December 2001 1
© 2001 Actel Corporation
Advanced v0.3
ProASICPLUSAPA Family
Features and Benefits
High Capacity
150,000 to 1 million System Gates
36k to 198kbits of Two-Port SRAM
232 to 712 User I/Os
Performance
50 MHz PCI
Internal System Performance up to 350 MHz
External System Performance up to 150 MHz
Low Power
Low Impedance Flash Switches
Segmented Hierarchical Routing Structure
Small, Efficient, Configurable (Combinatorial or
Sequential) Logic Cells
High Performance Routing Hierarchy
Ultra Fast Local and Long Line Network
High Speed Very Long Line Network
High Performance, Low Skew, Splitable Global Network
100% Routability and Utilization
Reprogrammable Flash Technology
0.22µ 4LM Flash-based CMOS Process
Live at Power Up, Single-Chip Solution
No Configuration Device Required
Retains Programmed Design During Power-Down/
Power-Up Cycles
Secure Programming
The Industrys Most Effective Security Key Prevents Read
Back of Programming Bit Stream
I/O
Mixed 2.5V/3.3V Support with Individually-Selectable
Voltage and Slew Rate
Bidirectional Global I/Os
PCI Compliance with PCI Revision 2.2 Including 3.3V, 64-bit
PCI
Boundary-scan Test IEEE Std. 1149.1 (JTAG) Compliant
Unique Clock Conditioning Circuitry
Two Integrated PLLs (1.5 to 240 MHz Input and Output
Ranges)
PLL with Flexible Phase, Multiply/Divide and Delay
Capabilities
Internal and/or External Dynamic PLL Configuration
Two LVPECL Differential Pairs for Clock or Data Inputs
Standard FPGA and ASIC Design Flow
Flexibility with Choice of Industry-Standard Front-End
Tools
Efficient Design Through Front-End Timing and Gate
Optimization
ISP Support
In-System Programming (ISP) with on-board µP
Embedded Memory Netlist Generator for
SRAMs and FIFOs
Ensures Optimal Usage of Embedded Memory Blocks
Up to 150 MHz Synchronous and Asynchronous Operation of
24 RAM and FIFO Configurations
ProASICPLUS Product Profile
Device APA150 APA300 APA450 APA600 APA750 APA1000
Maximum System Gates 150,000 300,000 450,000 600,000 750,000 1,000,000
Maximum Registers 6,144 8,192 12,288 21,504 32,768 56,320
Embedded RAM Bits 36k 72k 108k 126k 144k 198k
Embedded RAM Blocks (256 X 9) 16 32 48 56 64 88
PLL 222222
Global Networks 444444
Maximum Clocks 32 32 48 56 64 88
Maximum User I/Os 232 280 332 472 562 712
JTAG Yes Yes Yes Yes Yes Yes
PCI Yes Yes Yes Yes Yes Yes
User I/Os (by Package Pin Count)
PQFP 208-pin 164 164 164 164 164 164
PBGA 456-pin 232 280 332 362 362 362
FBGA 144-pin 106 106 106
FBGA 256-pin 188 188 188 188
FBGA 676-pin 468 468
FBGA 896-pin 562 566
FBGA 1152-pin 712
ProASICPLUS APA Family
2 Advanced v0.3
General Description
The ProASICPLUS family enhance upon the performance
and reputation of Actels ProASIC 500K family. It combines
the advantages of ASICs with the benefits of programmable
devices through nonvolatile Flash technology, thus enabling
engineers to create high-density systems using existing ASIC
or FPGA design flows and tools. In addition, the
ProASICPLUS family offers a unique clock conditioning
circuits based on two on-board phase lock loops (PLLs). The
family offers up to 1 million system gates, supported with up
to 198kbits of 2-port SRAM and up to 712 user I/Os, all
providing 50MHz PCI performance.
The advantages to the designer extend beyond
performance. Four levels of routing hierarchy simplify
routing, while the use of Flash technology allows all
functionality to be available at power up. No external Boot
PROM is required to support device programming. While
on-board security mechanisms prevent all access to the
program information, reprogramming (even in-system) is
still easy enough to support future design iterations and
field upgrades. The devices architecture mitigates the
complexity of ASIC migration at higher user volume, making
ProASICPLUS a cost-effective solution for applications in
the networking, communications, computing and avionics
markets.
The ProASICPLUS family achieves its nonvolatility and
reprogrammability through an advanced Flash-based 0.22µ
LVCMOS process with four-layer metal. Standard CMOS
design techniques are used to implement logic and control
functions, including the PLLs and LVPECL inputs. The
result is predictable performance fully compatible with gate
arrays.
The proprietary ProASICPLUS architecture provides a
granularity comparable to gate arrays. The device core
consists of a Sea-of-TilesTM. Each tile can be configured as a
flip-flop, latch, or any 3-input/1-output logic function
(except a 3-input XOR), by programming the appropriate
Flash switches. The combination of fine granularity, flexible
routing resources, and abundant Flash switches allow 100%
utilization and over 95% routability for highly congested
designs. Gates and larger functions are interconnected
through a 4-level routing hierarchy. Embedded 2-port SRAM
blocks with built-in FIFO/RAM control logic can
user-defined depth and width. Users can also select
programmed for synchronous or asynchronous operation, as
well as parity generations or checking.
The clock conditioning circuitry is unique. Each chip
contains two clock conditioning blocks, each with a PLL
core, delay lines, phase shifts (90°, 180°, 270°), and clock
multipliers/dividers. In short, this is all the circuitry needed
to provide bidirectional access to the PLL, and operation up
to 240 MHz. The PLL block contains four programmable
frequency dividers which allow the incoming clock signal to
be divided by a wide range of factors of up to 64. The clock
conditioning circuit will also delay or advance the up to 4 ns
(in increments of 0.25 ns) relative to the positive edge of the
incoming reference clock. The PLL can be configured
internally or externally during operation without
redesigning or reprograming the part. In addition to the PLL
there are two LVPECL differential input pairs to
accommodate high speed clock and data inputs.
To support customers needs for more comprehensive, lower
cost board-level testing, Actels ProASICPLUS devices are
fully compatible with IEEE Standard 1149.1 for test access
port and boundary-scan test architecture. For more details
on the Flash FPGA implementation please refer to the
ProASICPLUS APA Family data sheet.
ProASICPLUS devices are available in a variety of
high-performance plastic packages. Those packages, and the
performance features discussed above are described in
more detail in the following sections of this document:
Features and Benefits on page 1
ProASICPLUS APA Architecture on page 4
Routing Resources on page 5
Clock Trees on page 8
Input/Output Blocks on page 9
LVPECL Input Pads on page 9
Boundary Scan on page 10
User Security on page 13
Embedded Memory Floorplan on page 13
Design Environment on page 16
Package Thermal Characteristics on page 18
Operating Conditions on page 19
In-system programming (TBD)
DC Electrical Specifications (VDDP = 2.5V) on page 20
page 22
AC Specifications (3.3V PCI Operation) on page 23
Clock Conditioning Circuit on page 24
Embedded Memory Specifications on page 34
Package Pin Assignments on page 54 page 76
Advanced v0.3 3
ProASICPLUS APA Family
Ordering Information
Product Plan
APA1000 1 FG
_
Part Number
Speed Grade
Blank =Standard Speed
=TBD
_1
Package Type
PQ =Plastic Quad Flat Pack
FG =FineBall Grid Array
PB =Plastic Ball Grid Array
1152 ES
Package Lead Count
Application (Ambient Temperature Range)
Blank = Commercial (0 to +70˚ C)
I = Industrial (-40 to +85˚ C)
PP = Pre-production
ES = Engineering Silicon (Room Temperature Only)
150,000 Equivalent System Gates
APA150 =
APA450
APA600
APA750
APA1000
450,000 Equivalent System Gates
600,000 Equivalent System Gates
750,000 Equivalent System Gates
1,000,000 Equivalent System Gates
APA300
300,000 Equivalent System Gates
=
=
=
=
=
Speed Grade Application
Std –1* C I
APA150 Device
208-Pin Plastic Quad Flat Pack (PQFP) P P P P
456-Pin Plastic Ball Grid Array (PBGA) P P P P
144-Pin Fine Ball Grid Array (FBGA) P P P P
256-Pin Fine Ball Grid Array (FBGA) P P P P
APA300 Device
208-Pin Plastic Quad Flat Pack (PQFP) P P P P
456-Pin Plastic Ball Grid Array (PBGA) P P P P
144-Pin Fine Ball Grid Array (FBGA) P P P P
256-Pin Fine Ball Grid Array (FBGA) P P P P
APA450 Device
208-Pin Plastic Quad Flat Pack (PQFP) P P P P
456-Pin Plastic Ball Grid Array (PBGA) P P P P
144-Pin Fine Ball Grid Array (FBGA) P P P P
256-Pin Fine Ball Grid Array (FBGA) P P P P
APA600 Device
208-Pin Plastic Quad Flat Pack (PQFP) P P P P
456-Pin Plastic Ball Grid Array (PBGA) P P P P
256-Pin Fine Ball Grid Array (FBGA) P P P P
676-Pin Fine Ball Grid Array (FBGA) P P P P
APA750 Device
208-Pin Plastic Quad Flat Pack (PQFP) PPP
456-Pin Fine Ball Grid Array (PBGA) PPP
676-Pin Fine Ball Grid Array (FBGA) P P P P
896-Pin Plastic Ball Grid Array (FBGA) P P P P
APA1000 Device
208-Pin Plastic Quad Flat Pack (PQFP) PPP
456-Pin Plastic Ball Grid Array (PBGA) PPP
896-Pin Plastic Ball Grid Array (FBGA) P P P P
1152-Pin Plastic Ball Grid Array (FBGA) P P P P
Contact your Actel sales representative for product availability.
Applications: C = Commercial Availability: P= Planned *Speed Grade: –1 = TBD
I=Industrial = Limited Availability – Contact your Actel Sales representative for the latest availability
information.
ProASICPLUS APA Family
4 Advanced v0.3
ProASICPLUS APA Architecture
The proprietary ProASICPLUS architecture provides
granularity comparable to gate arrays. Unlike SRAM- based
FPGAs, which utilize look-up tables or architectural
mapping during design, ProASIC device designs are directly
synthesized to gates. That streamlines the design flow,
increases design productivity, and eliminates dependencies
on vendor-specific design tools.
The ProASICPLUS device core (Figure 1) consists of a
Sea-of-Tiles, each of which (Figure 3 on page 5) can be
configured as a 3-input logic function (e.g., NAND gate,
D-Flip-Flop, etc.) by programming the appropriate Flash
switches interconnections (Figure 2 on page 5). Gates and
larger functions are connected with the four levels of
routing hierarchy. Flash cells are distributed throughout the
device to provide nonvolatile, reconfigurable interconnect
programming. Flash switches are programmed to connect
signal lines to the appropriate logic cell inputs and outputs.
Dedicated high-performance lines are connected as needed
for fast, low-skew global signal distribution throughout the
core. Maximum core utilization is possible for virtually any
design.
ProASICPLUS devices also contain embedded two-port
SRAM blocks with built-in FIFO/RAM control logic.
Programming options include synchronous or asynchronous
operation, two-port RAM configurations, user defined depth
and width, and parity generation or checking. Table 3 on
page 13 lists the 24 basic memory configurations.
Flash Switch
In the ProASICPLUS Flash switch (Figure 2 on page 5), two
transistors (the Flash transistor in which programming and
erasing is performed, and a second transistor connecting or
separating routing elements or configuration signal lines)
share the floating gate in which the Flash transistor stores
the programming information.
Logic Tile
The logic tile cell (Figure 3 on page 5) has three inputs (any
or all of which can be inverted) and one output (which can
connect to both ultra fast local and efficient long line
routing resources). Any three-input one-output logic
function, except a three input XOR, can be configured as
one tile.
Two multiplexers with feedback paths through the NAND
gates allow the tile to be configured as a latch with clear or
set, or as a flip-flop with clear or set. Thus the tiles can
flexibly map logic and sequential gates of a design.
Figure 1 The ProASICPLUS Device Architecture
256x9 Two-Port SRAM
or FIFO Block
Logic Tile
Advanced v0.3 5
ProASICPLUS APA Family
Routing Resources
The routing structure of the ProASICPLUS devices is
designed to provide high performance through a flexible
four-level hierarchy of routing resources: ultra fast local
resources, efficient long line resources, high speed very long
line resources, and high performance global networks.
The ultra fast local resources are dedicated lines that allow
the output of each tile to connect directly to every input of
the eight surrounding tiles (Figure 4 on page 6).
The efficient long line resources provide routing for longer
distances and higher fanout connections. These resources
vary in length (spanning 1, 2, or 4 tiles), run both vertically
and horizontally, and cover the entire ProASICPLUS device
(Figure 5 on page 6). Each tile can drive signals onto the
efficient long line resources, which can, in turn, access
every input of every tile. Active buffers are inserted
automatically by routing software to limit the loading
effects due to distance and fanout.
The high speed very long line resources which span the
entire device with minimal delay, are used to route very long
or very high fanout nets. The routing software automatically
inserts active buffers to limit loading effects due to distance
and fanout. (Figure 6 on page 7).
The high performance global networks are low skew, high
fanout nets that are accessible from external pins or from
internal logic (Figure 7 on page 8). These nets are typically
used to distribute clocks, resets, and other high fanout nets
requiring a minimum skew. The global networks are
implemented as clock trees, and signals can be introduced
at any junction. These can be employed hierarchically, with
signals accessing every input on all tiles.
Figure 2 Flash Switch
Figure 3 Core Logic Tile
Sel 1 Sel 2
Switch In
Switch Out
Word
Floating Gate
Local Routing
In 1
In 2 (CLK)
In 3 (Reset)
Efficient Long
Line Routing
ProASICPLUS APA Family
6 Advanced v0.3
Figure 4 Ultra Fast Local Resources
Figure 5 Efficient Long Line Resources
L
LL
LL
L
Inputs
Output
Ultra Fast
Local Lines
(connects a tile to the
adjacent tile, I/O buffer,
or memory block)
LL L
LLLLLL
LLLLLL
LL LLLL
LL LLLL
LLLLLL
Logic Cell
Spans 1 Tile
Spans 2 Tiles
Spans 4 Tile
Spans 1 Tile
Spans 2 Tiles
Spans 4 Tile
Logic Tile
Advanced v0.3 7
ProASICPLUS APA Family
Figure 6 High Speed Very Long Line Resources
PAD RING
PAD RING
PAD RING
I/O RING
I/O RING
High Speed Very Long Line Resouces
ProASICPLUS APA Family
8 Advanced v0.3
Clock Resources
The ProASICPLUS family offers powerful and flexible control
of circuit timing through the use of analog circuitry. Each
chip has two clock conditioning blocks, each containing a
240 MHz phase lock loop (PLL) core, delay lines, (0°, 90°,
180°, 270°), clock multiplier/dividers and all the circuitry
needed for the selection and interconnection of inputs to
the global network (thus providing bidirectional access to
the PLL). This permits the PLL block to drive inputs and/or
outputs via the two global lines on each side of the chip
(four total lines). This circuitry is discussed in more detail
later in the data sheet.
Clock Trees
One of the main architectural benefits of ProASICPLUS is
the power and delay friendly clock tree (Global Networks).
Each device of the ProASICPLUS FPGA family offers 4 global
trees. Each of these trees is based on a network of spines
and ribs that reach all the tiles in their regions (Figure 7).
This flexible clock tree architecture allows users to map up
to 56 different internal/external clocks in an A500K270
device (Table 1 on page 9).
The flexible use of the ProASICPLUS clock spine allows the
designer to cope with several design requirements. Users
implementing clock resource intensive applications can
easily route external or gated internal clocks using global
routing spines. Users can also drastically reduce delay
penalties and save buffering resources by mapping critical
high-fanout nets to spines. For design hints on using these
features, refer to the Efficient Use of ProASIC Clock Trees
application note.
Figure 7 High Performance Global Network
PAD RING
PAD RING
PAD RING
I/O RING
I/O RING
Global
Pads
Global
Pads
High Performace
Global Network
Low Skew
Global Networks
Global Spine
Global Ribs
Scope of Spine
Advanced v0.3 9
ProASICPLUS APA Family
Input/Output Blocks
To meet complex system demands, the ProASICPLUS family
offers devices with a large number of user I/O pins, up to
712 on the APA1000. If the I/O pad is powered at 3.3V, each
I/O can be selectively configured at 2.5V and 3.3V threshold
levels. Table 2 shows the available supply voltage
configurations (the PLL block uses an independent 2.5V
supply). Figure 8 on page 10 illustrates I/O interfaces with
other devices. All I/Os include ESD protection circuits. Each
I/O has been tested to 2000V to the human body model (per
MIL-STD-883, Method 3015) and 200V to the machine
model.
Six or seven standard I/O pads are grouped with a GND pad
and either a VDD or VDDP pad. Two reference bias signals
ring the chip. One protects the cascaded output drivers
while the other creates a virtual VDD supply for the I/O
ring.
I/O pads are fully configurable to provide the maximum
flexibility and speed. Each pad can be configured as an
input, an output, a tristate driver, or a bidirectional buffer
(Figure 9 on page 10). I/O pads configured as inputs have
the following features:
Individually selectable 2.5V or 3.3V threshold levels1
Optional pull-up resistor
I/O pads configured as outputs have the following features:
Individually selectable 2.5V or 3.3V compliant output
signals1
3.3V PCI compliant
Ability to drive LVTTL and LVCMOS levels
Selectable drive strengths
Selectable slew rates
Three-state
I/O pads configured as bidirectional buffers have the
following features:
Individually selectable 2.5V or 3.3V output signals and
threshold levels1
3.3V PCI compliant
Optional pull-up resistor
Selectable drive strengths
Selectable slew rates
Three-state
LVPECL Input Pads
In addition to standard I/O pads and power pads,
ProASICPLUS devices have a PECL input pad at each end of
each of the global MUX lines, along with AVDD and AGND
pins to power the PLL block. The PECL input pad cell
differs from the standard I/O cell. It is operated from VDD
only. Since it is exclusively an input, it requires no output
signal, output enable signal or output configuration bits. As
a special high-speed differential input, it also requires no
pull ups.
The PECL pad cell (Figure 10 on page 10) consists of an
inbuffer (containing a low voltage differential amplifier,
whose power is enabled by the PC<0> and CL<1> signals,
and a cascaded buffer), a signal pad (sigpad) and a
reference pad (refpad). The PECL pad cell compares
voltages on the sigpad and the refpad and send the results
to the global mux over the P<0> wire. This high speed, low
skew output essentially controls the clock conditioning
circuit.
Table 1 Number of Clock Spines
APA150 APA300 APA450 APA600 APA750 APA1000
Global Clock Networks (Trees) 4 4 4 4 4 4
Clock Spines/Tree 8 8 12141622
Total Spines 32 32 48 56 64 88
Top Spine Height 24 32 32 48 64 80
Bottom Spin e Heigh t 24 32 32 48 64 80
Tiles in Top Spine 768 1,024 1,024 1,536 2,048 2,560
Tiles in Bottom Spine 768 1,024 1,024 1,536 2,048 2,560
Total Tiles 6,144 8,192 12,288 21,504 32,768 56,320
Table 2 ProASICPLUS Power Supply Voltages
VDDP 2.5V 3.3V
Input Tolerance 2.5V 3.3V, 2.5V
Output Drive 2.5V 3.3V, 2.5V
Note: VDD is always 2.5V.
1. If pads are configured for 2.5V operation, they are compliant with 2.5V level
signals as defined by JEDEC JESD 8-5. If pads are configured for 3.3V operation,
they are compliant with the standard as defined by JEDEC JESD 8-A (LVTTL and
LVCMOS).
ProASICPLUS APA Family
10 Advanced v0.3
Boundary Scan
ProASICPLUS devices are compatible with IEEE Standard
1149.1, which defines a set of hardware architecture and
mechanisms for cost-effective board-level testing. The basic
ProASICPLUS boundary-scan logic circuit is composed of the
TAP (test access port), TAP controller, test data registers
and instruction register (Figure 11 on page 11). This circuit
supports all mandatory IEEE 1149.1 instructions (EXTEST,
SAMPLE/PRELOAD and BYPASS), the optional IDCODE
instructions and private instructions used for device
programming and factory testing.
Each test section is accessed through the TAP, which has
five associated pins: TCK (test clock input), TDI and TDO
(test data input and output), TMS (test mode selector) and
TRST (test reset input). TMS, TDI and TRST are equipped
with pull-up resistors to ensure proper operation when no
input data is supplied to them. These pins are dedicated for
boundary-scan test usage.
The TAP controller is a four-bit state machine (16 states)
that operates as shown in Figure 12 on page 12. The 1s and
0s represent the values that must be present at TMS at a
rising edge of TCK for the given state transition to occur. IR
and DR indicate that the instruction register or the data
register is operating in that state.
Figure 8 ProASICPLUS Global I/O Scheme with Multiplexed Global Pads
PAD
PAD
PAD
PAD
PAD
Standard I/O Pad Cell
Standard I/O Pad Cell
Standard I/O Pad Cell
Global MUX
Driver
Global MUX
Driver
PECL Input Pad
Cell
I/O Tile
X
I/O Tile
A
I/O Tile
GA
I/O Tile
GB
I/O Tile
B
STDIO
GLOB<A>
GLOB<B>
PECLIN
GLOB<B>
GLOB<B>
PECLREF
HC<A>
HC<B>
PC<0:4>
P<1,2>
P<0>
PC<0:4>
P<1,2>
P<0>
PC<0:4>
P<1,2>
P<0>
PC<0:4>
P<1,2>
P<0>
PC<0:4>
P<1,2>
P<0>
Figure 9 I/O Block Schematic Representation
3.3V/2.5V
Signal Control
Pull-up
Control
Pad
Y
EN
A
3.3V/2.5V Signal Control
Drive Strength and Slew
Rate Control
Figure 10 High Speed Global Pad Cell Block Diagram
CL<1> sigpad
+
ESD
protection
+
clamp
refpad
+
ESD
protection
+
clamp
inbuffer
P<0>
PC<0>
SIG
PAD
REF
PAD
CORE & GLOBAL MUX
Advanced v0.3 11
ProASICPLUS APA Family
Figure 11 ProASICPLUS JTAG Boundary Scan Test Logic Circuit
Device
Logic
TDI
TCK
TMS
TRST
TDO
(Optional)
I/O I/O I/O I/O I/O
I/O I/O I/O I/O I/O
I/O
I/O
I/O
I/O
Bypass Register
Instruction
Register
TAP
Controller
Test Data
Registers
ProASICPLUS APA Family
12 Advanced v0.3
The TAP controller receives two control inputs (TMS and
TCK) and generates control and clock signals for the rest of
the test logic architecture. On power up, the TAP controller
enters the Test-Logic-Reset state. To guarantee a reset of
the controller from any of the possible states, TMS must
remain high for five TCK cycles. The optional TRST pin may
also be used to asynchronously place the TAP controller in
the Test-Logic-Reset state.
ProASICPLUS devices support three types of test data
registers: bypass, device identification, and boundary scan.
The bypass register is selected when no other register needs
to be accessed in a device; this speeds up test data transfer
to other devices in a test data path. The 32-bit device
identification register is a shift register with four fields
(LSB, ID number, part number and version). The
boundary-scan register observes and controls the state of
each I/O pin.
Each I/O cell has three boundary-scan register cells, each
with a serial-in, serial-out, parallel-in and parallel-out pin.
The serial pins are used to serially connect all the
boundary-scan register cells in a device into a boundary
scan register chain which starts at the TDI pin and ends at
the TDO pin. The parallel ports are connected to the
internal core logic tile and the input, output and control
ports of an I/O buffer to capture and load data into the
register to control or observe the logic state of each I/O.
Details on the implementation of boundary-scan testing on
ProASICPLUS devices can be found in the Actel application
note, Using JTAG Boundary-Scan with ProASIC Devices.
Figure 12 TAP Controller State Diagram
Test-Logic
Reset
Run-Test/
Idle
Select-DR-
Scan
Capture-DR
Shift-DR
Exit-DR
Pause-DR
Exit2-DR
Update-DR
Select-IR-
Scan
Capture-IR
Shift-IR
Exit-IR
Pause-IR
Exit2-IR
Update-IR
1
11
0
1
0
00
11
00
00
11
00
1
1
11
11
110
0
00
00
Advanced v0.3 13
ProASICPLUS APA Family
User Security
The ProASICPLUS devices have read-protect bits that, once
programmed, block the entire programmed contents from
being read externally. This security key can only be cleared
by erasing the entire device. This protects it from being
read back and duplicated. Since programmed data is stored
in nonvolatile memory cells (which are actually very small
capacitors), rather than in the wiring, physical
deconstruction cannot be used to compromise data. That
approach would be further hampered by the placement of
the memory cells, beneath the four metal layers (whose
removal could not be accomplished without disturbing the
charge in the capacitor). This is the highest security
provided in the industry. For more information, request our
Design Security in Nonvolatile Flash and Antifuse FPGAs
technical report.
Embedded Memory Floorplan
The embedded memory is located across the top of the
device (see Figure 1 on page 4) in 256x9 blocks. Depending
upon the device, up to 88 blocks are available to support a
variety of memory configurations. Each block can be
programmed as an independent memory or combined
(using dedicated memory routing resources) to form larger,
more complex memories. A single memory configuration
cannot include blocks from both the top and bottom
memory locations.
Embedded Memory Configurations
The embedded memory in the ProASICPLUS family provides
great configuration flexibility. While other programmable
vendors typically use single port memories that can only be
transformed into two-port memories by sacrificing half the
memory, each ProASIC block is designed and optimized as a
two-port memory (1r, 1w). This provides 198k bits of total
memory for two-port and single port usage in the APA1000
device.
Each memory can be configured as a FIFO or an SRAM, with
independent selection of synchronous or asynchronous read
and write ports (Table 3). Multiple write ports are not
supported. Additional characteristics include
programmable flags as well as parity check and generation.
Figure 13 on page 14 and Figure 14 on page 15 show the
block diagram of the basic SRAM and FIFO blocks. These
memories are designed to operate at up to 150 MHz when
operated individually. Each block contains a 256 word deep
by 9-bit wide (1r, 1w) memory. The memory blocks may be
combined in parallel to form wider memories or stacked to
form deeper memories (Figure 15 on page 15). This
provides optimal bit widths of 9 (1 block), 18, 36, and 72,
and optimal depths of 256, 512, 768, and 1024. Refer to the
Macro Library Guide for ProASIC FPGA Devices for more
information.
Figure 16 on page 16 gives an example of optimal memory
usage. 10 blocks with 23,040 bits have been used to generate
three memories of various widths and depths. Figure 17 on
page 16 shows how memory can be doubled up to create
extra read ports. In this example, using only 10 of the 88
available blocks of the APA1000 yields an effective 6,912
bits of multiple port memories. The ACTgen software
facilitates easily building wider and deeper memories for
optimal memory usage.
Table 3 Basic Memory Configurations
Type Write Access Read Access Parity Library Cell Name
RAM Asynchronous Asynchronous Checked RAM256x9AA
RAM Asynchronous Asynchronous Generated RAM256x9AAP
RAM Asynchronous Synchronous Transparent Checked RAM256xAST
RAM Asynchronous Synchronous Transparent Generated RAM256xASTP
RAM Asynchronous Synchronous Pipelined Checked RAM256x9ASR
RAM Asynchronous Synchronous Pipelined Generated RAM256x9ASRP
RAM Synchronous Asynchronous Checked RAM256x9SA
RAM Synchronous Asynchronous Generated RAM256xSAP
RAM Synchronous Synchronous Transparent Checked RAM256x9SST
RAM Synchronous Synchronous Transparent Generated RAM256x9SSTP
RAM Synchronous Synchronous Pipelined Checked RAM256x9SSR
RAM Synchronous Synchronous Pipelined Generated RAM256x9SSRP
FIFO Asynchronous Asynchronous Checked FIFO256xAA
FIFO Asynchronous Asynchronous Generated FIFO256x9AAP
ProASICPLUS APA Family
14 Advanced v0.3
FIFO Asynchronous Synchronous Tr ansparent Checked FIFO256xAST
FIFO Asynchronous Synchronous Transparent Generated FIFO256x9ASTP
FIFO Asynchronous Synchronous Pipelined Checked FIFO256x9ASR
FIFO Asynchronous Synchronous Pipelined Generated FIFO256x9ASRP
FIFO Synchronous Asynchronous Checked FIFO256x9SA
FIFO Synchronous Asynchronous Generated FIFO256xSAP
FIFO Synchronous Synchronous Tr ansparent Checked FIFO256x9SST
FIFO Synchronous Synchronous Transparent Generated FIFO256x9SSTP
FIFO Synchronous Synchronous Pipelined Checked FIFO256x9SSR
FIFO Synchronous Synchronous Pipelined Generated FIFO256x9SSRP
Figure 13 Example SRAM Block Diagrams
Table 3 Basic Memory Configurations
Type Write Access Read Access Parity Library Cell Name
SRAM
(256 X 9)
Sync Write &
Sync Read
Ports
WDATA <0:8> RDATA <0:8>
RADDR <0:7>
WADDR <0:7>
WRB RDB
WBLKB RBLKB
WCLK RCLK
RPE
PARODD
SRAM
(256 X 9)
Async Write
&
Async Read
Ports
WDATA <0:8> RDATA <0:8>
RADDR <0:7>
WADDR <0:7>
WRB
WBLKB
RDB
RBLKB
PARODD
WPE
RPE
WPE
SRAM
(256 X 9)
Sync Write
&
Async Read
Ports
WDATA <0:8> RDATA <0:8>
WADDR <0:7>
WRB RDB
WBLKB RBLKB
WCLK
RPE
PARODD
WPE
RADDR <0:7>
PARODD
SRAM
(256 X 9)
Async Write
&
Sync Read
Ports
WDATA <0:8> RDATA <0:8>
RADDR <0:7>
WADDR <0:7>
WRB RDB
WBLKB RBLKB
RCLK
RPE
WPE
Advanced v0.3 15
ProASICPLUS APA Family
Figure 14 Basic FIFO Block Diagrams
Figure 15 APA1000 Memory Block Architecture
FIFO
(256 X 9)
Sync Write &
Sync Read
Ports
LEVEL<0:7> RDATA <0:8>
WDATA<0:8>
WRB
RDB
WBLKB
RBLKB
RPE
PARODD
WPE
LGDEP<0:2>
FULL
EMPTY
EQTH
GEQTH
WCLK
RCLK
FIFO
(256 X 9)
Sync Write &
Async Read
Ports
WDATA <0:8> RDATA <0:8>
LEVEL <0:7>
WRB
RDB
WBLKB
RBLKB
RPE
PARODD
WPE
LGDEP<0:2>
FULL
EMPTY
EQTH
GEQTH
WCLK
FIFO
(256 X 9)
Async Write &
Async.Read
Ports
WDATA <0:8> RDATA <0:8>
LEVEL <0:7>
WRB
RDB
WBLKB
RBLKB
RPE
PARODD
WPE
LGDEP<0:2>
FULL
EMPTY
EQTH
GEQTH
FIFO
(256 X 9)
Async Write &
Sync Read
Ports
WDATA <0:8> RDATA <0:8>
LEVEL <0:7>
WRB
RDB
WBLKB
RBLKB
RPE
PARODD
WPE
LGDEP<0:2>
FULL
EMPTY
EQTH
GEQTH
RCLK
Word
Depth
Word Width
88 blocks
256
9
256
9
256
9
256
9
256
9
256
9
256
9
256
9
256
9
ProASICPLUS APA Family
16 Advanced v0.3
Design Environment
ProASICPLUS devices are supported by Designer (an Actel
software package that includes the ASICmaster and
MEMORYmaster software previously available in standalone
form), as well as third party CAE tools. Unlike some FPGA
vendors, no special HDL design techniques are needed when
using the standard VHDL or Verilog HDL descriptions. As a
result, designers may utilize the technology independent of
HDL code for ProASICPLUS devices. This and the
ProASICPLUS design flow ensure a seamless transition to an
ASIC should production volumes warrant a migration to a
gate array or a standard cell product (Figure 18 on page 17).
Designer automatically generates memories from the
designers inputs with ACTgen. The design engineer can
select the depth and width, usage of parity generation or
check, and synchronous or asynchronous functionality of the
ports. For a synchronous read port, the designer can choose
whether the output is pipelined or transparent. Designer
allows any bit width up to 252. However, when an
intermediate bit width, such as 16 bits, is chosen, the
remaining two bits are not accessible for other memories.
Designer also enables optimal memory stacking in 256 word
increments. However, any word depth may be combined for
up to 22,528 words.
Place-and-route is also performed by Actels Designer
software. Available for Solaris®, HP®, and Windows NT®,
Designer accepts standard netlists in Verilog, VHDL, and in
EDIF 2.0.0 format, performs place and route of the design
into the selected device, and provides postlayout delay
Figure 16 Example Showing Memories with Different Width and Depth
Figure 17 Multiport Memory Usage
Word
Depth
Word Width
9 bit x 1,024 word 1r1w
18 bit x 512 word 1r1w
18 bit x 256 word 1r1w
Total Memory Blocks Used = 10
Total Memory Bits = 23,040
256
256
256
256
9
256
256
99
256
99
256
9
256
9
9 bit x 512 word, 4r1w
9 bit x 256 word, 2r1w
Total Memory Blocks Used = 10
Total Memory Bits = 6,912
Word
Depth
Word Width
Write Port Write Port
Read Ports
99
Read Ports
Advanced v0.3 17
ProASICPLUS APA Family
information for back-annotation simulation or static timing
analysis. The Designer software also contains very powerful
interactive layout capabilities for the experienced user.
Designer also incorporates Actels proprietary macro
generator, ACTgen, which provides all the software needed
for configuration of the PLL clock conditioning circuit.
While the PLL has no placement mobility, ACTgen allows
users to use placement and routing floorplan constraints
hierarchically in order to more easily and efficiently explore
floorplan alternatives. This allows the power of the PLL
circuitry to be utilized with minimal top level timing loop
iterations.
Designer can also generate the BSDL (boundary-scan
description language) files required for documenting the
IEEE 1149.1 components which can be used by automatic
test equipment software.
Designer also contains the necessary information for the
placing, routing and configuration of the clock conditioning
circuit.
Once the design is finalized, the programming bitstream is
downloaded into the device programmer for ProASIC part
programming. ProASICPLUS devices can be programmed
with the Silicon Sculptor programmer, also in-system
programming is available. For details on ProASICPLUS
programming, refer to the programming application note.
Figure 18 Design Flow
Design Creation/Verification
Design Implementation
Synplify Tool
High-Level
Design
(Verilog or VHDL)
Designer
(P&R Tool)
P&R User
Constraints
ModelSim
Synthesis
Library
Programming
Silicon
Sculptor
Timing
Libraries
Simulation
Library
SDF
Timing
File
Forward
Constraints
Programming
Data
Timing
Analyzer
Timing and Simulation
Backannotation
Simulation
Library
ModelSim
Structural
Netlist
ACTgen
ProASICPLUS APA Family
18 Advanced v0.3
Package Thermal Characteristics
The ProASICPLUS family is available in several package
types with a range of pin-counts. Actel has selected
packages based on high pin count, reliability factors, and
superior thermal characteristics.
Thermal resistance defines the ability of a package to
conduct heat away from the silicon, through the package, to
the surrounding air. Junction-to-ambient thermal resistance
is measured in degrees Celsius/Watt and is represented as
Theta ja (Θja). The lower thermal resistance, the more
efficiently a package will dissipate heat.
A packages maximum allowed power (P) is a function of
maximum junction temperature (TJ), maximum ambient
operating temperature (TA), and junction-to-ambient
thermal resistance Θja. Maximum junction temperature is
the maximum allowable temperature on the active surface
of the IC and is 110° C. P is defined as:
Θja is a function of the rate (in linear feet per minute - lfpm)
of airflow in contact with the package,. When the estimated
power consumption exceeds the maximum allowed power,
other means of cooling, such as increasing the airflow rate,
must be used.
PTJTA
Θja
-----------------
=
Package Type Pin Count Θjc Θja Still Air Θja 300 ft./min Units
Plastic Ball Grid Array (PBGA) 456 3 18 14.5 °C/W
Fine Ball Grid Array (FBGA) 676 3 18 14.5 °C/W
Fine Ball Grid Array (FBGA) 896 3 18 14.5 °C/W
Fine Ball Gr id Array (FBGA) 1152 3 18 14.5 °C/W
Advanced v0.3 19
ProASICPLUS APA Family
Operating Conditions
Absolute Maximum Ratings
Parameter Condition Minimum Maximum Units
Supply Voltage (VDD)–0.3 3.0 V
Supply Voltage I/O Ring (VDDP)0.3 4.0 V
DC Input V ol t ag e 0.3 VDDP + 0. 3 V
PCI DC Input Voltage 0.5 VDDP + 0. 5 V
DC Input Clamp Curre nt (IIK) VIN < 0 or > VDDP 10 +10 mA
PECL Input Voltage 0 2.5 V
Programming Limits and Recommended Operating Conditions
Parameter Min. Max. Units Program Retention1
Storage Temperature 55 +150 °CN/A
Storage TemperatureProgrammed 55 +110 °C 20 years
Note:
1. Available after full qualification and characterization.
Temperature Maximums
Product Grade Programming Cycles1Program Retention2
Junction Temperature
Min. Max.
Commercial 100 20 years 0°C110°C
Industrial 100 20 years 40°C110°C
Notes:
1. 500 cycles available after completion of full qualification and characterization.
2. Available after full qualification and characterization.
Supply Voltages
Mode VDD VDDP VPP VPN
Single Voltage 2.5V 2.5V 2.5V Vpp 16.5 12V VPN 0V
Mixed Voltage 2.5V 3.3V 3.3 V Vpp 16.5 12V VPN 0V
Recommended Operating Conditions
Parameter Symbol Limits
Commercial
DC Supply Voltage (2.5V I/Os) VDD & VDDP 2.3V to 2.7V
DC Supply Voltage (2.5V, 3.3V I/Os) VDDP
VDD
3.0V to 3.6V
2.3V to 2.7V
Operation Ambient Temperature Range TA0°C to 70°C
Operation Junction Temperature (maximum) TJ 110°C
Maximum Clock Frequency fCLOCK 250 MHz
Maximum RAM Frequency fRAM 150 MHz
Industrial
DC Supply Voltage (2.5V I/Os) VDD & VDDP 2.3V to 2.7V
DC Supply Voltage (2.5V, 3.3V I/Os) VDDP
VDD
3.0V to 3.6V
2.3V to 2.7V
Operation Ambient Temperature Range TA40°C to 85°C
Operation Junction Temperature (maximum) TJ 110°C
Maximum Clock Frequency fCLOCK 250 MHz
Maximum RAM Frequency fRAM 150 MHz
ProASICPLUS APA Family
20 Advanced v0.3
DC Electrical Specifications (VDDP = 2.5V)
Symbol Parameter Conditions Min. Typ. Max. Units
VDDP, VDD Supply Voltage 2.3 2.7 V
VOH
Output High Voltage
High Drive (OB25LPH)
Low Dr ive (OB25LPL)
IOH = 2.0 mA
IOH = 4.0 mA
IOH = 8.0 mA
IOH = 1.0 mA
IOH = 2.0 mA
IOH = 4.0 mA
2.1
2.0
1.7
2.1
2.0
1.7
V
VOL
Output Low Voltage
High Drive (OB25LPH)
Low Dr ive (OB25LPL)
IOL = 5.0 mA
IOL = 10.0 mA
IOL = 15.0 mA
IOL = 2.0 mA
IOL = 3.5 mA
IOL = 5.0 mA
0.2
0.4
0.7
0.2
0.4
0.7
V
VIH Input High Voltage 1.7 VDDP + 0.3 V
VIL Input Low Voltage 0.3 .7 V
IIN Input Current
Input Current with pull up
without pull up 25
10 250
10 µA
µA
IDDQ Quiescent Supply Current VIN = VSS or VDD 5.0 10 mA
IOZ 3-State Output Leakage Current VOH = VSS or VDD 10 +10 µA
IOSH
Output Short Circuit Current High
High Drive (OB25LPH)
Low Dr ive (OB25LPL) VIN = VSS
VIN = VSS
120
100 mA
IOSL
Output Short Circuit Current Low
High Drive (OB25LPH)
Low Dr ive (OB25LPL) VIN = VDDP
VIN = VDDP
100
30 mA
CI/O I/O Pad Capacitance 10 pF
CCLK Clock Input Pad Capacit anc e 10 pF
Notes: All process conditions. Junction Temperature: 40 to +110°C.
No pull-up resistor.
Advanced v0.3 21
ProASICPLUS APA Family
DC Electrical Specifications (VDDP = 3.3V)
Symbol Parameter Conditions Min. Typ. Max. Units
VDDP Supply Voltage 3.0 3.6 V
VDD Supply Voltage, Logic Array 2.3 2.7 V
VOH
Output High Voltage
3.3V I/O, High Drive (OB33P)
3.3V I/O, Low Dri ve (OB33L)
IOH = 5.0 mA
IOH = 10.0 mA
IOH = 2.5 mA
IOH = 5.0 mA
0.9VDDP
2.4
0.9VDDP
2.4
V
Output High Voltage
2.5V I/O, High Drive (OB25H)
2.5V I/O, Low Dri ve (OB25L)
IOH = 200µA
IOH = 10.0 mA
IOH = 2.0 mA
IOH = 100µA
IOH = 1.0 mA
IOH = 2.0 mA
2.1
2.0
1.7
2.1
2.0
1.7
V
VOL
Output High Voltage
3.3V I/O, High Drive (OB33P)
3.3V I/O, Low Dri ve (OB33L)
IOL = 7.5 mA
IOL = 12.0 mA
IOL = 4.0 mA
IOL = 5.0 mA
0.1VDDP
0.4
0.1VDDP
0.4
V
Output High Voltage
2.5V I/O, High Drive (OB25H)
2.5V I/O, Low Dri ve (OB25L)
IOL = 5.0 mA
IOL = 12.0 mA
IOL = 16.0 mA
IOL = 2.5 mA
IOL = 5.0 mA
IOL = 8.0 mA
0.2
0.4
0.7
0.2
0.4
0.7
V
VIH
Input High Voltage
3.3V LVTTL/CMOS
2.5V Mode 2
1.7 VDDP + 0.3
VDDP + 0.3 V
VIL
Input Low Voltage
3.3V LVTTL/CMOS
2.5V Mode 0.3
0.3 0.8
0.7 V
IIN
Input Current
LVTTL/CMOS
LVTTL/CMOS with pull up
without pull up 30
10 300
10 µA
µA
IDDQ Quiescent Supply Current VIN = VSS or VDD 5.0 10 mA
IOZ 3-State Output Leakage Current VOH = VSS or VDD 10 +10 µA
IOSH
Output Short Ci rcuit Current High
3.3V High Drive
3.3 Low Drive
2.5V High Drive
2.5 Low Drive
200
140
120
100
mA
IOSL
Output Short Circuit Current Low
3.3V High Drive
3.3 Low Drive
2.5V High Drive
2.5 Low Drive
160
150
160
50
mA
CI/O I/O Pad Capacitance 10 pF
CCLK Clock Input Pad Capacitance 10 pF
Notes: All process conditions. Junction Temperature: 40 to +110°C.
No pull-up resistor.
ProASICPLUS APA Family
22 Advanced v0.3
DC Specifications (3.3V PCI Operation)
Symbol Parameter Condition Min. Max. Units
VDD Supply Voltage for Co re 2.3 2.7 V
VDDP Supply Voltage for I/O Ring 3.0 3.6 V
VIH Input High Voltage 0.5VDPP VDPP + 0.5 V
VIL Input Low Voltage 0.5 0.3VDDP V
IIPU Input Pull-up Voltage10.7VDDP V
IIL Input Leakage Current20 < VIN < VCCI 10 +10 µA
VOH Output High Voltage IOUT = 500 µA 0.9VDPP V
VOL Output Low Voltage IOUT = 1500 µA 0.1VDPP V
CIN Input Pin Capacitance310 pF
CCLK CLK Pin Cap acit ance 5 12 pF
Notes:
1. This specification should be guaranteed by design. It is the minimum voltage to which pull-up resistors are calculated to pull a floated
network. Applications sensitive to static power utilization should assure that the input buffer is conducting minimum current at this
input voltage.
2. Input leakage currents include hi-Z output leakage for all bidirectional buffers with tristate outputs.
3. Absolute maximum pin capacitance for a PCI input is 10 pF (except for CLK).
Advanced v0.3 23
ProASICPLUS APA Family
AC Specifications (3.3V PCI Operation)
Symbol Parameter Condition Min. Max. Units
IOH(AC)
Switching Current High 0 < VOUT 0.3VCCI 112VCCI mA
0.3VCCI VOUT < 0.9VCCI 1(17.1 + (VDDP VOUT)) mA
0.7VCCI < VOUT < VCCI 1, 2
(Test Point) VOUT = 0.7VCC 232VCCI mA
IOL(AC)
Switching Cu rrent Low
VCCI > VOUT 0.6VCCI 116VDDP mA
0.6VCCI > VOUT > 0.1VCCI 1(26.7VOUT)mA
0.18VCCI > VOUT > 0 1, 2 Equatio n B
on Page 21
(Test Point) VOUT = 0.18VCC 2 38VCCI mA
ICL Low Clamp Current 3 < VIN 125 + (VIN + 1)/0.015 mA
ICH High Clamp Current VCCI + 4 > VIN VCCI + 1 25 + (VIN VDDP 1)/0.015 mA
slewROutput Rise Slew Rate 0.2VCCI to 0.6VCCI load 314V/ns
slewFOutput Fall Slew Rate 0.6VCCI to 0.2VCCI load 314V/ns
Notes:
1. Refer to the V/I curves in Figure 16 on Page 21. Switching current characteristics for REQ# and GNT# are permitted to be one half of that
specified here; i.e., half size output drivers may be used on these signals. This specification does not apply to CLK and RST#, which are
system outputs. Switching Current High specifications are not relevant to SERR#, INTA#, INTB#, INTC#, and INTD#, which are open drain
outputs.
2. Maximum current requirements must be met as drivers pull beyond the last step voltage. Equations defining these maximums (A and B)
are provided with the respective diagrams in Figure 16 on Page 21. The equation defined maxima should be met by design. In order to
facilitate component testing, a maximum current test point is defined for each side of the output driver.
3. This parameter is to be interpreted as the cumulative edge rate across the specified range, rather than the instantaneous rate at any point
within the transition range. The specified load (diagram below) is optional; i.e., the designer may elect to meet this parameter with an
unloaded output per the latest revision of the PCI Local Bus Specification. However, adherence to both maximum and minimum
parameters is required (the maximum is no longer simply a guideline). Rise slew rate does not apply to open drain outputs.
output
buffer
1/2 in. max.
10 pF
1k
pin
1k
pin
buffer
output
10 pF
ProASICPLUS APA Family
24 Advanced v0.3
Timing Control and Characteristics
Clock Conditioning Circuit
ProASICPLUS devices provide designers with the most
flexible clocking capabilities available. Each side of the chip
contains a clock conditioning circuit based upon a 240-MHz
phase-locked loop (PLL) core (Figure 19). Two global
multiplexed lines extend along each side of the chip to
provide bidirectional access to the PLL on that side (neither
MUX can be connected to the opposite sides PLL). Each
global line has an optional PECL input pads (described
below). The global lines may be driven by either the PECL
global input pad or the outputs from the PLL block (or
both). Each can be driven by a different output from the
PLL. Thus global A could be driven from a phase output,
multiplied or divided version of the frequency driving global
B. See Table 4 on page 25.
Each PLL block contains four programmable dividers. The
first (n) provides all integer division factors from 1 to 16
inclusive. The second and third (u and v) permit the signal
applied to the global network to be further divided by
factors of 2, 3 or 4. The fourth divider (m, located in the
direct feedback path) is controlled by 6 bits, allowing the
incoming clock signal to be multiplied by factors of up to 64.
The implementations m/(n*u) and m/(n*v) enable to user to
define a wide range of multiplication and division factors.
The clock conditioning circuit can advance or delay the
clock up to 4ns (in increments of 0.25ns) relative to the
positive edge of the incoming reference clock. The system
also allows for the selection of output frequency clock
phases of 90, 180, and 270 degrees. A lock signal is
provided to indicate that the PLL has locked to the
incoming signal, and a standby signal switches the PLL
block off when it is not locked to a signal. That allows
pre-selected signals to be passed directly through, at least to
the corresponding rib drivers.
Prior to the application of signals to the rib drivers, they
pass through programmable delay units, one per global
network. These units permit the delaying of global signals
relative to other signals to assist in the control of input
set-up times. Not all possible combinations of input and
output mode can be used. The degrees of freedom available
in the bidirectional global pad system and in the clock
conditioning circuit have been restricted to avoid
unnecessary and unwieldy design kit and software work.
Table 5 on page 25 shows the allowable clock conditioning
circuit connections.
The PLL can be configured internally during design (via
flash configuration bits set in the programming bitstream)
or externally during operation (through a simple
dynamically accessible asynchronous interface a
dedicated register file that allows user signals to initiate
parameter changes, such as PLL divide/multiply ratios). See
Table 6 on page 26 and Table 7 on page 27.
Figure 19 Top-Level View of the PLL Core
External Feedback Signal
Global Input MUX A OUT
VDD-Off
Input Clock Signal
(Global Input MUX B Out)
AVDD AGND VDD GND
Output to Global Rib Driver (A)
PLL Bypass (A)
Output to Global RIb Driver (B)
PLL Bypass (B)
To/From
Mask Programmable
Delay
Dynamic
Configuration Bits
Flash
Configuration Bits
84 24
Dynamic Configuration Bit Inputs
Stand-by mode of Core
Data In
Shift Clock
Shift Enable
Update
NVM/Register Mode
(Other three bits used for flash configuration)
Dynamic Configuration Bit Outputs
Lock Detect
Data Out
GND ( Spare 1)
GND (Spare 2)
PLL Core
Advanced v0.3 25
ProASICPLUS APA Family
Table 4 Signals Available for Global Networks
Global HC<A> Global HC<B>
Output from global mux A. Output from global mux B.
fOUT with 0, 90 , 180 or 270 degrees shift. fOUT with 0 degrees shift.
Time delayed or advanced version of fOUT Ti me delayed or advanced version of fOUTt
Time advanced version of 90, 180 or 270 degrees shifted fOUT Any of the above further divided.
Any of the above further divided. Any of the above with a 0.25ns, 0.50ns or
Any of the above with a 0.25ns, 0.50ns or 4.00ns delay.* 4.00ns delay.*
Note: * This mode is available through the delay feature of the Global Mux driver.
Table 5 Connections and Restrictions to/from the CCC
Type Connections Restrictions
PECL inputs Connect only to (one) HC line (B) per
side. Dedicated pads.
Not routable to core logic.
IO Pad B
Generic IO with acce ss to one HC line
(B) per side.
Use as input signal to the CCC
Use eith er the PECL inputs or pad B for
a PCI clock.
The input muxes allow the dynamic
selection of (Pad B, PB<2>) or (PECL,
PB<2>) to the HC(B) global.
If the CCC is being used, HC(B) will
be driv en from one of the 2 available
outputs. See section 3 for more
information on precise output
options.
IO pads A0 and A1
Either can connect to one HC line (A)
per side.
Both can be used as generic IO pads.
Use these for PCI IRDY and TRDY sig-
nals
Pad A1 used for (optional) ex
The input muxes allow the dynamic
selection of (Pad A1, Pad A0) or (Pad
A0, PA<2>) to the HC(A) global.ternal
feedback signal for the CCC.
If the CCC is being used, HC(A) will
be driv en from one of the 2 available
outputs. See section 3 for more
information on precise output
options.
If the external feedback mode is
being used, the external feedback
signal must be applied to pad A1.
The com bination of PCI and exte rnal
feedback option is not therefore
accommodated.
Analog power pads T wo pads will be used for analog power
supplies to the CCC only As with all power pads, these will be
dedicated pads.
ProASICPLUS APA Family
26 Advanced v0.3
Table 6 Global Mux "B" Outputs vs. Selector States
T5
PC<4:2> T3
PC<2:0> T3
P<1> GMUXBOUT to PLL HC<B>
0 0 0 T0, P<0> (I/O pad B input to I/O tile B) T0, P<0> w/ no delay
0 0 1 T3, P<2> (core "D" output from I/O tile B) T3, P<2> w/ no delay
0 1 0 PECLIN (PECL pad input) PECLIN w/ no delay
0 1 1 T3, P<2> (core "D" output from I/O tile B) T3, P<2> w/ no delay
0 2 0 T0, P<0> (I/O pad B input to I/O tile B) T0, P<0> w/ 250ps delay
0 2 1 T3, P<2> (core "D" output from I/O tile B) T3, P<2> w/ 250ps delay
0 3 0 PECLIN (PECL pad input) PECLIN w/ 250ps delay
0 3 1 T3, P<2> (core "D" output from I/O tile B) T3, P<2> w/ 250ps delay
0 4 0 T0, P<0> (I/O pad B input to I/O tile B) T0, P<0> w/ 500ps delay
0 4 1 T3, P<2> (core "D" output from I/O tile B) T3, P<2> w/ 500ps delay
0 5 0 PECLIN (PECL pad input) PECLIN w/ 500ps delay
0 5 1 T3, P<2> (core "D" output from I/O tile B) T3, P<2> w/ 500ps delay
0 6 0 T0, P<0> (I/O pad B input to I/O tile B) T0, P<0> w/ 4000ps delay
0 6 1 T3, P<2> (core "D" output from I/O tile B ) T3, P<2> w/ 4000ps delay
0 7 0 PECLIN (PECL pad input) PECLIN w/ 4000ps delay
0 7 1 T3, P<2> (core "D" output from I/O tile B ) T3, P<2> w/ 4000ps delay
Not 0 0 0 T0, P<0> (I/O pad B input to I/O tile B) PLLBOUT w/ no delay
Not 0 0 1 T3, P<2> (core "D" output from I/O tile B) PLLBOUT w/ no delay
Not 0 1 0 PECLIN (PECL pad input) PLLBOUT w/ no delay
Not 0 1 1 T3, P<2> (core "D" output from I/O tile B) PLLBOUT w/ no delay
Not 0 2 0 T0, P<0> (I/O pad B input to I/O tile B) PLLBOUT w/ 250ps delay
Not 0 2 1 T3, P<2> (core "D" output from I/O tile B) PLLBOUT w/ 250ps delay
Not 0 3 0 PECLIN (PECL pad input) PLLBOUT w/ 250ps delay
Not 0 3 1 T3, P<2> (core "D" output from I/O tile B) PLLBOUT w/ 250ps delay
Not 0 4 0 T0, P<0> (I/O pad B input to I/O tile B) PLLBOUT w/ 500ps delay
Not 0 4 1 T3, P<2> (core "D" output from I/O tile B) PLLBOUT w/ 500ps delay
Not 0 5 0 PECLIN (PECL pad input) PLLBOUT w/ 500ps delay
Not 0 5 1 T3, P<2> (core "D" output from I/O tile B) PLLBOUT w/ 500ps delay
Not 0 6 0 T0, P<0> (I/O pad B input to I/O tile B) PLLBOUT w/ 4000ps delay
Not 0 6 1 T3, P<2> (core "D" output from I/O tile B) PLLBOUT w/ 4000ps delay
Not 0 7 0 PECLIN (PECL pad input) PLLBOUT w/ 4000ps delay
Not 0 7 1 T3, P<2> (core "D" output from I/O tile B) PLLBOUT w/ 4000ps delay
Note: T0 through T8 represent I/O tile row positions, in sequence. T0 is south-most and T8 is north-most. In the UV7x12M3A device T0 is tile
row 53 and T8 is tile row 61. Tile row positions in other products are to be determined.
Advanced v0.3 27
ProASICPLUS APA Family
Logic Tile Timing Characteristics
Timing characteristics for ProASICPLUS devices fall into
three categories: family dependent, device dependent, and
design dependent. The input and out buffer characteristics
are common to all ProASICPLUS family members. Internal
routing delays are device dependent. Design dependency
means that actual delays are not determined until after
placement and routing of the users design are complete.
Delay values may then be determined by using the Timer
utility or performing simulation with post-layout delays.
Table 7 Global Mux "A" Outputs vs. Selector States
T5
PC<1:0> T4
PC<2:0> T4
P<1> GMUXAOUT to PLL HC<A>
0 0 0 T4, P<2> (core "D" output from I/O tile A0) T4, P<2> w/ no delay
0 0 1 T7, P<0> (I/O pad A0 input to I/O tile A0) T7, P<0> w/ no delay
0 1 0 T8, P<0> (I/O pad A1 input to I/O tile A1) T8, P<0> w/ no delay
0 1 1 T7, P<0> (I/O pad A0 input to I/O tile A0) T7, P<0> w/ no delay
0 2 0 T4, P<2> (core "D" output from I/O tile A0) T4, P<2> w/ 250ps delay
0 2 1 T7, P<0> (I/O pad A0 input to I/O tile A0) T7, P<0> w/ 250ps delay
0 3 0 T8, P<0> (I/O pad A1 input to I/O tile A1) T8, P<0> w/ 250ps delay
0 3 1 T7, P<0> (I/O pad A0 input to I/O tile A0) T7, P<0> w/ 250ps delay
0 4 0 T4, P<2> (core "D" output from I/O tile A0) T4, P<2> w/ 500ps delay
0 4 1 T7, P<0> (I/O pad A0 input to I/O tile A0) T7, P<0> w/ 500ps delay
0 5 0 T8, P<0> (I/O pad A1 input to I/O tile A1) T8, P<0> w/ 500ps delay
0 5 1 T7, P<0> (I/O pad A0 input to I/O tile A0) T7, P<0> w/ 500ps delay
0 6 0 T4, P<2> (core "D" output from I/O tile A0) T 4, P<2> w/ 4000ps delay
0 6 1 T7, P<0> (I/O pad A0 input to I/O tile A0 ) T7, P<0> w/ 4000ps delay
0 7 0 T8, P<0> (I/O pad A1 input to I/O tile A1 ) T8, P<0> w/ 4000ps delay
0 7 1 T7, P<0> (I/O pad A0 input to I/O tile A0 ) T7, P<0> w/ 4000ps delay
Not 0 0 0 T4, P<2> (core "D" output from I/O tile A0) PLLAOUT w/ no delay
Not 0 0 1 T7, P<0> (I/O pad A0 input to I/O tile A0) PLLAOUT w/ no delay
Not 0 1 0 T8, P<0> (I/O pad A1 input to I/O tile A1) PLLAOUT w/ no delay
Not 0 1 1 T7, P<0> (I/O pad A0 input to I/O tile A0) PLLAOUT w/ no delay
Not 0 2 0 T4, P<2> (core "D" output from I/O tile A0) PLLAOUT w/ 250ps delay
Not 0 2 1 T7, P<0> (I/O pad A0 input to I/O tile A0) PLLAOUT w/ 250ps delay
Not 0 3 0 T8, P<0> (I/O pad A1 input to I/O tile A1) PLLAOUT w/ 250ps delay
Not 0 3 1 T7, P<0> (I/O pad A0 input to I/O tile A0) PLLAOUT w/ 250ps delay
Not 0 4 0 T4, P<2> (core "D" output from I/O tile A0) PLLAOUT w/ 500ps delay
Not 0 4 1 T7, P<0> (I/O pad A0 input to I/O tile A0) PLLAOUT w/ 500ps delay
Not 0 5 0 T8, P<0> (I/O pad A1 input to I/O tile A1) PLLAOUT w/ 500ps delay
Not 0 5 1 T7, P<0> (I/O pad A0 input to I/O tile A0) PLLAOUT w/ 500ps delay
Not 0 6 0 T4, P<2> (core "D" output from I/O tile A0) PLLAOUT w/ 4000ps delay
Not 0 6 1 T7, P<0> (I/O pad A0 input to I/O tile A0) PLLAOUT w/ 4000ps delay
Not 0 7 0 T8, P<0> (I/O pad A1 input to I/O tile A1) PLLAOUT w/ 4000ps delay
Not 0 7 1 T7, P<0> (I/O pad A0 input to I/O tile A0) PLLAOUT w/ 4000ps delay
Note: T0 through T8 represent I/O tile row positions, in sequence. T0 is south-most and T8 is north-most. In the UV7x12M3A device T0 is tile
row 53 and T8 is tile row 61. Tile row positions in other products are to be determined.
ProASICPLUS APA Family
28 Advanced v0.3
Critical Nets and Typical Nets
Propagation delays are expressed only for typical nets,
which are used for initial design performance evaluation.
Critical net delays can then be applied to the most timing
critical paths. Critical nets are determined by net property
assignment prior to placement and routing. Up to 6 percent
of the nets in a design may be designated as critical, while
90% of the nets in a design are typical.
High Speed Very Long Lines
Some nets in the design are very long lines, which are
special routing resources that span multiple rows, columns
or modules. This increases capacitance and resistance,
resulting in longer net delays for macros connected to long
tracks. Typically, up to 6 percent of nets in a fully utilized
device require very long lines. Very long lines contribute
approximately 4 to 8.4ns delay. This additional delay is
represented statistically in higher fanout routing delays.
Timing Derating
Since ProASICPLUS devices are manufactured with a CMOS
process, device performance will vary with temperature,
voltage and process. Minimum timing parameters reflect
maximum operating voltage, minimum operating
temperature, and optimal process variations. Maximum
timing parameters reflect minimum operating voltage,
maximum operating temperature, and worst-case process
variations (within process specifications).
Figure 20 Tristate Buffer Delays
PAD
A
OTBx
A50%
PAD
VOL
VOH
50%
tDLH
50%
50%
tDHL
EN 50%
PAD VOL
50%
tENZL
50%
10%
EN 50%
PAD
GND
VOH
50%
tENZH
50%
90%
VCC
EN
Advanced v0.3 29
ProASICPLUS APA Family
Table 8 Tristate Buffer Delays
(Worst-Case Commercial Conditions, VDDP = 3.0V, VDD = 2.3V, 35 pF load, TJ = 70°C)
Macro Type Description Max
tDLH Max
tDHL Max
tENZH Max
tENZL Units
OTB33PH 3.3V, PCI Output Current, High Slew Rate 4.4 4.3 4.4 3.7 ns
OTB33PN 3.3V, PCI Output Current, Nominal Slew Rate 4.9 6.1 5.0 5.5 ns
OTB33PL 3.3V, PCI Output Current, Low Slew Rate 5.5 7.4 5.5 6.9 ns
OTB33LH 3.3V, Low Output Current, High Slew Rate 6.2 6.9 6.2 6.1 ns
OTB33LN 3.3V, Low Output Current, Nomina l Slew Rate 7.0 9.6 7.0 9.3 ns
OTB33LL 3.3V, Low Output Current, Low Slew Rate 7.8 12.6 7.8 12.3 ns
OTB25HH 2.5V, High Output Current, High Slew Rate 7.2 3.7 7.2 3.5 ns
OTB25HN 2.5V, High Output Current, Nominal S lew Rate 7.5 5.4 7.5 5.1 ns
OTB25HL 2.5V, High Output Current, Low Slew Rate 8.5 6.7 8.5 6.4 ns
OTB25LH 2.5V, Low Output Current, High Slew Rate 10.8 5.7 10.8 5.4 ns
OTB25LN 2.5V, Low Output Current, Nomina l Slew Rate 11.5 8.6 11.5 8. 4 ns
OTB25LL 2.5V, Low Output Current, Low Slew Rate 12.4 11 .4 12.4 11.1 ns
OTB25LPHH 2.5V, Low Power, High Output Current, High Slew Rate 5.3 5.3 5.3 4.6 ns
OTB25LPHN 2.5V, Low Power, High Output Current, Nominal Slew Rate 6.3 8.0 6.2 7.7 ns
OTB25LPHL 2.5V, Low Power, High Output Current, Low Slew Rate 7.2 10.2 7.1 9.7 ns
OTB25LPLH 2 .5V, Low Power, Low Output Current, High Slew Rate 7.7 9.0 7.7 8.1 ns
OTB25LPL N 2.5V, Low Power, Low Output Current, Nominal Slew Rate 9.0 13.1 8.9 12.8 ns
OTB25LPLL 2.5V, Low Power, Low Output Current, Low Slew Rate 10.2 17.7 10.2 17.4 ns
Notes:
1. tDLH = Data-to-Pad HIGH
2. tDHL = Data-to-Pad LOW
3. tENZH = Enable-to-Pad, Z to HIGH
4. tENZL = Enable-to-Pad, Z to LOW
Figure 21 Output Buffer Delays
PAD
A
OBx
A50%
PAD
VOL
VOH
50%
tDLH
50%
50%
tDHL
ProASICPLUS APA Family
30 Advanced v0.3
Table 9 Output Buffer Delays
(Worst-Case Commercial Conditions, VDDP = 3.0V, VDD = 2.3V, 35 pF load, TJ = 70°C)
Macro Type Description Max. tDLH Max. tDHL Units
OB33PH 3.3V, PCI Output Current, High Slew Rate 4.4 4.3 ns
OB33PN 3.3V, PCI Output Current, Nomina l Slew Rate 4.9 6.1 ns
OB33PL 3.3V, PCI Output Current, Low Slew Rate 5.5 7.4 ns
OB33LH 3.3V, Low Output Current, High Slew Rate 6.2 6.9 ns
OB33LN 3.3V, Low Output Current, Nominal Slew Rate 7.0 9.6 ns
OB33LL 3.3V, Low Output Current, Low Slew Rate 7.8 12.6 ns
OB25HH 2.5V, High Output Current, High Slew Rate 7.2 3.7 ns
OB25HN 2.5V, High Output Current, Nominal Slew Rate 7.5 5.4 ns
OB25HL 2.5V, High Output Current, Low Slew Rate 8.5 6.7 ns
OB25LH 2.5V, Low Output Current, High Slew Rate 10.8 5.7 ns
OB25LN 2.5V, Low Output Current, Nominal Slew Rate 11.5 8.6 ns
OB25LL 2.5V, Low Output Current, Low Slew Rate 12.4 11.4 ns
OB25LPHH 2.5V, Low Power, High Output Current, High Slew Rate 5.3 5.3 ns
OB25LPHN 2.5V, Low Power, High Output Current, Nominal Slew Rate 6.3 8.0 ns
OB25LPHL 2.5V, Low Power, High Output Current, Low Slew Rate 7.2 10.2 ns
OB25LPLH 2.5V, Low Powe r, Low Output Current, High Slew Rate 7.7 9.0 ns
OB25LPLN 2.5V, Low Power, Low Output Current, Nominal Slew Rate 9.0 13.1 ns
OB25LPLL 2.5V, Low Power, Low Output Current, Low Slew Rate 10.2 17.7 ns
Notes:
1. tDLH = Data-to-Pad HIGH
2. tDHL = Data-to-Pad LOW
Advanced v0.3 31
ProASICPLUS APA Family
Figure 22 Input Buffer Delays
Table 10 Input Buffer Delays
(Worst-Case Commercial Conditions, VDDP = 3.0V, VDD = 2.3V, TJ = 70°C, fCLOCK = 250 MHz)
Macro Type Description Max.
tINYH Max.
tINYL Units
IB25 2.5V, CMOS Input Levels, No Pull-up Resistor 2.3 0.7 ns
IB25LP 2.5V, CMOS Input Levels, Low Power 2.3 1.5 ns
IB33 3.3V, CMOS Input Levels, No Pull-up Resistor 2.0 1.0 ns
Notes:
1. tINYH = Input Pad-to-Y HIGH
2. tINYL = Input Pad-to-Y LOW
Table 11 Global Input Buffer Delays
(Worst-Case Commercial Conditions, VDDP = 3.0V, VDD = 2.3V, TJ = 70°, fCLOCK = 250 MHz)
Macro Type Description Max.
tINYH Max.
tINYL Units
GL25 2.5V, CMOS Input Levels 2.2 1.7 ns
GL25LP 2.5V, CMOS Input Levels 2.4 2.4 ns
GL33 3.3V, CMOS Input Levels 4.0 1.2 ns
GL25U 2.5V, CMOS Input Levels, with Pull-up Resistor 2.2 1.7 ns
GL25LPU 2.5V, CMOS Input Levels, Low Power, with Pull-up Resistor 2.4 2.4 ns
GL33U 3.3V, CMOS Input Levels, with Pull-up Resistor 4.0 1.2 ns
Table 12 Predicted Global Routing Delay*
(Worst-Case Commercial Conditions, VDDP = 3.0V, VDD = 2.3V, TJ = 70°C, fCLOCK = 250 MHz)
Parameter Description Max. Units
tRCKH Input Low to High (fully loaded row32 inputs) 1.2 ns
tRCKL Input High to Low (fully loaded row32 inputs) 1.1 ns
tRCKH Input Low to High (m inimally loaded row1 input) 0.9 ns
tRCKL Input High to Low (minimally loaded row1 input) 0.9 ns
* The timing delay difference between tile locations is less than 15ps.
Table 13 Global Routing Skew
(Worst-Case Commercial Conditions, VDDP = 3.0V, VDD = 2.3V, TJ = 70°C, fCLOCK = 250 MHz)
Parameter Description Max. Units
tRCKSWH Maximum Skew Low to High 0.3 ns
tRCKSHH Maximum Skew High to Low 0.3 ns
PAD YPAD VCC 0V
50%
Y
GND
VCC
50%
tINYH
50%
50%
tINYL
IBx
ProASICPLUS APA Family
32 Advanced v0.3
Figure 23 Module Delays
Table 14 Sample Macrocell Library Listing
(Worst-Case Commercial Conditions, VDD = 2.3V, TJ = 70º C)
Cell Name Description Maximum
Intrinsic Delay Minimum
Setup/Hold Units
NAND2 2-Input NAND 0.4 ns
AND2 2-Input AND 0.4 ns
NOR3 3-Input NOR 0.4 ns
MUX2L 2-1 Mux with Active Low Select 0.4 ns
OA21 2-Input OR into a 2-Input AND 0.4 ns
XOR2 2-Input Exclusive OR 0.3 ns
LDL Active Low Latch (LH/HL) D: 0.3/0.2 tsetup 0.5
thold 0.2 ns
DFFL Negative Edge-Triggered D-type Flip-Flop (LH/HL) CLK-Q:
0.4/0.4 tsetup 0.4
thold 0.2 ns
Note: Assumes fanout of two.
A
B
CY
A
B
50%
Y
50%
50% 50%
50% 50%
tDALH
C50% 50%
50%
50%50%
tDBLH
tDAHL tDBHL
tDCHL
tDCLH
50%
Advanced v0.3 33
ProASICPLUS APA Family
Table 15 Slew Rates measured at C = 10pF, nominal power supplies and 25°C
Type Trig. Lev. Rising Edge Slew Rate F alling Edge Slew Rate
pS V/nS pS V/nS
OB33PH 20%-60% 397 3.33 390 -3.38
OB33PN 20%-60% 463 2.85 450 -2.93
OB33PL 20%-60% 567 2.33 527 -2.51
OB33LH 20%-60% 467 2.83 700 -1.89
OB33LN 20%-60% 620 2.13 767 -1.72
OB33LL 20%-60% 813 1.62 1100 -1.20
OB25HH 20%-60% 750 1.33 310 -3.23
OB25HN 20%-60% 850 1.18 390 -2.56
OB25HL 20%-60% 1310 0.76 510 -1.96
OB25LH 20%-60% 793 1.26 430 -2.33
OB25LN 20%-60% 870 1.15 730 -1.37
OB25LL 20%-60% 1287 0.78 1037 -0.96
OB25LPHH 20%-60% 470 2.13 433 -2.31
OB25LPHN 20%-60% 533 1.81 527 -1.90
OB25LPHL 20%-60% 770 1.30 753 -1.33
OB25LPLH 20%-60% 597 1.68 707 -1.42
OB25LPLN 20%-60% 873 1.15 760 -1.32
OB25LPLL 20%-60% 1153 0.87 1563 -0.54
ProASICPLUS APA Family
34 Advanced v0.3
Embedded Memory Specifications
This section discusses ProASICPLUS embedded memory and
SRAM and FIFO interface signals, including timing
diagrams that show the relationships of signals as they
pertain to single embedded memory blocks (Table 16).
Table 3 on page 13 shows basic RAM configurations.
Simultaneous Read and Write to the same location is not
supported.
Enclosed Timing Diagrams—SRAM Mode:
Synchronous RAM Read, Access Timed Output Strobe
(Synchronous Transparent)
Synchronous RAM Read, Pipeline Mode Outputs
(Synchronous Pipelined)
Asynchronous RAM Write
Asynchronous RAM Read, Address Controlled, RDB=0
Asynchronous RAM Read, RDB Controlled
Synchronous RAM Write
Embedded Memory Specifications
Note: The difference between synchronous transparent
and pipeline modes is the timing of all the output
signals from the memory. In transparent mode,
the outputs will change within the same clock
cycle to reflect the data requested by the currently
valid access to the memory. If clock cycles are
short (high clock speed), the data requires most of
the clock cycle to change to valid values (stable
signals). Processing of this data in the same clock
cycle is thus nearly impossible. Most designers
add registers at all outputs of the memory to push
the data processing into the next clock cycle. An
entire clock cycle can then be used to process the
data. To simplify use of this memory setup,
suitable registers have been implemented as part
of the memory primitive and are available to the
user in the synchronous pipeline mode. In this
mode, the output signals will change shortly after
the second rising edge following the initiation of
the read access.
Table 16 Memory Block SRAM Interface Signals
SRAM Signal Bits In/Out Description
WCLKS 1 IN Write clock used on synchronization on write side
RCLKS 1 IN Read clock used on synchronization on read side
RADDR<0:7> 8 IN Read address
RBLKB 1 IN Negative true read block select
RDB 1 IN Negative true read pulse
WADDR<0:7> 8 IN Write address
WBLKB 1 IN Negative true write block select
DI<0:8> 9 IN Input data bits <0:8>, <8> will be generated if PARGEN is true
WRB 1 IN Negative true write pulse
DO<0:8> 9 OUT Output data bits <0:8>
RPE 1 OUT Read parity error
WPE 1 OUT Write parity error
PARODD 1 IN Selects odd parity generation/detect when high, even when low
Note: Not all signals shown are used in all modes.
Advanced v0.3 35
ProASICPLUS APA Family
Synchronous RAM Read, Access Timed Output Strobe (Synchronous Transparent)
TJ = 0°C to 110°C; VDD = 2.3V to 2.7V
Symbol txxx Description Min. Max. Units Notes
CCYC Cycle time 7.5 ns
CMH Clock high phase 3.0 ns
CML Clock low phase 3.0 ns
OCA New RDATA access from RCLK 7.5 ns
OCH Old RDATA valid from RCLK 3.0 ns
RACH RADDR hold from RCLK 0.5 ns
RACS RADDR setup to RCLK 1.0 ns
RDCH RDB hold from RCLK 0.5 ns
RDCS RDB setup to RCLK 1.0 ns
RPCA New RPE access from RCLK 9.5 ns
RPCH Old RPE valid from RCLK 3.0 ns
RADDR
RPE
RDATA
RCLK
RB=(RBD+RBLKB)
New Valid Data Out
Cycle Start
Old Data Out
New Valid
Address
tRACS
tRDCS
tRDCH
tRACH
tOCH
tRPCH
tCMH
tOCA
tRPCA
tCCYC
tCML
ProASICPLUS APA Family
36 Advanced v0.3
Synchronous RAM Read, Pipeline Mode Outputs (Synchronous Pipelined)
TJ = 0°C to 110°C; VDD = 2.3V to 2.7V
Symbol txxx Description Min. Max. Units Notes
CCYC Cycle time 7.5 ns
CMH Clock high phase 3.0 ns
CML Clock low phase 3.0 ns
OCA New RDATA access from RCLK 2.0 ns
OCH Old RDATA valid from RCLK .75 ns
RACH RADDR hold from RCLK 0.5 ns
RACS RADDR setup to RCLK 1.0 ns
RDCH RDB hold from RCLK 0.5 ns
RDCS RDB setup to RCLK 1.0 ns
RPCA New RPE access from RCLK 4.0 ns
RPCH Old RPE valid from RCLK 1.0 ns
RCLK
RPE
RDATA New Valid Data Out
Cycle Start
New RPE Out
RADDR New Valid
Address
RB=(RDB+RBLKB)
tRACS tOCA
tRPCH
tOCH
tRPCA
tCML
tCMH
tCCYC
tRACH
tRDCH
tRDCS
Old Data Out
Old RPE Out
Advanced v0.3 37
ProASICPLUS APA Family
Asynchronous RAM Write
TJ = 0°C to 110°C; VDD = 2.3V to 2.7V
Symbol txxx Description Min. Max. Units Notes
A WRH WADDR hold from WB 1.0 ns
AW RS WADDR setup to WB 0.5 ns
DWRH WDATA hold from WB 1.5 ns
DWRS WDATA setup to WB 0.5 ns PARGEN is inactive
DWRS WDATA setup to WB 2.5 ns PARGEN is active
WPDA WPE access from WDATA 3.0 ns WPE is invalid while
WPDH WPE hold from WDATA 1.0 ns PARGEN is active
WRCYC Cycle time 7.5 ns
WRMH WB high phase 3.0 ns Inactive
WRML WB low phase 3.0 ns Active
WB=(WRB+WBLKB)
WADDR
WPE
WDATA
tAWRS
tWPDA
tAWRH
tDWRS
tWRML tWRMH
tWRCYC
tWPDH
tDWRH
ProASICPLUS APA Family
38 Advanced v0.3
Asynchronous RAM Read, Address Controlled, RDB=0
TJ = 0°C to 110°C; VDD = 2.3V to 2.7V
Symbol txxx Description Min. Max. Units Notes
ACYC Read cycle time 7.5 ns
OAA New RDATA access from RADDR stable 7.5 ns
OAH Old RDATA hold from RADDR stable 3.0 ns
RPAA Ne w RPE access from RADDR stable 10.0 ns
RPAH Old RPE hold from RADDR stable 3.0 ns
RPE
RDATA
RADDR
tOAH
tRPAH
tOAA
tRPAA
tACYC
Advanced v0.3 39
ProASICPLUS APA Family
Asynchronous RAM Read, RDB Controlled
TJ = 0°C to 110°C; VDD = 2.3V to 2.7V
Symbol txxx Description Min. Max. Units Notes
ORDA New RDATA access from RB 7.5 ns
ORDH Old RDATA valid from RB 3.0 ns
RDCYC Read cycle time 7.5 ns
RDMH RB high phase 3.0 ns Inactive setup to new cycle
RDML RB low phase 3.0 ns Active
RPRDA New RPE access from RB 9.5 ns
RPRDH Old RPE valid from RB 3.0 ns
RB=(RDB+RBLKB)
RPE
RDATA
tORDH
tORDA
tRPRDA
tRDML
tRDCYC
tRDMH
tRPRDH
ProASICPLUS APA Family
40 Advanced v0.3
Synchronous RAM Write
TJ = 0°C to 110°C; VDD = 2.3V to 2.7V
Symbol txxx Description Min. Max. Units Notes
CCYC Cycle time 7.5 ns
CMH Clock high phase 3.0 ns
CML Clock low phase 3.0 ns
DCH WDATA hold from WCLK 0.5 ns
DCS WDATA setup to WCLK 1.0 ns
W ACH W AD DR hold from WCLK 0.5 ns
WDCS WA DDR setup to WCLK 1.0 ns
WPCA New WPE access from WCLK 3.0 ns WPE is invalid while
PARGEN is active
WPCH Old WPE valid from WCLK 0.5 ns
WRCH,
WBCH WRB & WBLKB hold from WCLK 0.5 ns
WRCS,
WBCS WRB & WBLKB setup to WCLK 1.0 ns
Note: On simultaneous read and write accesses to the same location WDATA is output to RDATA.
WCLK
WPE
WADDR, WDATA
WRB, WBLKB
Cycle Start
tWRCH, tWBCH
tWRCS, tWBCS
tDCS, tWDCS
tWPCH
tDCH, tWACH
tWPCA
tCMH tCML
tCCYC
Advanced v0.3 41
ProASICPLUS APA Family
Synchronous Write and Read to the Same Location
TJ = 0°C to 110°C; VDD = 2.3V to 2.7V
Symbol txxx Description Min. Max. Units Notes
CCYC Cycle time 7.5 ns
CMH Clock high phase 3.0 ns
CML C lock low phase 3.0 ns
WCLKRCLKS WCLK to RCLK setup time 0.1 ns
WCLKRCLKH WCLK to RCLK hold time 7.0 ns
OCH Old RDATA valid from RCLK 3.0 ns OCA/OCH displayed for
Access Timed Output
OCA New RDATA valid from RCLK 7.5 ns
Notes:
1. This behavior is valid for Access Timed Output and Pipelined Mode Output. Shown are the timings of an access timed output.
2. During synchronous write and synchronous read access to the same location, the new write data will be read out if the active write clock
edge occurs before or at the same time as the active read clock edge. The negative setup time insures this behavior for WCLK and RCLK
driven by the same design signal.
3. If WCLK changes after the hold time, the data will be read.
4. A setup or hold time violation will result in unknown output data.
* New data is read if WCLK occurs before setup time.
The data stored is read if WCLK occurs after hold time.
RCLK
RDATA
WCLK
tWCLKRCLKH
New Data*
Last Cycle Data
tWCLKRCLKS
tOCH
tOCA
ProASICPLUS APA Family
42 Advanced v0.3
Asynchronous Write and Synchronous Read to the Same Location
TJ = 0°C to 110°C; VDD = 2.3V to 2.7V
Symbol txxx Description Min. Max. Units Notes
CCYC Cycle time 7.5 ns
CMH Clock high phase 3.0 ns
CML Clock low phase 3.0 ns
WBRCLKS WB to RCLK setup time 0.1 ns
WBRCLKH WB to RCL K hold time 7.0 ns
OCH Old RDATA valid from RCLK 3.0 ns OCA/OCH displayed for
Access Timed Output
OCA New RDATA valid from RCLK 7.5 ns
DWRRCLKS WDATA to RCLK setup time 0 ns
DWRH WDATA to WB hold time 1.5 ns
Notes:
1. This behavior is valid for Access Timed Output and Pipelined Mode Output. Shown are the timings of an access timed output.
2. In asynchronous write and synchronous read access to the same location, the new write data will be read out if the active write signal edge
occurs before or at the same time as the active read clock edge. If WB changes to low after hold time, the data will be read.
3. A setup or hold time violation will result in unknown output data.
* New data is read if WB occurs before setup time.
The stored data is read if WB occurs after hold time.
WB = {WRB + WBLKB}
RCLK
RDATA
tWCLKRCLKH
New Data*
Last Cycle Data
tWCLKRCLKS
tOCH
tOCA
WDATA
tDWRRCLKS tDWRH
Advanced v0.3 43
ProASICPLUS APA Family
Asynchronous Write and Read to the Same Location
TJ = 0°C to 110°C; VDD = 2.3V to 2.7V
Symbol txxx Description Min. Max. Units Notes
ORDA New RDATA access from RB 7.5 ns
ORDH Old RDATA valid from RB 3.0 ns
OWRA New RDATA access from WB 3.0 ns
OWRH Old RDATA valid from WB 0.5 ns
RAWRS RB or RADDR from WB 5.0 ns
RAWRH RB or RADDR from WB 5.0 ns
Notes:
1. During an asynchronous read cycle, each write operation (sync. or async.) to the same location will automatically trigger a read operation
which updates the read data.
2. Violation or RAWRS will disturb access to the OLD data.
3. Violation of RAWRH will disturb access to the NEWER data.
RB, RADDR
OLD NEWERNEW
tORDA
tORDH
tOWRH
tRAWRH
WB = {WRB+WBLKB}
RDATA
tOWRA
tRAWRS
ProASICPLUS APA Family
44 Advanced v0.3
Synchronous Write and Asynchronous Read to the Same Location
TJ = 0°C to 110°C; VDD = 2.3V to 2.7V
Symbol txxx Description Min. Max. Units Notes
ORDA New RDATA access from RB 7.5 ns
ORDH Old RDATA valid from RB 3.0 ns
OWRA New RDATA access from WCLK 3.0 ns
OWRH Old RDATA valid from WCLK 0.5 ns
RAWCLKS RB or RADDR from WCLK 5.0 ns
RAWCLKH RB or RADDR from WCLK 5.0 ns
Notes:
1. During an asynchronous read cycle, each write operation (sync. or async.) to the same location will automatically trigger a read operation
which updates the read data.
2. Violation of RAWCLKS will disturb access to OLD data.
3. Violation of RAWCLKH will disturb access to NEWER data.
RB, RADDR
OLD NEW NEWER
tORDA
tORDH
tRAWCLKS
tRAWCLKH
WCLK
RDATA
tOWRH
tOWRA
Advanced v0.3 45
ProASICPLUS APA Family
Asynchronous FIFO Full and Empty Transitions
The asynchronous FIFO accepts writes and reads while not
full or not empty. When the FIFO is full, all writes are
inhibited. Conversely, when the FIFO is empty, all reads are
inhibited. A problem is created if the FIFO is written during
the transition out of full to not full or read during the
transition out of empty to not empty. The exact time at
which the write (read) operation changes from inhibited to
accepted after the read (write) signal which causes the
transition from full (empty) to not full (empty) is
indeterminate. This indeterminate period starts 1 ns after
the RB (WB) transition which deactivates full (not empty)
and ends 3 ns after the RB (WB) transition, for slow cycles.
For fast cycles, the indeterminate period ends 3 ns (7.5 ns
RDL (WRL)) after the RB (WB) transition, whichever is
later.
The timing diagram for write is shown in Figure 24 on
page 46. The timing diagram for read is shown in Figure 25
on page 46. For basic RAM configurations, see Table 3 on
page 13.
Enclosed Timing DiagramsFIFO Mode:
Asynchronous FIFO Read
Asynchronous FIFO Write
Synchronous FIFO Read, Access Timed Output
Strobe (Synchronous Transparent)
Synchronous FIFO Read, Pipeline Mode Outputs
(Synchronous Pipelined)
Synchronous FIFO Write
FIFO Reset
Table 17 Memory Block FIFO Interface Signals
FIFO Signal Bits In/Out Descrip tion
WCLK 1 IN Write clock used on synchronization on write side
RCLK 1 IN Read clock used on synchronization on read side
LEVEL <0:7> 8 IN Direct configuration implements static flag logic
RBLKB 1 IN Negative true read block select
RDB 1 IN Negative true read pulse
RESET 1 IN N egative true reset for FIFO pointers
WBLKB 1 IN N egative true write block select
DI<0:8> 9 IN Input data bits <0:8>, <8> will be generated if PARGEN is true
WRB 1 IN Negative true write pulse
FULL, EMPTY 2 OUT FIFO flags. FULL prevents write and EMPTY prevents read
EQTH, GEQTH 2 OUT EQTH is true when the FIFO holds (LEVEL) words. GEQTH is true when the
FIFO holds (LEVEL) words or more
DO<0:8> 9 OUT Output data bits <0:8>
RPE 1 OUT Read parity error
WPE 1 OUT Write parity error
LGDEP <0:2> 3 IN C onfigures DEPTH of the FIFO to 2 (LGDEP+1)
PARODD 1 IN S elects odd parity generation/detect when high, even when low
ProASICPLUS APA Family
46 Advanced v0.3
Figure 24 Write Timing Diagram
Figure 25 Read Timing Diagram
Write acceptedWrite inhibited
FULL
RB
Write
cycle
1ns
3ns
WB
Read acceptedRead inhibited
EMPTY
WB
Read
cycle
1ns
3ns
RB
Advanced v0.3 47
ProASICPLUS APA Family
Asynchronous FIFO Read
TJ = 0°C to 110°C; VDD = 2.3V to 2.7V
Symbol txxx Description Min. Max. Units Notes
ERDH,
FRDH,
THRDH
Old EMP TY, FULL, E QTH, & GETH valid
hold time from RB 0.5 ns Empty/full/thresh are invalid
from the end of hold until the
new access is comp lete
ERDA New EMPTY access from RB 3.01ns
FRDA FULL access from RB 3.01ns
ORDA New RDATA access from RB 7.5 ns
ORDH Old RDATA valid from RB 3.0 ns
RDCYC Read cycle time 7.5 ns
RDWRS WB , clearing EMPTY, setup to
RB
3.02ns Enabling the read operation
1.0 ns Inhibiting the read operation
RDH RB high phase 3.0 ns Inactive
RDL RB low phase 3.0 ns Active
RPRDA New RPE access from RB 9.5 ns
RPRDH Old RPE valid from RB 4.0 ns
THRDA EQTH or GETH access from RB4.5 ns
Notes:
1. At fast cycles, ERDA & FRDA = MAX (7.5 ns RDL), 3.0 ns
2. At fast cycles, RDWRS (for enabling read) = MAX (7.5 ns WRL), 3.0 ns
RB=(RDB+RBLKB)
RPE
RDATA
EMPTY
EQTH, GETH
FULL
(Empty inhibits read)
Cycle Start
WB
tRDWRS tERDH, tFRDH
tERDA, tFRDA
tTHRDH
tORDH
tRPRDH
tORDA tTHRDA
ProASICPLUS APA Family
48 Advanced v0.3
Asynchronous FIFO Write
TJ = 0°C to 110°C; VDD = 2.3V to 2.7V
Symbol txxx Description Min. Max. Units Notes
DWRH WDATA hold from WB 1.5 ns
DWRS WDATA setup to WB 0.5 ns PARGEN is inactive
DWRS WDATA setup to WB 2.5 ns PARGEN is active
EWRH,
FWRH,
THWRH
Old EMP TY, FULL, E QTH, & GETH valid
hold time after WB 0.5 ns Empty/full/thresh are invalid
from the end of hold until the
new access is comp lete
EWRA EMPTY access from WB 3.01ns
FWRA New FULL access from WB 3.01ns
THWRA EQTH or GETH access from WB 4.5 ns
WPDA WPE access from WDATA 3.0 ns WPE is invalid while
PARGEN is active
WPDH WPE hold from WDATA 1.0 ns
WRCYC Cycle time 7.5 ns
WRRDS RB , clearing FULL, setup to
WB
3.02ns Enabling the write operati on
1.0 Inhibiting the write operation
WRH WB high phase 3.0 ns Inactive
WRL WB low phase 3.0 ns Active
Notes:
1. At fast cycles, EWRA, FWRA = MAX (7.5 ns WRL), 3.0 ns
2. At fast cycles, WRRDS (for enabling write) = MAX (7.5 ns RDL), 3.0 ns
WPE
WDATA (Full inhibits write)
WB=(WRB+WBLKB)
EMPTY
EQTH, GETH
FULL
Cycle Start
RB
tWRRDS tDWRH
tWPDH
tWPDA
tDWRS
tEWRH, tFWRH
tEWRA, tFWRA
Advanced v0.3 49
ProASICPLUS APA Family
Synchronous FIFO Read, Access Timed Output Strobe (Synchronous Transparent)
TJ = 0°C to 110°C; VDD = 2.3V to 2.7V
Symbol txxx Description Min. Max. Units Notes
CCYC Cycle time 7.5 ns
CMH Clock high phase 3.0 ns
CML Clock low phase 3.0 ns
ECBA New EMPTY access from RCLK 3.01ns
FCBA FULL access from RCLK 3.01ns
ECBH,
FCBH,
THCBH
Old EMP TY, FULL, E QTH, & GETH valid
hold time from RCLK 1.0 ns Empty/full/thresh are invalid
from the end of hold until the
new access is comp lete
OCA New RDATA access from RCLK 7.5 ns
OCH Old RDATA valid from RCLK 3.0 ns
RDCH RDB hold from RCLK 0.5 ns
RDCS RDB setup to RCLK 1.0 ns
RPCA New RPE access from RCLK 9.5 ns
RPCH Old RPE valid from RCLK 3.0 ns
HCBA EQTH or GETH access from RCLK 4.5 ns
Note:
1. At fast cycles, ECBA & FCBA = MAX (7.5 ns CMH), 3.0 ns
RCLK
RPE
RDATA
EMPTY
EQTH, GETH
FULL
Old Data Out New Valid Data Out (Empty Inhibits Read)
RDB
Cycle Start
tRDCH
tOCH
tRPCH
tRDCS
tECBH, tFCBH
tECBA, tFCBA
tOCA
tTHCBH
tHCBA
ProASICPLUS APA Family
50 Advanced v0.3
Synchronous FIFO Read, Pipeline Mode Outputs (Synchronous Pipelined)
TJ = 0°C to 110°C; VDD = 2.3V to 2.7V
Sym bol txxx Description Min. Max. Units Notes
CCYC Cycle time 7.5 ns
CMH Clock high phase 3.0 ns
CML Clock low phase 3.0 ns
ECBA New EMPTY access from RCLK 3.01ns
FCBA FULL access from RCLK 3.01ns
ECBH, FCBH,
THCBH Old EMPTY, FULL , EQTH, & GETH valid
hold time from RCLK 1.0 ns Empty/full/thresh are invalid
from the end of hold until the
new access is comp lete
OCA New RDATA access from RCLK 2.0 ns
OCH Old RDATA valid from RCLK 0.75 ns
RDCH RDB hold from RCLK 0.5 ns
RDCS RDB setup to RCLK 1.0 ns
RPCA New RPE access from RCLK 4.0 ns
RPCH Old RPE valid from RCLK 1.0 ns
HCBA EQTH or GETH access from RCLK 4.5 ns
Note:
1. At fast cycles, ECBA & FCBA = MAX (7.5 ns CMS), 3.0 ns
RCLK
RPE
RDATA
EMPTY
EQTH, GETH
FULL
Old Data Out New Valid Data Out
RDB
Cycle Start
Old RPE Out New RPE Out
tECBH, tFCBH
tRDCH
tRDCS
tOCA
tECBA, tFCBA
tTHCBH
tHCBA
tCMH tCML
tCCYC
tRPCH
tOCH
tRPCA
Advanced v0.3 51
ProASICPLUS APA Family
Synchronous FIFO Write
TJ = 0°C to 110°C; VDD = 2.3V to 2.7V
Sym bol txxx Description Min. Max. Units Notes
CCYC Cycle time 7.5 ns
CMH Clock high phase 3.0 ns
CML Clock low phase 3.0 ns
DCH WDATA hold from WCLK 0.5 ns
DCS W DATA setup to WCLK 1.0 ns
FCBA New FULL access from WCLK 3.01ns
ECBA EMPTY access from WCLK 3.01ns
ECBH,
FCBH,
THCBH
Old EMPTY, FULL, EQTH, & GET H valid
hold time from WCLK 1.0 ns Empty/full/thresh are invalid
from the end of hold until the
new access is com plete
HCBA EQTH or GETH access from WCLK 4.5 ns
WPCA New WPE access from WCLK 3.0 ns WPE is invalid while
PARGEN is active
WPCH Old WPE valid from WCLK 0.5 ns
WRCH,
WBCH WRB & WBLKB hold from WCLK 0.5 ns
WRCS,
WBCS W RB & WBLKB setup to WCLK 1.0 ns
Note:
1. At fast cycles, ECBA & FCBA = MAX (7.5 ns CMH), 3.0 ns
WCLK
WPE
WDATA
EMPTY
EQTH, GETH
FULL
(Full Inhibits Write)
WRB, WBLKB
Cycle Start
tWRCH, tWBCH tECBH, tFCBH
tECBA, tFCBA
tHCBA
tWRCS, tWBCS
tDCS
tWPCA
tCMH tCML
tCCYC
tWPCH
tDCH
tHCBH
ProASICPLUS APA Family
52 Advanced v0.3
FIFO Reset
TJ = 0°C to 110°C; VDD = 2.3V to 2.7V
Symbol txxx Description Min. Max. Units Notes
CBRSH WCLK or RCLK hold from RESETB 1.5 ns Synchronous mode only
CBRSS WCLK or RCLK setup to RESETB 1.5 ns Synchronous mode only
ERSA New EMPTY access from RESETB 3.0 ns
FRSA FULL access from RESETB 3.0 ns
RSL RE SETB low phase 7.5 ns
THRSA EQTH or GETH access from RESETB 4.5 ns
WBRSH WB hold from RESETB 1.5 ns Asynchronous mode only
WBRSS WB setup to RESETB 1.5 ns Asynchronous mode only
*WB = WRB + WBLRB
RESETB
EMPTY
EQTH, GETH
FULL
WB*
Cycle Start
Cycle Start
WCLK, RCLK
tERSA, tFRSA
tTHRSA
tCBRSS
tWBRSS
tCBRSH
tWBRSH
tRSL
Advanced v0.3 53
ProASICPLUS APA Family
Pin Description
I/O User Input/Output
The I/O pin functions as an input, output, tristate, or
bidirectional buffer. Input and output signal levels are
compatible with standard LVTTL and LVCMOS
specifications. Unused I/O pins are configured as inputs
with pull-up resistor.
NC No Connect
To maintain compatibility with other Actel ProASIC
products it is recommended that this pin is not connected
to the circuitry on the board.
GL Global Input Pin
Low skew input pin for clock or other global signals. Input
only. This pin can be configured with a pull-up resistor.
GND Ground
Common ground supply voltage.
VDD Logic Array Power Supply Pin
2.5V supply voltage.
VDDP I/O Pad Power Supply Pin
2.5V or 3.3V supply voltage.
VPP Programming Supply Pin
This pin must be connected to VDDP during normal
operation, or it can remain at 16.5V in an ISP application.
This pin must not float.
VPN Programming Supply Pin
This pin must be connected to GND during normal
operation, or it can remain at 14V in an ISP application.
This pin must not float.
TMS Test Mode Select
The TMS pin controls the use of Boundary-scan circuitry.
TCK Test Clock
Clock input pin for Boundary-scan.
TDI Test Data In
Serial input for Boundary-scan.
TDO Test Data Out
Serial output for Boundary-scan.
TRST Test Reset Input
An optimal Boundary-scan reset pin.
RCK Running Clock
A free running clock is needed during programming if the
programmer cannot guarantee that TCK will be
uninterrupted.
NPECL PECL Negative Input
Provides high speed clock or data signals to the PLL block.
PPECL PECL Positive input
Provides high speed clock or data signals to the PLL block.
AVDD PLL Power Supply
AGND PLL Power Ground
ProASICPLUS APA Family
54 Advanced v0.3
Package Pin Assignments
208-Pin PQFP
208-Pin PQFP
1
208
Advanced v0.3 55
ProASICPLUS APA Family
208-Pin PQFP
Pin Number APA750 Function APA1000 Function Pin Number APA750 Function APA1000 Function
1GND GND 53V
DDP VDDP
2 I/O I/O 54 I/O I/O
3 I/O I/O 55 I/O I/O
4 I/O I/O 56 I/O I/O
5 I/O I/O 57 I/O I/O
6 I/O I/O 58 I/O I/O
7 I/O I/O 59 I/O I/O
8 I/O I/O 60 I/O I/O
9 I/O I/O 61 I/O I/O
10 I/O I/O 62 I/O I/O
11 I/O I/O 63 I/O I/O
12 I/O I/O 64 I/O I/O
13 I/O I/O 65 GND GND
14 I/O I/O 66 I/O I/O
15 I/O I/O 67 I/O I/O
16 VDD VDD 68 I/O I/O
17 GND GND 69 I/O I/O
18 I/O I/O 70 I/O I/O
19 I/O I/O 71 VDD VDD
20 I/O I/O 72 VDDP VDDP
21 I/O I/O 73 I/O I/O
22 VDDP VDDP 74 I/O I/O
23 I/O I/O 75 I/O I/O
24 GL GL 76 I/O I/O
25 AGND AGND 77 I/O I/O
26 NPECL NPECL 78 I/O I/O
27 AVDD AVDD 79 I/O I/O
28 PPECL PPECL 80 I/O I/O
29 GND GND 81 GND GND
30 GL GL 82 I/O I/O
31 I/O I/O 83 I/O I/O
32 I/O I/O 84 I/O I/O
33 I/O I/O 85 I/O I/O
34 I/O I/O 86 I/O I/O
35 I/O I/O 87 I/O I/O
36 VDD VDD 88 VDD VDD
37 I/O I/O 89 VDDP VDDP
38 I/O I/O 90 I/O I/O
39 I/O I/O 91 I/O I/O
40 VDDP VDDP 92 I/O I/O
41 GND GND 93 I/O I/O
42 I/O I/O 94 I/O I/O
43 I/O I/O 95 I/O I/O
44 I/O I/O 96 I/O I/O
45 I/O I/O 97 GND GND
46 I/O I/O 98 I/O I/O
47 I/O I/O 99 I/O I/O
48 I/O I/O 100 I/O I/O
49 I/O I/O 101 TCK TCK
50 I/O I/O 102 TDI TDI
51 I/O I/O 103 TMS TMS
52 GND GND 104 VDDP VDDP
ProASICPLUS APA Family
56 Advanced v0.3
105 GND GND 157 VDDP VDDP
106 VPP VPP 158 I/O I/O
107 VPN VPN 159 I/O I/O
108 TDO TDO 160 I/O I/O
109 TRST TRST 161 I/O I/O
110 RCK RCK 162 GND GND
111 I/O I/O 163 I/O I/O
112 I/O I/O 164 I/O I/O
113 I/O I/O 165 I/O I/O
114 I/O I/O 166 I/O I/O
115 I/O I/O 167 I/O I/O
116 I/O I/O 168 I/O I/O
117 I/O I/O 169 I/O I/O
118 I/O I/O 170 VDDP VDDP
119 I/O I/O 171 VDD VDD
120 I/O I/O 172 I/O I/O
121 I/O I/O 173 I/O I/O
122 GND GND 174 I/O I/O
123 VDDP VDDP 175 I/O I/O
124 I/O I/O 176 I/O I/O
125 I/O I/O 177 I/O I/O
126 VDD VDD 178 GND GND
127 I/O I/O 179 I/O I/O
128 GL GL 180 I/O I/O
129 PPECL PPECL 181 I/O I/O
130 GND GND 182 I/O I/O
131 AVDD AVDD 183 I/O I/O
132 NPECL NPECL 184 I/O I/O
133 AGND AGND 185 I/O I/O
134 GL GL 186 VDDP VDDP
135 I/O I/O 187 VDD VDD
136 I/O I/O 188 I/O I/O
137 I/O I/O 189 I/O I/O
138 VDDP VDDP 190 I/O I/O
139 I/O I/O 191 I/O I/O
140 I/O I/O 192 I/O I/O
141 GND GND 193 I/O I/O
142 VDD VDD 194 I/O I/O
143 I/O I/O 195 GND GND
144 I/O I/O 196 I/O I/O
145 I/O I/O 197 I/O I/O
146 I/O I/O 198 I/O I/O
147 I/O I/O 199 I/O I/O
148 I/O I/O 200 I/O I/O
149 I/O I/O 201 I/O I/O
150 I/O I/O 202 I/O I/O
151 I/O I/O 203 I/O I/O
152 I/O I/O 204 I/O I/O
153 I/O I/O 205 I/O I/O
154 I/O I/O 206 I/O I/O
155 I/O I/O 207 I/O I/O
156 GND GND 208 VDDP VDDP
208-Pin PQFP (Continued)
Pin Number APA750 Function APA1000 Function Pin Number APA750 Function APA1000 Function
Advanced v0.3 57
ProASICPLUS APA Family
Package Pin Assignments (Continued)
456-Pin PBGA (Bottom View)
12356789101115 14 13 121617181920212223 4242526
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
AB
AC
AD
AE
AF
ProASICPLUS APA Family
58 Advanced v0.3
456-Pin PBGA
Pin
Number APA750
Function APA1000
Function Pin
Number APA750
Function APA1000
Function Pin
Number APA750
Function APA1000
Function
A1 VDDP VDDP AB10 I/O I/O AD3 VDDP VDDP
A2 VDDP VDDP AB11 I/O I/O AD4 I/O I/O
A3 I/O I/O AB12 I/O I/O AD5 I/O I/O
A4 I/O I/O AB13 I/O I/O AD6 I/O I/O
A5 I/O I/O AB14 I/O I/O AD7 I/O I/O
A6 I/O I/O AB15 I/O I/O AD8 I/O I/O
A7 I/O I/O AB16 I/O I/O AD9 I/O I/O
A8 I/O I/O AB17 I/O I/O AD10 I/O I/O
A9 I/O I/O AB18 I/O I/O AD11 I/O I/O
A10 I/O I/O AB19 I/O I/O AD12 I/O I/O
A11 I/O I/O AB20 VDD VDD AD13 I/O I/O
A12 I/O I/O AB21 VDD VDD AD14 I/O I/O
A13 I/O I/O AB22 VDD VDD AD15 I/O I/O
A14 I/O I/O AB23 I/O I/O AD16 I/O I/O
A15 I/O I/O AB24 I/O I/O AD17 I/O I/O
A16 I/O I/O AB25 I/O I/O AD18 I/O I/O
A17 I/O I/O AB26 I/O I/O AD19 I/O I/O
A18 I/O I/O AC1 I/O I/O AD20 I/O I/O
A19 I/O I/O AC2 I/O I/O AD21 TCK TCK
A20 I/O I/O AC3 I/O I/O AD22 VPP VPP
A21 I/O I/O AC4 VDDP VDDP AD23 I/O I/O
A22 I/O I/O AC5 I/O I/O AD24 VDDP VDDP
A23 I/O I/O AC6 I/O I/O AD25 I/O I/O
A24 I/O I/O AC7 I/O I/O AD26 I/O I/O
A25 VDDP VDDP AC8 I/O I/O AE1 VDDP VDDP
A26 VDDP VDDP AC9 I/O I/O AE2 VDDP VDDP
AA1 I/O I/O AC10 I/O I/O AE3 I/O I/O
AA2 I/O I/O AC11 I/O I/O AE4 I/O I/O
AA3 I/O I/O AC12 I/O I/O AE5 I/O I/O
AA4 I/O I/O AC13 I/O I/O AE6 I/O I/O
AA5 VDD VDD AC14 I/O I/O AE7 I/O I/O
AA22 VDD VDD AC15 I/O I/O AE8 I/O I/O
AA23 I/O I/O AC16 I/O I/O AE9 I/O I/O
AA24 I/O I/O AC17 I/O I/O AE10 I/O I/O
AA25 I/O I/O AC18 I/O I/O AE11 I/O I/O
AA26 I/O I/O AC19 I/O I/O AE12 I/O I/O
AB1 I/O I/O AC20 I/O I/O AE13 I/O I/O
AB2 I/O I/O AC21 TMS TMS AE14 I/O I/O
AB3 I/O I/O AC22 TDO TDO AE15 I/O I/O
AB4 I/O I/O AC23 VDDP VDDP AE16 I/O I/O
AB5 VDD VDD AC24 RCK RCK AE17 I/O I/O
AB6 VDD VDD AC25 I/O I/O AE18 I/O I/O
AB7 VDD VDD AC26 I/O I/O AE19 I/O I/O
AB8 I/O I/O AD1 I/O I/O AE20 I/O I/O
AB9 I/O I/O AD2 I/O I/O AE21 I/O I/O
Advanced v0.3 59
ProASICPLUS APA Family
AE22 I/O I/O B15 I/O I/O D8 I/O I/O
AE23 VPN VPN B16 I/O I/O D9 I/O I/O
AE24 TRST TRST B17 I/O I/O D10 I/O I/O
AE25 VDDP VDDP B18 I/O I/O D11 I/O I/O
AE26 VDDP VDDP B19 I/O I/O D12 I/O I/O
AF1 VDDP VDDP B20 I/O I/O D13 I/O I/O
AF2 VDDP VDDP B21 I/O I/O D14 I/O I/O
AF3 I/O I/O B22 I/O I/O D15 I/O I/O
AF4 I/O I/O B23 I/O I/O D16 I/O I/O
AF5 I/O I/O B24 I/O I/O D17 I/O I/O
AF6 I/O I/O B25 VDDP VDDP D18 I/O I/O
AF7 I/O I/O B26 VDDP VDDP D19 I/O I/O
AF8 I/O I/O C1 VDDP VDDP D20 I/O I/O
AF9 I/O I/O C2 I/O I/O D21 I/O I/O
AF10 I/O I/O C3 VDDP VDDP D22 I/O I/O
AF11 I/O I/O C4 I/O I/O D23 VDDP VDDP
AF12 I/O I/O C5 I/O I/O D24 I/O I/O
AF13 I/O I/O C6 I/O I/O D25 I/O I/O
AF14 I/O I/O C7 I/O I/O D26 I/O I/O
AF15 I/O I/O C8 I/O I/O E1 I/O I/O
AF16 I/O I/O C9 I/O I/O E2 I/O I/O
AF17 I/O I/O C10 I/O I/O E3 I/O I/O
AF18 I/O I/O C11 I/O I/O E4 I/O I/O
AF19 I/O I/O C12 I/O I/O E5 VDD VDD
AF20 I/O I/O C13 I/O I/O E6 VDD VDD
AF21 I/O I/O C14 I/O I/O E7 VDD VDD
AF22 I/O I/O C15 I/O I/O E8 VDD VDD
AF23 TDI TDI C16 I/O I/O E9 I/O I/O
AF24 I/O I/O C17 I/O I/O E10 I/O I/O
AF25 VDDP VDDP C18 I/O I/O E11 I/O I/O
AF26 VDDP VDDP C19 I/O I/O E12 I/O I/O
B1 VDDP VDDP C20 I/O I/O E13 I/O I/O
B2 VDDP VDDP C21 I/O I/O E14 I/O I/O
B3 I/O I/O C22 I/O I/O E15 I/O I/O
B4 I/O I/O C23 I/O I/O E16 I/O I/O
B5 I/O I/O C24 VDDP VDDP E17 I/O I/O
B6 I/O I/O C25 I/O I/O E18 I/O I/O
B7 I/O I/O C26 I/O I/O E19 I/O I/O
B8 I/O I/O D1 I/O I/O E20 VDD VDD
B9 I/O I/O D2 I/O I/O E21 VDD VDD
B10 I/O I/O D3 I/O I/O E22 VDD VDD
B11 I/O I/O D4 VDDP VDDP E23 I/O I/O
B12 I/O I/O D5 I/O I/O E24 I/O I/O
B13 I/O I/O D6 I/O I/O E25 I/O I/O
B14 I/O I/O D7 I/O I/O E26 I/O I/O
456-Pin PBGA
Pin
Number APA750
Function APA1000
Function Pin
Number APA750
Function APA1000
Function Pin
Number APA750
Function APA1000
Function
ProASICPLUS APA Family
60 Advanced v0.3
F1 I/O I/O K22 I/O I/O N14 GND GND
F2 I/O I/O K23 I/O I/O N15 GND GND
F3 I/O I/O K24 I/O I/O N16 GND GND
F4 I/O I/O K25 I/O I/O N22 PPECL PPECL
F5 VDD VDD K26 I/O I/O N23 GL GL
F22 VDD VDD L1 I/O I/O N24 AVDD AVDD
F23 I/O I/O L2 I/O I/O N25 I/O I/O
F24 I/O I/O L3 I/O I/O N26 AGND AGND
F25 I/O I/O L4 I/O I/O P1 I/O I/O
F26 I/O I/O L5 I/O I/O P2 I/O I/O
G1 I/O I/O L11 GND GND P3 I/O I/O
G2 I/O I/O L12 GND GND P4 I/O I/O
G3 I/O I/O L13 GND GND P5 PPECL PPECL
G4 I/O I/O L14 GND GND P11 GND GND
G5 VDD VDD L15 GND GND P12 GND GND
G22 VDD VDD L16 GND GND P13 GND GND
G23 I/O I/O L22 I/O I/O P14 GND GND
G24 I/O I/O L23 I/O I/O P15 GND GND
G25 I/O I/O L24 I/O I/O P16 GND GND
G26 I/O I/O L25 I/O I/O P22 I/O I/O
H1 I/O I/O L26 I/O I/O P23 I/O I/O
H2 I/O I/O M1 GL GL P24 I/O I/O
H3 I/O I/O M2 GL GL P25 I/O I/O
H4 I/O I/O M3 I/O I/O P26 NPECL NPECL
H5 VDD VDD M4 I/O I/O R1 I/O I/O
H22 VDD VDD M5 I/O I/O R2 I/O I/O
H23 I/O I/O M11 GND GND R3 I/O I/O
H24 I/O I/O M12 GND GND R4 I/O I/O
H25 I/O I/O M13 GND GND R5 I/O I/O
H26 I/O I/O M14 GND GND R11 GND GND
J1 I/O I/O M15 GND GND R12 GND GND
J2 I/O I/O M16 GND GND R13 GND GND
J3 I/O I/O M22 GL GL R14 GND GND
J4 I/O I/O M23 I/O I/O R15 GND GND
J5 I/O I/O M24 I/O I/O R16 GND GND
J22 I/O I/O M25 I/O I/O R22 I/O I/O
J23 I/O I/O M26 I/O I/O R23 I/O I/O
J24 I/O I/O N1 I/O I/O R24 I/O I/O
J25 I/O I/O N2 I/O I/O R25 I/O I/O
J26 I/O I/O N3 AGND AGND R26 I/O I/O
K1 I/O I/O N4 NPECL NPECL T1 I/O I/O
K2 I/O I/O N5 AVDD AVDD T2 I/O I/O
K3 I/O I/O N11 GND GND T3 I/O I/O
K4 I/O I/O N12 GND GND T4 I/O I/O
K5 I/O I/O N13 GND GND T5 I/O I/O
456-Pin PBGA
Pin
Number APA750
Function APA1000
Function Pin
Number APA750
Function APA1000
Function Pin
Number APA750
Function APA1000
Function
Advanced v0.3 61
ProASICPLUS APA Family
T11 GND GND U24 I/O I/O W22 VDD VDD
T12 GND GND U25 I/O I/O W23 I/O I/O
T13 GND GND U26 I/O I/O W24 I/O I/O
T14 GND GND V1 I/O I/O W25 I/O I/O
T15 GND GND V2 I/O I/O W26 I/O I/O
T16 GND GND V3 I/O I/O Y1 I/O I/O
T22 I/O I/O V4 I/O I/O Y2 I/O I/O
T23 I/O I/O V5 I/O I/O Y3 I/O I/O
T24 I/O I/O V22 I/O I/O Y4 I/O I/O
T25 I/O I/O V23 I/O I/O Y5 VDD VDD
T26 I/O I/O V24 I/O I/O Y22 VDD VDD
U1 I/O I/O V25 I/O I/O Y23 I/O I/O
U2 I/O I/O V26 I/O I/O Y24 I/O I/O
U3 I/O I/O W1 I/O I/O Y25 I/O I/O
U4 I/O I/O W2 I/O I/O Y26 I/O I/O
U5 I/O I/O W3 I/O I/O
U22 I/O I/O W4 I/O I/O
U23 I/O I/O W5 VDD VDD
456-Pin PBGA
Pin
Number APA750
Function APA1000
Function Pin
Number APA750
Function APA1000
Function Pin
Number APA750
Function APA1000
Function
ProASICPLUS APA Family
62 Advanced v0.3
Package Pin Assignments (Continued)
676-Pin FBGA (Bottom View)
12356789101115 14 13 121617181920212223 4242526
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
AB
AC
AD
AE
AF
Advanced v0.3 63
ProASICPLUS APA Family
676-Pin FBGA
Pin
Number APA750
Function Pin
Number APA750
Function Pin
Number APA750
Function
A1 GND AA14 I/O AC1 I/O
A2 GND AA15 I/O AC2 I/O
A3 I/O AA16 I/O AC3 I/O
A4 I/O AA17 I/O AC4 I/O
A5 I/O AA18 I/O AC5 GND
A6 I/O AA19 I/O AC6 I/O
A7 I/O AA20 I/O AC7 I/O
A8 I/O AA21 TDO AC8 I/O
A9 I/O AA22 GND AC9 GND
A10 I/O AA23 GND AC10 I/O
A11 I/O AA24 I/O AC11 I/O
A12 I/O AA25 I/O AC12 I/O
A13 I/O AA26 I/O AC13 I/O
A14 I/O AB1 I/O AC14 I/O
A15 I/O AB2 I/O AC15 I/O
A16 I/O AB3 I/O AC16 I/O
A17 I/O AB4 I/O AC17 I/O
A18 I/O AB5 I/O AC18 I/O
A19 I/O AB6 GND AC19 I/O
A20 I/O AB7 GND AC20 I/O
A21 I/O AB8 I/O AC21 I/O
A22 I/O AB9 I/O AC22 TMS
A23 I/O AB10 I/O AC23 RCK
A24 I/O AB11 I/O AC24 I/O
A25 GND AB12 I/O AC25 I/O
A26 GND AB13 I/O AC26 I/O
AA1 I/O AB14 I/O AD1 I/O
AA2 I/O AB15 I/O AD2 I/O
AA3 I/O AB16 I/O AD3 I/O
AA4 I/O AB17 I/O AD4 I/O
AA5 I/O AB18 I/O AD5 I/O
AA6 GND AB19 I/O AD6 I/O
AA7 I/O AB20 I/O AD7 I/O
AA8 I/O AB21 TCK AD8 I/O
AA9 I/O AB22 TRST AD9 I/O
AA10 I/O AB23 I/O AD10 I/O
AA11 I/O AB24 I/O AD11 I/O
AA12 I/O AB25 I/O AD12 I/O
AA13 I/O AB26 I/O AD13 I/O
ProASICPLUS APA Family
64 Advanced v0.3
AD14 I/O AF1 GND B14 I/O
AD15 I/O AF2 GND B15 I/O
AD16 I/O AF3 GND B16 I/O
AD17 I/O AF4 GND B17 I/O
AD18 I/O AF5 I/O B18 I/O
AD19 I/O AF6 I/O B19 I/O
AD20 I/O AF7 I/O B20 I/O
AD21 I/O AF8 I/O B21 I/O
AD22 I/O AF9 I/O B22 I/O
AD23 TDI AF10 I/O B23 I/O
AD24 VPN AF11 I/O B24 I/O
AD25 I/O AF12 I/O B25 GND
AD26 I/O AF13 I/O B26 GND
AE1 GND AF14 I/O C1 GND
AE2 GND AF15 I/O C2 GND
AE3 GND AF16 I/O C3 GND
AE4 I/O AF17 I/O C4 GND
AE5 I/O AF18 I/O C5 I/O
AE6 I/O AF19 I/O C6 I/O
AE7 I/O AF20 I/O C7 I/O
AE8 I/O AF21 I/O C8 I/O
AE9 I/O AF22 I/O C9 I/O
AE10 I/O A F23 I/O C10 I/O
AE11 I/O AF24 I/O C11 I/O
AE12 I/O AF25 GND C12 I/O
AE13 I/O AF26 GND C13 I/O
AE14 I/O B1 GND C14 I/O
AE15 I/O B2 GND C15 I/O
AE16 I/O B3 GND C16 I/O
AE17 I/O B4 GND C17 I/O
AE18 I/O B5 I/O C18 I/O
AE19 I/O B6 I/O C19 I/O
AE20 I/O B7 I/O C20 I/O
AE21 I/O B8 I/O C21 I/O
AE22 I/O B9 I/O C22 I/O
AE23 I/O B10 I/O C23 I/O
AE24 I/O B11 I/O C24 I/O
AE25 GND B12 I/O C25 I/O
AE26 GND B13 I/O C26 I/O
676-Pin FBGA
Pin
Number APA750
Function Pin
Number APA750
Function Pin
Number APA750
Function
Advanced v0.3 65
ProASICPLUS APA Family
D1 I/O E14 I/O G1 I/O
D2 I/O E15 I/O G2 I/O
D3 GND E16 I/O G3 I/O
D4 I/O E17 I/O G4 I/O
D5 I/O E18 I/O G5 I/O
D6 I/O E19 I/O G6 I/O
D7 I/O E20 I/O G7 I/O
D8 I/O E21 I/O G8 VDD
D9 I/O E22 I/O G9 NC
D10 I/O E23 I/O G10 I/O
D11 I/O E24 I/O G11 NC
D12 I/O E25 I/O G12 I/O
D13 I/O E26 I/O G13 NC
D14 I/O F1 I/O G14 I/O
D15 I/O F2 I/O G15 NC
D16 I/O F3 I/O G16 I/O
D17 I/O F4 I/O G17 NC
D18 I/O F5 GND G18 I/O
D19 I/O F6 I/O G19 VDDP
D20 I/O F7 NC G20 NC
D21 I/O F8 I/O G21 I/O
D22 I/O F9 I/O G22 I/O
D23 I/O F10 I/O G23 I/O
D24 I/O F11 I/O G24 I/O
D25 I/O F12 I/O G25 I/O
D26 I/O F13 I/O G26 I/O
E1 I/O F14 I/O H1 I/O
E2 I/O F15 I/O H2 I/O
E3 I/O F16 I/O H3 I/O
E4 I/O F17 I/O H4 I/O
E5 I/O F18 I/O H5 I/O
E6 I/O F19 I/O H6 I/O
E7 I/O F20 I/O H7 VDDP
E8 I/O F21 I/O H8 VDD
E9 I/O F22 I/O H9 VDDP
E10 I/O F23 I/O H10 VDDP
E11 I/O F24 I/O H11 VDDP
E12 I/O F25 I/O H12 VDDP
E13 I/O F26 I/O H13 VDDP
676-Pin FBGA
Pin
Number APA750
Function Pin
Number APA750
Function Pin
Number APA750
Function
ProASICPLUS APA Family
66 Advanced v0.3
H14 VDDP K1 I/O L14 GND
H15 VDDP K2 I/O L15 GND
H16 VDDP K3 I/O L16 GND
H17 VDDP K4 I/O L17 GND
H18 VDDP K5 I/O L18 VDD
H19 VDD K6 I/O L19 VDDP
H20 VDD K7 I/O L20 NC
H21 I/O K8 VDDP L21 I/O
H22 I/O K9 VDD L22 I/O
H23 I/O K10 GND L23 I/O
H24 I /O K11 GND L24 I/O
H25 I/O K12 GND L25 I/O
H26 I/O K13 GND L26 I/O
J1 I/O K14 GND M1 I/O
J2 I/O K15 GND M2 I/O
J3 I/O K16 GND M3 I/O
J4 I/O K17 GND M4 I/O
J5 I/O K18 VDD M5 I/O
J6 I/O K19 VDDP M6 I/O
J7 NC K20 I/O M7 I/O
J8 VDDP K21 I/O M8 VDDP
J9 VDD K22 I/O M9 VDD
J10 VDD K23 I/O M10 GND
J11 VDD K24 I/O M11 GND
J12 VDD K25 I/O M12 GND
J13 VDD K26 I/O M13 GND
J14 VDD L1 I/O M14 GND
J15 VDD L2 I/O M15 GND
J16 VDD L3 I/O M16 GND
J17 VDD L4 I/O M17 GND
J18 VDD L5 I/O M18 VDD
J19 VDDP L6 I/O M19 VDDP
J20 NC L7 NC M20 I/O
J21 I/O L8 VDDP M21 I/O
J22 I/O L9 VDD M22 I/O
J23 I/O L10 GND M23 I/O
J24 I/O L11 GND M24 I/O
J25 I/O L12 GND M25 I/O
J26 I/O L13 GND M26 I/O
676-Pin FBGA
Pin
Number APA750
Function Pin
Number APA750
Function Pin
Number APA750
Function
Advanced v0.3 67
ProASICPLUS APA Family
N1 GL P14 GND T1 I/O
N2 AGND P15 GND T2 I/O
N3 I/O P16 GND T3 I/O
N4 I/O P17 GND T4 I/O
N5 NPECL P18 VDD T5 I/O
N6 I/O P19 VDDP T6 I/O
N7 NC P20 I/O T7 I/O
N8 VDDP P21 I/O T8 VDDP
N9 VDD P22 I/O T9 VDD
N10 GND P23 I/O T10 G ND
N11 GND P24 PPECL T11 GND
N12 GND P25 AVDD T12 GND
N13 GND P26 AGND T13 GND
N14 GND R1 I/O T14 GND
N15 GND R2 I/O T15 GND
N16 GND R3 I/O T16 GND
N17 GND R4 I/O T17 GND
N18 VDD R5 I/O T18 VDD
N19 VDDP R6 I/O T19 VDDP
N20 NC R7 NC T20 I/O
N21 I/O R8 VDDP T21 I/O
N22 GL R9 VDD T22 I/O
N23 I/O R10 GND T23 I/O
N24 NPECL R11 GND T24 I/O
N25 GL R12 GND T25 I/O
N26 I/O R13 GND T26 I/O
P1 GL R14 GND U1 I/O
P2 AVDD R15 GND U2 I/O
P3 I/O R16 GND U3 I/O
P4 I/O R17 GND U4 I/O
P5 PPECL R18 VDD U5 I/O
P6 I/O R19 VDDP U6 I/O
P7 I/O R20 NC U7 NC
P8 VDDP R21 I/O U8 VDDP
P9 VDD R22 I/O U9 VDD
P10 GND R23 I/O U10 GND
P11 GND R24 I/O U11 GND
P12 GND R25 I/O U12 GND
P13 GND R26 I/O U13 GND
676-Pin FBGA
Pin
Number APA750
Function Pin
Number APA750
Function Pin
Number APA750
Function
ProASICPLUS APA Family
68 Advanced v0.3
U14 GND V17 VDD W20 VDDP
U15 GND V18 VDD W21 I/O
U16 GND V19 VDDP W22 I/O
U17 GND V20 I/O W23 I/O
U18 VDD V21 I/O W24 I/O
U19 VDDP V22 I/O W25 I/O
U20 NC V23 I/O W26 I/O
U21 I/O V24 I/O Y1 I/O
U22 I/O V25 I/O Y2 I/O
U23 I/O V26 I/O Y3 I/O
U24 I/O W1 I/O Y4 I/O
U25 I/O W2 I/O Y5 I/O
U26 I/O W3 I/O Y6 I/O
V1 I/O W4 I/O Y7 I/O
V2 I/O W5 I/O Y8 VDDP
V3 I/O W6 I/O Y9 NC
V4 I/O W7 VDD Y10 I/O
V5 I/O W8 VDD Y11 NC
V6 I/O W9 VDDP Y12 I/O
V7 I/O W10 VDDP Y13 NC
V8 VDDP W11 VDDP Y14 I/O
V9 VDD W12 VDDP Y15 NC
V10 VDD W13 VDDP Y16 I/O
V11 VDD W14 VDDP Y17 NC
V12 VDD W15 VDDP Y18 I/O
V13 VDD W16 VDDP Y19 VDD
V14 VDD W17 VDDP Y20 VPP
V15 VDD W18 VDDP Y21 I/O
V16 VDD W19 VDD Y22 I/O
Y23 I/O
Y24 I/O
Y25 I/O
Y26 I/O
676-Pin FBGA
Pin
Number APA750
Function Pin
Number APA750
Function Pin
Number APA750
Function
Advanced v0.3 69
ProASICPLUS APA Family
Package Pin Assignments (Continued)
896-Pin FBGA (Bottom View)
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
AB
AC
AD
AE
AF
AG
AH
AJ
AK
1234567891011
12131415161718192021222324252627282930
ProASICPLUS APA Family
70 Advanced v0.3
896-Pin FBGA
Pin
Number APA750
Function APA1000
Function Pin
Number APA750
Function APA1000
Function Pin
Number APA750
Function APA1000
Function
A2 GND GND AA18 VDDP VDDP AC3 I/O I/O
A3 GND GND AA19 VDDP VDDP AC4 I/O I/O
A4 I/O I/O AA20 I/O I/O AC5 I/O I/O
A5 GND GND AA21 VDD VDD AC6 I/O I/O
A6 I/O I/O AA22 I/O I/O AC7 I/O I/O
A7 GND GND AA23 I/O I/O AC8 GND GND
A8 I/O I/O AA24 I/O I/O AC9 I/O I/O
A9 I/O I/O AA25 I/O I/O AC10 I/O I/O
A10 I/O I/O AA26 I/O I/O AC11 I/O I/O
A11 I/O I/O AA27 I/O I/O AC12 I/O I/O
A12 I/O I/O AA28 I/O I/O AC13 I/O I/O
A13 I/O I/O AA29 I/O I/O AC14 I/O I/O
A14 I/O I/O AA30 I/O I/O AC15 I/O I/O
A15 I/O I/O AB1 I/O I/O AC16 I/O I/O
A16 I/O I/O AB2 I/O I/O AC17 I/O I/O
A17 I/O I/O AB3 I/O I/O AC18 I/O I/O
A18 I/O I/O AB4 I/O I/O AC19 I/O I/O
A19 I/O I/O AB5 I/O I/O AC20 I/O I/O
A20 I/O I/O AB6 I/O I/O AC21 I/O I/O
A21 I/O I/O AB7 VDDP VDDP AC22 I/O I/O
A22 I/O I/O AB8 I/O I/O AC23 GND GND
A23 I/O I/O AB9 VDD VDD AC24 I/O I/O
A24 GND GND AB10 I/O I/O AC25 I/O I/O
A25 I/O I/O AB11 I/O I/O AC26 I/O I/O
A26 GND GND AB12 I/O I/O AC27 I/O I/O
A27 I/O I/O AB13 I/O I/O AC28 I/O I/O
A28 GND GND AB14 I/O I/O AC29 I/O I/O
A29 GND GND AB15 I/O I/O AC30 I/O I/O
AA1 I/O I/O AB16 I/O I/O AD1 GND GND
AA2 I/O I/O AB17 I/O I/O AD2 I/O I/O
AA3 I/O I/O AB18 I/O I/O AD3 I/O I/O
AA4 I/O I/O AB19 I/O I/O AD4 I/O I/O
AA5 I/O I/O AB20 I/O I/O AD5 VDDP VDDP
AA6 I/O I/O AB21 I/O I/O AD6 I/O I/O
AA7 I/O I/O AB22 VDD VDD AD7 VDD VDD
AA8 I/O I/O AB23 I/O I/O AD8 I/O I/O
AA9 I/O I/O AB24 VDDP VDDP AD9 VDDP VDDP
AA10 VDD VDD AB25 I/O I/O AD10 I/O I/O
AA11 I/O I/O AB26 I/O I/O AD11 I/O I/O
AA12 VDDP VDDP AB27 I/O I/O AD12 I/O I/O
AA13 VDDP VDDP AB28 I/O I/O AD13 I/O I/O
AA14 VDDP VDDP AB29 I/O I/O AD14 I/O I/O
AA15 VDDP VDDP AB30 I/O I/O AD15 I/O I/O
AA16 VDDP VDDP AC1 I/O I/O AD16 I/O I/O
AA17 VDDP VDDP AC2 I/O I/O AD17 I/O I/O
Advanced v0.3 71
ProASICPLUS APA Family
AD18 I/O I/O AF3 VDDP VDDP AG18 I/O I/O
AD19 I/O I/O AF4 I/O I/O AG19 I/O I/O
AD20 I/O I/O AF5 VDD VDD AG20 I/O I/O
AD21 I/O I/O AF6 I/O I/O AG21 I/O I/O
AD22 VDDP VDDP AF7 VDDP VDDP AG22 I/O I/O
AD23 TCK TCK AF8 I/O I/O AG23 I/O I/O
AD24 VDD VDD AF9 I/O I/O AG24 I/O I/O
AD25 TRST TRST AF10 I/O I/O AG25 I/O I/O
AD26 VDDP VDDP AF11 I/O I/O AG26 I/O I/O
AD27 I/O I/O AF12 I/O I/O AG27 GND GND
AD28 I/O I/O AF13 I/O I/O AG28 RCK RCK
AD29 I/O I/O AF14 I/O I/O AG29 VDD VDD
AD30 GND GND AF15 I/O I/O AG30 I/O I/O
AE1 I/O I/O AF16 I/O I/O AH1 GND GND
AE2 VDD VDD AF17 I/O I/O AH2 I/O I/O
AE3 I/O I/O AF18 I/O I/O AH3 VDD VDD
AE4 I/O I/O AF19 I/O I/O AH4 I/O I/O
AE5 I/O I/O AF20 I/O I/O AH5 VDDP VDDP
AE6 GND GND AF21 I/O I/O AH6 I/O I/O
AE7 I/O I/O AF22 I/O I/O AH7 I/O I/O
AE8 I/O I/O AF23 I/O I/O AH8 I/O I/O
AE9 I/O I/O AF24 VDD VDD AH9 I/O I/O
AE10 I/O I/O AF25 I/O I/O AH10 I/O I/O
AE11 I/O I/O AF26 VDDP VDDP AH11 I/O I/O
AE12 I/O I/O AF27 TDO TDO AH12 I/O I/O
AE13 I/O I/O AF28 VDDP VDDP AH13 I/O I/O
AE14 I/O I/O AF29 VPN VPN AH14 I/O I/O
AE15 I/O I/O AF30 GND GND AH15 I/O I/O
AE16 I/O I/O AG1 I/O I/O AH16 I/O I/O
AE17 I/O I/O AG2 VDD VDD AH17 I/O I/O
AE18 I/O I/O AG3 I/O I/O AH18 I/O I/O
AE19 I/O I/O AG4 GND GND AH19 I/O I/O
AE20 I/O I/O AG5 I/O I/O AH20 I/O I/O
AE21 I/O I/O AG6 I/O I/O AH21 I/O I/O
AE22 I/O I/O AG7 I/O I/O AH22 I/O I/O
AE23 I/O I/O AG8 I/O I/O AH23 I/O I/O
AE24 I/O I/O AG9 I/O I/O AH24 I/O I/O
AE25 GND GND AG10 I/O I/O AH25 I/O I/O
AE26 I/O I/O AG11 I/O I/O AH26 VDDP VDDP
AE27 I/O I/O AG12 I/O I/O AH27 TDI TDI
AE28 I/O I/O AG13 I/O I/O AH28 VDD VDD
AE29 VDD VDD AG14 I/O I/O AH29 VPP VPP
AE30 I/O I/O AG15 I/O I/O AH30 GND GND
AF1 GND GND AG16 I/O I/O AJ1 GND GND
AF2 I/O I/O AG17 I/O I/O AJ2 GND GND
896-Pin FBGA (Continued)
Pin
Number APA750
Function APA1000
Function Pin
Number APA750
Function APA1000
Function Pin
Number APA750
Function APA1000
Function
ProASICPLUS APA Family
72 Advanced v0.3
AK19 I/O I/O C5 VDDP VDDP D20 I/O I/O
AK20 I/O I/O C6 I/O I/O D21 I/O I/O
AK21 I/O I/O C7 I/O I/O D22 I/O I/O
AK22 I/O I/O C8 I/O I/O D23 I/O I/O
AK23 I/O I/O C9 I/O I/O D24 I/O I/O
AK24 GND GND C10 I/O I/O D25 I/O I/O
AK25 I/O I/O C11 I/O I/O D26 I/O I/O
AK26 GND GND C12 I/O I/O D27 GND GND
AK27 I/O I/O C13 I/O I/O D28 I/O I/O
AK28 GND GND C14 I/O I/O D29 VDD VDD
AK29 GND GND C15 I/O I/O D30 I/O I/O
B1 GND GND C16 I/O I/O E1 GND GND
B2 GND GND C17 I/O I/O E2 I/O I/O
B4 VDD VDD C18 I/O I/O E3 VDDP VDDP
B5 I/O I/O C19 I/O I/O E4 I/O I/O
B6 VDD VDD C20 I/O I/O E5 VDD VDD
B7 I/O I/O C21 I/O I/O E6 I/O I/O
B8 I/O I/O C22 I/O I/O E7 VDDP VDDP
B9 I/O I/O C23 I/O I/O E8 I/O I/O
B3 I/O I/O C24 I/O I/O E9 I/O I/O
B10 I/O I/O C25 I/O I/O E10 I/O I/O
B11 I/O I/O C26 VDDP VDDP E11 I/O I/O
B12 I/O I/O C27 I/O I/O E12 I/O I/O
B13 I/O I/O C28 VDD VDD E13 I/O I/O
B14 I/O I/O C29 I/O I/O E14 I/O I/O
B15 I/O I/O C30 GND GND E15 I/O I/O
B16 I/O I/O D1 I/O I/O E16 I/O I/O
B17 I/O I/O D2 VDD VDD E17 I/O I/O
B18 I/O I/O D3 I/O I/O E18 I/O I/O
B19 I/O I/O D4 GND GND E19 I/O I/O
B20 I/O I/O D5 I/O I/O E20 I/O I/O
B21 I/O I/O D6 I/O I/O E21 I/O I/O
B22 I/O I/O D7 I/O I/O E22 I/O I/O
B23 I/O I/O D8 I/O I/O E23 I/O I/O
B24 I/O I/O D9 I/O I/O E24 VDDP VDDP
B25 VDD VDD D10 I/O I/O E25 I/O I/O
B26 I/O I/O D11 I/O I/O E26 VDD VDD
B27 VDD VDD D12 I/O I/O E27 I/O I/O
B28 I/O I/O D13 I/O I/O E28 VDDP VDDP
B29 GND GND D14 I/O I/O E29 I/O I/O
B30 GND GND D15 I/O I/O E30 GND GND
C1 GND GND D16 I/O I/O F1 I/O I/O
C2 I/O I/O D17 I/O I/O F2 VDD VDD
C3 VDD VDD D18 I/O I/O F3 I/O I/O
C4 I/O I/O D19 I/O I/O F4 I/O I/O
896-Pin FBGA (Continued)
Pin
Number APA750
Function APA1000
Function Pin
Number APA750
Function APA1000
Function Pin
Number APA750
Function APA1000
Function
Advanced v0.3 73
ProASICPLUS APA Family
F5 I/O I/O G20 I/O I/O J5 I/O I/O
F6 GND GND G21 I/O I/O J6 I/O I/O
F7 I/O I/O G22 VDDP VDDP J7 VDDP VDDP
F8 I/O I/O G23 I/O I/O J8 I/O I/O
F9 I/O I/O G24 VDD VDD J9 VDD VDD
F10 I/O I/O G25 I/O I/O J10 I/O I/O
F11 I/O I/O G26 VDDP VDDP J11 I/O I/O
F12 I/O I/O G27 I/O I/O J12 I/O I/O
F13 I/O I/O G28 I/O I/O J13 I/O I/O
F14 I/O I/O G29 I/O I/O J14 I/O I/O
F15 I/O I/O G30 GND GND J15 I/O I/O
F16 I/O I/O H1 I/O I/O J16 I/O I/O
F17 I/O I/O H2 I/O I/O J17 I/O I/O
F18 I/O I/O H3 I/O I/O J18 I/O I/O
F19 I/O I/O H4 I/O I/O J19 I/O I/O
F20 I/O I/O H5 I/O I/O J20 I/O I/O
F21 I/O I/O H6 I/O I/O J21 I/O I/O
F22 I/O I/O H7 I/O I/O J22 VDD VDD
F23 I/O I/O H8 GND GND J23 I/O I/O
F24 I/O I/O H9 I/O I/O J24 VDDP VDDP
F25 GND GND H10 I/O I/O J25 I/O I/O
F26 I/O I/O H11 I/O I/O J26 I/O I/O
F27 I/O I/O H12 I/O I/O J27 I/O I/O
F28 I/O I/O H13 I/O I/O J28 I/O I/O
F29 VDD VDD H14 I/O I/O J29 I/O I/O
F30 I/O I/O H15 I/O I/O J30 I/O I/O
G1 GND GND H16 I/O I/O K1 I/O I/O
G2 I/O I/O H17 I/O I/O K2 I/O I/O
G3 I/O I/O H18 I/O I/O K3 I/O I/O
G4 I/O I/O H19 I/O I/O K4 I/O I/O
G5 VDDP VDDP H20 I/O I/O K5 I/O I/O
G6 I/O I/O H21 I/O I/O K6 I/O I/O
G7 VDD VDD H22 I/O I/O K7 I/O I/O
G8 I/O I/O H23 GND GND K8 I/O I/O
G9 VDDP VDDP H24 I/O I/O K9 I/O I/O
G10 I/O I/O H25 I/O I/O K10 VDD VDD
G11 I/O I/O H26 I/O I/O K11 I/O I/O
G12 I/O I/O H27 I/O I/O K12 VDDP VDDP
G13 I/O I/O H28 I/O I/O K13 VDDP VDDP
G14 I/O I/O H29 I/O I/O K14 VDDP VDDP
G15 I/O I/O H30 I/O I/O K15 VDDP VDDP
G16 I/O I/O J1 I/O I/O K16 VDDP VDDP
G17 I/O I/O J2 I/O I/O K17 VDDP VDDP
G18 I/O I/O J3 I/O I/O K18 VDDP VDDP
G19 I/O I/O J4 I/O I/O K19 VDDP VDDP
896-Pin FBGA (Continued)
Pin
Number APA750
Function APA1000
Function Pin
Number APA750
Function APA1000
Function Pin
Number APA750
Function APA1000
Function
ProASICPLUS APA Family
74 Advanced v0.3
K20 I/O I/O M5 I/O I/O N20 VDD VDD
K21 VDD VDD M6 I/O I/O N21 VDDP VDDP
K22 I/O I/O M7 I/O I/O N22 I/O I/O
K23 I/O I/O M8 I/O I/O N23 I/O I/O
K24 I/O I/O M9 I/O I/O N24 I/O I/O
K25 I/O I/O M10 VDDP VDDP N25 I/O I/O
K26 I/O I/O M11 VDD VDD N26 I/O I/O
K27 I/O I/O M12 GND GND N27 I/O I/O
K28 I/O I/O M13 GND GND N28 I/O I/O
K29 I/O I/O M14 GND GND N29 I/O I/O
K30 I/O I/O M15 GND GND N30 I/O I/O
L1 I/O I/O M16 GND GND P1 I/O I/O
L2 I/O I/O M17 GND GND P2 I/O I/O
L3 I/O I/O M18 GND GND P3 I/O I/O
L4 I/O I/O M19 GND GND P4 I/O I/O
L5 I/O I/O M20 VDD VDD P5 I/O I/O
L6 I/O I/O M21 VDDP VDDP P6 I/O I/O
L7 I/O I/O M22 I/O I/O P7 I/O I/O
L8 I/O I/O M23 I/O I/O P8 I/O I/O
L9 I/O I/O M24 I/O I/O P9 I/O I/O
L10 I/O I/O M25 I/O I/O P10 VDDP VDDP
L11 VDD VDD M26 I/O I/O P11 VDD VDD
L12 VDD VDD M27 I/O I/O P12 GND GND
L13 VDD VDD M28 I/O I/O P13 GND GND
L14 VDD VDD M29 I/O I/O P14 GND GND
L15 VDD VDD M30 I/O I/O P15 GND GND
L16 VDD VDD N1 I/O I/O P16 GND GND
L17 VDD VDD N2 I/O I/O P17 GND GND
L18 VDD VDD N3 I/O I/O P18 GND GND
L19 VDD VDD N4 I/O I/O P19 GND GND
L20 VDD VDD N5 I/O I/O P20 VDDP VDDP
L21 I/O I/O N6 I/O I/O P21 VDD VDD
L22 I/O I/O N7 I/O I/O P22 I/O I/O
L23 I/O I/O N8 I/O I/O P23 I/O I/O
L24 I/O I/O N9 I/O I/O P24 I/O I/O
L25 I/O I/O N10 VDDP VDDP P25 I/O I/O
L26 I/O I/O N11 VDD VDD P26 I/O I/O
L27 I/O I/O N12 GND GND P27 I/O I/O
L28 I/O I/O N13 GND GND P28 I/O I/O
L29 I/O I/O N14 GND GND P29 I/O I/O
L30 I/O I/O N15 GND GND P30 I/O I/O
M1 I/O I/O N16 GND GND R1 I/O I/O
M2 I/O I/O N17 GND GND R2 I/O I/O
M3 I/O I/O N18 GND GND R3 AGND AGND
M4 I/O I/O N19 GND GND R4 NPECL NPECL
896-Pin FBGA (Continued)
Pin
Number APA750
Function APA1000
Function Pin
Number APA750
Function APA1000
Function Pin
Number APA750
Function APA1000
Function
Advanced v0.3 75
ProASICPLUS APA Family
R5 GL GL T13 GND GND U22 I/O I/O
R6 I/O I/O T14 GND GND U23 I/O I/O
R7 I/O I/O T15 GND GND U24 I/O I/O
R8 I/O I/O T16 GND GND U25 I/O I/O
R9 I/O I/O T17 GND GND U26 I/O I/O
R10 VDDP VDDP T18 GND GND U27 I/O I/O
R11 VDD VDD T20 VDD VDD U28 I/O I/O
R12 GND GND T21 VDDP VDDP U29 I/O I/O
R13 GND GND T22 I/O I/O U30 I/O I/O
R14 GND GND T23 I/O I/O V1 I/O I/O
R15 GND GND T24 I/O I/O V2 I/O I/O
R16 GND GND T25 I/O I/O V3 I/O I/O
R17 GND GND T26 PPECL PPECL V4 I/O I/O
R18 GND GND T27 GL GL V5 I/O I/O
R19 GND GND T28 GL GL V6 I/O I/O
R20 VDD VDD T29 AVDD AVDD V7 I/O I/O
R21 VDDP VDDP T30 I/O I/O V8 I/O I/O
R22 I/O I/O U1 I/O I/O V9 I/O I/O
R23 I/O I/O U2 I/O I/O V10 VDDP VDDP
R24 I/O I/O U3 I/O I/O V11 VDD VDD
R25 I/O I/O U4 I/O I/O V12 GND GND
R26 I/O I/O U5 I/O I/O V13 GND GND
R27 NPECL NPECL U6 I/O I/O V14 GND GND
R28 AGND AGND U7 I/O I/O V15 GND GND
R29 I/O I/O U8 I/O I/O V16 GND GND
R30 I/O I/O U9 I/O I/O V17 GND GND
T1 I/O I/O U10 VDDP VDDP V18 GND GND
T2 AVDD AVDD U11 VDD VDD V19 GND GND
T3 GL GL U12 GND GND V20 VDD VDD
T4 PPECL PPECL U13 GND GND V21 VDDP VDDP
T5 I/O I/O U14 GND GND V22 I/O I/O
T6 I/O I/O U15 GND GND V23 I/O I/O
T7 I/O I/O U16 GND GND V24 I/O I/O
T8 I/O I/O U17 GND GND V25 I/O I/O
T9 I/O I/O U18 GND GND V26 I/O I/O
T10 VDDP VDDP U19 GND GND V27 I/O I/O
T11 VDD VDD U20 VDD VDD V28 I/O I/O
T12 GND GND U21 VDDP VDDP V29 I/O I/O
V30 I/O I/O
896-Pin FBGA (Continued)
Pin
Number APA750
Function APA1000
Function Pin
Number APA750
Function APA1000
Function Pin
Number APA750
Function APA1000
Function
ProASICPLUS APA Family
76 Advanced v0.3
Package Pin Assignments (Continued)
1152-Pin FBGA (Bottom View)
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
AB
AC
AD
AE
AF
AGAG
AH
AJ
AK
1234567891011121314151617181920212324252627
28293031323334
AL
AM
AN
AO
22
AP
Advanced v0.3 77
ProASICPLUS APA Family
1152-Pin FBGA
Pin
Number APA1000
Function Pin
Number APA1000
Function Pin
Number APA1000
Function Pin
Number APA1000
Function
A2 NC AA14 GND AB25 I/O AD2 I/O
A3 GND AA15 GND AB26 I/O AD3 I/O
A4 GND AA16 GND AB27 I/O AD4 I/O
A5 GND AA17 GND AB28 I/O AD5 I/O
A6 I/O AA18 GND AB29 I/O AD6 I/O
A7 VDD AA19 GND AB30 I/O AD7 I/O
A8 VDD AA20 GND AB31 I/O AD8 I/O
A9 VDD AA21 GND AB32 I/O AD9 VDDP
A10 VDD AA22 VDD AB33 I/O AD10 I/O
A11 I/O AA23 VDDP AB34 I/O AD11 VDD
A12 GND AA24 I/O AC1 GND AD12 I/O
A13 I/O AA25 I/O AC2 GND AD13 I/O
A14 VDDP AA26 I/O AC3 I/O AD14 I/O
A15 VDDP AA27 I/O AC4 I/O AD15 I/O
A16 I/O AA28 I/O AC5 I/O AD16 I/O
A17 GND AA29 I/O AC6 I/O AD17 I/O
A18 GND AA30 I/O AC7 I/O AD18 I/O
A19 I/O AA31 I/O AC8 I/O AD19 I/O
A20 VDDP AA32 I/O AC9 I/O AD20 I/O
A21 VDDP AA33 VDDP AC10 I/O AD21 I/O
A22 I/O AA34 VDDP AC11 I/O AD22 I/O
A23 GND AB1 I/O AC12 VDD AD23 I/O
A24 I/O AB2 I/O AC13 I/O AD24 VDD
A25 VDD AB3 I/O AC14 VDDP AD25 I/O
A26 VDD AB4 I/O AC15 VDDP AD26 VDDP
A27 VDD AB5 I/O AC16 VDDP AD27 I/O
A28 VDD AB6 I/O AC17 VDDP AD28 I/O
A29 I/O AB7 I/O AC18 VDDP AD29 I/O
A30 GND AB8 I/O AC19 VDDP AD30 I/O
A31 GND AB9 I/O AC20 VDDP AD31 I/O
A32 GND AB10 I/O AC21 VDDP AD32 I/O
A33 I/O AB11 I/O AC22 I/O AD33 I/O
AA1 VDDP AB12 I/O AC23 VDD AD34 I/O
AA2 VDDP AB13 VDD AC24 I/O AE1 VDD
AA3 I/O AB14 VDD AC25 I/O AE2 NC
AA4 I/O AB15 VDD AC26 I/O AE3 I/O
AA5 I/O AB16 VDD AC27 I/O AE4 I/O
AA6 I/O AB17 VDD AC28 I/O AE5 I/O
AA7 I/O AB18 VDD AC29 I/O AE6 I/O
AA8 I/O AB19 VDD AC30 I/O AE7 I/O
AA9 I/O AB20 VDD AC31 I/O AE8 I/O
AA10 I/O AB21 VDD AC32 I/O AE9 I/O
AA11 I/O AB22 VDD AC33 GND AE10 GND
AA12 VDDP AB23 I/O AC34 GND AE11 I/O
AA13 VDD AB24 I/O AD1 I/O AE12 I/O
ProASICPLUS APA Family
78 Advanced v0.3
AE13 I/O AF24 VDDP AH1 VDD AJ12 I/O
AE14 I/O AF25 TCK AH2 I/O AJ13 I/O
AE15 I/O AF26 VDD AH3 GND AJ14 I/O
AE16 I/O AF27 TRST AH4 I/O AJ15 I/O
AE17 I/O AF28 VDDP AH5 VDDP AJ16 I/O
AE18 I/O AF29 I/O AH6 I/O AJ17 I/O
AE19 I/O AF30 I/O AH7 VDD AJ18 I/O
AE20 I/O AF31 I/O AH8 I/O AJ19 I/O
AE21 I/O AF32 GND AH9 VDDP AJ20 I/O
AE22 I/O AF33 I/O AH10 I/O AJ21 I/O
AE23 I/O AF34 VDD AH11 I/O AJ22 I/O
AE24 I/O AG1 VDD AH12 I/O AJ23 I/O
AE25 GND AG2 NC AH13 I/O AJ24 I/O
AE26 I/O AG3 I/O AH14 I/O AJ25 I/O
AE27 I/O AG4 VDD AH15 I/O AJ26 I/O
AE28 I/O AG5 I/O AH16 I/O AJ27 I/O
AE29 I/O AG6 I/O AH17 I/O AJ28 I/O
AE30 I/O AG7 I/O AH18 I/O AJ29 GND
AE31 I/O AG8 GND AH19 I/O AJ30 RCK
AE32 I/O AG9 I/O AH20 I/O AJ31 VDD
AE33 NC AG10 I/O AH21 I/O AJ32 I/O
AE34 VDD AG11 I/O AH22 I/O AJ33 NC
AF1 VDD AG12 I/O AH23 I/O AJ34 NC
AF2 I/O AG13 I/O AH24 I/O AK1 GND
AF3 GND AG14 I/O AH25 I/O AK2 GND
AF4 I/O AG15 I/O AH26 VDDP AK3 GND
AF5 I/O AG16 I/O AH27 I/O AK4 I/O
AF6 I/O AG17 I/O AH28 VDD AK5 VDD
AF7 VDDP AG18 I/O AH29 TDO AK6 I/O
AF8 I/O AG19 I/O AH30 VDDP AK7 VDDP
AF9 VDD AG20 I/O AH31 VPN AK8 I/O
AF10 I/O AG21 I/O AH32 GND AK9 I/O
AF11 VDDP AG22 I/O AH33 I/O AK10 I/O
AF12 I/O AG23 I/O AH34 VDD AK11 I/O
AF13 I/O AG24 I/O AJ1 I/O AK12 I/O
AF14 I/O AG25 I/O AJ2 NC AK13 I/O
AF15 I/O AG26 I/O AJ3 I/O AK14 I/O
AF16 I/O AG27 GND AJ4 VDD AK15 I/O
AF17 I/O AG28 I/O AJ5 I/O AK16 I/O
AF18 I/O AG29 I/O AJ6 GND AK17 I/O
AF19 I/O AG30 I/O AJ7 I/O AK18 I/O
AF20 I/O AG31 VDD AJ8 I/O AK19 I/O
AF21 I/O AG32 I/O AJ9 I/O AK20 I/O
AF22 I/O AG33 NC AJ10 I/O AK21 I/O
AF23 I/O AG34 VDD AJ11 I/O AK22 I/O
1152-Pin FBGA
Pin
Number APA1000
Function Pin
Number APA1000
Function Pin
Number APA1000
Function Pin
Number APA1000
Function
Advanced v0.3 79
ProASICPLUS APA Family
AK23 I/O AL34 GND AN11 I/O AP23 GND
AK24 I/O AM1 GND AN12 GND AP24 I/O
AK25 I/O AM2 GND AN13 I/O AP25 VDD
AK26 I/O AM3 NC AN14 VDDP AP26 VDD
AK27 I/O AM4 GND AN15 VDDP AP27 VDD
AK28 VDDP AM5 GND AN16 I/O AP28 VDD
AK29 TDI AM6 I/O AN17 GND AP29 I/O
AK30 VDD AM7 GND AN18 GND AP30 GND
AK31 VPP AM8 I/O AN19 I/O AP31 GND
AK32 GND AM9 GND AN20 VDD AP32 GND
AK33 GND AM10 I/O AN21 VDD AP33 NC
AK34 GND AM11 I/O AN22 I/O B1 NC
AL1 GND AM12 I/O AN23 GND B2 NC
AL2 GND AM13 I/O AN24 I/O B3 GND
AL3 GND AM14 I/O AN25 NC B4 GND
AL4 GND AM15 I/O AN26 I/O B5 GND
AL5 I/O AM16 I/O AN27 NC B6 NC
AL6 VDD AM17 I/O AN28 I/O B7 I/O
AL7 I/O AM18 I/O AN29 NC B8 NC
AL8 VDD AM19 I/O AN30 GND B9 I/O
AL9 I/O AM20 I/O AN31 GND B10 NC
AL10 I/O AM21 I/O AN32 GND B11 I/O
AL11 I/O AM22 I/O AN33 NC B12 GND
AL12 I/O AM23 I/O AN34 NC B13 I/O
AL13 I/O AM24 I/O AP2 NC B14 VDDP
AL14 I/O AM25 I/O AP3 GND B15 VDDP
AL15 I/O AM26 GND AP4 GND B16 I/O
AL16 I/O AM27 I/O AP5 GND B17 GND
AL17 I/O AM28 GND AP6 I/O B18 GND
AL18 I/O AM29 I/O AP7 VDD B19 I/O
AL19 I/O AM30 GND AP8 VDD B20 VDDP
AL20 I/O AM31 GND AP9 VDD B21 VDDP
AL21 I/O AM32 NC AP10 VDD B22 I/O
AL22 I/O AM33 GND AP11 I/O B23 GND
AL23 I/O AM34 GND AP12 GND B24 I/O
AL24 I/O AN1 NC AP13 I/O B25 NC
AL25 I/O AN2 NC AP14 VDDP B26 I/O
AL26 I/O AN3 GND AP15 VDDP B27 NC
AL27 VDD AN4 GND AP16 I/O B28 I/O
AL28 I/O AN5 GND AP17 GND B29 NC
AL29 VDD AN6 NC AP18 GND B30 GND
AL30 TMS AN7 I/O AP19 I/O B31 GND
AL31 GND AN8 NC AP20 VDDP B32 GND
AL32 GND AN9 I/O AP21 VDDP B33 NC
AL33 GND AN10 NC AP22 I/O B34 NC
1152-Pin FBGA
Pin
Number APA1000
Function Pin
Number APA1000
Function Pin
Number APA1000
Function Pin
Number APA1000
Function
ProASICPLUS APA Family
80 Advanced v0.3
C1 GND D12 I/O E23 I/O F34 NC
C2 GND D13 I/O E24 I/O G1 VDD
C3 NC D14 I/O E25 I/O G2 I/O
C4 GND D15 I/O E26 I/O G3 GND
C5 GND D16 I/O E27 I/O G4 I/O
C6 I/O D17 I/O E28 VDDP G5 VDDP
C7 GND D18 I/O E29 I/O G6 I/O
C8 I/O D19 I/O E30 VDD G7 VDD
C9 GND D20 I/O E31 I/O G8 I/O
C10 I/O D21 I/O E32 GND G9 VDDP
C11 I/O D22 I/O E33 GND G10 I/O
C12 I/O D23 I/O E34 GND G11 I/O
C13 I/O D24 I/O F1 I/O G12 I/O
C14 I/O D25 I/O F2 NC G13 I/O
C15 I/O D26 I/O F3 I/O G14 I/O
C16 I/O D27 VDD F4 VDD G15 I/O
C17 I/O D28 I/O F5 I/O G16 I/O
C18 I/O D29 VDD F6 GND G17 I/O
C19 I/O D30 I/O F7 I/O G18 I/O
C20 I/O D31 GND F8 I/O G19 I/O
C21 I/O D32 GND F9 I/O G20 I/O
C22 I/O D33 GND F10 I/O G21 I/O
C23 I/O D34 GND F11 I/O G22 I/O
C24 I/O E1 GND F12 I/O G23 I/O
C25 I/O E2 GND F13 I/O G24 I/O
C26 GND E3 GND F14 I/O G25 I/O
C27 I/O E4 I/O F15 I/O G26 VDDP
C28 GND E5 VDD F16 I/O G27 I/O
C29 I/O E6 I/O F17 I/O G28 VDD
C30 GND E7 VDDP F18 I/O G29 I/O
C31 GND E8 I/O F19 I/O G30 VDDP
C32 NC E9 I/O F20 I/O G31 I/O
C33 GND E10 I/O F21 I/O G32 GND
C34 GND E11 I/O F22 I/O G33 I/O
D1 GND E12 I/O F23 I/O G34 VDD
D2 GND E13 I/O F24 I/O H1 VDD
D3 GND E14 I/O F25 I/O H2 NC
D4 GND E15 I/O F26 I/O H3 I/O
D5 I/O E16 I/O F27 I/O H4 VDD
D6 VDD E17 I/O F28 I/O H5 I/O
D7 I/O E18 I/O F29 GND H6 I/O
D8 VDD E19 I/O F30 I/O H7 I/O
D9 I/O E20 I/O F31 VDD H8 GND
D10 I/O E21 I/O F32 I/O H9 I/O
D11 I/O E22 I/O F33 NC H10 I/O
1152-Pin FBGA
Pin
Number APA1000
Function Pin
Number APA1000
Function Pin
Number APA1000
Function Pin
Number APA1000
Function
Advanced v0.3 81
ProASICPLUS APA Family
H11 I/O J22 I/O K33 NC M10 I/O
H12 I/O J23 I/O K34 VDD M11 I/O
H13 I/O J24 VDDP L1 I/O M12 VDD
H14 I/O J25 I/O L2 I/O M13 I/O
H15 I/O J26 VDD L3 I/O M14 VDDP
H16 I/O J27 I/O L4 I/O M15 VDDP
H17 I/O J28 VDDP L5 I/O M16 VDDP
H18 I/O J29 I/O L6 I/O M17 VDDP
H19 I/O J30 I/O L7 I/O M18 VDDP
H20 I/O J31 I/O L8 I/O M19 VDDP
H21 I/O J32 GND L9 VDDP M20 VDDP
H22 I/O J33 I/O L10 I/O M21 VDDP
H23 I/O J34 VDD L11 VDD M22 I/O
H24 I/O K1 VDD L12 I/O M23 VDD
H25 I/O K2 NC L13 I/O M24 I/O
H26 I/O K3 I/O L14 I/O M25 I/O
H27 GND K4 I/O L15 I/O M26 I/O
H28 I/O K5 I/O L16 I/O M27 I/O
H29 I/O K6 I/O L17 I/O M28 I/O
H30 I/O K7 I/O L18 I/O M29 I/O
H31 VDD K8 I/O L19 I/O M30 I/O
H32 I/O K9 I/O L20 I/O M31 I/O
H33 NC K10 GND L21 I/O M32 I/O
H34 VDD K11 I/O L22 I/O M33 GND
J1 VDD K12 I/O L23 I/O M34 GND
J2 I/O K13 I/O L24 VDD N1 I/O
J3 GND K14 I/O L25 I/O N2 I/O
J4 I/O K15 I/O L26 VDDP N3 I/O
J5 I/O K16 I/O L27 I/O N4 I/O
J6 I/O K17 I/O L28 I/O N5 I/O
J7 VDDP K18 I/O L29 I/O N6 I/O
J8 I/O K19 I/O L30 I/O N7 I/O
J9 VDD K20 I/O L31 I/O N8 I/O
J10 I/O K21 I/O L32 I/O N9 I/O
J11 VDDP K22 I/O L33 I/O N10 I/O
J12 I/O K23 I/O L34 I/O N11 I/O
J13 I/O K24 I/O M1 GND N12 I/O
J14 I/O K25 GND M2 GND N13 VDD
J15 I/O K26 I/O M3 I/O N14 VDD
J16 I/O K27 I/O M4 I/O N15 VDD
J17 I/O K28 I/O M5 I/O N16 VDD
J18 I/O K29 I/O M6 I/O N17 VDD
J19 I/O K30 I/O M7 I/O N18 VDD
J20 I/O K31 I/O M8 I/O N19 VDD
J21 I/O K32 I/O M9 I/O N20 VDD
1152-Pin FBGA
Pin
Number APA1000
Function Pin
Number APA1000
Function Pin
Number APA1000
Function Pin
Number APA1000
Function
ProASICPLUS APA Family
82 Advanced v0.3
N21 VDD P32 I/O T9 I/O U20 GND
N22 VDD P33 VDDP T10 I/O U21 GND
N23 I/O P34 VDDP T11 I/O U22 VDD
N24 I/O R1 VDDP T12 VDDP U23 VDDP
N25 I/O R2 VDDP T13 VDD U24 I/O
N26 I/O R3 I/O T14 GND U25 I/O
N27 I/O R4 I/O T15 GND U26 I/O
N28 I/O R5 I/O T16 GND U27 I/O
N29 I/O R6 I/O T17 GND U28 I/O
N30 I/O R7 I/O T18 GND U29 NPECL
N31 I/O R8 I/O T19 GND U30 AGND
N32 I/O R9 I/O T20 GND U31 I/O
N33 I/O R10 I/O T21 GND U32 I/O
N34 I/O R11 I/O T22 VDD U33 GND
P1 VDDP R12 VDDP T23 VDDP U34 GND
P2 VDDP R13 VDD T24 I/O V1 GND
P3 I/O R14 GND T25 I/O V2 GND
P4 I/O R15 GND T26 I/O V3 I/O
P5 I/O R16 GND T27 I/O V4 AVDD
P6 I/O R17 GND T28 I/O V5 GL
P7 I/O R18 GND T29 I/O V6 PPECL
P8 I/O R19 GND T30 I/O V7 I/O
P9 I/O R20 GND T31 I/O V8 I/O
P10 I/O R21 GND T32 I/O V9 I/O
P11 I/O R22 VDD T33 I/O V10 I/O
P12 VDDP R23 VDDP T34 I/O V11 I/O
P13 VDD R24 I/O U1 GND V12 VDDP
P14 GND R25 I/O U2 GND V13 VDD
P15 GND R26 I/O U3 I/O V14 GND
P16 GND R27 I/O U4 I/O V15 GND
P17 GND R28 I/O U5 AGND V16 GND
P18 GND R29 I/O U6 NPECL V17 GND
P19 GND R30 I/O U7 GL V18 GND
P20 GND R31 I/O U8 I/O V19 GND
P21 GND R32 I/O U9 I/O V20 GND
P22 VDD R33 VDDP U10 I/O V21 GND
P23 VDDP R34 VDDP U11 I/O V22 VDD
P24 I/O T1 I/O U12 VDDP V23 VDDP
P25 I/O T2 I/O U13 VDD V24 I/O
P26 I/O T3 I/O U14 GND V25 I/O
P27 I/O T4 I/O U15 GND V26 I/O
P28 I/O T5 I/O U16 GND V27 I/O
P29 I/O T6 I/O U17 GND V28 PPECL
P30 I/O T7 I/O U18 GND V29 GL
P31 I/O T8 I/O U19 GND V30 GL
1152-Pin FBGA
Pin
Number APA1000
Function Pin
Number APA1000
Function Pin
Number APA1000
Function Pin
Number APA1000
Function
Advanced v0.3 83
ProASICPLUS APA Family
V31 AVDD W15 GND W33 I/O Y17 GND
V32 I/O W16 GND W34 I/O Y18 GND
V33 GND W17 GND Y1 VDDP Y19 GND
V34 GND W18 GND Y2 VDDP Y20 GND
W1 I/O W19 GND Y3 I/O Y21 GND
W2 I/O W20 GND Y4 I/O Y22 VDD
W3 I/O W21 GND Y5 I/O Y23 VDDP
W4 I/O W22 VDD Y6 I/O Y24 I/O
W5 I/O W23 VDDP Y7 I/O Y25 I/O
W6 I/O W24 I/O Y8 I/O Y26 I/O
W7 I/O W25 I/O Y9 I/O Y27 I/O
W8 I/O W26 I/O Y10 I/O Y28 I/O
W9 I/O W27 I/O Y11 I/O Y29 I/O
W10 I/O W28 I/O Y12 VDDP Y30 I/O
W11 I/O W29 I/O Y13 VDD Y31 I/O
W12 VDDP W30 I/O Y14 GND Y32 I/O
W13 VDD W31 I/O Y15 GND Y33 VDDP
W14 GND W32 I/O Y16 GND Y34 VDD
1152-Pin FBGA
Pin
Number APA1000
Function Pin
Number APA1000
Function Pin
Number APA1000
Function Pin
Number APA1000
Function
ProASICPLUS APA Family
84 Advanced v0.3
List of Changes
The following table lists critical changes that were made in
the current version of the document.
Data Sheet Categories
In order to provide the latest information to designers, some data sheets are published before data has been fully
characterized. Product Briefs are modified versions of data sheets. Data sheets are marked as Advanced, Preliminary, and
Web-only. The definition of these categories are as follows:
Product Brief
The product brief is a modified version of an Advanced data sheet containing general product information. This brief
summarizes specific device and family information for non-release products.
Advanced
The data sheet contains initial estimated information based on simulation, other products, devices, or speed grades. This
information can be used as estimates, but not for production.
Preliminary
The data sheet contains information based on simulation and/or initial characterization. The information is believed to be
correct, but changes are possible.
Unmarked (production)
The data sheet contains information that is considered to be final.
Web-only Versions
Web-only versions have three numbers in the version number (example: v2.0.1). A web-only version means Actel is posting
the data sheet so customers have the latest information, but we are not printing the version because some information is
going to change shortly after posting.
Previous version Changes in current version (Advanced v0.1) Page
Advanced v0.1 Figure 15 on page 15 has been updated page 15
Advanced v0.3 85
ProASICPLUS APA Family
ProASICPLUS APA Family
86 Advanced v0.3
Advanced v0.3 87
ProASICPLUS APA Family
Actel and the Actel logo ar e regi stered trademarks of Actel Corporation.
All other trademarks are the property of their owners.
http://www.actel.com
Actel Europe Ltd.
Maxfli Court, Riverside Way
Camberley, Surrey GU15 3YL
United Kingdom
Tel: +44 (0)1276 401450
Fax: +44 (0)1276 401490
Actel Corporation
955 East Arques A venue
Sunnyvale , California 94086
USA
Tel: (408) 739-1010
Fax: (408) 739-1540
Actel Asia-Paci fic
EXOS Ebisu Bldg. 4F
1-24-14 Ebisu Shibuya-ku
Tokyo 150 Japan
Tel: +81 03-3445-7671
Fax: +81 03-3445-7668
5172161-2/12.01