MUN5237DW1, NSBC144WDXV6, NSBC144WDP6 Dual NPN Bias Resistor Transistors R1 = 47 kW, R2 = 22 kW www.onsemi.com NPN Transistors with Monolithic Bias Resistor Network This series of digital transistors is designed to replace a single device and its external resistor bias network. The Bias Resistor Transistor (BRT) contains a single transistor with a monolithic bias network consisting of two resistors; a series base resistor and a base-emitter resistor. The BRT eliminates these individual components by integrating them into a single device. The use of a BRT can reduce both system cost and board space. Features * * * * * PIN CONNECTIONS (3) (2) R1 Q2 R2 Max Unit Collector-Base Voltage VCBO 50 Vdc Collector-Emitter Voltage VCEO 50 Vdc IC 100 mAdc Input Forward Voltage VIN(fwd) 40 Vdc Input Reverse Voltage VIN(rev) 10 Vdc Collector Current - Continuous Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 6 SOT-363 CASE 419B-02 7P MG G 1 SOT-563 CASE 463A SOT-963 CASE 527AD 7P/V M G 7P MG 1 VM 1 = Specific Device Code = Date Code* = Pb-Free Package (Note: Microdot may be in either location) ORDERING INFORMATION Package Shipping MUN5237DW1T1G, SMUN5237DW1T1G SOT-363 3,000/Tape & Reel NSBC144WDXV6T1G SOT-563 4,000/Tape & Reel NSBC144WDP6T5G SOT-963 8,000/Tape & Reel Device (6) MARKING DIAGRAMS (TA = 25C, common for Q1 and Q2, unless otherwise noted) Symbol R1 (5) MAXIMUM RATINGS Rating R2 Q1 (4) Simplifies Circuit Design Reduces Board Space Reduces Component Count S and NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant (1) *Date Code orientation may vary depending upon manufacturing location. For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. (c) Semiconductor Components Industries, LLC, 2012 June, 2017 - Rev. 1 1 Publication Order Number: DTC144WD/D MUN5237DW1, NSBC144WDXV6, NSBC144WDP6 THERMAL CHARACTERISTICS Characteristic Symbol Max Unit 187 256 1.5 2.0 mW MUN5237DW1 (SOT-363) ONE JUNCTION HEATED PD Total Device Dissipation (Note 1) TA = 25C (Note 2) Derate above 25C (Note 1) (Note 2) Thermal Resistance, Junction to Ambient (Note 1) (Note 2) RqJA mW/C 670 490 C/W 250 385 2.0 3.0 mW MUN5237DW1 (SOT-363) BOTH JUNCTION HEATED (Note 3) PD Total Device Dissipation (Note 1) TA = 25C (Note 2) Derate above 25C (Note 1) (Note 2) Thermal Resistance, Junction to Ambient (Note 2) RqJA (Note 1) Thermal Resistance, Junction to Lead (Note 1) (Note 2) RqJL Junction and Storage Temperature Range TJ, Tstg 493 325 188 208 mW/C C/W C/W -55 to +150 C 357 2.9 mW mW/C NSBC144WDXV6 (SOT-563) ONE JUNCTION HEATED PD Total Device Dissipation (Note 1) TA = 25C Derate above 25C (Note 1) Thermal Resistance, Junction to Ambient RqJA (Note 1) 350 C/W NSBC144WDXV6 (SOT-563) BOTH JUNCTION HEATED (Note 3) PD Total Device Dissipation (Note 1) TA = 25C Derate above 25C (Note 1) Thermal Resistance, Junction to Ambient RqJA (Note 1) Junction and Storage Temperature Range TJ, Tstg 500 4.0 250 mW mW/C C/W -55 to +150 C 231 269 1.9 2.2 MW NSBC144WDP6 (SOT-963) ONE JUNCTION HEATED PD Total Device Dissipation (Note 4) TA = 25C (Note 5) Derate above 25C (Note 4) (Note 5) Thermal Resistance, Junction to Ambient (Note 5) RqJA (Note 4) 540 464 mW/C C/W NSBC144WDP6 (SOT-963) BOTH JUNCTION HEATED (Note 3) PD Total Device Dissipation (Note 4) TA = 25C (Note 5) Derate above 25C (Note 4) (Note 5) Thermal Resistance, Junction to Ambient (Note 5) RqJA (Note 4) Junction and Storage Temperature Range 1. 2. 3. 4. 5. TJ, Tstg FR-4 @ Minimum Pad. FR-4 @ 1.0 x 1.0 Inch Pad. Both junction heated values assume total power is sum of two equally powered channels. FR-4 @ 100 mm2, 1 oz. copper traces, still air. FR-4 @ 500 mm2, 1 oz. copper traces, still air. www.onsemi.com 2 339 408 2.7 3.3 369 306 -55 to +150 MW mW/C C/W C MUN5237DW1, NSBC144WDXV6, NSBC144WDP6 ELECTRICAL CHARACTERISTICS (TA = 25C, common for Q1 and Q2, unless otherwise noted) Symbol Characteristic Min Typ Max - - 100 - - 500 - - 0.13 50 - - 50 - - 80 140 - - - 0.25 - 1.7 - - 2.6 - - - 0.2 4.9 - - Unit OFF CHARACTERISTICS Collector-Base Cutoff Current (VCB = 50 V, IE = 0) ICBO Collector-Emitter Cutoff Current (VCE = 50 V, IB = 0) ICEO Emitter-Base Cutoff Current (VEB = 6.0 V, IC = 0) IEBO Collector-Base Breakdown Voltage (IC = 10 mA, IE = 0) V(BR)CBO Collector-Emitter Breakdown Voltage (Note 6) (IC = 2.0 mA, IB = 0) V(BR)CEO nAdc nAdc mAdc Vdc Vdc ON CHARACTERISTICS hFE DC Current Gain (Note 6) (IC = 5.0 mA, VCE = 10 V) Collector-Emitter Saturation Voltage (Note 6) (IC = 10 mA, IB = 5.0 mA) VCE(sat) Input Voltage (Off) (VCE = 5.0 V, IC = 100 mA) Vi(off) Input Voltage (On) (VCE = 0.2 V, IC = 3.0 mA) Vi(on) Output Voltage (On) (VCC = 5.0 V, VB = 4.0 V, RL = 1.0 kW) VOL Output Voltage (Off) (VCC = 5.0 V, VB = 0.25 V, RL = 1.0 kW) VOH Input Resistor R1 32.9 47 61.1 Resistor Ratio R1/R2 1.7 2.1 2.6 6. Pulsed Condition: Pulse Width = 300 ms, Duty Cycle 2%. PD, POWER DISSIPATION (mW) 400 350 300 250 200 (1) SOT-363; 1.0 x 1.0 Inch Pad (2) SOT-563; Minimum Pad (3) SOT-963; 100 mm2, 1 oz. Copper Trace (1) (2) (3) 150 100 50 0 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE (C) Figure 1. Derating Curve www.onsemi.com 3 V Vdc Vdc Vdc Vdc kW MUN5237DW1, NSBC144WDXV6, NSBC144WDP6 1 1000 IC/IB = 10 0.1 VCE = 10 V 25C hFE, DC CURRENT GAIN VCE(sat), COLLECTOR-EMITTER VOLTAGE (V) TYPICAL CHARACTERISTICS MUN5237DW1, NSBC144WDXV6 150C -55C 0.01 0 10 20 30 40 100 -55C 10 1 0.1 50 1 10 IC, COLLECTOR CURRENT (mA) IC, COLLECTOR CURRENT (mA) Figure 2. VCE(sat) vs. IC 100 Figure 3. DC Current Gain 3.6 100 2.8 IC, COLLECTOR CURRENT (mA) f = 10 kHz IE = 0 A TA = 25C 3.2 2.4 2 1.6 1.2 0.8 0.4 0 0 10 20 30 40 50 10 -55C 25C 1 150C 0.1 0.01 VO = 5 V 0 4 8 12 16 20 24 VR, REVERSE VOLTAGE (V) Vin, INPUT VOLTAGE (V) Figure 4. Output Capacitance Figure 5. Output Current vs. Input Voltage 100 Vin, INPUT VOLTAGE (V) Cob, OUTPUT CAPACITANCE (pF) 150C 25C 25C -55C 10 150C 1 VO = 0.2 V 0.1 0 10 20 30 40 IC, COLLECTOR CURRENT (mA) Figure 6. Input Voltage vs. Output Current www.onsemi.com 4 50 28 MUN5237DW1, NSBC144WDXV6, NSBC144WDP6 1 1000 IC/IB = 10 0.1 VCE = 10 V 25C hFE, DC CURRENT GAIN VCE(sat), COLLECTOR-EMITTER VOLTAGE (V) TYPICAL CHARACTERISTICS NSBC144WDP6 150C -55C 0.01 0 10 20 30 40 100 -55C 10 1 0.1 50 1 10 IC, COLLECTOR CURRENT (mA) IC, COLLECTOR CURRENT (mA) Figure 7. VCE(sat) vs. IC 100 2 IC, COLLECTOR CURRENT (mA) f = 10 kHz IE = 0 A TA = 25C 1.6 1.2 0.8 0.4 0 10 20 30 40 50 10 -55C 25C 1 150C 0.1 0.01 VO = 5 V 0 4 8 12 16 20 24 VR, REVERSE VOLTAGE (V) Vin, INPUT VOLTAGE (V) Figure 9. Output Capacitance Figure 10. Output Current vs. Input Voltage 100 Vin, INPUT VOLTAGE (V) Cob, OUTPUT CAPACITANCE (pF) 100 Figure 8. DC Current Gain 2.4 0 150C 25C 25C -55C 10 150C 1 VO = 0.2 V 0.1 0 10 20 30 40 IC, COLLECTOR CURRENT (mA) Figure 11. Input Voltage vs. Output Current www.onsemi.com 5 50 28 MUN5237DW1, NSBC144WDXV6, NSBC144WDP6 PACKAGE DIMENSIONS SC-88/SC70-6/SOT-363 CASE 419B-02 ISSUE Y 2X aaa H D D H A D 6 5 GAGE PLANE 4 1 2 L L2 E1 E DETAIL A 3 aaa C 2X bbb H D 2X 3 TIPS e B 6X A2 A ccc C A1 SIDE VIEW DIM A A1 A2 b C D E E1 e L L2 aaa bbb ccc ddd b ddd TOP VIEW 6X NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.20 PER END. 4. DIMENSIONS D AND E1 AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY AND DATUM H. 5. DATUMS A AND B ARE DETERMINED AT DATUM H. 6. DIMENSIONS b AND c APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.08 AND 0.15 FROM THE TIP. 7. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 TOTAL IN EXCESS OF DIMENSION b AT MAXIMUM MATERIAL CONDITION. THE DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OF THE FOOT. C M C A-B D DETAIL A SEATING PLANE END VIEW c MILLIMETERS MIN NOM MAX --- --- 1.10 0.00 --- 0.10 0.70 0.90 1.00 0.15 0.20 0.25 0.08 0.15 0.22 1.80 2.00 2.20 2.00 2.10 2.20 1.15 1.25 1.35 0.65 BSC 0.26 0.36 0.46 0.15 BSC 0.15 0.30 0.10 0.10 RECOMMENDED SOLDERING FOOTPRINT* 6X 6X 0.30 0.66 2.50 0.65 PITCH DIMENSIONS: MILLIMETERS *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. www.onsemi.com 6 INCHES NOM MAX --- 0.043 --- 0.004 0.035 0.039 0.008 0.010 0.006 0.009 0.078 0.086 0.082 0.086 0.049 0.053 0.026 BSC 0.010 0.014 0.018 0.006 BSC 0.006 0.012 0.004 0.004 MIN --- 0.000 0.027 0.006 0.003 0.070 0.078 0.045 MUN5237DW1, NSBC144WDXV6, NSBC144WDP6 PACKAGE DIMENSIONS SOT-563, 6 LEAD CASE 463A ISSUE G D -X- 5 6 1 e 2 A 4 E -Y- 3 b NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETERS 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL. L DIM A b C D E e L HE HE C 5 PL 6 0.08 (0.003) M X Y MILLIMETERS MIN NOM MAX 0.50 0.55 0.60 0.17 0.22 0.27 0.08 0.12 0.18 1.50 1.60 1.70 1.10 1.20 1.30 0.5 BSC 0.10 0.20 0.30 1.50 1.60 1.70 SOLDERING FOOTPRINT* 0.3 0.0118 0.45 0.0177 1.35 0.0531 1.0 0.0394 0.5 0.5 0.0197 0.0197 SCALE 20:1 mm inches *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. www.onsemi.com 7 INCHES NOM MAX 0.021 0.023 0.009 0.011 0.005 0.007 0.062 0.066 0.047 0.051 0.02 BSC 0.004 0.008 0.012 0.059 0.062 0.066 MIN 0.020 0.007 0.003 0.059 0.043 MUN5237DW1, NSBC144WDXV6, NSBC144WDP6 PACKAGE DIMENSIONS SOT-963 CASE 527AD ISSUE E X Y D 6 5 4 1 2 3 HE E e 6X 6X BOTTOM VIEW DIM A b C D E e HE L L2 C SIDE VIEW TOP VIEW 6X L2 NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL. 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. A L MILLIMETERS MIN NOM MAX 0.34 0.37 0.40 0.10 0.15 0.20 0.07 0.12 0.17 0.95 1.00 1.05 0.75 0.80 0.85 0.35 BSC 0.95 1.00 1.05 0.19 REF 0.05 0.10 0.15 b 0.08 X Y RECOMMENDED MOUNTING FOOTPRINT* 6X 6X 0.35 0.20 PACKAGE OUTLINE 1.20 0.35 PITCH DIMENSIONS: MILLIMETERS *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 www.onsemi.com 8 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative DTC144WD/D Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: ON Semiconductor: MUN5237DW1T1G NSBC144WDP6T5G SMUN5237DW1T1G