L M K 0 4 1 X X - R E V 3 E V A L U A T I O N B O A R D O P E R A T I N G I N S T R U C T I O N S
SNLU099
1
LMK041xx Family
Precision Clock Conditioner with Dual PLLs and Integrated VCO
Evaluation Board Operating Instructions
2012-01-16
LMK04100EVAL
LMK04131EVAL
LMK04102EVAL
LMK04133EVAL
Texas Instruments
Precision Timing Devices
L M K 0 4 1 X X - R E V 3 E V A L U A T I O N B O A R D O P E R A T I N G I N S T R U C T I O N S
SNLU099
2
Table of Contents
QUICK START ................................................................................................................................... 3
PLL LOOP FILTERS AND LOOP PARAMETERS ................................................................................... 4
PLL 1 Loop Filter ....................................................................................................................................................... 4
PLL2 Loop Filter ........................................................................................................................................................ 4
122.88 MHz VCXO (Reference Input) ................................................................................... 4
EVALUATION BOARD INPUTS/OUTPUTS ........................................................................................... 5
APPENDIX A: CODELOADER USAGE ................................................................................................ 8
Port Setup Tab ............................................................................................................................................................ 8
Clock Outputs Tab ...................................................................................................................................................... 9
PLL1 Tab .................................................................................................................................................................. 10
PLL2 Tab .................................................................................................................................................................. 11
Bits/Pins Tab ............................................................................................................................................................ 12
Registers Tab ............................................................................................................................................................ 14
APPENDIX B: TYPICAL PHASE NOISE PERFORMANCE PLOTS ......................................................... 15
PLL1 ......................................................................................................................................................................... 15
Crystek 122.88 MHz VCXO................................................................................................. 15
PLL2 ......................................................................................................................................................................... 16
Clock Outputs ........................................................................................................................................................... 17
Clock Output Measurement Technique ................................................................................ 17
LMK041x0 Phase Noise........................................................................................................................................... 18
LMK041x1 Phase Noise........................................................................................................................................... 19
LMK041x2 Phase Noise........................................................................................................................................... 20
LMK041x3 Phase Noise........................................................................................................................................... 21
APPENDIX C: SCHEMATICS ............................................................................................................ 22
Power ........................................................................................................................................................................ 22
Main ......................................................................................................................................................................... 23
Clock Outputs ........................................................................................................................................................... 24
APPENDIX D: BOARD LAYERS STACKUP ....................................................................................... 25
APPENDIX E: BILL OF MATERIALS ................................................................................................ 26
Common Bill of Materials for Evaluation Boards .................................................................................................... 26
Bill of Material Custom to LMK04100BEVAL ....................................................................................................... 29
Bill of Material Custom to LMK04100BEVAL-XO ................................................................................................ 29
Bill of Material Custom to LMK04131BEVAL ....................................................................................................... 30
Bill of Material Custom to LMK04131BEVAL-XO ................................................................................................ 30
Bill of Material Custom to LMK04102BEVAL ....................................................................................................... 31
Bill of Material Custom to LMK04133BEVAL ....................................................................................................... 31
APPENDIX F: BALUN INFORMATION ............................................................................................... 32
Typical Balun Frequency Response ......................................................................................................................... 32
APPENDIX G: VCXO/CRYSTAL CHANGES ..................................................................................... 33
Changing from Crystal Resonator to VCXO ............................................................................................................ 33
Changing from VCXO to Crystal Resonator ............................................................................................................ 36
APPENDIX H: LMK04100 .............................................................................................................. 39
APPENDIX I: PROPERLY CONFIGURING LPT PORT ......................................................................... 42
LPT Driver Loading ................................................................................................................................................. 42
Correct LPT Port/Address ........................................................................................................................................ 42
Correct LPT Mode .................................................................................................................................................... 43
APPENDIX J: TROUBLESHOOTING INFORMATION ........................................................................... 44
1) Confirm Communications ............................................................................................................................. 44
2) Confirm PLL1 operation/locking .................................................................................................................. 44
3) Confirm PLL2 operation/locking .................................................................................................................. 45
L M K 0 4 1 X X - R E V 3 E V A L U A T I O N B O A R D O P E R A T I N G I N S T R U C T I O N S
SNLU099
3
Quick Start
Full evaluation board instructions with data are downloadable from the product folder of the
device at National Semiconductor‟s website, www.ti.com.
1. Connect a voltage of 3.3 volts to either the Vcc SMA connector or the alternate connector.
2. Connect a reference clock from a signal generator or other source. Exact frequency
depends on programming. Default modes use a 122.88 MHz reference.
3. Connect the uWire header to a computer parallel port with the CodeLoader cable. A
USB communication option is available, search at www.ti.com for: USB2UWIRE-
IFACE.
4. Program the device with CodeLoader. Ctrl-L must be pressed at least once to load all
registers once after CodeLoader is started or after restoring a Mode. CodeLoader is
available for download at www.ti.com/tool/codeloader .
5. Measurements may be made at any clock output or Fout if enabled by programming.
LMK041XX
Parallel Port Ribbon cable
Vcc
CLKin0*
CLKout1
Reference clock
from signal
generator or other
external source
CLKout1*
CLKout2
CLKout2*
CLKout3
CLKout3*
CLKout4*
CLKout0*
CLKout0
Laptop or PC
Fout
Parallel Port
Connector
OSCin*
OSCin
3.3 V
or Vcc
GND
1
2
CLKin1*
CLKin1
3
4Program with CodeLoader
Be sure to press ‘Ctrl - L’
Power
Reference
uWire header
Figure 1 - Quick Start Diagram
L M K 0 4 1 X X - R E V 3 E V A L U A T I O N B O A R D O P E R A T I N G I N S T R U C T I O N S
SNLU099
4
PLL Loop Filters and Loop Parameters
The loop filters on the LMK041xx evaluation board are setup using the approach above. The
loop filter for PLL1 has been configured for a narrow loop bandwidth (< 100 Hz), while the loop
filter of PLL2 has been configured for a wide loop bandwidth (> 100 kHz). The specific loop
bandwidth values depend on the phase noise performance of the oscillator mounted on the board.
The following tables contain the parameters for PLL1 and PLL2 for each oscillator option.
National‟s Clock Design Tool can be used to optimize PLL phase noise/jitter for given
specifications. See: http://www.ti.com/tool/clockdesigntool
PLL 1 Loop Filter
Table 1. PLL1 Loop Filter Parameters for Crystek 122.88 MHz VCXO and 12.288 MHz Vectron Crystal
Phase Margin
50º
Kφ (Charge Pump)
100 uA
Loop Bandwidth
12 Hz
Phase Detector Freq
1.024 MHz
VCO Gain
2.5 kHz/Volt
Reference Clock
Frequency
122.88 MHz
Output Frequency
122.88 MHz (To PLL 2)
Loop Filter Components
C1 = 100 nF
C2 = 680 nF
R2 = 39 kΩ
PLL2 Loop Filter
LMK041x0B
LMK041x1B
LMK041x2B
LMK041x3B
Units
C1
Open
C2
12
nF
C3
0
nF
C4
0.01
nF
R2
1.8
R3
0.6
R4
0.2
Charge Pump
Current, K
3.2
mA
Phase Detector
Frequency
61.44
MHz
Frequency
1228.8
1474.56
1720.32
1966.08
MHz
Kvco
8
9
13
19
MHz/V
N
20
24
28
32
Phase Margin
85.5
85.5
85.0
84.0
degrees
Loop Bandwidth
366
343
424
542
kHz
Note: PLL Loop Bandwidth is a function of K , Kvco, N as well as loop components. Changing
K and N will change the loop bandwidth.
L M K 0 4 1 X X - R E V 3 E V A L U A T I O N B O A R D O P E R A T I N G I N S T R U C T I O N S
SNLU099
5
Evaluation Board Inputs/Outputs
The following table contains descriptions of the various inputs and outputs for the evaluation
board.
Table 2. LMK041xx Evaluation Board I/O
Connector Name
Input/Output
Description
CLKout0 /
CLKout0*,
CLKout1 /
CLKout1*,
CLKout2 /
CLKout2*,
CLKout3 /
CLKout3*,
CLKout4 /
CLKout4*
Output
Populated connectors.
Differential clock output pairs. See Error! Reference
source not found. for format of the output depending on
part number. If an LVCMOS output, each output can be
independently configured (non-inverted, inverted, tri-state,
and LOW).
On the evaluation board, all clock outputs are AC-coupled
to allow safe testing with RF test equipment.
All LVPECL/2VPECL clock outputs are
terminated to GND with a 120 ohm resistor, one on
each output pin of the pair.
CLKout4 is configured with an on board balun. Part
number is Mini-circuits‟ ADT2-1T. According to the
ADT2-1T datasheet the 3 dB frequency range is 0.4 to 450
MHz. See Appendix F: Balun Information for more detail.
Fout
Output
Populated connector.
When enabled, buffered VCO output. AC-coupled. The
default configuration on the board contains a 3-dB
attenuator on the Fout signal.
Vcc
Input
Populated connector.
DC power supply for the PCB. Removing R1, R2, or R3
allow for splitting the power to various devices on the
board. For example, the VCXO is powered from the
VccAUXPlane connected via R3.
Note: The LMK04100 Family contains internal voltage
regulators for the VCO, PLL and related circuitry. The
clock outputs do not have an internal regulator. A clean
power supply is required for best performance.
VccLDO
Input
Unpopulated connector.
Vcc input for LDOs on bottom of PCB. Refer to
schematics for more information.
L M K 0 4 1 X X - R E V 3 E V A L U A T I O N B O A R D O P E R A T I N G I N S T R U C T I O N S
SNLU099
6
Connector Name
Input/Output
Description
CLKin0/CLKin0*,
CLKin1/CLKin1*
Input
Populated connectors.
Reference clock inputs for PLL1. The default board
configuration is setup for a single-ended reference source
at CLKin0* (CLKin0 pin is AC-coupled to ground). The
mode of the clock input buffer is programmable in
CodeLoader on the Bits/Pins tab, and may be either bi-
polar junction mode or MOS mode.
The input level for the various modes is as in the datasheet:
AC Coupled Input Clock Voltage Levels
Input
Mode
Min
Max
Units
Differential
Bipolar
0.25
2.0
Vpp
Differential
MOS
0.25
2.0
Vpp
Single Ended
Bipolar
0.5
3.1
Vpp
Single Ended
MOS
0.5
3.1
Vpp
If a DC-coupled clock is used to drive either of the inputs,
the high voltage level must be at least 2 volts and the low
voltage no greater than 0.4 volts.
By default CLKin0 is the active input in either of the auto-
switching modes (CLKin0 non-revertive, CLKin0
revertive). When loss of CLKin0 is detected, the device
automatically switches to CLKin1 if an active reference
clock is attached. See datasheet for further explanation.
LOS0, LOS1
Output
Unpopulated connectors.
Loss-of-Signal indicator (when LOS_TYPE = Active
CMOS, default) for CLKin0/0* and CLKin1/1*. The
LEDs D5 and D3 are light red when no signal is detected
according to the datasheet specification for LOS pins.
Bits/Pins, LOS_TYPE = Active CMOS for default
operation.
OSCin/OSCin*
Input
Populated connectors.
By altering the PCB an external VCXO may be attached to
the OSCin/OSCin* SMA connectors. Either a differential
or single-ended device may be used. If a single-end device
is used, OSCin* should be tied to GND through a capacitor
that matches the AC-coupling capacitor value used for the
OSCin pin. See datasheet for OSCin port signal
specifications.
L M K 0 4 1 X X - R E V 3 E V A L U A T I O N B O A R D O P E R A T I N G I N S T R U C T I O N S
SNLU099
7
Connector Name
Input/Output
Description
Vtune1
Output
Unpopulated connector.
Tuning voltage output from the loop filter for PLL1. If an
external VCXO is used, this tuning voltage should be
connected to the voltage control pin of the external VCXO.
Note: Resistor R38 must be populated with a zero ohm
resistor to control an off-board VCXO.
uWire
Input/Output
Populated connector.
10-pin header programming interface for the board. Of
Most important are the CLKuWire, DATAuWire, and
LEuWire programming lines from this header. Each of
these signals, GEO, and SYNC* can be monitored through
test points on the board.
LD
Output
Unpopulated connector.
The LD pin is attached to a multiplexer inside the device
and may be programmed with a variety of internal signals
for monitoring internal device functions and
troubleshooting. See datasheet for further explanation.
The lock detect signal is accessible through this pin.
LD_TP
Output
Test point attached to the LD pin of the device. See LD
above for more information.
GOE
Input
Unpopulated connector.
Access to GOE of device.
SYNC*
Input
Unpopulated connector.
Access to SYNC* of device.
PTO
Output
Unpopulated connector.
Vcc SMA located close to OSCin SMAs for powering
external oscillator boards.
L M K 0 4 1 X X - R E V 3 E V A L U A T I O N B O A R D O P E R A T I N G I N S T R U C T I O N S
SNLU099
8
Appendix A: CodeLoader Usage
Code Loader is used to program the evaluation board with either an LPT port using the included
CodeLoader cable or with a USB port using the optional USB <--> uWire cable available from
http://www.ti.com/tool/usb2uwire-iface. The part number is USB2UWIRE-IFACE.
Port Setup Tab
Figure 2 - Port Setup tab
On the Port Setup tab, the user may select the type of communication port (USB or Parallel) that
will be used to program the device on the evaluation board. If parallel port is selected, the user
should ensure that the correct port address is entered.
The Pin Configuration field is hardware dependent and normally SHOULD NOT be changed by
the user. Figure 2 shows the default settings.
L M K 0 4 1 X X - R E V 3 E V A L U A T I O N B O A R D O P E R A T I N G I N S T R U C T I O N S
SNLU099
9
Clock Outputs Tab
Figure 3 - Clock Outputs tab
The clock outputs tab allows the user to Enable/Disable individual clock outputs, select the clock
mode (Bypass/Divided/Delayed/Divided & Delayed), set the clock output delay value (if delay is
enabled), and the clock output divider value (2, 4, 6, …, 510).
This tab also allows the user to select the VCO Divider value (2, 3, …, 8). Note that the total
PLL2 N divider value is composed of both the VCO Divider value and the N value shown in the
blue box in the image, and is given by: N_TOTAL = VCO Divider * N.
Clicking on the blue box that contains R, PDF and N values takes the user to the PLL2 tab where
these values may be changed.
Clicking on the components in the box containing the Internal Loop Filter values allows the user
to change these component values.
L M K 0 4 1 X X - R E V 3 E V A L U A T I O N B O A R D O P E R A T I N G I N S T R U C T I O N S
SNLU099
10
The Reference Oscillator value field may be changed in either the Clock Outputs tab or the PLL2
tab. Note this value should match the value of the on-board VCXO or Crystal. When using the
EN_PLL2_REF2X = 1, then Reference Oscillator field should be twice the VCXO or Crystal
frequency.
PLL1 Tab
Figure 4 - PLL1 tab.
The PLL1 tab allows the user to change:
External VCXO (or Crystal oscillator) frequency. Note: This value must be entered in
both the PLL1 and PLL2 tabs.
PLL1 Phase detector frequency
PLL1 R-counter value
PLL1 N-counter value
CLKin (Reference) oscillator frequency
PLL1 Phase Detector polarity (for external VCXO tuning slope, click on the polarity
value)
PLL1 Charge pump gain (left click and right click on the charge pump current value)
PLL1 Charge pump state (click on the charge pump state value)
Note that the value entered in the VCO frequency field on the PLL1 tab must match the
Reference Oscillator frequency entered on the PLL2 tab and the OSCin_FREQ on the Bits/Pins
tab. Updating the PLL2 tab Reference Oscillator frequency will automatically update the value
of OSCin_FREQ on the Bits/Pins tab. The only time that the Reference Oscillator frequency of
PLL2 tab will be different from the VCO frequency of PLL1 is when the EN_PLL2_REF2X
mode is enabled.
L M K 0 4 1 X X - R E V 3 E V A L U A T I O N B O A R D O P E R A T I N G I N S T R U C T I O N S
SNLU099
11
PLL2 Tab
Figure 5 - PLL2 tab.
The PLL2 tab allows the user to change:
VCO frequency
PLL2 Phase detector frequency
PLL2 R-counter value
PLL2 N-counter value
The frequency of the external VCXO (or XTAL oscillator). Note: This value must be
entered in both the PLL1 and PLL2 tabs.
PLL2 Charge pump gain
PLL2 Charge pump state
Any changes made on this tab are reflected in the Clock Outputs tab. Note that the PLL2 Phase
Detector polarity is fixed and cannot be changed by the user. Also note that the VCO frequency
should conform to the specified frequency range for the device.
Note that the value entered in the VCO frequency field on the PLL1 tab must match the
Reference Oscillator frequency entered on the PLL2 tab and the OSCin_FREQ on the Bits/Pins
tab. Updating the PLL2 tab Reference Oscillator frequency will automatically update the value
of OSCin_FREQ on the Bits/Pins tab. The only time that the Reference Oscillator frequency of
PLL2 tab will be different from the VCO frequency of PLL1 is when the EN_PLL2_REF2X
mode is enabled.
L M K 0 4 1 X X - R E V 3 E V A L U A T I O N B O A R D O P E R A T I N G I N S T R U C T I O N S
SNLU099
12
Bits/Pins Tab
Figure 6 - Bits/Pins tab.
The Bits/Pins tab allows the user to program bits directly. Many of which are not available on
other tabs. Refer to the datasheet for more detailed information. The bits available are:
Common Box
o RESET - Set the reset bit. This will reset the device. In a normal application it is
not necessary to program this bit clear since it is auto-clearing. However in the
CodeLoader software, RESET must be clicked again (cleared) to not cause a reset
every time R7 is programmed.
o POWERDOWN - Place the device in powerdown mode.
o EN_Fout Enable the Fout port.
PLL Box
o PLL_MUX Set the function of the LD pin.
o RC_DLD1_Start Prevent PLL2 from locking until digital lock detect from
PLL1 is achieved.
L M K 0 4 1 X X - R E V 3 E V A L U A T I O N B O A R D O P E R A T I N G I N S T R U C T I O N S
SNLU099
13
o EN_PLL2_XTAL Enables Crystal mode for PLL2. For use with Crystals as
opposed to a VCXO.
o EN_PLL2_REF2X Doubles the reference frequency of PLL2. Note with this is
enabled, the PLL_R value is invalid. Program the Reference Oscillator on PLL2
Tab to be twice the VCO frequency on PLL1 tab. This adjustment must be done
manually.
CLKin Options Box
o CLKin_SEL Sets manual or automatic switching modes for selecting a
reference oscillator for PLL1.
o LOS_TIMEOUT The timeout value before a loss of signal on a clock input is
registered on the LOS pins.
o LOS_TYPE Set the type of output for the LOS pins.
o CLKin0_BUFTYPE & CLKin1_BUFTYPE Select the input buffer used for the
respective clock input.
PLL2_LF Box
o Set the integrated loop filter values for PLL2 including,
PLL2_R3_LF R3 value
PLL2_R4_LF R4 value
PLL2_C3_C4_LF C3 and C4 value at the same time
o It is also possible to set these values by clicking on the loop filter values on the
Clock Outputs tab.
CLKout Options Box
o EN_CLKout_Global A global enable for clocks, if unchecked no outputs will
be observed!
o EN_CLKout0 through EN_CLKout4 Individual clock output enables. These
can also be set on the Clock Outputs tab.
o The number of options vary depending on the option of the LMK device selected.
CLKout#_PECL_LVL Set the level of an LVPECL output to LVPECL
or 2VPECL. The 2VPECL a higher output level than LVPECL.
CLKout CMOS Options Box
o The presence of this box and the number of options on this tab depends upon the
option of the LMK device.
CLKout##_STATE Set the state of the individual LVCMOS output.
VCO Control FC Box
o OSCin_FREQ Must be set to the reference frequency of PLL2 in MHz, which
should normally be the VCO frequency of PLL1. NOTE: It is important to
enter the correct frequency value in this field, as it is used by the internal
state machine of the LMK041xx to execute its calibration routine for the
internal VCO. An incorrect value may result in an unlocked condition for the
synthesizer.
Entering a reference oscillator frequency on PLL2 tab will automatically
update this register with the frequency to the nearest MHz.
Program Pins Box
o GOE Set high or low voltage on GOE pin. Checked is high voltage.
If GOE is low, then no clock outputs will be observed!
L M K 0 4 1 X X - R E V 3 E V A L U A T I O N B O A R D O P E R A T I N G I N S T R U C T I O N S
SNLU099
14
o SYNC* Set high or low voltage on SYNC* pin. Checked is high voltage.
If SYNC* is low, then no clock outputs will be observed on divided clock
outputs!
o TRIGGER Set high or low voltage on pin 10 of uWire header.
Registers Tab
The registers tab shows the value of each register. This is convenient for programming the
device to the desired settings, then recording the hex values for programming in your own
application. By clicking in the “bit field” it is possible to manually change the value of registers
by typing „1‟ and „0.‟
L M K 0 4 1 X X - R E V 3 E V A L U A T I O N B O A R D O P E R A T I N G I N S T R U C T I O N S
SNLU099
15
Appendix B: Typical Phase Noise Performance Plots
PLL1
The LMK041xx‟s two stage jitter cleaning process involves masking the reference noise with a
VCXO or Crystal. Therefore the phase noise performance of the VCXO or Crystal of PLL1 is a
very important contributor to the final phase noise of the system.
Crystek 122.88 MHz VCXO
The phase noise of the reference is masked by the phase noise of this VCXO by using a narrow
loop bandwidth. This VCXO sets the reference noise to PLL2. Figure 7 shows the open loop
typical phase noise performance of the CVHD-950-122.88 Crystek VCXO.
Figure 7 - CVHD-950-122.88 MHz VCXO Phase Noise at 122.88 MHz
Table 3 - VCXO Phase Noise
at 122.88 MHz (dBc/Hz)
Offset
Phase
Noise
10 Hz
-76.6
100 Hz
-108.9
1 kHz
-137.4
10 kHz
-153.3
100 kHz
-162.0
1 MHz
-165.7
10 MHz
-168.1
40 MHz
-168.1
Table 4 - VCXO RMS Jitter
to high offset of 20 MHz
at 122.88 MHz (rms fs)
Low
Offset
Jitter
10 Hz
515.4
100 Hz
60.5
1 kHz
36.2
10 kHz
35.0
100 kHz
34.5
1 MHz
32.9
10 MHz
22.7
VCXO Phase Noise
-170
-160
-150
-140
-130
-120
-110
-100
-90
-80
-70
-60
-50
10 100 1000 10000 100000 1000000 10000000 1E+08
Offset (Hz)
Phase Noise (dBc/Hz)
CVHD-950-122.88
L M K 0 4 1 X X - R E V 3 E V A L U A T I O N B O A R D O P E R A T I N G I N S T R U C T I O N S
SNLU099
16
PLL2
The closed loop performance of the system as measured at the VCO output Fout. Fout phase
noise performance of the various LMK options is plotted in Figure 8. Table 5 and Table 6
summarize the phase noise and jitter of Fout.
Figure 8 - LMK041xx PLL2 Phase Noise (Fout)
Table 5 - LMK041x0 Phase Noise (dBc/Hz)
Offset
LMK041x0
LMK041x1
LMK041x2
LMK041x3
10 Hz
-58.7
-58.3
-61.3
-61.1
100 Hz
-88.0
-88.3
-85.7
-90.4
1 kHz
-111.6
-110.2
-108.9
-107.5
10 kHz
-118.2
-116.3
-115.7
-113.5
100 kHz
-121.1
-119.5
-118.4
-117.0
1 MHz
-132.0
-131.1
-128.6
-125.6
10 MHz
-157.1
-155.8
-154.0
-152.7
40 MHz
-165.9
-164.2
-162.3
-160.8
Table 6 - LMK041x0 RMS Jitter; Integrated to from low limit to 20 MHz (rms fs)
Low
Offset
LMK041x0
LMK041x1
LMK041x2
LMK041x3
10 Hz
580.0
506.6
443.4
356.0
100 Hz
127.2
117.5
124.5
132.8
1 kHz
114.8
111.3
114.9
128.1
10 kHz
111.7
108.0
112.0
125.0
100 kHz
97.3
92.7
99.2
112.2
1 MHz
39.7
36.2
41.6
50.9
10 MHz
6.0
5.9
6.0
5.5
LMK041xx Fout Phase Noise
-170
-160
-150
-140
-130
-120
-110
-100
-90
-80
-70
-60
-50
10
100
1000
10000
100000
1000000
10000000
100000000
Offset (Hz)
Phase Noise (dBc/Hz)
LMK041x0
LMK041x1
LMK041x2
LMK041x3
L M K 0 4 1 X X - R E V 3 E V A L U A T I O N B O A R D O P E R A T I N G I N S T R U C T I O N S
SNLU099
17
Clock Outputs
The LMK04100 Family features LVDS, LVPECL, 2VPECL, and LVCMOS types of outputs.
Included below are various phase noise measurements for each output.
Device
LVDS
LVPECL/2VPECL
LVCMOS
VCO Frequency
LMK041x0
(LMK04100)
X
X
1185 to 1296 MHz
LMK041x1
(LMK04131)
X
X
X
1430 to 1570 MHz
LMK041x2
(LMK04102)
X
X
1566 to 1724 MHz
LMK041x3
(LMK04133)
X
X
X
1840 to 2160 MHz
Note: The device in parenthesis is the device used for the measurement in these evaluation board
instructions.
Clock Output Measurement Technique
The measurement technique for each output type varies.
LVDS measured with an ADT2-1T balun to test equipment.
LVPECL/2VPECL Measured by terminating complementary output with 50 ohm load, then
taking output to test equipment.
LVCMOS Measured by enabling only one side of the LVCMOS output and taking the
operating output to test equipment.
The following table lists the test conditions used for the phase noise measurements for the
VCXO option:
Table 7 . LMK041xx test conditions
Parameter
Value
PLL1 Reference clock input
CLKin0* single-ended input, CLKin0 AC-coupled to GND
PLL1 Reference Clock frequency
122.88 MHz
PLL1 Phase detector frequency
1024 kHz
PLL1 Charge Pump Gain
100 uA
VCXO frequency
122.88 MHz
PLL2 phase detector frequency
61.44 MHz
PLL2 Charge Pump Gain
3200 uA
PLL2 REF2X mode
Disabled
L M K 0 4 1 X X - R E V 3 E V A L U A T I O N B O A R D O P E R A T I N G I N S T R U C T I O N S
SNLU099
18
LMK041x0 Phase Noise
Figure 9 - LMK041x0B Phase Noise
The Fout frequency is 1228.8 MHz. The clock out frequency is 614.4 MHz, and the clock out
div 4 frequency is 153.6 MHz.
Table 8 - LMK041x0 Phase Noise (dBc/Hz)
Offset
Fout
LVPECL
2VPECL
LVCMOS
LVPECL
div4
2VPECL
div4
LVCMOS
div4
10 Hz
-58.7
-67.1
-67.1
-66.3
-79.8
-81.5
-79.7
100 Hz
-88.0
-95.8
-96.8
-94.8
-107.5
-109.1
-106.6
1 kHz
-111.6
-117.6
-117.7
-117.9
-129.5
-130.2
-129.4
10 kHz
-118.2
-123.8
-123.8
-124.2
-134.8
-135.2
-136.0
100 kHz
-121.1
-127.0
-127.0
-127.3
-139.4
-139.3
-139.6
1 MHz
-132.0
-137.9
-137.8
-138.1
-149.5
-149.6
-150.0
10 MHz
-157.1
-153.8
-153.8
-152.8
-157.4
-158.1
-159.2
40 MHz
-165.9
-154.8
-154.8
-153.6
-157.3
-158.0
-159.7
Table 9 - LMK041x0 RMS Jitter; Integrated to from low limit to 20 MHz (rms fs)
Low
Limit
Fout
LVPECL
2VPECL
LVCMOS
LVPECL
div4
2VPECL
div4
LVCMOS
div4
10 Hz
580.0
474.7
449.2
522.4
493.9
466.5
493.5
100 Hz
127.2
128.3
127.9
127.1
148.9
145.6
139.4
1 kHz
114.8
119.9
120.4
117.9
141.8
138.7
129.9
10 kHz
111.7
116.8
117.3
114.9
139.3
136.2
127.3
100 kHz
97.3
102.9
103.3
101.6
128.8
125.3
116.3
1 MHz
39.7
50.5
50.6
52.4
94.3
89.5
79.5
-170
-160
-150
-140
-130
-120
-110
-100
-90
-80
-70
-60
-50
10
100
1000
10000
100000
1000000
1E+07
1E+08
Offset (Hz)
Fout
LVPECL
2VPECL
LVCMOS
LVPECL; div4
2VPECL; div4
LVCMOS; div4
L M K 0 4 1 X X - R E V 3 E V A L U A T I O N B O A R D O P E R A T I N G I N S T R U C T I O N S
SNLU099
19
LMK041x1 Phase Noise
Figure 10 - LMK041x1 Phase Noise
The Fout frequency is 1474.56 MHz. The clock out frequency is 737.28 MHz, and the clock out
div 4 frequency is 184.32 MHz. Note that the LVDS performance at 737.28 MHz is degraded
because it is outside of the balun‟s operational bandwidth.
Table 10 - LMK041x1 Phase Noise (dBc/Hz)
Offset
Fout
LVDS
LVPECL
2VPECL
LVCMOS
LVDS
div4
LVPECL
div4
2VPECL
div4
LVCMOS
div4
10 Hz
-58.3
-62.0
-65.4
-66.4
-63.4
-74.8
-76.7
-73.8
-74.6
100 Hz
-88.3
-96.4
-95.9
-96.0
-94.8
-106.7
-107.7
-105.3
-106.7
1 kHz
-110.2
-115.3
-115.7
-115.8
-116.2
-128.3
-128.3
-128.1
-128.3
10 kHz
-116.3
-118.1
-121.2
-121.3
-122.0
-132.8
-134.0
-134.3
-134.7
100 kHz
-119.5
-122.0
-124.7
-124.7
-125.5
-137.7
-137.7
-137.8
-137.9
1 MHz
-131.1
-133.5
-136.2
-136.2
-137.0
-148.5
-148.7
-148.7
-148.9
10 MHz
-155.8
-148.2
-152.3
-152.3
-151.7
-156.9
-157.1
-157.5
-158.3
40 MHz
-164.2
-149.5
-153.5
-153.6
-152.5
-157.5
-157.3
-158.0
-158.8
Table 11 - LMK041x1 RMS Jitter; Integrated to from low limit to 20 MHz (rms fs)
Low
Limit
Fout
LVDS
LVPECL
2VPECL
LVCMOS
LVDS
div4
LVPECL
div4
2VPECL
div4
LVCMOS
div4
10 Hz
506.6
538.4
425.5
458.5
501.9
532.2
445.6
591.0
544.1
100 Hz
117.5
178.3
132.4
131.8
123.1
141.0
138.6
139.1
132.5
1 kHz
111.3
174.2
127.0
126.4
116.2
135.1
133.3
131.4
125.5
10 kHz
108.0
169.5
123.4
122.8
113.0
132.4
130.7
128.7
122.8
100 kHz
92.7
147.7
107.2
106.7
98.7
120.7
119.0
116.8
110.8
1 MHz
36.2
72.9
50.4
50.1
49.1
85.2
83.4
80.3
73.4
LMK040x1 Phase Noise
-170
-160
-150
-140
-130
-120
-110
-100
-90
-80
-70
-60
-50
10
100
1000
10000
100000
1000000
1000000
0
1E+08
Offset (Hz)
Fout
LVDS
LVPECL
2VPECL
LVCMOS
LVDS; div4
LVPECL; div4
2VPECL; div4
LVCMOS; div4
L M K 0 4 1 X X - R E V 3 E V A L U A T I O N B O A R D O P E R A T I N G I N S T R U C T I O N S
SNLU099
20
LMK041x2 Phase Noise
The Fout frequency is 1720.32 MHz. The clock out frequency is 860.16 MHz, and the clock out
div 4 frequency is 215.04 MHz.
Table 12 - LMK041x2 Phase Noise (dBc/Hz)
Offset
Fout
LVPECL
2VPECL
LVCMOS
LVPECL
div4
2VPECL
div4
LVCMOS
div4
10 Hz
-61.3
-66.6
-67.3
-67.7
-80.1
-78.7
-78.9
100 Hz
-85.7
-91.5
-90.4
-91.9
-103.3
-103.2
-103.8
1 kHz
-108.9
-114.3
-114.2
-114.6
-126.7
-127.2
-126.5
10 kHz
-115.7
-120.7
-120.7
-120.6
-133.5
-133.7
-134.1
100 kHz
-118.4
-123.5
-123.5
-123.5
-136.7
-136.7
-136.8
1 MHz
-128.6
-133.4
-133.4
-133.4
-146.2
-146.3
-146.5
10 MHz
-154.0
-151.5
-151.5
-151.6
-156.7
-157.0
-157.7
40 MHz
-162.3
-153.0
-153.2
-153.2
-157.0
-157.3
-158.2
Table 13 - LMK041x2 RMS Jitter; Integrated to from low limit to 20 MHz (rms fs)
Low
Limit
Fout
LVPECL
2VPECL
LVCMOS
LVPECL
div4
2VPECL
div4
LVCMOS
div4
10 Hz
443.4
498.1
477.3
450.5
439.3
473.4
458.5
100 Hz
124.5
143.1
140.8
140.4
141.0
140.7
136.6
1 kHz
114.9
132.7
132.1
132.0
132.3
131.1
126.6
10 kHz
112.0
129.6
129.0
129.0
130.0
128.7
124.2
100 kHz
99.2
115.7
115.2
115.2
119.7
118.3
113.7
1 MHz
41.6
54.9
54.8
54.7
79.2
77.1
71.8
LMK040x2 Phase Noise
-170
-160
-150
-140
-130
-120
-110
-100
-90
-80
-70
-60
-50
10
100
1000
10000
100000
1000000
1000000
0
1E+08
Offset (Hz)
Fout
LVPECL
2VPECL
LVCMOS
LVPECL; div4
2VPECL; div4
LVCMOS; div4
L M K 0 4 1 X X - R E V 3 E V A L U A T I O N B O A R D O P E R A T I N G I N S T R U C T I O N S
SNLU099
21
LMK041x3 Phase Noise
The Fout frequency is 1966.08 MHz. The clock out frequency is 983.04 MHz, and the clock out
div 4 frequency is 245.76 MHz. Note that the LVDS performance at 737.28 MHz is degraded
because it is outside of the balun‟s operational bandwidth.
Table 14 - LMK041x3 Phase Noise (dBc/Hz)
Offset
Fout
LVDS
LVPECL
2VPECL
LVCMOS
LVDS
div4
LVPECL
div4
2VPECL
div4
LVCMOS
div4
10 Hz
-61.1
-63.9
-66.2
-67.6
-67.0
-76.1
-75.2
-75.9
-80.1
100 Hz
-90.4
-92.1
-94.6
-93.9
-94.3
-103.5
-103.7
-104.4
-106.3
1 kHz
-107.5
-112.2
-112.8
-112.8
-113.6
-125.5
-125.8
-125.5
-125.4
10 kHz
-113.5
-115.1
-118.1
-118.2
-119.7
-130.3
-131.4
-131.5
-132.0
100 kHz
-117.0
-119.1
-121.8
-121.9
-123.0
-135.2
-135.3
-135.3
-135.3
1 MHz
-125.6
-127.6
-130.4
-130.4
-131.5
-143.5
-143.6
-143.6
-143.7
10 MHz
-152.7
-148.0
-150.6
-150.6
-150.0
-156.3
-156.1
-156.3
-156.8
40 MHz
-160.8
-147.2
-151.9
-151.9
-151.2
-156.8
-156.4
-156.6
-157.3
Table 15 - LMK041x3 RMS Jitter; Integrated to from low limit to 20 MHz (rms fs)
Low
Limit
Fout
LVDS
LVPECL
2VPECL
LVCMOS
LVDS
div4
LVPECL
div4
2VPECL
div4
LVCMOS
div4
10 Hz
356.0
531.5
367.7
339.0
367.6
471.8
499.6
464.0
338.9
100 Hz
132.8
210.0
153.3
153.4
137.4
147.1
146.5
146.2
141.5
1 kHz
128.1
205.5
149.2
149.5
132.6
140.7
140.5
140.2
137.1
10 kHz
125.0
200.9
145.8
146.1
129.6
138.1
137.9
137.6
134.4
100 kHz
112.2
181.2
131.6
131.9
117.3
127.2
127.1
126.7
123.5
1 MHz
50.9
88.9
64.4
64.5
59.5
79.6
80.6
79.7
75.8
LMK040x3 Phase Noise
-170
-160
-150
-140
-130
-120
-110
-100
-90
-80
-70
-60
-50
10
100
1000
10000
100000
1000000
1E+07
1E+08
Offset (Hz)
Fout
LVDS
LVPECL
2VPECL
LVCMOS
LVDS; div4
LVPECL; div4
2VPECL; div4
LVCMOS; div4
L M K 0 4 1 X X - R E V 3 E V A L U A T I O N B O A R D O P E R A T I N G I N S T R U C T I O N S
SNLU099
22
Appendix C: Schematics
Power
C23
0.1 uF
C3
0.1 uF
C13
0.1 uF
C22
1 uF
C2
1 uF
C12
1 uF
C11
10 uF
VccPLLPlane
C205
Open
C202
Open
C203
Open
C204
Open
C210
Open
C212
Open
C217
Open
C220
Open
C200
Open
C201
Open
C208
Open
C211
Open
C213
Open
C219
Open
Fout [inc LDO]
VCO [inc LDO]
VCXO_IC
OSCin
PDCP2
PLL2
CLK0
Digital
CLKin
PDCP1
CLK1
CLK2
CLK3
CLK4
R202
Open
R206
Open
C1
10 uF
GND
C17
0.1 uF
Vcc
SMA
R1
0 ohm
Vin
1
Vout
3
Vadj
2
TAB
4
U201
Open
R204
Open
R209
Open
C206
Open
C209
Open
C214
Open
C216
Open
C218
Open
R212
Open
LDO_Out
VccLDO
Open
R3
0 ohm
VccCLKoutPlane
VccAuxPlane
C21
10 uF
1 2
3 4
5 6
GND_TP
Open
R2
0 ohm
C10
0.1 uF
LDO Power Options
Power Plane for LMK Except Outputs
Power Plane for LMK CLKout Outputs
GND Header
1 2
3 4
5 6
7 8
Vcc_TP
Open
Vcc Header
VccPLLPlane VccPLLPlane
VccCLKoutPlaneVccCLKoutPlane
VccAuxPlane VccAuxPlane
C207
Open
Vcc Vcc
Vcc
R201
Open
R211
Open
C215
Open
R213
Open
VccCLKoutPlane
VccPLLPlane
VccAuxPlane
VccCLKoutPlane
VccPLLPlane
R207
Open
R203
Open
Direct Power
R208
Open
VccAuxPlane
R210
Open
3
VIN
4
VOUT
5
BYP
1
ADJ
6
SD
8
NC
2
NC
7
DAP GND
U200
Open
Power Plane for XO and VCXOs, LDOs, etc.
R205
Open
LP3878-ADJ 3.3 V component values:
C214(C1) = 4.7 uF
R211(R3) = 51 k
C218 (C2) = 0.01 uF R213 (R2) = 1 k
C216 (C3) = 10 uF
R212 (R1) = 2.3 k
C215 (C4) = 3.9 nF
C9
10 nF
C8
0.1 uF
C7
1 uF
C16
10 nF
C15
0.1 uF
C14
1 uF
C20
10 nF
C19
0.1 uF
C18
1 uF
C6
10 nF
C5
0.1 uF
C4
1 uF
R200
Open
1
1
2
2
J1
POWER_SMALL
VIN
6
VEN
4
3
VOUT
1
NC
2
NC
5
DAP GND
U202
Open
C222
Open
C223
Open
GND
V_LM317
V_LM3878-ADJ
V_LM5900
R216
Open
R215
Open
VccCLKoutPlane
R214
Open
C222 = 0.47 uF
C223 = 0.47 uF
R216 = 51 k
PTO
Open
VccAuxPlane
C221
Open
Power Take Off for
external Oscillator boards
Designators greater than and equal to 200 are placed on bottom of PCB
LP3878-ADJ
LM317
LP5900SD-3.3
LP5900 Component values
LMK04100BEVAL schematic.
Refer to BOM for differences.
L M K 0 4 1 X X - R E V 3 E V A L U A T I O N B O A R D O P E R A T I N G I N S T R U C T I O N S
SNLU099
23
Main
C1_A2
Open
C2pA2
Open
C29
10 uF
VccPLLPlane
VccPLLPlane
C24
100 pF
R7
270 ohm
R6
270 ohm
R5
18 ohm
R2_A2
1.8 k
VccPLLPlane
VccCLKoutPlane
VccPLLPlane
VccPLLPlane
VccCLKoutPlaneVccCLKoutPlaneVccCLKoutPlaneVccCLKoutPlane
VccPLLPlane
VccPLLPlane
LD_TP
LOS0
Open
Fout
SMA
CLKout4_N
CLKout4_P
CLKout3_P
CLKout3_N
CLKout1_P
CLKout1_N
CLKout2_P
CLKout2_N
GND
1
Fout
2
Vcc1
3
CLKuWire
4
DATAuWire
5
LEuWire
6
NC
7
Vcc2
8
LDObyp1
9
LDObyp2
10
GOE
11
LD
12
Vcc3
13
CLKout0
14
CLKout0*
15
DLD_BYP
16
GND
17
Vcc4
18
Vcc5
19
CLKin0
20
CLKin0*
21
Vcc6
22
CPout1
23
Vcc7
24
CLKin1
25
CLKin1*
26
SYNC*
27
OSCin
28
OSCin*
29
Vcc8
30
Vcc9
31
CPout2
32
Vcc10
33
CLKin0_LOS
34
CLKin1_LOS
35
Bias
36
Vcc11
37
CLKout1
38
CLKout1*
39
Vcc12
40
CLKout2
41
CLKout2*
42
Vcc13
43
CLKout3
44
CLKout3*
45
Vcc14
46
CLKout4
47
CLKout4*
48
LMK040xxB
DAP PAD
0
U1
LMK04000B
LOS1
Open
VccPLLPlane
Vtune
1
NC
2
GND
3
RF
4
RF*
5
Vs
6
U4
CVHD-950-122.88
C25
1 uF
OSCin
Open
OSCin*
Open
R14
Open
R22
Open
C43
Open
C31
0.1 uF
C42
0.1 uF
R25
Open
SYNC*
OSCin VCXO
LOS Indication
C2_B2
6.8 nF
C1_B2
Open
R2_B2
2.7 k
R10
Open
R9
0 ohm
C2pB2
Open
C2_A2
12 nF
GOE_TP
SYNC*_TP
R17
Open
R24
Open
C34
0.1 uF
C36
0.1 uF
C32
0.47 uF
R2_A1
39 k
C2pA1
Open
C1_A1
100 nF
Vtune1
Vtune1
Open
R38
Open
Vtune_VCXO
R54
Open
R52
Open
CLKin0*
SMA
CLKin0
Open
C54
Open
C59
0.1 uF
R53
Open
R62
51 ohm
C45
0.1 uF
R32
0 ohm
R16
100 ohm
C2_A1
680 nF
R2_B1
3.9 k
C2pB1
10 uF
C1_B1
330 nF
C2_B1
Open
R33
Open
R58
Open
Crystal Loop Filter
Y200
Open
R15
Open
R31
Open
C41
2.0 pF
C40
2.2 nF
C33
2.0 pF
C3_AB1
Open
R8
270 ohm
R4
270 ohm
D5
Red LED
D3
Red LED
D1
Green LED
R45
270 ohm
R13
51 ohm
R34
Open
D4
Open
VccAuxPlane
D6
Open
VccAuxPlane
D2
Open
VccAuxPlane
C53
Open
R65
0 ohm
C58
0 ohm
C35
2.2 nF
PLL2 Loop Filters
PLL1 Loop Filters
OSCin Tuneable Crystal
C62
0 ohm
R60
0 ohm
R64
Open
CLKin1*
SMA
CLKin1
SMA
C60
0.1 uF
C48
0.1 uF
R63
Open
R50
Open
C50
Open
R57
Open
VccAuxPlane
R59
Open
C56
Open
C55
Open
Vtune
1
NC
2
GND
3
RF
4
RF*
5
Vs
6
U3
Open
R56
Open
R55
Open
R47
0 ohm
R49
Open
R48
Open
C52
Open
C51
0 ohm
C57
Open
R51
100 ohm
CLKin1 Crystal
CLKin1 Impedance Matching and Attenuation
CLKin1 XO
1 2
3 4
5 6
7 8
910
uWire
HEADER_2X5(POLARIZED)
R29
15 k
R28
27 k
R18
27 k
R12
15 k
R11
27 k
R19
15 k
R41
180 ohm
C47
1 uF
R36
180 ohm
SYNC*
C44
Open
R40
2.2 k
GOE
Open
SYNC*
Open
VccAuxPlane
R35
2.2 k
VccAuxPlane
R46
Open
C49
Open
LD
Open
R44
0 ohm
R42
Open
VccAuxPlane
CLKuWire
DATAuWire
LEuWire
uWire Voltage Translation
Analog LD
LD Indicator
CLKout0_P
CLKout0_N
CLKin0 Impedance Matching and Attenuation
GOE Voltage Translation
LD
LD
SYNC* VoltageTranslation
Fout Balun and Impedance Matching
VccAuxPlane
C30
0.1 uF
C39
1 uF
C38
100 pF
C61
Open
R20
4.7 k
R61
Open
C37
1 nF
R23
10 k
VCXO Loop Filter
R43
Open
D7
3.3 V zener
D8
3.3 V zener
Y1
Open
C46
Open
1
3
2
D9
SMV-1249-074
R30
4.7 k
C28
33 pF
C26
33 pF
C27
33 pF
VTUNE2_TP1
VTUNE2
R21
Open
R27
Open
Vtune1
Vtune_VCXO
Vtune_XTAL
Vtune_XTAL
R26
0 ohm
VccAuxPlane
R37
Open
R39
0 ohm
Crystal Loop Filter
VCXO Loop Filter
Designators greater than and equal to 200 are placed on bottom of PCB
LMK04100BEVAL schematic.
Refer to BOM for differences.
L M K 0 4 1 X X - R E V 3 E V A L U A T I O N B O A R D O P E R A T I N G I N S T R U C T I O N S
SNLU099
24
Clock Outputs
CLKout1
SMA
CLKout1*
SMA
R93
Open
R89
Open
R90
Open
R97
Open
R98
Open
C67
0.1 uF
C68
0.1 uF
R92
Open
R95
Open
CLKout0
SMA
CLKout0*
SMA
R75
Open
R66
Open
R67
Open
R83
Open
R84
Open
C63
0.1 uF
C65
0.1 uF
R74
120 ohm
R80
120 ohm
CLKout0_N
CLKout0_P
R91
0 ohm
R96
0 ohm
R73
0 ohm
R82
0 ohm
CLKout0
CLKout1
Emitter Resistors
DC Block
Vcc Bias
Load Simulation
Notes:
1. A stub will be placed near all CLKout SMA connectors to test the effects of capacitive loading.
2. CLKout0 and CLKout4 are both the same type and never CMOS.
3. CLKout1, CLKout2 and CLKout3 can be made LVPECL or CMOS via metal mask.
VccCLKoutPlane
Emitter Resistors
Probe Test Point
Vcc Bias
DC Block
Vcc Bias
Load Simulation
CLKout4_N
CLKout4_P
CLKout4
Open
CLKout4*
SMA
R77
Open
R69
Open
R70
Open
R87
Open
R88
Open
C64
Open
C66
0.1 uF
R76
120 ohm
R81
120 ohm
R85
0 ohm
R71
0 ohm
CLKout4
CLKout1_N
CLKout1_P
Emitter Resistors
DC Block
Vcc Bias
Load Simulation
Emitter Resistors
DC Block
Vcc Bias
Load Simulation
Emitter Resistors
DC Block
Vcc Bias
Load Simulation
CLKout3
SMA
CLKout3*
SMA
R108
Open
R101
Open
R102
Open
R117
Open
R118
Open
C70
0.1 uF
C72
0.1 uF
R107
120 ohm
R111
120 ohm
CLKout3_N
CLKout3_P
R104
0 ohm
R114
0 ohm
CLKout3
CLKout2
SMA
CLKout2*
SMA
R106
Open
R99
Open
R100
Open
R116
Open
C69
0.1 uF
R105
Open
R109
Open
CLKout2_N
CLKout2_P
R103
0 ohm
R113
0 ohm
CLKout2
VccCLKoutPlane
VccCLKoutPlane
VccCLKoutPlane
VccCLKoutPlane
VccCLKoutPlane
VccCLKoutPlane
VccCLKoutPlane
VccCLKoutPlane
VccCLKoutPlane
R78
Open
R94
Open
R110
Open
R112
Open
R79
Open
C71
0.1 uF
R115
Open
CLKout0_1_P
CLKout0_1_N
CLKout0_2_P
CLKout0_2_N
CLKout1_1_P
CLKout1_1_N
CLKout1_2_P
CLKout1_2_N
CLKout2_1_P
CLKout2_1_N
CLKout2_2_P
CLKout2_2_N
CLKout3_1_P
CLKout3_1_N
CLKout3_2_P
CLKout3_2_N
CLKout4_1_P
CLKout4_1_N
CLKout4_3_P
CLKout4_3_N
Output option 0 - LVPECL/2VPECL
Output option 1 - LVPECL/2VPECL
Output option 3 - LVDS
Output option 0 - LVPECL/2VPECL
Output option 1 - LVPECL/2VPECL
Output option 3 - LVDS
Output option 0 - LVCMOS
Output option 1 - LVPECL/2VPECL
Output option 3 - LVPECL/2VPECL
Output option 0 - LVCMOS
Output option 1 - LVPECL/2VPECL
Output option 3 - LVCMOS
Output option 0 - LVPECL/2VPECL
Output option 1 - LVPECL/2VPECL
Output option 3 - LVPECL/2VPECL
P
1
NC
2
PD
3
S
4
SCT
5
SD
6
B1
ADT2-1T
R72
Open
R86
Open
R68
0 ohm
CLKout4_2_P
CLKout4_2_N
Designators greater than and equal to 200 are placed on bottom of PCB
LMK04100BEVAL schematic.
Refer to BOM for differences.
L M K 0 4 1 X X - R E V 3 E V A L U A T I O N B O A R D O P E R A T I N G I N S T R U C T I O N S
SNLU099
25
Appendix D: Board Layers Stackup
Layers of the 6 layer evaluation board include:
Blue is dielectrics
Top layer for high priority high frequency signals
o 1 oz CU
RO4003 Dielectric, 16 mils
Ground plane
FR4, 2.5 mils thick.
Power plane #1 VccCLK
FR4, xx mils
middle ground plane
FR4, xx mils
VccPLL, VccAux
FR4, xx mils
Bottom layer copper clad for thermal relief
Top to bottom layer order:
LMK04100.GTL (1) top copper
LMK04100.GP1 (2) gnd
LMK04100.GP2 (3) vcc
LMK04100.GP3 (4) gnd
LMK04100.G1 (5) vcc
LMK04100.GBL (6) bottom copper
RO4003 (Er = 3.38)
CONTROLLED THICKNESS of
16 mils thick
Top Copper. 1oz thick [LMK04100.GTL]
GND plane [LMK04100.GP1]
FR4 (Er = ~4.6)
CONTROLLED THICKNESS: 2.5 mils
thick
VccCLK plane [LMK04100.GP2]
FR4
Middle Ground Plane
FR4
Bottom Copper Thermal relief
[LMK04100.GBL]
62 mils thick total
FR4
Vcc mixed plane [LMK04100.G1]
L M K 0 4 1 X X - R E V 3 E V A L U A T I O N B O A R D O P E R A T I N G I N S T R U C T I O N S
SNLU099
26
Appendix E: Bill of Materials
Common Bill of Materials for Evaluation Boards
Part
Manufacturer
Part Number
Qnt
Identifier
Capacitors
2.0 pF
Kemet
C0603C209C5GAC
2
C33, C41
33 pF
Kemet
C0402C330J5GAC
3
C26, C27, C28
100 pF
Kemet
C0603C101J5GAC
2
C24, C38
1 nF
Kemet
C0603C102J5GAC
1
C37
2.2 nF
Kemet
C0603C222K5RAC
2
C35, C40
6.8 nF
Kemet
C0603C682K1RACTU
1
C2_B2
10 nF
Kemet
C0603C103K1RACTU
4
C6, C9, C16, C20
12 nF
Panasonic
ECH-U01123JX5
1
C2_A2
0.1 uF
Kemet
C0603C104J3RAC
25
C3, C5, C8, C10, C13, C15, C17, C19, C23, C30,
C34, C36, C45, C48, C59, C60, C63, C65, C66,
C67, C68, C69, C70, C71, C72
100 nF
Kemet
C0603C104J3RAC
1
C1_A1
330 nF
Kemet
C0603C334K4RACTU
1
C1_B1
0.47 uF
Kemet
C0603C474K8PACTU
1
C32
680 nF
Kemet
C0603C684K8PAC
1
C2_A1
1 uF
Kemet
C0603C105K8PAC
10
C2, C4, C7, C12, C14, C18, C22, C25, C39, C47
10 uF
Kemet
C0805C106K9PAC
5
C1, C2pB1, C11, C21, C29
(page 1/3)
L M K 0 4 1 X X - R E V 3 E V A L U A T I O N B O A R D O P E R A T I N G I N S T R U C T I O N S
SNLU099
27
Resistors
0 ohm
Vishay/Dale
CRCW06030000Z0EA
23
C51, C58, C62, R1, R2, R3, R26, R32, R44, R47,
R60, R65, R68, R71, R73, R82, R85, R91, R96,
R103, R104, R113, R114
18 ohm
Vishay/Dale
CRCW060318R0JNEA
1
R5
51 ohm
Vishay/Dale
CRCW060351R0JNEA
2
R13, R62
100 ohm
Vishay/Dale
CRCW0603100RJNEA
2
R16, R51
120 ohm
Vishay/Dale
CRCW0603120RJNEA
2
R107, R111
180 ohm
Vishay/Dale
CRCW0603180RJNEA
2
R36, R41
270 ohm
Vishay/Dale
CRCW0603270RJNEA
5
R4, R6, R7, R8, R45
1.8 k
Vishay/Dale
CRCW06031K80JNEA
1
R2_A2
2.2 k
Vishay/Dale
CRCW06032K20JNEA
2
R35, R40
2.7 k
Vishay/Dale
CRCW06032K70JNEA
1
R2_B2
3.9 k
Vishay/Dale
CRCW06033K90JNEA
1
R2_B1
4.7 k
Vishay/Dale
CRCW06034K70JNEA
2
R20, R30
10 k
Vishay/Dale
CRCW060310K0JNEA
1
R23
15 k
Vishay/Dale
CRCW060315K0JNEA
3
R12, R19, R29
27 k
Vishay/Dale
CRCW060327K0JNEA
3
R11, R18, R28
39 k
Vishay/Dale
CRCW060339K0JNEA
1
R2_A1
Other
POWER_SMALL
Weidmuller
1594540000
1
J1
SMA
Johnson Components
142-0701-851
14
CLKin0*, CLKin1, CLKin1*, CLKout0*, CLKout0,
CLKout1*, CLKout1, CLKout2*, CLKout2,
CLKout3*, CLKout3, CLKout4*, Fout, Vcc
SMA_FRAME
Printed Circuits Corp.
PCB
1
F1
Red LED
Lumex
SML-LX2832IC-TR
2
D3, D5
Green LED
Lumex
SML-LX2832GC-TR
1
D1
0.875" Standoff
SPC Technology
SPCS-14
4
S1, S2, S3, S4
ADT2-1T
Minicircuits
ADT2-1T+
1
B1
HEADER_2X5(POLARIZED)
FCI Electronics
52601-S10-8
1
uWire
3.3 V zener
Comchip
CZRU52C3V3
2
D7, D8
SMV-1249-074
Skyworks
SMV1249-074LF
1
D9
Common Bill of Materials for Evaluation Boards (continued, 2/3)
L M K 0 4 1 X X - R E V 3 E V A L U A T I O N B O A R D O P E R A T I N G I N S T R U C T I O N S
SNLU099
28
Common Bill of Materials for Evaluation Boards (continued, 3/3)
Open
Open
R
78
R14, R17, R21, R22, R24, R25, R27, R33, R34,
R38, R42, R43, R46, R48, R49, R50, R52, R53,
R54, R55, R56, R57, R58, R59, R61, R63, R64,
R66, R67, R69, R70, R72, R75, R77, R78, R79,
R83, R84, R86, R87, R88, R89, R90, R93, R94,
R97, R98, R99, R100, R101, R102, R105, R106,
R108, R109, R110, R112, R115, R116, R117, R118,
R200, R201, R202, R203, R204, R205, R206, R207,
R208, R209, R210, R211, R212, R213, R214, R215,
R216
Open
C
44
C1_A2, C1_B2, C2pB2, C2pA2, C2pA1, C2_B1,
C3_AB1, C43, C44, C46, C49, C50, C52, C53, C54,
C55, C56, C57, C61, C64, C200, C201, C202,
C203, C204, C205, C206, C207, C208, C209, C210,
C211, C212, C213, C214, C215, C216, C217, C218,
C219, C220, C221, C222, C223
Open
U
4
U3, U200, U201, U202
Open
SMA
12
OSCin*, OSCin, LOS0, LOS1, VccLDO, LD, PTO,
GOE, SYNC*, CLKout4, Vtune1, CLKin0
Open
Y
1
Y200
Open
D
3
D2, D4, D6
L M K 0 4 1 X X - R E V 3 E V A L U A T I O N B O A R D O P E R A T I N G I N S T R U C T I O N S
SNLU099
29
Bill of Material Custom to LMK04100BEVAL
Part
Manufacturer
Part Number
Qnt
Identifier
Capacitors
0.1 uF
Kemet
C0603C104J3RAC
2
C31, C42
Resistors
0 ohm
Vishay/Dale
CRCW06030000Z0EA
2
R9, R39
120 ohm
Vishay/Dale
CRCW0603120RJNEA
4
R74, R76, R80, R81
Other
LMK04100B
National Semiconductor
LMK04100B
1
U1
CVHD-950-122.88
Crystek
CVHD-950-122.88
1
U4
Open
Open
6
R10, R15, R31, R37, R92, R95
Open
1
Y1
Bill of Material Custom to LMK04100BEVAL-XO
Part
Manufacturer
Part Number
Qnt
Identifier
Capacitors
Resistors
0 ohm
Vishay/Dale
CRCW06030000Z0EA
4
R10, R15, R31, R37
120 ohm
Vishay/Dale
CRCW0603120RJNEA
4
R74, R76, R80, R81
Other
LMK04100B
National Semiconductor
LMK04100B
1
U1
12.288 MHz XTAL
Vectron
VXB1-1127-12M288
1
Y1
Open
Open
2
C31, C42
Open
4
R9, R39, R92, R95
Open
1
U4
L M K 0 4 1 X X - R E V 3 E V A L U A T I O N B O A R D O P E R A T I N G I N S T R U C T I O N S
SNLU099
30
Bill of Material Custom to LMK04131BEVAL
Part
Manufacturer
Part Number
Qnt
Identifier
Capacitors
0.1 uF
Kemet
C0603C104J3RAC
2
C31, C43
Resistors
0 ohm
Vishay/Dale
CRCW06030000Z0EA
2
R9, R39
120 ohm
Vishay/Dale
CRCW0603120RJNEA
2
R92, R95
Other
LMK04131B
National Semiconductor
LMK04131B
1
U1
CVHD-950-122.88
Crystek
CVHD-950-122.88
1
U4
Open
Open
8
R10, R15, R31, R37, R74, R76, R80,
R81
Open
1
Y1
Bill of Material Custom to LMK04131BEVAL-XO
Part
Manufacturer
Part Number
Qnt
Identifier
Capacitors
Resistors
0 ohm
Vishay/Dale
CRCW06030000Z0EA
4
R10, R15, R31, R37
120 ohm
Vishay/Dale
CRCW0603120RJNEA
2
R92, R95
Other
LMK04131B
National Semiconductor
LMK04131B
1
U1
12.288 MHz XTAL
Vectron
VXB1-1127-12M288
1
Y1
Open
Open
2
C31, C42
Open
6
R9, R39, R74, R76, R80, R81
Open
1
U4
L M K 0 4 1 X X - R E V 3 E V A L U A T I O N B O A R D O P E R A T I N G I N S T R U C T I O N S
SNLU099
31
Bill of Material Custom to LMK04102BEVAL
Part
Manufacturer
Part Number
Qnt
Identifier
Capacitors
0.1 uF
Kemet
C0603C104J3RAC
2
C31, C42
Resistors
0 ohm
Vishay/Dale
CRCW06030000Z0EA
2
R9, R39
120 ohm
Vishay/Dale
CRCW0603120RJNEA
4
R74, R76, R80, R81
Other
LMK04102B
National Semiconductor
LMK04102B
1
U1
CVHD-950-122.88
Crystek
CVHD-950-122.88
1
U4
Open
Open
6
R10, R15, R31, R37, R92, R95
Open
1
Y1
Bill of Material Custom to LMK04133BEVAL
Part
Manufacturer
Part Number
Qnt
Identifier
Capacitors
0.1 uF
Kemet
C0603C104J3RAC
2
C31, C42
Resistors
0 ohm
Vishay/Dale
CRCW06030000Z0EA
2
R9, R39
120 ohm
Vishay/Dale
CRCW0603120RJNEA
2
R92, R95
Other
LMK04133B
National Semiconductor
LMK04133B
1
U1
CVHD-950-122.88
Crystek
CVHD-950-122.88
1
U4
Open
Open
8
R10, R15, R31, R37, R74, R76, R80,
R81
Open
1
Y1
L M K 0 4 1 X X - R E V 3 E V A L U A T I O N B O A R D O P E R A T I N G I N S T R U C T I O N S
SNLU099
32
Appendix F: Balun Information
Typical Balun Frequency Response
The following figure illustrates the typical frequency response of the Mini-circuit‟s ADT2-1T
balun.
Figure 11 - Typical Balun Frequency Response
0
1
2
3
4
5
6
7
8
9
10
10 100 1000
Loss (dB)
Frequency (MHz)
Typical Balun Insertion Loss
ADT2-1T
L M K 0 4 1 X X - R E V 3 E V A L U A T I O N B O A R D O P E R A T I N G I N S T R U C T I O N S
SNLU099
33
Appendix G: VCXO/Crystal changes
This appendix contains instructions for changing the active on-board oscillator for PLL1.
Changing from Crystal Resonator to VCXO
If the board has been setup to use the crystal-based oscillator with PLL1, the crystal may be
disabled and the VCXO enabled as described on the following pages:
Summary
1. Connect power to VCXO
2. Disconnect Crystal RF path and connect VCXO RF path
3. Connect charge pump output from PLL1 to VCXO Loop Filter (A1) and VCXO.
4. Connect charge pump output from PLL2 to VCXO Loop filter (A2).
Procedures
1. Connect power to VCXO
a. Install a 0 ohm resistor in R26 (near the VCXO)
Figure 12
L M K 0 4 1 X X - R E V 3 E V A L U A T I O N B O A R D O P E R A T I N G I N S T R U C T I O N S
SNLU099
34
2. Disconnect Crystal RF path and connect VCXO RF path
a. Remove resistors R15 and R31.
b. Install 0.1 uF capacitors in C31 and C43.
Figure 13
3. Connect charge pump output from PLL1 to VCXO Loop Filter (A1) and VCXO.
a. Remove R37 and install a 0 ohm resistor in R39. This resistor can be “switched”
between the two footprints.
Figure 14
L M K 0 4 1 X X - R E V 3 E V A L U A T I O N B O A R D O P E R A T I N G I N S T R U C T I O N S
SNLU099
35
4. Connect charge pump output from PLL2 to VCXO Loop filter (A2).
a. Remove R10 and install a 0 ohm resistor in R9. This resistor can be “switched”
between the two footprints.
Figure 15
L M K 0 4 1 X X - R E V 3 E V A L U A T I O N B O A R D O P E R A T I N G I N S T R U C T I O N S
SNLU099
36
Changing from VCXO to Crystal Resonator
If the board has been setup to use the VCXO for PLL1, the VCXO may be disabled and the
crystal enabled as described on the following pages:
Summary
1. Remove power from VCXO
2. Disconnect VCXO RF path and connect Crystal RF path
3. Connect charge pump output from PLL1 to Crystal Loop Filter (B1) and Crystal
4. Connect charge pump output from PLL2 to Crystal Loop filter (B2)
Procedures
1. Remove power from VCXO
a. Remove 0 ohm resistor in R26 (near the VCXO)
Figure 16
L M K 0 4 1 X X - R E V 3 E V A L U A T I O N B O A R D O P E R A T I N G I N S T R U C T I O N S
SNLU099
37
2. Disconnect VCXO RF path and connect Crystal RF path
a. Install 0 ohm resistors R15 and R31.
b. Remove 0.1 uF capacitors in C31 and C43.
Figure 17
3. Connect charge pump output from PLL1 to Crystal Loop Filter (B1) and Crystal
a. Remove R39 and install a 0 ohm resistor in R37. This resistor can be “switched”
between the two footprints.
Figure 18
L M K 0 4 1 X X - R E V 3 E V A L U A T I O N B O A R D O P E R A T I N G I N S T R U C T I O N S
SNLU099
38
4. Connect charge pump output from PLL2 to Crystal Loop filter (B2)
a. Remove R9 and install a 0 ohm resistor in R10. This resistor can be “switched”
between the two footprints.
Figure 19
L M K 0 4 1 X X - R E V 3 E V A L U A T I O N B O A R D O P E R A T I N G I N S T R U C T I O N S
SNLU099
39
Appendix H: LMK04100
The block diagram in Figure 20 illustrates the functional architecture of the LMK041xx clock
conditioner. It features a cascaded, dual PLL arrangement, available internal loop filter
components for PLL2, internal VCO with PLL2 for frequency synthesis, and clock distribution
section with individual clock output dividers and delay adjustment blocks. The dual reference
clock input to PLL1 provides fail-safe redundancy for phase locked loop operation. The cascaded
PLL architecture allows PLL1 to be used as a jitter cleaner for an incoming reference clock that
contains excessive phase noise. This requires the user to select an external oscillator (VCXO or
crystal) that provides the desired phase noise performance at the clock output. This external
oscillator becomes the reference clock for PLL2 and along with the phase noise characteristics of
PLL2 and the internal VCO, determines the final phase noise performance at FOUT and the
output of the clock distribution section.
Figure 20 - Functional Block Diagram of the LMK041xx Dual PLL Precision Clock Conditioner with
External VCXO module.
PLL2PLL1
R1Dq1
N1
R2
N2
Dq2
VCO
CLKin0
CLKin1 VCO
DIV
CHAN
DIV D
CHAN
DIV D
5 Output Clock
Channels
LVPECL, LVDS,
LVCMOS
FOUT
CLKout_0
CLKout_4
uWire
Interface
DATA
CLK
LE
vcxo
L M K 0 4 1 X X - R E V 3 E V A L U A T I O N B O A R D O P E R A T I N G I N S T R U C T I O N S
SNLU099
40
PLL1 has been designed to work with either an off-the-shelf VCXO package or with a user-
designed discrete implementation that employs a crystal resonator and associated tuning
components. The Figure 21 shows an example of a discretely implemented VCXO using a
crystal resonator.
Figure 21 - LMK041xx with the XTAL Resonator option and Tuning Circuit
LMK04100 Family evaluation boards are configured with either a VCXO or Crystal (-XO) on
board. It is possible to place a VCXO on a Crystal board or a Crystal on a VCXO board by
removing and replacing certain components on the board. Instructions for modifying the board
are presented in Appendix G: VCXO/Crystal changes.
Figure 22 below shows the crystal oscillator circuit diagram.
PLL2PLL1
R1Dq1
N1
R2
N2
Dq2
VCO
CLKin0
CLKin1 VCO
DIV
CHAN
DIV D
CHAN
DIV D
5 Output Clock
Channels
LVPECL, LVDS,
LVCMOS
FOUT
CLKout_0
CLKout_4
uWire
Interface
DATA
CLK
LE
L M K 0 4 1 X X - R E V 3 E V A L U A T I O N B O A R D O P E R A T I N G I N S T R U C T I O N S
SNLU099
41
Figure 22 - Crystal Oscillator Circuit diagram
CPout1
LMK040xx
OSCin
OSCin*
Copt
PLL1 Loop Filter
XTAL
CC1 = 2.2 nF
CC2 = 2.2 nF
R1 = 4.7k
R3 = 10k
1 nF
R2 = 4.7k
SMV1249-074LF
Copt
L M K 0 4 1 X X - R E V 3 E V A L U A T I O N B O A R D O P E R A T I N G I N S T R U C T I O N S
SNLU099
42
Appendix I: Properly Configuring LPT Port
When trying to solve any communications issue, it is convenient to program the POWERDOWN
bit to confirm high/low current draw of the evaluation board or the PLL_MUX between “Logic
Low” and “Logic High” LD output to confirm successful communications.
LPT Driver Loading
The parallel port must be configured for proper operation. To confirm that the LPT port driver is
successfully loading click “LPT/USB” “Check LPT Port.” If the driver properly loads then
the following message is displayed:
Figure 23 - Successfully Opened LPT Driver
Successful loading of LPT driver does not mean LPT communications in CodeLoader are setup
properly. The proper LPT port must be selected and the LPT port must not be in an improper
mode.
The PC must be rebooted after install for LPT support to work properly.
Correct LPT Port/Address
To determine the correct LPT port in Windows, open the device manager (On Windows XP,
Start Settings Control Panel System Hardware Tab Device Manager) and check
the LPT port under the Ports (COM & LPT) node of the tree. It can be helpful to confirm that
the LPT port is mapped to the expected port address, for instance to confirm that LPT1 is really
mapped to address 0x378. This can be checked by viewing the properties of the LPT1 port and
viewing resources tab to verify that the I/O Range starts at 0x378. CodeLoader expects the a
traditional port mapping:
Port
Address
LPT1
0x378
LPT2
0x278
LPT3
0x3BC
If a non-standard address is used, use the “Other” port address in CodeLoader and type in the
port address in hexadecimal. It is possible to change the port address in the computer‟s BIOS
settings. The port address is set in CodeLoader at the Port Setup tab as shown in Figure 24.
L M K 0 4 1 X X - R E V 3 E V A L U A T I O N B O A R D O P E R A T I N G I N S T R U C T I O N S
SNLU099
43
Figure 24 - Selecting the LPT Port
Correct LPT Mode
If communications are not working, then it is possible the LPT port mode is set improperly. It is
recommended to use the simple, Output-only mode of the LPT port. This can be set in the BIOS
of the computer. Common terms for this desired parallel port mode are “Normal,” “Output,” or
“AT.” It is possible to enter BIOS setup during the initial boot up sequence of the computer.
L M K 0 4 1 X X - R E V 3 E V A L U A T I O N B O A R D O P E R A T I N G I N S T R U C T I O N S
SNLU099
44
Appendix J: Troubleshooting Information
If the evaluation board is not behaving as expected, the most likely issues are
1) Board communication issue
2) Incorrect Programming of the device
3) Setup Error
Refer to this checklist for a practical guide on identifying/exposing possible issues.
1) Confirm Communications
Refer to Appendix I: Properly Configuring LPT Port to trouble shoot this item.
Remember to load device with Ctrl-L!
2) Confirm PLL1 operation/locking
1) Program PLL_MUX = “PLL 1 R Divider /2”
2) Confirm that LD pin output is half the expected phase detector frequency of PLL1.
i. If not, examine CLKin_SEL programming.
ii. If not, examine CLKin0_BUFTYPE / CLKin1_BUFTYPE.
iii. If not, examine PLL1 register R programming.
iv. If not, examine physical CLKin input.
3) Program PLL_MUX = “PLL 1 N Divider /2”
4) Confirm that LD pin output is half the expected phase detector frequency of PLL1.
i. If not, examine PLL1 register N programming.
ii. If not, examine physical OSCin input.
Naturally, the output frequency of the above two items, PLL 1 R Divider/2 and PLL 1 N Divider
/2, on LD pin should be the same frequency.
5) Program PLL_MUX = “PLL1 DLD Active High”
6) Confirm the LD pin output is high.
i. If high, then PLL1 is locked, continue to PLL2 operation/locking.
(continued on next page)
L M K 0 4 1 X X - R E V 3 E V A L U A T I O N B O A R D O P E R A T I N G I N S T R U C T I O N S
SNLU099
45
7) If LD pin output is low, but the frequencies are the same, it is possible that excessive
leakage on Vtune pin is causing the digital lock detect to not activate. By default
PLL2 waits for the digital lock detect to go high before allowing PLL2 and the
integrated VCO to lock. Different VCXO models have different input leakage
specifications. High leakage, low PLL1 phase detector frequencies, and low PLL1
charge pump current settings can cause the PLL1 charge pump to operate longer than
the digital lock detect timeout which allows the device to lock, but prevents the
digital lock detect from activating.
i. Redesign PLL1 loop filter with higher phase detector frequency
ii. Redesign PLL1 loop filter with higher charge pump current
iii. Isolate VCXO tuning input from PLL1 charge pump with an op amp.
iv. Program RC_DLD1_Start = 0, this will allow PLL2 to starting lock even if
the digital lock detect on PLL1 is not high.
3) Confirm PLL2 operation/locking
1) Program PLL_MUX = “PLL 2 R Divider /2”
2) Confirm that LD pin output is half the expected phase detector frequency of PLL2.
i. If not, examine PLL2 register R programming.
ii. If not, examine physical OSCin input.
3) Program PLL_MUX = “PLL 2 N Divider /2”
4) Confirm that LD pin output is half the expected phase detector frequency of PLL2.
i. If not, confirm OSCin_FREQ is programmed to OSCin frequency.
ii. If not, examine PLL2 register N programming.
Naturally, the output frequency of the above two items should be the same frequency.
5) Program PLL_MUX = “PLL2 DLD Active High”
6) Confirm the LD pin output is high.
7) Program PLL_MUX = “PLL1/2 DLD Active High”
8) Confirm the LD pin output is high.
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TIs terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TIs standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic."Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP®Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Mobile Processors www.ti.com/omap
Wireless Connectivity www.ti.com/wirelessconnectivity
TI E2E Community Home Page e2e.ti.com
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright ©2012, Texas Instruments Incorporated
Mouser Electronics
Authorized Distributor
Click to View Pricing, Inventory, Delivery & Lifecycle Information:
Texas Instruments:
LMK04131EVAL/NOPB LMK04133EVAL/NOPB