bank 3................................................................................. 39
Bank 30............................................................................... 42
Bank 31............................................................................... 43
Bank 4................................................................................. 40
Bank 5................................................................................. 40
Bank 6................................................................................. 40
Bank 7................................................................................. 40
Bank 8................................................................................. 40
Bank 9................................................................................. 40
BAUDCON Register ......................................................... 269
BF ............................................................................. 238, 240
BF Status Flag.......................................................... 238, 240
Block Diagrams
ADC .......................................................................... 154
ADC Transfer Function............................................. 166
Analog Input Model........................................... 166, 178
Clock Source .............................................................. 58
Comparator............................................................... 174
Crystal Operation.................................................. 60, 61
Digital-to-Analog Converter (DAC) ........................... 170
EUSART Receive..................................................... 258
EUSART Transmit.................................................... 257
External RC Mode ...................................................... 62
Fail-Safe Clock Monitor (FSCM)................................. 71
Generic I/O Port........................................................ 129
Interrupt Logic............................................................. 91
On-Chip Reset Circuit................................................. 79
PIC16(L)F1454/5/9 ..................................................... 14
PIC16C74................................................................. 5, 6
PIC16C74A............................................................... 5, 6
PWM......................................................................... 287
Resonator Operation .................................................. 60
Self Tuning ................................................................. 73
Timer0 ...................................................................... 183
Timer1 ...................................................................... 187
Timer1 Gate.............................................. 192, 193, 194
Timer2 ...................................................................... 199
USB Interrupt Logic .................................................. 318
USB Peripheral and Options .................................... 309
Voltage Reference.................................................... 149
Voltage Reference Output Buffer Example .............. 170
BORCON Register.............................................................. 81
BRA .................................................................................. 344
Break Character (12-bit) Transmit and Receive ............... 278
Brown-out Reset (BOR)...................................................... 81
Specifications ........................................................... 370
Timing and Characteristics ....................................... 369
C
C Compilers
MPLAB C18.............................................................. 386
CALL................................................................................. 345
CALLW ............................................................................. 345
CLKRCON Register............................................................ 88
Clock Accuracy with Asynchronous Operation ................. 266
Clock Sources
External Modes........................................................... 59
EC ...................................................................... 59
HS ...................................................................... 59
LP ....................................................................... 59
OST .................................................................... 60
RC ...................................................................... 62
XT....................................................................... 59
Internal Modes............................................................ 62
HFINTOSC ......................................................... 62
Internal Oscillator Clock Switch Timing .............. 64
LFINTOSC.......................................................... 63
Clock Switching ............................................................ 66, 67
CMOUT Register .............................................................. 180
CMxCON0 Register.......................................................... 179
CMxCON1 Register.......................................................... 180
PIC16(L)F1454/5/9
DS41639A-page 410 Preliminary 2012 Microchip Technology Inc.
Code Examples
A/D Conversion.........................................................159
Initializing PORTA............................................. 129, 131
Writing to Flash Program Memory ............................121
Comparator
Associated Registers ................................................181
Operation .................................................................. 173
Comparator Module .......................................................... 173
Cx Output State Versus Input Conditions ................. 175
Comparator Specifications................................................ 374
Comparators
C2OUT as T1 Gate ...................................................189
Complementary Waveform Generator (CWG) .......... 293, 294
CONFIG1 Register.............................................................. 52
CONFIG2 Register.............................................................. 54
Core Function Register .......................................................37
CPU Clock Divider ..............................................................66
Customer Change Notification Service ............................. 415
Customer Notification Service........................................... 415
Customer Support ............................................................. 415
CWG
Auto-shutdown Control ............................................. 300
Clock Source.............................................................296
Output Control...........................................................296
Selectable Input Sources .......................................... 296
CWGxCON0 Register ....................................................... 303
CWGxCON1 Register ....................................................... 304
CWGxCON2 Register ....................................................... 305
CWGxDBF Register..........................................................306
CWGxDBR Register..........................................................306
D
DACCON0 (Digital-to-Analog Converter
Control 0) Register....................................................172
DACCON1 (Digital-to-Analog Converter
Control 1) Register....................................................172
Data Memory....................................................................... 26
DC and AC Characteristics ............................................... 383
DC Characteristics
Extended and Industrial ............................................ 362
Industrial and Extended ............................................ 355
Development Support ....................................................... 385
Device Configuration...........................................................51
Code Protection .......................................................... 55
Configuration Word .....................................................51
Device ID and Revision ID .......................................... 56
User ID........................................................................55
Device ID Register ..............................................................56
Device Overview .........................................................13, 107
Digital-to-Analog Converter (DAC).................................... 169
Associated Registers ................................................172
Effects of a Reset......................................................170
Specifications............................................................ 374
E
Effects of Reset
PWM mode ............................................................... 289
Electrical Specifications .................................................... 353
Enhanced Mid-Range CPU................................................. 21
Enhanced Universal Synchronous Asynchronous
Receiver Transmitter (EUSART)............................... 257
Equations
Estimating USB Transceiver Current
Consumption..................................................... 322
Errata .................................................................................. 11
EUSART ........................................................................... 257
Associated Registers
Baud Rate Generator ....................................... 271
Asynchronous Mode ................................................. 259
12-bit Break Transmit and Receive .................. 278
Associated Registers
Receive .................................................... 265
Transmit.................................................... 261
Auto-Wake-up on Break ................................... 276
Baud Rate Generator (BRG) ............................ 270
Clock Accuracy................................................. 266
Receiver ........................................................... 262
Setting up 9-bit Mode with Address Detect ...... 264
Transmitter ....................................................... 259
Baud Rate Generator (BRG)
Auto Baud Rate Detect..................................... 275
Baud Rate Error, Calculating............................ 270
Baud Rates, Asynchronous Modes .................. 272
Formulas........................................................... 271
High Baud Rate Select (BRGH Bit) .................. 270
Synchronous Master Mode............................... 279, 283
Associated Registers
Receive .................................................... 282
Transmit.................................................... 280
Reception ......................................................... 281
Transmission .................................................... 279
Synchronous Slave Mode
Associated Registers
Receive .................................................... 284
Transmit.................................................... 283
Reception ......................................................... 284
Transmission .................................................... 283
Extended Instruction Set
ADDFSR................................................................... 343
F
Fail-Safe Clock Monitor ...................................................... 71
Fail-Safe Condition Clearing....................................... 71
Fail-Safe Detection ..................................................... 71
Fail-Safe Operation..................................................... 71
Reset or Wake-up from Sleep .................................... 71
Firmware Instructions ....................................................... 339
Fixed Voltage Reference (FVR)........................................ 149
Associated Registers................................................ 150
Flash Program Memory .................................................... 112
Associated Registers................................................ 128
Configuration Word w/ Flash
Program Memory.............................................. 128
Erasing ..................................................................... 116
Modifying .................................................................. 122
Write Verify ............................................................... 124
Writing ...................................................................... 118
FSR Register ...................................................................... 37
FVRCON (Fixed Voltage Reference Control) Register..... 150
I
I2C Mode (MSSP)
Acknowledge Sequence Timing ............................... 242
Bus Collision
During a Repeated Start Condition................... 246
During a Stop Condition ................................... 247
Effects of a Reset ..................................................... 243
I2C Clock Rate w/BRG.............................................. 249
Master Mode
Operation.......................................................... 234
Reception ......................................................... 240
2012 Microchip Technology Inc. Preliminary DS41639A-page 411
PIC16(L)F1454/5/9
Start Condition Timing .............................. 236, 237
Transmission .................................................... 238
Multi-Master Communication, Bus Collision
and Arbitration .................................................. 243
Multi-Master Mode .................................................... 243
Read/Write Bit Information (R/W Bit) ........................ 219
Slave Mode
Transmission .................................................... 224
Sleep Operation ........................................................ 243
Stop Condition Timing............................................... 242
INDF Register ..................................................................... 37
Indirect Addressing ............................................................. 47
Instruction Format ............................................................. 340
Instruction Set ................................................................... 339
ADDLW ..................................................................... 343
ADDWF..................................................................... 343
ADDWFC .................................................................. 343
ANDLW ..................................................................... 343
ANDWF..................................................................... 343
BRA........................................................................... 344
CALL ......................................................................... 345
CALLW...................................................................... 345
LSLF ......................................................................... 347
LSRF......................................................................... 347
MOVF........................................................................ 347
MOVIW ..................................................................... 348
MOVLB ..................................................................... 348
MOVWI ..................................................................... 349
OPTION .................................................................... 349
RESET ...................................................................... 349
SUBWFB................................................................... 351
TRIS.......................................................................... 352
BCF........................................................................... 344
BSF........................................................................... 344
BTFSC ...................................................................... 344
BTFSS ...................................................................... 344
CALL ......................................................................... 345
CLRF......................................................................... 345
CLRW ....................................................................... 345
CLRWDT................................................................... 345
COMF ....................................................................... 345
DECF ........................................................................ 345
DECFSZ.................................................................... 346
GOTO ....................................................................... 346
INCF.......................................................................... 346
INCFSZ..................................................................... 346
IORLW ...................................................................... 346
IORWF ...................................................................... 346
MOVLW .................................................................... 348
MOVWF .................................................................... 348
NOP .......................................................................... 349
RETFIE ..................................................................... 350
RETLW ..................................................................... 350
RETURN ................................................................... 350
RLF ........................................................................... 350
RRF........................................................................... 351
SLEEP ...................................................................... 351
SUBLW ..................................................................... 351
SUBWF..................................................................... 351
SWAPF ..................................................................... 352
XORLW..................................................................... 352
XORWF..................................................................... 352
INTCON Register................................................................ 96
Internal Oscillator Block
INTOSC
Specifications ................................................... 367
Internal Sampling Switch (RSS) Impedance ..................... 165
Internet Address ............................................................... 415
Interrupt-On-Change......................................................... 143
Associated Registers................................................ 148
Interrupts ............................................................................ 91
ADC .......................................................................... 159
Associated registers w/ Interrupts ............................ 101
Configuration Word w/ Clock Sources........................ 78
Configuration Word w/ Reference Clock Sources ...... 89
TMR1........................................................................ 191
INTOSC Specifications..................................................... 367
IOCAF Register ................................................................ 146
IOCAN Register................................................................ 145
IOCAP Register ................................................................ 145
IOCBF Register ................................................................ 147
IOCBN Register................................................................ 147
IOCBP Register ................................................................ 146
L
LATA Register .......................................................... 133, 141
LATB Register .................................................................. 137
Load Conditions................................................................ 366
LSLF ................................................................................. 347
LSRF ................................................................................ 347
M
Master Synchronous Serial Port. See MSSP
MCLR ................................................................................. 82
Internal........................................................................ 82
Memory Organization ......................................................... 23
Data ............................................................................ 26
Program...................................................................... 23
Microchip Internet Web Site.............................................. 415
MOVIW ............................................................................. 348
MOVLB ............................................................................. 348
MOVWI ............................................................................. 349
MPLAB ASM30 Assembler, Linker, Librarian................... 386
MPLAB Integrated Development
Environment Software .............................................. 385
MPLAB PM3 Device Programmer .................................... 388
MPLAB REAL ICE In-Circuit Emulator System ................ 387
MPLINK Object Linker/MPLIB Object Librarian................ 386
MSSP ............................................................................... 203
SPI Mode.................................................................. 206
SSPBUF Register..................................................... 209
SSPSR Register....................................................... 209
MSSPx
I2C Mode .................................................................. 214
I2C Mode Operation.................................................. 216
O
OPCODE Field Descriptions............................................. 339
OPTION............................................................................ 349
OPTION_REG Register.................................................... 185
OSCCON Register.............................................................. 75
Oscillator
Associated Registers.................................................. 78
Associated registers ................................................. 307
Oscillator Module........................................................ 57, 309
ECH ............................................................................ 57
ECL............................................................................. 57
ECM............................................................................ 57
HS............................................................................... 57
PIC16(L)F1454/5/9
DS41639A-page 412 Preliminary 2012 Microchip Technology Inc.
INTOSC ......................................................................57
LP................................................................................ 57
RC............................................................................... 57
XT ............................................................................... 57
Oscillator Parameters........................................................ 367
Oscillator Specifications....................................................367
Oscillator Start-up Timer (OST)
Specifications............................................................ 370
Oscillator Switching
Fail-Safe Clock Monitor...............................................71
Two-Speed Clock Start-up.......................................... 69
OSCSTAT Register............................................................. 76
OSCTUNE Register ............................................................77
P
Packaging ......................................................................... 389
Marking ..................................................................... 389
PDIP Details..............................................................392
PCL and PCLATH............................................................... 21
PCL Register.......................................................................37
PCLATH Register................................................................37
PCON Register ............................................................. 38, 85
PIE1 Register................................................................ 38, 97
PIE2 Register................................................................ 38, 98
Pinout Descriptions
PIC16(L)F1454 ........................................................... 15
PIC16(L)F1455 ........................................................... 17
PIC16(L)F1459 ........................................................... 19
PIR1 Register................................................................ 38, 99
PIR2 Register..............................................................38, 100
PMADR Registers............................................................. 112
PMADRH Registers .......................................................... 112
PMADRL Register............................................................. 126
PMADRL Registers...........................................................112
PMCON1 Register .................................................... 112, 127
PMCON2 Register .................................................... 112, 128
PMDATH Register.............................................................125
PMDATL Register ............................................................. 125
PMDRH Register............................................................... 126
PORTA.............................................................................. 131
Associated Registers ................................................134
LATA Register.............................................................39
PORTA Register .........................................................38
Specifications............................................................ 368
PORTA Register ............................................................... 132
PORTB.............................................................................. 135
Associated Registers ................................................138
LATB Register.............................................................39
PORTB Register .........................................................38
PORTB Register ............................................................... 136
PORTC
Associated Registers ................................................141
LATC Register ............................................................39
Pin Descriptions and Diagrams................................. 139
PORTC Register ......................................................... 38
PORTC Register ...............................................................140
Power-Down Mode (Sleep) ............................................... 103
Associated Registers ................................................106
Power-on Reset ..................................................................80
Power-up Time-out Sequence ............................................ 82
Power-up Timer (PWRT).....................................................80
Specifications............................................................ 370
PR2 Register.......................................................................38
Program Memory ................................................................ 23
Map and Stack (PIC16(L)F1509 ................................. 24
Programming, Device Instructions ....................................339
Pulse Width Modulation (PWM)........................................ 287
Associated registers w/ PWM................................... 292
PWM Mode
Duty Cycle ........................................................ 288
Effects of Reset ................................................ 289
Example PWM Frequencies and
Resolutions, 20 MHZ................................ 289
Example PWM Frequencies and
Resolutions, 8 MHz .................................. 289
Operation in Sleep Mode.................................. 289
Setup for Operation using PWMx pins ............. 290
System Clock Frequency Changes .................. 289
PWM Period.............................................................. 288
Setup for PWM Operation using PWMx Pins ........... 290
PWMxCON Register......................................................... 291
PWMxDCH Register ......................................................... 292
PWMxDCL Register.......................................................... 292
R
RCREG............................................................................. 264
RCREG Register ................................................................ 39
RCSTA Register ......................................................... 39, 268
Reader Response............................................................. 416
Read-Modify-Write Operations ......................................... 339
Reference Clock ................................................................. 87
Associated Registers.................................................. 89
Registers
ADCON0 (ADC Control 0) ........................................ 160
ADCON1 (ADC Control 1) ........................................ 161
ADCON2 (ADC Control 2) ........................................ 162
ADRESH (ADC Result High) with ADFM = 0) .......... 163
ADRESH (ADC Result High) with ADFM = 1) .......... 164
ADRESL (ADC Result Low) with ADFM = 0)............ 163
ADRESL (ADC Result Low) with ADFM = 1)............ 164
ANSELA (PORTA Analog Select)............................. 133
ANSELB (PORTB Analog Select)............................. 137
ANSELC (PORTC Analog Select) ............................ 141
APFCON (Alternate Pin Function Control) ............... 130
BAUDCON (Baud Rate Control)............................... 269
BDnSTAT (Buffer Descriptor n Status,
CPU Mode)............................................... 314, 330
BDnSTAT (Buffer Descriptor n Status,
SIE Mode)................................................. 315, 331
BORCON Brown-out Reset Control) .......................... 81
CLKRCON (Reference Clock Control)........................ 88
CMOUT (Comparator Output) .................................. 180
CMxCON0 (Cx Control)............................................ 179
CMxCON1 (Cx Control 1)......................................... 180
Configuration Word 1.................................................. 52
Configuration Word 2.................................................. 54
Core Function, Summary............................................ 37
CWGxCON0 (CWG Control 0) ................................. 303
CWGxCON1 (CWG Control 1) ................................. 304
CWGxCON2 (CWG Control 1) ................................. 305
CWGxDBF (CWGx Dead Band Falling Count)......... 306
CWGxDBR (CWGx Dead Band Rising Count) ......... 306
DACCON0 ................................................................ 172
DACCON1 ................................................................ 172
Device ID .................................................................... 56
FVRCON................................................................... 150
INTCON (Interrupt Control)......................................... 96
IOCAF (Interrupt-on-Change PORTA Flag).............. 146
IOCAN (Interrupt-on-Change PORTA
Negative Edge)................................................. 145
IOCAP (Interrupt-on-Change PORTA
Positive Edge) .................................................. 145
2012 Microchip Technology Inc. Preliminary DS41639A-page 413
PIC16(L)F1454/5/9
IOCBF (Interrupt-on-Change PORTB Flag).............. 147
IOCBN (Interrupt-on-Change PORTB
Negative Edge) ................................................. 147
IOCBP (Interrupt-on-Change PORTB
Positive Edge)................................................... 146
LATA (Data Latch PORTA)....................................... 133
LATB (Data Latch PORTB)....................................... 137
LATC (Data Latch PORTC) ......................................141
OPTION_REG (OPTION) ......................................... 185
OSCCON (Oscillator Control) ..................................... 75
OSCSTAT (Oscillator Status) ..................................... 76
OSCTUNE (Oscillator Tuning) .................................... 77
PCON (Power Control Register) ................................. 85
PCON (Power Control) ............................................... 85
PIE1 (Peripheral Interrupt Enable 1)........................... 97
PIE2 (Peripheral Interrupt Enable 2)........................... 98
PIR1 (Peripheral Interrupt Register 1) ........................ 99
PIR2 (Peripheral Interrupt Request 2) ...................... 100
PMADRL (Program Memory Address)...................... 126
PMCON1 (Program Memory Control 1).................... 127
PMCON2 (Program Memory Control 2).................... 128
PMDATH (Program Memory Data)........................... 125
PMDATL (Program Memory Data)............................ 125
PMDRH (Program Memory Address) ....................... 126
PORTA...................................................................... 132
PORTB...................................................................... 136
PORTC ..................................................................... 140
PWMxCON (PWM Control)....................................... 291
PWMxDCH (PWM Control)....................................... 292
PWMxDCL (PWM Control) ....................................... 292
RCREG ..................................................................... 275
RCSTA (Receive Status and Control)....................... 268
SPBRGH................................................................... 270
SPBRGL ................................................................... 270
Special Function, Summary ........................................ 38
SSPADD (MSSP Address and Baud Rate,
I2C Mode) ......................................................... 255
SSPCON1 (MSSP Control 1).................................... 252
SSPCON2 (SSP Control 2)....................................... 253
SSPCON3 (SSP Control 3)....................................... 254
SSPMSK (SSP Mask)............................................... 255
SSPSTAT (SSP Status)............................................ 250
STATUS...................................................................... 27
T1CON (Timer1 Control)........................................... 195
T1GCON (Timer1 Gate Control)............................... 196
T2CON...................................................................... 201
TRISA (Tri-State PORTA)......................................... 132
TRISB (Tri-State PORTB)......................................... 136
TRISC (Tri-State PORTC) ........................................ 140
TXSTA (Transmit Status and Control) ...................... 267
UCFG (USB Configuration)............................... 310, 327
UCON (USB Control) ........................................ 310, 326
UEIE (USB Error Interrupt Enable) ........................... 335
UEIE (USB Interrupt Enable) .................................... 319
UEIR (USB Error Interrupt Status) .................... 319, 334
UEPN (USB Endpoint Control) ................................. 312
UEPn (USB Endpoint n Control) ............................... 329
UIE (USB Interrupt Enable)............................... 319, 333
UIR (USB Interrupt Status) ............................... 319, 332
USTAT (USB Status) ........................................ 312, 328
VREGCON (Voltage Regulator Control) ................... 106
WDTCON (Watchdog Timer Control) ....................... 110
WPUA (Weak Pull-up PORTA)................................. 134
WPUB (Weak Pull-up PORTB)................................. 138
RESET .............................................................................. 349
Reset .................................................................................. 79
Reset Instruction................................................................. 82
Resets ................................................................................ 79
Associated Registers.................................................. 86
Revision History................................................................ 407
S
Software Simulator (MPLAB SIM) .................................... 387
SPBRG Register................................................................. 39
SPBRGH Register ............................................................ 270
SPBRGL Register............................................................. 270
Special Function Registers (SFRs)..................................... 38
SPI Mode (MSSP)
SPI Clock.................................................................. 209
SPI Mode (MSSPx)
Associated Registers................................................ 213
SSPADD Register............................................................. 255
SSPCON1 Register .......................................................... 252
SSPCON2 Register .......................................................... 253
SSPCON3 Register .......................................................... 254
SSPMSK Register ............................................................ 255
SSPOV ............................................................................. 240
SSPOV Status Flag .......................................................... 240
SSPSTAT Register........................................................... 250
R/W Bit ..................................................................... 219
ST
Block Diagram ............................................................ 73
Stack................................................................................... 45
Accessing ................................................................... 45
Reset .......................................................................... 47
Stack Overflow/Underflow .................................................. 82
STATUS Register ............................................................... 27
SUBWFB .......................................................................... 351
T
T1CON Register ......................................................... 38, 195
T1GCON Register ............................................................ 196
T2CON (Timer2) Register................................................. 201
T2CON Register ................................................................. 38
Temperature Indicator
Associated Registers................................................ 152
Temperature Indicator Module.......................................... 151
Thermal Considerations.................................................... 365
Timer0 .............................................................................. 183
Associated Registers................................................ 185
Operation.................................................................. 183
Specifications ........................................................... 371
Timer1 .............................................................................. 187
Associated registers ................................................. 197
Asynchronous Counter Mode ................................... 189
Reading and Writing......................................... 189
Clock Source Selection ............................................ 188
Interrupt .................................................................... 191
Operation.................................................................. 188
Operation During Sleep ............................................ 191
Oscillator................................................................... 189
Prescaler .................................................................. 189
Specifications ........................................................... 371
Timer1 Gate
Selecting Source .............................................. 189
TMR1H Register....................................................... 187
TMR1L Register ....................................................... 187
Timer2 .............................................................................. 199
Associated registers ................................................. 202
PIC16(L)F1454/5/9
DS41639A-page 414 Preliminary 2012 Microchip Technology Inc.
Timers
Timer1
T1CON.............................................................. 195
T1GCON ........................................................... 196
Timer2
T2CON.............................................................. 201
Timing Diagrams
A/D Conversion.........................................................372
A/D Conversion (Sleep Mode) .................................. 373
Acknowledge Sequence ........................................... 242
Asynchronous Reception .......................................... 264
Asynchronous Transmission..................................... 260
Asynchronous Transmission (Back to Back) ............ 260
Auto Wake-up Bit (WUE) During
Normal Operation..............................................277
Auto Wake-up Bit (WUE) During Sleep .................... 277
Automatic Baud Rate Calibration.............................. 275
Baud Rate Generator with Clock Arbitration ............. 235
BRG Reset Due to SDA Arbitration
During Start Condition....................................... 245
Brown-out Reset (BOR) ............................................369
Brown-out Reset Situations ........................................81
Bus Collision During a Repeated
Start Condition (Case 1) ................................... 246
Bus Collision During a Repeated
Start Condition (Case 2) ................................... 246
Bus Collision During a Start Condition (SCL = 0) ..... 245
Bus Collision During a Stop Condition (Case 1) ....... 247
Bus Collision During a Stop Condition (Case 2) ....... 247
Bus Collision During Start Condition (SDA only) ...... 244
Bus Collision for Transmit and Acknowledge............ 243
CLKOUT and I/O....................................................... 368
Clock Synchronization ..............................................232
Clock Timing .............................................................367
Comparator Output ...................................................173
Fail-Safe Clock Monitor (FSCM) .................................72
First Start Bit Timing .................................................236
I2C Bus Data .............................................................379
I2C Bus Start/Stop Bits..............................................379
I2C Master Mode (7 or 10-Bit Transmission) ............ 239
I2C Master Mode (7-Bit Reception)........................... 241
I2C Stop Condition Receive or Transmit Mode ......... 242
INT Pin Interrupt..........................................................94
Internal Oscillator Switch Timing.................................65
Repeat Start Condition.............................................. 237
Reset Start-up Sequence............................................ 83
Reset, WDT, OST and Power-up Timer ................... 369
Send Break Character Sequence ............................. 278
SPI Master Mode (CKE = 1, SMP = 1) .....................376
SPI Mode (Master Mode).......................................... 209
SPI Slave Mode (CKE = 0) .......................................377
SPI Slave Mode (CKE = 1) .......................................377
Synchronous Reception (Master Mode, SREN) ....... 282
Synchronous Transmission....................................... 280
Synchronous Transmission (Through TXEN) ........... 280
Timer0 and Timer1 External Clock ........................... 370
Timer1 Incrementing Edge........................................ 191
Two Speed Start-up .................................................... 70
USART Synchronous Receive (Master/Slave) ......... 375
USART Synchronous Transmission (Master/Slave) . 375
Wake-up from Interrupt .............................................104
Timing Parameter Symbology...........................................366
Timing Requirements
I2C Bus Data .............................................................380
I2C Bus Start/Stop Bits ............................................. 379
SPI Mode.................................................................. 378
TMR0 Register.................................................................... 38
TMR1H Register................................................................. 38
TMR1L Register.................................................................. 38
TMR2 Register.................................................................... 38
TRIS.................................................................................. 352
TRISA Register........................................................... 38, 132
TRISB Register........................................................... 38, 136
TRISC ............................................................................... 139
TRISC Register........................................................... 38, 140
Two-Speed Clock Start-up Mode........................................ 69
TXREG ............................................................................. 259
TXREG Register................................................................. 39
TXSTA Register.......................................................... 39, 267
BRGH Bit .................................................................. 270
U
Universal Serial Bus
Associated Registers................................................ 336
BD Address Validation.............................................. 315
BD Byte Count.......................................................... 315
Buffer Descriptor Table (BDT) .................................. 313
Buffer Descriptors
Assignment in Different Buffering Modes ......... 316
Example............................................................ 314
Memory Map..................................................... 316
Register Summary............................................ 317
Buffer Descriptors (BDn)........................................... 313
Interrupt-on-change .................................................. 323
Interrupts .................................................................. 318
and USB Transactions...................................... 318
Oscillator................................................................... 323
Ping-Pong Buffering ................................................. 315
Power Modes............................................................ 320
RAM.......................................................................... 313
Memory Map..................................................... 313
Status and Control .................................................... 310
Universal Serial Bus (USB)............................................... 309
USART
Synchronous Master Mode
Requirements, Synchronous Receive .............. 375
Requirements, Synchronous Transmission...... 375
Timing Diagram, Synchronous Receive ........... 375
Timing Diagram, Synchronous Transmission... 375
USB .................................................................................. 309
USB Operation.................................................................... 66
V
VREF. SEE ADC Reference Voltage
VREGCON Register ......................................................... 106
W
Wake-up on Break............................................................ 276
Wake-up Using Interrupts ................................................. 104
Watchdog Timer (WDT)...................................................... 82
Associated Registers................................................ 111
Modes....................................................................... 108
Specifications ........................................................... 370
WCOL ....................................................... 235, 238, 240, 242
WCOL Status Flag.................................... 235, 238, 240, 242
WDTCON Register ........................................................... 110
WPUA Register................................................................. 134
WPUB Register................................................................. 138
Write Protection .................................................................. 55
WWW Address ................................................................. 415
WWW, On-Line Support ..................................................... 11
2012 Microchip Technology Inc. Preliminary DS41639A-page 415
PIC16(L)F1454/5/9
THE MICROCHIP WEB SITE
Microchip provides online support via our WWW site at
www.microchip.com. This web site is used as a means
to make files and information easily available to
customers. Accessible by using your favorite Internet
browser, the web site contains the following
information:
Product Support – Data sheets and errata,
application notes and sample programs, design
resources, user’s guides and hardware support
documents, latest software releases and archived
software
General Technical Support – Frequently Asked
Questions (FAQ), technical support requests,
online discussion groups, Microchip consultant
program member listing
Business of Microchip – Product selector and
ordering guides, latest Microchip press releases,
listing of seminars and events, listings of
Microchip sales offices, distributors and factory
representatives
CUSTOMER CHANGE NOTIFICATION
SERVICE
Microchip’s customer notification service helps keep
customers current on Microchip products. Subscribers
will receive e-mail notification whenever there are
changes, updates, revisions or errata related to a
specified product family or development tool of interest.
To register, access the Microchip web site at
www.microchip.com. Under “Support”, click on
“Customer Change Notification” and follow the
registration instructions.
CUSTOMER SUPPORT
Users of Microchip products can receive assistance
through several channels:
Distributor or Representative
Local Sales Office
Field Application Engineer (FAE)
Technical Support
Customers should contact their distributor,
representative or field application engineer (FAE) for
support. Local sales offices are also available to help
customers. A listing of sales offices and locations is
included in the back of this document.
Technical support is available through the web site
at: http://microchip.com/support
PIC16(L)F1454/5/9
DS41639A-page 416 Preliminary 2012 Microchip Technology Inc.
READER RESPONSE
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip
product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our
documentation can better serve you, please FAX your comments to the Technical Publications Manager at
(480) 792-4150.
Please list the following information, and use this outline to provide us with your comments about this document.
TO: Technical Publications Manager
RE: Reader Response
Total Pages Sent ________
From: Name
Company
Address
City / State / ZIP / Country
Telephone: (_______) _________ - _________
Application (optional):
Would you like a reply? Y N
Device: Literature Number:
Questions:
FAX: (______) _________ - _________
DS41639APIC16(L)F1454/5/9
1. What are the best features of this document?
2. How does this document meet your hardware and software development needs?
3. Do you find the organization of this document easy to follow? If not, why?
4. What additions to the document do you think would enhance the structure and subject?
5. What deletions from the document could be made without affecting the overall usefulness?
6. Is there any incorrect or misleading information (what and where)?
7. How would you improve this document?
2012 Microchip Technology Inc. Preliminary DS41639A-page 417
PIC16(L)F1454/5/9
PRODUCT IDENTIFICATION SYSTEM
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.
PART NO. X/XX XXX
PatternPackageTemperature
Range
Device
Device: PIC16F1454, PIC16LF1454,
PIC16F1455, PIC16LF1455,
PIC16F1459, PIC16LF1459
Tape and Reel
Option:
Blank = Standard packaging (tube or tray)
T = Tape and Reel(1)
Temperature
Range:
I= -40C to +85C(Industrial)
E= -40
C to +125C (Extended)
Package:(2) ML = QFN 4x4
P=Plastic DIP
SS = SSOP
ST = TSSOP
SO = SOIC 20-Lead
SL = SOIC 14-Lead
Pattern: QTP, SQTP, Code or Special Requirements
(blank otherwise)
Examples:
a) PIC16F1454T - E/SL
Tape and Reel,
Industrial temperature,
SOIC package
b) PIC16F1459 - I/P
Industrial temperature
PDIP package
c) PIC16F1459 - E/ML
Extended temperature,
QFN package
Note 1: Tape and Reel identifier only appears in
the catalog part number description. This
identifier is used for ordering purposes and
is not printed on the device package.
Check with your Microchip Sales Office
for package availability with the Tape and
Reel option.
2: Small form-factor packaging options may
be available. Please check
www.microchip.com/packaging for small
form-factor package availability, or contact
your local sales office.
[X](1)
Tape and Reel
Option
-
DS41639A-page 418 Preliminary 2012 Microchip Technology Inc.
AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445
Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509
ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Tel: 86-10-8569-7000
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500
China - Hangzhou
Tel: 86-571-2819-3187
Fax: 86-571-2819-3189
China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130
China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049
ASIA/PACIFIC
India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513
Japan - Osaka
Tel: 81-66-152-7160
Fax: 81-66-152-9310
Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-5778-366
Fax: 886-3-5770-955
Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-330-9305
Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350
EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820
Worldwide Sales and Service
11/29/11
Mouser Electronics
Authorized Distributor
Click to View Pricing, Inventory, Delivery & Lifecycle Information:
Microchip:
PIC16F1455-I/P PIC16F1459-I/ML PIC16LF1454-I/P PIC16F1454-I/ML PIC16F1454-I/P PIC16LF1454-I/ML
PIC16F1454-I/ST PIC16LF1454-I/SL PIC16F1454-I/SL PIC16LF1454-I/ST PIC16F1455-I/ML PIC16F1455-I/ST
PIC16F1459-I/SO PIC16F1459-I/SS PIC16LF1455-I/ML PIC16LF1455-I/P PIC16LF1455-I/SL PIC16LF1455-I/ST
PIC16LF1459-I/ML PIC16LF1459-I/SS PIC16LF1459-I/P PIC16LF1459-I/SO PIC16F1454-E/ML PIC16F1454-E/P
PIC16F1454-E/SL PIC16F1454-E/ST PIC16F1454T-I/ML PIC16F1454T-I/SL PIC16F1454T-I/ST PIC16LF1454-E/ML
PIC16LF1454-E/P PIC16LF1454-E/SL PIC16LF1454-E/ST PIC16LF1454T-I/ML PIC16LF1454T-I/SL
PIC16LF1454T-I/ST PIC16F1455-I/SL