1 OMAP3 515/03 Applications Processor
1.1 Features
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
112K-Byte ROMOMAP3 515/03 Applications Processor: OMAP™ 3 Architecture
64K-Byte Shared SRAM MPU Subsystem
Endianess:Up to 720-MHz ARM Cortex™-A8 Core
ARM Instructions - Little EndianNEON™ SIMD Coprocessor
ARM Data Configurable POWERVR SGX™ Graphics Accelerator
External Memory Interfaces:(OMAP3515 Device Only)
SDRAM Controller (SDRC)Tile Based Architecture Delivering up to
16, 32-bit Memory Controller With1 0 MPoly/sec
1G-Byte Total Address SpaceUniversal Scalable Shader Engine:
Interfaces to Low-Power Double DataMulti-threaded Engine Incorporating
Rate (LPDDR) SDRAMPixel and Vertex Shader Functionality
SDRAM Memory Scheduler (SMS) andIndustry Standard API Support:
Rotation EngineOpenGLES 1.1 and 2.0, OpenVG1.0
General Purpose Memory ControllerFine Grained Task Switching, Load
(GPMC)Balancing, and Power Management
16-bit Wide Multiplexed Address/DataProgrammable High Quality Image
BusAnti-Aliasing
Up to 8 Chip Select Pins With 128M-Byte Fully Software-Compatible With ARM9™
Address Space per Chip Select Pin Commercial and Extended Temperature
Glueless Interface to NOR Flash, NANDGrades
Flash (With ECC Hamming CodeARM Cortex™-A8 Core
Calculation), SRAM and Pseudo-SRAM ARMv7 Architecture
Flexible Asynchronous Protocol ControlTrust Zone® for Interface to Custom Logic (FPGA,CPLD, ASICs, etc.)Thumb®-2
Nonmultiplexed Address/Data ModeMMU Enhancements
(Limited 2K-Byte Address Space) In-Order, Dual-Issue, Superscalar
System Direct Memory Access (sDMA)Microprocessor Core
Controller (32 Logical Channels With NEON™ Multimedia Architecture
Configurable Priority) Over 2x Performance of ARMv6 SIMD
Camera Image Signal Processing (ISP) Supports Both Integer and Floating PointSIMD
CCD and CMOS Imager Interface Jazelle® RCT Execution Environment
Memory Data InputArchitecture
RAW Data Interface Dynamic Branch Prediction with Branch
BT.601/BT.656 Digital YCbCr 4:2:2Target Address Cache, Global History
(8-/10-Bit) InterfaceBuffer, and 8-Entry Return Stack
A-Law Compression and Decompression Embedded Trace Macrocell (ETM) Support
Preview Engine for Real-Time Imagefor Non-Invasive Debug
ProcessingARM Cortex™-A8 Memory Architecture:
Glueless Interface to Common Video 16K-Byte Instruction Cache (4-Way
DecodersSet-Associative)
Histogram Module/Auto-Exposure, 16K-Byte Data Cache (4-Way
Auto-White Balance, and Auto-FocusSet-Associative)
Engine 256K-Byte L2 Cache
Resize Engine
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of TexasInstruments semiconductor products and disclaimers thereto appears at the end of this document.POWERVR SGX is a trademark of Imagination Technologies Ltd.OMAP is a trademark of Texas Instruments.All other trademarks are the property of their respective owners.
PRODUCTION DATA information is current as of publication date.
Copyright © 2008–2009, Texas Instruments IncorporatedProducts conform to specifications per the terms of the TexasInstruments standard warranty. Production processing does notnecessarily include testing of all parameters.
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Resize Images From 1/4x to 4x SmartReflex™ TechnologySeparate Horizontal/Vertical Control Dynamic Voltage and Frequency Scaling(DVFS)Display Subsystem
Test Interfaces Parallel Digital Output
IEEE-1149.1 (JTAG) Boundary-ScanUp to 24-Bit RGB
CompatibleHD Maximum Resolution
Embedded Trace Macro Interface (ETM)Supports Up to 2 LCD Panels
Serial Data Transport Interface (SDTI)Support for Remote Frame Buffer
12 32-bit General Purpose TimersInterface (RFBI) LCD Panels 2 10-Bit Digital-to-Analog Converters
2 32-bit Watchdog Timers(DACs) Supporting:
1 32-bit 32-kHz Sync TimerComposite NTSC/PAL Video
Up to 188 General-Purpose I/O (GPIO) PinsLuma/Chroma Separate Video (S-Video)
(Multiplexed With Other Device Functions) Rotation 90-, 180-, and 270-degrees
65-nm CMOS Technology Resize Images From 1/4x to 8x
Package-On-Package (POP) Implementation Color Space Converter
for Memory Stacking (Not Available in CUS 8-bit Alpha Blending
Package)Serial Communication
Discrete Memory Interface (Not Available in 5 Multichannel Buffered Serial Ports
CBC Package)(McBSPs)
Packages:512 Byte Transmit/Receive Buffer
515-pin s-PBGA package (CBB Suffix),(McBSP1/3/4/5)
.5mm Ball Pitch (Top), .4mm Ball Pitch5K-Byte Transmit/Receive Buffer
(Bottom)(McBSP2)
515-pin s-PBGA package (CBC Suffix),SIDETONE Core Support (McBSP2 and 3
.65mm Ball Pitch (Top), .5mm Ball PitchOnly) For Filter, Gain, and Mix
(Bottom)Operations
423-pin s-PBGA package (CUS Suffix),Direct Interface to I2S and PCM Device
.65mm Ball Pitchand TDM Buses
1.8-V I/O and 3.0-V (MMC1 only),128 Channel Transmit/Receive Mode
0.985-V to 1.35-V Adaptive Processor Core Four Master/Slave Multichannel Serial Port
VoltageInterface (McSPI) Ports
0.985-V to 1.35-V Adaptive Core Logic Voltage High-Speed/Full-Speed/Low-Speed USB
Note: These are default OperatingOTG Subsystem (12-/8-Pin ULPI Interface)
Performance Point (OPP) voltages and could High-Speed/Full-Speed/Low-Speed
be optimized to lower values usingMultiport USB Host Subsystem
SmartReflex™ AVS.12-/8-Pin ULPI Interface or 6-/4-/3-PinSerial Interface
Applications:Supports Transceiverless Link Logic
Portable Navigation Devices(TLL)
Portable Media Player One HDQ/1-Wire Interface
Advanced Portable Consumer Electronics Three UARTs (One with Infrared Data
Digital TVAssociation [IrDA] and Consumer Infrared
Digital Video Camera[CIR] Modes)
Portable Data Collection Three Master/Slave High-Speed
Point-of-Sale DevicesInter-Integrated Circuit (I2C) Controllers
GamingRemovable Media Interfaces:
Web Tablet Three Multimedia Card (MMC)/ Secure
Smart White GoodsDigital (SD) With Secure Data I/O (SDIO)
Smart Home ControllersComprehensive Power, Reset, and Clock
Ultra Mobile DevicesManagement
2OMAP3 515/03 Applications Processor Submit Documentation Feedback
1.2 Description
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
OMAP3515 and OMAP3503 high-performance, applications processors are based on the enhancedOMAP™ 3 architecture.
The OMAP™ 3 architecture is designed to provide best-in-class video, image, and graphics processingsufficient to support the following:Streaming video3D mobile gamingVideo conferencing
High-resolution still image
The device supports high-level operating systems (OSs), such as:Linux
Windows CE
This OMAP device includes state-of-the-art power-management techniques required for high-performancemobile products.
The following subsystems are part of the device:Microprocessor unit (MPU) subsystem based on the ARM Cortex™-A8 microprocessorPOWERVR SGX™ subsystem for 3D graphics acceleration to support display and gaming effects(35 15 only)Camera image signal processor (ISP) that supports multiple formats and interfacing options connectedto a wide variety of image sensorsDisplay subsystem with a wide variety of features for multiple concurrent image manipulation, and aprogrammable interface supporting a wide variety of displays. The display subsystem also supportsNTSC/PAL video out.Level 3 (L3) and level 4 (L4) interconnects that provide high-bandwidth data transfers for multipleinitiators to the internal and external memory controllers and to on-chip peripherals
The device also offers:A comprehensive power and clock-management scheme that enables high-performance, low-poweroperation, and ultralow-power standby features. The device also supports SmartReflex™ adaptativevoltage control. This power management technique for automatic control of the operating voltage of amodule reduces the active power consumption.Memory stacking feature using the package-on-package (POP) implementation (CBB and CBCpackages only)
OMAP 15/03 devices are available in a 515-pin s-PBGA package (CBB suffix), 515-pin s-PBGA package(CBC suffix), and a 423-pin s-PBGA package (CUS suffix). Some features of the CBB and CBC packagesare not available in the CUS package.
Table 1-1 lists the differences between the CBB, CBC, and CUS packages.
Submit Documentation Feedback OMAP3 515/03 Applications Processor 3
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Table 1-1. Differences Between CBB, CBC, and CUS Packages
FEATURE CBB PACKAGE CBC PACKAGE CUS PACKAGE
For CBB package pin For CBC package pin For CUS package pinPin Assignments assignments see, Ball assignments see , Ball assignments see , BallCharacteristics (CBB Pkg.) Characteristics (CBC Pkg.) Characteristics (CUS Pkg.)Package-On-Package (POP)
POP interface supported POP interface supported POP interface not availableInterface
Discrete Memory Interface Discrete Memory Interface not Discrete Memory InterfaceDiscrete Memory Interface
supported supported supported
Chip select pins gpmc_ncs1 andEight chip select pins available Eight chip select pins available
gpmc_ncs2 are not availableGPMC
Wait pins gpmc_wait1 andFour wait pins available Four wait pins available
gpmc_wait2 are not availableThe following signals are eitherCTS signal is available on 3 pins available on two (double muxed) CTS signal is available on 3 pins(triple muxed): uart1_cts (AG22 / or three pins (triple muxed): (triple muxed): uart1_cts (AC19 /UART1 W8 / T21), uart1_rts (AH22 / uart1_cts (AE21 / T19 / W2), AC2 / AA18), uart1_rts (W6 /AA9), uart1_tx (F28 / Y8 / AE7), uart1_rts (AE22 / R2), uart1_rx AB19), uart1_tx (E23 / V7 / AC3),uart1_rx (E26 / AA8) (H3 / H25 / AE4), uart1_tx (L4 / uart1_rx (D24 / W7)G26)The following signals are
The following signals areavailable on two pins (double The following signals areavailable on two pins (doublemuxed): uart2_cts (AF6/AB26), available on one pin only:UART2 muxed): uart2_cts (Y24/P3),uart2_rts (AE6/AB25), uart2_tx uart2_cts (V6), uart2_rts (V5),uart2_rts (AA24/N3), uart2_tx(AF5/AA25), uart2_rx uart2_tx (W4), uart2_rx (V4)(AD22/U3), uart2_rx (AD21/W3)(AE5/AD25)
The following signals are The following signals are
The following signals areavailable on three pins (triple available on two pins (triple
available on two pins onlymuxed): mcbsp3_dx (AF6 / AB26 muxed): mcbsp3_dx (U17/ Y24/
(double muxed): mcbsp3_dxMcBSP3 / V21), mcbsp3_dr (AE6 / AB25 / P3), mcbsp3_dr (T20/ AA24 /
(V6/W18), mcbsp3_dr (V5/Y18),U21), mcbsp3_clkx (AF5 / AA25 / N3), mcbsp3_clkx (T17/ AD22 /
mcbsp3_clkx (W4/V18), andW21), and mcbsp3_fsx (AE5 / U3), mcbsp3_fsx (P20/ AD21 /
mcbsp3_fsx (V4/AA19)AD25 / K26) W3)The following signals are The following signals are
The following signals areavailable on three pins (triple available on three pins (triple
available on two pins onlymuxed): gpt8_pwm_evt (N8 / muxed): gpt8_pwm_evt
(double muxed): gpt8_pwm_evtGP Timer AD25 / V3), gpt9_pwm_evt (T8 / (C5/AD21/V9), gpt9_pwm_evt
(G4/M4), gpt9_pwm_evt (F4/N4),AB26 / Y2), gpt10_pwm_evt (R8 (B4/W8/Y24),
gpt10_pwm_evt (G5/N3), and/ AB25 / Y3), and gpt10_pwm_evt(C4/U8/AA24),
gpt11_pwm_evt (F3/M5)gpt11_pwm_evt (P8 / AA25 / Y4) gpt11_pwm_evt(B5/V8/AD22)The following signals are The following signals are
The following signals areavailable on two pins (double available on two pins(double
available on one pin only:muxed): mcbsp4_clkx (T8/AE1), muxed): mcbsp4_clkx (B4 / V3),McBSP4 mcbsp4_clkx (F4), mcbsp4_drmcbsp4_dr (R8/AD1), mcbsp4_dr (C4 / U4),
(G5), mcbsp4_dx (F3),mcbsp4_dx (P8/AD2), mcbsp4_dx (B5 / R3),
mcbsp4_fsx (G4)mcbsp4_fsx (N8/AC1) mcbsp4_fsx (C5 / T3)HSUSB3_TLL Supported Supported Not supportedMM_FSUSB3 Supported Supported Not supportedFour chip select pins are Four chip select pins are Chip select pins mcspi1_cs1 andMcSPI1
available available mcspi_cs2 are not availableThe following signals are
The following signals are The following signals areavailable on two pins (double
available on two pins (double available on one pin only:MMC3 muxed): mmc3_cmd (AC3 /
muxed): mmc3_cmd (R8 / AB3), mmc3_cmd (AD3), andAE10), and mmc3_clk (AB1 /
mmc3_clk (R9 / AB2) mmc3_clk (AC1)AF10)
4OMAP3 515/03 Applications Processor Submit Documentation Feedback
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Table 1-1. Differences Between CBB, CBC, and CUS Packages (continued)
FEATURE CBB PACKAGE CBC PACKAGE CUS PACKAGE
A maximum of 170 GPIO pinsare supported.
The following GPIO pins are notavailable: gpio_112, gpio_113,gpio_114, gpio_115, gpio_52,gpio_53, gpio_63, gpio_64,gpio_144, gpio_145, gpio_146,A maximum of 188 GPIO pins A maximum of 188 GPIO pinsGPIO gpio_147, gpio_152, gpio_153,are supported. are supported.
gpio_154, gpio_155, gpio_175,and gpio_176.
Pin muxing restricts the totalnumber of GPIO pins available atone time. For more details, see ,Multiplexing Characteristics (CUSPkg.).
This OMAP35 15/03 Applications Processor data manual presents the electrical and mechanicalspecifications for the OMAP35 15/03 Applications Processor. The information contained in this datamanual applies to both the commercial and extended temperature versions of the OMAP35 15/03Applications Processor unless otherwise indicated. It consists of the following sections:A description of the OMAP35 15/03 terminals: assignment, electrical characteristics, multiplexing, andfunctional description (Section 2 )A presentation of the electrical characteristics requirements: power domains, operating conditions,power consumption, and dc characteristics (Section 3 )The clock specifications: input and output clocks, DPLL and DLL (Section 4 )The video DAC specification (Section 5 )The timing requirements and switching characteristics (ac timings) of the interfaces (Section 6 )A description of thermal characteristics, device nomenclature, and mechanical data about the availablepackaging (Section 7 )
Submit Documentation Feedback OMAP3 515/03 Applications Processor 5
1.3 Functional Block Diagram
64 64
Async
64 64
L2$
256K
MPU
Subsystem
ARMCortex-
A8TM Core
16K/16KL1$
POWERVR
SGX
Graphics
Accelerator
(3515Only)
TM
32
32
32
Channel
System
DMA
3232
Parallel TV
Amp
LCDPanel
CVBS
or
S-Video
DualOutput3-Layer
DisplayProcessor
(1xGraphics,2xVideo)
TemporalDithering
SDTV→QCIFSupport
32
Camera
ISP
Image
Capture
Hardware
Image
Pipeline
and
Preview
Camera
(Parallel)
64
HSUSB
Host
(with
USB
TTL)
HS
USB
OTG
32
L3InterconnectNetwork-Hierarchial,Performance,andPowerDriven
64K
On-Chip
RAM
2KB
Public/
62KB
Secure
32
112K
On-Chip
ROM
80KB
Secure/
32KB
BOOT
32
SMS:
SDRAM
Memory
Scheduler/
Rotation
64
SDRC:
SDRAM
Memory
Controller
L4Interconnect
32
System
Controls
PRCM
2xSmartReflexTM
Control
Module
External
Peripherals
Interfaces
Peripherals:
3xUART,3xHigh-SpeedI2C,
5xMcBSP
(2xwithSidetone/AudioBuffer)
4xMcSPI,6xGPIO,
3xHigh-SpeedMMC/SDIO,
HDQ/1Wire,
2xMailboxes
12xGPTimers,2xWDT,
32KSyncTimer
GPMC:
General
Purpose
Memory
Controller
NAND/
NOR
Flash,
SRAM
32
Emulation
Debug:SDTI,ETM,JTAG,
CoresightTM DAP
Externaland
StackedMemories
32
OMAP ApplicationsProcessor
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Figure 1-1 shows the functional block diagram of the OMAP35 15/03 Applications Processor.
Figure 1-1. OMAP3515/03 Functional Block Diagram
6OMAP3 515/03 Applications Processor Submit Documentation Feedback
Contents
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
1 OMAP3 515/03 Applications Processor .............. 14.3 DPLL and DLL Specifications ...................... 1411.1 Features .............................................. 15 VIDEO DAC SPECIFICATIONS ..................... 1471.2 Description ............................................ 35.1 Interface Description ............................... 1475.2 Electrical Specifications Over Recommended1.3 Functional Block Diagram ............................ 6
Operating Conditions .............................. 149Revision History ............................................... 8
5.3 Analog Supply (vdda_dac) Noise Requirements .. 1512 TERMINAL DESCRIPTION .............................. 9
5.4 External Component Value Choice ................ 1522.1 Terminal Assignment ................................. 9
6 TIMING REQUIREMENTS AND SWITCHING2.2 Pin Assignments .................................... 13
CHARACTERISTICS .................................. 1532.3 Ball Characteristics .................................. 26
6.1 Timing Test Conditions ............................ 1532.4 Multiplexing Characteristics ......................... 85
6.2 Interface Clock Specifications ..................... 1532.5 Signal Description ................................... 93
6.3 Timing Parameters ................................. 1543 ELECTRICAL CHARACTERISTICS ................ 118
6.4 External Memory Interfaces ........................ 1553.1 Power Domains .................................... 118
6.5 Video Interfaces .................................... 1843.2 Absolute Maximum Ratings ........................ 120
6.6 Serial Communications Interfaces ................. 2013.3 Recommended Operating Conditions ............. 122
6.7 Removable Media Interfaces ...................... 2343.4 DC Electrical Characteristics ....................... 124
6.8 Test Interfaces ..................................... 2493.5 Core Voltage Decoupling .......................... 127
7 PACKAGE CHARACTERISTICS .................... 2553.6 Power-up and Power-down ........................ 129
7.1 Package Thermal Resistance ...................... 2554 CLOCK SPECIFICATIONS ........................... 133
7.2 Device Support ..................................... 2554.1 Input Clock Specifications ......................... 1344.2 Output Clock Specifications ........................ 139
Submit Documentation Feedback Contents 7
Revision History
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
This data manual revision history table highlights the technical changes made to the SPRS 505Edevice-specific data manual to make it an SPRS 505F revision.
Scope: This data manual revision includes a global update to CBB, CBC, and CUS-packageTerminal Descriptions.
SEE ADDITIONS/MODIFICATIONS/DELETIONS
"Terminal Updated/Changed the following tables for CBB, CBC, and CUS packages:Description" section
Ball Characteristics
Multiplexing CharacteristicsSignal DescriptionAdded Pin Maps (Top View) for CBB, CBC, and CUS packagesUpdated/Changed CBC Package Terminal Assignment (Bottom View) illustration
8Revision History Submit Documentation Feedback
2 TERMINAL DESCRIPTION
2.1 Terminal Assignment
2345678910 11 12 13 14 15 16 17 18 19 20 21 22 23
A
B
C
D
E
F
G
H
J
K
L
M
N
P
T
R
U
V
W
Y
AA
AB
AC
24 25 26 27 28
AD
AE
AF
AG
AH
1
030-001
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Figure 2-1 through Figure 2-5 show the ball locations for the 515- and 423- ball plastic ball grid array(s-PBGA) packages. through Table 2-25 indicate the signal names and ball grid numbers for bothpackages.
Note: There are no balls present on the top of the 423-ball s-PBGA package.
Figure 2-1. OMAP35 15/03 Applications Processor CBB s-PBGA-N515 Package (Bottom View)
Submit Documentation Feedback TERMINAL DESCRIPTION 9
A
C
D
E
G
K
L
M
N
P
T
R
U
V
W
Y
AB
B
F
H
J
AA
AC
22 21 20 18 17 16 15 13 12 10 98765432111
14
19
23
030-002
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Balls A1, A2, A22, A23, AB1, AB2, AB22, AB23, AC1, AC2, AC22, AC23, B1, B2, B22, and B23 are unused.
Figure 2-2. OMAP35 15/03 Applications Processor CBB s-PBGA-N515 Package (Top View)
10 TERMINAL DESCRIPTION Submit Documentation Feedback
AF
AE
AD
AC
AB
AA
Y
W
V
U
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
1 2 3 4 5 678910 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Figure 2-3. OMAP35 15/03 Applications Processor CBC s-PBGA-515 Package (Bottom View)
Submit Documentation Feedback TERMINAL DESCRIPTION 11
AA
Y
W
V
U
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Figure 2-4. OMAP35 15/03 Applications Processor CBC s-PBGA-515 Package (Top View)
12 TERMINAL DESCRIPTION Submit Documentation Feedback
AD
AC
AB
AA
Y
W
V
U
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
1 2 345 6 78 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
2.2 Pin Assignments
2.2.1 Pin Map (Top View)
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Figure 2-5. OMAP35 15/03 Applications Processor CUS s-PBGA-N423 Package (Bottom View)
The following pin maps show the top views of the 515-pin sPBGA package [CBB], the 515-pin sPBGApackage [CBC], and the 423-pin sPBGA package [CUS] pin assignments in four quadrants (A, B, C, andD).
Submit Documentation Feedback TERMINAL DESCRIPTION 13
A
9
sdrc_d7
8
vdds_mem
7654
sdrc_a0
32
pop_a2_a2
1
Bvdds_mem
sdrc_a1
vss
Csdrc_d4
Dsdrc_a10
E
F
G
H
J
K
sdrc_d5
sdrc_dqs0
vdds_mem
NC
sdrc_d6
vdds_mem
sdrc_dm0sdrc_d2sdrc_a2
NC
sdrc_d3
vss
sdrc_d1sdrc_a3
vss
sdrc_a4
sdrc_a6
sdrc_a7
sdrc_a8
vdd_corevdd_core
sdrc_d0
sdrc_a5
sdrc_a11sdrc_a12
vssvss
sdrc_a13sdrc_a14
gpmc_nwe
gpmc_nadv
_ale
vdds_memvdds_mem
sdrc_ba0
gpmc_nbe0
_cle
gpmc_noe
NC
gpmc_wait3
vdd_core
gpmc_ncs1gpmc_d8
gpmc_nwp
vss
vdd_core
vss
vdds_memvdds_mem
vdd_mpu
gpmc_wait1
gpmc_a10gpmc_d9gpmc_d0 gpmc_a4 gpmc_wait2
vdd_mpu
gpmc_ncs0
sdrc_a9 vss
L
M
N
P
vdd_mpu
gpmc_wait0
gpmc_a9gpmc_d2
gpmc_d1
gpmc_ncs7
gpmc_a2
gpmc_a8
pop_k2_m2
pop_y23
_m1
vss
gpmc_a1
gpmc_a7
pop_l2_n2pop_u1_n1
vss
gpmc_d3gpmc_d10 vss gpmc_ncs6
vss
gpmc_a3
14
sdrc_nclk
13
sdrc_clk
121110
sdrc_d17
sdrc_d8
vdds_mem
sdrc_d21sdrc_dqs2
sdrc_d9sdrc_d22
vdds_mem
sdrc_dm2
vss
sdrc_d20sdrc_d18
vss
sdrc_d23
vss
sdrc_d16
vss
sdrc_nrassdrc_ncas
sdrc_ncs0sdrc_ba1
vssvss
vdd_mpu
vdd_mpu
vdd_mpu
vss
vdd_mpu
vdd_mpu
vss
vdd_mpu
sdrc_ncs1
sdrc_d19
vdd_mpu
vdd_mpu
vss
vdd_mpu
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
A. Top Views are provided to assist in hardware debugging efforts.
Figure 2-6. CBB Pin Map [Quadrant A - Top View]
14 TERMINAL DESCRIPTION Submit Documentation Feedback
A
20
sdrc_dqs3
21
sdrc_d29
22 23 24 25
cam_d5
26 27
pop_a22
_a27
28
B
cam_d2 cam_d10 vss
C
sdrc_dm3
D
dss_hsync
E
F
G
H
J
K
vdds_mem cam_vs cam_hs pop_a23
_a28
sdrc_d27 sdrc_d30 vdds_mem cam_wen cam_xclkb pop_b23
_b28
sdrc_d31 vss cam_fld cam_d3
vss
cam_xclka cam_d11 cam_pclk vdds_mem
sdrc_d28 vss vdd_core cam_d4 dss_vsync dss_pclk
vdd_core dss_data6 dss_acbias dss_data20
vdds vdds dss_data8 dss_data7
uart3_rx
_irrx
dss_data9 vss vdds_mem
dss_data19 dss_data18 dss_data17 vdds
vdd_core
hdq_sio dss_data21 pop_h22
_j27
pop_k1_j28
vss
mcbsp1_fsx cam_d8 cam_d6vdds_mmc1
vdd_core
dss_data16
cam_strobevdd_core
L
M
N
P
vss
vss cam_d9 cam_d7
vdd_core pop_k22
_m26 mmc1_cmd vss
vdd_core
mmc1_dat2 mmc1_dat1 mmc1_dat0 mmc1_clk
mmc1_dat5 mmc1_dat4 mmc1_dat3
vdds_
mmc1a
vdd_core
vdd_core
15
pop_a12
_a15
16
sdrc_dm1
17 18 19
sdrc_d26
sdrc_d10
sdrc_dqs1 vdds_mem sdrc_d25
pop_b12
_b15 sdrc_d11 sdrc_d14 vdds_mem
vdds_mem sdrc_d13 sdrc_d24 vss
vdd_core vdds_mem sdrc_d15 vss
sdrc_nwe sdrc_cke0 uart3_cts
_rctx
uart3_rts
_sd
vss vss vdd_core
vdds_dpll
_dll vdd_core vss
vss
vss vss
vdd_mpu
sdrc_cke1
sdrc_d12
vdd_core
vdd_core
vdd_core
vss
i2c1_sda
cap_vdd
_sram_core
i2c1_scl
mcbsp2_dx
mcbsp2
_clkx
mcbsp2_fsx
uart3_tx
_irtx
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Figure 2-7. CBB Pin Map [Quadrant B - Top View]
Submit Documentation Feedback TERMINAL DESCRIPTION 15
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Figure 2-8. CBB Pin Map [Quadrant C - Top View]
16 TERMINAL DESCRIPTION Submit Documentation Feedback
AH
20
cap_vdd_d
21
vss
22 23 24 25
sys
_nrespwron
26 27
pop_ac22
_ah27
28
AG
dss_data4 sys_clkout1 vdds
AF
vss
AE
i2c4_sda
AD
AC
AB
AA
Y
W
dss_data1 dss_data3 dss_data5 pop_ac23
_ah28
vdds vdds dss_data0 dss_data2 sys_boot1 pop_ab23
_ag28
sys_boot6 sys_off
_mode
vdds sys
_nreswarm
sys_boot0
sys_clkreq sys_nirq pop_aa22
_af27
pop_h23
_af28
vss sys_boot5 vdds vdd_core vdds pop_aa23
_ae28
uart2_rx i2c4_scl dss_data11 dss_data10
vss vss dss_data22 dss_data23
uart2_cts dss_data13 dss_data12
uart2_tx vss dss_data15 dss_data14
vss vssa_dac tv_vfb1 tv_out1
tv_vref tv_vfb2 tv_out2vss
uart2_rts
sys_32ksys_clkout2
V
U
T
R
hsusb0
_data7
hsusb0
_data6
hsusb0
_data5
hsusb0
_data4
hsusb0
_data3 hsusb0
_data2
hsusb0
_data1
hsusb0_stp hsusb0_nxt hsusb0
_data0
hsusb0_clk
vss mmc1_dat6 hsusb0_dir
mmc1_dat7
vdda_dac
15
pop_l1
_ah15
16
pop_ac14
_ah16
17 18 19
gpio_112
i2c2_scl
cam_d1 gpio_115 gpio_113
pop_ab13
_ag15 vss cam_d0 gpio_114
vdds sys_xtalout sys_boot3 sys_boot4
i2c2_sda vdds vdd_core vdd_core
sys_xtalin
jtag_tdi
mcbsp1
_clkr
vdd_core
vdd_core mcbsp1_dx
mcbsp1
_clkx
vdd_core
vdd_core mcbsp1_dr
mcbsp_clks
vss mcbsp2_dr
vss
cap_vdd
_wkup
vdds_dpll
_per
jtag_tms
_tmsc
jtag_tdo
vdd_core vss vdd_core
vdd_mpu vdd_core vss
vss
vdds_sram vss
vdd_mpu
jtag_ntrst
vdd_core
vdd_core
vdd_core
vss
mcbsp1_fsr
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Figure 2-9. CBB Pin Map [Quadrant D - Top View]
Submit Documentation Feedback TERMINAL DESCRIPTION 17
A
98765432
pop_a1_a1
1
Bvss
C
D
E
F
G
H
J
K
NC
gpmc_ncs3
NC
gpmc_ncs2
sys_boot2i2c2_sda
gpmc_a10
vss
uart1_rxgpmc_a3
vss
vdd_mpu
mmc2_dat7
vdd_mpu
vdds
sys_boot6 vss
L
M
N
vdd_mpu
gpmc_d14
pop_j1_l1
vdds
cap_vdd
_sram_mpu
vss
mcbsp3_dr
uart1_tx
13
vss
121110
vss
vdds
vdd_mpuvss
vdd_mpu
vdds_dpll
vdd_core
vdd_mpu
vss
NC
NC NC vss NC vss NC NC NC NC
NC
NC
NCNCNCNCNC
gpmc_ncs6gpmc_ncs4
gpmc_wait2
i2c2_scl gpmc_ncs5 gpmc_ncs7 gpmc_wait3 NC NC NC NC NC
vss
NC
vdds
NCNCNC
sys_boot1gpmc_a9
gpmc_a7 gpmc_a8 sys_boot3 sys_boot4
gpmc_a5 gpmc_a6 sys_boot0 NC
gpmc_a4 sys_boot5
gpmc_a2 vss
gpmc_nbe1 gpmc_a1 NC NC
vss gpmc_nbe0
_cle
NC
mmc2_dat6
gpmc_nwe gpmc_d15 mmc2_dat5
gpmc_clk gpmc_noe
vss
vdd_core
NC
NCNCNCNCNCNC
vdd_mpu
NC NC NC NC NC NC NC
NC NC NC NC NC
vdds NC vss
vdd_mpu
NC
vdd_mpu vdd_mpu
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
A. Top Views are provided to assist in hardware debugging efforts.
Figure 2-10. CBC Pin Map [Quadrant A - Top View]
18 TERMINAL DESCRIPTION Submit Documentation Feedback
A
18
vdds
19 20 21 22 23
cam_d3
24 25
pop_a20
_a25
26
B
cam_d2
cam_fld vss
C
D
E
F
G
H
J
K
pop_b16
_a20
pop_a21
_a26
cam_wen
cam_xclka
pop_b21
_b26
cam_hs cam_d5 cam_pclk
vss
vdd_core cam_d4
dss_data6
dss_acbias
dss_data20
dss_data9
uart3_rx
_irrx dss_data7
hdq_sio
pop_h21
_k26
mmc1_dat2 vss
cam_d8
cam_strobe
L
M
N
dss_vsync
vdds_mmc1
mmc1_clk
14
NC
15 16 17
vdd_core
vss
cap_vdd
_sram
_core
cap_vdd
_wkup vss
NC NC NC NC NC NC
NCNCNCNCNCNCNCNCNC
NC NC NC NC NC NC NC NC NC
cam_d10cam_vs
NC
vss NC NC NC vss NC
cam_d11
cam_xclkb
vdds
NC
vss
uart3_rts
_sd
uart3_cts
_rctx
dss_pclk
uart3_tx
_irtx
vss
dss_data8
NC
i2c1_scli2c1_sda
NC dss_hsync
dss_data17
dss_data16
vdds
vss
dss_data19dss_data18
NC
dss_data21 cam_d9
NC NC NC NC vdd_core NC vss
vdd_core
NCNCNCNCNCNC
NCNC
vdds
NCNC
vdds
NC
NC NC NC
vdds
vss
mmc1_cmd
vss
mmc1_dat4mmc1_dat0mmc1_dat1
NC mmc1_dat3
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Figure 2-11. CBC Pin Map [Quadrant B - Top View]
Submit Documentation Feedback TERMINAL DESCRIPTION 19
AF
98765432
pop_aa1
_af1
1
AE
AD
AC
AB
AA
Y
W
V
U
NC
sys_
nreswarm
gpmc_wait1
i2c3_scl
etk_d9
gpmc_d11gpmc_d12
vdd_mpu
T
R
P
mmc2_dat1
vss
uart1_rts
gpmc_d13 NC
pop_n2_t2 vdds
131211
10
vss
jtag_rtck
vdd_mpu sys_off
_mode
sys_clkout2
mmc2_cmd
vdd_mpu
vss
vdd_core
vdd_mpu vdd_mpu
vdds_sram
mcbsp3_dx NC mcspi1
_somi mcspi1_clk
mcspi1
_simo
mcspi1_cs1 mcspi1_cs2mcspi1_cs0mcbsp4_dx
vss
gpmc_d10 mcbsp4_fsx mcspi1_cs3 mmc2_dat0
mmc2_dat2mmc2_dat3
mcspi2
_somi
vdd_mpu
mcbsp4_dr
mcbsp3
_clkx
gpmc_d8 mcbsp4
_clkx NC vdd_mpu mcspi2_cs0 mcspi2_cs1 mmc2_dat4 sys_
nrespwron
NC
mmc2_clk
mcspi2
_simo
mcspi2_clk
vss
mcbsp3_fsx
uart1_cts
vss
gpmc_d9 pop_t2_y2 etk_d4 vdds vss vdd_core vdd_mpu vss vdd_mpu vdd_core jtag_tdo
etk_d8etk_d3
gpmc_d0gpmc_d1
etk_d5 etk_clk etk_ctl
gpmc_d3 gpmc_d2 etk_d0 i2c3_sda gpmc_d7 gpmc_nwp vdds NC gpmc_wait0 NC NC
NCNCNC
gpmc_nadv
_ale
NC
gpmc_ncs0gpmc_d5
gpmc_d6
etk_d1
etk_d2etk_d7
gpmc_ncs1
pop_w2
_ae2 etk_d6 etk_d10 gpmc_d4 etk_d12 vss NC etk_d15 vdds NC NC NC
NC NC pop_y2
_af4
pop_aa6
_af5 etk_d11 etk_d13 pop_y7
_af8 etk_d14 pop_y9
_af10 NC pop_aa10
_af12
pop_aa11
_af13
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Figure 2-12. CBC Pin Map [Quadrant C - Top View]
20 TERMINAL DESCRIPTION Submit Documentation Feedback
AF
18 19 20 21 22 23 24 25
pop_aa20
_af25
26
AE
cam_d1
AD
AC
AB
AA
Y
W
V
U
pop_aa21
_af26
cap_vdd_d sys_32k dss_data3
vss vdd_core
dss_data15
dss_data12 dss_data14
uart2_cts vss
vdds
vdds
hsusb0
_data2
pop_p21
_u26
tv_vfb2
cam_d6
dss_data13
T
R
P
vdds
cam_d7
vss
vdds
_mmc1a NC
vss
14 15 16 17
sys_clkout1
gpio_112
vss
vss
sys_nirq
i2c4_sda
vdd_core
mmc1_dat5
jtag_tdi
vdds_dpll
_per hsusb0_stp
mcbsp1_fsx
mmc1_dat6 mmc1_dat7
mcbsp2_dx
mcbsp1_dr
mcbsp
_clks
mcbsp2_dr
mcbsp1
_clkx
mcbsp1
_clkr
mcbsp2
_fsx
mcbsp2
_clkx mcbsp2_dx
mcbsp1_dx
jtag_ntrst
jtag_tck jtag_tms
_tmsc mcbsp1_fsr hsusb0_dir hsusb0
_data0
hsusb0
_data3
hsusb0_clkhsusb0_nxt
hsusb0
_data4
sys_clkreq
vdds_wkup
_bg
jtag_emu1 jtag_emu0 hsusb0
_data7
hsusb0
_data5
hsusb0
_data6
hsusb0
_data1
NC
NC
NCNC
NCNC
NC vss
tv_out2
vdda_dacvssa_dac
tv_vref
vss tv_vfb1 tv_out1
NC
uart2_rts
NC
vss NC dss_data23
dss_data10dss_data22
vdds
NCNCNC
vdds
NC vdds NC dss_data10
dss_data11
vss
dss_data5
dss_data4
uart2_txuart2_rxvdds
vddsvdds
gpio_113
i2c4_scl
vss
cam_d0 gpio_115 gpio_114 dss_data0 dss_data1 dss_data2 pop_y20
_ae25
pop_y21
_ae26
pop_y19
_af24
vss
pop_aa19
_af22
pop_y17
_af21
sys_xtalout
sys_xtalin
pop_aa17
_af18
pop_y14
_af17
pop_aa14
_af16
pop_aa13
_af15
pop_aa12
_af14
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Figure 2-13. CBC Pin Map [Quadrant D - Top View]
Submit Documentation Feedback TERMINAL DESCRIPTION 21
A
98
sdrc_dqs2
7654
sdrc_a0
32
NC
1
Bsdrc_d3
sdrc_a1
sdrc_a4
Csdrc_d16
Dsdrc_a10
E
F
G
H
J
K
sdrc_dm2sdrc_dqs0
NC
sdrc_d19sdrc_d18sdrc_d7sdrc_dm0sdrc_a3
NC
sdrc_d6
sdrc_d2sdrc_d1sdrc_a5
gpmc_wait3
gpmc_wait0
sdrc_d4
sdrc_a2gpmc_ncs3
sdrc_a6
gpmc_ncs0gpmc_nwp
gpmc_ncs4
gpmc_ncs6
gpmc_noegpmc_nadv
_ale
vdd_mpu
gpmc_nwe
gpmc_a10
vdd_mmc1agpmc_ncs1gpmc_a9
gpmc_a8
vdd_mpu
gpmc_a4
gpmc_a5
gpmc_a6gpmc_a7
vdds_memgpmc_a2gpmc_a3 gpmc_a1
vdds_mem
vdd_mpu
gpmc_ncs7
sdrc_d0
L
M
vssgpmc_d0
gpmc_nbe1
vdd_mpu
mcspi2_cs1
gpmc_d4
gpmc_d2gpmc_d1 vss
121110
sdrc_d21
sdrc_nclksdrc_clk
sdrc_d10
sdrc_d8
sdrc_d9
sdrc_d20
sdrc_d5
vdd_mpu
vdd_core
vdd_mpu
vssvdd_mpu
vss
vss
vdd_core
sdrc_d22
vss
vss
vss
sdrc_a9
sdrc_a10
sdrc_a14
sdrc_a7 sdrc_a13
sdrc_d17
sdrc_a8
vdd_mpu
vdd_core
sdrc_a11
gpmc_ncs5 sdrc_a12
vss
vdd_mpu
vss
vdd_mpu
vdd_mpu
vdds_mem
mcspi2_cs0 vdd_mpu
vdds_mem
vdds_mem
vdd_mpu
gpmc_nbe0
_cle vdds_mem
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
A. Top Views are provided to assist in hardware debugging efforts.
Figure 2-14. CUS Pin Map [Quadrant A - Top View]
22 TERMINAL DESCRIPTION Submit Documentation Feedback
A
16
sdrc_dm3
17
sdrc_dqs3
18 19 20 21 22 23
uart3_cts
_rctx
24
B
sdrc_cke0 cam_d5 uart3_rts
_sd
C
sdrc_d28
D
E
F
G
H
J
K
sdrc_ncs0 sdrc_nwe hdq_sio
sdrc_d27 sdrc_d30 sdrc_d31 sdrc_ncs1 cam_xclka uart3_rx
_irrx
sdrc_ba0 sdrc_ncas sdrc_cke1
cam_hs
cam_xclkb uart3_tx
_irtx
sdrc_d29 dss_data20 dss_data6
dss_hsync dss_data7 dss_data8
cam_d10 dss_vsync dss_data9
vdds_mem dss_pclk dss_data17 dss_data18
cap_vdd
_sram_core dss_data19 cam_fld
vss dss_acbias dss_data16 cam_d8
dss_data21 cam_d9 cam_d7
i2c1_sda
vss
cam_d11
sdrc_ba1
L
M
mmc1_cmd cam_d6
mmc1_dat1 mmc1_dat0 mmc1_clk
vss
13 14 15
sdrc_d15
sdrc_dqs1 sdrc_d14
sdrc_dm1 sdrc_d13
sdrc_d12 sdrc_d26
sdrc_d25
vdds_mem
vdd_core vdds_mem
vssvss
vdd_core
sdrc_d11
vss
vdds_mem cam_vs
sdrc_nras
vdds_mem cam_d3
cam_wen
sdrc_d23 sdrc_d24
vdds_mem
vdd_core
cam_d2 cam_d4
vdds_dpll
_dll
cam_pclk
i2c1_scl
cam_strobe
mmc1_dat2
vss vdd_core vdd_core
vss vss vdd_core vdd_core vdd_core
vss
vdd_corevdd_core
vss
vss vdd_core vdd_core vdds vdds vdds
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Figure 2-15. CUS Pin Map [Quadrant B - Top View]
Submit Documentation Feedback TERMINAL DESCRIPTION 23
AD
98
7
6
5
4
3
21
AC
etk_d5
AB
AA
Y
W
V
U
T
R
NC
jtag_tdi
mmc2_cmd
jtag_rtck
mmc2_clk
mmc2_dat3
cap_vdd
_sram_mpu
gpmc_d13
vss
gpmc_d8gpmc_d7
P
N
gpmc_d6
mcspi2
_somi
gpmc-d3 vss
1211
10
i2c3_sda
sys_boot0
vdds
vss vss
vdds_sram
sys_clkout1 cap_vdd
_wkup
sys_
nreswarm
uart1_rx
vss
vdd_mpu
vdd_mpu
vdd_mpu
vdd_mpu
mcspi2
_somo
mcspi2
_clk vdd_mpu vss vss
vssvssvssvss
gpmc_d5
mcspi1
_simo
mcspi1
_cs3 vdd_mpu
gpmc_d11 vss vss
vss
vdd_mpuvdd_mpu
mcspi1
_cs0
mcspi1
_clk
mcspi1
_somi
gpmc_d12gpmc_d9
gpmc_d10 vss vss vdd_mpu
vdd_mpu
vddsvdds
mcbsp3_dxmcbsp3_dr
mcbsp3_fsx
gpmc_d15gpmc_d14
gpmc_clk mmc2_dat2 mcbsp3_
clkx
uart1_rts uart1_tx vdds vdds vdd_mpu
vdds
mmc2_dat1mmc2_dat6
mmc2_dat7 mmc2_dat5 sys_clkout2 jtag_tms
_tmsc
sys_
nrespwron
jtag_tdojtag_ntrstjtag_tck
mmc2_dat0mmc2_dat4
etk_d10etk_clk uart1_cts
etk_ctl
etk_d8 etk_d4 etk_d1 etk_d2 etk_d6 etk_d11 etk_d12 etk_d14
etk_d15etk_d13etk_d7
etk_d3
etk_d0etk_d9
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Figure 2-16. CUS Pin Map [Quadrant C - Top View]
24 TERMINAL DESCRIPTION Submit Documentation Feedback
AD
16 17 18 19 20 21 22 23
sys_off_
mode
24
AC
dss_data3 dss_data5 dss_data11
AB
AA
Y
W
V
U
T
R
sys_boot1 sys_boot4 cam_d1 dss_data0 dss_data10 jtag_emu0
cam_d0 dss_data1 mcbsp1
_fsr dss_data12 tv_vfb1
sys_32k tv_out2
tv_vfb2 tv_vref
dss_data15 hsusb0
_data5
vdds_dpll
_per
vss mcbsp2
_clkx
hsusb0
_data7
hsusb0
_data1
hsusb0
_data0
hsusb0_nxt hsusb0_stp
hsusb0_clk
dss_data22
sys_boot6
P
N
hsusb0_dir mmc1_dat7
mmc1_dat5 mmc1_dat4 mmc1_dat3 vdds_mmc1
vdds
13 14 15
i2c2_scl
i2c3_scl i2c2_sda
vdda_dac vssa_dac
vdd_mpu
vssvss
mcbsp1
_dr
mcbsp1
_clkr
mcbsp1
_dx
vdds_wkup
_bg
vss
mcbsp2_dr mcbsp2
_fsx
mcbsp1
_clkx
vss
mcbsp2_dx
mmc1_dat6
vss
vss vss vdds vdds
vss vss vss vss
vss vss vdd_core vdd_core vdd_core
vdd_corevdd_corevdd_corevdd_core
vss
vss vss vss hsusb0
_data3
hsusb0
_data2
vssvss
vdd_mpu
vdd_mpu sys_nirq dss_data23 dss_data14 hsusb0
_data6
hsusb0
_data4
dss_data13
sys_clkreq i2c4_sda i2c4_scl
mcbsp
_clks
mcbsp1
_fsx
tv_out1
sys_boot5
jtag_emu1
dss_data4dss_data2
sys_boot3
sys_boot2sys_xtalin
sys_xtalout
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Figure 2-17. CUS Pin Map [Quadrant D - Top View]
Submit Documentation Feedback TERMINAL DESCRIPTION 25
2.3 Ball Characteristics
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
through describe the terminal characteristics and the signals multiplexed on each pin for the CBB, CBC,and CUS packages, respectively. The following list describes the table column headers.1. BALL BOTTOM: Ball number(s) on the bottom side associated with each signal(s) on the bottom.2. BALL TOP: Ball number(s) on the top side associated with each signal(s) on the top.3. PIN NAME: Names of signals multiplexed on each ball (also notice that the name of the pin is thesignal name in mode 0).Note: through do not take into account subsystem pin multiplexing options. Subsystem pin multiplexingoptions are described in Section 2.5 ,Signal Descriptions.4. MODE: Multiplexing mode number.a. Mode 0 is the primary mode; this means that when mode 0 is set, the function mapped on the pincorresponds to the name of the pin. There is always a function mapped on the primary mode.Notice that primary mode is not necessarily the default mode.
Note: The default mode is the mode which is automatically configured on release of the internalGLOBAL_PWRON reset; also see the RESET REL. MODE column.b. Modes 1 to 7 are possible modes for alternate functions. On each pin, some modes are effectivelyused for alternate functions, while some modes are not used and do not correspond to a functionalconfiguration.
5. TYPE: Signal direction I = Input O = Output I/O = Input/Output
D = Open drain DS = Differential
A = Analog
Note: In the safe_mode, the buffer is configured in high-impedance.6. BALL RESET STATE: The state of the terminal at reset (power up). 0: The buffer drives V
OL
(pulldown/pullup resistor not activated)0(PD): The buffer drives V
OL
with an active pulldown resistor. 1: The buffer drives V
OH
(pulldown/pullup resistor not activated)1(PU): The buffer drives V
OH
with an active pullup resistor. Z: High-impedance
L: High-impedance with an active pulldown resistor H : High-impedance with an active pullup resistor7. BALL RESET REL. STATE: The state of the terminal at reset release. 0: The buffer drives V
OL
(pulldown/pullup resistor not activated)0(PD): The buffer drives V
OL
with an active pulldown resistor. 1: The buffer drives V
OH
(pulldown/pullup resistor not activated)1(PU): The buffer drives V
OH
with an active pullup resistor. Z: High-impedance
L: High-impedance with an active pulldown resistor H : High-impedance with an active pullup resistor8. RESET REL. MODE: This mode is automatically configured on release of the internalGLOBAL_PWRON reset.9. POWER: The voltage supply that powers the terminal’s I/O buffers.10. HYS: Indicates if the input buffer is with hysteresis.11. BUFFER STRENGTH: Drive strength of the associated output buffer.12. PULL U/D - TYPE: Denotes the presence of an internal pullup or pulldown resistor. Pullup andpulldown resistors can be enabled or disabled via software.
TERMINAL DESCRIPTION26 Submit Documentation Feedback
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Note: The pullup/pulldown drive strength is equal to 100 µA except for CBB balls P27, P26, R27, andR25 and CUS balls N22, N21, N20, and P24, which the pulldown drive strength is equal to 1.8 k .13. IO CELL: IO cell information.
Note: Configuring two pins to the same input signal is not supported as it can yield unexpected results.This can be easily prevented with the proper software configuration.
Table 2-1. Ball Characteristics (CBB Pkg.)
(1)
BALL BALL TOP PIN NAME MODE [4] TYPE [5] BALL BALL RESET REL. POWER [9] HYS [10] BUFFER PULLUP IO CELL [13]BOTTOM [1] [2] [3] RESET RESET REL. MODE [8] STRENG TH /DOWNSTATE [6] STATE [7] (mA) [11] TYPE [12]
D6 J2 sdrc_d0 0 IO L Z 0 vdds_ mem Yes 4 PU/ PD LVCMOS
C6 J1 sdrc_d1 0 IO L Z 0 vdds_ mem Yes 4 PU/ PD LVCMOS
B6 G2 sdrc_d2 0 IO L Z 0 vdds_ mem Yes 4 PU/ PD LVCMOS
C8 G1 sdrc_d3 0 IO L Z 0 vdds_ mem Yes 4 PU/ PD LVCMOS
C9 F2 sdrc_d4 0 IO L Z 0 vdds_ mem Yes 4 PU/ PD LVCMOS
A7 F1 sdrc_d5 0 IO L Z 0 vdds_ mem Yes 4 PU/ PD LVCMOS
B9 D2 sdrc_d6 0 IO L Z 0 vdds_ mem Yes 4 PU/ PD LVCMOS
A9 D1 sdrc_d7 0 IO L Z 0 vdds_ mem Yes 4 PU/ PD LVCMOS
C14 B13 sdrc_d8 0 IO L Z 0 vdds_ mem Yes 4 PU/ PD LVCMOS
B14 A13 sdrc_d9 0 IO L Z 0 vdds_ mem Yes 4 PU/ PD LVCMOS
C15 B14 sdrc_d10 0 IO L Z 0 vdds_ mem Yes 4 PU/ PD LVCMOS
B16 A14 sdrc_d11 0 IO L Z 0 vdds_ mem Yes 4 PU/ PD LVCMOS
D17 B16 sdrc_d12 0 IO L Z 0 vdds_ mem Yes 4 PU/ PD LVCMOS
C17 A16 sdrc_d13 0 IO L Z 0 vdds_ mem Yes 4 PU/ PD LVCMOS
B17 B19 sdrc_d14 0 IO L Z 0 vdds_ mem Yes 4 PU/ PD LVCMOS
D18 A19 sdrc_d15 0 IO L Z 0 vdds_ mem Yes 4 PU/ PD LVCMOS
D11 B3 sdrc_d16 0 IO L Z 0 vdds_ mem Yes 4 PU/ PD LVCMOS
B10 A3 sdrc_d17 0 IO L Z 0 vdds_ mem Yes 4 PU/ PD LVCMOS
C11 B5 sdrc_d18 0 IO L Z 0 vdds_ mem Yes 4 PU/ PD LVCMOS
D12 A5 sdrc_d19 0 IO L Z 0 vdds_ mem Yes 4 PU/ PD LVCMOS
C12 B8 sdrc_d20 0 IO L Z 0 vdds_ mem Yes 4 PU/ PD LVCMOS
A11 A8 sdrc_d21 0 IO L Z 0 vdds_ mem Yes 4 PU/ PD LVCMOS
B13 B9 sdrc_d22 0 IO L Z 0 vdds_ mem Yes 4 PU/ PD LVCMOS
D14 A9 sdrc_d23 0 IO L Z 0 vdds_ mem Yes 4 PU/ PD LVCMOS
C18 B21 sdrc_d24 0 IO L Z 0 vdds_ mem Yes 4 PU/ PD LVCMOS
A19 A21 sdrc_d25 0 IO L Z 0 vdds_ mem Yes 4 PU/ PD LVCMOS
B19 D22 sdrc_d26 0 IO L Z 0 vdds_ mem Yes 4 PU/ PD LVCMOS
B20 D23 sdrc_d27 0 IO L Z 0 vdds_ mem Yes 4 PU/ PD LVCMOS
D20 E22 sdrc_d28 0 IO L Z 0 vdds_ mem Yes 4 PU/ PD LVCMOS
A21 E23 sdrc_d29 0 IO L Z 0 vdds_ mem Yes 4 PU/ PD LVCMOS
B21 G22 sdrc_d30 0 IO L Z 0 vdds_ mem Yes 4 PU/ PD LVCMOS
C21 G23 sdrc_d31 0 IO L Z 0 vdds_ mem Yes 4 PU/ PD LVCMOS
H9 AB21 sdrc_ba0 0 O 0 0 0 vdds_ mem No 4 NA LVCMOS
H10 AC21 sdrc_ba1 0 O 0 0 0 vdds_ mem No 4 NA LVCMOS
A4 N22 sdrc_a0 0 O 0 0 0 vdds_ mem No 4 NA LVCMOS
B4 N23 sdrc_a1 0 O 0 0 0 vdds_ mem No 4 NA LVCMOS
B3 P22 sdrc_a2 0 O 0 0 0 vdds_ mem No 4 NA LVCMOS
C5 P23 sdrc_a3 0 O 0 0 0 vdds_ mem No 4 NA LVCMOS
C4 R22 sdrc_a4 0 O 0 0 0 vdds_ mem No 4 NA LVCMOS
D5 R23 sdrc_a5 0 O 0 0 0 vdds_ mem No 4 NA LVCMOS
C3 T22 sdrc_a6 0 O 0 0 0 vdds_ mem No 4 NA LVCMOS
C2 T23 sdrc_a7 0 O 0 0 0 vdds_ mem No 4 NA LVCMOS
C1 U22 sdrc_a8 0 O 0 0 0 vdds_ mem No 4 NA LVCMOS
D4 U23 sdrc_a9 0 O 0 0 0 vdds_ mem No 4 NA LVCMOS
D3 V22 sdrc_a10 0 O 0 0 0 vdds_ mem No 4 NA LVCMOS
D2 V23 sdrc_a11 0 O 0 0 0 vdds_ mem No 4 NA LVCMOS
(1) NA in this table stands for "Not Applicable".
Submit Documentation Feedback TERMINAL DESCRIPTION 27
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Table 2-1. Ball Characteristics (CBB Pkg.) (continued)BALL BALL TOP PIN NAME MODE [4] TYPE [5] BALL BALL RESET REL. POWER [9] HYS [10] BUFFER PULLUP IO CELL [13]BOTTOM [1] [2] [3] RESET RESET REL. MODE [8] STRENG TH /DOWNSTATE [6] STATE [7] (mA) [11] TYPE [12]
D1 W22 sdrc_a12 0 O 0 0 0 vdds_ mem No 4 NA LVCMOS
E2 W23 sdrc_a13 0 O 0 0 0 vdds_ mem No 4 NA LVCMOS
E1 Y22 sdrc_a14 0 O 0 0 0 vdds_ mem No 4 NA LVCMOS
H11 M22 sdrc_ncs0 0 O 1 1 0 vdds_ mem No 4 NA LVCMOS
H12 M23 sdrc_ncs1 0 O 1 1 0 vdds_ mem No 4 NA LVCMOS
A13 A11 sdrc_clk 0 IO L 0 0 vdds_ mem Yes 4 PU/ PD LVCMOS
A14 B11 sdrc_nclk 0 O 1 1 0 vdds_ mem No 4 NA LVCMOS
H16 J22 sdrc_cke0 0 O H 1 7 vdds_ mem Yes 4 PU/ PD LVCMOS
safe_mode 7
H17 J23 sdrc_cke1 0 O H 1 7 vdds_ mem Yes 4 PU/ PD LVCMOS
safe_mode 7
H14 L23 sdrc_nras 0 O 1 1 0 vdds_ mem No 4 NA LVCMOS
H13 L22 sdrc_ncas 0 O 1 1 0 vdds_ mem No 4 NA LVCMOS
H15 K23 sdrc_nwe 0 O 1 1 0 vdds_ mem No 4 NA LVCMOS
B7 C1 sdrc_dm0 0 O 0 0 0 vdds_ mem No 4 NA LVCMOS
A16 A17 sdrc_dm1 0 O 0 0 0 vdds_ mem No 4 NA LVCMOS
B11 A6 sdrc_dm2 0 O 0 0 0 vdds_ mem No 4 NA LVCMOS
C20 A20 sdrc_dm3 0 O 0 0 0 vdds_ mem No 4 NA LVCMOS
A6 C2 sdrc_dqs0 0 IO L Z 0 vdds_ mem Yes 4 PU/ PD LVCMOS
A17 B17 sdrc_dqs1 0 IO L Z 0 vdds_ mem Yes 4 PU/ PD LVCMOS
A10 B6 sdrc_dqs2 0 IO L Z 0 vdds_ mem Yes 4 PU/ PD LVCMOS
A20 B20 sdrc_dqs3 0 IO L Z 0 vdds_ mem Yes 4 PU/ PD LVCMOS
N4 AC15 gpmc_a1 0 O L L 7 vdds_ mem Yes 4 PU/ PD LVCMOS
gpio_34 4 IO
safe_mode 7
M4 AB15 gpmc_a2 0 O L L 7 vdds_ mem Yes 4 PU/ PD LVCMOS
gpio_35 4 IO
safe_mode 7
L4 AC16 gpmc_a3 0 O L L 7 vdds_ mem Yes 4 PU/ PD LVCMOS
gpio_36 4 IO
safe_mode 7
K4 AB16 gpmc_a4 0 O L L 7 vdds_ mem Yes 4 PU/ PD LVCMOS
gpio_37 4 IO
safe_mode 7
T3 AC17 gpmc_a5 0 O L L 7 vdds_ mem Yes 4 PU/ PD LVCMOS
gpio_38 4 IO
safe_mode 7
R3 AB17 gpmc_a6 0 O H H 7 vdds_ mem Yes 4 PU/ PD LVCMOS
gpio_39 4 IO
safe_mode 7
N3 AC18 gpmc_a7 0 O H H 7 vdds_ mem Yes 4 PU/ PD LVCMOS
gpio_40 4 IO
safe_mode 7
M3 AB18 gpmc_a8 0 O H H 7 vdds_ mem Yes 4 PU/ PD LVCMOS
gpio_41 4 IO
safe_mode 7
L3 AC19 gpmc_a9 0 O H H 7 vdds_ mem Yes 4 PU/ PD LVCMOS
sys_ 1 Indmareq2
gpio_42 4 IO
safe_mode 7
K3 AB19 gpmc_a10 0 O H H 7 vdds_ mem Yes 4 PU/ PD LVCMOS
sys_ 1 Indmareq3
gpio_43 4 IO
TERMINAL DESCRIPTION28 Submit Documentation Feedback
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Table 2-1. Ball Characteristics (CBB Pkg.) (continued)BALL BALL TOP PIN NAME MODE [4] TYPE [5] BALL BALL RESET REL. POWER [9] HYS [10] BUFFER PULLUP IO CELL [13]BOTTOM [1] [2] [3] RESET RESET REL. MODE [8] STRENG TH /DOWNSTATE [6] STATE [7] (mA) [11] TYPE [12]
safe_mode 7
K1 M2 gpmc_d0 0 IO H H 0 vdds_ mem Yes 4 PU/ PD LVCMOS
L1 M1 gpmc_d1 0 IO H H 0 vdds_ mem Yes 4 PU/ PD LVCMOS
L2 N2 gpmc_d2 0 IO H H 0 vdds_ mem Yes 4 PU/ PD LVCMOS
P2 N1 gpmc_d3 0 IO H H 0 vdds_ mem Yes 4 PU/ PD LVCMOS
T1 R2 gpmc_d4 0 IO H H 0 vdds_ mem Yes 4 PU/ PD LVCMOS
V1 R1 gpmc_d5 0 IO H H 0 vdds_ mem Yes 4 PU/ PD LVCMOS
V2 T2 gpmc_d6 0 IO H H 0 vdds_ mem Yes 4 PU/ PD LVCMOS
W2 T1 gpmc_d7 0 IO H H 0 vdds_ mem Yes 4 PU/ PD LVCMOS
H2 AB3 gpmc_d8 0 IO H H 0 vdds_ mem Yes 4 PU/ PD LVCMOS
gpio_44 4 IO
safe_mode 7
K2 AC3 gpmc_d9 0 IO H H 0 vdds_ mem Yes 4 PU/ PD LVCMOS
gpio_45 4 IO
safe_mode 7
P1 AB4 gpmc_d10 0 IO H H 0 vdds_ mem Yes 4 PU/ PD LVCMOS
gpio_46 4 IO
safe_mode 7
R1 AC4 gpmc_d11 0 IO H H 0 vdds_ mem Yes 4 PU/ PD LVCMOS
gpio_47 4 IO
safe_mode 7
R2 AB6 gpmc_d12 0 IO H H 0 vdds_ mem Yes 4 PU/ PD LVCMOS
gpio_48 4 IO
safe_mode 7
T2 AC6 gpmc_d13 0 IO H H 0 vdds_ mem Yes 4 PU/ PD LVCMOS
gpio_49 4 IO
safe_mode 7
W1 AB7 gpmc_d14 0 IO H H 0 vdds_ mem Yes 4 PU/ PD LVCMOS
gpio_50 4 IO
safe_mode 7
Y1 AC7 gpmc_d15 0 IO H H 0 vdds_ mem Yes 4 PU/ PD LVCMOS
gpio_51 4 IO
safe_mode 7
G4 Y2 gpmc_ncs0 0 O 1 1 0 vdds_ mem No 4 NA LVCMOS
H3 Y1 gpmc_ncs1 0 O H 1 0 vdds_ mem Yes 4 PU/ PD LVCMOS
gpio_52 4 IO
safe_mode 7
V8 NA gpmc_ncs2 0 O H H 7 vdds_ mem Yes 4 PU/ PD LVCMOS
gpio_53 4 IO
safe_mode 7
U8 NA gpmc_ncs3 0 O H H 7 vdds_ mem Yes 4 PU/ PD LVCMOS
sys_ 1 Indmareq0
gpio_54 4 IO
safe_mode 7
T8 NA gpmc_ncs4 0 O H H 7 vdds_ mem Yes 4 PU/ PD LVCMOS
sys_ 1 Indmareq1
mcbsp4_ 2 IOclkx
gpt9_pwm_e 3 IOvt
gpio_55 4 IO
safe_mode 7
R8 NA gpmc_ncs5 0 O H H 7 vdds_ mem Yes 4 PU/ PD LVCMOS
Submit Documentation Feedback TERMINAL DESCRIPTION 29
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Table 2-1. Ball Characteristics (CBB Pkg.) (continued)BALL BALL TOP PIN NAME MODE [4] TYPE [5] BALL BALL RESET REL. POWER [9] HYS [10] BUFFER PULLUP IO CELL [13]BOTTOM [1] [2] [3] RESET RESET REL. MODE [8] STRENG TH /DOWNSTATE [6] STATE [7] (mA) [11] TYPE [12]
sys_ 1 Indmareq2
mcbsp4_dr 2 I
gpt10_pwm_ 3 IOevt
gpio_56 4 IO
safe_mode 7
P8 NA gpmc_ncs6 0 O H H 7 vdds_ mem Yes 4 PU/ PD LVCMOS
sys_ 1 Indmareq3
mcbsp4_dx 2 IO
gpt11_pwm_ 3 IOevt
gpio_57 4 IO
safe_mode 7
N8 NA gpmc_ncs7 0 O H H 7 vdds_ mem Yes 4 PU/ PD LVCMOS
gpmc_io_dir 1 O
mcbsp4_fsx 2 IO
gpt8_pwm_e 3 IOvt
gpio_58 4 IO
safe_mode 7
T4 W2 gpmc_clk 0 O L 0 0 vdds_ mem Yes 4 PU/ PD LVCMOS
gpio_59 4 IO
safe_mode 7
F3 W1 gpmc_nadv_ 0 O 0 0 0 vdds_ mem No 4 NA LVCMOSale
G2 V2 gpmc_noe 0 O 1 1 0 vdds_ mem No 4 NA LVCMOS
F4 V1 gpmc_nwe 0 O 1 1 0 vdds_ mem No 4 NA LVCMOS
G3 AC12 gpmc_nbe0_ 0 O L 0 0 vdds_ mem Yes 4 PU/ PD LVCMOScle
gpio_60 4 IO
safe_mode 7
U3 NA gpmc_nbe1 0 O L L 7 vdds_ mem Yes 4 PU/ PD LVCMOS
gpio_61 4 IO
safe_mode 7
H1 AB10 gpmc_nwp 0 O L 0 0 vdds_ mem Yes 4 PU/ PD LVCMOS
gpio_62 4 IO
safe_mode 7
M8 AB12 gpmc_wait0 0 I H H 0 vdds_ mem Yes NA PU/ PD LVCMOS
L8 AC10 gpmc_wait1 0 I H H 7 vdds_ mem Yes 4 PU/ PD LVCMOS
gpio_63 4 IO
safe_mode 7
K8 NA gpmc_wait2 0 I H H 7 vdds_ mem Yes 4 PU/ PD LVCMOS
gpio_64 4 IO
safe_mode 7
J8 NA gpmc_wait3 0 I H H 7 vdds_ mem Yes 4 PU/ PD LVCMOS
sys_ 1 Indmareq1
gpio_65 4 IO
safe_mode 7
D28 NA dss_pclk 0 O H H 7 vdds Yes 8 PU/ PD LVCMOS
gpio_66 4 IO
safe_mode 7
D26 NA dss_hsync 0 O H H 7 vdds Yes 8 PU/ PD LVCMOS
gpio_67 4 IO
safe_mode 7
TERMINAL DESCRIPTION30 Submit Documentation Feedback
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Table 2-1. Ball Characteristics (CBB Pkg.) (continued)BALL BALL TOP PIN NAME MODE [4] TYPE [5] BALL BALL RESET REL. POWER [9] HYS [10] BUFFER PULLUP IO CELL [13]BOTTOM [1] [2] [3] RESET RESET REL. MODE [8] STRENG TH /DOWNSTATE [6] STATE [7] (mA) [11] TYPE [12]
D27 NA dss_vsync 0 O H H 7 vdds Yes 8 PU/ PD LVCMOS
gpio_68 4 IO
safe_mode 7
E27 NA dss_acbias 0 O L L 7 vdds Yes 8 PU/ PD LVCMOS
gpio_69 4 IO
safe_mode 7
AG22 NA dss_data0 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS
uart1_cts 2 I
gpio_70 4 IO
safe_mode 7
AH22 NA dss_data1 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS
uart1_rts 2 O
gpio_71 4 IO
safe_mode 7
AG23 NA dss_data2 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS
gpio_72 4 IO
safe_mode 7
AH23 NA dss_data3 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS
gpio_73 4 IO
safe_mode 7
AG24 NA dss_data4 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS
uart3_rx_ irrx 2 I
gpio_74 4 IO
safe_mode 7
AH24 NA dss_data5 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS
uart3_tx_ irtx 2 O
gpio_75 4 IO
safe_mode 7
E26 NA dss_data6 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS
uart1_tx 2 O
gpio_76 4 IO
safe_mode 7
F28 NA dss_data7 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS
uart1_rx 2 I
gpio_77 4 IO
safe_mode 7
F27 NA dss_data8 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS
gpio_78 4 IO
safe_mode 7
G26 NA dss_data9 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS
gpio_79 4 IO
safe_mode 7
AD28 NA dss_data10 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS
gpio_80 4 IO
safe_mode 7
AD27 NA dss_data11 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS
gpio_81 4 IO
safe_mode 7
AB28 NA dss_data12 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS
gpio_82 4 IO
safe_mode 7
AB27 NA dss_data13 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS
gpio_83 4 IO
safe_mode 7
Submit Documentation Feedback TERMINAL DESCRIPTION 31
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Table 2-1. Ball Characteristics (CBB Pkg.) (continued)BALL BALL TOP PIN NAME MODE [4] TYPE [5] BALL BALL RESET REL. POWER [9] HYS [10] BUFFER PULLUP IO CELL [13]BOTTOM [1] [2] [3] RESET RESET REL. MODE [8] STRENG TH /DOWNSTATE [6] STATE [7] (mA) [11] TYPE [12]
AA28 NA dss_data14 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS
gpio_84 4 IO
safe_mode 7
AA27 NA dss_data15 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS
gpio_85 4 IO
safe_mode 7
G25 NA dss_data16 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS
gpio_86 4 IO
safe_mode 7
H27 NA dss_data17 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS
gpio_87 4 IO
safe_mode 7
H26 NA dss_data18 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS
mcspi3_clk 2 IO
dss_data0 3 IO
gpio_88 4 IO
safe_mode 7
H25 NA dss_data19 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS
mcspi3_ 2 IOsimo
dss_data1 3 IO
gpio_89 4 IO
safe_mode 7
E28 NA dss_data20 0 O H H 7 vdds Yes 8 PU/ PD LVCMOS
mcspi3_ 2 IOsomi
dss_data2 3 IO
gpio_90 4 IO
safe_mode 7
J26 NA dss_data21 0 O L L 7 vdds Yes 8 PU/ PD LVCMOS
mcspi3_cs0 2 IO
dss_data3 3 IO
gpio_91 4 IO
safe_mode 7
AC27 NA dss_data22 0 O L L 7 vdds Yes 8 PU/ PD LVCMOS
mcspi3_cs1 2 O
dss_data4 3 IO
gpio_92 4 IO
safe_mode 7
AC28 NA dss_data23 0 O L L 7 vdds Yes 8 PU/ PD LVCMOS
dss_data5 3 IO
gpio_93 4 IO
safe_mode 7
W28 NA tv_out2 0 O Z 0 0 vdda_dac NA
(2)
NA 10-bit DAC
Y28 NA tv_out1 0 O Z 0 0 vdda_dac NA
(2)
NA 10-bit DAC
Y27 NA tv_vfb1 0 AO Z NA 0 vdda_dac NA
(2)
NA 10-bit DAC
W27 NA tv_vfb2 0 AO Z NA 0 vdda_dac NA
(2)
NA 10-bit DAC
W26 NA tv_vref 0 AO Z NA 0 vdda_dac NA
(2)
NA 10-bit DAC
A24 NA cam_hs 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_94 4 IO
safe_mode 7
A23 NA cam_vs 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_95 4 IO
safe_mode 7
(2) The drive strength is fixed regardless of the load. The driver is designed to drive 75ohm for video applications.
TERMINAL DESCRIPTION32 Submit Documentation Feedback
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Table 2-1. Ball Characteristics (CBB Pkg.) (continued)BALL BALL TOP PIN NAME MODE [4] TYPE [5] BALL BALL RESET REL. POWER [9] HYS [10] BUFFER PULLUP IO CELL [13]BOTTOM [1] [2] [3] RESET RESET REL. MODE [8] STRENG TH /DOWNSTATE [6] STATE [7] (mA) [11] TYPE [12]
C25 NA cam_ xclka 0 O L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_96 4 IO
safe_mode 7
C27 NA cam_pclk 0 I L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_97 4 IO
safe_mode 7
C23 NA cam_fld 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
cam_global_r 2 IOeset
gpio_98 4 IO
safe_mode 7
AG17 NA cam_d0 0 I L L 7 vdds Yes NA PU/PD LVCMOS
gpio_99 4 I
safe_mode 7
AH17 NA cam_d1 0 I L L 7 vdds Yes NA PU/PD LVCMOS
gpio_100 4 I
safe_mode 7
B24 NA cam_d2 0 I L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_101 4 IO
safe_mode 7
C24 NA cam_d3 0 I L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_102 4 IO
safe_mode 7
D24 NA cam_d4 0 I L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_103 4 IO
safe_mode 7
A25 NA cam_d5 0 I L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_104 4 IO
safe_mode 7
K28 NA cam_d6 0 I L L 7 vdds Yes NA PU/PD LVCMOS
gpio_105 4 IO 8
safe_mode 7 NA
L28 NA cam_d7 0 I L L 7 vdds Yes NA PU/PD LVCMOS
gpio_106 4 IO 8
safe_mode 7 NA
K27 NA cam_d8 0 I L L 7 vdds Yes NA PU/PD LVCMOS
gpio_107 4 IO 8
safe_mode 7 NA
L27 NA cam_d9 0 I L L 7 vdds Yes NA PU/PD LVCMOS
gpio_108 4 IO 8
safe_mode 7 NA
B25 NA cam_d10 0 I L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_109 4 IO
safe_mode 7
C26 NA cam_d11 0 I L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_110 4 IO
safe_mode 7
B26 NA cam_ xclkb 0 O L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_111 4 IO
safe_mode 7
B23 NA cam_wen 0 I L L 7 vdds Yes 4 PU/ PD LVCMOS
cam_ shutter 2 O
gpio_167 4 IO
safe_mode 7
D25 NA cam_ strobe 0 O L L 7 vdds Yes 4 PU/ PD LVCMOS
Submit Documentation Feedback TERMINAL DESCRIPTION 33
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Table 2-1. Ball Characteristics (CBB Pkg.) (continued)BALL BALL TOP PIN NAME MODE [4] TYPE [5] BALL BALL RESET REL. POWER [9] HYS [10] BUFFER PULLUP IO CELL [13]BOTTOM [1] [2] [3] RESET RESET REL. MODE [8] STRENG TH /DOWNSTATE [6] STATE [7] (mA) [11] TYPE [12]
gpio_126 4 IO
safe_mode 7
AG19 NA gpio_112 4 I L L 7 vdds Yes NA PU/PD LVCMOS
safe_mode 7
AH19 NA gpio_113 4 I L L 7 vdds Yes NA PU/PD LVCMOS
safe_mode 7
AG18 NA gpio_114 4 I L L 7 vdds Yes NA PU/PD LVCMOS
safe_mode 7
AH18 NA gpio_115 4 I L L 7 vdds Yes NA PU/PD LVCMOS
safe_mode 7
P21 NA mcbsp2_fsx 0 IO L L 7 vdds Yes 4
(3)
PU/ PD LVCMOS
gpio_116 4 IO
safe_mode 7
N21 NA mcbsp2_ 0 IO L L 7 vdds Yes 4
(3)
PU/ PD LVCMOSclkx
gpio_117 4 IO
safe_mode 7
R21 NA mcbsp2_dr 0 I L L 7 vdds Yes 4
(3)
PU/ PD LVCMOS
gpio_118 4 IO
safe_mode 7
M21 NA mcbsp2_dx 0 IO L L 7 vdds Yes 4
(3)
PU/ PD LVCMOS
gpio_119 4 IO
safe_mode 7
N28 NA mmc1_clk 0 O L L 7 vdds_mmc1 Yes 8 PU/ PD
(4)
LVCMOS
gpio_120 4 IO
safe_mode 7
M27 NA mmc1_cmd 0 IO L L 7 vdds_mmc1 Yes 8 PU/ PD
(4)
LVCMOS
gpio_121 4 IO
safe_mode 7
N27 NA mmc1_dat0 0 IO L L 7 vdds_mmc1 Yes 8 PU/ PD
(4)
LVCMOS
gpio_122 4 IO
safe_mode 7
N26 NA mmc1_dat1 0 IO L L 7 vdds_mmc1 Yes 8 PU/ PD
(4)
LVCMOS
gpio_123 4 IO
safe_mode 7
N25 NA mmc1_dat2 0 IO L L 7 vdds_mmc1 Yes 8 PU/ PD
(4)
LVCMOS
gpio_124 4 IO
safe_mode 7
P28 NA mmc1_dat3 0 IO L L 7 vdds_mmc1 Yes 8 PU/ PD
(4)
LVCMOS
gpio_125 4 IO
safe_mode 7
P27 NA mmc1_dat4 0 IO L L 7 vdds_mmc1a No 8 PD
(4)
LVCMOS
gpio_126 4 IO
safe_mode 7
P26 NA mmc1_dat5 0 IO L L 7 vdds_mmc1a No 8 PD
(4)
LVCMOS
gpio_127 4 IO
safe_mode 7
R27 NA mmc1_dat6 0 IO L L 7 vdds_mmc1a No 8 PD
(4)
LVCMOS
gpio_128 4 IO
safe_mode 7
R25 NA mmc1_dat7 0 IO L L 7 vdds_mmc1a No 8 PD
(4)
LVCMOS
(3) The buffer strength of this IO cell is programmable (2, 4, 6, or 8 mA) according to the selected mode; the default value is described inthe above table.(4) The PU nominal drive strength of this IO cell is equal to 25 uA @ 1.8V and 41.6 uA @ 3.0V. The PD nominal drive strength of this IOcell is equal to 1 mA @ 1.8V and 1.66 mA @ 3.0V.
TERMINAL DESCRIPTION34 Submit Documentation Feedback
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Table 2-1. Ball Characteristics (CBB Pkg.) (continued)BALL BALL TOP PIN NAME MODE [4] TYPE [5] BALL BALL RESET REL. POWER [9] HYS [10] BUFFER PULLUP IO CELL [13]BOTTOM [1] [2] [3] RESET RESET REL. MODE [8] STRENG TH /DOWNSTATE [6] STATE [7] (mA) [11] TYPE [12]
gpio_129 4 IO
safe_mode 7
AE2 NA mmc2_clk 0 O L L 7 vdds Yes 4 PU/ PD LVCMOS
mcspi3_clk 1 IO
gpio_130 4 IO
safe_mode 7
AG5 NA mmc2_ cmd 0 IO H H 7 vdds Yes 4 PU/ PD LVCMOS
mcspi3_ 1 IOsimo
gpio_131 4 IO
safe_mode 7
AH5 NA mmc2_ dat0 0 IO H H 7 vdds Yes 4 PU/ PD LVCMOS
mcspi3_ 1 IOsomi
gpio_132 4 IO
safe_mode 7
AH4 NA mmc2_ dat1 0 IO H H 7 vdds Yes 4 PU/ PD LVCMOS
gpio_133 4 IO
safe_mode 7
AG4 NA mmc2_ dat2 0 IO H H 7 vdds Yes 4 PU/ PD LVCMOS
mcspi3_cs1 1 O
gpio_134 4 IO
safe_mode 7
AF4 NA mmc2_ dat3 0 IO H H 7 vdds Yes 4 PU/ PD LVCMOS
mcspi3_cs0 1 IO
gpio_135 4 IO
safe_mode 7
AE4 NA mmc2_ dat4 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
mmc2_dir_da 1 Ot0
mmc3_dat0 3 IO
gpio_136 4 IO
safe_mode 7
AH3 NA mmc2_ dat5 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
mmc2_dir_da 1 Ot1
cam_global_r 2 IOeset
mmc3_dat1 3 IO
gpio_137 4 IO
hsusb3_tll_st 5 IOp
mm3_rxdp 6 IO
safe_mode 7
AF3 NA mmc2_ dat6 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
mmc2_dir_ 1 Ocmd
cam_ shutter 2 O
mmc3_dat2 3 IO
gpio_138 4 IO
hsusb3_tll_di 5 IOr
safe_mode 7
AE3 NA mmc2_ dat7 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
mmc2_ clkin 1 I
mmc3_dat3 3 IO
gpio_139 4 IO
Submit Documentation Feedback TERMINAL DESCRIPTION 35
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Table 2-1. Ball Characteristics (CBB Pkg.) (continued)BALL BALL TOP PIN NAME MODE [4] TYPE [5] BALL BALL RESET REL. POWER [9] HYS [10] BUFFER PULLUP IO CELL [13]BOTTOM [1] [2] [3] RESET RESET REL. MODE [8] STRENG TH /DOWNSTATE [6] STATE [7] (mA) [11] TYPE [12]
hsusb3_tll_n 5 IOxt
mm3_rxdm 6 IO
safe_mode 7
AF6 NA mcbsp3_dx 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
uart2_cts 1 I
gpio_140 4 IO
hsusb3_tll_ 5 IOdata4
safe_mode 7
AE6 NA mcbsp3_dr 0 I L L 7 vdds Yes 4 PU/ PD LVCMOS
uart2_rts 1 O
gpio_141 4 IO
hsusb3_tll_ 5 IOdata5
safe_mode 7
AF5 NA mcbsp3_ 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOSclkx
uart2_tx 1 O
gpio_142 4 IO
hsusb3_tll_ 5 IOdata6
safe_mode 7
AE5 NA mcbsp3_fsx 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
uart2_rx 1 I
gpio_143 4 IO
hsusb3_tll_ 5 IOdata7
safe_mode 7
AB26 NA uart2_cts 0 I H H 7 vdds Yes 4 PU/ PD LVCMOS
mcbsp3_dx 1 IO
gpt9_pwm_e 2 IOvt
gpio_144 4 IO
safe_mode 7
AB25 NA uart2_rts 0 O H H 7 vdds Yes 4 PU/ PD LVCMOS
mcbsp3_dr 1 I
gpt10_pwm_ 2 IOevt
gpio_145 4 IO
safe_mode 7
AA25 NA uart2_tx 0 O H H 7 vdds Yes 4 PU/ PD LVCMOS
mcbsp3_ 1 IOclkx
gpt11_pwm 2 IO_evt
gpio_146 4 IO
safe_mode 7
AD25 NA uart2_rx 0 I H H 7 vdds Yes 4 PU/ PD LVCMOS
mcbsp3_fsx 1 IO
gpt8_pwm_e 2 IOvt
gpio_147 4 IO
safe_mode 7
AA8 NA uart1_tx 0 O L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_148 4 IO
safe_mode 7
AA9 NA uart1_rts 0 O L L 7 vdds Yes 4 PU/ PD LVCMOS
TERMINAL DESCRIPTION36 Submit Documentation Feedback
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Table 2-1. Ball Characteristics (CBB Pkg.) (continued)BALL BALL TOP PIN NAME MODE [4] TYPE [5] BALL BALL RESET REL. POWER [9] HYS [10] BUFFER PULLUP IO CELL [13]BOTTOM [1] [2] [3] RESET RESET REL. MODE [8] STRENG TH /DOWNSTATE [6] STATE [7] (mA) [11] TYPE [12]
gpio_149 4 IO
safe_mode 7
W8 NA uart1_cts 0 I L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_150 4 IO
hsusb3_tll_cl 5 Ok
safe_mode 7
Y8 NA uart1_rx 0 I L L 7 vdds Yes 4 PU/ PD LVCMOS
mcbsp1_ clkr 2 IO
mcspi4_clk 3 IO
gpio_151 4 IO
safe_mode 7
AE1 NA mcbsp4_ 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOSclkx
gpio_152 4 IO
hsusb3_tll_ 5 IOdata1
mm3_txse0 6 IO
safe_mode 7
AD1 NA mcbsp4_dr 0 I L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_153 4 IO
hsusb3_tll_ 5 IOdata0
mm3_rxrcv 6 IO
safe_mode 7
AD2 NA mcbsp4_dx 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_154 4 IO
hsusb3_tll_ 5 IOdata2
mm3_txdat 6 IO
safe_mode 7
AC1 NA mcbsp4_fsx 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_155 4 IO
hsusb3_tll_ 5 IOdata3
mm3_txen_n 6 IO
safe_mode 7
Y21 NA mcbsp1_ clkr 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
mcspi4_clk 1 IO
gpio_156 4 IO
safe_mode 7
AA21 NA mcbsp1_fsr 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
cam_global_r 2 IOeset
gpio_157 4 IO
safe_mode 7
V21 NA mcbsp1_dx 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
mcspi4_ 1 IOsimo
mcbsp3_dx 2 IO
gpio_158 4 IO
safe_mode 7
U21 NA mcbsp1_dr 0 I L L 7 vdds Yes 4 PU/ PD LVCMOS
mcspi4_ 1 IOsomi
mcbsp3_dr 2 O
gpio_159 4 IO
safe_mode 7
Submit Documentation Feedback TERMINAL DESCRIPTION 37
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Table 2-1. Ball Characteristics (CBB Pkg.) (continued)BALL BALL TOP PIN NAME MODE [4] TYPE [5] BALL BALL RESET REL. POWER [9] HYS [10] BUFFER PULLUP IO CELL [13]BOTTOM [1] [2] [3] RESET RESET REL. MODE [8] STRENG TH /DOWNSTATE [6] STATE [7] (mA) [11] TYPE [12]
T21 NA mcbsp_clks 0 I L L 7 vdds Yes 4 PU/ PD LVCMOS
cam_ shutter 2 O
gpio_160 4 IO
uart1_cts 5 I
safe_mode 7
K26 NA mcbsp1_fsx 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
mcspi4_cs0 1 IO
mcbsp3_fsx 2 IO
gpio_161 4 IO
safe_mode 7
W21 NA mcbsp1_ 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOSclkx
mcbsp3_ 2 IOclkx
gpio_162 4 IO
safe_mode 7
H18 NA uart3_cts_ 0 IO H H 7 vdds Yes 4 PU/ PD LVCMOSrctx
gpio_163 4 IO
safe_mode 7
H19 NA uart3_rts_ sd 0 O H H 7 vdds Yes 4 PU/ PD LVCMOS
gpio_164 4 IO
safe_mode 7
H20 NA uart3_rx_ irrx 0 I H H 7 vdds Yes 4 PU/ PD LVCMOS
gpio_165 4 IO
safe_mode 7
H21 NA uart3_tx_ irtx 0 O H H 7 vdds Yes 4 PU/ PD LVCMOS
gpio_166 4 IO
safe_mode 7
T28 NA hsusb0_clk 0 I L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_120 4 IO
safe_mode 7
T25 NA hsusb0_stp 0 O H H 7 vdds Yes 4 PU/ PD LVCMOS
gpio_121 4 IO
safe_mode 7
R28 NA hsusb0_dir 0 I L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_122 4 IO
safe_mode 7
T26 NA hsusb0_nxt 0 I L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_124 4 IO
safe_mode 7
T27 NA hsusb0_ 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOSdata0
uart3_tx_ irtx 2 O
gpio_125 4 IO
safe_mode 7
U28 NA hsusb0_ 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOSdata1
uart3_rx_ irrx 2 I
gpio_130 4 IO
safe_mode 7
U27 NA hsusb0_ 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOSdata2
uart3_rts_ sd 2 O
gpio_131 4 IO
safe_mode 7
TERMINAL DESCRIPTION38 Submit Documentation Feedback
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Table 2-1. Ball Characteristics (CBB Pkg.) (continued)BALL BALL TOP PIN NAME MODE [4] TYPE [5] BALL BALL RESET REL. POWER [9] HYS [10] BUFFER PULLUP IO CELL [13]BOTTOM [1] [2] [3] RESET RESET REL. MODE [8] STRENG TH /DOWNSTATE [6] STATE [7] (mA) [11] TYPE [12]
U26 NA hsusb0_ 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOSdata3
uart3_cts_ 2 IOrctx
gpio_169 4 IO
safe_mode 7
U25 NA hsusb0_ 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOSdata4
gpio_188 4 IO
safe_mode 7
V28 NA hsusb0_ 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOSdata5
gpio_189 4 IO
safe_mode 7
V27 NA hsusb0_ 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOSdata6
gpio_190 4 IO
safe_mode 7
V26 NA hsusb0_ 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOSdata7
gpio_191 4 IO
safe_mode 7
K21 NA i2c1_scl 0 IOD H H 0 vdds Yes 4 PU/ PD Open Drain
J21 NA i2c1_sda 0 IOD H H 0 vdds Yes 4 PU/ PD Open Drain
AF15 NA i2c2_scl 0 IOD H H 7 vdds Yes 4 PU/ PD Open Drain
gpio_168 4 IO
safe_mode 7
AE15 NA i2c2_sda 0 IOD H H 7 vdds Yes 4 PU/ PD Open Drain
gpio_183 4 IO
safe_mode 7
AF14 NA i2c3_scl 0 IOD H H 7 vdds Yes 4 PU/ PD Open Drain
gpio_184 4 IO
safe_mode 7
AG14 NA i2c3_sda 0 IOD H H 7 vdds Yes 4 PU/ PD Open Drain
gpio_185 4 IO
safe_mode 7
AD26 NA i2c4_scl 0 IOD H H 0 vdds Yes 4 PU/ PD Open Drain
sys_ 1 Onvmode1
safe_mode 7
AE26 NA i2c4_sda 0 IOD H H 0 vdds Yes 4 PU/ PD Open Drain
sys_ 1 Onvmode2
safe_mode 7
J25 NA hdq_sio 0 IOD H H 7 vdds Yes 4 PU/ PD LVCMOS
sys_altclk 1 I
i2c2_sccbe 2 O
i2c3_sccbe 3 O
gpio_170 4 IO
safe_mode 7
AB3 NA mcspi1_clk 0 IO L L 7 vdds Yes 4
(3)
PU/ PD LVCMOS
mmc2_dat4 1 IO
gpio_171 4 IO
safe_mode 7
AB4 NA mcspi1_ 0 IO L L 7 vdds Yes 4
(3)
PU/ PD LVCMOSsimo
mmc2_dat5 1 IO
gpio_172 4 IO
Submit Documentation Feedback TERMINAL DESCRIPTION 39
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Table 2-1. Ball Characteristics (CBB Pkg.) (continued)BALL BALL TOP PIN NAME MODE [4] TYPE [5] BALL BALL RESET REL. POWER [9] HYS [10] BUFFER PULLUP IO CELL [13]BOTTOM [1] [2] [3] RESET RESET REL. MODE [8] STRENG TH /DOWNSTATE [6] STATE [7] (mA) [11] TYPE [12]
safe_mode 7
AA4 NA mcspi1_ 0 IO L L 7 vdds Yes 4
(3)
PU/ PD LVCMOSsomi
mmc2_dat6 1 IO
gpio_173 4 IO
safe_mode 7
AC2 NA mcspi1_cs0 0 IO H H 7 vdds Yes 4
(3)
PU/ PD LVCMOS
mmc2_dat7 1 IO
gpio_174 4 IO
safe_mode 7
AC3 NA mcspi1_cs1 0 O L H 7 vdds Yes 4
(3)
PU/ PD LVCMOS
mmc3_cmd 3 IO
gpio_175 4 IO
safe_mode 7
AB1 NA mcspi1_cs2 0 O L H 7 vdds Yes 4
(3)
PU/ PD LVCMOS
mmc3_clk 3 O
gpio_176 4 IO
safe_mode 7
AB2 NA mcspi1_cs3 0 O H H 7 vdds Yes 4 PU/ PD LVCMOS
hsusb2_tll_ 2 IOdata2
hsusb2_ 3 IOdata2
gpio_177 4 IO
mm2_txdat 5 IO
safe_mode 7
AA3 NA mcspi2_clk 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
hsusb2_tll_ 2 IOdata7
hsusb2_ 3 Odata7
gpio_178 4 IO
safe_mode 7
Y2 NA mcspi2_ 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOSsimo
gpt9_pwm_e 1 IOvt
hsusb2_tll_ 2 IOdata4
hsusb2_ 3 Idata4
gpio_179 4 IO
safe_mode 7
Y3 NA mcspi2_ 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOSsomi
gpt10_pwm_ 1 IOevt
hsusb2_tll_ 2 IOdata5
hsusb2_ 3 Odata5
gpio_180 4 IO
safe_mode 7
Y4 NA mcspi2_cs0 0 IO H H 7 vdds Yes 4 PU/ PD LVCMOS
gpt11_pwm_ 1 IOevt
hsusb2_tll_ 2 IOdata6
hsusb2_ 3 Odata6
TERMINAL DESCRIPTION40 Submit Documentation Feedback
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Table 2-1. Ball Characteristics (CBB Pkg.) (continued)BALL BALL TOP PIN NAME MODE [4] TYPE [5] BALL BALL RESET REL. POWER [9] HYS [10] BUFFER PULLUP IO CELL [13]BOTTOM [1] [2] [3] RESET RESET REL. MODE [8] STRENG TH /DOWNSTATE [6] STATE [7] (mA) [11] TYPE [12]
gpio_181 4 IO
safe_mode 7
V3 NA mcspi2_cs1 0 O L L 7 vdds Yes 4 PU/ PD LVCMOS
gpt8_pwm_e 1 IOvt
hsusb2_tll_ 2 IOdata3
hsusb2_ 3 IOdata3
gpio_182 4 IO
mm2_txen_n 5 IO
safe_mode 7
AE25 NA sys_32k 0 I Z I NA vdds Yes NA NA LVCMOS
AE17 NA sys_xtalin 0 I Z I NA vdds NA NA NA LVCMOS
AF17 NA sys_xtalout 0 O Z O NA vdds NA NA NA LVCMOS
AF25 NA sys_clkreq 0 IO 0 1 0 vdds Yes 8 PU/ PD LVCMOS
gpio_1 4 IO
safe_mode 7
AF26 NA sys_nirq 0 I H H 7 vdds Yes 4 PU/ PD LVCMOS
gpio_0 4 IO
safe_mode 7
AH25 NA sys_ 0 I Z I NA vdds Yes NA NA LVCMOSnrespwron
AF24 NA sys_ 0 IOD 0 1 (PU) 0 vdds Yes 8 PU/ PD LVCMOSnreswarm
gpio_30 4 IO Open Drain
safe_mode 7
AH26 NA sys_boot0 0 I Z Z 0 vdds Yes 4 PU/ PD LVCMOS
gpio_2 4 IO
safe_mode 7
AG26 NA sys_boot1 0 I Z Z 0 vdds Yes 4 PU/ PD LVCMOS
gpio_3 4 IO
safe_mode 7
AE14 NA sys_boot2 0 I Z Z 0 vdds Yes 4 PU/ PD LVCMOS
gpio_4 4 IO
safe_mode 7
AF18 NA sys_boot3 0 I Z Z 0 vdds Yes 4 PU/ PD LVCMOS
gpio_5 4 IO
safe_mode 7
AF19 NA sys_boot4 0 I Z Z 0 vdds Yes 4 PU/ PD LVCMOS
mmc2_dir_da 1 Ot2
gpio_6 4 IO
safe_mode 7
AE21 NA sys_boot5 0 I Z Z 0 vdds Yes 4 PU/ PD LVCMOS
mmc2_dir_da 1 Ot3
gpio_7 4 IO
safe_mode 7
AF21 NA sys_boot6 0 I Z Z 0 vdds Yes 4 PU/ PD LVCMOS
gpio_8 4 IO
safe_mode 7
AF22 NA sys_off_ 0 O 0 L 7 vdds Yes 8 PU/ PD LVCMOSmode
gpio_9 4 IO
safe_mode 7
AG25 NA sys_clkout1 0 O L L 7 vdds Yes 8 PU/ PD LVCMOS
Submit Documentation Feedback TERMINAL DESCRIPTION 41
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Table 2-1. Ball Characteristics (CBB Pkg.) (continued)BALL BALL TOP PIN NAME MODE [4] TYPE [5] BALL BALL RESET REL. POWER [9] HYS [10] BUFFER PULLUP IO CELL [13]BOTTOM [1] [2] [3] RESET RESET REL. MODE [8] STRENG TH /DOWNSTATE [6] STATE [7] (mA) [11] TYPE [12]
gpio_10 4 IO
safe_mode 7
AE22 NA sys_clkout2 0 O L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_186 4 IO
safe_mode 7
AA17 NA jtag_ntrst 0 I L L 0 vdds Yes NA PU/ PD LVCMOS
AA13 NA jtag_tck 0 I L L 0 vdds Yes NA PU/ PD LVCMOS
AA12 NA jtag_rtck 0 O L 0 0 vdds Yes 8 PU/ PD LVCMOS
AA18 NA jtag_tms_tms 0 IO H H 0 vdds Yes 8 PU/ PD LVCMOSc
AA20 NA jtag_tdi 0 I H H 0 vdds Yes NA PU/ PD LVCMOS
AA19 NA jtag_tdo 0 O L Z 0 vdds Yes 8 PU/ PD LVCMOS
AA11 NA jtag_emu0 0 IO H H 0 vdds Yes 8 PU/ PD LVCMOS
gpio_11 4 IO
safe_mode 7
AA10 NA jtag_emu1 0 IO H H 0 vdds Yes 8 PU/ PD LVCMOS
gpio_31 4 IO
safe_mode 7
AF10 NA etk_clk 0 O H H 4 vdds Yes 4 PU/ PD LVCMOS
mcbsp5_ 1 IOclkx
mmc3_clk 2 O
hsusb1_stp 3 O
gpio_12 4 IO
mm1_rxdp 5 IO
hsusb1_tll_st 6 Ip
AE10 NA etk_ctl 0 O H H 4 vdds Yes 4 PU/ PD LVCMOS
mmc3_cmd 2 IO
hsusb1_clk 3 O
gpio_13 4 IO
hsusb1_tll_cl 6 Ok
AF11 NA etk_d0 0 O H H 4 vdds Yes 4 PU/ PD LVCMOS
mcspi3_ 1 IOsimo
mmc3_dat4 2 IO
hsusb1_ 3 IOdata0
gpio_14 4 IO
mm1_rxrcv 5 IO
hsusb1_tll_ 6 IOdata0
AG12 NA etk_d1 0 O H H 4 vdds Yes 4 PU/ PD LVCMOS
mcspi3_ 1 IOsomi
hsusb1_ 3 IOdata1
gpio_15 4 IO
mm1_txse0 5 IO
hsusb1_tll_ 6 IOdata1
AH12 NA etk_d2 0 O H H 4 vdds Yes 4 PU/ PD LVCMOS
mcspi3_cs0 1 IO
hsusb1_ 3 IOdata2
gpio_16 4 IO
mm1_txdat 5 IO
TERMINAL DESCRIPTION42 Submit Documentation Feedback
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Table 2-1. Ball Characteristics (CBB Pkg.) (continued)BALL BALL TOP PIN NAME MODE [4] TYPE [5] BALL BALL RESET REL. POWER [9] HYS [10] BUFFER PULLUP IO CELL [13]BOTTOM [1] [2] [3] RESET RESET REL. MODE [8] STRENG TH /DOWNSTATE [6] STATE [7] (mA) [11] TYPE [12]
hsusb1_tll_d 6 IOata2
AE13 NA etk_d3 0 O H H 4 vdds Yes 4 PU/ PD LVCMOS
mcspi3_clk 1 IO
mmc3_dat3 2 IO
hsusb1_ 3 IOdata7
gpio_17 4 IO
hsusb1_tll_ 6 IOdata7
AE11 NA etk_d4 0 O L L 4 vdds Yes 4 PU/ PD LVCMOS
mcbsp5_dr 1 I
mmc3_dat0 2 IO
hsusb1_ 3 IOdata4
gpio_18 4 IO
hsusb1_tll_ 6 IOdata4
AH9 NA etk_d5 0 O L L 4 vdds Yes 4 PU/ PD LVCMOS
mcbsp5_fsx 1 IO
mmc3_dat1 2 IO
hsusb1_ 3 IOdata5
gpio_19 4 IO
hsusb1_tll_ 6 IOdata5
AF13 NA etk_d6 0 O L L 4 vdds Yes 4 PU/ PD LVCMOS
mcbsp5_dx 1 IO
mmc3_dat2 2 IO
hsusb1_ 3 IOdata6
gpio_20 4 IO
hsusb1_tll_ 6 IOdata6
AH14 NA etk_d7 0 O L L 4 vdds Yes 4 PU/ PD LVCMOS
mcspi3_cs1 1 O
mmc3_dat7 2 IO
hsusb1_ 3 IOdata3
gpio_21 4 IO
mm1_txen_n 5 IO
hsusb1_tll_ 6 IOdata3
AF9 NA etk_d8 0 O L L 4 vdds Yes 4 PU/ PD LVCMOS
sys_drm_ 1 Imsecure
mmc3_dat6 2 IO
hsusb1_dir 3 I
gpio_22 4 IO
hsusb1_tll_di 6 Or
AG9 NA etk_d9 0 O L L 4 vdds Yes 4 PU/ PD LVCMOS
sys_secure_i 1 Ondic ator
mmc3_dat5 2 IO
hsusb1_nxt 3 I
gpio_23 4 IO
mm1_rxdm 5 IO
hsusb1_tll_n 6 Oxt
Submit Documentation Feedback TERMINAL DESCRIPTION 43
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Table 2-1. Ball Characteristics (CBB Pkg.) (continued)BALL BALL TOP PIN NAME MODE [4] TYPE [5] BALL BALL RESET REL. POWER [9] HYS [10] BUFFER PULLUP IO CELL [13]BOTTOM [1] [2] [3] RESET RESET REL. MODE [8] STRENG TH /DOWNSTATE [6] STATE [7] (mA) [11] TYPE [12]
AE7 NA etk_d10 0 O L L 4 vdds Yes 4 PU/ PD LVCMOS
uart1_rx 2 I
hsusb2_clk 3 O
gpio_24 4 IO
hsusb2_tll_cl 6 Ok
AF7 NA etk_d11 0 O L L 4 vdds Yes 4 PU/ PD LVCMOS
hsusb2_stp 3 O
gpio_25 4 IO
mm2_rxdp 5 IO
hsusb2_tll_st 6 Ip
AG7 NA etk_d12 0 O L L 4 vdds Yes 4 PU/ PD LVCMOS
hsusb2_dir 3 I
gpio_26 4 IO
hsusb2_tll_di 6 Or
AH7 NA etk_d13 0 O L L 4 vdds Yes 4 PU/ PD LVCMOS
hsusb2_nxt 3 I
gpio_27 4 IO
mm2_rxdm 5 IO
hsusb2_tll_n 6 Oxt
AG8 NA etk_d14 0 O L L 4 vdds Yes 4 PU/ PD LVCMOS
hsusb2_ 3 IOdata0
gpio_28 4 IO
mm2_rxrcv 5 IO
hsusb2_tll_ 6 IOdata0
AH8 NA etk_d15 0 O L L 4 vdds Yes 4 PU/ PD LVCMOS
hsusb2_ 3 IOdata1
gpio_29 4 IO
mm2_txse0 5 IO
hsusb2_tll_ 6 IOdata1
AE9, AE18, NA vdd_core 0 PWR - - - - - - - -AE19, AE24,AC4, Y16,Y18, Y19,Y20, W18,W20, V20,U19, U20,T19, P20,N19, N20,M19, M25,L25, K18,K20, J4, J18,J19, J20, H4,E25, D8, D9,D15, D22,D23
Y9, Y10, NA vdd_mpu 0 PWR - - - - - - - -Y11, Y14,Y15, W9,W11, W12,W15, U10,T9, T10, R9,R10, N10,M9, M10, L9,L10, K11,K14, K13, J9,J10, J11,J14, J15
TERMINAL DESCRIPTION44 Submit Documentation Feedback
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Table 2-1. Ball Characteristics (CBB Pkg.) (continued)BALL BALL TOP PIN NAME MODE [4] TYPE [5] BALL BALL RESET REL. POWER [9] HYS [10] BUFFER PULLUP IO CELL [13]BOTTOM [1] [2] [3] RESET RESET REL. MODE [8] STRENG TH /DOWNSTATE [6] STATE [7] (mA) [11] TYPE [12]
AH6, U1, R4, NA vdds_mem 0 PWR - - - - - - - -J1, J2, G28,F1, F2, D16,C16, C28,B5, B8, B12,B18, B22,A5, A8, A12,A18, A22
AG20, AG21, NA vdds 0 PWR - - - - - - - -AG27, AF8,AF16, AF23,AE8, AE16,
AE23, AE27,AD3, AD4,W4, H28,F25, F26
W16 NA vdds_sram 0
K15 NA vdds_dpll_dll 0 PWR - - - - - - - -
AA16 NA vdds_dpll_pe 0 PWR - - - - - - - -r
AA14 NA vdds_wkup_ 0 PWR - - - - - - - -bg
K25, P25 NA vdds_mmc1, 0 PWR - - - - - - - -vdds_mmc1a
V25 NA vdda_dac 0 PWR - - - - - - - -
Y26 NA vssa_dac 0 GND - - - - - - - -
AA26, AG2, NA vss 0 GND - - - - - - - -AG3, AG6,AF12, AF20,AE12, AE20,AC25, AC26,AG16, AH21,Y12, Y13,Y17, Y25,W3, W10,
W13, W14,W17, W19,W25, V9,V10, V19,U2, U9, T20,R19, R20,R26, P3, P4,P9, P10,
P19, N9,M20, M28,L19, L20,L26, K9,K10, K12,K16, K17,K19, J3, J12,J13, J16,J17, G27,E3,E4, D7,D10, D13,D19, D21,C7, C10,
C13, C19,C22, B2,B27, A3, A26
AH20, AA15, NA cap_vdd_d, 0 PWR - - - - - - - -V4, L21 cap_vdd_wk
up,
cap_vdd_sra
m_mpu,
cap_vdd_sra
m_core
Submit Documentation Feedback TERMINAL DESCRIPTION 45
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Table 2-1. Ball Characteristics (CBB Pkg.) (continued)BALL BALL TOP PIN NAME MODE [4] TYPE [5] BALL BALL RESET REL. POWER [9] HYS [10] BUFFER PULLUP IO CELL [13]BOTTOM [1] [2] [3] RESET RESET REL. MODE [8] STRENG TH /DOWNSTATE [6] STATE [7] (mA) [11] TYPE [12]
AH1, AH2, A2, A12, FeedThrough - - - - - - - - - -AH10, AH11, A22, A23, Pins
(5)
AH13, AH15, AA1, AA2,AH16, AH27, AA22, AA23,AH28, AG1, AB1, AB11,AG10, AG11, AB13, AB23,AG13, AG15, AB8, AB9,AG28, AF1, AC1, AC11,AF2, AF27, AC13, AC14,AF28, AE28, AC2, AC22,AA1, AA2, AC23, AC8,N1, N2, M1, AC9, B12,M2, M26, B23, H22,J27, J28, H23, K1, K2,B15, B28, K22, L1, L2,A2, A15, U1, U2, Y23A27, A28
A1, B1, G1, A1, AB2, No Connect - -U4 AB22, B1,B2, B22
(5) These signals are feed-through balls. For more information, see Section 2.5.10 .
Table 2-2. Ball Characteristics (CBC Pkg.)
(1)
BALL BALL BUFFER PULLUPBALL BALL TOP PIN NAME RESET REL.MODE [4] TYPE [5] RESET RESET REL. POWER [9] HYS [10] STRENG TH /DOWN IO CELL [13]BOTTOM [1] [2] [3] MODE [8]STATE [6] STATE [7] (mA) [11] TYPE [12]
AE16 NA cam_d0 0 I L L 7 vdds Yes 4 PU100/ LVCMOSPD100
gpio_99 4 I
safe_mode 7 -
AE15 NA cam_d1 0 I L L 7 vdds Yes 4 PU100/ LVCMOSPD100
gpio_100 4 I
safe_mode 7 -
AD17 NA gpio_112 4 I L L 7 vdds Yes 4 PU100/ LVCMOSPD100
safe_mode 7 -
AE18 NA gpio_114 4 I L L 7 vdds Yes 4 PU100/ LVCMOSPD100
safe_mode 7 -
AD16 NA gpio_113 4 I L L 7 vdds Yes 4 PU100/ LVCMOSPD100
safe_mode 7 -
AE17 NA gpio_115 4 I L L 7 vdds Yes 4 PU100/ LVCMOSPD100
safe_mode 7 -
NA G20 sdrc_a0 0 O 0 0 0 vdds No 4
(2)
NA LVCMOS
NA K20 sdrc_a1 0 O 0 0 0 vdds No 4
(2)
NA LVCMOS
NA J20 sdrc_a2 0 O 0 0 0 vdds No 4
(2)
NA LVCMOS
NA J21 sdrc_a3 0 O 0 0 0 vdds No 4
(2)
NA LVCMOS
NA U21 sdrc_a4 0 O 0 0 0 vdds No 4
(2)
NA LVCMOS
NA R20 sdrc_a5 0 O 0 0 0 vdds No 4
(2)
NA LVCMOS
NA M21 sdrc_a6 0 O 0 0 0 vdds No 4
(2)
NA LVCMOS
NA M20 sdrc_a7 0 O 0 0 0 vdds No 4
(2)
NA LVCMOS
NA N20 sdrc_a8 0 O 0 0 0 vdds No 4
(2)
NA LVCMOS
NA K21 sdrc_a9 0 O 0 0 0 vdds No 4
(2)
NA LVCMOS
NA Y16 sdrc_a10 0 O 0 0 0 vdds No 4
(2)
NA LVCMOS
NA N21 sdrc_a11 0 O 0 0 0 vdds No 4
(2)
NA LVCMOS
NA R21 sdrc_a12 0 O 0 0 0 vdds No 4
(2)
NA LVCMOS
NA AA15 sdrc_a13 0 O 0 0 0 vdds No 4
(2)
NA LVCMOS
NA Y12 sdrc_a14 0 O 0 0 0 vdds No 4
(2)
NA LVCMOS
(1) NA in this table stands for Not Applicable.(2) The drive strength is programmable vs the capacity load: load range = [2 pF to 6 pF] per default or [6 pF to 12 pF] according to theselected mode.
TERMINAL DESCRIPTION46 Submit Documentation Feedback
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)BALL BALL BUFFER PULLUPBALL BALL TOP PIN NAME RESET REL.MODE [4] TYPE [5] RESET RESET REL. POWER [9] HYS [10] STRENG TH /DOWN IO CELL [13]BOTTOM [1] [2] [3] MODE [8]STATE [6] STATE [7] (mA) [11] TYPE [12]
NA AA18 sdrc_ba0 0 O 0 0 0 vdds No 4
(2)
NA LVCMOS
NA V20 sdrc_ba1 0 O 0 0 0 vdds No 4
(2)
NA LVCMOS
NA Y15 sdrc_cke0 0 O H 1 7 vdds Yes 4
(2)
PU100/ LVCMOSPD100
safe_mode 7
NA Y13 sdrc_cke1 0 O H 1 7 vdds Yes 4
(2)
PU100/ LVCMOSPD100
safe_mode 7
NA A12 sdrc_clk 0 IO L 0 0 vdds Yes 4
(2)
PU100/ LVCMOSPD100
NA D1 sdrc_d0 0 IO L Z 0 vdds Yes 4
(2)
PU100/ LVCMOSPD100
NA G1 sdrc_d1 0 IO L Z 0 vdds Yes 4
(2)
PU100/ LVCMOSPD100
NA G2 sdrc_d2 0 IO L Z 0 vdds Yes 4
(2)
PU100/ LVCMOSPD100
NA E1 sdrc_d3 0 IO L Z 0 vdds Yes 4
(2)
PU100/ LVCMOSPD100
NA D2 sdrc_d4 0 IO L Z 0 vdds Yes 4
(2)
PU100/ LVCMOSPD100
NA E2 sdrc_d5 0 IO L Z 0 vdds Yes 4
(2)
PU100/ LVCMOSPD100
NA B3 sdrc_d6 0 IO L Z 0 vdds Yes 4
(2)
PU100/ LVCMOSPD100
NA B4 sdrc_d7 0 IO L Z 0 vdds Yes 4
(2)
PU100/ LVCMOSPD100
NA A10 sdrc_d8 0 IO L Z 0 vdds Yes 4
(2)
PU100/ LVCMOSPD100
NA B11 sdrc_d9 0 IO L Z 0 vdds Yes 4
(2)
PU100/ LVCMOSPD100
NA A11 sdrc_d10 0 IO L Z 0 vdds Yes 4
(2)
PU100/ LVCMOSPD100
NA B12 sdrc_d11 0 IO L Z 0 vdds Yes 4
(2)
PU100/ LVCMOSPD100
NA A16 sdrc_d12 0 IO L Z 0 vdds Yes 4
(2)
PU100/ LVCMOSPD100
NA A17 sdrc_d13 0 IO L Z 0 vdds Yes 4
(2)
PU100/ LVCMOSPD100
NA B17 sdrc_d14 0 IO L Z 0 vdds Yes 4
(2)
PU100/ LVCMOSPD100
NA B18 sdrc_d15 0 IO L Z 0 vdds Yes 4
(2)
PU100/ LVCMOSPD100
NA B7 sdrc_d16 0 IO L Z 0 vdds Yes 4
(2)
PU100/ LVCMOSPD100
NA A5 sdrc_d17 0 IO L Z 0 vdds Yes 4
(2)
PU100/ LVCMOSPD100
NA B6 sdrc_d18 0 IO L Z 0 vdds Yes 4
(2)
PU100/ LVCMOSPD100
NA A6 sdrc_d19 0 IO L Z 0 vdds Yes 4
(2)
PU100/ LVCMOSPD100
NA A8 sdrc_d20 0 IO L Z 0 vdds Yes 4
(2)
PU100/ LVCMOSPD100
NA B9 sdrc_d21 0 IO L Z 0 vdds Yes 4
(2)
PU100/ LVCMOSPD100
NA A9 sdrc_d22 0 IO L Z 0 vdds Yes 4
(2)
PU100/ LVCMOSPD100
NA B10 sdrc_d23 0 IO L Z 0 vdds Yes 4
(2)
PU100/ LVCMOSPD100
NA C21 sdrc_d24 0 IO L Z 0 vdds Yes 4
(2)
PU100/ LVCMOSPD100
NA D20 sdrc_d25 0 IO L Z 0 vdds Yes 4
(2)
PU100/ LVCMOSPD100
NA B19 sdrc_d26 0 IO L Z 0 vdds Yes 4
(2)
PU100/ LVCMOSPD100
NA C20 sdrc_d27 0 IO L Z 0 vdds Yes 4
(2)
PU100/ LVCMOSPD100
Submit Documentation Feedback TERMINAL DESCRIPTION 47
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)BALL BALL BUFFER PULLUPBALL BALL TOP PIN NAME RESET REL.MODE [4] TYPE [5] RESET RESET REL. POWER [9] HYS [10] STRENG TH /DOWN IO CELL [13]BOTTOM [1] [2] [3] MODE [8]STATE [6] STATE [7] (mA) [11] TYPE [12]
NA D21 sdrc_d28 0 IO L Z 0 vdds Yes 4
(2)
PU100/ LVCMOSPD100
NA E20 sdrc_d29 0 IO L Z 0 vdds Yes 4
(2)
PU100/ LVCMOSPD100
NA E21 sdrc_d30 0 IO L Z 0 vdds Yes 4
(2)
PU100/ LVCMOSPD100
NA G21 sdrc_d31 0 IO L Z 0 vdds Yes 4
(2)
PU100/ LVCMOSPD100
NA H1 sdrc_dm0 0 O 0 0 0 vdds No 4
(2)
NA LVCMOS
NA A14 sdrc_dm1 0 O 0 0 0 vdds No 4
(2)
NA LVCMOS
NA A4 sdrc_dm2 0 O 0 0 0 vdds No 4
(2)
NA LVCMOS
NA A18 sdrc_dm3 0 O 0 0 0 vdds No 4
(2)
NA LVCMOS
NA C2 sdrc_dqs0 0 IO L Z 0 vdds Yes 4
(2)
PU100/ LVCMOSPD100
NA B15 sdrc_dqs1 0 IO L Z 0 vdds Yes 4
(2)
PU100/ LVCMOSPD100
NA B8 sdrc_dqs2 0 IO L Z 0 vdds Yes 4
(2)
PU100/ LVCMOSPD100
NA A19 sdrc_dqs3 0 IO L Z 0 vdds Yes 4
(2)
PU100/ LVCMOSPD100
NA U20 sdrc_ncas 0 O 1 1 0 vdds No 4
(2)
NA LVCMOS
NA B13 sdrc_nclk 0 O 1 1 0 vdds No 4
(2)
NA LVCMOS
NA T21 sdrc_ncs0 0 O 1 1 0 vdds No 4
(2)
NA LVCMOS
NA T20 sdrc_ncs1 0 O 1 1 0 vdds No 4
(2)
NA LVCMOS
NA V21 sdrc_nras 0 O 1 1 0 vdds No 4
(2)
NA LVCMOS
NA Y18 sdrc_nwe 0 O 1 1 0 vdds No 4
(2)
NA LVCMOS
AE21 NA dss_data0 0 IO L L 7 vdds No 4 PU100/ LVCMOSPD100
uart1_cts 2 I
gpio_70 4 IO
safe_mode 7 -
AE22 NA dss_data1 0 IO L L 7 vdds No 4 PU100/ LVCMOSPD100
uart1_rts 2 O
gpio_71 4 IO
safe_mode 7 -
AE23 NA dss_data2 0 IO L L 7 vdds No 4 PU100/ LVCMOSPD100
gpio_72 4 IO
safe_mode 7 -
AE24 NA dss_data3 0 IO L L 7 vdds No 4 PU100/ LVCMOSPD100
gpio_73 4 IO
safe_mode 7 -
AD23 NA dss_data4 0 IO L L 7 vdds No 4 PU100/ LVCMOSPD100
uart3_rx_irrx 2 I
gpio_74 4 IO
safe_mode 7 -
AD24 NA dss_data5 0 IO L L 7 vdds No 4 PU100/ LVCMOSPD100
uart3_tx_irtx 2 O
gpio_75 4 IO
safe_mode 7 -
AC26 NA dss_data10 0 IO L L 7 vdds NA 4 PU100/ LVCMOSPD100
gpio_80 4 IO
safe_mode 7 -
AD26 NA dss_data11 0 IO L L 7 vdds NA 4 PU100/ LVCMOSPD100
TERMINAL DESCRIPTION48 Submit Documentation Feedback
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)BALL BALL BUFFER PULLUPBALL BALL TOP PIN NAME RESET REL.MODE [4] TYPE [5] RESET RESET REL. POWER [9] HYS [10] STRENG TH /DOWN IO CELL [13]BOTTOM [1] [2] [3] MODE [8]STATE [6] STATE [7] (mA) [11] TYPE [12]
gpio_81 4 IO
safe_mode 7 -
AA25 NA dss_data12 0 IO L L 7 vdds NA 4 PU100/ LVCMOSPD100
gpio_82 4 IO
safe_mode 7 -
Y25 NA dss_data13 0 IO L L 7 vdds NA 4 PU100/ LVCMOSPD100
gpio_83 4 IO
safe_mode 7 -
AA26 NA dss_data14 0 IO L L 7 vdds NA 4 PU100/ LVCMOSPD100
gpio_84 4 IO
safe_mode 7 -
AB26 NA dss_data15 0 IO L L 7 vdds NA 4 PU100/ LVCMOSPD100
gpio_85 4 IO
safe_mode 7 -
F25 NA dss_data20 0 O H H 7 vdds Yes 4 PU100/ LVCMOSPD100
mcspi3_somi 2 IO
dss_data2 3 IO
gpio_90 4 IO
safe_mode 7 -
AC25 NA dss_data22 0 O L L 7 vdds NA 4 PU100/ LVCMOSPD100
mcspi3_cs1 2 O
dss_data4 3 IO
gpio_92 4 IO
safe_mode 7 -
AB25 NA dss_data23 0 O L L 7 vdds NA 4 PU100/ LVCMOSPD100
dss_data5 3 IO
gpio_93 4 IO
safe_mode 7 -
G25 NA dss_pclk 0 O H H 7 vdds Yes 4 PU100/ LVCMOSPD100
gpio_66 4 IO
hw_dbg12 5 O
safe_mode 7 -
J2 NA gpmc_a1 0 O L L 7 vdds Yes 4
(2)
PU100/ LVCMOSPD100
gpio_34 4 IO
safe_mode 7 -
H1 NA gpmc_a2 0 O L L 7 vdds Yes 4
(2)
PU100/ LVCMOSPD100
gpio_35 4 IO
safe_mode 7 -
H2 NA gpmc_a3 0 O L L 7 vdds Yes 4
(2)
PU100/ LVCMOSPD100
gpio_36 4 IO
safe_mode 7 -
G2 NA gpmc_a4 0 O L L 7 vdds Yes 4
(2)
PU100/ LVCMOSPD100
gpio_37 4 IO
safe_mode 7 -
F1 NA gpmc_a5 0 O L L 7 vdds Yes 4
(2)
PU100/ LVCMOSPD100
gpio_38 4 IO
Submit Documentation Feedback TERMINAL DESCRIPTION 49
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)BALL BALL BUFFER PULLUPBALL BALL TOP PIN NAME RESET REL.MODE [4] TYPE [5] RESET RESET REL. POWER [9] HYS [10] STRENG TH /DOWN IO CELL [13]BOTTOM [1] [2] [3] MODE [8]STATE [6] STATE [7] (mA) [11] TYPE [12]
safe_mode 7 -
F2 NA gpmc_a6 0 O H H 7 vdds Yes 4
(2)
PU100/ LVCMOSPD100
gpio_39 4 IO
safe_mode 7 -
E1 NA gpmc_a7 0 O H H 7 vdds Yes 4
(2)
PU100/ LVCMOSPD100
gpio_40 4 IO
safe_mode 7 -
E2 NA gpmc_a8 0 O H H 7 vdds Yes 4
(2)
PU100/ LVCMOSPD100
gpio_41 4 IO
safe_mode 7 -
D1 NA gpmc_a9 0 O H H 7 vdds Yes 4
(2)
PU100/ LVCMOSPD100
sys_ndmareq 1 I2
gpio_42 4 IO
safe_mode 7 -
D2 NA gpmc_a10 0 O H H 7 vdds Yes 4
(2)
PU100/ LVCMOSPD100
sys_ndmareq 1 I3
gpio_43 4 IO
safe_mode 7 -
N1 L1 gpmc_clk 0 O L 0 0 vdds Yes 4
(2)
PU100/ LVCMOSPD100
gpio_59 4 IO
safe_mode 7 -
AA2 U2 gpmc_d0 0 IO H H 0 vdds Yes 4
(2)
PU100/ LVCMOSPD100
AA1 U1 gpmc_d1 0 IO H H 0 vdds Yes 4
(2)
PU100/ LVCMOSPD100
AC2 V2 gpmc_d2 0 IO H H 0 vdds Yes 4
(2)
PU100/ LVCMOSPD100
AC1 V1 gpmc_d3 0 IO H H 0 vdds Yes 4
(2)
PU100/ LVCMOSPD100
AE5 AA3 gpmc_d4 0 IO H H 0 vdds Yes 4
(2)
PU100/ LVCMOSPD100
AD6 AA4 gpmc_d5 0 IO H H 0 vdds Yes 4
(2)
PU100/ LVCMOSPD100
AD5 Y3 gpmc_d6 0 IO H H 0 vdds Yes 4
(2)
PU100/ LVCMOSPD100
AC5 Y4 gpmc_d7 0 IO H H 0 vdds Yes 4
(2)
PU100/ LVCMOSPD100
V1 R1 gpmc_d8 0 IO H H 0 vdds Yes 4
(2)
PU100/ LVCMOSPD100
gpio_44 4 IO
safe_mode 7 -
Y1 T1 gpmc_d9 0 IO H H 0 vdds Yes 4
(2)
PU100/ LVCMOSPD100
gpio_45 4 IO
safe_mode 7 -
T1 N1 gpmc_d10 0 IO H H 0 vdds Yes 4
(2)
PU100/ LVCMOSPD100
gpio_46 4 IO
safe_mode 7 -
U2 P2 gpmc_d11 0 IO H H 0 vdds Yes 4
(2)
PU100/ LVCMOSPD100
gpio_47 4 IO
safe_mode 7 -
TERMINAL DESCRIPTION50 Submit Documentation Feedback
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)BALL BALL BUFFER PULLUPBALL BALL TOP PIN NAME RESET REL.MODE [4] TYPE [5] RESET RESET REL. POWER [9] HYS [10] STRENG TH /DOWN IO CELL [13]BOTTOM [1] [2] [3] MODE [8]STATE [6] STATE [7] (mA) [11] TYPE [12]
U1 P1 gpmc_d12 0 IO H H 0 vdds Yes 4
(2)
PU100/ LVCMOSPD100
gpio_48 4 IO
safe_mode 7 -
P1 M1 gpmc_d13 0 IO H H 0 vdds Yes 4
(2)
PU100/ LVCMOSPD100
gpio_49 4 IO
safe_mode 7 -
L2 J2 gpmc_d14 0 IO H H 0 vdds Yes 4
(2)
PU100/ LVCMOSPD100
gpio_50 4 IO
safe_mode 7 -
M2 K2 gpmc_d15 0 IO H H 0 vdds Yes 4
(2)
PU100/ LVCMOSPD100
gpio_51 4 IO
safe_mode 7 -
AD10 AA9 gpmc_nadv_ 0 O 0 0 0 vdds No 4
(2)
NA LVCMOSale
K2 NA gpmc_nbe0_ 0 O L 0 0 vdds Yes 4
(2)
PU100/ LVCMOScle PD100
gpio_60 4 IO
safe_mode 7 -
J1 NA gpmc_nbe1 0 O L L 7 vdds Yes 4
(2)
PU100/ LVCMOSPD100
gpio_61 4 IO
safe_mode 7 -
AD8 AA8 gpmc_ncs0 0 O 1 1 0 vdds No 4
(2)
NA LVCMOS
AD1 W1 gpmc_ncs1 0 O H 1 0 vdds Yes 4
(2)
PU100/ LVCMOSPD100
gpio_52 4 IO
safe_mode 7 -
A3 NA gpmc_ncs2 0 O H H 7 vdds Yes 4
(2)
PU100/ LVCMOSPD100
gpio_53 4 IO
safe_mode 7 -
B6 NA gpmc_ncs3 0 O H H 7 vdds Yes 4
(2)
PU100/ LVCMOSPD100
sys_ndmareq 1 I0
gpio_54 4 IO
safe_mode 7 -
B4 NA gpmc_ncs4 0 O H H 7 vdds Yes 4
(2)
PU100/ LVCMOSPD100
sys_ndmareq 1 I1
mcbsp4_clkx 2 IO
gpt9_pwm_e 3 IOvt
gpio_55 4 IO
safe_mode 7 -
C4 NA gpmc_ncs5 0 O H H 7 vdds Yes 4
(2)
PU100/ LVCMOSPD100
sys_ndmareq 1 I2
mcbsp4_dr 2 I
gpt10_pwm_ 3 IOevt
gpio_56 4 IO
safe_mode 7 -
B5 NA gpmc_ncs6 0 O H H 7 vdds Yes 4
(2)
PU100/ LVCMOSPD100
Submit Documentation Feedback TERMINAL DESCRIPTION 51
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)BALL BALL BUFFER PULLUPBALL BALL TOP PIN NAME RESET REL.MODE [4] TYPE [5] RESET RESET REL. POWER [9] HYS [10] STRENG TH /DOWN IO CELL [13]BOTTOM [1] [2] [3] MODE [8]STATE [6] STATE [7] (mA) [11] TYPE [12]
sys_ndmareq 1 I3
mcbsp4_dx 2 IO
gpt11_pwm_ 3 IOevt
gpio_57 4 IO
safe_mode 7 -
C5 NA gpmc_ncs7 0 O H H 7 vdds Yes 4
(2)
PU100/ LVCMOSPD100
gpmc_io_dir 1 O
mcbsp4_fsx 2 IO
gpt8_pwm_e 3 IOvt
gpio_58 4 IO
safe_mode 7 -
N2 L2 gpmc_noe 0 O 1 1 0 vdds No 4
(2)
NA LVCMOS
M1 K1 gpmc_nwe 0 O 1 1 0 vdds No 4
(2)
NA LVCMOS
AC6 Y5 gpmc_nwp 0 O L 0 0 vdds Yes 4
(2)
PU100/ LVCMOSPD100
gpio_62 4 IO
safe_mode 7 -
AC11 Y10 gpmc_wait0 0 I H H 0 vdds Yes 4
(2)
PU100/ LVCMOSPD100
AC8 Y8 gpmc_wait1 0 I H H 7 vdds Yes 4
(2)
PU100/ LVCMOSPD100
gpio_63 4 IO
safe_mode 7 -
B3 NA gpmc_wait2 0 I H H 7 vdds Yes 4
(2)
PU100/ LVCMOSPD100
gpio_64 4 IO
safe_mode 7 -
C6 NA gpmc_wait3 0 I H H 7 vdds Yes 4
(2)
PU100/ LVCMOSPD100
sys_ndmareq 1 I1
gpio_65 4 IO
safe_mode 7 -
W19 NA hsusb0_clk 0 I L L 7 vdds Yes 4
(3)
PU100/ LVCMOSPD100
gpio_120 4 IO
safe_mode 7 -
V20 NA hsusb0_data 0 IO L L 7 vdds Yes 4
(3)
PU100/ LVCMOS0 PD100
uart3_tx_irtx 2 O
gpio_125 4 IO
safe_mode 7 -
Y20 NA hsusb0_data 0 IO L L 7 vdds Yes 4
(3)
PU100/ LVCMOS1 PD100
uart3_rx_irrx 2 I
gpio_130 4 IO
safe_mode 7 -
V18 NA hsusb0_data 0 IO L L 7 vdds Yes 4
(3)
PU100/ LVCMOS2 PD100
uart3_rts_sd 2 O
gpio_131 4 IO
safe_mode 7 -
W20 NA hsusb0_data 0 IO L L 7 vdds Yes 4
(3)
PU100/ LVCMOS3 PD100
(3) The capacity load range is [2 pf to 6 pF].
TERMINAL DESCRIPTION52 Submit Documentation Feedback
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)BALL BALL BUFFER PULLUPBALL BALL TOP PIN NAME RESET REL.MODE [4] TYPE [5] RESET RESET REL. POWER [9] HYS [10] STRENG TH /DOWN IO CELL [13]BOTTOM [1] [2] [3] MODE [8]STATE [6] STATE [7] (mA) [11] TYPE [12]
uart3_cts_rct 2 IOx
gpio_169 4 IO
safe_mode 7 -
W17 NA hsusb0_data 0 IO L L 7 vdds Yes 4
(3)
PU100/ LVCMOS4 PD100
gpio_188 4 IO
safe_mode 7 -
Y18 NA hsusb0_data 0 IO L L 7 vdds Yes 4
(3)
PU100/ LVCMOS5 PD100
gpio_189 4 IO
safe_mode 7 -
Y19 NA hsusb0_data 0 IO L L 7 vdds Yes 4
(3)
PU100/ LVCMOS6 PD100
gpio_190 4 IO
safe_mode 7 -
Y17 NA hsusb0_data 0 IO L L 7 vdds Yes 4
(3)
PU100/ LVCMOS7 PD100
gpio_191 4 IO
safe_mode 7 -
V19 NA hsusb0_dir 0 I L L 7 vdds Yes 4
(3)
PU100/ LVCMOSPD100
gpio_122 4 IO
safe_mode 7 -
W18 NA hsusb0_nxt 0 I L L 7 vdds Yes 4
(3)
PU100/ LVCMOSPD100
gpio_124 4 IO
safe_mode 7 -
U20 NA hsusb0_stp 0 O H H 7 vdds Yes 4
(3)
PU100/ LVCMOSPD100
gpio_121 4 IO
safe_mode 7 -
U15 NA jtag_ntrst 0 I L L 0 vdds Yes NA PU100/ LVCMOSPD100
W13 NA jtag_rtck 0 O L 0 0 vdds Yes 4 PU100/ LVCMOSPD100
V14 NA jtag_tck 0 I L L 0 vdds Yes NA PU100/ LVCMOSPD100
U16 NA jtag_tdi 0 I H H 0 vdds Yes NA PU100/ LVCMOSPD100
Y13 NA jtag_tdo 0 O L Z 0 vdds Yes 4 PU100/ LVCMOSPD100
V15 NA jtag_tms_tms 0 IO H H 0 vdds Yes 4 PU100/ LVCMOSc PD100
N19 NA mmc1_clk 0 O L L 7 vdds_mmc1 Yes 8 PU100/ LVCMOSPD100
gpio_120 4 IO
safe_mode 7 -
L18 NA mmc1_cmd 0 IO L L 7 vdds_mmc1 Yes 8 PU100/ LVCMOSPD100
gpio_121 4 IO
safe_mode 7 -
M19 NA mmc1_dat0 0 IO L L 7 vdds_mmc1 Yes 8 PU100/ LVCMOSPD100
gpio_122 4 IO
safe_mode 7 -
M18 NA mmc1_dat1 0 IO L L 7 vdds_mmc1 Yes 8 PU100/ LVCMOSPD100
gpio_123 4 IO
safe_mode 7 -
Submit Documentation Feedback TERMINAL DESCRIPTION 53
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)BALL BALL BUFFER PULLUPBALL BALL TOP PIN NAME RESET REL.MODE [4] TYPE [5] RESET RESET REL. POWER [9] HYS [10] STRENG TH /DOWN IO CELL [13]BOTTOM [1] [2] [3] MODE [8]STATE [6] STATE [7] (mA) [11] TYPE [12]
K18 NA mmc1_dat2 0 IO L L 7 vdds_mmc1 Yes 8 PU100/ LVCMOSPD100
gpio_124 4 IO
safe_mode 7 -
N20 NA mmc1_dat3 0 IO L L 7 vdds_mmc1 Yes 8 PU100/ LVCMOSPD100
gpio_125 4 IO
safe_mode 7 -
M20 NA mmc1_dat4 0 IO L L 7 vdds_mmc1a No 8 PU/PD
(4)
LVCMOS
gpio_126 4 IO
safe_mode 7 -
P17 NA mmc1_dat5 0 IO L L 7 vdds_mmc1a No 8 PU/PD
(4)
LVCMOS
gpio_127 4 IO
safe_mode 7 -
P18 NA mmc1_dat6 0 IO L L 7 vdds_mmc1a No 8 PU/PD
(4)
LVCMOS
gpio_128 4 IO
safe_mode 7 -
P19 NA mmc1_dat7 0 IO L L 7 vdds_mmc1a No 8 PU/PD
(4)
LVCMOS
gpio_129 4 IO
safe_mode 7 -
J25 NA i2c1_scl 0 IOD H H 0 vdds Yes 3 PU100/ Open DrainPD100
J24 NA i2c1_sda 0 IOD H H 0 vdds Yes 3 PU100/ Open DrainPD100
C2 NA i2c2_scl 0 IOD H H 7 vdds Yes 3 PU100/ Open DrainPD100
gpio_168 4 IO 4
safe_mode 7 - 4
C1 NA i2c2_sda 0 IOD H H 7 vdds Yes 3 PU100/ Open DrainPD100
gpio_183 4 IO 4
safe_mode 7 - 4
AB4 NA i2c3_scl 0 IOD H H 7 vdds Yes 3 PU100/ Open DrainPD100
gpio_184 4 IO 4
safe_mode 7 - 4
AC4 NA i2c3_sda 0 IOD H H 7 vdds Yes 3 PU100/ Open DrainPD100
gpio_185 4 IO 4
safe_mode 7 - 4
U19 NA mcbsp1_clkr 0 IO L L 7 vdds Yes 4
(3)
PU100/ LVCMOSPD100
mcspi4_clk 1 IO
gpio_156 4 IO
safe_mode 7 -
T17 NA mcbsp1_clkx 0 IO L L 7 vdds Yes 4
(3)
PU100/ LVCMOSPD100
mcbsp3_clkx 2 IO
gpio_162 4 IO
safe_mode 7 -
T20 NA mcbsp1_dr 0 I L L 7 vdds Yes 4
(3)
PU100/ LVCMOSPD100
mcspi4_somi 1 IO
mcbsp3_dr 2 I
gpio_159 4 IO
safe_mode 7 -
(4) The PU nominal drive strength of this IO cell is equal to 25 mA @ 1.8 V and 41.6 mA @ 3.0 V. The PD nominal drive strength of this IOcell is equal to 1 mA @ 1.8 V and 1.66 mA @ 3.0 V.
TERMINAL DESCRIPTION54 Submit Documentation Feedback
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)BALL BALL BUFFER PULLUPBALL BALL TOP PIN NAME RESET REL.MODE [4] TYPE [5] RESET RESET REL. POWER [9] HYS [10] STRENG TH /DOWN IO CELL [13]BOTTOM [1] [2] [3] MODE [8]STATE [6] STATE [7] (mA) [11] TYPE [12]
U17 NA mcbsp1_dx 0 IO L L 7 vdds Yes 4
(3)
PU100/ LVCMOSPD100
mcspi4_simo 1 IO
mcbsp3_dx 2 IO
gpio_158 4 IO
safe_mode 7 -
V17 NA mcbsp1_fsr 0 IO L L 7 vdds Yes 4
(3)
PU100/ LVCMOSPD100
cam_global_r 2 IOeset
gpio_157 4 IO
safe_mode 7 -
P20 NA mcbsp1_fsx 0 IO L L 7 vdds Yes 4
(3)
PU100/ LVCMOSPD100
mcspi4_cs0 1 IO
mcbsp3_fsx 2 IO
gpio_161 4 IO
safe_mode 7 -
R18 NA mcbsp2_clkx 0 IO L L 7 vdds Yes 4
(5)
PU100/ LVCMOSPD100
gpio_117 4 IO
safe_mode 7 -
T18 NA mcbsp2_dr 0 I L L 7 vdds Yes 4
(5)
PU100/ LVCMOSPD100
gpio_118 4 IO
safe_mode 7 -
R19 NA mcbsp2_dx 0 IO L L 7 vdds Yes 4
(5)
PU100/ LVCMOSPD100
gpio_119 4 IO
safe_mode 7 -
U18 NA mcbsp2_fsx 0 IO L L 7 vdds Yes 4
(5)
PU100/ LVCMOSPD100
gpio_116 4 IO
safe_mode 7 -
P9 NA mcspi1_clk 0 IO L L 7 vdds Yes 4
(5)
PU100/ LVCMOSPD100
mmc2_dat4 1 IO
gpio_171 4 IO
safe_mode 7 -
R7 NA mcspi1_cs0 0 IO H H 7 vdds Yes 4
(5)
PU100/ LVCMOSPD100
mmc2_dat7 1 IO
gpio_174 4 IO
safe_mode 7 -
R9 NA mcspi1_cs2 0 O H H 7 vdds Yes 4
(5)
PU100/ LVCMOSPD100
mmc3_clk 3 O
gpio_176 4 IO
safe_mode 7 -
P8 NA mcspi1_simo 0 IO L L 7 vdds Yes 4
(5)
PU100/ LVCMOSPD100
mmc2_dat5 1 IO
gpio_172 4 IO
safe_mode 7 -
P7 NA mcspi1_somi 0 IO L L 7 vdds Yes 4
(5)
PU100/ LVCMOSPD100
mmc2_dat6 1 IO
(5) The buffer strength of this IO cell is programmable (2, 4, 6, or 8 mA) according to the selected mode; the default value is described inthe above table.
Submit Documentation Feedback TERMINAL DESCRIPTION 55
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)BALL BALL BUFFER PULLUPBALL BALL TOP PIN NAME RESET REL.MODE [4] TYPE [5] RESET RESET REL. POWER [9] HYS [10] STRENG TH /DOWN IO CELL [13]BOTTOM [1] [2] [3] MODE [8]STATE [6] STATE [7] (mA) [11] TYPE [12]
gpio_173 4 IO
safe_mode 7 -
W7 NA mcspi2_clk 0 IO L L 7 vdds Yes 4
(3)
PU100/ LVCMOSPD100
hsusb2_tll_d 2 IOata7
hsusb2_data 3 O7
gpio_178 4 IO
safe_mode 7 -
V8 NA mcspi2_cs0 0 IO H H 7 vdds Yes 4
(3)
PU100/ LVCMOSPD100
gpt11_pwm_ 1 IOevt
hsusb2_tll_d 2 IOata6
hsusb2_data 3 O6
gpio_181 4 IO
safe_mode 7 -
W8 NA mcspi2_simo 0 IO L L 7 vdds Yes 4
(3)
PU100/ LVCMOSPD100
gpt9_pwm_e 1 IOvt
hsusb2_tll_d 2 IOata4
hsusb2_data 3 I4
gpio_179 4 IO
safe_mode 7 -
U8 NA mcspi2_somi 0 IO L L 7 vdds Yes 4
(3)
PU100/ LVCMOSPD100
gpt10_pwm_ 1 IOevt
hsusb2_tll_d 2 IOata5
hsusb2_data 3 O5
gpio_180 4 IO
safe_mode 7 -
W10 NA mmc2_clk 0 O L L 7 vdds Yes 4
(3)
PU100/ LVCMOSPD100
mcspi3_clk 1 IO
gpio_130 4 IO
safe_mode 7 -
R10 NA mmc2_cmd 0 IO H H 7 vdds Yes 4
(3)
PU100/ LVCMOSPD100
mcspi3_simo 1 IO
gpio_131 4 IO
safe_mode 7 -
T10 NA mmc2_dat0 0 IO H H 7 vdds Yes 4
(3)
PU100/ LVCMOSPD100
mcspi3_somi 1 IO
gpio_132 4 IO
safe_mode 7 -
T9 NA mmc2_dat1 0 IO H H 7 vdds Yes 4
(3)
PU100/ LVCMOSPD100
gpio_133 4 IO
safe_mode 7 -
U10 NA mmc2_dat2 0 IO H H 7 vdds Yes 4
(3)
PU100/ LVCMOSPD100
mcspi3_cs1 1 O
TERMINAL DESCRIPTION56 Submit Documentation Feedback
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)BALL BALL BUFFER PULLUPBALL BALL TOP PIN NAME RESET REL.MODE [4] TYPE [5] RESET RESET REL. POWER [9] HYS [10] STRENG TH /DOWN IO CELL [13]BOTTOM [1] [2] [3] MODE [8]STATE [6] STATE [7] (mA) [11] TYPE [12]
gpio_134 4 IO
safe_mode 7 -
U9 NA mmc2_dat3 0 IO H H 7 vdds Yes 4
(3)
PU100/ LVCMOSPD100
mcspi3_cs0 1 IO
gpio_135 4 IO
safe_mode 7 -
V10 NA mmc2_dat4 0 IO L L 7 vdds Yes 4
(3)
PU100/ LVCMOSPD100
mmc2_dir_da 1 Ot0
mmc3_dat0 3 IO
gpio_136 4 IO
safe_mode 7 -
R2 NA uart1_rts 0 O L L 7 vdds Yes 4
(3)
PU100/ LVCMOSPD100
gpio_149 4 IO
safe_mode 7 -
H3 NA uart1_rx 0 I L L 7 vdds Yes 4
(3)
PU100/ LVCMOSPD100
mcbsp1_clkr 2 IO
mcspi4_clk 3 IO
gpio_151 4 IO
safe_mode 7 -
L4 NA uart1_tx 0 O L L 7 vdds Yes 4
(3)
PU100/ LVCMOSPD100
gpio_148 4 IO
safe_mode 7 -
Y24 NA uart2_cts 0 I H H 7 vdds Yes 4 PU100/ LVCMOSPD100
mcbsp3_dx 1 IO
gpt9_pwm_e 2 IOvt
gpio_144 4 IO
safe_mode 7 -
AA24 NA uart2_rts 0 O H H 7 vdds Yes 4 PU100/ LVCMOSPD100
mcbsp3_dr 1 I
gpt10_pwm_ 2 IOevt
gpio_145 4 IO
safe_mode 7 -
AD21 NA uart2_rx 0 I H H 7 vdds Yes 4 PU100/ LVCMOSPD100
mcbsp3_fsx 1 IO
gpt8_pwm_e 2 IOvt
gpio_147 4 IO
safe_mode 7 -
AD22 NA uart2_tx 0 O H H 7 vdds Yes 4 PU100/ LVCMOSPD100
mcbsp3_clkx 1 IO
gpt11_pwm_ 2 IOevt
gpio_146 4 IO
safe_mode 7 -
F23 NA uart3_cts_rct 0 IO H H 7 vdds Yes 4 PU100/ LVCMOSx PD100
gpio_163 4 IO
safe_mode 7 -
Submit Documentation Feedback TERMINAL DESCRIPTION 57
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)BALL BALL BUFFER PULLUPBALL BALL TOP PIN NAME RESET REL.MODE [4] TYPE [5] RESET RESET REL. POWER [9] HYS [10] STRENG TH /DOWN IO CELL [13]BOTTOM [1] [2] [3] MODE [8]STATE [6] STATE [7] (mA) [11] TYPE [12]
F24 NA uart3_rts_sd 0 O H H 7 vdds Yes 4 PU100/ LVCMOSPD100
gpio_164 4 IO
safe_mode 7 -
H24 NA uart3_rx_irrx 0 I H H 7 vdds Yes 4 PU100/ LVCMOSPD100
gpio_165 4 IO
safe_mode 7 -
G24 NA uart3_tx_irtx 0 O H H 7 vdds Yes 4 PU100/ LVCMOSPD100
gpio_166 4 IO
safe_mode 7 -
J23 NA hdq_sio 0 IOD H H 7 vdds Yes 4 PU100/ LVCMOSPD100
sys_altclk 1 I
i2c2_sccbe 2 O
i2c3_sccbe 3 O
gpio_170 4 IO
safe_mode 7 -
AD15 NA i2c4_scl 0 IOD H H 0 vdds Yes 3 PU100/ Open DrainPD100
sys_nvmode 1 O 41
safe_mode 7 - 4
W16 NA i2c4_sda 0 IOD H H 0 vdds Yes 3 PU100/ Open DrainPD100
sys_nvmode 1 O 42
safe_mode 7 - 4
F3 NA sys_boot0 0 I Z Z 0 vdds Yes 4 PU100/ LVCMOSPD100
gpio_2 4 IO
safe_mode 7 -
D3 NA sys_boot1 0 I Z Z 0 vdds Yes 4 PU100/ LVCMOSPD100
gpio_3 4 IO
safe_mode 7 -
C3 NA sys_boot2 0 I Z Z 0 vdds Yes 4 PU100/ LVCMOSPD100
gpio_4 4 IO
safe_mode 7 -
E3 NA sys_boot3 0 I Z Z 0 vdds Yes 4 PU100/ LVCMOSPD100
gpio_5 4 IO
safe_mode 7 -
E4 NA sys_boot4 0 I Z Z 0 vdds Yes 4 PU100/ LVCMOSPD100
mmc2_dir_da 1 Ot2
gpio_6 4 IO
safe_mode 7 -
G3 NA sys_boot5 0 I Z Z 0 vdds Yes 4 PU100/ LVCMOSPD100
mmc2_dir_da 1 Ot3
gpio_7 4 IO
safe_mode 7 -
D4 NA sys_boot6 0 I Z Z 0 vdds Yes 4 PU100/ LVCMOSPD100
gpio_8 4 IO
safe_mode 7 -
TERMINAL DESCRIPTION58 Submit Documentation Feedback
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)BALL BALL BUFFER PULLUPBALL BALL TOP PIN NAME RESET REL.MODE [4] TYPE [5] RESET RESET REL. POWER [9] HYS [10] STRENG TH /DOWN IO CELL [13]BOTTOM [1] [2] [3] MODE [8]STATE [6] STATE [7] (mA) [11] TYPE [12]
AE14 NA sys_clkout1 0 O L L 7 vdds Yes 4 PU100/ LVCMOSPD100
gpio_10 4 IO
safe_mode 7 -
W11 NA sys_clkout2 0 O L L 7 vdds Yes 4
(3)
PU100/ LVCMOSPD100
gpio_186 4 IO
safe_mode 7 -
W15 NA sys_clkreq 0 IO 0 1 0 vdds Yes 4 PU100/ LVCMOSPD100
gpio_1 4 IO
safe_mode 7 -
V16 NA sys_nirq 0 I H H 7 vdds Yes 4 PU100/ LVCMOSPD100
gpio_0 4 IO
safe_mode 7 -
V13 NA sys_nrespwr 0 I Z I NA vdds Yes NA NA LVCMOSon
AD7 AA5 sys_nreswar 0 IOD 0 1 (PU) 0 vdds Yes 4 PU100/ LVCMOSm PD100
gpio_30 4 IO Open Drain
safe_mode 7 -
V12 NA sys_off_mod 0 O 0 L 7 vdds Yes 4 PU100/ LVCMOSe PD100
gpio_9 4 IO
safe_mode 7 -
AF19 NA sys_xtalin 0 I Z I NA vdds Yes NA NA LVCMOS
AF20 NA sys_xtalout 0 O Z O NA vdds Yes NA NA LVCMOS
W26 NA tv_out1 0 AO Z 0 0 vdda_dac No 8 NA 10-bit DAC
V26 NA tv_out2 0 AO Z 0 0 vdda_dac No 8 NA 10-bit DAC
W25 NA tv_vfb1 0 O Z NA 0 vdda_dac No 2 NA 10-bit DAC
U24 NA tv_vfb2 0 O Z NA 0 vdda_dac No 2 NA 10-bit DAC
V23 NA tv_vref 0 I Z NA 0 vdda_dac No NA NA 10-bit DAC
AE20 NA sys_32k 0 I Z I NA vdds Yes NA NA LVCMOS
A24 NA cam_d2 0 I L L 7 vdds Yes 4
(3)
PU100/ LVCMOSPD100
gpio_101 4 IO
hw_dbg4 5 O
safe_mode 7 -
B24 NA cam_d3 0 I L L 7 vdds Yes 4
(3)
PU100/ LVCMOSPD100
gpio_102 4 IO
hw_dbg5 5 O
safe_mode 7 -
D24 NA cam_d4 0 I L L 7 vdds Yes 4
(3)
PU100/ LVCMOSPD100
gpio_103 4 IO
hw_dbg6 5 O
safe_mode 7 -
C24 NA cam_d5 0 I L L 7 vdds Yes 4
(3)
PU100/ LVCMOSPD100
gpio_104 4 IO
hw_dbg7 5 O
safe_mode 7 -
D25 NA cam_d10 0 I L L 7 vdds Yes 4
(3)
PU100/ LVCMOSPD100
gpio_109 4 IO
hw_dbg8 5 O
safe_mode 7 -
Submit Documentation Feedback TERMINAL DESCRIPTION 59
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)BALL BALL BUFFER PULLUPBALL BALL TOP PIN NAME RESET REL.MODE [4] TYPE [5] RESET RESET REL. POWER [9] HYS [10] STRENG TH /DOWN IO CELL [13]BOTTOM [1] [2] [3] MODE [8]STATE [6] STATE [7] (mA) [11] TYPE [12]
E26 NA cam_d11 0 I L L 7 vdds Yes 4
(3)
PU100/ LVCMOSPD100
gpio_110 4 IO
hw_dbg9 5 O
safe_mode 7 -
B23 NA cam_fld 0 IO L L 7 vdds Yes 4
(3)
PU100/ LVCMOSPD100
cam_global_r 2 IOeset
gpio_98 4 IO
hw_dbg3 5 O
safe_mode 7 -
C23 NA cam_hs 0 IO L L 7 vdds Yes 4
(3)
PU100/ LVCMOSPD100
gpio_94 4 IO
hw_dbg0 5 O
safe_mode 7 -
C26 NA cam_pclk 0 I L L 7 vdds Yes 4
(3)
PU100/ LVCMOSPD100
gpio_97 4 IO
hw_dbg2 5 O
safe_mode 7 -
D26 NA cam_strobe 0 O L L 7 vdds Yes 4
(3)
PU100/ LVCMOSPD100
gpio_126 4 IO
hw_dbg11 5 O
safe_mode 7 -
C25 NA cam_xclka 0 O L L 7 vdds Yes 4
(3)
PU100/ LVCMOSPD100
gpio_96 4 IO
safe_mode 7 -
E25 NA cam_xclkb 0 O L L 7 vdds Yes 4
(3)
PU100/ LVCMOSPD100
gpio_111 4 IO
safe_mode 7 -
P25 NA cam_d6 0 I L L 7 vdds NA 4 PU100/ SubLVDSPD100
gpio_105 4 IO
safe_mode 7 -
P26 NA cam_d7 0 I L L 7 vdds NA 4 PU100/ SubLVDSPD100
gpio_106 4 IO
safe_mode 7 -
N25 NA cam_d8 0 I L L 7 vdds NA 4 PU100/ SubLVDSPD100
gpio_107 4 IO
safe_mode 7 -
N26 NA cam_d9 0 I L L 7 vdds NA 4 PU100/ SubLVDSPD100
gpio_108 4 IO
safe_mode 7 -
D23 NA cam_vs 0 IO L L 7 vdds Yes 4
(3)
PU100/ LVCMOSPD100
gpio_95 4 IO
hw_dbg1 5 O
safe_mode 7 -
A23 NA cam_wen 0 I L L 7 vdds Yes 4
(3)
PU100/ LVCMOSPD100
cam_shutter 2 O
gpio_167 4 IO
TERMINAL DESCRIPTION60 Submit Documentation Feedback
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)BALL BALL BUFFER PULLUPBALL BALL TOP PIN NAME RESET REL.MODE [4] TYPE [5] RESET RESET REL. POWER [9] HYS [10] STRENG TH /DOWN IO CELL [13]BOTTOM [1] [2] [3] MODE [8]STATE [6] STATE [7] (mA) [11] TYPE [12]
hw_dbg10 5 O
safe_mode 7 -
F26 NA dss_acbias 0 O L L 7 vdds Yes 8 PU100/ LVCMOSPD100
gpio_69 4 IO
safe_mode 7 -
G26 NA dss_data6 0 IO L L 7 vdds Yes 8 PU100/ LVCMOSPD100
uart1_tx 2 O
gpio_76 4 IO
hw_dbg14 5 O
safe_mode 7 -
H25 NA dss_data7 0 IO L L 7 vdds Yes 8 PU100/ LVCMOSPD100
uart1_rx 2 I
gpio_77 4 IO
hw_dbg15 5 O
safe_mode 7 -
H26 NA dss_data8 0 IO L L 7 vdds Yes 8 PU100/ LVCMOSPD100
gpio_78 4 IO
hw_dbg16 5 O
safe_mode 7 -
J26 NA dss_data9 0 IO L L 7 vdds Yes 8 PU100/ LVCMOSPD100
gpio_79 4 IO
hw_dbg17 5 O
safe_mode 7 -
L25 NA dss_data16 0 IO L L 7 vdds Yes 8 PU100/ LVCMOSPD100
gpio_86 4 IO
safe_mode 7 -
L26 NA dss_data17 0 IO L L 7 vdds Yes 8 PU100/ LVCMOSPD100
gpio_87 4 IO
safe_mode 7 -
M24 NA dss_data18 0 IO L L 7 vdds Yes 8 PU100/ LVCMOSPD100
mcspi3_clk 2 IO
dss_data0 3 IO
gpio_88 4 IO
safe_mode 7 -
M26 NA dss_data19 0 IO L L 7 vdds Yes 8 PU100/ LVCMOSPD100
mcspi3_simo 2 IO
dss_data1 3 IO
gpio_89 4 IO
safe_mode 7 -
N24 NA dss_data21 0 O L L 7 vdds Yes 8 PU100/ LVCMOSPD100
mcspi3_cs0 2 IO
dss_data3 3 IO
gpio_91 4 IO
safe_mode 7 -
K24 NA dss_hsync 0 O H H 7 vdds Yes 4 PU100/ LVCMOSPD100
gpio_67 4 IO
hw_dbg13 5 O
Submit Documentation Feedback TERMINAL DESCRIPTION 61
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)BALL BALL BUFFER PULLUPBALL BALL TOP PIN NAME RESET REL.MODE [4] TYPE [5] RESET RESET REL. POWER [9] HYS [10] STRENG TH /DOWN IO CELL [13]BOTTOM [1] [2] [3] MODE [8]STATE [6] STATE [7] (mA) [11] TYPE [12]
safe_mode 7 -
M25 NA dss_vsync 0 O H H 7 vdds Yes 4 PU100/ LVCMOSPD100
gpio_68 4 IO
safe_mode 7 -
R8 NA mcspi1_cs1 0 O H H 7 vdds Yes 4
(5)
PU100/ LVCMOSPD100
mmc3_cmd 3 IO
gpio_175 4 IO
safe_mode 7 -
T8 NA mcspi1_cs3 0 O H H 7 vdds Yes 4
(3)
PU100/ LVCMOSPD100
hsusb2_tll_d 2 IOata2
hsusb2_data 3 IO2
gpio_177 4 IO
mm2_txdat 5 IO
safe_mode 7 -
V9 NA mcspi2_cs1 0 O L L 7 vdds Yes 4
(3)
PU100/ LVCMOSPD100
gpt8_pwm_e 1 IOvt
hsusb2_tll_d 2 IOata3
hsusb2_data 3 IO3
gpio_182 4 IO
mm2_txen_n 5 IO
safe_mode 7 -
T19 NA mcbsp_clks 0 I L L 7 vdds Yes 4
(3)
PU100/ LVCMOSPD100
cam_shutter 2 O
gpio_160 4 IO
uart1_cts 5 I
safe_mode 7 -
AB2 NA etk_clk 0 O H H 4 vdds Yes 4
(3)
PU100/ LVCMOSPD100
mcbsp5_clkx 1 IO
mmc3_clk 2 O
hsusb1_stp 3 O
gpio_12 4 IO
mm1_rxdp 5 IO
hsusb1_tll_st 6 Ip
hw_dbg0 7 O
AB3 NA etk_ctl 0 O H H 4 vdds Yes 4
(3)
PU100/ LVCMOSPD100
mmc3_cmd 2 IO
hsusb1_clk 3 O
gpio_13 4 IO
hsusb1_tll_cl 6 Ok
hw_dbg1 7 O
AC3 NA etk_d0 0 O H H 4 vdds Yes 4
(3)
PU100/ LVCMOSPD100
mcspi3_simo 1 IO
mmc3_dat4 2 IO
hsusb1_data 3 IO0
TERMINAL DESCRIPTION62 Submit Documentation Feedback
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)BALL BALL BUFFER PULLUPBALL BALL TOP PIN NAME RESET REL.MODE [4] TYPE [5] RESET RESET REL. POWER [9] HYS [10] STRENG TH /DOWN IO CELL [13]BOTTOM [1] [2] [3] MODE [8]STATE [6] STATE [7] (mA) [11] TYPE [12]
gpio_14 4 IO
mm1_rxrcv 5 IO
hsusb1_tll_d 6 IOata0
hw_dbg2 7 O
AD4 NA etk_d1 0 O H H 4 vdds Yes 4
(3)
PU100/ LVCMOSPD100
mcspi3_somi 1 IO
hsusb1_data 3 IO1
gpio_15 4 IO
mm1_txse0 5 IO
hsusb1_tll_d 6 IOata1
hw_dbg3 7 O
AD3 NA etk_d2 0 O H H 4 vdds Yes 4
(3)
PU100/ LVCMOSPD100
mcspi3_cs0 1 IO
hsusb1_data 3 IO2
gpio_16 4 IO
mm1_txdat 5 IO
hsusb1_tll_d 6 IOata2
hw_dbg4 7 O
AA3 NA etk_d3 0 O H H 4 vdds Yes 4
(3)
PU100/ LVCMOSPD100
mcspi3_clk 1 IO
mmc3_dat3 2 IO
hsusb1_data 3 IO7
gpio_17 4 IO
hsusb1_tll_d 6 IOata7
hw_dbg5 7 O
Y3 NA etk_d4 0 O L L 4 vdds Yes 4
(3)
PU100/ LVCMOSPD100
mcbsp5_dr 1 I
mmc3_dat0 2 IO
hsusb1_data 3 IO4
gpio_18 4 IO
hsusb1_tll_d 6 IOata4
hw_dbg6 7 O
AB1 NA etk_d5 0 O L L 4 vdds Yes 4
(3)
PU100/ LVCMOSPD100
mcbsp5_fsx 1 IO
mmc3_dat1 2 IO
hsusb1_data 3 IO5
gpio_19 4 IO
hsusb1_tll_d 6 IOata5
hw_dbg7 7 O
AE3 NA etk_d6 0 O L L 4 vdds Yes 4
(3)
PU100/ LVCMOSPD100
mcbsp5_dx 1 IO
mmc3_dat2 2 IO
hsusb1_data 3 IO6
Submit Documentation Feedback TERMINAL DESCRIPTION 63
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)BALL BALL BUFFER PULLUPBALL BALL TOP PIN NAME RESET REL.MODE [4] TYPE [5] RESET RESET REL. POWER [9] HYS [10] STRENG TH /DOWN IO CELL [13]BOTTOM [1] [2] [3] MODE [8]STATE [6] STATE [7] (mA) [11] TYPE [12]
gpio_20 4 IO
hsusb1_tll_d 6 IOata6
hw_dbg8 7 O
AD2 NA etk_d7 0 O L L 4 vdds Yes 4
(3)
PU100/ LVCMOSPD100
mcspi3_cs1 1 O
mmc3_dat7 2 IO
hsusb1_data 3 IO3
gpio_21 4 IO
mm1_txen_n 5 IO
hsusb1_tll_d 6 IOata3
hw_dbg9 7 O
AA4 NA etk_d8 0 O L L 4 vdds Yes 4
(3)
PU100/ LVCMOSPD100
sys_drm_ms 1 Oecure
mmc3_dat6 2 IO
hsusb1_dir 3 I
gpio_22 4 IO
hsusb1_tll_di 6 Or
hw_dbg10 7 O
V2 NA etk_d9 0 O L L 4 vdds Yes 4
(3)
PU100/ LVCMOSPD100
sys_secure_i 1 Ondicator
mmc3_dat5 2 IO
hsusb1_nxt 3 I
gpio_23 4 IO
mm1_rxdm 5 IO
hsusb1_tll_n 6 Oxt
hw_dbg11 7 O
AE4 NA etk_d10 0 O L L 4 vdds Yes 4
(3)
PU100/ LVCMOSPD100
uart1_rx 2 I
hsusb2_clk 3 O
gpio_24 4 IO
hsusb2_tll_cl 6 Ok
hw_dbg12 7 O
AF6 NA etk_d11 0 O L L 4 vdds Yes 4
(3)
PU100/ LVCMOSPD100
hsusb2_stp 3 O
gpio_25 4 IO
mm2_rxdp 5 IO
hsusb2_tll_st 6 Ip
hw_dbg13 7 O
AE6 NA etk_d12 0 O L L 4 vdds Yes 4
(3)
PU100/ LVCMOSPD100
hsusb2_dir 3 I
gpio_26 4 IO
hsusb2_tll_di 6 Or
hw_dbg14 7 O
AF7 NA etk_d13 0 O L L 4 vdds Yes 4
(3)
PU100/ LVCMOSPD100
TERMINAL DESCRIPTION64 Submit Documentation Feedback
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)BALL BALL BUFFER PULLUPBALL BALL TOP PIN NAME RESET REL.MODE [4] TYPE [5] RESET RESET REL. POWER [9] HYS [10] STRENG TH /DOWN IO CELL [13]BOTTOM [1] [2] [3] MODE [8]STATE [6] STATE [7] (mA) [11] TYPE [12]
hsusb2_nxt 3 I
gpio_27 4 IO
mm2_rxdm 5 IO
hsusb2_tll_n 6 Oxt
hw_dbg15 7 O
AF9 NA etk_d14 0 O L L 4 vdds Yes 4
(3)
PU100/ LVCMOSPD100
hsusb2_data 3 IO0
gpio_28 4 IO
mm2_rxrcv 5 IO
hsusb2_tll_d 6 IOata0
hw_dbg16 7 O
AE9 NA etk_d15 0 O L L 4 vdds Yes 4
(3)
PU100/ LVCMOSPD100
hsusb2_data 3 IO1
gpio_29 4 IO
mm2_txse0 5 IO
hsusb2_tll_d 6 IOata1
hw_dbg17 7 O
Y15 NA jtag_emu0 0 IO H H 0 vdds Yes 4 PU100/ LVCMOSPD100
gpio_11 4 IO
safe_mode 7 -
Y14 NA jtag_emu1 0 IO H H 0 vdds Yes 4 PU100/ LVCMOSPD100
gpio_31 4 IO
safe_mode 7 -
U3 NA mcbsp3_clkx 0 IO L L 7 vdds Yes 4
(3)
PU100/ LVCMOSPD100
uart2_tx 1 O
gpio_142 4 IO
hsusb3_tll_d 5 IOata6
safe_mode 7 -
N3 NA mcbsp3_dr 0 I L L 7 vdds Yes 4
(3)
PU100/ LVCMOSPD100
uart2_rts 1 O
gpio_141 4 IO
hsusb3_tll_d 5 IOata5
safe_mode 7 -
P3 NA mcbsp3_dx 0 IO L L 7 vdds Yes 4
(3)
PU100/ LVCMOSPD100
uart2_cts 1 I
gpio_140 4 IO
hsusb3_tll_d 5 IOata4
safe_mode 7 -
W3 NA mcbsp3_fsx 0 IO L L 7 vdds Yes 4
(3)
PU100/ LVCMOSPD100
uart2_rx 1 I
gpio_143 4 IO
hsusb3_tll_d 5 IOata7
safe_mode 7 -
Submit Documentation Feedback TERMINAL DESCRIPTION 65
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)BALL BALL BUFFER PULLUPBALL BALL TOP PIN NAME RESET REL.MODE [4] TYPE [5] RESET RESET REL. POWER [9] HYS [10] STRENG TH /DOWN IO CELL [13]BOTTOM [1] [2] [3] MODE [8]STATE [6] STATE [7] (mA) [11] TYPE [12]
V3 NA mcbsp4_clkx 0 IO L L 7 vdds Yes 4
(3)
PU100/ LVCMOSPD100
gpio_152 4 IO
hsusb3_tll_d 5 IOata1
mm3_txse0 6 IO
safe_mode 7 -
U4 NA mcbsp4_dr 0 I L L 7 vdds Yes 4
(3)
PU100/ LVCMOSPD100
gpio_153 4 IO
hsusb3_tll_d 5 IOata0
mm3_rxrcv 6 IO
safe_mode 7 -
R3 NA mcbsp4_dx 0 IO L L 7 vdds Yes 4
(3)
PU100/ LVCMOSPD100
gpio_154 4 IO
hsusb3_tll_d 5 IOata2
mm3_txdat 6 IO
safe_mode 7 -
T3 NA mcbsp4_fsx 0 IO L L 7 vdds Yes 4
(3)
PU100/ LVCMOSPD100
gpio_155 4 IO
hsusb3_tll_d 5 IOata3
mm3_txen_n 6 IO
safe_mode 7 -
M3 NA mmc2_dat5 0 IO L L 7 vdds Yes 4
(3)
PU100/ LVCMOSPD100
mmc2_dir_da 1 Ot1
cam_global_r 2 IOeset
mmc3_dat1 3 IO
gpio_137 4 IO
hsusb3_tll_st 5 Ip
mm3_rxdp 6 IO
safe_mode 7 -
L3 NA mmc2_dat6 0 IO L L 7 vdds Yes 4
(3)
PU100/ LVCMOSPD100
mmc2_dir_c 1 Omd
cam_shutter 2 O
mmc3_dat2 3 IO
gpio_138 4 IO
hsusb3_tll_di 5 Or
safe_mode 7 -
K3 NA mmc2_dat7 0 IO L L 7 vdds Yes 4
(3)
PU100/ LVCMOSPD100
mmc2_clkin 1 I
mmc3_dat3 3 IO
gpio_139 4 IO
hsusb3_tll_n 5 IOxt
mm3_rxdm 6 IO
safe_mode 7 -
W2 NA uart1_cts 0 I L L 7 vdds Yes 4
(3)
PU100/ LVCMOSPD100
TERMINAL DESCRIPTION66 Submit Documentation Feedback
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)BALL BALL BUFFER PULLUPBALL BALL TOP PIN NAME RESET REL.MODE [4] TYPE [5] RESET RESET REL. POWER [9] HYS [10] STRENG TH /DOWN IO CELL [13]BOTTOM [1] [2] [3] MODE [8]STATE [6] STATE [7] (mA) [11] TYPE [12]
gpio_150 4 IO
hsusb3_tll_cl 5 Ok
safe_mode 7 -
AC21, D15, NA vdd_core 0 PWR - - - - - - - -G11, G18,H20, M7,M17, R20,T7, Y8, Y12
D13, G9, NA vdd_mpu 0 PWR - - - - - - - -G12, H7,K11, L9, M9,M10, N7, N8,P10, U7,U11, U13,V7, V11, W9,Y9, Y11
A18, AC7, NA vdds 0 PWR - - - - - - - -AC15, AC18,AC24, AD20,AE10, C11,D9, E24, G4,J15, J18, L7,L24, M4, T4,T24, W24,
Y4, L20,AB24, AD18,
AD19
U12 NA vdds_sram 0 PWR - - - - - - - -
K13 NA vdds_dpll_dll 0 PWR - - - - - - - -
U14 NA vdds_dpll_pe 0 PWR - - - - - - - -r
W14 NA vdds_wkup_ 0 PWR - - - - - - - -bg
N23, P23 NA vdds_mmc1, 0 PWR - - - - - - - -vdds_mmc1a
V25 NA vdda_dac 0 PWR - - - - - - - -
V24 NA vssa_dac 0 PWR - - - - - - - -
A6, A8, A13, NA vss 0 GND - - - - - - - -AB5, AB22,AC10, AC16,AC19, AD14,AD25,AE7,
AF23, B2,B25, C12,D7, D10,D12, D14,D18, D20,E22, G1, G8,G10, G20,G23, H4, K1,K15, K25,L10, L17,L19, L23, N4,N10, N17,R1, R4, R17,T23, U25,W1, W4,W23, Y7,Y10, Y16,
Y26
K14, K20, NA cap_vdd_wk 0 PWR - - - - - - - -N9, AE19 up,cap_vdd_sra
m_core,
cap_vdd_sra
m_mpu,
cap_vdd_d
Submit Documentation Feedback TERMINAL DESCRIPTION 67
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)BALL BALL BUFFER PULLUPBALL BALL TOP PIN NAME RESET REL.MODE [4] TYPE [5] RESET RESET REL. POWER [9] HYS [10] STRENG TH /DOWN IO CELL [13]BOTTOM [1] [2] [3] MODE [8]STATE [6] STATE [7] (mA) [11] TYPE [12]
A1, L1, AF1, A1, J1, AA1, FeedThrough - - - - - - - - - -T2, Y2, AE2, N2, T2, W2, Pins
(6)
AF4, AF5, Y2, AA6, Y7,AF8, AF10, Y9, AA10,AF12, AF13, AA11, AA12,AF14, AF15, AA13, Y14,AF17, AF16, AA14, B16,A20, AF21, Y17, AA17,AF18, AF24, Y19, AA19,AF22, A25, A20, Y20,AE25, AF25, AA20, A21,A26, B26, B21, H21,K26, U26, P21, Y21,AE26, AF26 AA21
A2, A4, A5, - No Connect - - - - - - - - - -A7, A9, A10,A11, A12,A14, A15,A16, A17,A19, A21,A22, AA23,
AB23, AC9,AC12, AC13,AC14, AC17,AC20, AC22,AC23, AD9,AD11, AD12,AD13, AE1,AE8, AE11,AE12, AE13,
AF2, AF3,AF11, B1,B7, B8, B9,B10, B11,B12, B13,B14, B15,B16, B17,B18, B19,B20, B21,B22, C7, C8,C9, C10,C13, C14,C15, C16,C17 C18,C19, C20,C21, C22,D5, D6, D8,D11, D16,D17, D19,D21, D22,E23, F4, G7,G13, G14,G15, G16,G17, G19,H8, H9, H10,H11, H12,H13, H14,H15, H16,H17, H18,H19, H23,J3, J4, J7,J8, J9, J10,J11, J12,J13, J14,J16, J17,J19, J20, K4,K7, K8, K9,K10, K12,K16, K17,K19, K23,L8, M8, M23,N18, P2, P4,P24, R23,R24, R25,R26, T25,T26, U23,V4, W12,
Y23
(6) These signals are feed-through balls. For more information, refer to Section 2.5.10 .
TERMINAL DESCRIPTION68 Submit Documentation Feedback
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Table 2-3. Ball Characteristics (CUS Pkg.)BALL BALL TOP [2] PIN NAME [3] MODE [4] TYPE [5] BALL RESET BALL RESET RESET REL. POWER [9] HYS [10] BUFFER PULLUPBOTTOM [1] STATE [6] REL. STATE MODE [8] STRENG TH /DOWN TYPE[7] (mA) [11] [12]
D7 sdrc_d0 0 IO L Z 0 vdds_ mem Yes 4 PU/ PD LVCMOS
C5 sdrc_d1 0 IO L Z 0 vdds_ mem Yes 4 PU/ PD LVCMOS
C6 sdrc_d2 0 IO L Z 0 vdds_ mem Yes 4 PU/ PD LVCMOS
B5 sdrc_d3 0 IO L Z 0 vdds_ mem Yes 4 PU/ PD LVCMOS
D9 sdrc_d4 0 IO L Z 0 vdds_ mem Yes 4 PU/ PD LVCMOS
D10 sdrc_d5 0 IO L Z 0 vdds_ mem Yes 4 PU/ PD LVCMOS
C7 sdrc_d6 0 IO L Z 0 vdds_ mem Yes 4 PU/ PD LVCMOS
B7 sdrc_d7 0 IO L Z 0 vdds_ mem Yes 4 PU/ PD LVCMOS
B11 sdrc_d8 0 IO L Z 0 vdds_ mem Yes 4 PU/ PD LVCMOS
C12 sdrc_d9 0 IO L Z 0 vdds_ mem Yes 4 PU/ PD LVCMOS
B12 sdrc_d10 0 IO L Z 0 vdds_ mem Yes 4 PU/ PD LVCMOS
D13 sdrc_d11 0 IO L Z 0 vdds_ mem Yes 4 PU/ PD LVCMOS
C13 sdrc_d12 0 IO L Z 0 vdds_ mem Yes 4 PU/ PD LVCMOS
B14 sdrc_d13 0 IO L Z 0 vdds_ mem Yes 4 PU/ PD LVCMOS
A14 sdrc_d14 0 IO L Z 0 vdds_ mem Yes 4 PU/ PD LVCMOS
B15 sdrc_d15 0 IO L Z 0 vdds_ mem Yes 4 PU/ PD LVCMOS
C9 sdrc_d16 0 IO L Z 0 vdds_ mem Yes 4 PU/ PD LVCMOS
E12 sdrc_d17 0 IO L Z 0 vdds_ mem Yes 4 PU/ PD LVCMOS
B8 sdrc_d18 0 IO L Z 0 vdds_ mem Yes 4 PU/ PD LVCMOS
B9 sdrc_d19 0 IO L Z 0 vdds_ mem Yes 4 PU/ PD LVCMOS
C10 sdrc_d20 0 IO L Z 0 vdds_ mem Yes 4 PU/ PD LVCMOS
B10 sdrc_d21 0 IO L Z 0 vdds_ mem Yes 4 PU/ PD LVCMOS
D12 sdrc_d22 0 IO L Z 0 vdds_ mem Yes 4 PU/ PD LVCMOS
E13 sdrc_d23 0 IO L Z 0 vdds_ mem Yes 4 PU/ PD LVCMOS
E15 sdrc_d24 0 IO L Z 0 vdds_ mem Yes 4 PU/ PD LVCMOS
D15 sdrc_d25 0 IO L Z 0 vdds_ mem Yes 4 PU/ PD LVCMOS
C15 sdrc_d26 0 IO L Z 0 vdds_ mem Yes 4 PU/ PD LVCMOS
B16 sdrc_d27 0 IO L Z 0 vdds_ mem Yes 4 PU/ PD LVCMOS
C16 sdrc_d28 0 IO L Z 0 vdds_ mem Yes 4 PU/ PD LVCMOS
D16 sdrc_d29 0 IO L Z 0 vdds_ mem Yes 4 PU/ PD LVCMOS
B17 sdrc_d30 0 IO L Z 0 vdds_ mem Yes 4 PU/ PD LVCMOS
B18 sdrc_d31 0 IO L Z 0 vdds_ mem Yes 4 PU/ PD LVCMOS
C18 sdrc_ba0 0 O 0 0 0 vdds_ mem No 4 NA LVCMOS
D18 sdrc_ba1 0 O 0 0 0 vdds_ mem No 4 NA LVCMOS
A4 sdrc_a0 0 O 0 0 0 vdds_ mem No 4 NA LVCMOS
B4 sdrc_a1 0 O 0 0 0 vdds_ mem No 4 NA LVCMOS
D6 sdrc_a2 0 O 0 0 0 vdds_ mem No 4 NA LVCMOS
B3 sdrc_a3 0 O 0 0 0 vdds_ mem No 4 NA LVCMOS
B2 sdrc_a4 0 O 0 0 0 vdds_ mem No 4 NA LVCMOS
C3 sdrc_a5 0 O 0 0 0 vdds_ mem No 4 NA LVCMOS
E3 sdrc_a6 0 O 0 0 0 vdds_ mem No 4 NA LVCMOS
F6 sdrc_a7 0 O 0 0 0 vdds_ mem No 4 NA LVCMOS
E10 sdrc_a8 0 O 0 0 0 vdds_ mem No 4 NA LVCMOS
E9 sdrc_a9 0 O 0 0 0 vdds_ mem No 4 NA LVCMOS
E7 sdrc_a10 0 O 0 0 0 vdds_ mem No 4 NA LVCMOS
G6 sdrc_a11 0 O 0 0 0 vdds_ mem No 4 NA LVCMOS
G7 sdrc_a12 0 O 0 0 0 vdds_ mem No 4 NA LVCMOS
F7 sdrc_a13 0 O 0 0 0 vdds_ mem No 4 NA LVCMOS
F9 sdrc_a14 0 O 0 0 0 vdds_ mem No 4 NA LVCMOS
A19 sdrc_ncs0 0 O 1 1 0 vdds_ mem No 4 NA LVCMOS
B19 sdrc_ncs1 0 O 1 1 0 vdds_ mem No 4 NA LVCMOS
A10 sdrc_clk 0 IO L 0 0 vdds_ mem Yes 4 PU/ PD LVCMOS
A11 sdrc_nclk 0 O 1 1 0 vdds_ mem No 4 NA LVCMOS
Submit Documentation Feedback TERMINAL DESCRIPTION 69
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Table 2-3. Ball Characteristics (CUS Pkg.) (continued)BALL BALL TOP [2] PIN NAME [3] MODE [4] TYPE [5] BALL RESET BALL RESET RESET REL. POWER [9] HYS [10] BUFFER PULLUPBOTTOM [1] STATE [6] REL. STATE MODE [8] STRENG TH /DOWN TYPE[7] (mA) [11] [12]
B20 sdrc_cke0 0 O H 1 7 vdds_ mem Yes 4 PU/ PD LVCMOS
safe_mode 7
C20 sdrc_cke1 0 O H 1 7 vdds_ mem Yes 4 PU/ PD LVCMOS
safe_mode 7
D19 sdrc_nras 0 O 1 1 0 vdds_ mem No 4 NA LVCMOS
C19 sdrc_ncas 0 O 1 1 0 vdds_ mem No 4 NA LVCMOS
A20 sdrc_nwe 0 O 1 1 0 vdds_ mem No 4 NA LVCMOS
B6 sdrc_dm0 0 O 0 0 0 vdds_ mem No 4 NA LVCMOS
B13 sdrc_dm1 0 O 0 0 0 vdds_ mem No 4 NA LVCMOS
A7 sdrc_dm2 0 O 0 0 0 vdds_ mem No 4 NA LVCMOS
A16 sdrc_dm3 0 O 0 0 0 vdds_ mem No 4 NA LVCMOS
A5 sdrc_dqs0 0 IO L Z 0 vdds_ mem Yes 4 PU/ PD LVCMOS
A13 sdrc_dqs1 0 IO L Z 0 vdds_ mem Yes 4 PU/ PD LVCMOS
A8 sdrc_dqs2 0 IO L Z 0 vdds_ mem Yes 4 PU/ PD LVCMOS
A17 sdrc_dqs3 0 IO L Z 0 vdds_ mem Yes 4 PU/ PD LVCMOS
K4 gpmc_a1 0 O L L 7 vdds_ mem Yes 4 PU/ PD LVCMOS
gpio_34 4 IO
safe_mode 7
K3 gpmc_a2 0 O L L 7 vdds_ mem Yes 4 PU/ PD LVCMOS
gpio_35 4 IO
safe_mode 7
K2 gpmc_a3 0 O L L 7 vdds_ mem Yes 4 PU/ PD LVCMOS
gpio_36 4 IO
safe_mode 7
J4 gpmc_a4 0 O L L 7 vdds_ mem Yes 4 PU/ PD LVCMOS
gpio_37 4 IO
safe_mode 7
J3 gpmc_a5 0 O L L 7 vdds_ mem Yes 4 PU/ PD LVCMOS
gpio_38 4 IO
safe_mode 7
J2 gpmc_a6 0 O H H 7 vdds_ mem Yes 4 PU/ PD LVCMOS
gpio_39 4 IO
safe_mode 7
J1 gpmc_a7 0 O H H 7 vdds_ mem Yes 4 PU/ PD LVCMOS
gpio_40 4 IO
safe_mode 7
H1 gpmc_a8 0 O H H 7 vdds_ mem Yes 4 PU/ PD LVCMOS
gpio_41 4 IO
safe_mode 7
H2 gpmc_a9 0 O H H 7 vdds_ mem Yes 4 PU/ PD LVCMOS
sys_ 1 Indmareq2
gpio_42 4 IO
safe_mode 7
G2 gpmc_a10 0 O H H 7 vdds_ mem Yes 4 PU/ PD LVCMOS
sys_ 1 Indmareq3
gpio_43 4 IO
safe_mode 7
L2 gpmc_d0 0 IO H H 0 vdds_ mem Yes 4 PU/ PD LVCMOS
M1 gpmc_d1 0 IO H H 0 vdds_ mem Yes 4 PU/ PD LVCMOS
M2 gpmc_d2 0 IO H H 0 vdds_ mem Yes 4 PU/ PD LVCMOS
N2 gpmc_d3 0 IO H H 0 vdds_ mem Yes 4 PU/ PD LVCMOS
M3 gpmc_d4 0 IO H H 0 vdds_ mem Yes 4 PU/ PD LVCMOS
P1 gpmc_d5 0 IO H H 0 vdds_ mem Yes 4 PU/ PD LVCMOS
TERMINAL DESCRIPTION70 Submit Documentation Feedback
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Table 2-3. Ball Characteristics (CUS Pkg.) (continued)BALL BALL TOP [2] PIN NAME [3] MODE [4] TYPE [5] BALL RESET BALL RESET RESET REL. POWER [9] HYS [10] BUFFER PULLUPBOTTOM [1] STATE [6] REL. STATE MODE [8] STRENG TH /DOWN TYPE[7] (mA) [11] [12]
P2 gpmc_d6 0 IO H H 0 vdds_ mem Yes 4 PU/ PD LVCMOS
R1 gpmc_d7 0 IO H H 0 vdds_ mem Yes 4 PU/ PD LVCMOS
R2 gpmc_d8 0 IO H H 0 vdds_ mem Yes 4 PU/ PD LVCMOS
gpio_44 4 IO
safe_mode 7
T2 gpmc_d9 0 IO H H 0 vdds_ mem Yes 4 PU/ PD LVCMOS
gpio_45 4 IO
safe_mode 7
U1 gpmc_d10 0 IO H H 0 vdds_ mem Yes 4 PU/ PD LVCMOS
gpio_46 4 IO
safe_mode 7
R3 gpmc_d11 0 IO H H 0 vdds_ mem Yes 4 PU/ PD LVCMOS
gpio_47 4 IO
safe_mode 7
T3 gpmc_d12 0 IO H H 0 vdds_ mem Yes 4 PU/ PD LVCMOS
gpio_48 4 IO
safe_mode 7
U2 gpmc_d13 0 IO H H 0 vdds_ mem Yes 4 PU/ PD LVCMOS
gpio_49 4 IO
safe_mode 7
V1 gpmc_d14 0 IO H H 0 vdds_ mem Yes 4 PU/ PD LVCMOS
gpio_50 4 IO
safe_mode 7
V2 gpmc_d15 0 IO H H 0 vdds_ mem Yes 4 PU/ PD LVCMOS
gpio_51 4 IO
safe_mode 7
E2 gpmc_ncs0 0 O 1 1 0 vdds_ mem No 4 NA LVCMOS
D2 gpmc_ncs3 0 O H H 7 vdds_ mem Yes 4 PU/ PD LVCMOS
sys_ 1 Indmareq0
gpio_54 4 IO
safe_mode 7
F4 gpmc_ncs4 0 O H H 7 vdds_ mem Yes 4 PU/ PD LVCMOS
sys_ 1 Indmareq1
mcbsp4_ clkx 2 IO
gpt9_pwm_evt 3 IO
gpio_55 4 IO
safe_mode 7
G5 gpmc_ncs5 0 O H H 7 vdds_ mem Yes 4 PU/ PD LVCMOS
sys_ 1 Indmareq2
mcbsp4_dr 2 I
gpt10_pwm_e 3 IOvt
gpio_56 4 IO
safe_mode 7
F3 gpmc_ncs6 0 O H H 7 vdds_ mem Yes 4 PU/ PD LVCMOS
sys_ 1 Indmareq3
mcbsp4_dx 2 IO
gpt11_pwm_e 3 IOvt
gpio_57 4 IO
safe_mode 7
G4 gpmc_ncs7 0 O H H 7 vdds_ mem Yes 4 PU/ PD LVCMOS
gpmc_io_dir 1 O
Submit Documentation Feedback TERMINAL DESCRIPTION 71
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Table 2-3. Ball Characteristics (CUS Pkg.) (continued)BALL BALL TOP [2] PIN NAME [3] MODE [4] TYPE [5] BALL RESET BALL RESET RESET REL. POWER [9] HYS [10] BUFFER PULLUPBOTTOM [1] STATE [6] REL. STATE MODE [8] STRENG TH /DOWN TYPE[7] (mA) [11] [12]
mcbsp4_fsx 2 IO
gpt8_pwm_evt 3 IO
gpio_58 4 IO
safe_mode 7
W2 gpmc_clk 0 O L 0 0 vdds_ mem Yes 4 PU/ PD LVCMOS
gpio_59 4 IO
safe_mode 7
F1 gpmc_nadv_al 0 O 0 0 0 vdds_ mem No 4 NA LVCMOSe
F2 gpmc_noe 0 O 1 1 0 vdds_ mem No 4 NA LVCMOS
G3 gpmc_nwe 0 O 1 1 0 vdds_ mem No 4 NA LVCMOS
K5 gpmc_nbe0_cl 0 O L 0 0 vdds_ mem Yes 4 PU/ PD LVCMOSe
gpio_60 4 IO
safe_mode 7
L1 gpmc_nbe1 0 O L L 7 vdds_ mem Yes 4 PU/ PD LVCMOS
gpio_61 4 IO
safe_mode 7
E1 gpmc_nwp 0 O L 0 0 vdds_ mem Yes 4 PU/ PD LVCMOS
gpio_62 4 IO
safe_mode 7
C1 gpmc_wait0 0 I H H 0 vdds_ mem Yes NA PU/ PD LVCMOS
C2 gpmc_wait3 0 I H H 7 vdds_ mem Yes 4 PU/ PD LVCMOS
sys_ 1 Indmareq1
gpio_65 4 IO
safe_mode 7
G22 dss_pclk 0 O H H 7 vdds Yes 4 PU/ PD LVCMOS
gpio_66 4 IO
safe_mode 7
E22 dss_hsync 0 O H H 7 vdds Yes 4 PU/ PD LVCMOS
gpio_67 4 IO
safe_mode 7
F22 dss_vsync 0 O H H 7 vdds Yes 4 PU/ PD LVCMOS
gpio_68 4 IO
safe_mode 7
J21 dss_acbias 0 O L L 7 vdds Yes 8 PU/ PD LVCMOS
gpio_69 4 IO
safe_mode 7
AC19 dss_data0 0 IO L L 7 vdds No 4 PU/ PD LVCMOS
uart1_cts 2 I
gpio_70 4 IO
safe_mode 7
AB19 dss_data1 0 IO L L 7 vdds No 4 PU/ PD LVCMOS
uart1_rts 2 O
gpio_71 4 IO
safe_mode 7
AD20 dss_data2 0 IO L L 7 vdds No 4 PU/ PD LVCMOS
gpio_72 4 IO
safe_mode 7
AC20 dss_data3 0 IO L L 7 vdds No 4 PU/ PD LVCMOS
gpio_73 4 IO
safe_mode 7
AD21 dss_data4 0 IO L L 7 vdds No 4 PU/ PD LVCMOS
uart3_rx_ irrx 2 I
TERMINAL DESCRIPTION72 Submit Documentation Feedback
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Table 2-3. Ball Characteristics (CUS Pkg.) (continued)BALL BALL TOP [2] PIN NAME [3] MODE [4] TYPE [5] BALL RESET BALL RESET RESET REL. POWER [9] HYS [10] BUFFER PULLUPBOTTOM [1] STATE [6] REL. STATE MODE [8] STRENG TH /DOWN TYPE[7] (mA) [11] [12]
gpio_74 4 IO
safe_mode 7
AC21 dss_data5 0 IO L L 7 vdds No 4 PU/ PD LVCMOS
uart3_tx_ irtx 2 O
gpio_75 4 IO
safe_mode 7
D24 dss_data6 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS
uart1_tx 2 O
gpio_76 4 IO
safe_mode 7
E23 dss_data7 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS
uart1_rx 2 I
gpio_77 4 IO
safe_mode 7
E24 dss_data8 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS
gpio_78 4 IO
safe_mode 7
F23 dss_data9 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS
gpio_79 4 IO
safe_mode 7
AC22 dss_data10 0 IO L L 7 vdds NA 4 PU/ PD LVCMOS
gpio_80 4 IO
safe_mode 7
AC23 dss_data11 0 IO L L 7 vdds NA 4 PU/ PD LVCMOS
gpio_81 4 IO
safe_mode 7
AB22 dss_data12 0 IO L L 7 vdds NA 4 PU/ PD LVCMOS
gpio_82 4 IO
safe_mode 7
Y22 dss_data13 0 IO L L 7 vdds NA 4 PU/ PD LVCMOS
gpio_83 4 IO
safe_mode 7
W22 dss_data14 0 IO L L 7 vdds NA 4 PU/ PD LVCMOS
gpio_84 4 IO
safe_mode 7
V22 dss_data15 0 IO L L 7 vdds NA 4 PU/ PD LVCMOS
gpio_85 4 IO
safe_mode 7
J22 dss_data16 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS
gpio_86 4 IO
safe_mode 7
G23 dss_data17 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS
gpio_87 4 IO
safe_mode 7
G24 dss_data18 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS
mcspi3_clk 2 IO
dss_data0 3 IO
gpio_88 4 IO
safe_mode 7
H23 dss_data19 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS
mcspi3_ simo 2 IO
dss_data1 3 IO
gpio_89 4 IO
safe_mode 7
Submit Documentation Feedback TERMINAL DESCRIPTION 73
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Table 2-3. Ball Characteristics (CUS Pkg.) (continued)BALL BALL TOP [2] PIN NAME [3] MODE [4] TYPE [5] BALL RESET BALL RESET RESET REL. POWER [9] HYS [10] BUFFER PULLUPBOTTOM [1] STATE [6] REL. STATE MODE [8] STRENG TH /DOWN TYPE[7] (mA) [11] [12]
D23 dss_data20 0 O H H 7 vdds Yes 4 PU/ PD LVCMOS
mcspi3_ somi 2 IO
dss_data2 3 IO
gpio_90 4 IO
safe_mode 7
K22 dss_data21 0 O L L 7 vdds Yes 8 PU/ PD LVCMOS
mcspi3_cs0 2 IO
dss_data3 3 IO
gpio_91 4 IO
safe_mode 7
V21 dss_data22 0 O L L 7 vdds NA 4 PU/ PD LVCMOS
mcspi3_cs1 2 O
dss_data4 3 IO
gpio_92 4 IO
safe_mode 7
W21 dss_data23 0 O L L 7 vdds NA 4 PU/ PD LVCMOS
dss_data5 3 IO
gpio_93 4 IO
safe_mode 7
AA23 tv_out2 0 O Z 0 0 vdda_dac 8 NA 10-bit DAC
AB24 tv_out1 0 O Z 0 0 vdda_dac 8 NA 10-bit DAC
AB23 tv_vfb1 0 O Z NA 0 vdda_dac NA 10-bit DAC
Y23 tv_vfb2 0 O Z NA 0 vdda_dac NA 10-bit DAC
Y24 tv_vref 0 I Z NA 0 vdda_dac NA 10-bit DAC
A22 cam_hs 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_94 4 IO
safe_mode 7
E18 cam_vs 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_95 4 IO
safe_mode 7
B22 cam_ xclka 0 O L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_96 4 IO
safe_mode 7
J19 cam_pclk 0 I L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_97 4 IO
safe_mode 7
H24 cam_fld 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
cam_global_re 2 IOset
gpio_98 4 IO
safe_mode 7
AB18 cam_d0 0 I L L 7 vdds Yes 4 PD LVCMOS
gpio_99 4 I
safe_mode 7
AC18 cam_d1 0 I L L 7 vdds Yes 4 PD LVCMOS
gpio_100 4 I
safe_mode 7
G19 cam_d2 0 I L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_101 4 IO
safe_mode 7
F19 cam_d3 0 I L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_102 4 IO
safe_mode 7
G20 cam_d4 0 I L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_103 4 IO
TERMINAL DESCRIPTION74 Submit Documentation Feedback
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Table 2-3. Ball Characteristics (CUS Pkg.) (continued)BALL BALL TOP [2] PIN NAME [3] MODE [4] TYPE [5] BALL RESET BALL RESET RESET REL. POWER [9] HYS [10] BUFFER PULLUPBOTTOM [1] STATE [6] REL. STATE MODE [8] STRENG TH /DOWN TYPE[7] (mA) [11] [12]
safe_mode 7
B21 cam_d5 0 I L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_104 4 IO
safe_mode 7
L24 cam_d6 0 I L L 7 vdds NA 4 PD LVCMOS
gpio_105 4 IO
safe_mode 7
K24 cam_d7 0 I L L 7 vdds NA 4 PD LVCMOS
gpio_106 4 IO
safe_mode 7
J23 cam_d8 0 I L L 7 vdds NA 4 PD LVCMOS
gpio_107 4 IO
safe_mode 7
K23 cam_d9 0 I L L 7 vdds NA 4 PD LVCMOS
gpio_108 4 IO
safe_mode 7
F21 cam_d10 0 I L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_109 4 IO
safe_mode 7
G21 cam_d11 0 I L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_110 4 IO
safe_mode 7
C22 cam_ xclkb 0 O L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_111 4 IO
safe_mode 7
F18 cam_wen 0 I L L 7 vdds Yes 4 PU/ PD LVCMOS
cam_ shutter 2 O
gpio_167 4 IO
safe_mode 7
J20 cam_ strobe 0 O L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_126 4 IO
safe_mode 7
V20 mcbsp2_fsx 0 IO L L 7 vdds Yes 4
(1)
PU/ PD LVCMOS
gpio_116 4 IO
safe_mode 7
T21 mcbsp2_ clkx 0 IO L L 7 vdds Yes 4
(1)
PU/ PD LVCMOS
gpio_117 4 IO
safe_mode 7
V19 mcbsp2_dr 0 I L L 7 vdds Yes 4
(1)
PU/ PD LVCMOS
gpio_118 4 IO
safe_mode 7
R20 mcbsp2_dx 0 IO L L 7 vdds Yes 4
(1)
PU/ PD LVCMOS
gpio_119 4 IO
safe_mode 7
M23 mmc1_clk 0 O L L 7 vdds_mmc1 Yes 8 PU/ PD LVCMOS
gpio_120 4 IO
safe_mode 7
L23 mmc1_cmd 0 IO L L 7 vdds_mmc1 Yes 8 PU/ PD LVCMOS
gpio_121 4 IO
safe_mode 7
M22 mmc1_dat0 0 IO L L 7 vdds_mmc1 Yes 8 PU/ PD LVCMOS
gpio_122 4 IO
safe_mode 7
(1) The buffer strength of this IO cell is programmable (2, 4, 6, or 8 mA) according to the selected mode; the default value is described in
Submit Documentation Feedback TERMINAL DESCRIPTION 75
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Table 2-3. Ball Characteristics (CUS Pkg.) (continued)BALL BALL TOP [2] PIN NAME [3] MODE [4] TYPE [5] BALL RESET BALL RESET RESET REL. POWER [9] HYS [10] BUFFER PULLUPBOTTOM [1] STATE [6] REL. STATE MODE [8] STRENG TH /DOWN TYPE[7] (mA) [11] [12]
M21 mmc1_dat1 0 IO L L 7 vdds_mmc1 Yes 8 PU/ PD LVCMOS
gpio_123 4 IO
safe_mode 7
M20 mmc1_dat2 0 IO L L 7 vdds_mmc1 Yes 8 PU/ PD LVCMOS
gpio_124 4 IO
safe_mode 7
N23 mmc1_dat3 0 IO L L 7 vdds_mmc1 Yes 8 PU/ PD LVCMOS
gpio_125 4 IO
safe_mode 7
N22 mmc1_dat4 0 IO L L 7 vdds_mmc1a No 8 PD LVCMOS
gpio_126 4 IO
safe_mode 7
N21 mmc1_dat5 0 IO L L 7 vdds_mmc1a No 8 PD LVCMOS
gpio_127 4 IO
safe_mode 7
N20 mmc1_dat6 0 IO L L 7 vdds_mmc1a No 8 PD LVCMOS
gpio_128 4 IO
safe_mode 7
P24 mmc1_dat7 0 IO L L 7 vdds_mmc1a No 8 PD LVCMOS
gpio_129 4 IO
safe_mode 7
Y1 mmc2_clk 0 O L L 7 vdds Yes 4 PU/ PD LVCMOS
mcspi3_clk 1 IO
gpio_130 4 IO
safe_mode 7
AB5 mmc2_ cmd 0 IO H H 7 vdds Yes 4 PU/ PD LVCMOS
mcspi3_ simo 1 IO
gpio_131 4 IO
safe_mode 7
AB3 mmc2_ dat0 0 IO H H 7 vdds Yes 4 PU/ PD LVCMOS
mcspi3_ somi 1 IO
gpio_132 4 IO
safe_mode 7
Y3 mmc2_ dat1 0 IO H H 7 vdds Yes 4 PU/ PD LVCMOS
gpio_133 4 IO
safe_mode 7
W3 mmc2_ dat2 0 IO H H 7 vdds Yes 4 PU/ PD LVCMOS
mcspi3_cs1 1 O
gpio_134 4 IO
safe_mode 7
V3 mmc2_ dat3 0 IO H H 7 vdds Yes 4 PU/ PD LVCMOS
mcspi3_cs0 1 IO
gpio_135 4 IO
safe_mode 7
AB2 mmc2_ dat4 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
mmc2_dir_dat 1 O0
mmc3_dat0 3 IO
gpio_136 4 IO
safe_mode 7
AA2 mmc2_ dat5 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
mmc2_dir_dat 1 O1
cam_global_re 2 IOset
TERMINAL DESCRIPTION76 Submit Documentation Feedback
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Table 2-3. Ball Characteristics (CUS Pkg.) (continued)BALL BALL TOP [2] PIN NAME [3] MODE [4] TYPE [5] BALL RESET BALL RESET RESET REL. POWER [9] HYS [10] BUFFER PULLUPBOTTOM [1] STATE [6] REL. STATE MODE [8] STRENG TH /DOWN TYPE[7] (mA) [11] [12]
mmc3_dat1 3 IO
gpio_137 4 IO
safe_mode 7
Y2 mmc2_ dat6 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
mmc2_dir_ 1 Ocmd
cam_ shutter 2 O
mmc3_dat2 3 IO
gpio_138 4 IO
safe_mode 7
AA1 mmc2_ dat7 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
mmc2_ clkin 1 I
mmc3_dat3 3 IO
gpio_139 4 IO
safe_mode 7
V6 mcbsp3_dx 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
uart2_cts 1 I
gpio_140 4 IO
safe_mode 7
V5 mcbsp3_dr 0 I L L 7 vdds Yes 4 PU/ PD LVCMOS
uart2_rts 1 O
gpio_141 4 IO
safe_mode 7
W4 mcbsp3_ clkx 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
uart2_tx 1 O
gpio_142 4 IO
safe_mode 7
V4 mcbsp3_fsx 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
uart2_rx 1 I
gpio_143 4 IO
safe_mode 7
W7 uart1_tx 0 O L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_148 4 IO
safe_mode 7
W6 uart1_rts 0 O L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_149 4 IO
safe_mode 7
AC2 uart1_cts 0 I L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_150 4 IO
safe_mode 7
V7 uart1_rx 0 I L L 7 vdds Yes 4 PU/ PD LVCMOS
mcbsp1_ clkr 2 IO
mcspi4_clk 3 IO
gpio_151 4 IO
safe_mode 7
W19 mcbsp1_ clkr 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
mcspi4_clk 1 IO
gpio_156 4 IO
safe_mode 7
AB20 mcbsp1_fsr 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
cam_global_re 2 IOset
gpio_157 4 IO
safe_mode 7
W18 mcbsp1_dx 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
Submit Documentation Feedback TERMINAL DESCRIPTION 77
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Table 2-3. Ball Characteristics (CUS Pkg.) (continued)BALL BALL TOP [2] PIN NAME [3] MODE [4] TYPE [5] BALL RESET BALL RESET RESET REL. POWER [9] HYS [10] BUFFER PULLUPBOTTOM [1] STATE [6] REL. STATE MODE [8] STRENG TH /DOWN TYPE[7] (mA) [11] [12]
mcspi4_ simo 1 IO
mcbsp3_dx 2 IO
gpio_158 4 IO
safe_mode 7
Y18 mcbsp1_dr 0 I L L 7 vdds Yes 4 PU/ PD LVCMOS
mcspi4_ somi 1 IO
mcbsp3_dr 2 O
gpio_159 4 IO
safe_mode 7
AA18 mcbsp_clks 0 I L L 7 vdds Yes 4 PU/ PD LVCMOS
cam_ shutter 2 O
gpio_160 4 IO
uart1_cts 5 I
safe_mode 7
AA19 mcbsp1_fsx 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
mcspi4_cs0 1 IO
mcbsp3_fsx 2 IO
gpio_161 4 IO
safe_mode 7
V18 mcbsp1_ clkx 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
mcbsp3_ clkx 2 IO
gpio_162 4 IO
safe_mode 7
A23 uart3_cts_ rctx 0 IO H H 7 vdds Yes 4 PU/ PD LVCMOS
gpio_163 4 IO
safe_mode 7
B23 uart3_rts_ sd 0 O H H 7 vdds Yes 4 PU/ PD LVCMOS
gpio_164 4 IO
safe_mode 7
B24 uart3_rx_ irrx 0 I H H 7 vdds Yes 4 PU/ PD LVCMOS
gpio_165 4 IO
safe_mode 7
C23 uart3_tx_ irtx 0 O H H 7 vdds Yes 4 PU/ PD LVCMOS
gpio_166 4 IO
safe_mode 7
R21 hsusb0_clk 0 I L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_120 4 IO
safe_mode 7
R23 hsusb0_stp 0 O H H 7 vdds Yes 4 PU/ PD LVCMOS
gpio_121 4 IO
safe_mode 7
P23 hsusb0_dir 0 I L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_122 4 IO
safe_mode 7
R22 hsusb0_nxt 0 I L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_124 4 IO
safe_mode 7
T24 hsusb0_ data0 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
uart3_tx_ irtx 2 O
gpio_125 4 IO
safe_mode 7
T23 hsusb0_ data1 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
uart3_rx_ irrx 2 I
gpio_130 4 IO
TERMINAL DESCRIPTION78 Submit Documentation Feedback
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Table 2-3. Ball Characteristics (CUS Pkg.) (continued)BALL BALL TOP [2] PIN NAME [3] MODE [4] TYPE [5] BALL RESET BALL RESET RESET REL. POWER [9] HYS [10] BUFFER PULLUPBOTTOM [1] STATE [6] REL. STATE MODE [8] STRENG TH /DOWN TYPE[7] (mA) [11] [12]
safe_mode 7
U24 hsusb0_ data2 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
uart3_rts_ sd 2 O
gpio_131 4 IO
safe_mode 7
U23 hsusb0_ data3 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
uart3_cts_ rctx 2 IO
gpio_169 4 IO
safe_mode 7
W24 hsusb0_ data4 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_188 4 IO
safe_mode 7
V23 hsusb0_ data5 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_189 4 IO
safe_mode 7
W23 hsusb0_ data6 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_190 4 IO
safe_mode 7
T22 hsusb0_ data7 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_191 4 IO
safe_mode 7
K20 i2c1_scl 0 IOD H H 0 vdds Yes 4 PU/ PD Open Drain
K21 i2c1_sda 0 IOD H H 0 vdds Yes 4 PU/ PD Open Drain
AC15 i2c2_scl 0 IOD H H 7 vdds Yes 4 PU/ PD Open Drain
gpio_168 4 IO
safe_mode 7
AC14 i2c2_sda 0 IOD H H 7 vdds Yes 4 PU/ PD Open Drain
gpio_183 4 IO
safe_mode 7
AC13 i2c3_scl 0 IOD H H 7 vdds Yes 4 PU/ PD Open Drain
gpio_184 4 IO
safe_mode 7
AC12 i2c3_sda 0 IOD H H 7 vdds Yes 4 PU/ PD Open Drain
gpio_185 4 IO
safe_mode 7
Y16 i2c4_scl 0 IOD H H 0 vdds Yes 4 PU/ PD Open Drain
sys_ nvmode1 1 O
safe_mode 7
Y15 i2c4_sda 0 IOD H H 0 vdds Yes 4 PU/ PD Open Drain
sys_ nvmode2 1 O
safe_mode 7
A24 hdq_sio 0 IOD H H 7 vdds Yes 4 PU/ PD LVCMOS
sys_altclk 1 I
i2c2_sccbe 2 O
i2c3_sccbe 3 O
gpio_170 4 IO
safe_mode 7
T5 mcspi1_clk 0 IO L L 7 vdds Yes 4
(1)
PU/ PD LVCMOS
mmc2_dat4 1 IO
gpio_171 4 IO
safe_mode 7
R4 mcspi1_ simo 0 IO L L 7 vdds Yes 4
(1)
PU/ PD LVCMOS
mmc2_dat5 1 IO
gpio_172 4 IO
Submit Documentation Feedback TERMINAL DESCRIPTION 79
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Table 2-3. Ball Characteristics (CUS Pkg.) (continued)BALL BALL TOP [2] PIN NAME [3] MODE [4] TYPE [5] BALL RESET BALL RESET RESET REL. POWER [9] HYS [10] BUFFER PULLUPBOTTOM [1] STATE [6] REL. STATE MODE [8] STRENG TH /DOWN TYPE[7] (mA) [11] [12]
safe_mode 7
T4 mcspi1_ somi 0 IO L L 7 vdds Yes 4
(1)
PU/ PD LVCMOS
mmc2_dat6 1 IO
gpio_173 4 IO
safe_mode 7
T6 mcspi1_cs0 0 IO H H 7 vdds Yes 4
(1)
PU/ PD LVCMOS
mmc2_dat7 1 IO
gpio_174 4 IO
safe_mode 7
R5 mcspi1_cs3 0 O H H 7 vdds Yes 4 PU/ PD LVCMOS
hsusb2_tll_ 2 IOdata2
hsusb2_ data2 3 IO
gpio_177 4 IO
mm2_txdat 5 IO
safe_mode 7
N5 mcspi2_clk 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
hsusb2_tll_ 2 IOdata7
hsusb2_ data7 3 O
gpio_178 4 IO
safe_mode 7
N4 mcspi2_ simo 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
gpt9_pwm_evt 1 IO
hsusb2_tll_ 2 IOdata4
hsusb2_ data4 3 I
gpio_179 4 IO
safe_mode 7
N3 mcspi2_ somi 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
gpt10_pwm_e 1 IOvt
hsusb2_tll_ 2 IOdata5
hsusb2_ data5 3 O
gpio_180 4 IO
safe_mode 7
M5 mcspi2_cs0 0 IO H H 7 vdds Yes 4 PU/ PD LVCMOS
gpt11_pwm_e 1 IOvt
hsusb2_tll_ 2 IOdata6
hsusb2_ data6 3 O
gpio_181 4 IO
safe_mode 7
M4 mcspi2_cs1 0 O L L 7 vdds Yes 4 PU/ PD LVCMOS
gpt8_pwm_evt 1 IO
hsusb2_tll_ 2 IOdata3
hsusb2_ data3 3 IO
gpio_182 4 IO
mm2_txen_n 5 IO
safe_mode 7
AA16 sys_32k 0 I Z I NA vdds Yes NA NA LVCMOS
AD15 sys_xtalin 0 I Z I NA vdds Yes NA LVCMOS
AD14 sys_xtalout 0 O Z O NA vdds Yes NA LVCMOS
Y13 sys_clkreq 0 IO 0 1 0 vdds Yes 4 PU/ PD LVCMOS
TERMINAL DESCRIPTION80 Submit Documentation Feedback
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Table 2-3. Ball Characteristics (CUS Pkg.) (continued)BALL BALL TOP [2] PIN NAME [3] MODE [4] TYPE [5] BALL RESET BALL RESET RESET REL. POWER [9] HYS [10] BUFFER PULLUPBOTTOM [1] STATE [6] REL. STATE MODE [8] STRENG TH /DOWN TYPE[7] (mA) [11] [12]
gpio_1 4 IO
safe_mode 7
W16 sys_nirq 0 I H H 7 vdds Yes 4 PU/ PD LVCMOS
gpio_0 4 IO
safe_mode 7
AA10 sys_ 0 I Z I NA vdds Yes NA NA LVCMOSnrespwron
Y10 sys_ 0 IOD 0 1 (PU) 0 vdds Yes 4 PU/ PD LVCMOSnreswarm
gpio_30 4 IO
safe_mode 7
AB12 sys_boot0 0 I Z Z 0 vdds Yes 4 PU/ PD LVCMOS
gpio_2 4 IO
safe_mode 7
AC16 sys_boot1 0 I Z Z 0 vdds Yes 4 PU/ PD LVCMOS
gpio_3 4 IO
safe_mode 7
AD17 sys_boot2 0 I Z Z 0 vdds Yes 4 PU/ PD LVCMOS
gpio_4 4 IO
safe_mode 7
AD18 sys_boot3 0 I Z Z 0 vdds Yes 4 PU/ PD LVCMOS
gpio_5 4 IO
safe_mode 7
AC17 sys_boot4 0 I Z Z 0 vdds Yes 4 PU/ PD LVCMOS
mmc2_dir_dat 1 O2
gpio_6 4 IO
safe_mode 7
AB16 sys_boot5 0 I Z Z 0 vdds Yes 4 PU/ PD LVCMOS
mmc2_dir_dat 1 O3
gpio_7 4 IO
safe_mode 7
AA15 sys_boot6 0 I Z Z 0 vdds Yes 4 PU/ PD LVCMOS
gpio_8 4 IO
safe_mode 7
AD23 sys_off_ mode 0 O 0 L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_9 4 IO
safe_mode 7
Y7 sys_clkout1 0 O L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_10 4 IO
safe_mode 7
AA6 sys_clkout2 0 O L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_186 4 IO
safe_mode 7
AB7 jtag_ntrst 0 I L L 0 vdds Yes NA PU/ PD LVCMOS
AB6 jtag_tck 0 I L L 0 vdds Yes NA PU/ PD LVCMOS
AA7 jtag_rtck 0 O L 0 0 vdds Yes 4 PU/ PD LVCMOS
AA9 jtag_tms_tmsc 0 IO H H 0 vdds Yes 4 PU/ PD LVCMOS
AB10 jtag_tdi 0 I H H 0 vdds Yes NA PU/ PD LVCMOS
AB9 jtag_tdo 0 O L Z 0 vdds Yes 4 PU/ PD LVCMOS
AC24 jtag_emu0 0 IO H H 0 vdds Yes 4 PU/ PD LVCMOS
gpio_11 4 IO
safe_mode 7
AD24 jtag_emu1 0 IO H H 0 vdds Yes 4 PU/ PD LVCMOS
gpio_31 4 IO
Submit Documentation Feedback TERMINAL DESCRIPTION 81
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Table 2-3. Ball Characteristics (CUS Pkg.) (continued)BALL BALL TOP [2] PIN NAME [3] MODE [4] TYPE [5] BALL RESET BALL RESET RESET REL. POWER [9] HYS [10] BUFFER PULLUPBOTTOM [1] STATE [6] REL. STATE MODE [8] STRENG TH /DOWN TYPE[7] (mA) [11] [12]
safe_mode 7
AC1 etk_clk 0 O H H 4 vdds Yes 4 PU/ PD LVCMOS
mcbsp5_ clkx 1 IO
mmc3_clk 2 O
hsusb1_stp 3 O
gpio_12 4 IO
mm1_rxdp 5 IO
hsusb1_tll_stp 6 I
AD3 etk_ctl 0 O H H 4 vdds Yes 4 PU/ PD LVCMOS
mmc3_cmd 2 IO
hsusb1_clk 3 O
gpio_13 4 IO
hsusb1_tll_clk 6 O
AD6 etk_d0 0 O H H 4 vdds Yes 4 PU/ PD LVCMOS
mcspi3_ simo 1 IO
mmc3_dat4 2 IO
hsusb1_ data0 3 IO
gpio_14 4 IO
mm1_rxrcv 5 IO
hsusb1_tll_ 6 IOdata0
AC6 etk_d1 0 O H H 4 vdds Yes 4 PU/ PD LVCMOS
mcspi3_ somi 1 IO
hsusb1_ data1 3 IO
gpio_15 4 IO
mm1_txse0 5 IO
hsusb1_tll_ 6 IOdata1
AC7 etk_d2 0 O H H 4 vdds Yes 4 PU/ PD LVCMOS
mcspi3_cs0 1 IO
hsusb1_ data2 3 IO
gpio_16 4 IO
mm1_txdat 5 IO
hsusb1_tll_dat 6 IOa2
AD8 etk_d3 0 O H H 4 vdds Yes 4 PU/ PD LVCMOS
mcspi3_clk 1 IO
mmc3_dat3 2 IO
hsusb1_ data7 3 IO
gpio_17 4 IO
hsusb1_tll_ 6 IOdata7
AC5 etk_d4 0 O L L 4 vdds Yes 4 PU/ PD LVCMOS
mcbsp5_dr 1 I
mmc3_dat0 2 IO
hsusb1_ data4 3 IO
gpio_18 4 IO
hsusb1_tll_ 6 IOdata4
AD2 etk_d5 0 O L L 4 vdds Yes 4 PU/ PD LVCMOS
mcbsp5_fsx 1 IO
mmc3_dat1 2 IO
hsusb1_ data5 3 IO
gpio_19 4 IO
hsusb1_tll_ 6 IOdata5
AC8 etk_d6 0 O L L 4 vdds Yes 4 PU/ PD LVCMOS
TERMINAL DESCRIPTION82 Submit Documentation Feedback
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Table 2-3. Ball Characteristics (CUS Pkg.) (continued)BALL BALL TOP [2] PIN NAME [3] MODE [4] TYPE [5] BALL RESET BALL RESET RESET REL. POWER [9] HYS [10] BUFFER PULLUPBOTTOM [1] STATE [6] REL. STATE MODE [8] STRENG TH /DOWN TYPE[7] (mA) [11] [12]
mcbsp5_dx 1 IO
mmc3_dat2 2 IO
hsusb1_ data6 3 IO
gpio_20 4 IO
hsusb1_tll_ 6 IOdata6
AD9 etk_d7 0 O L L 4 vdds Yes 4 PU/ PD LVCMOS
mcspi3_cs1 1 O
mmc3_dat7 2 IO
hsusb1_ data3 3 IO
gpio_21 4 IO
mm1_txen_n 5 IO
hsusb1_tll_ 6 IOdata3
AC4 etk_d8 0 O L L 4 vdds Yes 4 PU/ PD LVCMOS
sys_drm_ 1 Omsecure
mmc3_dat6 2 IO
hsusb1_dir 3 I
gpio_22 4 IO
hsusb1_tll_dir 6 O
AD5 etk_d9 0 O L L 4 vdds Yes 4 PU/ PD LVCMOS
sys_secure_in 1 Odic ator
mmc3_dat5 2 IO
hsusb1_nxt 3 I
gpio_23 4 IO
mm1_rxdm 5 IO
hsusb1_tll_nxt 6 O
AC3 etk_d10 0 O L L 4 vdds Yes 4 PU/ PD LVCMOS
uart1_rx 2 I
hsusb2_clk 3 O
gpio_24 4 IO
hsusb2_tll_clk 6 O
AC9 etk_d11 0 O L L 4 vdds Yes 4 PU/ PD LVCMOS
hsusb2_stp 3 O
gpio_25 4 IO
mm2_rxdp 5 IO
hsusb2_tll_stp 6 I
AC10 etk_d12 0 O L L 4 vdds Yes 4 PU/ PD LVCMOS
hsusb2_dir 3 I
gpio_26 4 IO
hsusb2_tll_dir 6 O
AD11 etk_d13 0 O L L 4 vdds Yes 4 PU/ PD LVCMOS
hsusb2_nxt 3 I
gpio_27 4 IO
mm2_rxdm 5 IO
hsusb2_tll_nxt 6 O
AC11 etk_d14 0 O L L 4 vdds Yes 4 PU/ PD LVCMOS
hsusb2_ data0 3 IO
gpio_28 4 IO
mm2_rxrcv 5 IO
hsusb2_tll_ 6 IOdata0
AD12 etk_d15 0 O L L 4 vdds Yes 4 PU/ PD LVCMOS
hsusb2_ data1 3 IO
Submit Documentation Feedback TERMINAL DESCRIPTION 83
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Table 2-3. Ball Characteristics (CUS Pkg.) (continued)BALL BALL TOP [2] PIN NAME [3] MODE [4] TYPE [5] BALL RESET BALL RESET RESET REL. POWER [9] HYS [10] BUFFER PULLUPBOTTOM [1] STATE [6] REL. STATE MODE [8] STRENG TH /DOWN TYPE[7] (mA) [11] [12]
gpio_29 4 IO
mm2_txse0 5 IO
hsusb2_tll_ 6 IOdata1
E16, F15, vdds_mem 0 PWR - - - - - - - -F16, G15,G16, H15, J6,J7, J8, K6, K7,K8
F12, F13, vdd_core 0 PWR - - - - - - - -G12, G13,H12, H13,J17, J18, K17,K18, K19,L14, L15,M14, M15,R17, R18,R19, T17,T18, T19, T20
F10, G9, G10, vdd_mpu 0 PWR - - - - - - - -H9, H10, J9,J10, L11, L12,M6, M7, M8,M12, N6, N7,N8, R6, R7,R8, T7, T8,U12, U13,V12, V13,W12, W13
H8 vdds_mmc1a 0 PWR - - - - - - - -
M17, M18, vdds 0 PWR - - - - - - - -M19, N17,N18, N19,U10, V9, V10,W9, W10, Y9
N24 vdds_mmc1 0 PWR - - - - - - - -
Y12, U8, H17 cap_vdd_wku 0 PWR - - - - - - - -p,
cap_vdd_sram
_mpu,
cap_vdd_sram
_core
G18 vdds_dpll_dll 0 PWR - - - - - - - -
U17 vdds_dpll_per 0 PWR - - - - - - - -
AA12 vdds_sram 0 PWR - - - - - - - -
AA13 vdds_wkup_b 0 PWR - - - - - - - -g
AB15 vssa_dac 0 GND - - - - - - - -
AB13 vdda_dac 0 PWR - - - - - - - -
H11, H14, vss 0 GND - - - - - - - -H16, J11, J12,J13, J14, J15,J16, K10,K11, K14,K15, L8, L10,L13, L17, M9,M10, M11,M13, M16,N9, N10, N11,N12, N13,N14, N15,N16, P8, P10,P11, P12,P13, P14,P15, P17,R10, R11,R14, R15, T9,T10, T11,T12, T13,T14, T15,T16, U9, U11,U14, U15,U16, V15,V16, W15
AD1, A1, A2, No Connect - - - - - - - - - -B1
TERMINAL DESCRIPTION84 Submit Documentation Feedback
2.4 Multiplexing Characteristics
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Table 2-4 provides a description of the OMAP35 15/03 multiplexing on the CBB, CBC, and CUS packages,respectively.
Note: The following does not take into account subsystem pin multiplexing options. Subsystem pinmultiplexing options are described in Section 2.5 ,Signal Description.
Table 2-4. Multiplexing CharacteristicsCBB CBC CUS MODE 0 MODE 1 MODE 2 MODE 3 MODE 4 MODE 5 MODE 6 MODE 7
Bottom Top Bottom Top
D6 J2 NA D1 D7 sdrc_d0
C6 J1 NA G1 C5 sdrc_d1
B6 G2 NA G2 C6 sdrc_d2
C8 G1 NA E1 B5 sdrc_d3
C9 F2 NA D2 D9 sdrc_d4
A7 F1 NA E2 D10 sdrc_d5
B9 D2 NA B3 C7 sdrc_d6
A9 D1 NA B4 B7 sdrc_d7
C14 B13 NA A10 B11 sdrc_d8
B14 A13 NA B11 C12 sdrc_d9
C15 B14 NA A11 B12 sdrc_d10
B16 A14 NA B12 D13 sdrc_d11
D17 B16 NA A16 C13 sdrc_d12
C17 A16 NA A17 B14 sdrc_d13
B17 B19 NA B17 A14 sdrc_d14
D18 A19 NA B18 B15 sdrc_d15
D11 B3 NA B7 C9 sdrc_d16
B10 A3 NA A5 E12 sdrc_d17
C11 B5 NA B6 B8 sdrc_d18
D12 A5 NA A6 B9 sdrc_d19
C12 B8 NA A8 C10 sdrc_d20
A11 A8 NA B9 B10 sdrc_d21
B13 B9 NA A9 D12 sdrc_d22
D14 A9 NA B10 E13 sdrc_d23
C18 B21 NA C21 E15 sdrc_d24
A19 A21 NA D20 D15 sdrc_d25
B19 D22 NA B19 C15 sdrc_d26
B20 D23 NA C20 B16 sdrc_d27
D20 E22 NA D21 C16 sdrc_d28
A21 E23 NA E20 D16 sdrc_d29
B21 G22 NA E21 B17 sdrc_d30
C21 G23 NA G21 B18 sdrc_d31
H9 AB21 NA AA18 C18 sdrc_ba0
H10 AC21 NA V20 D18 sdrc_ba1
A4 N22 NA G20 A4 sdrc_a0
B4 N23 NA K20 B4 sdrc_a1
B3 P22 NA J20 D6 sdrc_a2
C5 P23 NA J21 B3 sdrc_a3
C4 R22 NA U21 B2 sdrc_a4
D5 R23 NA R20 C3 sdrc_a5
C3 T22 NA M21 E3 sdrc_a6
C2 T23 NA M20 F6 sdrc_a7
C1 U22 NA N20 E10 sdrc_a8
D4 U23 NA K21 E9 sdrc_a9
D3 V22 NA Y16 E7 sdrc_a10
D2 V23 NA N21 G6 sdrc_a11
D1 W22 NA R21 G7 sdrc_a12
Submit Documentation Feedback TERMINAL DESCRIPTION 85
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Table 2-4. Multiplexing Characteristics (continued)CBB CBC CUS MODE 0 MODE 1 MODE 2 MODE 3 MODE 4 MODE 5 MODE 6 MODE 7
Bottom Top Bottom Top
E2 W23 NA AA15 F7 sdrc_a13
E1 Y22 NA Y12 F9 sdrc_a14
H11 M22 NA T21 A19 sdrc_ncs0
H12 M23 NA T20 B19 sdrc_ncs1
A13 A11 NA A12 A10 sdrc_clk
A14 B11 NA B13 A11 sdrc_nclk
H16 J22 NA Y15 B20 sdrc_cke0 safe_mode
H17 J23 NA Y13 C20 sdrc_cke1 safe_mode
H14 L23 NA V21 D19 sdrc_nras
H13 L22 NA U20 C19 sdrc_ncas
H15 K23 NA Y18 A20 sdrc_nwe
B7 C1 NA H1 B6 sdrc_dm0
A16 A17 NA A14 B13 sdrc_dm1
B11 A6 NA A4 A7 sdrc_dm2
C20 A20 NA A18 A16 sdrc_dm3
A6 C2 NA C2 A5 sdrc_dqs0
A17 B17 NA B15 A13 sdrc_dqs1
A10 B6 NA B8 A8 sdrc_dqs2
A20 B20 NA A19 A17 sdrc_dqs3
N4 AC15 J2 NA K4 gpmc_a1 gpio_34 safe_mode
M4 AB15 H1 NA K3 gpmc_a2 gpio_35 safe_mode
L4 AC16 H2 NA K2 gpmc_a3 gpio_36 safe_mode
K4 AB16 G2 NA J4 gpmc_a4 gpio_37 safe_mode
T3 AC17 F1 NA J3 gpmc_a5 gpio_38 safe_mode
R3 AB17 F2 NA J2 gpmc_a6 gpio_39 safe_mode
N3 AC18 E1 NA J1 gpmc_a7 gpio_40 safe_mode
M3 AB18 E2 NA H1 gpmc_a8 gpio_41 safe_mode
L3 AC19 D1 NA H2 gpmc_a9 sys_ndmareq gpio_42 safe_mode2
K3 AB19 D2 NA G2 gpmc_a10 sys_ndmareq gpio_43 safe_mode3
K1 M2 AA2 U2 L2 gpmc_d0
L1 M1 AA1 U1 M1 gpmc_d1
L2 N2 AC2 V2 M2 gpmc_d2
P2 N1 AC1 V1 N2 gpmc_d3
T1 R2 AE5 AA3 M3 gpmc_d4
V1 R1 AD6 AA4 P1 gpmc_d5
V2 T2 AD5 Y3 P2 gpmc_d6
W2 T1 AC5 Y4 R1 gpmc_d7
H2 AB3 V1 R1 R2 gpmc_d8 gpio_44 safe_mode
K2 AC3 Y1 T1 T2 gpmc_d9 gpio_45 safe_mode
P1 AB4 T1 N1 U1 gpmc_d10 gpio_46 safe_mode
R1 AC4 U2 P2 R3 gpmc_d11 gpio_47 safe_mode
R2 AB6 U1 P1 T3 gpmc_d12 gpio_48 safe_mode
T2 AC6 P1 M1 U2 gpmc_d13 gpio_49 safe_mode
W1 AB7 L2 J2 V1 gpmc_d14 gpio_50 safe_mode
Y1 AC7 M2 K2 V2 gpmc_d15 gpio_51 safe_mode
G4 Y2 AD8 AA8 E2 gpmc_ncs0
H3 Y1 AD1 W1 NA gpmc_ncs1 gpio_52 safe_mode
V8 NA A3 NA NA gpmc_ncs2 gpio_53 safe_mode
U8 NA B6 NA D2 gpmc_ncs3 sys_ndmareq gpio_54 safe_mode0
T8 NA B4 NA F4 gpmc_ncs4 sys_ndmareq mcbsp4_clkx gpt9_pwm_e gpio_55 safe_mode1 vt
R8 NA C4 NA G5 gpmc_ncs5 sys_ndmareq mcbsp4_dr gpt10_pwm_ gpio_56 safe_mode2 evt
TERMINAL DESCRIPTION86 Submit Documentation Feedback
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Table 2-4. Multiplexing Characteristics (continued)CBB CBC CUS MODE 0 MODE 1 MODE 2 MODE 3 MODE 4 MODE 5 MODE 6 MODE 7
Bottom Top Bottom Top
P8 NA B5 NA F3 gpmc_ncs6 sys_ndmareq mcbsp4_dx gpt11_pwm_ gpio_57 safe_mode3 evt
N8 NA C5 NA G4 gpmc_ncs7 gpmc_io_dir mcbsp4_fsx gpt8_pwm_e gpio_58 safe_modevt
T4 W2 N1 L1 W2 gpmc_clk gpio_59 safe_mode
F3 W1 AD10 AA9 F1 gpmc_nadv_
ale
G2 V2 N2 L2 F2 gpmc_noe
F4 V1 M1 K1 G3 gpmc_nwe
G3 AC12 K2 FT
(1)
K5 gpmc_nbe0_ gpio_60 safe_modecle
U3 NA J1 NA L1 gpmc_nbe1 gpio_61 safe_mode
H1 AB10 AC6 Y5 E1 gpmc_nwp gpio_62 safe_mode
M8 AB12 AC11 Y10 C1 gpmc_wait0
L8 AC10 AC8 Y8 NA gpmc_wait1 gpio_63 safe_mode
K8 NA B3 NA NA gpmc_wait2 gpio_64 safe_mode
J8 NA C6 NA C2 gpmc_wait3 sys_ndmareq gpio_65 safe_mode1
D28 NA G25 NA G22 dss_pclk gpio_66 hw_dbg12 safe_mode
D26 NA K24 NA E22 dss_hsync gpio_67 hw_dbg13 safe_mode
D27 NA M25 NA F22 dss_vsync gpio_68 safe_mode
E27 NA F26 NA J21 dss_acbias gpio_69 safe_mode
AG22 NA AE21 NA AC19 dss_data0 uart1_cts dssvenc656_ gpio_70 safe_modedata0
AH22 NA AE22 NA AB19 dss_data1 uart1_rts dssvenc656_ gpio_71 safe_modedata1
AG23 NA AE23 NA AD20 dss_data2 dssvenc656_ gpio_72 safe_modedata2
AH23 NA AE24 NA AC20 dss_data3 dssvenc656_ gpio_73 safe_modedata3
AG24 NA AD23 NA AD21 dss_data4 uart3_rx_irrx dssvenc656_ gpio_74 safe_modedata4
AH24 NA AD24 NA AC21 dss_data5 uart3_tx_irtx dssvenc656_ gpio_75 safe_modedata5
E26 NA G26 NA D24 dss_data6 uart1_tx dssvenc656_ gpio_76 hw_dbg14 safe_modedata6
F28 NA H25 NA E23 dss_data7 uart1_rx dssvenc656_ gpio_77 hw_dbg15 safe_modedata7
F27 NA H26 NA E24 dss_data8 gpio_78 hw_dbg16 safe_mode
G26 NA J26 NA F23 dss_data9 gpio_79 hw_dbg17 safe_mode
AD28 NA AC26 NA AC22 dss_data10 gpio_80 safe_mode
AD27 NA AD26 NA AC23 dss_data11 gpio_81 safe_mode
AB28 NA AA25 NA AB22 dss_data12 gpio_82 safe_mode
AB27 NA Y25 NA Y22 dss_data13 gpio_83 safe_mode
AA28 NA AA26 NA W22 dss_data14 gpio_84 safe_mode
AA27 NA AB26 NA V22 dss_data15 gpio_85 safe_mode
G25 NA L25 NA J22 dss_data16 gpio_86 safe_mode
H27 NA L26 NA G23 dss_data17 gpio_87 safe_mode
H26 NA M24 NA G24 dss_data18 mcspi3_clk dss_data0 gpio_88 safe_mode
H25 NA M26 NA H23 dss_data19 mcspi3_simo dss_data1 gpio_89 safe_mode
E28 NA F25 NA D23 dss_data20 mcspi3_somi dss_data2 gpio_90 safe_mode
J26 NA N24 NA K22 dss_data21 mcspi3_cs0 dss_data3 gpio_91 safe_mode
AC27 NA AC25 NA V21 dss_data22 mcspi3_cs1 dss_data4 gpio_92 safe_mode
AC28 NA AB25 NA W21 dss_data23 dss_data5 gpio_93 safe_mode
W28 NA V26 NA AA23 tv_out2
Y28 NA W26 NA AB24 tv_out1
Y27 NA W25 NA AB23 tv_vfb1
W27 NA U24 NA Y23 tv_vfb2
W26 NA V23 NA Y24 tv_vref
(1) "FT" indicates Feed-Through. For more information, refer to Section 2.5.10 .
Submit Documentation Feedback TERMINAL DESCRIPTION 87
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Table 2-4. Multiplexing Characteristics (continued)CBB CBC CUS MODE 0 MODE 1 MODE 2 MODE 3 MODE 4 MODE 5 MODE 6 MODE 7
Bottom Top Bottom Top
A24 NA C23 NA A22 cam_hs gpio_94 hw_dbg0 safe_mode
A23 NA D23 NA E18 cam_vs gpio_95 hw_dbg1 safe_mode
C25 NA C25 NA B22 cam_xclka gpio_96 safe_mode
C27 NA C26 NA J19 cam_pclk gpio_97 hw_dbg2 safe_mode
C23 NA B23 NA H24 cam_fld cam_global_r gpio_98 hw_dbg3 safe_modeeset
AG17 NA AE16 NA AB18 cam_d0 gpio_99 safe_mode
AH17 NA AE15 NA AC18 cam_d1 gpio_100 safe_mode
B24 NA A24 NA G19 cam_d2 gpio_101 hw_dbg4 safe_mode
C24 NA B24 NA F19 cam_d3 gpio_102 hw_dbg5 safe_mode
D24 NA D24 NA G20 cam_d4 gpio_103 hw_dbg6 safe_mode
A25 NA C24 NA B21 cam_d5 gpio_104 hw_dbg7 safe_mode
K28 NA P25 NA L24 cam_d6 gpio_105 safe_mode
L28 NA P26 NA K24 cam_d7 gpio_106 safe_mode
K27 NA N25 NA J23 cam_d8 gpio_107 safe_mode
L27 NA N26 NA K23 cam_d9 gpio_108 safe_mode
B25 NA D25 NA F21 cam_d10 gpio_109 hw_dbg8 safe_mode
C26 NA E26 NA G21 cam_d11 gpio_110 hw_dbg9 safe_mode
B26 NA E25 NA C22 cam_xclkb gpio_111 safe_mode
B23 NA A23 NA F18 cam_wen cam_shutter gpio_167 hw_dbg10 safe_mode
D25 NA D26 NA J20 cam_strobe gpio_126 hw_dbg11 safe_mode
AG19 NA AD17 NA NA gpio_112 safe_mode
AH19 NA AD16 NA NA gpio_113 safe_mode
AG18 NA AE18 NA NA gpio_114 safe_mode
AH18 NA AE17 NA NA gpio_115 safe_mode
P21 NA U18 NA V20 mcbsp2_fsx gpio_116 safe_mode
N21 NA R18 NA T21 mcbsp2_clkx gpio_117 safe_mode
R21 NA T18 NA V19 mcbsp2_dr gpio_118 safe_mode
M21 NA R19 NA R20 mcbsp2_dx gpio_119 safe_mode
N28 NA N19 NA M23 mmc1_clk gpio_120 safe_mode
M27 NA L18 NA L23 mmc1_cmd gpio_121 safe_mode
N27 NA M19 NA M22 mmc1_dat0 gpio_122 safe_mode
N26 NA M18 NA M21 mmc1_dat1 gpio_123 safe_mode
N25 NA K18 NA M20 mmc1_dat2 gpio_124 safe_mode
P28 NA N20 NA N23 mmc1_dat3 gpio_125 safe_mode
P27 NA M20 NA N22 mmc1_dat4 gpio_126 safe_mode
P26 NA P17 NA N21 mmc1_dat5 gpio_127 safe_mode
R27 NA P18 NA N20 mmc1_dat6 gpio_128 safe_mode
R25 NA P19 NA P24 mmc1_dat7 gpio_129 safe_mode
AE2 NA W10 NA Y1 mmc2_clk mcspi3_clk gpio_130 safe_mode
AG5 NA R10 NA AB5 mmc2_cmd mcspi3_simo gpio_131 safe_mode
AH5 NA T10 NA AB3 mmc2_dat0 mcspi3_somi gpio_132 safe_mode
AH4 NA T9 NA Y3 mmc2_dat1 gpio_133 safe_mode
AG4 NA U10 NA W3 mmc2_dat2 mcspi3_cs1 gpio_134 safe_mode
AF4 NA U9 NA V3 mmc2_dat3 mcspi3_cs0 gpio_135 safe_mode
AE4 NA V10 NA AB2 mmc2_dat4 mmc2_dir_da mmc3_dat0 gpio_136 safe_modet0
AH3 NA M3 NA AA2 mmc2_dat5 mmc2_dir_da cam_global_r mmc3_dat1 gpio_137 hsusb3_tll_st mm3_rxdp safe_modet1 eset p
AF3 NA L3 NA Y2 mmc2_dat6 mmc2_dir_c cam_shutter mmc3_dat2 gpio_138 hsusb3_tll_di safe_modemd r
AE3 NA K3 NA AA1 mmc2_dat7 mmc2_clkin mmc3_dat3 gpio_139 hsusb3_tll_n mm3_rxdm safe_modext
AF6 NA P3 NA V6 mcbsp3_dx uart2_cts gpio_140 hsusb3_tll_d safe_modeata4
AE6 NA N3 NA V5 mcbsp3_dr uart2_rts gpio_141 hsusb3_tll_d safe_modeata5
TERMINAL DESCRIPTION88 Submit Documentation Feedback
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Table 2-4. Multiplexing Characteristics (continued)CBB CBC CUS MODE 0 MODE 1 MODE 2 MODE 3 MODE 4 MODE 5 MODE 6 MODE 7
Bottom Top Bottom Top
AF5 NA U3 NA W4 mcbsp3_clkx uart2_tx gpio_142 hsusb3_tll_d safe_modeata6
AE5 NA W3 NA V4 mcbsp3_fsx uart2_rx gpio_143 hsusb3_tll_d safe_modeata7
AB26 NA Y24 NA NA uart2_cts mcbsp3_dx gpt9_pwm_e gpio_144 safe_modevt
AB25 NA AA24 NA NA uart2_rts mcbsp3_dr gpt10_pwm_ gpio_145 safe_modeevt
AA25 NA AD22 NA NA uart2_tx mcbsp3_clkx gpt11_pwm_ gpio_146 safe_modeevt
AD25 NA AD21 NA NA uart2_rx mcbsp3_fsx gpt8_pwm_e gpio_147 safe_modevt
AA8 NA L4 NA W7 uart1_tx gpio_148 safe_mode
AA9 NA R2 NA W6 uart1_rts gpio_149 safe_mode
W8 NA W2 NA AC2 uart1_cts gpio_150 hsusb3_tll_cl safe_modek
Y8 NA H3 NA V7 uart1_rx mcbsp1_clkr mcspi4_clk gpio_151 safe_mode
AE1 NA V3 NA NA mcbsp4_clkx gpio_152 hsusb3_tll_d mm3_txse0 safe_modeata1
AD1 NA U4 NA NA mcbsp4_dr gpio_153 hsusb3_tll_d mm3_rxrcv safe_modeata0
AD2 NA R3 NA NA mcbsp4_dx gpio_154 hsusb3_tll_d mm3_txdat safe_modeata2
AC1 NA T3 NA NA mcbsp4_fsx gpio_155 hsusb3_tll_d mm3_txen_n safe_modeata3
Y21 NA U19 NA W19 mcbsp1_clkr mcspi4_clk gpio_156 safe_mode
AA21 NA V17 NA AB20 mcbsp1_fsr cam_global_r gpio_157 safe_modeeset
V21 NA U17 NA W18 mcbsp1_dx mcspi4_simo mcbsp3_dx gpio_158 safe_mode
U21 NA T20 NA Y18 mcbsp1_dr mcspi4_somi mcbsp3_dr gpio_159 safe_mode
T21 NA T19 NA AA18 mcbsp_clks cam_shutter gpio_160 uart1_cts safe_mode
K26 NA P20 NA AA19 mcbsp1_fsx mcspi4_cs0 mcbsp3_fsx gpio_161 safe_mode
W21 NA T17 NA V18 mcbsp1_clkx mcbsp3_clkx gpio_162 safe_mode
H18 NA F23 NA A23 uart3_cts_rct gpio_163 safe_modex
H19 NA F24 NA B23 uart3_rts_sd gpio_164 safe_mode
H20 NA H24 NA B24 uart3_rx_irrx gpio_165 safe_mode
H21 NA G24 NA C23 uart3_tx_irtx gpio_166 safe_mode
T28 NA W19 NA R21 hsusb0_clk gpio_120 safe_mode
T25 NA U20 NA R23 hsusb0_stp gpio_121 safe_mode
R28 NA V19 NA P23 hsusb0_dir gpio_122 safe_mode
T26 NA W18 NA R22 hsusb0_nxt gpio_124 safe_mode
T27 NA V20 NA T24 hsusb0_data uart3_tx_irtx gpio_125 safe_mode0
U28 NA Y20 NA T23 hsusb0_data uart3_rx_irrx gpio_130 safe_mode1
U27 NA V18 NA U24 hsusb0_data uart3_rts_sd gpio_131 safe_mode2
U26 NA W20 NA U23 hsusb0_data uart3_cts_rct gpio_169 safe_mode3 x
U25 NA W17 NA W24 hsusb0_data gpio_188 safe_mode4
V28 NA Y18 NA V23 hsusb0_data gpio_189 safe_mode5
V27 NA Y19 NA W23 hsusb0_data gpio_190 safe_mode6
V26 NA Y17 NA T22 hsusb0_data gpio_191 safe_mode7
K21 NA J25 NA K20 i2c1_scl
J21 NA J24 NA K21 i2c1_sda
AF15 NA C2 NA AC15 i2c2_scl gpio_168 safe_mode
AE15 NA C1 NA AC14 i2c2_sda gpio_183 safe_mode
Submit Documentation Feedback TERMINAL DESCRIPTION 89
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Table 2-4. Multiplexing Characteristics (continued)CBB CBC CUS MODE 0 MODE 1 MODE 2 MODE 3 MODE 4 MODE 5 MODE 6 MODE 7
Bottom Top Bottom Top
AF14 NA AB4 NA AC13 i2c3_scl gpio_184 safe_mode
AG14 NA AC4 NA AC12 i2c3_sda gpio_185 safe_mode
AD26 NA AD15 NA Y16 i2c4_scl sys_nvmode safe_mode1
AE26 NA W16 NA Y15 i2c4_sda sys_nvmode safe_mode2
J25 NA J23 NA A24 hdq_sio sys_altclk i2c2_sccbe i2c3_sccbe gpio_170 safe_mode
AB3 NA P9 NA T5 mcspi1_clk mmc2_dat4 gpio_171 safe_mode
AB4 NA P8 NA R4 mcspi1_simo mmc2_dat5 gpio_172 safe_mode
AA4 NA P7 NA T4 mcspi1_somi mmc2_dat6 gpio_173 safe_mode
AC2 NA R7 NA T6 mcspi1_cs0 mmc2_dat7 gpio_174 safe_mode
AC3 NA R8 NA NA mcspi1_cs1 mmc3_cmd gpio_175 safe_mode
AB1 NA R9 NA NA mcspi1_cs2 mmc3_clk gpio_176 safe_mode
AB2 NA T8 NA R5 mcspi1_cs3 hsusb2_tll_d hsusb2_data gpio_177 mm2_txdat safe_modeata2 2
AA3 NA W7 NA N5 mcspi2_clk hsusb2_tll_d hsusb2_data gpio_178 safe_modeata7 7
Y2 NA W8 NA N4 mcspi2_simo gpt9_pwm_e hsusb2_tll_d hsusb2_data gpio_179 safe_modevt ata4 4
Y3 NA U8 NA N3 mcspi2_somi gpt10_pwm_ hsusb2_tll_d hsusb2_data gpio_180 safe_modeevt ata5 5
Y4 NA V8 NA M5 mcspi2_cs0 gpt11_pwm_ hsusb2_tll_d hsusb2_data gpio_181 safe_modeevt ata6 6
V3 NA V9 NA M4 mcspi2_cs1 gpt8_pwm_e hsusb2_tll_d hsusb2_data gpio_182 mm2_txen_n safe_modevt ata3 3
AE25 NA AE20 NA AA16 sys_32k
AE17 NA AF19 NA AD15 sys_xtalin
AF17 NA AF20 NA AD14 sys_xtalout
AF25 NA W15 NA Y13 sys_clkreq gpio_1 safe_mode
AF26 NA V16 NA W16 sys_nirq gpio_0 safe_mode
AH25 NA V13 NA AA10 sys_nrespwr
on
AF24 NA AD7 NA Y10 sys_nreswar gpio_30 safe_modem
AH26 NA F3 NA AB12 sys_boot0 gpio_2 safe_mode
AG26 NA D3 NA AC16 sys_boot1 gpio_3 safe_mode
AE14 NA C3 NA AD17 sys_boot2 gpio_4 safe_mode
AF18 NA E3 NA AD18 sys_boot3 gpio_5 safe_mode
AF19 NA E4 NA AC17 sys_boot4 mmc2_dir_da gpio_6 safe_modet2
AE21 NA G3 NA AB16 sys_boot5 mmc2_dir_da gpio_7 safe_modet3
AF21 NA D4 NA AA15 sys_boot6 gpio_8 safe_mode
AF22 NA V12 NA AD23 sys_off_mod gpio_9 safe_modee
AG25 NA AE14 NA Y7 sys_clkout1 gpio_10 safe_mode
AE22 NA W11 NA AA6 sys_clkout2 gpio_186 safe_mode
AA17 NA U15 NA AB7 jtag_ntrst
AA13 NA V14 NA AB6 jtag_tck
AA12 NA W13 NA AA7 jtag_rtck
AA18 NA V15 NA AA9 jtag_tms_tms
c
AA20 NA U16 NA AB10 jtag_tdi
AA19 NA Y13 NA AB9 jtag_tdo
AA11 NA Y15 NA AC24 jtag_emu0 gpio_11 safe_mode
AA10 NA Y14 NA AD24 jtag_emu1 gpio_31 safe_mode
AF10 NA AB2 NA AC1 etk_clk mcbsp5_clkx mmc3_clk hsusb1_stp gpio_12 mm1_rxdp hsusb1_tll_st hw_dbg0p
AE10 NA AB3 NA AD3 etk_ctl mmc3_cmd hsusb1_clk gpio_13 hsusb1_tll_cl hw_dbg1k
TERMINAL DESCRIPTION90 Submit Documentation Feedback
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Table 2-4. Multiplexing Characteristics (continued)CBB CBC CUS MODE 0 MODE 1 MODE 2 MODE 3 MODE 4 MODE 5 MODE 6 MODE 7
Bottom Top Bottom Top
AF11 NA AC3 NA AD6 etk_d0 mcspi3_simo mmc3_dat4 hsusb1_data gpio_14 mm1_rxrcv hsusb1_tll_d hw_dbg20 ata0
AG12 NA AD4 NA AC6 etk_d1 mcspi3_somi hsusb1_data gpio_15 mm1_txse0 hsusb1_tll_d hw_dbg31 ata1
AH12 NA AD3 NA AC7 etk_d2 mcspi3_cs0 hsusb1_data gpio_16 mm1_txdat hsusb1_tll_d hw_dbg42 ata2
AE13 NA AA3 NA AD8 etk_d3 mcspi3_clk mmc3_dat3 hsusb1_data gpio_17 hsusb1_tll_d hw_dbg57 ata7
AE11 NA Y3 NA AC5 etk_d4 mcbsp5_dr mmc3_dat0 hsusb1_data gpio_18 hsusb1_tll_d hw_dbg64 ata4
AH9 NA AB1 NA AD2 etk_d5 mcbsp5_fsx mmc3_dat1 hsusb1_data gpio_19 hsusb1_tll_d hw_dbg75 ata5
AF13 NA AE3 NA AC8 etk_d6 mcbsp5_dx mmc3_dat2 hsusb1_data gpio_20 hsusb1_tll_d hw_dbg86 ata6
AH14 NA AD2 NA AD9 etk_d7 mcspi3_cs1 mmc3_dat7 hsusb1_data gpio_21 mm1_txen_n hsusb1_tll_d hw_dbg93 ata3
AF9 NA AA4 NA AC4 etk_d8 sys_drm_ms mmc3_dat6 hsusb1_dir gpio_22 hsusb1_tll_di hw_dbg10ecure r
AG9 NA V2 NA AD5 etk_d9 sys_secure_i mmc3_dat5 hsusb1_nxt gpio_23 mm1_rxdm hsusb1_tll_n hw_dbg11ndicator xt
AE7 NA AE4 NA AC3 etk_d10 uart1_rx hsusb2_clk gpio_24 hsusb2_tll_cl hw_dbg12k
AF7 NA AF6 NA AC9 etk_d11 hsusb2_stp gpio_25 mm2_rxdp hsusb2_tll_st hw_dbg13p
AG7 NA AE6 NA AC10 etk_d12 hsusb2_dir gpio_26 hsusb2_tll_di hw_dbg14r
AH7 NA AF7 NA AD11 etk_d13 hsusb2_nxt gpio_27 mm2_rxdm hsusb2_tll_n hw_dbg15xt
AG8 NA AF9 NA AC11 etk_d14 hsusb2_data gpio_28 mm2_rxrcv hsusb2_tll_d hw_dbg160 ata0
AH8 NA AE9 NA AD12 etk_d15 hsusb2_data gpio_29 mm2_txse0 hsusb2_tll_d hw_dbg171 ata1
AC4, J4, H4, NA AC21, D15, NA F12, F13, vdd_coreD8, AE9, D9, G11, G18, G12, G13,D15, Y16, H20, M7, H12, H13,AE18, Y18, M17, R20, J17, J18,W18, K18, T7, Y8, Y12 K17, K18,J18, AE19, K19, L14,Y19, U19, L15, M14,T19, N19, M15, R17,M19, J19, R18, R19,Y20, W20, T17, T18,V20, U20, T19, T20P20, N20,K20, J20,D22, D23,AE24, M25,L25, E25
Y9, W9, T9, NA D13, G9, NA F10, G9, vdd_mpuR9, M9, L9, G12, H7, G10, H9,J9, Y10, K11, L9, M9, H10, J9, J10,U10, T10, M10, N7, N8, L11, L12,R10, N10, P10, U7, M6, M7, M8,M10, L10, U11, U13, M12, N6, N7,J10, Y11, V7, V11, W9, N8, R6, R7,W11, K11, Y9, Y11 R8, T7, T8,J11, W12, U12, U13,K13, Y14, V12, V13,K14, J14, W12, W13Y15, W15,J15
AA15 NA K14 NA Y12 cap_vdd_wk
up
K15 NA K13 NA G18 vdds_dpll_dll
W16 NA U12 NA AA12 vdds_sram
Submit Documentation Feedback TERMINAL DESCRIPTION 91
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Table 2-4. Multiplexing Characteristics (continued)CBB CBC CUS MODE 0 MODE 1 MODE 2 MODE 3 MODE 4 MODE 5 MODE 6 MODE 7
Bottom Top Bottom Top
AD3, AD4, NA A18, AC7, NA M17, M18, vddsW4, AF8, AC15, AC18, M19, N17,AE8, AF16, AC24, AD20, N18, N19,AE16, AF23, AE10, C11, U10, V9,AE23, F25, D9, E24, G4, V10, W9,F26, AG27 J15, J18, L7, W10, Y9L24, M4, T4,T24, W24,Y4, L20,AB24, AD18,AD19
U1, J1, F1, NA NA E16, F15, vdds_memJ2, F2, R4, F16, G15,B5, A5, AH6, G16, H15,B8, A8, B12, J6, J7, J8,A12, D16, K6, K7, K8C16, B18,A18, B22,A22, G28,C28
AA16 NA U14 NA U17 vdds_dpll_pe
r
AA14 NA W14 NA AA13 vdds_wkup_
bg
AG2, U2, B2, NA A6, A8, A13, NA H11, H14, vssAG3, W3, AB5, AB22, H16, J11,P3, J3, E3, AC10, AC16, J12, J13,A3, P4, E4, AC19, AD14, J14, J15,AG6, D7, C7, AD25,AE7, J16, K10,V9, U9, P9, AF23, B2, K11, K14,N9, K9, W10, B25, C12, K15, L8, L10,V10, P10, D7, D10, L13, L17,K10, D10, D12, D14, M9, M10,C10, AF12, D18, D20, M11, M13,AE12, Y12, E22, G1, G8, M16, N9,K12, J12, G10, G20, N10, N11,Y13, W13, G23, H4, K1, N12, N13,J13, D13, K15, K25, N14, N15,C13, W14, L10, L17, N16, P8,K16, J16, L19, L23, N4, P10, P11,Y17, W17, N10, N17, P12, P13,K17, J17, R1, R4, R17, P14, P15,W19, V19, T23, U25, P17, R10,R19, P19, W1, W4, R11, R14,L19, K19, W23, Y7, R15, T9,D19, C19, Y10, Y16, T10, T11,AF20, AE20, Y26 T12, T13,T20, R2 T14, T15,T16, U9,U11, U14,U15, U16,V15, V16,W15
V25 NA V25 NA AB13 vdda_dac
Y26 NA V24 NA AB15 vssa_dac
K25 NA N23 NA N24 vdds_mmc1
P25 NA P23 NA H8 vdds_mmc1a
AA26 NA Y26 NA NA vss
AE27 NA AB24 NA NA vdds
AG21 NA AD19 NA NA vdds
AH20 NA AE19 NA NA cap_vdd_d
AH21 NA AC19 NA NA vss
AG16 NA NA NA NA vss
AG20 NA NA NA NA vdds
M28 NA L19 NA NA vss
H28 NA L20 NA NA vdds
V4 NA N9 NA U8 cap_vdd_sra
m_mpu
L21 NA K20 NA H17 cap_vdd_sra
m_core
TERMINAL DESCRIPTION92 Submit Documentation Feedback
2.5 Signal Description
2.5.1 External Memory Interfaces
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Many signals are available on multiple pins according to the software configuration of the pin multiplexingoptions.
1. SIGNAL NAME: The signal name2. DESCRIPTION: Description of the signal3. TYPE: Type = Ball type for this specific function: I = Input O = Output Z = High-impedance
D = Open Drain DS = Differential
A = Analog4. BALL BOTTOM: Associated ball(s) bottom5. BALL TOP: Associated ball(s) top6. SUBSYSTEM PIN MULTIPLEXING: Contains a list of the pin multiplexing options at themodule/subsystem level. The pin function is selected at the module/system level.
Note: The Subsystem Multiplexing Signals are not described in the following tables.
Table 2-5. External Memory Interfaces GPMC Signals DescriptionSIGNAL NAME DESCRIPTION [2] TYPE BALL BALL BALL BOTTOM BALL TOP BALL SUBSYSTEM[1] [3] BOTTOM TOP (CBC Pkg.) [4] (CBC Pkg.) [5] BOTTOM PIN(CBB (CBB (CUS MULTIPLEXINGPkg.) [4] Pkg.) [5] Pkg.) [4] [6]
gpmc_a1 General-purpose memory address O N4 / K1 AC15 / M2 J2 / AA2 NA / U2 K4/ L2 / gpmc_d0bit 1
gpmc_a2 General-purpose memory address O M4 / L1 AB15 / M1 H1 / AA1 NA / U1 K3/ M1 gpmc_a18/bit 2 gpmc_d1
gpmc_a3 General-purpose memory address O L4 / L2 AC16 / N2 H2 / AC2 NA / V2 K2/ M2 gpmc_a19/bit 3 gpmc_d2
gpmc_a4 General-purpose memory address O K4 / P2 AB16 / N1 G2 / AC1 NA / V1 J4/ N2 gpmc_a20/bit 4 gpmc_d3
gpmc_a5 General-purpose memory address O T3 / T1 AC17 / R2 F1 / AE5 NA / AA3 J3/ M3 gpmc_a21/bit 5 gpmc_d4
gpmc_a6 General-purpose memory address O R3 / V1 AB17 / R1 F2 / AD6 NA / AA4 J2/ P1 gpmc_a22/bit 6 gpmc_d5
gpmc_a7 General-purpose memory address O N3 / V2 AC18 / T2 E1 / AD5 NA / Y3 J1/ P2 gpmc_a23/bit 7 gpmc_d6
gpmc_a8 General-purpose memory address O M3 / W2 AB18 / T1 E2 / AC5 NA / Y4 H1/ R1 gpmc_a24/bit 8 gpmc_d7
gpmc_a9 General-purpose memory address O L3 / H2 AC19 / D1 / V1 NA / R1 H2/ R2 gpmc_a25/bit 9 AB3 gpmc_d8
gpmc_a10 General-purpose memory address O K3 / K2 AB19 / D2 / Y1 T1 G2/ T2 gpmc_a26/bit 10 AC3 gpmc_d9
gpmc_a11 General-purpose memory address O P1 AB4 T1 N1 U1 gpmc_d10bit 11
gpmc_a12 General-purpose memory address O R1 AC4 U2 P2 R3 gpmc_d11bit 12
gpmc_a13 General-purpose memory address O R2 AB6 U1 P1 T3 gpmc_d12bit 13
gpmc_a14 General-purpose memory address O T2 AC6 P1 M1 U2 gpmc_d13bit 14
gpmc_a15 General-purpose memory address O W1 AB7 L2 J2 V1 gpmc_d14bit 15
gpmc_a16 General-purpose memory address O Y1 AC7 M2 K2 V2 gpmc_d15bit 16
Submit Documentation Feedback TERMINAL DESCRIPTION 93
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Table 2-5. External Memory Interfaces GPMC Signals Description (continued)SIGNAL NAME DESCRIPTION [2] TYPE BALL BALL BALL BOTTOM BALL TOP BALL SUBSYSTEM[1] [3] BOTTOM TOP (CBC Pkg.) [4] (CBC Pkg.) [5] BOTTOM PIN(CBB (CBB (CUS MULTIPLEXINGPkg.) [4] Pkg.) [5] Pkg.) [4] [6]
gpmc_a17 General-purpose memory address O N4 AC15 J2 NA K4 gpmc_a1bit 17
gpmc_a18 General-purpose memory address O M4 AB15 H1 NA K3 gpmc_a2bit 18
gpmc_a19 General-purpose memory address O L4 AC16 H2 NA K2 gpmc_a3bit 19
gpmc_a20 General-purpose memory address O K4 AB16 G2 NA J4 gpmc_a4bit 20
gpmc_a21 General-purpose memory address O T3 AC17 F1 NA J3 gpmc_a5bit 21
gpmc_a22 General-purpose memory address O R3 AB17 F2 NA J2 gpmc_a6bit 22
gpmc_a23 General-purpose memory address O N3 AC18 E1 NA J1 gpmc_a7bit 23
gpmc_a24 General-purpose memory address O M3 AB18 E2 NA H1 gpmc_a8bit 24
gpmc_a25 General-purpose memory address O L3 AC19 D1 NA H2 gpmc_a9bit 25
gpmc_a26 General-purpose memory address O K3 AB19 D2 NA G2 gpmc_a10bit 26
gpmc_d0 GPMC Data bit 0 IO K1 M2 AA2 U2 L2 gpmc_a1/
gpmc_d0
gpmc_d1 GPMC Data bit 1 IO L1 M1 AA1 U1 M1 gpmc_a2/
gpmc_d1
gpmc_d2 GPMC Data bit 2 IO L2 N2 AC2 V2 M2 gpmc_a3/
gpmc_d2
gpmc_d3 GPMC Data bit 3 IO P2 N1 AC1 V1 N2 gpmc_a4/
gpmc_d3
gpmc_d4 GPMC Data bit 4 IO T1 R2 AE5 AA3 M3 gpmc_a5/
gpmc_d4
gpmc_d5 GPMC Data bit 5 IO V1 R1 AD6 AA4 P1 gpmc_a6/
gpmc_d5
gpmc_d6 GPMC Data bit 6 IO V2 T2 AD5 Y3 P2 gpmc_a7
/gpmc_d6
gpmc_d7 GPMC Data bit 7 IO W2 T1 AC5 Y4 R1 gpmc_a8/
gpmc_d7
gpmc_d8 GPMC Data bit 8 IO H2 AB3 V1 R1 R2 gpmc_a9/
gpmc_d8
gpmc_d9 GPMC Data bit 9 IO K2 AC3 Y1 T1 T2 gpmc_a10/
gpmc_d9
gpmc_d10 GPMC Data bit 10 IO P1 AB4 T1 N1 U1 gpmc_a11/
gpmc_d10
gpmc_d11 GPMC Data bit 11 IO R1 AC4 U2 P2 R3 gpmc_a12/
gpmc_d11
gpmc_d12 GPMC Data bit 12 IO R2 AB6 U1 P1 T3 gpmc_a13/
gpmc_d12
gpmc_d13 GPMC Data bit 13 IO T2 AC6 P1 M1 U2 gpmc_a14/
gpmc_d13
gpmc_d14 GPMC Data bit 14 IO W1 AB7 L2 J2 V1 gpmc_a15/
gpmc_d14
gpmc_d15 GPMC Data bit 15 IO Y1 AC7 M2 K2 V2 gpmc_a16/
gpmc_d15
gpmc_ncs0 GPMC Chip Select bit 0 O G4 Y2 AD8 AA8 E2 NA
gpmc_ncs1 GPMC Chip Select bit 1 O H3 Y1 AD1 W1 NA NA
gpmc_ncs2 GPMC Chip Select bit 2 O V8 NA A3 NA NA NA
gpmc_ncs3 GPMC Chip Select bit 3 O U8 NA B6 NA D2 NA
gpmc_ncs4 GPMC Chip Select bit 4 O T8 NA B4 NA F4 NA
gpmc_ncs5 GPMC Chip Select bit 5 O R8 NA C4 NA G5 NA
TERMINAL DESCRIPTION94 Submit Documentation Feedback
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Table 2-5. External Memory Interfaces GPMC Signals Description (continued)SIGNAL NAME DESCRIPTION [2] TYPE BALL BALL BALL BOTTOM BALL TOP BALL SUBSYSTEM[1] [3] BOTTOM TOP (CBC Pkg.) [4] (CBC Pkg.) [5] BOTTOM PIN(CBB (CBB (CUS MULTIPLEXINGPkg.) [4] Pkg.) [5] Pkg.) [4] [6]
gpmc_ncs6 GPMC Chip Select bit 6 O P8 NA B5 NA F3 NA
gpmc_ncs7 GPMC Chip Select bit 7 O N8 NA C5 NA G4 NA
gpmc_io_dir GPMC IO direction control for use O N8 NA C5 NA G4 NAwith external transceivers
gpmc_clk GPMC clock O T4 W2 N1 L1 W2 NA
gpmc_nadv_ale Address Valid or Address Latch O F3 W1 AD10 AA9 F1 NAEnable
gpmc_noe Output Enable O G2 V2 N2 L2 F2 NA
gpmc_nwe Write Enable O F4 V1 M1 K1 G3 NA
gpmc_nbe0_cle Lower Byte Enable. Also used for O G3 AC12 K2 FT
(1)
K5 NACommand Latch Enable
gpmc_nbe1 Upper Byte Enable O U3 NA J1 NA L1 NA
gpmc_nwp Flash Write Protect O H1 AB10 AC6 Y5 E1 NA
gpmc_wait0 External indication of wait I M8 AB12 AC11 Y10 C1 NA
gpmc_wait1 External indication of wait I L8 AC10 AC8 Y8 NA NA
gpmc_wait2 External indication of wait I K8 NA B3 NA NA NA
gpmc_wait3 External indication of wait I J8 NA C6 NA C2 NA
(1) FT indicates "Feed-Through. For more information, refer to Section 2.5.10 .
Table 2-6. External Memory Interfaces SDRC Signals DescriptionSIGNAL DESCRIPTION TYPE
(1)
BALL BALL TOP BALL BOTTOM BALL TOP BALL BOTTOMNAME BOTTOM (CBB Pkg.) (CBC Pkg.) (CBC Pkg.) (CUS Pkg.)(CBB Pkg.)
sdrc_d0 SDRAM data bit 0 IO D6 J2 NA D1 D7
sdrc_d1 SDRAM data bit 1 IO C6 J1 NA G1 C5
sdrc_d2 SDRAM data bit 2 IO B6 G2 NA G2 C6
sdrc_d3 SDRAM data bit 3 IO C8 G1 NA E1 B5
sdrc_d4 SDRAM data bit 4 IO C9 F2 NA D2 D9
sdrc_d5 SDRAM data bit 5 IO A7 F1 NA E2 D10
sdrc_d6 SDRAM data bit 6 IO B9 D2 NA B3 C7
sdrc_d7 SDRAM data bit 7 IO A9 D1 NA B4 B7
sdrc_d8 SDRAM data bit 8 IO C14 B13 NA A10 B11
sdrc_d9 SDRAM data bit 9 IO B14 A13 NA B11 C12
sdrc_d10 SDRAM data bit 10 IO C15 B14 NA A11 B12
sdrc_d11 SDRAM data bit 11 IO B16 A14 NA B12 D13
sdrc_d12 SDRAM data bit 12 IO D17 B16 NA A16 C13
sdrc_d13 SDRAM data bit 13 IO C17 A16 NA A17 B14
sdrc_d14 SDRAM data bit 14 IO B17 B19 NA B17 A14
sdrc_d15 SDRAM data bit 15 IO D18 A19 NA B18 B15
sdrc_d16 SDRAM data bit 16 IO D11 B3 NA B7 C9
sdrc_d17 SDRAM data bit 17 IO B10 A3 NA A5 E12
sdrc_d18 SDRAM data bit 18 IO C11 B5 NA B6 B8
sdrc_d19 SDRAM data bit 19 IO D12 A5 NA A6 B9
sdrc_d20 SDRAM data bit 20 IO C12 B8 NA A8 C10
sdrc_d21 SDRAM data bit 21 IO A11 A8 NA B9 B10
sdrc_d22 SDRAM data bit 22 IO B13 B9 NA A9 D12
sdrc_d23 SDRAM data bit 23 IO D14 A9 NA B10 E13
sdrc_d24 SDRAM data bit 24 IO C18 B21 NA C21 E15
sdrc_d25 SDRAM data bit 25 IO A19 A21 NA D20 D15
(1) Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog).
Submit Documentation Feedback TERMINAL DESCRIPTION 95
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Table 2-6. External Memory Interfaces SDRC Signals Description (continued)SIGNAL DESCRIPTION TYPE
(1)
BALL BALL TOP BALL BOTTOM BALL TOP BALL BOTTOMNAME BOTTOM (CBB Pkg.) (CBC Pkg.) (CBC Pkg.) (CUS Pkg.)(CBB Pkg.)
sdrc_d26 SDRAM data bit 26 IO B19 D22 NA B19 C15
sdrc_d27 SDRAM data bit 27 IO B20 D23 NA C20 B16
sdrc_d28 SDRAM data bit 28 IO D20 E22 NA D21 C16
sdrc_d29 SDRAM data bit 29 IO A21 E23 NA E20 D16
sdrc_d30 SDRAM data bit 30 IO B21 G22 NA E21 B17
sdrc_d31 SDRAM data bit 31 IO C21 G23 NA G21 B18
sdrc_ba0 SDRAM bank select 0 O H9 AB21 NA AA18 C18
sdrc_ba1 SDRAM bank select 1 O H10 AC21 NA V20 D18
sdrc_a0 SDRAM address bit 0 O A4 N22 NA G20 A4
sdrc_a1 SDRAM address bit 1 O B4 N23 NA K20 B4
sdrc_a2 SDRAM address bit 2 O B3 P22 NA J20 D6
sdrc_a3 SDRAM address bit 3 O C5 P23 NA J21 B3
sdrc_a4 SDRAM address bit 4 O C4 R22 NA U21 B2
sdrc_a5 SDRAM address bit 5 O D5 R23 NA R20 C3
sdrc_a6 SDRAM address bit 6 O C3 T22 NA M21 E3
sdrc_a7 SDRAM address bit 7 O C2 T23 NA M20 F6
sdrc_a8 SDRAM address bit 8 O C1 U22 NA N20 E10
sdrc_a9 SDRAM address bit 9 O D4 U23 NA K21 E9
sdrc_a10 SDRAM address bit 10 O D3 V22 NA Y16 E7
sdrc_a11 SDRAM address bit 11 O D2 V23 NA N21 G6
sdrc_a12 SDRAM address bit 12 O D1 W22 NA R21 G7
sdrc_a13 SDRAM address bit 13 O E2 W23 NA AA15 F7
sdrc_a14 SDRAM address bit 14 O E1 Y22 NA Y12 F9
sdrc_ncs0 Chip select 0 O H11 M22 NA T21 A19
sdrc_ncs1 Chip select 1 O H12 M23 NA T20 B19
sdrc_clk Clock IO A13 A11 NA A12 A10
sdrc_nclk Clock Invert O A14 B11 NA B13 A11
sdrc_cke0 Clock Enable 0 O H16 J22 NA Y15 B20
sdrc_cke1 Clock Enable 1 O H17 J23 NA Y13 C20
sdrc_nras SDRAM Row Access O H14 L23 NA V21 D19
sdrc_ncas SDRAM column O H13 L22 NA U20 C19address strobe
sdrc_nwe SDRAM write enable O H15 K23 NA Y18 A20
sdrc_dm0 Data Mask 0 O B7 C1 NA H1 B6
sdrc_dm1 Data Mask 1 O A16 A17 NA A14 B13
sdrc_dm2 Data Mask 2 O B11 A6 NA A4 A7
sdrc_dm3 Data Mask 3 O C20 A20 NA A18 A16
sdrc_dqs0 Data Strobe 0 IO A6 C2 NA C2 A5
sdrc_dqs1 Data Strobe 1 IO A17 B17 NA B15 A13
sdrc_dqs2 Data Strobe 2 IO A10 B6 NA B8 A8
sdrc_dqs3 Data Strobe 3 IO A20 B20 NA A19 A17
TERMINAL DESCRIPTION96 Submit Documentation Feedback
2.5.2 Video Interfaces
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Table 2-7. Video Interfaces CAM Signals DescriptionSIGNAL NAME DESCRIPTION TYPE
(1)
BALL BOTTOM BALL BOTTOM BALL BOTTOM(CBB Pkg.) (CBC Pkg.) (CUS Pkg.)
cam_hs Camera Horizontal Synchronization IO A24 C23 A22
cam_vs Camera Vertical Synchronization IO A23 D23 E18
cam_xclka Camera Clock Output a O C25 C25 B22
cam_xclkb Camera Clock Output b O B26 E25 C22
cam_d0 Camera digital image data bit 0 I AG17 AE16 AB18
cam_d1 Camera digital image data bit 1 I AH17 AE15 AC18
cam_d2 Camera digital image data bit 2 I B24 A24 G19
cam_d3 Camera digital image data bit 3 I C24 B24 F19
cam_d4 Camera digital image data bit 4 I D24 D24 G20
cam_d5 Camera digital image data bit 5 I A25 C24 B21
cam_d6 Camera digital image data bit 6 I K28 P25 L24
cam_d7 Camera digital image data bit 7 I L28 P26 K24
cam_d8 Camera digital image data bit 8 I K27 N25 J23
cam_d9 Camera digital image data bit 9 I L27 N26 K23
cam_d10 Camera digital image data bit 10 I B25 D25 F21
cam_d11 Camera digital image data bit 11 I C26 E26 G21
cam_fld Camera field identification IO C23 B23 H24
cam_pclk Camera pixel clock I C27 C26 J19
cam_wen Camera Write Enable I B23 A23 F18
cam_strobe Flash strobe control signal O D25 D26 J20
cam_global_reset Global reset is used strobe IO C23 / AH3 / AA21 B23/M3/V17 H24/ AA2/ AB20synchronization
cam_shutter Mechanical shutter control signal O B23 / AF3 / T21 A23 / T19 F18/ Y2/ AA18
(1) Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog).
Table 2-8. Video Interfaces DSS Signals DescriptionSIGNAL NAME DESCRIPTION TYPE
(1)
BALL BOTTOM BALL BOTTOM BALL BOTTOM(CBB Pkg.) (CBC Pkg.) (CUS Pkg.)
dss_pclk LCD Pixel Clock O D28 G25 G22
dss_hsync LCD Horizontal Synchronization O D26 K24 E22
dss_vsync LCD Vertical Synchronization O D27 M25 F22
dss_acbias AC bias control (STN) or pixel data enable (TFT) output O E27 F26 J21
dss_data0 LCD Pixel Data bit 0 IO AG22 / H26 AE21 / M24 AC19/G24
dss_data1 LCD Pixel Data bit 1 IO AH22 / H25 AE22 / M26 AB19/H23
dss_data2 LCD Pixel Data bit 2 IO AG23 / E28 AE23 / F25 AD20/D23
dss_data3 LCD Pixel Data bit 3 IO AH23 / J26 AE24 / N24 AC20/K22
dss_data4 LCD Pixel Data bit 4 IO AG24 / AC27 AD23 / AC25 AD21/V21
dss_data5 LCD Pixel Data bit 5 IO AH24 / AC28 AD24/ AB25 AC21/W21
dss_data6 LCD Pixel Data bit 6 IO E26 G26 D24
dss_data7 LCD Pixel Data bit 7 IO F28 H25 E23
dss_data8 LCD Pixel Data bit 8 IO F27 H26 E24
dss_data9 LCD Pixel Data bit 9 IO G26 J26 F23
dss_data10 LCD Pixel Data bit 10 IO AD28 AC26 AC22
dss_data11 LCD Pixel Data bit 11 IO AD27 AD26 AC23
dss_data12 LCD Pixel Data bit 12 IO AB28 AA25 AB22
dss_data13 LCD Pixel Data bit 13 IO AB27 Y25 Y22
dss_data14 LCD Pixel Data bit 14 IO AA28 AA26 W22
(1) Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog).
Submit Documentation Feedback TERMINAL DESCRIPTION 97
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Table 2-8. Video Interfaces DSS Signals Description (continued)SIGNAL NAME DESCRIPTION TYPE
(1)
BALL BOTTOM BALL BOTTOM BALL BOTTOM(CBB Pkg.) (CBC Pkg.) (CUS Pkg.)
dss_data15 LCD Pixel Data bit 15 IO AA27 AB26 V22
dss_data16 LCD Pixel Data bit 16 IO G25 L25 J22
dss_data17 LCD Pixel Data bit 17 IO H27 L26 G23
dss_data18 LCD Pixel Data bit 18 IO H26 M24 G24
dss_data19 LCD Pixel Data bit 19 IO H25 M26 H23
dss_data20 LCD Pixel Data bit 20 O E28 F25 D23
dss_data21 LCD Pixel Data bit 21 O J26 N24 K22
dss_data22 LCD Pixel Data bit 22 O AC27 AC25 V21
dss_data23 LCD Pixel Data bit 23 O AC28 AB25 W21
Table 2-9. Video Interfaces RFBI Signals DescriptionSIGNAL DESCRIPTION TYPE
(1)
BALL BOTTOM BALL BOTTOM BALL BOTTOM SUBSYSTEM PINNAME (CBB Pkg.) (CBC Pkg.) (CUS Pkg.) MULTIPLEXING
(2)
rfbi_a0 RFBI command/data control O E27 F26 J21 dss_acbias
rfbi_cs0 1st LCD chip select O D26 K24 E22 dss_hsync
rfbi_da0 RFBI data bus 0 IO AG22 AE21 AC19 dss_data0
rfbi_da1 RFBI data bus 1 IO AH22 AE22 AB19 dss_data1
rfbi_da2 RFBI data bus 2 IO AG23 AE23 AD20 dss_data2
rfbi_da3 RFBI data bus 3 IO AH23 AE24 AC20 dss_data3
rfbi_da4 RFBI data bus 4 IO AG24 AD23 AD21 dss_data4
rfbi_da5 RFBI data bus 5 IO AH24 AD24 AC21 dss_data5
rfbi_da6 RFBI data bus 6 IO E26 G26 D24 dss_data6
rfbi_da7 RFBI data bus 7 IO F28 H25 E23 dss_data7
rfbi_da8 RFBI data bus 8 IO F27 H26 E24 dss_data8
rfbi_da9 RFBI data bus 9 IO G26 J26 F23 dss_data9
rfbi_da10 RFBI data bus 10 IO AD28 AC26 AC22 dss_data10
rfbi_da11 RFBI data bus 11 IO AD27 AD26 AC23 dss_data11
rfbi_da12 RFBI data bus 12 IO AB28 AA25 AB22 dss_data12
rfbi_da13 RFBI data bus 13 IO AB27 Y25 Y22 dss_data13
rfbi_da14 RFBI data bus 14 IO AA28 AA26 W22 dss_data14
rfbi_da15 RFBI data bus 15 IO AA27 AB26 V22 dss_data15
rfbi_rd Read enable for RFBI O D28 G25 G22 dss_pclk
rfbi_wr Write Enable for RFBI O D27 M25 F22 dss_vsync
rfbi_te_vsync tearing effect removal and Vsync input I G25 L25 J22 dss_data160 from 1st LCD
rfbi_hsync0 Hsync for 1st LCD I H27 L26 G23 dss_data17
rfbi_te_vsync tearing effect removal and Vsync input I H26 M24 G24 dss_data181 from 2nd LCD
rfbi_hsync1 Hsync for 2nd LCD I H25 M26 H23 dss_data19
rfbi_cs1 2nd LCD chip select O E28 F25 D23 dss_data20
(1) Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog).(2) The subsystem pin multiplexing options are not described in and
98 TERMINAL DESCRIPTION Submit Documentation Feedback
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Table 2-10. Video Interfaces TV Signals DescriptionSIGNAL NAME DESCRIPTION TYPE
(1)
BALL BOTTOM BALL BOTTOM BALL BOTTOM(CBB Pkg.) (CBC Pkg.) (CUS Pkg.)
tv_out1 TV analog output Composite: tv_out1 O Y28 W26 AB24
tv_out2 TV analog output S-VIDEO: tv_out2 O W28 V26 AA23
tv_vfb1 tv_vfb1: Feedback through external AO Y27 W25 AB23resistorto composite
tv_vfb2 tv_vfb2: Feedback through external AO W27 U24 Y23resistorto S-VIDEO
tv_vref External capacitor AO W26 V23 Y24
(1) Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog).
Submit Documentation Feedback TERMINAL DESCRIPTION 99
2.5.3 Serial Communication Interfaces
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Table 2-11. Serial Communication Interfaces HDQ/1-Wire Signals DescriptionSIGNAL DESCRIPTION TYPE
(1)
BALL BOTTOM BALL BOTTOM BALL BOTTOMNAME (CBB Pkg.) (CBC Pkg.) (CUS Pkg.)
hdq_sio Bidirectional HDQ 1-Wire control and data IOD J25 J23 A24Interface. Output is open drain.
(1) Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog).
Table 2-12. Serial Communication Interfaces I
2
C Signals DescriptionSIGNAL NAME DESCRIPTION TYPE
(1)
BALL BOTTOM BALL BOTTOM BALL BOTTOM(CBB Pkg.) (CBC Pkg.) (CUS Pkg.)
INTER-INTEGRATED CIRCUIT INTERFACE (I2C1)
i2c1_scl IOD K21 J25 K20I
2
C Master Serial clock. Output is opendrain.
i2c1_sda IOD J21 J24 K21I
2
C Serial Bidirectional Data. Output isopen drain.
INTER-INTEGRATED CIRCUIT INTERFACE (I2C3)
i2c3_scl IOD AF14 AB4 AC13I
2
C Master Serial clock. Output is opendrain.
i2c3_sda IOD AG14 AC4 AC12I
2
C Serial Bidirectional Data. Output isopen drain.
i2c3_sccbe Serial Camera Control Bus Enable O J25 J23 A24
INTER-INTEGRATED CIRCUIT INTERFACE (I2C2)
i2c2_scl IOD AF15 C2 AC15I
2
C Master Serial clock. Output is opendrain.
i2c2_sda IOD AE15 C1 AC14I
2
C Serial Bidirectional Data. Output isopen drain.
i2c2_sccbe Serial Camera Control Bus Enable O J25 J23 A24
(1) Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog).
Table 2-13. Serial Communication Interfaces SmartReflex Signals Description
(1)
SIGNAL NAME DESCRIPTION TYPE
(2)
BALL BOTTOM BALL BOTTOM BALL BOTTOM(CBB Pkg.) (CBC Pkg.) (CUS Pkg.)
INTER-INTEGRATED CIRCUIT INTERFACE (I2C4)
i2c4_scl IOD AD26 AD15 Y16I
2
C Master Serial clock. Output is opendrain.
i2c4_sda IOD AE26 W16 Y15I
2
C Serial Bidirectional Data. Output isopen drain.
(1) For more information on SmartReflex voltage control, see the PRCM chapter of the OMAP35x Technical Reference Manual (TRM)[literature number SPRUFA5 ].(2) Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog).
Table 2-14. Serial Communication Interfaces McBSP LP Signals DescriptionSIGNAL NAME DESCRIPTION TYPE
(1)
BALL BOTTOM BALL BOTTOM BALL BOTTOM(CBB Pkg.) (CBC Pkg.) (CUS Pkg.)
MULTICHANNEL SERIAL (McBSP LP 1)
mcbsp1_dr Received serial data I U21 T20 Y18
mcbsp1_clkr Receive Clock IO Y8 / Y21 U19 / H3 V7 / W19
mcbsp1_fsr Receive frame synchronization IO AA21 V17 AB20
mcbsp1_dx Transmitted serial data IO V21 U17 W18
mcbsp1_clkx Transmit clock IO W21 T17 V18
mcbsp1_fsx Transmit frame synchronization IO K26 P20 AA19
mcbsp_clks External clock input (shared by McBSP1, 2, I T21 T19 AA183, 4, and 5)
(1) Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog)
TERMINAL DESCRIPTION100 Submit Documentation Feedback
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Table 2-14. Serial Communication Interfaces McBSP LP Signals Description (continued)SIGNAL NAME DESCRIPTION TYPE
(1)
BALL BOTTOM BALL BOTTOM BALL BOTTOM(CBB Pkg.) (CBC Pkg.) (CUS Pkg.)
MULTICHANNEL SERIAL (McBSP LP 2)
mcbsp2_dr Received serial data I R21 T18 V19
mcbsp2_dx Transmitted serial data IO M21 R19 R20
mcbsp2_clkx Combined serial clock IO N21 R18 T21
mcbsp2_fsx Combined frame synchronization IO P21 U18 V20
MULTICHANNEL SERIAL (McBSP LP 3)
mcbsp3_dr Received serial data I AE6 / AB25 / U21 T20 / AA24 / N3 V5 / Y18
mcbsp3_dx Transmitted serial data IO AF6 / AB26 / V21 U17 / Y24 / P3 V6 / W18
mcbsp3_clkx Combined serial clock IO AF5 / AA25 / W21 T17 / AD22 / U3 W4 / V18
mcbsp3_fsx Combined frame synchronization IO AE5 / AD25 / K26 P20 / AD21 / W3 V4 / AA19
MULTICHANNEL SERIAL (McBSP LP 4)
mcbsp4_dr Received serial data I R8 / AD1 C4 / U4 G5
mcbsp4_dx Transmitted serial data IO P8 / AD2 B5 / R3 F3
mcbsp4_clkx Combined serial clock IO T8 / AE1 B4 / V3 F4
mcbsp4_fsx Combined frame synchronization IO N8 / AC1 C5 / T3 G4
MULTICHANNEL SERIAL (McBSP LP 5)
mcbsp5_dr Received serial data I AE11 Y3 AC5
mcbsp5_dx Transmitted serial data IO AF13 AE3 AC8
mcbsp5_clkx Combined serial clock IO AF10 AB2 AC1
mcbsp5_fsx Combined frame synchronization IO AH9 AB1 AD2
Table 2-15. Serial Communication Interfaces McSPI Signals DescriptionSIGNAL NAME DESCRIPTION TYPE
(1)
BALL BOTTOM BALL BOTTOM BALL BOTTOM(CBB Pkg.) (CBC Pkg.) (CUS Pkg.)
MULTICHANNEL SERIAL PORT INTERFACE (McSPI1)
mcspi1_clk SPI Clock IO AB3 P9 T5
mcspi1_simo Slave data in, master data out IO AB4 P8 R4
mcspi1_somi Slave data out, master data in IO AA4 P7 T4
mcspi1_cs0 SPI Enable 0, polarity configured by IO AC2 R7 T6software
mcspi1_cs1 SPI Enable 1, polarity configured by O AC3 R8 NAsoftware
mcspi1_cs2 SPI Enable 2, polarity configured by O AB1 R9 NAsoftware
mcspi1_cs3 SPI Enable 3, polarity configured by O AB2 T8 R5software
MULTICHANNEL SERIAL PORT INTERFACE (McSPI2)
mcspi2_clk SPI Clock IO AA3 W7 N5
mcspi2_simo Slave data in, master data out IO Y2 W8 N4
mcspi2_somi Slave data out, master data in IO Y3 U8 N3
mcspi2_cs0 SPI Enable 0, polarity configured by IO Y4 V8 M5software
mcspi2_cs1 SPI Enable 1, polarity configured by O V3 V9 M4software
MULTICHANNEL SERIAL PORT INTERFACE (McSPI3)
mcspi3_clk SPI Clock IO H26 / AE2 / AE13 W10 / M24 / AA3 G24 / Y1 / AD8
mcspi3_simo Slave data in, master data out IO H25 / AG5 / AF11 R10 / M26 / AC3 H23 / AB5 / AD6
mcspi3_somi Slave data out, master data in IO E28 / AH5 / AG12 F25 / T10 / AD4 D23 / AB3 / AC6
mcspi3_cs0 SPI Enable 0, polarity configured by IO J26 / AF4 / AH12 U9 / N24 / AD3 K22 / V3 / AC7software
mcspi3_cs1 SPI Enable 1, polarity configured by O AC27 / AG4 / AH14 AC25 / U10 / AD2 V21 / W3 / AD9software
(1) Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog)
Submit Documentation Feedback TERMINAL DESCRIPTION 101
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Table 2-15. Serial Communication Interfaces McSPI Signals Description (continued)SIGNAL NAME DESCRIPTION TYPE
(1)
BALL BOTTOM BALL BOTTOM BALL BOTTOM(CBB Pkg.) (CBC Pkg.) (CUS Pkg.)
MULTICHANNEL SERIAL PORT INTERFACE (McSPI4)
mcspi4_clk SPI Clock IO Y8 / Y21 U19 / H3 V7 / W19
mcspi4_simo Slave data in, master data out IO V21 U17 W18
mcspi4_somi Slave data out, master data in IO U21 T20 Y18
mcspi4_cs0 SPI Enable 0, polarity configured by IO K26 P20 AA19software
Table 2-16. Serial Communication Interfaces UARTs Signals DescriptionSIGNAL NAME DESCRIPTION TYPE
(1)
BALL BOTTOM BALL BOTTOM BALL BOTTOM(CBB Pkg.) (CBC Pkg.) (CUS Pkg.)
UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART1)
uart1_cts UART1 Clear To Send I AG22 / W8 / T21 AE21 / T19 / W2 AC19 / AC2 / AA18
uart1_rts UART1 Request To Send O AH22 / AA9 AE22 / R2 W6 / AB19
uart1_rx UART1 Receive data I F28 / Y8 / AE7 H3 / H25 / AE4 E23 / V7 / AC3
uart1_tx UART1 Transmit data O E26 / AA8 L4 / G26 D24 / W7
UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART2)
uart2_cts UART2 Clear To Send I AF6 / AB26 N23/Y24 V6
uart2_rts UART2 Request To Send O AE6 / AB25 P3/AA24 V5
uart2_rx UART2 Receive data I AE5 / AD25 W3/AD21 V4
uart2_tx UART2 Transmit data O AF5 / AA25 V3/AD22 W4
UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART3) / IrDA
uart3_cts_rctx UART3 Clear To Send (input), IO H18 / U26 W20 / F23 A23 / U23Remote TX (output)
uart3_rts_sd UART3 Request To Send, IR enable O H19 / U27 V18 / F24 B23 / U24
uart3_rx_irrx UART3 Receive data, IR and I AG24 / H20 / U28 AD23 / Y20 / H24 AD21 / B24 / T23Remote RX
uart3_tx_irtx UART3 Transmit data, IR TX O AH24 / H21 / T27 AD24 / V20 / G24 AC21 / C23 / T24
(1) Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog)
Table 2-17. Serial Communication Interfaces USB Signals DescriptionSIGNAL NAME DESCRIPTION TYPE
(1
BALL BOTTOM BALL BOTTOM BALL BOTTOM)
(CBB Pkg.) (CBC Pkg.) (CUS Pkg.)
HIGH-SPEED UNIVERSAL SERIAL BUS INTERFACE (HSUSB0)
hsusb0_clk Dedicated for external transceiver 60-MHz clock input to PHY O T28 W19 R21
hsusb0_stp Dedicated for external transceiver Stop signal O T25 U20 R23
hsusb0_dir Dedicated for external transceiver Data direction control from I R28 V19 P23PHY
hsusb0_nxt Dedicated for external transceiver Next signal from PHY I T26 W18 R22
hsusb0_data0 Dedicated for external transceiver Bidirectional data bus IO T27 V20 T24
hsusb0_data1 Dedicated for external transceiver Bidirectional data bus IO U28 Y20 T23
hsusb0_data2 Dedicated for external transceiver Bidirectional data bus IO U27 V18 U24
hsusb0_data3 Dedicated for external transceiver Bidirectional data bus IO U26 W20 U23
hsusb0_data4 Dedicated for external transceiver Bidirectional data bus IO U25 W17 W24additional signals for 12-pin ULPI operation
hsusb0_data5 Dedicated for external transceiver Bidirectional data bus IO V28 Y18 V23additional signals for 12-pin ULPI operation
hsusb0_data6 Dedicated for external transceiver Bidirectional data bus IO V27 Y19 W23additional signals for 12-pin ULPI operation
hsusb0_data7 Dedicated for external transceiver Bidirectional data bus IO V26 Y17 T22additional signals for 12-pin ULPI operation
MM_FSUSB3
(1) Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog)
TERMINAL DESCRIPTION102 Submit Documentation Feedback
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Table 2-17. Serial Communication Interfaces USB Signals Description (continued)SIGNAL NAME DESCRIPTION TYPE
(1
BALL BOTTOM BALL BOTTOM BALL BOTTOM)
(CBB Pkg.) (CBC Pkg.) (CUS Pkg.)
mm3_rxdm Vminus receive data (not used in 3- or 4-pin configurations) IO AE3 K3 NA
(2)
mm3_rxdp Vplus receive data (not used in 3- or 4-pin configurations) IO AH3 M3 NA
(2)
mm3_rxrcv Differential receiver signal input (not used in 3-pin mode) IO AD1 U4 NA
mm3_txse0 Single-ended zero. Used as VM in 4-pin VP_VM mode. IO AE1 V3 NA
mm3_txdat USB data. Used as VP in 4-pin VP_VM mode. IO AD2 R3 NA
mm3_txen_n Transmit enable IO AC1 T3 NA
MM_FSUSB2
mm2_rxdm Vminus receive data (not used in 3- or 4-pin configurations) IO AH7 AF7 AD11
mm2_rxdp Vplus receive data (not used in 3- or 4-pin configurations) IO AF7 AF6 AC9
mm2_rxrcv Differential receiver signal input (not used in 3-pin mode) IO AG8 AF9 AC11
mm2_txse0 Single-ended zero. Used as VM in 4-pin VP_VM mode. IO AH8 AE9 AD12
mm2_txdat USB data. Used as VP in 4-pin VP_VM mode. IO AB2 T8 R5
mm2_txen_n Transmit enable IO V3 V9 M4
MM_FSUSB1
mm1_rxdm Vminus receive data (not used in 3- or 4-pin configurations) IO AG9 V2 AD5
mm1_rxdp Vplus receive data (not used in 3- or 4-pin configurations) IO AF10 AB2 AC1
mm1_rxrcv Differential receiver signal input (not used in 3-pin mode) IO AF11 AC3 AD6
mm1_txse0 Single-ended zero. Used as VM in 4-pin VP_VM mode. IO AG12 AD4 AC6
mm1_txdat USB data. Used as VP in 4-pin VP_VM mode. IO AH12 AD3 AC7
mm1_txen_n Transmit enable IO AH14 AD2 AD9
HSUSB3_TLL
hsusb3_tll_clk Dedicated for external transceiver 60-MHz clock input to PHY O W8 W2 NA
hsusb3_tll_stp Dedicated for external transceiver Stop signal I AH3 M3 NA
hsusb3_tll_dir dedicated for external transceiver Data direction control from O AF3 L3 NAPHY
hsusb3_tll_nxt Dedicated for external transceiver Next signal from PHY O AE3 K3 NA
hsusb3_tll_data0 Dedicated for external transceiver Bidirectional data bus IO AD1 U4 NA
hsusb3_tll_data1 Dedicated for external transceiver Bidirectional data bus IO AE1 V3 NA
hsusb3_tll_data2 Dedicated for external transceiver Bidirectional data bus IO AD2 R3 NA
hsusb3_tll_data3 Dedicated for external transceiver Bidirectional data bus IO AC1 T3 NA
hsusb3_tll_data4 Dedicated for external transceiver Bidirectional data bus IO AF6 P3 NA
hsusb3_tll_data5 Dedicated for external transceiver Bidirectional data bus IO AE6 N3 NA
hsusb3_tll_data6 Dedicated for external transceiver Bidirectional data bus IO AF5 V3 NA
hsusb3_tll_data7 Dedicated for external transceiver Bidirectional data bus IO AE5 W3 NA
HSUSB2
hsusb2_clk Dedicated for external transceiver 60-MHz clock input to PHY O AE7 AE4 AC3
hsusb2_stp Dedicated for external transceiver Stop signal O AF7 AF6 AC9
hsusb2_dir Dedicated for external transceiver Data direction control from I AG7 AE6 AC10PHY
hsusb2_nxt Dedicated for external transceiver Next signal from PHY I AH7 AF7 AD11
hsusb2_data0 Dedicated for external transceiver Bidirectional data bus IO AG8 AF9 AC11
hsusb2_data1 Dedicated for external transceiver Bidirectional data bus IO AH8 AE9 AD12
hsusb2_data2 Dedicated for external transceiver Bidirectional data bus IO AB2 T8 R5
hsusb2_data3 Dedicated for external transceiver Bidirectional data bus IO V3 V9 M4
hsusb2_data4 Dedicated for external transceiver Bidirectional data bus IO Y2 W8 N4additional signals for 12-pin ULPI operation
hsusb2_data5 Dedicated for external transceiver Bidirectional data bus IO Y3 U8 N3additional signals for 12-pin ULPI operation
hsusb2_data6 Dedicated for external transceiver Bidirectional data bus IO Y4 V8 M5additional signals for 12-pin ULPI operation
(2) This pin is not available on the CUS package. For a list of pins not supported on a particular package, see Table 1-1 .
Submit Documentation Feedback TERMINAL DESCRIPTION 103
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Table 2-17. Serial Communication Interfaces USB Signals Description (continued)SIGNAL NAME DESCRIPTION TYPE
(1
BALL BOTTOM BALL BOTTOM BALL BOTTOM)
(CBB Pkg.) (CBC Pkg.) (CUS Pkg.)
hsusb2_data7 Dedicated for external transceiver Bidirectional data bus IO AA3 W7 N5additional signals for 12-pin ULPI operation
HSUSB2_TLL
hsusb2_tll_clk Dedicated for external transceiver 60-MHz clock input to PHY O AE7 AE4 AC3
hsusb2_tll_stp Dedicated for external transceiver Stop signal I AF7 AF6 AC9
hsusb2_tll_dir Dedicated for external transceiver data direction control from O AG7 AE6 AC10PHY
hsusb2_tll_nxt Dedicated for external transceiver Next signal from PHY O AH7 AF7 AD11
hsusb2_tll_data0 Dedicated for external transceiver Bidirectional data bus IO AG8 AF9 AC11
hsusb2_tll_data1 Dedicated for external transceiver Bidirectional data bus IO AH8 AE9 AD12
hsusb2_tll_data2 Dedicated for external transceiver Bidirectional data bus IO AB2 T8 R5
hsusb2_tll_data3 Dedicated for external transceiver Bidirectional data bus IO V3 V9 M4
hsusb2_tll_data4 Dedicated for external transceiver Bidirectional data bus IO Y2 W8 N4additional signals for 12-pin ULPI operation
hsusb2_tll_data5 Dedicated for external transceiver Bidirectional data bus IO Y3 U8 N3additional signals for 12-pin ULPI operation
hsusb2_tll_data6 Dedicated for external transceiver Bidirectional data bus IO Y4 V8 M5additional signals for 12-pin ULPI operation
hsusb2_tll_data7 Dedicated for external transceiver Bidirectional data bus IO AA3 W7 N5additional signals for 12-pin ULPI operation
HSUSB1
hsusb1_clk Dedicated for external transceiver 60-MHz clock input to PHY O AE10 AB3 AD3
hsusb1_stp Dedicated for external transceiver Stop signal O AF10 AB2 AC1
hsusb1_dir Dedicated for external transceiver data direction control from I AF9 AA4 AC4PHY
hsusb1_nxt Dedicated for external transceiver Next signal from PHY I AG9 V2 AD5
hsusb1_data0 Dedicated for external transceiver Bidirectional data bus IO AF11 AC3 AD6
hsusb1_data1 Dedicated for external transceiver Bidirectional data bus IO AG12 AD4 AC6
hsusb1_data2 Dedicated for external transceiver Bidirectional data bus IO AH12 AD3 AC7
hsusb1_data3 Dedicated for external transceiver Bidirectional data bus IO AH14 AD2 AD9
hsusb1_data4 Dedicated for external transceiver Bidirectional data bus IO AE11 Y3 AC5additional signals for 12-pin ULPI operation
hsusb1_data5 Dedicated for external transceiver Bidirectional data bus IO AH9 AB1 AD2additional signals for 12-pin ULPI operation
hsusb1_data6 Dedicated for external transceiver Bidirectional data bus IO AF13 AE3 AC8additional signals for 12-pin ULPI operation
hsusb1_data7 Dedicated for external transceiver Bidirectional data bus IO AE13 AA3 AD8additional signals for 12-pin ULPI operation
HSUSB1_TLL
hsusb1_tll_clk Dedicated for external transceiver 60-MHz clock input to PHY O AE10 AB3 AD3
hsusb1_tll_stp Dedicated for external transceiver Stop signal I AF10 AB2 AC1
hsusb1_tll_dir Dedicated for external transceiver data direction control from O AF9 AA4 AC4PHY
hsusb1_tll_nxt Dedicated for external transceiver Next signal from PHY O AG9 V2 AD5
hsusb1_tll_data0 Dedicated for external transceiver Bidirectional data bus IO AF11 AC3 AD6
hsusb1_tll_data1 Dedicated for external transceiver Bidirectional data bus IO AG12 AD4 AC6
hsusb1_tll_data2 Dedicated for external transceiver Bidirectional data bus IO AH12 AD3 AC7
hsusb1_tll_data3 Dedicated for external transceiver Bidirectional data bus IO AH14 AD2 AD9
hsusb1_tll_data4 Dedicated for external transceiver Bidirectional data bus IO AE11 Y3 AC5additional signals for 12-pin ULPI operation
hsusb1_tll_data5 Dedicated for external transceiver Bidirectional data bus IO AH9 AB1 AD2additional signals for 12-pin ULPI operation
hsusb1_tll_data6 Dedicated for external transceiver Bidirectional data bus IO AF13 AE3 AC8additional signals for 12-pin ULPI operation
hsusb1_tll_data7 Dedicated for external transceiver Bidirectional data bus IO AE13 AA3 AD8additional signals for 12-pin ULPI operation
TERMINAL DESCRIPTION104 Submit Documentation Feedback
2.5.4 Removable Media Interfaces
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Table 2-18. Removable Media Interfaces MMC/SDIO Signals DescriptionSIGNAL NAME DESCRIPTION TYPE
(1
BALL BOTTOM BALL BOTTOM BALL BOTTOM)
(CBB Pkg.) (CBC Pkg.) (CUS Pkg.)
MULTIMEDIA MEMORY CARD (MMC1) / SECURE DIGITAL IO (SDIO1)
mmc1_clk MMC/SD Output Clock O N28 N19 M23
mmc1_cmd MMC/SD command signal IO M27 L18 L23
mmc1_dat0 MMC/SD Card Data bit 0 / SPI Serial Input IO N27 M19 M22
mmc1_dat1 MMC/SD Card Data bit 1 IO N26 M18 M21
mmc1_dat2 MMC/SD Card Data bit 2 IO N25 K18 M20
mmc1_dat3 MMC/SD Card Data bit 3 IO P28 N20 N23
mmc1_dat4 MMC/SD Card Data bit 4 IO P27 M20 N22
mmc1_dat5 MMC/SD Card Data bit 5 IO P26 P17 N21
mmc1_dat6 MMC/SD Card Data bit 6 IO R27 P18 N20
mmc1_dat7 MMC/SD Card Data bit 7 IO R25 P19 P24
MULTIMEDIA MEMORY CARD (MMC2) / SECURE DIGITAL IO (SDIO2)
mmc2_clk MMC/SD Output Clock O AE2 W10 Y1
mmc2_dir_dat0 Direction control for DAT0 signal case an external O AE4 V10 AB2transceiver used
mmc2_dir_dat1 Direction control for DAT1 and DAT3 signals case an O AH3 M3 AA2external transceiver used
mmc2_dir_dat2 Direction control for DAT2 signal case an external O AF19 E4 AC17transceiver used
mmc2_dir_dat3 Direction control for DAT4, DAT5, DAT6, and DAT7 O AE21 G3 AB16signals case an external transceiver used
mmc2_clkin MMC/SD input Clock I AE3 K3 AA1
mmc2_dat0 MMC/SD Card Data bit 0 IO AH5 T10 AB3
mmc2_dat1 MMC/SD Card Data bit 1 IO AH4 T9 Y3
mmc2_dat2 MMC/SD Card Data bit 2 IO AG4 U10 W3
mmc2_dat3 MMC/SD Card Data bit 3 IO AF4 U9 V3
mmc2_dat4 MMC/SD Card Data bit 4 IO AE4 / AB3 P9 / V10 AB2 / T5
mmc2_dat5 MMC/SD Card Data bit 5 IO AH3 / AB4 M3/P8 AA2 / R4
mmc2_dat6 MMC/SD Card Data bit 6 IO AF3 / AA4 L3/P7 Y2 / T4
mmc2_dat7 MMC/SD Card Data bit 7 IO AE3 / AC2 K3/R7 AA1 / T6
mmc2_dir_cmd Direction control for CMD signal case an external O AF3 L3 Y2transceiver is used
mmc2_cmd MMC/SD command signal IO AG5 R10 AB5
MULTIMEDIA MEMORY CARD (MMC3) / SECURE DIGITAL IO (SDIO3)
mmc3_clk MMC/SD Output Clock O AB1 / AF10 R9 / AB2 AC1
mmc3_cmd MMC/SD command signal IO AC3 / AE10 R8 / AB3 AD3
mmc3_dat0 MMC/SD Card Data bit 0 / SPI Serial Input IO AE4 / AE11 V10 / Y3 AB2 / AC5
mmc3_dat1 MMC/SD Card Data bit 1 IO AH3 / AH9 M3/AB1 AA2 / AD2
mmc3_dat2 MMC/SD Card Data bit 2 IO AF3 / AF13 L3/AE3 Y2 / AC8
mmc3_dat3 MMC/SD Card Data bit 3 IO AE3 / AE13 K3/AA3 AA1 / AD8
mmc3_dat4 MMC/SD Card Data bit 4 IO AF11 AC3 AD6
mmc3_dat5 MMC/SD Card Data bit 5 IO AG9 V2 AD5
mmc3_dat6 MMC/SD Card Data bit 6 IO AF9 AA4 AC4
mmc3_dat7 MMC/SD Card Data bit 7 IO AH14 AD2 AD9
(1) Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog)
Submit Documentation Feedback TERMINAL DESCRIPTION 105
2.5.5 Test Interfaces
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Table 2-19. Test Interfaces ETK Signals DescriptionSIGNAL NAME DESCRIPTION TYPE
(1)
BALL BOTTOM BALL BOTTOM BALL BOTTOM(CBB Pkg.) (CBC Pkg.) (CUS Pkg.)
etk_ctl ETK trace ctl O AE10 AB2 AD3
etk_clk ETK trace clock O AF10 AB3 AC1
etk_d0 ETK data 0 O AF11 AC3 AD6
etk_d1 ETK data 1 O AG12 AD4 AC6
etk_d2 ETK data 2 O AH12 AD3 AC7
etk_d3 ETK data 3 O AE13 AA3 AD8
etk_d4 ETK data 4 O AE11 Y3 AC5
etk_d5 ETK data 5 O AH9 AB1 AD2
etk_d6 ETK data 6 O AF13 AE3 AC8
etk_d7 ETK data 7 O AH14 AD2 AD9
etk_d8 ETK data 8 O AF9 AA4 AC4
etk_d9 ETK data 9 O AG9 V2 AD5
etk_d10 ETK data 10 O AE7 AE4 AC3
etk_d11 ETK data 11 O AF7 AF6 AC9
etk_d12 ETK data 12 O AG7 AE6 AC10
etk_d13 ETK data 13 O AH7 AF7 AD11
etk_d14 ETK data 14 O AG8 AF9 AC11
etk_d15 ETK data 15 O AH8 AE9 AD12
(1) Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog)
106 TERMINAL DESCRIPTION Submit Documentation Feedback
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Table 2-20. Test Interfaces JTAG Signals DescriptionSIGNAL NAME DESCRIPTION TYPE
(1)
BALL BOTTOM BALL BOTTOM BALL BOTTOM(CBB Pkg.) (CBC Pkg.) (CUS Pkg.)
jtag_ntrst Test Reset I AA17 U15 AB7
jtag_tck Test Clock I AA13 V14 AB6
jtag_rtck ARM Clock O AA12 W13 AA7Emulation
jtag_tms_tmsc Test Mode Select IO AA18 V15 AA9
jtag_tdi Test Data Input I AA20 U16 AB10
jtag_tdo Test Data Output O AA19 Y13 AB9
jtag_emu0 Test emulation 0 IO AA11 Y15 AC24
jtag_emu1 Test emulation 1 IO AA10 Y14 AD24
(1) Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog)
Table 2-21. Test Interfaces SDTI Signals DescriptionSIGNAL DESCRIPTION TYPE
(1)
BALL BOTTOM BALL BOTTOM BALL BOTTOM SUBSYSTEMNAME (CBB Pkg.) (CBC Pkg.) (CUS Pkg.) SIGNAL
MULTIPLEXING
(2)
sdti_clk Serial clock dual edge O AF7 / AA11 / AG8 AF6 / Y15 / AF9 AC9 / AC24 / AC11 etk_d11 / jtag_emu0 /etk_d14
sdti_txd0 Serial data out (System Trace O AG7 / AA10 / AA11 AE6 / Y14 / Y15 AC10 / AD24 / etk_d12 / jtag_emu1 /messages) AC24 jtag_emu0
sdti_txd1 Serial data out (System Trace O AH7 / AA10 AF7 / Y14 AD11 / AD24 etk_d13 / jtag_emu1messages)
sdti_txd2 Serial data out (System Trace O AG8 AF9 AC11 etk_d14messages)
sdti_txd3 Serial data out (System Trace O AH8 AE9 AD12 etk_d15messages)
(1) Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog)(2) The subsystem pin multiplexing options are not described in and
Table 2-22. Test Interfaces HWDBG Signals DescriptionSIGNAL NAME DESCRIPTION TYPE
(1)
BALL BOTTOM BALL BOTTOM BALL BOTTOM(CBB Pkg.) (CBC Pkg.) (CUS Pkg.)
hw_dbg0 Debug signal 0 O A24 / AF10 C23/AB2 AC1/A22
hw_dbg1 Debug signal 1 O A23 / AE10 D23/AB3 AD3/E18
hw_dbg2 Debug signal 2 O C27/ AF11 C26/AC3 AD6/J19
hw_dbg3 Debug signal 3 O C23 / AG12 B23/AD4 AC6/H24
hw_dbg4 Debug signal 4 O B24 / AH12 A24/AD3 AC7/G19
hw_dbg5 Debug signal 5 O C24 / AE13 B24/AA3 AD8/F19
hw_dbg6 Debug signal 6 O D24 / AE11 D24/Y3 AC5/G20
hw_dbg7 Debug signal 7 O A25 / AH9 C24/AB1 AD2/B21
hw_dbg8 Debug signal 8 O B25 / AF13 D25/AE3 AC8/F21
hw_dbg9 Debug signal 9 O C26 / AH14 E26/AD2 AD9/G21
hw_dbg10 Debug signal 10 O B23 / AF9 A23/AA4 AC4/F18
hw_dbg11 Debug signal 11 O D25 / AG9 D26/V2 AD5/J20
hw_dbg12 Debug signal 12 O D28 / AE7 G25/AE4 AC3/G22
hw_dbg13 Debug signal 13 O D26 / AF7 K24/AF6 AC9/E22
hw_dbg14 Debug signal 14 O E26 / AG7 G26/AE6 AC10/D24
hw_dbg15 Debug signal 15 O F28 / AH7 H25/AF7 AD11/E23
hw_dbg16 Debug signal 16 O F27 / AG8 H26/AF9 AC11/E24
hw_dbg17 Debug signal 17 O G26 / AH8 J26/AE9 AD12/F23
(1) Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog)
Submit Documentation Feedback TERMINAL DESCRIPTION 107
2.5.6 Miscellaneous
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Table 2-23. Miscellaneous GP Timer Signals DescriptionSIGNAL NAME DESCRIPTION TYPE
(1)
BALL BOTTOM BALL BOTTOM BALL BOTTOM(CBB Pkg.) (CBC Pkg.) (CUS Pkg.)
gpt8_pwm_evt PWM or event for GP IO N8 / AD25 / V3 C5 / AD21/ V9 G4/ M4timer 8
gpt9_pwm_evt PWM or event for GP IO T8 / AB26 / Y2 B4 / W8 / Y24 F4 / N4timer 9
gpt10_pwm_evt PWM or event for GP IO R8 / AB25 / Y3 C4 / U8 / AA24 G5 / N3timer 10
gpt11_pwm_evt PWM or event for GP IO P8 / AA25 / Y4 B5 / V8 / AD22 F3 / M5timer 11
(1) Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog)
TERMINAL DESCRIPTION108 Submit Documentation Feedback
2.5.7 General-Purpose IOs
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Table 2-24. General-Purpose IOs Signals Description
(1)
SIGNAL NAME DESCRIPTION TYPE
(2)
BALL BOTTOM BALL BOTTOM BALL BOTTOM(CBB Pkg.) (CBC Pkg.) (CUS Pkg.)
gpio_0 General-purpose IO 0 IO AF26 V16 W16
gpio_1 General-purpose IO 1 IO AF25 W15 Y13
gpio_2 General-purpose IO 2 IO AH26 F3 AB12
gpio_3 General-purpose IO 3 IO AG26 D3 AC16
gpio_4 General-purpose IO 4 IO AE14 C3 AD17
gpio_5 General-purpose IO 5 IO AF18 E3 AD18
gpio_6 General-purpose IO 6 IO AF19 E4 AC17
gpio_7 General-purpose IO 7 IO AE21 G3 AB16
gpio_8 General-purpose IO 8 IO AF21 D4 AA15
gpio_9 General-purpose IO 9 IO AF22 V12 AD23
gpio_10 General-purpose IO 10 IO AG25 AE14 Y7
gpio_11 General-purpose IO 11 IO AA11 Y15 AC24
gpio_12 General-purpose IO 12 IO AF10 AB2 AC1
gpio_13 General-purpose IO 13 IO AE10 AB3 AD3
gpio_14 General-purpose IO 14 IO AF11 AC3 AD6
gpio_15 General-purpose IO 15 IO AG12 AD4 AC6
gpio_16 General-purpose IO 16 IO AH12 AD3 AC7
gpio_17 General-purpose IO 17 IO AE13 AA3 AD8
gpio_18 General-purpose IO 18 IO AE11 Y3 AC5
gpio_19 General-purpose IO 19 IO AH9 AB1 AD2
gpio_20 General-purpose IO 20 IO AF13 AE3 AC8
gpio_21 General-purpose IO 21 IO AH14 AD2 AD9
gpio_22 General-purpose IO 22 IO AF9 AA4 AC4
gpio_23 General-purpose IO 23 IO AG9 V2 AD5
gpio_24 General-purpose IO 24 IO AE7 AE4 AC3
gpio_25 General-purpose IO 25 IO AF7 AF6 AC9
gpio_26 General-purpose IO 26 IO AG7 AE6 AC10
gpio_27 General-purpose IO 27 IO AH7 AF7 AD11
gpio_28 General-purpose IO 28 IO AG8 AF9 AC11
gpio_29 General-purpose IO 29 IO AH8 AE9 AD12
gpio_30 General-purpose IO 30 IO AF24 AD7 Y10
gpio_31 General-purpose IO 31 IO AA10 Y14 AD24
gpio_34 General-purpose IO 34 IO N4 J2 K4
gpio_35 General-purpose IO 35 IO M4 H1 K3
gpio_36 General-purpose IO 36 IO L4 H2 K2
gpio_37 General-purpose IO 37 IO K4 G2 J4
gpio_38 General-purpose IO 38 IO T3 F1 J3
gpio_39 General-purpose IO 39 IO R3 F2 J2
gpio_40 General-purpose IO 40 IO N3 E1 J1
gpio_41 General-purpose IO 41 IO M3 E2 H1
gpio_42 General-purpose IO 42 IO L3 D1 H2
gpio_43 General-purpose IO 43 IO K3 D2 G2
gpio_44 General-purpose IO 44 IO H2 V1 R2
gpio_45 General-purpose IO 45 IO K2 Y1 T2
gpio_46 General-purpose IO 46 IO P1 T1 U1
gpio_47 General-purpose IO 47 IO R1 U2 R3
(1) NA in table stands for "Not Applicable".(2) Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog)
Submit Documentation Feedback TERMINAL DESCRIPTION 109
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Table 2-24. General-Purpose IOs Signals Description (continued)SIGNAL NAME DESCRIPTION TYPE
(2)
BALL BOTTOM BALL BOTTOM BALL BOTTOM(CBB Pkg.) (CBC Pkg.) (CUS Pkg.)
gpio_48 General-purpose IO 48 IO R2 U1 T3
gpio_49 General-purpose IO 49 IO T2 P1 U2
gpio_50 General-purpose IO 50 IO W1 L2 V1
gpio_51 General-purpose IO 51 IO Y1 M2 V2
gpio_52 General-purpose IO 52 IO H3 AD1 NA
gpio_53 General-purpose IO 53 IO V8 A3 NA
gpio_54 General-purpose IO 54 IO U8 B6 D2
gpio_55 General-purpose IO 55 IO T8 B4 F4
gpio_56 General-purpose IO 56 IO R8 C4 G5
gpio_57 General-purpose IO 57 IO P8 B5 F3
gpio_58 General-purpose IO 58 IO N8 C5 G4
gpio_59 General-purpose IO 59 IO T4 N1 W2
gpio_60 General-purpose IO 60 IO G3 K2 K5
gpio_61 General-purpose IO 61 IO U3 J1 L1
gpio_62 General-purpose IO 62 IO H1 AC6 E1
gpio_63 General-purpose IO 63 IO L8 AC8 NA
gpio_64 General-purpose IO 64 IO K8 B3 NA
gpio_65 General-purpose IO 65 IO J8 C6 C2
gpio_66 General-purpose IO 66 IO D28 G25 G22
gpio_67 General-purpose IO 67 IO D26 K24 E22
gpio_68 General-purpose IO 68 IO D27 M25 F22
gpio_69 General-purpose IO 69 IO E27 F26 J21
gpio_70 General-purpose IO 70 IO AG22 AE21 AC19
gpio_71 General-purpose IO 71 IO AH22 AE22 AB19
gpio_72 General-purpose IO 72 IO AG23 AE23 AD20
gpio_73 General-purpose IO 73 IO AH23 AE24 AC20
gpio_74 General-purpose IO 74 IO AG24 AD23 AD21
gpio_75 General-purpose IO 75 IO AH24 AD24 AC21
gpio_76 General-purpose IO 76 IO E26 G26 D24
gpio_77 General-purpose IO 77 IO F28 H25 E23
gpio_78 General-purpose IO 78 IO F27 H26 E24
gpio_79 General-purpose IO 79 IO G26 J26 F23
gpio_80 General-purpose IO 80 IO AD28 AC26 AC22
gpio_81 General-purpose IO 81 IO AD27 AD26 AC23
gpio_82 General-purpose IO 82 IO AB28 AA25 AB22
gpio_83 General-purpose IO 83 IO AB27 Y25 Y22
gpio_84 General-purpose IO 84 IO AA28 AA26 W22
gpio_85 General-purpose IO 85 IO AA27 AB26 V22
gpio_86 General-purpose IO 86 IO G25 L25 J22
gpio_87 General-purpose IO 87 IO H27 L26 G23
gpio_88 General-purpose IO 88 IO H26 M24 G24
gpio_89 General-purpose IO 89 IO H25 M26 H23
gpio_90 General-purpose IO 90 IO E28 F25 D23
gpio_91 General-purpose IO 91 IO J26 N24 K22
gpio_92 General-purpose IO 92 IO AC27 AC25 V21
gpio_93 General-purpose IO 93 IO AC28 AB25 W21
gpio_94 General-purpose IO 94 IO A24 C23 A22
gpio_95 General-purpose IO 95 IO A23 D23 E18
gpio_96 General-purpose IO 96 IO C25 C25 B22
gpio_97 General-purpose IO 97 IO C27 C26 J19
TERMINAL DESCRIPTION110 Submit Documentation Feedback
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Table 2-24. General-Purpose IOs Signals Description (continued)SIGNAL NAME DESCRIPTION TYPE
(2)
BALL BOTTOM BALL BOTTOM BALL BOTTOM(CBB Pkg.) (CBC Pkg.) (CUS Pkg.)
gpio_98 General-purpose IO 98 IO C23 B23 H24
gpio_99 General-purpose IO 99 I AG17 AE16 AB18
gpio_100 General-purpose IO 100 I AH17 AE15 AC18
gpio_101 General-purpose IO 101 IO B24 A24 G19
gpio_102 General-purpose IO 102 IO C24 B24 F19
gpio_103 General-purpose IO 103 IO D24 D24 G20
gpio_104 General-purpose IO 104 IO A25 C24 B21
gpio_105 General-purpose IO 105 IO K28 P25 L24
gpio_106 General-purpose IO 106 IO L28 P26 K24
gpio_107 General-purpose IO 107 IO K27 N25 J23
gpio_108 General-purpose IO 108 IO L27 N26 K23
gpio_109 General-purpose IO 109 IO B25 D25 F21
gpio_110 General-purpose IO 110 IO C26 E26 G21
gpio_111 General-purpose IO 111 IO B26 E25 C22
gpio_112 General-purpose IO 112 I AG19 AD17 NA
gpio_113 General-purpose IO 113 I AH19 AD16 NA
gpio_114 General-purpose IO 114 I AG18 AE18 NA
gpio_115 General-purpose IO 115 I AH18 AE17 NA
gpio_116 General-purpose IO 116 IO P21 U18 V20
gpio_117 General-purpose IO 117 IO N21 R18 T21
gpio_118 General-purpose IO 118 IO R21 T18 V19
gpio_119 General-purpose IO 119 IO M21 R19 R20
gpio_120 General-purpose IO 120 IO N28 / T28 W19 / N19 M23 / R21
gpio_121 General-purpose IO 121 IO M27 / T25 U20 / L18 L23 / R23
gpio_122 General-purpose IO 122 IO N27 / R28 V19 / M19 M22 / P23
gpio_123 General-purpose IO 123 IO N26 M18 M21
gpio_124 General-purpose IO 124 IO N25 / T26 W18 / K18 M20/R22
gpio_125 General-purpose IO 125 IO P28 / T27 V20 / N20 N23/T24
gpio_126 General-purpose IO 126 IO D25 / P27 M20 / D26 J20 / N22
gpio_127 General-purpose IO 127 IO P26 P17 N21
gpio_128 General-purpose IO 128 IO R27 P18 N20
gpio_129 General-purpose IO 129 IO R25 P19 P24
gpio_130 General-purpose IO 130 IO AE2 / U28 Y20 / W10 Y1 / T23
gpio_131 General-purpose IO 131 IO AG5 / U27 V18 / R10 AB5 / U24
gpio_132 General-purpose IO 132 IO AH5 T10 AB3
gpio_133 General-purpose IO 133 IO AH4 T9 Y3
gpio_134 General-purpose IO 134 IO AG4 U10 W3
gpio_135 General-purpose IO 135 IO AF4 U9 V3
gpio_136 General-purpose IO 136 IO AE4 V10 AB2
gpio_137 General-purpose IO 137 IO AH3 M3 AA2
gpio_138 General-purpose IO 138 IO AF3 L3 Y2
gpio_139 General-purpose IO 139 IO AE3 K3 AA1
gpio_140 General-purpose IO 140 IO AF6 N3 V6
gpio_141 General-purpose IO 141 IO AE6 P3 V5
gpio_142 General-purpose IO 142 IO AF5 V3 W4
gpio_143 General-purpose IO 143 IO AE5 W3 V4
gpio_144 General-purpose IO 144 IO AB26 Y24 NA
gpio_145 General-purpose IO 145 IO AB25 AA24 NA
gpio_146 General-purpose IO 146 IO AA25 AD22 NA
gpio_147 General-purpose IO 147 IO AD25 AD21 NA
Submit Documentation Feedback TERMINAL DESCRIPTION 111
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Table 2-24. General-Purpose IOs Signals Description (continued)SIGNAL NAME DESCRIPTION TYPE
(2)
BALL BOTTOM BALL BOTTOM BALL BOTTOM(CBB Pkg.) (CBC Pkg.) (CUS Pkg.)
gpio_148 General-purpose IO 148 IO AA8 L4 W7
gpio_149 General-purpose IO 149 IO AA9 R2 W6
gpio_150 General-purpose IO 150 IO W8 W2 AC2
gpio_151 General-purpose IO 151 IO Y8 H3 V7
gpio_152 General-purpose IO 152 IO AE1 V3 NA
gpio_153 General-purpose IO 153 IO AD1 U4 NA
gpio_154 General-purpose IO 154 IO AD2 R3 NA
gpio_155 General-purpose IO 155 IO AC1 T3 NA
gpio_156 General-purpose IO 156 IO Y21 U19 W19
gpio_157 General-purpose IO 157 IO AA21 V17 AB20
gpio_158 General-purpose IO 158 IO V21 U17 W18
gpio_159 General-purpose IO 159 IO U21 T20 Y18
gpio_160 General-purpose IO 160 IO T21 T19 AA18
gpio_161 General-purpose IO 161 IO K26 P20 AA19
gpio_162 General-purpose IO 162 IO W21 T17 V18
gpio_163 General-purpose IO 163 IO H18 F23 A23
gpio_164 General-purpose IO 164 IO H19 F24 B23
gpio_165 General-purpose IO 165 IO H20 H24 B24
gpio_166 General-purpose IO 166 IO H21 G24 C23
gpio_167 General-purpose IO 167 IO B23 A23 F18
gpio_168 General-purpose IO 168 IO AF15 C2 AC15
gpio_169 General-purpose IO 169 IO U26 W20 U23
gpio_170 General-purpose IO 170 IO J25 J23 A24
gpio_171 General-purpose IO 171 IO AB3 P9 T5
gpio_172 General-purpose IO 172 IO AB4 P8 R4
gpio_173 General-purpose IO 173 IO AA4 P7 T4
gpio_174 General-purpose IO 174 IO AC2 R7 T6
gpio_175 General-purpose IO 175 IO AC3 R8 NA
gpio_176 General-purpose IO 176 IO AB1 R9 NA
gpio_177 General-purpose IO 177 IO AB2 T8 R5
gpio_178 General-purpose IO 178 IO AA3 W7 N5
gpio_179 General-purpose IO 179 IO Y2 W8 N4
gpio_180 General-purpose IO 180 IO Y3 U8 N3
gpio_181 General-purpose IO 181 IO Y4 V8 M5
gpio_182 General-purpose IO 182 IO V3 V9 M4
gpio_183 General-purpose IO 183 IO AE15 C1 AC14
gpio_184 General-purpose IO 184 IO AF14 AB4 AC13
gpio_185 General-purpose IO 185 IO AG14 AC4 AC12
gpio_186 General-purpose IO 186 IO AE22 W11 AA6
gpio_188 General-purpose IO 188 IO U25 W17 W24
gpio_189 General-purpose IO 189 IO V28 Y18 V23
gpio_190 General-purpose IO 190 IO V27 Y19 W23
gpio_191 General-purpose IO 191 IO V26 Y17 T22
TERMINAL DESCRIPTION112 Submit Documentation Feedback
2.5.8 Power Supplies
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Table 2-25. Power Supplies Signals Description
(1)
SIGNAL NAME DESCRIPTION BALL BOTTOM BALL TOP BALL BOTTOM BALL TOP BALL BOTTOM(CBB Pkg.) (CBB Pkg.) (CBC Pkg.) (CBC Pkg.) (CUS Pkg.)
vdd_mpu ARM power domain Y9 / W9 / T9 / R9 / NA H7/ N7/ U7/ V7/ N8/ NA W13/ W12/ V13/M9 / L9 / J9 / Y10 / G9/ L9/ M9/ W9/ Y9/ V12/ U13/ U12/ T8/U10 / T10 / R10 / M10/ P10/ K11/ U11/ T7/ R8/ R7/ R6/ N8/N10 / M10 / L10 / V11/ Y11/ G12/ D13/ N7/ N6/ M12/ M8/J10 / Y11 / W11 / U13 M7/ M6/ L12/ L11/K11 / J11 / W12 / J10/ J9/ H10/ H9/K13 / Y14 / K14 / G10/ G9/F10J14 / Y15 / W15 /J15
vdd_core Core power domain AC4 / J4 / H4 / D8 / NA M7/ T7/ Y8/ G11/ Y12/ NA T20/ T19/ T18/ T17/AE9 / D9 / D15 / D15/ M17/ G18/ H20/ R19/ R18/ R17/Y16 / AE18 / Y18 / R20/ AC21 M15/ M14/ L15/W18 / K18 / J18 / L14/ K19/ K18/ K17/AE19 / Y19 / U19 / J18/ J17/ H13/ H12/T19 / N19 / M19 / G13/ G12/ F13/ F12J19 / Y20 / W20 /V20 / U20 / P20 /N20 / K20 / J20 /D22 / D23 / AE24 /M25 / L25 / E25
cap_vdd_wkup Wakeup/EMU/memor AA15 NA K14 NA Y12y domains, connectcapacitor
cap_vdd_d Decoupling capacitor AH20 NA AE19 NA NA
vdds_dpll_dll DLL IO power K15 NA K13 NA G18domain (1.8 V):internal connection toPLL_VDDS, powersupply for 3PLL (1.8V)
vdda_dac Video DAC power V25 NA V25 NA AB13plane
vssa_dac Video DAC ground Y26 NA V24 NA AB15plane
vdds IO power plane AD3 / AD4 / W4 / NA G4/ M4/ T4/ Y4/ L7/ NA Y9 / W10 / W9 /AF8 / AE8 / AF16 / AC7/ D9/ AE10/ C11/ V10 / V9 / U10 /AE16 / AF23 / J15/ AC15/ A18/ J18/ N19 / N18 / N17 /AE23 / F25 / F26 / AC18/ AD20/ E24/ M19 / M18 / M17AG27 / AE27/ AG20/ L24/ T24/ W24/ AC24H28/ AG21
vdds_mem Memory IO power U1 / J1 / F1 / J2 / AC5 / P1 / H1 / F23 K8 / K7 / K6 / J8 /plane F2 / R4 / B5 / A5 / / E1 / C23 / A4 / A7 J7 / J6 / H15 / G16AH6 / B8 / A8 / B12 / A10 / A15 / A18 / G15 / F16 / F15 // A12 / D16 / C16 / E16B18 / A18 / B22 /A22 / G28 / C28
vdds_dpll_per Peripheral DPLLs AA16 NA U14 NA U17power rail
vdds_wkup_bg For wakeup LDO and AA14 NA W14 NA AA13VDDA (2 LDOsSRAM and BG)
(1) NA in this table stands for "Not applicable".
Submit Documentation Feedback TERMINAL DESCRIPTION 113
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Table 2-25. Power Supplies Signals Description (continued)SIGNAL NAME DESCRIPTION BALL BOTTOM BALL TOP BALL BOTTOM BALL TOP BALL BOTTOM(CBB Pkg.) (CBB Pkg.) (CBC Pkg.) (CBC Pkg.) (CUS Pkg.)
vss Ground AG2 / U2 / B2 / H2 / B18 / AC20 / G1/ K1/ R1/ W1/ B2/ C1/ F1/ H2/ M2/ R2/ W15/ V16/ V15/AG3 / W3 / P3 / J3 / AB5 / AB14 / AB20 H4/ N4/ R4/ W4/ AB5/ Y6/AA7/ Y11/ AA16/ U16/ U15/ U14/E3 / A3 / P4 / E4 / / P2 / F22 / E2 / A6/ D7/ Y7/AE7/ A8/ W20/P20/ L21/ H20/ U11/ U9/T16/ T15/AG6 / D7 / C7 / V9 / C22 / B4 / B7 / B10 G8/ D10/ G10/ L10/ F20/ B14/A13/ A7 T14/ T13/ T12/ T11/U9 / P9 / N9 / K9 / / B15 N10/ Y10/ AC10/ C12/ T10/ T9/ R15/ R14/W10 / V10 / P10 / D12/A13/ D14/ AD14/ R11/ R10/ P17/K10 / D10 / C10 / K15/ Y16/ L17/ N17/ P15/ P14/ P13/P12/AF12 / AE12 / Y12 / R17/ D18/ D20/G20/ P11/ P10/ P8/ N16/K12 / J12 / Y13 / E22/ AB22/ G23/ L23/ N15/ N14/ N13/W13 / J13 / D13 / T23/ W23/ AF23/ B25/ N12/ N11/ N10/ N9/C13 / W14 / K16 / K25/U25/ AD25 M16/ M13/ M11/J16 / Y17 / W17 / M10/ M9/ L17/ L13/K17 / J17 / W19 / L10/ L8/ K15/ K14/V19 / R19 / P19 / K11/ K10/ J16/ J15/L19 / K19 / D19 / J14/ J13/ J12/C19 / AF20 / AE20 / J11/H16/ H14/ H11T20 / R20 / M20 /L20 / D21 / C22 /AC25 / Y25 / W25 /AC26 / R26 / L26 /A26 / G27 / B27 /AA26/ M28/ AG16/
AH21
vdds_sram SRAM LDOs W16 NA U12 NA AA12
vdds_mmc1 MMC IO power K25 NA N23 NA N24domain for CMD,CLK, and DAT(0..3)
vdds_mmc1a Power supply for P25 NA P23 NA H8MMC DAT [4..7]
cap_vdd_sram_m SRAM LDO V4 NA N9 NA U8pu capacitance forVDDRAM1
cap_vdd_sram_co SRAM LDO L21 NA K20 NA H17re capacitance forVDDRAM2
TERMINAL DESCRIPTION114 Submit Documentation Feedback
2.5.9 System and Miscellaneous Terminals
2.5.10 Feed-Through Balls (CBC and CBB Packages)
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Table 2-26. System and Miscellaneous Signals DescriptionSIGNAL NAME DESCRIPTION TYPE
(1
BALL BALL TOP BALL BALL TOP BALL)
BOTTOM (CBB Pkg.) BOTTOM (CBC Pkg.) BOTTOM(CBB Pkg.) (CBC Pkg.) (CUS Pkg.)
sys_32k 32-kHz clock input I AE25 NA AE20 NA AA16
sys_xtalin Main input clock. Oscillator input or LVCMOS at I AE17 NA AF19 NA AD1519.2, 13, or 12 MHz.
sys_xtalout Output of oscillator O AF17 NA AF20 NA AD14
sys_altclk Alternate clock source selectable for GPTIMERs I J25 NA J23 NA A24(maximum 54 MHz), USB (48 MHz), orNTSC/PAL (54 MHz)
sys_clkreq Request from OMAP35 15/03 device for system IO AF25 NA W15 NA Y13clock (open source type)
sys_clkout1 Configurable output clock1 O AG25 NA AE14 NA Y7
sys_clkout2 Configurable output clock2 O AE22 NA W11 NA AA6
sys_boot0 Boot configuration mode bit 0 I AH26 NA F3 NA AB12
sys_boot1 Boot configuration mode bit 1 I AG26 NA D3 NA AC16
sys_boot2 Boot configuration mode bit 2 I AE14 NA C3 NA AD17
sys_boot3 Boot configuration mode bit 3 I AF18 NA E3 NA AD18
sys_boot4 Boot configuration mode bit 4 I AF19 NA E4 NA AC17
sys_boot5 Boot configuration mode bit 5 I AE21 NA G3 NA AB16
sys_boot6 Boot configuration mode bit 6 I AF21 NA D4 NA AA15
sys_nrespwron Power On Reset I AH25 NA V13 NA AA10
sys_nreswarm Warm Boot Reset (open drain output) IOD AF24 NA AD7 NA Y10
sys_nirq External FIQ input I AF26 NA V16 NA W16
sys_nvmode1 Indicates the voltage mode O AD26 NA AD15 NA Y16
sys_nvmode2 Indicates the voltage mode O AE26 NA W16 NA Y15
sys_off_mode Indicates the voltage mode O AF22 NA V12 NA AD23
sys_ndmareq0 External DMA request 0 (system expansion). I U8 NA B6 NA D2Level (active low) or edge (falling) selectable.
sys_ndmareq1 External DMA request 1 (system expansion). I T8 / J8 NA B4 / C6 NA F4 / C2Level (active low) or edge (falling) selectable.
sys_ndmareq2 External DMA request 2 (system expansion). I L3 / R8 NA D1 / C4 NA H2 / G5Level (active low) or edge (falling) selectable.
sys_ndmareq3 External DMA request 3 (system expansion). I K3 / P8 NA D2 / B5 NA G2 / F3Level (active low) or edge (falling) selectable.
sys_secure_ MSECURE transactions indicator O AG9 NA V2 NA AD5indicator
sys_drm_ MSECURE output O AF9 NA AA4 NA AC4msecure
(1) Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog)
Feed-through pins represent a wire. That is, they do not connect to the silicon die, but rather just connectfrom the bottom ball to the top ball. The purpose of these balls is to allow for different PoP packages.Table 2-27 and Table 2-28 list the feed-through balls on the OMAP35x CBC and CBB packages,respectively.
Table 2-27. CBC Package Feed-Through BallsJEDEC 14x14mm, 0.65mm, JEDEC DESCRIPTION
(1)
BALL TOP BALL BOTTOM FEED-THROUGH BALL152ball NAME
NC No Connect A1 A1 pop_a1_a1
d-vdd DDR Supply J1 L1 pop_j1_l1
NC No Connect AA1 AF1 pop_aa1_af1
(1) For more details on the feedthrough pin connections, please refer to the PoP memory datasheet.
Submit Documentation Feedback TERMINAL DESCRIPTION 115
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Table 2-27. CBC Package Feed-Through Balls (continued)f-vdd Flash Supply N2 T2 pop_n2_t2
f-vdd Flash Supply T2 Y2 pop_t2_y2
NC No Connect W2 AE2 pop_w2_ae2
NC No Connect Y2 AF4 pop_y2_af4
f-vdd Flash Supply AA6 AF5 pop_aa6_af5
f-vdd Flash Supply Y7 AF8 pop_y7_af8
NC, Int No Connect; Interrupt when Y9 AF10 pop_y9_af10using OneNAND POP
f-nbe0, cle0 No Connect/CLE AA10 AF12 pop_aa10_af12
d-vdd DDR Supply/ POP FLASH AA11 AF13 pop_aa11_af13vpp supply
d-tq No Connect/ DDR die AA12 AF14 pop_aa12_af14temperature sensor
vss Shared Ground AA13 AF15 pop_aa13_af15
d-vdd DDR Supply Y14 AF17 pop_y14_af17
d-vddq DDR Supply AA14 AF16 pop_aa14_af16
d-vdd DDR Supply B16 A20 pop_b16_a20
vss Shared Ground Y17 AF21 pop_y17_af21
d-vdd DDR Supply AA17 AF18 pop_aa17_af18
vss Shared Ground Y19 AF24 pop_y19_af24
d-vddq DDR Supply AA19 AF22 pop_aa19_af22
NC No Connect A20 A25 pop_a20_a25
NC No Connect Y20 AE25 pop_y20_ae25
NC No Connect AA20 AF25 pop_aa20_af25
NC No Connect A21 A26 pop_a21_a26
NC No Connect B21 B26 pop_b21_b26
d-vdd DDR Supply H21 K26 pop_h21_k26
d-vdd DDR Supply P21 U26 pop_p21_u26
NC No Connect Y21 AE26 pop_y21_ae26
NC No Connect AA21 AF26 pop_aa21_af26
Table 2-28. CBB Package Feed-Through BallsJEDEC 12x12, 0.5mm, JEDEC DESCRIPTION
(1)
BALL TOP BALL BOTTOM FEED-THROUGH BALL168ball NAME
d-vdd DDR Supply A12 A15 pop_a12_a15
d-vdd DDR Supply AA23 AE28 pop_aa23_ae28
d-vdd DDR Supply H23 AF28 pop_h23_af28
d-vdd DDR Supply K1 J28 pop_k1_j28
d-vdd DDR Supply Y23 M1 pop_y23_m1
f-vdd Flash Supply AA1 AA1 pop_aa1_aa1
f-vdd Flash Supply AC8 AF1 pop_ac8_af1
f-vdd Flash Supply AC13 AH10 pop_ac13_ah10
f-vdd Flash Supply L1 AH15 pop_l1_ah15
f-vdd Flash Supply U1 N1 pop_u1_n1
f-vpp Flash vpp supply AC11 AH13 pop_ac11_ah13
NC, int0 No Connect/PoP OneNAND AB9 AG11 pop_ab9_ag11interrupt
NC, int1 No Connect/PoP OneNAND AC9 AH11 pop_ac9_ah11interrupt
NC No Connect A1 A1 pop_a1_a1
NC No Connect A2 A2 pop_a2_a2
NC No Connect A22 A27 pop_a22_a27
NC No Connect A23 A28 pop_a23_a28
(1) For more details on the feedthrough pin connections, please refer to the PoP memory datasheet.
TERMINAL DESCRIPTION116 Submit Documentation Feedback
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Table 2-28. CBB Package Feed-Through Balls (continued)NC No Connect AB1 AG1 pop_ab1_ag1
NC No Connect AB2 NA NA
NC No Connect AB22 NA NA
NC No Connect AB23 AG28 pop_ab23_ag28
NC No Connect AC1 AH1 pop_ac1_ah1
NC No Connect AC2 AH2 pop_ac2_ah2
NC No Connect AC22 AH27 pop_ac22_ah27
NC No Connect AC23 AH28 pop_ac23_ah28
NC No Connect B1 B1 pop_b1_b1
NC No Connect B2 NA NA
NC No Connect B22 NA NA
NC No Connect B23 B28 pop_b23_b28
f-rst#, rp# Flash reset AB11 AG13 pop_ab11_ag13
d-tq DDR temperature alert AC14 AH16 pop_ac14_ah16
vss Shared Ground AA2 AA2 pop_aa2_aa2
vss Shared Ground U2 AF2 pop_u2_af2
vss Shared Ground AA22 AF27 pop_aa22_af27
vss Shared Ground AB8 AG10 pop_ab8_ag10
vss Shared Ground AB13 AG15 pop_ab13_ag15
vss Shared Ground B12 B15 pop_b12_b15
vss Shared Ground H22 J27 pop_h22_j27
vss Shared Ground K2 M2 pop_k2_m2
vss Shared Ground K22 M26 pop_k22_m26
vss Shared Ground L2 N2 pop_l2_n2
Submit Documentation Feedback TERMINAL DESCRIPTION 117
3 ELECTRICAL CHARACTERISTICS
3.1 Power Domains
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
The OMAP35 15/03 device integrates enhanced features that dynamically adapt energy consumptionaccording to application needs and performance requirements.
The OMAP35 15/03 device includes an enhanced power-management scheme based on:Nine independent functional voltage domains on chip partitioningMultiple voltage domainsVoltage scaling supportEnhanced memory retention supportOptimized device off modeCentralized management of power, reset, and clock
The external power supplies of OMAP35 15/03 are:vdd_mpu for the ARMvdd_core for macrosvdds for IO macrosvdds_mem for memory macrosvdds_sram for SRAM LDOsvdds_dpll_dll for DLL IOvdds_dpll_per for peripheral DPLLsvdds_wkup_bg for wakeup LDO and VDDA (2 LDOs: SRAM and BandGap)vdda_dac for video DACvdds_mmc1 and vdds_mmc1a for MMC IOThe supply voltages are detailed in Table 3-3 .
Figure 3-1 illustrates the power domains:
118 ELECTRICAL CHARACTERISTICS Submit Documentation Feedback
MPU
vdd_mpudomain
Core
Periph1
vdd_coredomain
DPLL_MPU
LDO
in1.8V
out1.2V
DualVideoDAC
SRAM2
ARRAY
SRAM2LDO
0V/1.0V/1.2V
SRAM1
ARRAY
SRAM1LDO
0V/1.0V/1.2V
MMC1
vpp
DPLL_CORE
LDO
in1.8V
out1.2V
DPLL4
LDO
in1.8V
out1.2V
LDO3
1.0V/1.2V
vdds
Periph2
DPLL5
LDO
in1.8V
out1.2V
WKUP
EMU
BandGap
BCK
MEM
vss
DLL/DCDL
HSDIVIDER
LDO
eFUSE
HSDIVIDER
LDO
cap_vdd_sram_mpu
cap_vdd_sram_core
tv_ref
(forcapacitor)
vssa_dac
vdd_mpu
vdds_dpll_dll
vdds_wkup_bg
cap_vdd_wkup
vdds_mem
vdds_sram
OMAP Device
vdd_core
vdds_mmc1
vdds_dpll_per
vdda_dac
030-003
VDDS
MEM
VDDS
vdds_mmc1a
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Figure 3-1. OMAP3515/03 Power Domains
This power domain segmentation switches off (or places in retention state) domains that are unused whilekeeping others active. This implementation is based on internal switches that independently control eachpower domain.
A power domain regular logic is attached to one of the device V
DD
supplies through a primary domainswitch. When the primary switch is open, most of the logic supply is off, resulting in a low-leakage state ofthe domain. Embedded switches are implemented for all power domains except the wake-up domain. Thisallows the domain to be powered off, if not being used, to give maximum power savings. For moreinformation, see the PRCM chapter of the OMAP35x Technical Reference Manual (TRM) [literaturenumber SPRUFA5 ].
All domain output signals at the interface between power domains are connected through isolation latchcells. These cells ensure a proper electrical isolation between the domains and an appropriate interfacestate at the domain boundaries.
Submit Documentation Feedback ELECTRICAL CHARACTERISTICS 119
3.2 Absolute Maximum Ratings
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
The following table specifies the absolute maximum ratings over the operating junction temperature rangeof OMAP commercial and extended temperature devices. Stresses beyond those listed under absolutemaximum ratings may cause permanent damage to the device. These are stress ratings only andfunctional operation of the device at these or any other conditions beyond those indicated underrecommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions forextended periods may affect device reliability.
Notes:
Logic functions and parameter values are not assured out of the range specified in the recommendedoperating conditions.The OMAP35 15/03 device adheres to EIA/JESD22–A114, Electrostatic Discharge (ESD) SensitivityTesting Human Body Model (HBM). Minimum pass level for HBM is ±1 kV.
Table 3-1. Absolute Maximum Ratings Over Operating Junction Temperature Range
PARAMETER MIN MAX UNIT
vdd_mpu Supply voltage range for core macros –0.5 1.6 Vvdd_core
vdds Second supply voltage range for 1.8-V I/O macros –0.5 2.25 Vvdds_mem
vdds_mmc1 Supply voltage range for MMC1 CMD, 1.8-V mode –0.5 2.45 VCLK and DAT[3:0] and for memory stick
3.0-V mode -0.5 3.50I/Osvdds_ vdds_mm Second supply voltage range for MMC1 1.8-V mode –0.5 2.45 Vc1a DAT[7:4]
3.0-V mode -0.5 3.50vdds_dpll_dll Supply voltage for DLL DPLL –0.5 2.10 Vvdds_dpll_per Supply voltage for Per DPLLvdds_sram Supply voltage for SRAM LDOs –0.5 2.25 Vvdds_wkup_bg Supply voltage for wakeup LDO and VDDA (2 LDOs SRAM and BG)V
PAD
Voltage range MMC1, MS (Balls N28, Supply voltage range for 1.8-V IOs –0.54
(1)
2.34
(1)
at PAD M27, N27, N26, N25,
Supply voltage range for 3.0-V IOs –0.45
(2)
3.45
(2)P28)
MMC1 (Balls P27, P26,R27, R25)I2C1, I2C2, I2C3, I2C4 (Balls K21, J21, AF15, AE15, AF14, –0.63
(1)
2.73
(1)
AG14, AD26, AE26)Crystal (xtalin/xtalout) (Balls AE17, AF17) –0.5 2.71Other balls –0.5 vddsx
(3)
+ 0.5vdda_dac Supply voltage range for analog macros –0.5 2.43 VV
ESD
ESD stress HBM (human body vdds_ MMC1a, 500 Vvoltage
(4)
model)
(5)
mmc1_dat[7-4] (CBB pkg only)
(6)
Other pins 1000CDM (charged device MMC1 signals (CBB pkg only)
(6)
300model)
(7)
Other pins 500I
IOI
Current-pulse injection on each I/O pin
(8)
200 mAI
clamp
Clamp current for an input or output –20 20 mAT
stg
Storage temperature range
(9)
–65 150 °C
(1) For a maximum time of 30% time period.(2) For a maximum time of 15% time period.(3) Depending on ball, vddsx can be vdds_mem or vdds.(4) Electrostatic discharge (ESD) to measure device sensitivity/immunity to damage caused by electrostatic discharges into the device.(5) JEDEC JESD22–A114F
(6) Corresponding signals: mmc1_dat0, mmc1_dat1, mmc1_dat2, mmc1_dat3, mmc1_dat4, mmc1_dat5, mmc1_dat6, mmc1_dat7,mmc1_clk, mmc1_cmd and vdds_mmc1 (CBB pkg only).(7) JEDEC JESD22–C101D
(8) Each device is tested with I/O pin injection of 200 mA with a stress voltage of 1.5 times maximum vdd at room temperature.(9) These temperatures extreme do not simulate actual operating conditions but exaggerate any faults that might exist.
120 ELECTRICAL CHARACTERISTICS Submit Documentation Feedback
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
This section includes the maximum power consumption for each power domain (core, etc.). Table 3-2summarizes the power consumption at the ball level.
Table 3-2. Estimated Maximum Power Consumption At Ball Level
PARAMETER MAX MAX UNIT( T = 90 °C) ( T = 105 °C)Signal Description
vdd_mpu Processors
(1)
OMAP35 15/03 (SmartReflex™ Enabled) 639 695 mAOMAP35 15/03 (SmartReflex™ Disabled) 808 889 mAvdd_core Core OMAP3515 (SmartReflex™ Enabled) 439 489 mAOMAP3515 (SmartReflex™ Disabled) 539 609 mAOMAP3503 (SmartReflex™ Enabled) 353 403 mAOMAP3503(SmartReflex™ Disabled) 438 507 mAvdda_dac Video DAC 65 65 mAvdss_dpll_dll DLL + DPLL MPU, and core 25 25 mAvdds_dpll_per DPLL peripheral 1 and peripheral 2 15 15 mAvdds_sram Processors and core LDO (LDO1 and LDO2) 41 41 mAvdds_wkup_bg Bandgap, wakeup + LDO, EMU off 6 6 mAvdds_mem Standard I/Os (SDRC+GPMC) 37 37 mAvdds Standard I/Os (all excluding SDRC and GPMC) 63 63 mAvdds_mmc1 MMC I/O
(2)
20 20 mAvdds_mmc1a Power supply for MMC IO [DAT4 DAT7] 2 2 mAvpp eFuse 50 50 mA
(1) OPP6 is only supported on high-speed grade OMAP3530 devices.(2) MMC card and I/O card are not included.
Submit Documentation Feedback ELECTRICAL CHARACTERISTICS 121
3.3 Recommended Operating Conditions
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
All OMAP35 15/03 modules are used under the operating conditions contained in Table 3-3 .
Note:
To avoid significant device degradation for commercial temperature OMAP35 15/OMAP3503 devices (0 °CT
j
90 °C), the device power-on hours (POH) must be limited to one of the following:100K total POH when operating across all OPPs and keeping the time spent at OPP5-OPP6 to lessthan 23K POH.50K total POH when operating at OPP5 - OPP6.44K total POH with no restrictions to the proportion of these POH at operating points OPP1 - OPP6.
To avoid significant device degradation for extended temperature OMAP35 15A/OMAP3503A devices(-40 °CT
j
105 °C), the following restrictions apply:OPP5 and OPP6 are not supported.*The total device POH must be limited to less than 50K.*
*If an extended temperature device is operated such that T
j
never exceeds 90C (-40 °CT
j
90 °C) thenthe OPP POH limits for commercial devices indicated above apply.
Note: Logic functions and parameter values are not assured out of the range specified in therecommended operating conditions.
Table 3-3. Recommended Operating Conditions
PARAMETER DESCRIPTION MIN NOM MAX UNIT
V
DD1
OMAP processor logic supply OPP6: Overdrive
(1)
V
DD1NOM
- 1.35 V
DD1NOM
+ V(vdd_mpu), (0.05*V
DD1NOM
) (0.05*V
DD1NOM
)SmartReflex
OPP5: Overdrive V
DD1NOM
- 1.35 V
DD1NOM
+ VDisabled
(0.05*V
DD1NOM
) (0.05*V
DD1NOM
)OPP4: Mid-Overdrive V
DD1NOM
- 1.27 V
DD1NOM
+ V(0.05*V
DD1NOM
) (0.05*V
DD1NOM
)OPP3: Nominal V
DD1NOM
- 1.20 V
DD1NOM
+ V(0.05*V
DD1NOM
) (0.05*V
DD1NOM
)OPP2: Low-Power V
DD1NOM
- 1.06 V
DD1NOM
+ V(0.05*V
DD1NOM
) (0.05*V
DD1NOM
)OPP1: Ultra V
DD1NOM
- 0.985 V
DD1NOM
+ VLow-Power
(2)
(0.05*V
DD1NOM
) (0.05*V
DD1NOM
)V
DD2
(vdd_core) OMAP core logic supply
(3)
OPP3: Nominal V
DD2NOM
- 1.15 V
DD2NOM
+ VSmartReflex (0.05*V
DD2NOM
) (0.05*V
DD2NOM
)Disabled
OPP2: Low-Power V
DD2NOM
- 1.06 V
DD2NOM
+ V(0.05*V
DD2NOM
) (0.05*V
DD2NOM
)OPP1: Ultra V
DD2NOM
- 0.985 V
DD2NOM
+ VLow-Power
(2)
(0.05*V
DD2NOM
) (0.05*V
DD2NOM
)vdds Supply voltage for I/O macros 1.71 1.8 1.91 VNoise (peak-peak) 90 mVppvdds_mem Supply voltage for memory I/O macros 1.71 1.8 1.89 VNoise (peak-peak) 90 mVppvdds_mmc1 Supply voltage range for MMC1 1.8-V mode 1.71 1.8 1.89 VCMD, CLK and DAT[3:0] and for
3.0-V mode 2.7 3.0 3.3 Vmemory stick I/Osvdds_mmc1a Second supply voltage range for 1.8-V mode 1.71 1.8 1.89 VMMC1 DAT[7:4]
3.0-V mode 2.7 3.0 3.3vdds_wkup_bg Wakeup LDO 1.71 1.8 1.89 V
(1) OPP6 is only supported on high-speed grade OMAP3530/25 devices.(2) Cannot boot in OPP1. If OPP1 is desired, boot in higher OPP then switch to OPP1.(3) Core logic includes interconnect, graphics processor, and peripherals.
ELECTRICAL CHARACTERISTICS122 Submit Documentation Feedback
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Table 3-3. Recommended Operating Conditions (continued)
PARAMETER DESCRIPTION MIN NOM MAX UNIT
Noise (peak-peak) 50 mVppvdda_dac Analog supply voltage for video DAC 1.71 1.8 1.89 VNoise (peak-peak) For a frequency of 0 to 30 mVpp100 kHz(For a frequency < 100kHz, decreases 20dB /sec)vdds_sram SRAM LDOs 1.71 1.8 1.89 VNoise (peak-peak) 50 mVppvdds_dpll_per Peripherals DPLLs power supply 1.71 1.8 1.89 VNoise (peak-peak) 36 mVppvdds_dpll_dll Supply voltage for DPLLs I/Os 1.71 1.8 1.89 VNoise (peak-peak) 30 mVppvpp
(4)
eFuse programming Vvss Ground 0 0 0 Vvssa_dac Dedicated ground for DAC 0 0 0 VT
a
Operating free air temperature Commercial 0 70 °Crange Temperature
Extended Temperature -40 - 85T
j
Operating junction temperature
(5)
Commercial 0 90 °CTemperature
Extended Temperature -40 - 105
(4) It is recommended not to connect this pin. It is just used for eFuse programming on package unit.(5) For proper device operation, Tj must be within the specified range.
Submit Documentation Feedback ELECTRICAL CHARACTERISTICS 123
3.4 DC Electrical Characteristics
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Table 3-4 summarizes the dc electrical characteristics.
Table 3-4. DC Electrical Characteristics
PARAMETER MIN NOM MAX UNIT
LVCMOS Pin Buffers - CBB: N28, M27, N27, N26, N25, P28,P27, P26, R27, R25/ CBC: N19, L18, M19, M18, K18, N20, M20, P17, P18,P19/ CUS: M23, L23, M22, M21, M20, N23
V
IH
High-level input voltage vdds
(1)
= 1.8 V 0.65 ×vdds
(1)
vdds + 0.3 Vvdds
(1)
= 3.0 V 0.625 ×vdds + 0.3vdds
(1)
V
IL
Low-level input voltage vdds
(1)
= 1.8 V –0.3 0.35 ×vdds Vvdds
(1)
= 3.0 V –0.3 0.25 ×vddsV
OH
High-level output voltage
(2)
vdds
(1)
= 1.8 V vdds
(1)
0.2 Vvdds
(1)
= 3.0 V 0.75 ×vdds
(1)
V
OL
Low-level output voltage
(2)
vdds
(1)
= 1.8 V 0.2 Vvdds
(1)
= 3.0 V 0.125 ×vdds
(1)
t
T
Input transition time (rise time, t
R
or fall time, Normal Mode 10 nst
F
evaluated between 10% and 90% at PAD)
High-Speed 3Mode
LVDS/CMOS Pin Buffers - CBB: AG19, AH19, AG18, AH18, AG17, AH17/ CBC: AE16, AE15, AD17, AE18, AD16, AE17/ CUS: AB18,AC18
Low-Power Receiver (LP-RX)
V
IL
Low-level input threshold 500 mVV
IH
High-level input threshold 800 mVV
HYS
Input hysteresis 25 mV
Ultralow-Power Receiver (ULP-RX)
V
IL-ULPM
Low-level input threshold, ULPM 300 mVV
IH
High-level input threshold 880 mV
High-Speed Receiver (HS-RX)
V
IDTH
Differential input high threshold 70 mVV
IDTL
Differential input low threshold –70 mVV
IDMAX
Maximum differential input voltage 270 mVV
ILHS
Single-ended input low voltage –40 mVV
IHHS
Single-ended input high voltage 460 mVV
CMRXDC
Common-mode voltage 70 330 mV
LVDS/CMOS Pin Buffers - CBB: K28, L28, K27, L27/ CBC: P25, P26, N25, N26 / CUS: L24, K24, J23, K23
V
CM
Input common mode voltage range 600 900 1200 mVVos Receiver Input dc offset –20 20 mVVid Receiver input differential amplitude 70 100 200 mV
(3)
t
T
Input transition time (rise time, t
R
or fall time, t
F
evaluated 267 533 psbetween 10% and 90% at PAD)
LVDS/CMOS Pin Buffers - CBB: AG22, AH22, AG23, AH23, AG24, AH24/ CBC: AE21, AE22, AE23, AE24, AD23, AD24 / CUS: AC19,AB19, AD20, AC20, AD21, AC21
High-Speed Transceiver (HS-TX)
V
OHHS
HS output high voltage 360 mV|V
OD
| HS transmit differential voltage 140 200 270 mVV
CMTX
HS transmit static common mode voltage 150 200 250 mV
Low-Power Transceiver (LP-TX)
(1) This global value may be overridden on a per interface basis if another value is explicitly defined for that interface (for example, I
2
C).(2) With 100 µA sink / source current at vddsxmin.(3) Corresponds to peak-to-peak values: minimum = 140 mV
pp
; nominal = 200 mV
pp
; maximum = 400 mV
pp
.
ELECTRICAL CHARACTERISTICS124 Submit Documentation Feedback
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Table 3-4. DC Electrical Characteristics (continued)
PARAMETER MIN NOM MAX UNIT
V
OL
Thevenin output low level –50 50 mVV
OH
Thevenin output high level 1.1 1.2 1.3 V
Low-Power Receiver (LP-RX)
V
IL
Low-level input threshold 550 mVV
IH
High-level input threshold 880 mVV
HYST
Input hysteresis 25 mV
Ultralow-Power Receiver (ULP-RX)
V
IL-ULPS
Low-level input threshold, ULPM 300 mVV
IH
High-level input threshold 880 mV
subLVDS/CMOS Pin Buffers - CBB: AA27, AA28, AB27, AB28, AD27, AD28, AC28, AC27/ CBC: AC26, AD26, AA25, Y25, AA26,AB26, AC25, AB25/ CUS: V22, W22, Y22, AB22, AC23, AC22, W21, V21
Vod Differential voltage range @ R
L
= 100 100 150 200 mVVocm Common mode voltage range 0.8 0.9 1 Vt
T
Input transition time (Vod rise time, t
R
or Vod fall time, t
F
200 500 psevaluated between 20% and 80% at PAD)
Standard LVCMOS Pin Buffers
V
IH
(4)
High-level input voltage (Standard LVCMOS) 0.65 ×vdds vdds + 0.3 VV
IL
(4)
Low-level input voltage (Standard LVCMOS) - 0.3 0.35 ×vdds VV
HYS
Hysteresis voltage at an input
(5)
0.1 VV
OH
High-level output voltage, driver enabled, I
O
= I
OH
or vdds 0.45 Vpullup or pulldown disabled I
O
= –2 mAI
O
= I
OH
< |–2| vdds 0.40mAV
OL
Low-level output voltage with , driver enabled, I
O
= I
OL
or 0.45 Vpullup or pulldown disabled I
O
= 2 mAI
O
= I
OL
< 2 mA 0.40t
T
Input transition time (rise time, t
R
or fall time, t
F
evaluated 0 10
(1)
nsbetween 10% and 90% at PAD)I
I
Input current with V
I
= V
I
max –1 1 µAI
OZ
Off-state output current for output in high impedance with driver –20 20 µAonly, driver disabledOff-state output current for output in high impedance with –100driver/receiver/pullup only, driver disabled, pullup not inhibitedOff-state output current for output in high impedance with 100driver/receiver/pulldown only, driver disabled, pulldown notinhibitedI
Z
Total leakage current through the PAD connection of a 20 20 µAdriver/receiver combination that may include a pullup or pulldown.The driver output is disabled and the pullup or pulldown isinhibited.
LVCMOS Open-Drain Pin Buffers Dedicated to I2C IOs - CBB: K21, J21, AF14, AG14, AF15, AE15, AD26, AE26/ CBC: J25, J24, C2,C1, AB4, AC4, AD15, W16, A21, C21/ CUS: K20, K21, AC13, AC12, AC15, AC14, Y16, Y15
V
IH
High level input voltage 0.7 x vdds vdds + 0.5 VV
IL
Low level input voltage - 0.5 0.3 x vdds VV
OL
Low-level output voltage open-drain at 3-mA sink current 0 0.2 x vdds VI
I
Input current at each I/O pin with an input voltage between 0.1 x - 10 10 µAvdds to 0.9 x vddsC
I
Capacitance for each I/O pin 10 pF
(4) V
IH
/V
IL
(Standard LVCMOS) parameters are applicable for sys_altclk input clocks.(5) V
hys
is the magnitude of the difference between the positive-going threshold voltage V
T+
and the negative-going voltage V
T-
.
Submit Documentation Feedback ELECTRICAL CHARACTERISTICS 125
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Table 3-4. DC Electrical Characteristics (continued)
PARAMETER MIN NOM MAX UNIT
T
OF
Output fall time from V
IHmin
to V
ILmax
with a Fast mode 20 + 0.1C
B
250 nsbus capacitance C
B
from 10 pF to 400 pF
Standard mode 250Output fall time with a capacitive load from 10 High-speed mode 10 40pF to 100 pF at 3-mA sink currentOutput fall time with a capacitive load of 400 20 80pF at 3-mA sink currentOutput fall time with a capacitive load of 40 20pF (for CBUS compatibility)
LVCMOS Open-Drain Pin Buffers Dedicated in GPIO mode - CBB: AF15, AE15, AF14, AG14, AD26, AE26 / CBC: C2, C1, AB4, AC4,AD15, W16, A21, C21/ CUS: AC15, AC14, AC13, AC12, Y16, Y15
V
IH
High-level input voltage 0.7 x vdds vdds + 0.5 VV
IL
Low-level input voltage - 0.5 0.3 x vdds VV
OH
High-level output voltage at 4-mA sink current vdds - 0.45 VV
OL
Low-level output voltage at 4-mA sink current 0.45 V
ELECTRICAL CHARACTERISTICS126 Submit Documentation Feedback
3.5 Core Voltage Decoupling
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
For module performance, decoupling capacitors are required to suppress the switching noise generatedby high frequency and to stabilize the supply voltage. A decoupling capacitor is most effective when it isclose to the device because this minimizes the inductance of the circuit board wiring and interconnects.
Table 3-5 summarizes the power supplies decoupling characteristics.
Table 3-5. Core Voltage Decoupling Characteristics
PARAMETER MIN TYP MAX UNIT
Cvdd_mpu
(1)
50 100 120 nFCvdd_core
(1)
50 100 120 nFCvdds_sram 100 nFCcap_vdd_sram_mpu 0.7 1.0 1.3 µFCcap_vdd_sram_core 0.7 1.0 1.3 µFCcap_vdd_wkup 0.7 1.0 1.3 µFCvdds_wkup_bg 100 nFCvdds_dpll_dll 100 nFCvdds_dpll_per 100 nFCvdda_dac 100 nFCcap_vdd_d 100 200 nFCvdds_mmc1 100 nFCvdds_mmc1a 100 nFCvdds 100 nFCvdds_mem 100 nF
(1) 1 capacitor per 2 to 4 balls
Submit Documentation Feedback ELECTRICAL CHARACTERISTICS 127
SRAM_LDO1
cap_vdd_sram_mpu
SRAM_LDO2
cap_vdd_sram_core
BG
WKUP_LDO
vdds_wkup_bg
DPLL_MPU
DPLL_CORE
vdds_dpll_dll
vdds_sram
DPLL5
DPLL4
vdds_dpll_per
Video DAC
vdda_dac
OMAP Device
VSS
vssa_dac
Cvdds_sram
Ccap_vdd_sram_mpu
Ccap_vdd_sram_core
Cvdds_wkup_bg
Cvdds_dpll_dll
Cvdds_dpll_per
Cvdda_dac
vdda_dac
MMC IOs
vdds_mmc1
Cvdds_mmc1
vdds_mmc1
vdds_sram
vdds_wkup_bg
vdds_dpll_per
vdds_dpll_dll
Cvdd_wkup
cap_vdd_wkup
MPU
vdd_mpu
Cvdd_mpu
vdd_mpu
Core vdd_core
Cvdd_core
Vdd_core
030-004
IOs and Memory
vdds_mem
vdds_mem
vdds
vdds
Cvdds_mem
Cvdds
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Figure 3-2 illustrates an example of power supply decoupling.
A. Signals "vdds" and "vdds_mem" are combined with "vdds" on the CBC package.B. Signals "vdds" and "vdds_mem" are separate on the CBB and CUS packages.
Figure 3-2. Power Supply Decoupling
128 ELECTRICAL CHARACTERISTICS Submit Documentation Feedback
3.6 Power-up and Power-down
3.6.1 Power-up Sequence
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
This section provides the timing requirements for the OMAP35 15/03 hardware signals.
The following steps give an example of power-up sequence supported by the OMAP35 15/03 device.1. vdds and vdds_mem are ramped ensuring a level on the IO domain and sys_nrespwron must be low.At the same time, vdds_sram and vdds_wkup_bg can also be ramped.2. Once vdds_wkup_bg rail is stabilized, vdd_core can be ramped.3. Once vdd_core is stabilized, then vdd_mpu can be ramped.4. vdds_dpll_dll and vdds_dpll_per rails can be ramped at any time during the above sequence.5. sys_nrespwron can be released as soon as the vdds_pll_dll rail is stabilized, and sys_xtalin andsys_32k clocks are stabilized.6. During the whole sequence above, sys_nreswarm is held low by OMAP35 15/03. sys_nreswarm isreleased after the eFuse check has been performed; that is, after sys_nrespwron is released.7. The other power supplies can then be turned on upon software request.
shows the power-up sequence.
Notes:
If an external square clock is provided, it could be started after sys_nrespwron release provided it isclean: no glitch, stable frequency, and duty cycle.Higher voltage can be used. OPP voltage values may change following the silicon characterizationresult.
Submit Documentation Feedback ELECTRICAL CHARACTERISTICS 129
030-005
vdds_mem,vdds,
vdds_sram
vdd_mpu
vdd_core
vdds_dpll_dll
vdds_wkup_bg
vdds_mmc1,vdds_mmc1a,
vdda_dac , vpp
(1)
sys_32k
sys_nrespwron
(2)
1.8 V
sys_xtalin
sys_nreswarm
EFUSE.RSTPWRON(internal)
vdds_dpll_per
ldo3 (internal)
(2)
1.8 V
1.8 V
1.8 V
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Figure 3-3. Power-up Sequence
130 ELECTRICAL CHARACTERISTICS Submit Documentation Feedback
3.6.2 Power-down Sequence
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
The following steps give an example of the power-down sequence supported by the OMAP35 15/03device.
1. Reset OMAP35 15/03 device.2. Stop all signals driven to OMAP35 15/03 balls.3. Option 1: Power down all domains simutaneously.4. Option 2: If all domains cannot be powered down simultaneously, follow the below sequence:a. Power off all complex I/O domains (vdds_mmc1, vdds_mmc1a, vdda_dac)b. Power off all core domains (vdd_core, vdd_mpu)c. Power off all PLL domains (vdds_dpll_dll, vdds_dpll_per)d. Power off all SRAM LDOs (vdds_sram)e. Power off all reference domains (vdds_wkup_bg)f. Power off all standard I/O domains (vdds, vdds_mem)
The OMAP35 15/03 device proceeds with the power-down sequence shown in Figure 3-4 .
Note: Another possible power-down sequence:vdd_mpu shuts down before vdd_core.vdds_sram, vdds_wkup_bg, vdds, and vdds_mem shut down simultaneously.vdds_dpll_dll and vdds_dpll_per shut down anytime between all complex IO domains shut down andvdds_sram shuts down.
Submit Documentation Feedback ELECTRICAL CHARACTERISTICS 131
vdds_mem,vdds,
vdds_sram
vdd_mpu
vdd_core
vdds_dpll_dll,
vdds_dpll_per
vdds_wkup_bg
vdds_mmc1,
vdda_dac
sys_32kin
sys_nrespwron
sys.clk
030-006
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Figure 3-4. Power-down Sequence
ELECTRICAL CHARACTERISTICS132 Submit Documentation Feedback
4 CLOCK SPECIFICATIONS
OMAP
PowerIC
sys_32k
sys_altclk
sys_clkout1
AlternateClockSourceSelectable(54,48MHzorother[up
to59MHz])
ToQuartz (Oscillatoroutput)orUnconnected
ToQuartz (Oscillatorinput)orSquareClock
ClockRequest.ToSquareClockSourceorfromPeripherals
Oscillator
isUsed
Oscillator
isBypassed
Unconnected
Square
Clock
Source
ToPeripherals (FromOSC_CLK:12,13,16.8,19.2,26,or
38.4MHz,core_clk[DPLL,upto332MHz],DPLL-96MHz
orDPLL-54MHzoutputswithadividerof1,2,4,8,or16)
GPin
ToPeripherals (FromOSC_CLK:12,13,16.8,19.2,26,or
38.4MHz)
sys_clkout2
sys_xtalout
sys_xtalin
sys_clkreq
sys_xtalout
sys_xtalin
sys_clkreq
sys_xtalout
sys_xtalin
sys_clkreq
030-007
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
The OMAP35 15/03 device has three external input clocks, a low frequency (sys_32k), a high frequency(sys_xtalin), and an optional (sys_altclk). The OMAP35 15/03 device has two configurable output clocks,sys_clkout1 and sys_clkout2.
Figure 4-1 shows the interface to the external clock sources and clock outputs.
Figure 4-1. Clock Interface
The OMAP35 15/03 device operation requires the following three input clocks:The 32-kHz frequency is used for low frequency operation. It supplies the wake-up domain foroperation in lowest power mode (off mode). This clock is provided through the sys_32k pin.The system alternative clock can be used (through the sys_altclk pin) to provide alternative 48 or 54MHz or other clock source (up to 59 MHz).The system clock input (12, 13, 16.8, 19.2, 26, or 38.4 MHz) is used to generate the main source clockof the OMAP35 15/03 device. It supplies the DPLLs as well as several OMAP modules. The systemclock input can be connected to either: A crystal oscillator clock managed by sys_xtalin and sys_xtalout. In this case, the sys_clkreq isused as an input (GPIN). A CMOS digital clock through the sys_xtalin pin. In this case, the sys_clkreq is used as an output torequest the external system clock.
The OMAP35 15/03 outputs externally two clocks:sys_clkout1 can output the oscillator clock (12, 13, 16.8, 19.2, 26, or 38.4 MHz) at any time. It can becontrolled by software or externally using sys_clkreq control. When the device is in the off state, thesys_clkreq can be asserted to enable the oscillator and activate the sys_clkout1 without waking up thedevice. The off state polarity of sys_clkout1 is programmable.
Submit Documentation Feedback CLOCK SPECIFICATIONS 133
4.1 Input Clock Specifications
4.1.1 Clock Source Requirements
4.1.2 External Crystal Description
sys_xtalin sys_xtalout
OMAP Device
Crystal
OptionalRbias
OptionalRd
Cf2
Cf1
030-008
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
sys_clkout2 can output the oscillator clock (12, 13, 16.8, 19.2, 26, or 38.4 MHz), core_clk (core DPLLoutput), 96 MHz or 54 MHz. It can be divided by 2, 4, 8, or 16 and its off state polarity isprogrammable. This output is active only when the core power domain is active.
For more information on the OMAP35 15/03 Applications Processor clocking structure, see the Power,Reset, and Clock management (PRCM) chapter of the OMAP35x Applications Processor TRM (literaturenumber SPRUFA5 ).
The clock system accepts three input clock sources:32-kHz digital CMOS clockCrystal oscillator clock or CMOS digital clock (12, 13, 16.8, 19.2, 26, or 38.4 MHz)Alternate clock (48 or 54 MHz, or other up to 59 MHz)
Table 4-1 illustrates the requirements to supply a clock to the OMAP35 15/03 device.
Table 4-1. Clock Source Requirements
PAD CLOCK FREQUENCY STABILITY DUTY CYCLE JITTER TRANSITION
sys_xtalout 12, 13, 16.8, or 19.2 MHz Crystal ±25 ppm na na nasys_xtalin
12, 13, 16.8, 19.2, 26, or 38.4 MHz Square ±50 ppm 45% to 55% < 1% < 3.6 nssys_altclk 48,54 or up to 59 MHz ±50 ppm 40% to 60% < 1% < 5 ns
To supply a 12-, 13-, 16.8-, or 19.2-MHz clock to the OMAP35 15/03, an external crystal can be connectedto the sys_xtalin and sys_xtalout pins. Figure 4-2 describes the crystal implementation.
Figure 4-2. Crystal Implementation
(1) (2) (3) (4)
(1) On the PCB, the oscillator components (crystal, foot capacitors, optional R
bias
and R
d
) must be located close to the package. All thesecomponents must be routed first with the lowest possible number of board vias.(2) An optional resistor R
d
can be added in series with the crystal to debug or filter the harmonics; a footprint must be reserved on the PCBfor use with 10-MHz crystals and feature low-drive levels.(3) A 120-k internal bias resistor R
bias
is used. The feedback resistor R
bias
provides negative feedback to the oscillator to put it in the
CLOCK SPECIFICATIONS 134 Submit Documentation Feedback
ESR=Rm1+
C0
CL
2
4.1.3 Clock Squarer Input Description
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
linear operating region; thus oscillation begins when power is applied.(4) C
f1
and C
f2
represent the total capacitance of the PCB and components excluding the power IC and crystal. Their values in fact dependon the crystal datasheet. In the datasheet of the crystal, the frequency is specified at a specific load capacitor value which is theequivalent capacitor of the two capacitors C
f1
and C
f2
connected to sys_xtalin and sys_xtalout. The frequency of the oscillationsdepends on the value of the capacitors (10 pF corresponds to a load capacitor of 5 pF for the crystal).
The crystal must be in the fundamental mode of operation and parallel resonant. Table 4-2 summarizesthe required electrical constraints.
Table 4-2. Crystal Electrical Characteristics
NAME DESCRIPTION MIN TYP MAX UNIT
f
p
Parallel resonance crystal frequency
(1)
12, 13, 16.8, or 19.2 MHzC
L
Load capacitance for crystal parallel resonance 5 20 pFESR12 & 13 Crystal ESR (12 and 13 MHz)
(1)
80 ESR16.8 & 19.2 Crystal ESR (16.8 and 19.2 MHz)
(1)
50 C
o
Crystal shunt capacitance 1 7 pFL
m
Crystal motional inductance for f
p
= 12 MHz 35 mHC
m
Crystal motional capacitance 5 100 fFDL Crystal drive level 0.5 mWR
bias
Internal bias resistor 30 120 300 k
(1) Measured with the load capacitance specified by the crystal manufacturer. This load is defined by the foot capacitances tied in series. IfC
L
= 20 pF, then both foot capacitors will be C
f1
= C
f2
= 40 pF. Parasitic capacitance from package and board must also be taken inaccount.
When selecting a crystal, the system design must take into account the temperature and agingcharacteristics of a crystal versus the user environment and expected lifetime of the system. Table 4-3details the switching characteristics of the oscillator and the input requirements of the 12-, 13-, 16.8-, or19.2-MHz input clock.
Table 4-3. Base Oscillator Switching Characteristics
NAME DESCRIPTION MIN TYP MAX UNIT
f
p
Oscillation frequency 12, 13, 16.8, or 19.2 MHzt
sX
Start-up time
(1) (2)
8 ms
(1) Start-up time defined as time interval between oscillator control signal release and sys_xtalin amplitude at 50% of its final value (vdd andvdds supplies ramped and stable). The start-up time can be performed in function of the crystal characteristics. 8-ms minimum onlywhen using the internal oscillator; it is programmable after reset for wake-up. At power-on reset, the time is adjustable using the pinitself. The reset must be released when the oscillator or clock source is stable. Before the processor boots up and the oscillator is set tobypass mode, there is a start-up time when the internal oscillator is in application mode and receives a square wave. The start-up timein this case is about 100 µs.(2) For f
p
= 12 or 13 MHz: C
L
= 13.5 pF and L
m
= 35 mHFor f
p
= 16.8 or 19.2 MHz: C
L
= 9 pF and L
m
= 15 mH
A 1.8-V CMOS clock squarer is another source that can supply a 12-, 13-, 16.8-, 19.2-, 26-, or 38.4-MHzclock to the OMAP35 15/03. An analog clock squarer function converts a low-amplitude sinusoidal clockinto a low-jitter digital signal. It can be connected to input pin sys_xtalin (sys_xtalout unconnected).Figure 4-3 illustrates the effective connections.
Submit Documentation Feedback CLOCK SPECIFICATIONS 135
sys_xtalin sys_xtalout
OMAP Device
sys_clkreq
ClockSquarerSource
Oscillator
InBypassMode
030-010
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Figure 4-3. Clock Squarer Source Connection
To connect a digital clock source, the oscillator is configured in bypass mode
(1)
. The sys_clkreq
(2)
pin is anOMAP35 15/03 output which can be used to switch the clock source on or off.1. Pin sys_xtalout is not used in this mode. It must be left unconnected.2. Once the system is powered up, the clock squarer source or crystal oscillator source can be applied;however, this affects the performance. The input source must be configured after power up to attainthe desired system requirements.
Table 4-4 summarizes the electrical constraints required by the clock squarer used in the fundamentalmode of operation.
Note: There is an internal pulldown resistor of 5k (max.) on sys_xtalin when the oscillator is disabled.
Table 4-4. Base Oscillator Electrical Characteristics (in Bypass Mode)
NAME DESCRIPTION MIN TYP MAX UNIT
f Frequency
(1)
12, 13, 16.8, 19.2, 26, or 38.4 MHzt
sX
Start-up time
(2)
msI
DDQ
Current consumption on VDDS when sys_xtalin = 0 and in 1 µApower-down mode
(1) Measured with the load capacitance specified by the manufacturer. Parasitic capacitance from package and board must also be taken inaccount.
(2) Before the processor boots up and the oscillator is set to bypass mode, there is a start-up time when the internal oscillator is inapplication mode and receives a square wave. The start-up time in this case is about 100 µs.
Table 4-5 details the input requirements of the 12-, 13-, 16.8-, 19.2-, 26-, or 38.4-MHz input clock.
Table 4-5. 12-, 13-, 16.8-, 19.2-, 26-, or 38.4-MHz Input Clock Squarer Timing Requirements
NAME DESCRIPTION MIN TYP MAX UNIT
OCS0 1 / t
c(xtalin)
Frequency, sys_xtalin 12, 13, 16.8, 19.2, 26, or 38.4 MHzOCS1 t
w(xtalin)
Pulse duration, sys_xtalin low or high 0.45 * t
c(xtalin)
0.55 * t
c(xtalin)
nsOCS2 t
J(xtalin)
Peak-to-peak jitter
(1)
, sys_xtalin –1% 1%OCS3 t
R(xtalin)
Rise time, sys_xtalin 3.6 nsOCS4 t
F(xtalin)
Fall time, sys_xtalin 3.6 nsOCS5 t
J(xtalin)
Frequency stability, sys_xtalin ±25 ppm
(1) Peak-to-peak jitter is defined as the difference between the maximum and the minimum output periods on a statistical population of 300period samples. The sinusoidal noise is added on top of the vdds supply voltage.
CLOCK SPECIFICATIONS 136 Submit Documentation Feedback
sys.xtalin
OCS0 OCS1 OCS1
030-011
4.1.4 External 32-kHz CMOS Input Clock
sys_32k
CK0 CK1 CK1
030-012
4.1.5 External sys_altclk CMOS Input Clock
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Figure 4-4. Crystal Oscillator in Bypass Mode
A 32.768-kHz clock signal (often abbreviated to 32-kHz) can be supplied by an external 1.8-V CMOSsignal on pin sys_32k.
Table 4-6 summarizes the electrical constraints imposed to the clock source.
Table 4-6. 32-kHz Input Clock Source Electrical Characteristics
NAME DESCRIPTION MIN TYP MAX UNIT
f Frequency 32.768 kHzC
I
Input capacitance 0.44 pFR
I
Input resistance 0.25 10
6
G
Table 4-7 details the input requirements of the 32-kHz input clock.
Table 4-7. 32-kHz Input Clock Source Timing Requirements
(1)
NAME DESCRIPTION MIN TYP MAX UNIT
CK0 1 / t
c(32k)
Frequency, sys_32k 32.768 kHzCK3 t
R(32k)
Rise time, sys_32k 20 nsCK4 t
F(32k)
Fall time, sys_32k 20 nsCK5 t
J(32k)
Frequency stability, sys_32k ±200 ppm
(1) See Table 3-4 ,Electrical Characteristics, Standard LVCMOS IOs part for sys_32k V
IH
/V
IL
parameters.
Figure 4-5. 32-kHz CMOS Clock
A 48-, 54-, or up to 59- MHz clock signal can be supplied by an external 1.8-V CMOS signal on pinsys_altclk.
Table 4-8 summarizes the electrical constraints imposed by the clock source.
Table 4-8. 48-, 54-, or up to 59- MHz Input Clock Source Electrical Characteristics
NAME DESCRIPTION MIN TYP MAX UNIT
f Frequency , sys_altclk 48-, 54-, or up to 59- MHz MHzC
I
Input capacitance 0.74 pFR
I
Input resistance 0.25 10
6
G
Table 4-9 details the input requirements of the input clock.
Submit Documentation Feedback CLOCK SPECIFICATIONS 137
sys_altclk
ALT0 ALT1 ALT1
030-013
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Table 4-9. 48- or 54-MHz Input Clock Source Timing Requirements
(1) (2)
NAME DESCRIPTION MIN TYP MAX UNIT
ALT0 1 / t
c(altclk)
Frequency, sys_altclk 48-, 54-, or up to 59- MHz MHzALT1 t
w(altclk)
Pulse duration, sys_altclk low or 0.40 * t
c(altclk)
0.60 * t
c(altclk)
nshighALT2 t
J(altclk)
Peak-to-peak jitter
(1)
, sys_altclk –1% 1%ALT3 t
R(altclk)
Rise time, sys_altclk 10 nsALT4 t
F(altclk)
Fall time, sys_altclk 10 nsALT5 t
J(altclk)
Frequency stability, sys_altclk ±50 ppm
(1) Peak-to-peak jitter is defined as the difference between the maximum and the minimum output periods on a statistical population of 300period samples. The sinusoidal noise is added on top of the vdds supply voltage.(2) See Table 3-4 ,Electrical Characteristics, for sys_altclk V
IH
/V
IL
parameters.
Figure 4-6. Alternate CMOS Clock
138 CLOCK SPECIFICATIONS Submit Documentation Feedback
4.2 Output Clock Specifications
sys_clkout
CO0 CO1 CO1
030-014
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Two output clocks (pin sys_clkout1 and pin sys_clkout2) are available:sys_clkout1 can output the oscillator clock (12, 13, 16.8, 19.2, 26, or 38.4 MHz) at any time. It can becontrolled by software or externally using sys_clkreq control. When the device is in the off state, thesys_clkreq can be asserted to enable the oscillator and activate the sys_clkout1 without waking up thedevice. The off state polarity of sys_clkout1 is programmable.sys_clkout2 can output sys_clk (12, 13, 16.8, 19.2, 26, or 38.4 MHz), CORE_CLK (core DPLL output,332 MHz maximum), APLL-96 MHz, or APLL-54 MHz. It can be divided by 2, 4, 8, or 16 and its offstate polarity is programmable. This output is active only when the core domain is active.
Table 4-10 summarizes the sys_clkout1 output clock electrical characteristics.
Table 4-10. sys_clkout1 Output Clock Electrical Characteristics
NAME DESCRIPTION MIN TYP MAX UNIT
f Frequency 12, 13, 16.8, 19.2, 26, or 38.4 MHzC
I
Load capacitance
(1)
f(max) = 38.4 MHz 37 pFf(max) = 26 MHz 50
(1) The load capacitance is adapted to a frequency.
Table 4-11 details the sys_clkout1 output clock timing characteristics.
Table 4-11. sys_clkout1 Output Clock Switching Characteristics
NAME DESCRIPTION MIN TYP MAX UNIT
f 1 / CO0 Frequency 12, 13, 16.8, 19.2, 26, or 38.4 MHzCO1 t
w(CLKOUT1)
Pulse duration, sys_clkout1 low or high 0.40 * 0.60 * nst
c(CLKOUT1)
t
c(CLKOUT1)
CO2 t
R(CLKOUT1)
Rise time, sys_clkout1
(1)
5.5 nsCO3 t
F(CLKOUT1)
Fall time, sys_clkout1
(1)
5.5 ns
(1) With a load capacitance of 50 pF.
Figure 4-7. sys_clkout1 System Output Clock
Table 4-12 summarizes the sys_clkout2 output clock electrical characteristics.
Table 4-12. sys_clkout2 Output Clock Electrical Characteristics
NAME DESCRIPTION MIN TYP MAX UNIT
f Frequency, sys_clkout2 322 MHzC
L
Load capacitance
(1)
f(max) = 166 MHz 2 8 12 pF
(1) The load capacitance is adapted to a frequency.
Table 4-13 details the sys_clkout2 output clock timing characteristics.
Submit Documentation Feedback CLOCK SPECIFICATIONS 139
sys_clkout
CO0 CO1 CO1
030-015
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Table 4-13. sys_clkout2 Output Clock Switching Characteristics
NAME DESCRIPTION MIN TYP MAX UNIT
f 1 / CO0 Frequency 322 MHzCO1 t
w(CLKOUT2)
Pulse duration, sys_clkout2 low or high 0.40 * t
c(CLKOUT2)
0.60 * t
c(CLKOUT2)
nsCO2 t
R(CLKOUT2)
Rise time, sys_clkout2
(1)
3.7 nsCO3 t
F(CLKOUT2)
Fall time, sys_clkout2
(1)
4.3 ns
(1) With a load capacitance of 12 pF.
Figure 4-8. sys_clkout2 System Output Clock
140 CLOCK SPECIFICATIONS Submit Documentation Feedback
4.3 DPLL and DLL Specifications
OMAP
DLL
vdds_dpll_dll PowerRail
DPLL4
DPLL1
DPLL2
DPLL3
vdds_dpll_per
DPLL5
030-016
4.3.1 Digital Phase-Locked Loop (DPLL)
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
The OMAP35 15/03 integrates seven DPLLs and a DLL. The PRM and CM drive five of them, while thesixth ( not supported) and the seventh ( not supported) are controlled by the display subsystem.
The five main DPLLs are:DPLL1 (MPU)DPLL2 ( not supported on OMAP3515/03 devices)DPLL3 (Core)DPLL4 (Peripherals)
DPLL5 (Second Peripherals DPLL)
Figure 4-9 illustrates the DLL and DPLL implementation.
(1) DPLL2 is not supported on OMAP3515/03 devices.
Figure 4-9. DPLL and DLL Implementation
For more information on the OMAP35 30/25 Applications Processor DPLLs and clocking structure, see thePower, Reset, and Clock management (PRCM) chapter of the OMAP35x Applications Processor TRM(literature number SPRUFA5 ).
The DPLL provides all interface clocks and some functional clocks (such as the processor clocks) of theOMAP35 15/03 device.
DPLL1 and DPLL2 get an always-on clock used to produce the synthesized clock. They get a high-speedbypass clock used to switch the DPLL output clock on this high-speed clock during bypass mode.
The high-speed bypass clock is an L3 divided clock (programmable by 1 or 2) that saves DPLL processorpower consumption when the processor does not need to run faster than the L3 clock speed, or optimizesperformance during frequency scaling.
Each DPLL synthesized frequency is set by programming M (multiplier) and N (divider) factors. In addition,all DPLL outputs can be controlled by an independent divider (M2 to M6).
The clock generating DPLLs of the OMAP35 15/03 device have following features:Independent power domain per DPLLControlled by clock-manager (CM)
Submit Documentation Feedback CLOCK SPECIFICATIONS 141
4.3.1.1 DPLL1 (MPU)
4.3.1.2 DPLL3 (CORE)
4.3.1.3 DPLL4 (Peripherals)
4.3.1.4 DPLL5 (Second peripherals DPLL)
4.3.2 Delay-Locked Loops (DLL)
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Fed with always-on system clock with independent gating control per DPLLAnalog part supplied through dedicated power supply (1.8 V) and an embedded LDO to get rid of1-MHz noiseUp to five independent output dividers for simultaneous generation of multiple clock frequencies
DPLL1 is located in the MPU subsystem and supplies all clocks of the subsystem. All MPU subsystemclocks are internally generated in the subsystem. When the core domain is on, it can use the DPLL3(CORE DPLL) output as a high-frequency bypass input clock.
DPLL3 supplies all interface clocks and also a few module functional clocks. It can be also source of theemulation trace clock. It is located in the core domain area. All interface clocks and a few modulefunctional clocks are generated in the CM. When the core domain is on, it can be used as a bypass inputto DPLL1 and DPLL2.
DPLL4 generates clocks for the peripherals. It supplies five clock sources: 96-MHz functional clocks tosubsystems and peripherals, 54 MHz to TV DAC, display functional clock, camera sensor clock, andemulation trace clock. It is located in the core domain area. All interface clocks and few module functionalclocks are generated in the CM. Its outputs to the DSS, PER, and EMU domains are propagated withalways-on clock trees.
DPLL5 supplies the 120-MHz functional clock to the CM.
The SDRC includes analog-controlled delay technology for interfacing high-speed mobile DDR memorycomponents. For more information, see the SDRC-GPMC chapter of the OMAP35x Technical ReferenceManual (TRM) [literature number SPRUF98 ]. A DLL is a calibration module used on dynamic track ofvoltage and temperature variations, as well as to compensate the silicon process dispersion.
The SDRC DLL has four modes of operation:1. APPLICATION MODE 0: used to generate 72 °delay2. APPLICATION MODE 1: used to generate 90 °delay3. MODEMAXDELAY: used for low frequency operation where we do not have the requirement ofaccurate 72 °or 90 °phase shift4. IDLE MODE: a low-power state that allows the DLL to gain lock quickly on exit from this mode
142 CLOCK SPECIFICATIONS Submit Documentation Feedback
4.3.3 DPLLs and DLL Characteristics
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Several specifications characterize the seven DPLLs.
Table 4-14 summarizes the DPLL characteristics and assumes testing over recommended operatingconditions.
Table 4-14. DPLL Characteristics
NAME PARAMETER MIN TYP MAX UNIT COMMENTS
(1)
vdds_dpll_per 1.71 1.8 1.89 V At ball level (+5%, +10%)vdds_dpll_dll 1.71 1.8 1.89 VT
J
Junction temperature –40 25 105 °C Will not unlock after lock over this range forslow temperature driftsf
input
Input reference frequency
(2)
0.75 65 MHz FINPf
internal
Internal reference frequency 0.75 2.1 MHz FREQSEL3 = 0; FINT = FINP/(N+1)7.5 21 MHz FREQSEL3 = 1; FINT = FINP/(N+1)f
output
CLKOUT output frequency 25 900 MHzf
output*2
CLKOUTx2 output 50 1800 MHzfrequencyt
lock
Frequency lock time
(3)
71.4 200 µs 150 FINT cycles; FREQSEL3 = 037.1 104 µs 780 FINT cycles; FREQSEL3 = 1p
lock
Phase lock time 166.7 466.7 µs 350 FINT cycles; FREQSEL3 = 046.7 130.7 µs 980 FINT cycles; FREQSEL3 = 1t
relock
Relock time frequency 4.8 13.3 µs 10 FINT cycleslock
(4)
Lowcurrstby = 0; FREQSEL3 = 04.8 13.3 µs 100 FINT cyclesLowcurrstby = 0; FREQSEL3 = 119 53.3 µs 40 FINT cyclesLowcurrstby = 1; FREQSEL3 = 019 53.3 µs 400 FINT cyclesLowcurrstby = 1; FREQSEL3 = 1p
relock
Relock time Phase lock
(4)
71.4 200 µs 150 FINT cyclesLowcurrstby = 0; FREQSEL3 = 011.9 33.3 µs 250 FINT cyclesLowcurrstby = 0; FREQSEL3 = 195.2 266.7 µs 200 FINT cyclesLowcurrstby = 1; FREQSEL3 = 026.7 74.7 µs 560 FINT cyclesLowcurrstby = 1; FREQSEL3 = 1
show s the DPLL1 clock frequency ranges.
Note: The DPLL1 clock frequency ranges depend on the V
DD1
(vdd_mpu) operating point.(1) f
reqsel
needs to be programmed accordingly to reference clock and DPLL divider (register setting), Lowcurrstdby depends on the targetedDPLL power state (dynamic).Lowcurrstdby = 0 then DPLL is in normal modeLowcurrstdby = 1 then DPLL is in low-power mode(2) Input frequencies below 0.75 MHz are possible with performance penalty.(3) Maximum frequency for nominal conditions. Speed binning possible above fmax.(4) Relock time assumes typical operating conditions, 4 °C maximum temperature drift (see the Functional Specification for more detailedinformation).
Submit Documentation Feedback CLOCK SPECIFICATIONS 143
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Table 4-15. DPLL1 Clock Frequency Ranges
Clock Signal Description Max Unit
OPP6
(1)
720 MHzOPP5 600 MHzOPP4 550 MHzARM_CLK DPLL1 output clock.
OPP3 500 MHzOPP2 250 MHzOPP1
(2)
125 MHz
(1) OPP6 frequency range is only supported on high-speed grade OMAP3530/25 devices.(2) Cannot boot in OPP1. If OPP1 is desired, boot in higher OPP then switch to OPP1.
Table 4-16 through Table 4-18 show the DPLL3 clock frequency ranges.
Note: The DPLL3 clock frequency ranges depend on the VDD2 (vdd_core) operating point and the L3clock speed configuration.
Table 4-16. DPLL3 Clock Frequency Ranges, VDD2 OPP3
Config 1 Config 2(166 MHz) (133 MHz)
UnitClock Signal Description Min Max Min Max
Output of clock manager (CM), generatedCM: CORE_CLK - 332 - 266 MHzdirectly from DPLL3.Output of clock manager (CM), generatedCM: L3_ICLK - 166 - 133 MHzusing DPLL3.
Output of clock manager (CM), generatedCM: L4_ICLK - 83 - 66.5 MHzusing CM L3_ICLK and divider.SGX SGX input clock, taken from CM CORE_CLK. - 110.67 - 88.67 MHzSDRC SDRC input clock, taken from CM L3_ICLK. - 166 - 133 MHzGPMC GPMC input clock, taken from CM L3_ICLK. - 83 - 66.5 MHz
Table 4-17. DPLL3 Clock Frequency Ranges, VDD2 OPP2
Config 1 Config 2(83 MHz) (100 MHz)
UnitClock Signal Description Min Max Min Max
Output of clock manager (CM), generatedCM: CORE_CLK - 166 - 200 MHzdirectly from DPLL3.Output of clock manager (CM), generated usingCM: L3_ICLK - 83 - 100 MHzDPLL3.
Output of clock manager (CM), generated usingCM: L4_ICLK - 41.5 - 50 MHzCM L3_ICLK and divider.SGX SGX input clock, taken from CM CORE_CLK. - 55.53 - 66.67 MHzSDRC SDRC input clock, taken from CM L3_ICLK. - 83 - 100 MHzGPMC GPMC input clock, taken from CM L3_ICLK. - 41.5 - 50 MHz
Table 4-18. DPLL3 Clock Frequency Ranges, VDD2 OPP1
(1)
Config 1 Config 2(40 MHz) (50 MHz)
UnitClock Signal Description Min Max Min Max
Output of clock manager (CM), generated directlyCM: CORE_CLK - 83 - 100 MHzfrom DPLL3.
Output of clock manager (CM), generated usingCM: L3_ICLK - 41.5 - 50 MHzDPLL3.
(1) Cannot boot in OPP1. If OPP1 is desired, boot in higher OPP then switch to OPP1.
CLOCK SPECIFICATIONS 144 Submit Documentation Feedback
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Table 4-18. DPLL3 Clock Frequency Ranges, VDD2 OPP1 (continued)
Config 1 Config 2(40 MHz) (50 MHz)
UnitClock Signal Description Min Max Min Max
Output of clock manager (CM), generated using CMCM: L4_ICLK - 20.75 - 25 MHzL3_ICLK and divider.SGX SGX input clock, taken from CM CORE_CLK. - N/A - N/A MHzSDRC SDRC input clock, taken from CM L3_ICLK. - 41.5 - 50 MHzGPMC GPMC input clock, taken from CM L3_ICLK. - 41.5 - 25 MHz
Table 4-19 summarizes the DLL characteristics.
Table 4-19. DLL Characteristics
PARAMETER MIN NOM MAX UNIT COMMENTS
Supply voltage vdds_dpll_dll 1.71 1.8 1.89 VJunction operating temperature –40 25 105 °CInput clock frequency 66 120 133 MHz APPLICATION MODE 083 120 166 APPLICATION MODE 1Input load
(1)
15 fFLock time
(2)
500 ClocksRelock time 500 ns IDLE to MODEMAXDELAY(Mode transitions through idle mode) 150 372 Clocks IDLE to APPLICATION MODE 1 or 01 2 µs IDLE to APPLICATION MODE @133 MHz1 1.5 µs IDLE to APPLICATION MODE @166 MHz
(1) This parameter is design goal and is not tested on silicon.(2) Lock signal would go high from power down within 500 clocks. Lock signal switches to low state when the input clock is switched offafter 3 µs.
Submit Documentation Feedback CLOCK SPECIFICATIONS 145
4.3.4 DPLL and DLL Noise Isolation
OMAP Device
DPLL_MPU DPLL2 DPLL_CORE DLL
DPLL5 DPLL4
vdds_dpll_dll
vdds_dpll_per
C
NoiseFilter
C
NoiseFilter
030-017
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
The DPLL and DLL require dedicated power supply pins to isolate the core analog circuit from theswitching noise generated by the core logic that can cause jitter on the clock output signal. Guard ringsare added to the cell to isolate it from substrate noise injection.
The vdd supplies are the most sensitive to noise; decoupling capacitance is recommended below thesupply rails. The maximum input noise level allowed is 30 mV
PP
for frequencies below 1 MHz.
Figure 4-10 illustrates an example of a noise filter.
(1) DPLL2 is not supported on OMAP3515/03 devices.
Figure 4-10. DPLL and DLL Noise Filter
(1)
Table 4-20 specifies the noise filter requirements.
Table 4-20. DPLL and DLL Noise Filter Requirements
NAME MIN TYP MAX UNIT
Filtering capacitor 100 nF(1) The capacitors must be inserted between power and ground as close as possible.(2) This circuit is provided only as an example.(3) The filter must be located as close as possible to the device.(4) No filtering required if noise is below 10 mV
PP
.
CLOCK SPECIFICATIONS 146 Submit Documentation Feedback
5 VIDEO DAC SPECIFICATIONS
OMAP Device
DSS
tv_vref
DIN1[9:0]
vssa_dacvdda_dac
VideoDAC 1
TVDCT
VideoDAC 2 TVOUT
BUFFER
DIN2[9:0]
TVOUT
BUFFER
TVOUT
BUFFER
tv_vfb1
tv_out1
CBG
tv_out2
tv_vfb2
V_ref
030-018
ROUT1
ROUT2
5.1 Interface Description
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
A dual-display interface equips the OMAP35 15/03 processor. This display subsystem provides thenecessary control signals to interface the memory frame buffer directly to the external displays (TV-set).Two (one per channel) 10-bit current steering DACs are inserted between the DSS and the TV set togenerate the video analog signal. One of the video DACs also includes TV detection and power-downmode. Figure 5-1 illustrates the OMAP35 15/03 DAC architecture. For more information, see the DSSchapter of the OMAP35x Technical Reference Manual (TRM) [literature number SPRUF98 ].
Figure 5-1. Video DAC Architecture
The following paragraphs detail the 10-bit DAC interface pinout, static and dynamic specifications, andnoise requirements. The operating conditions and absolute maximum ratings are detailed in Table 5-2 andTable 5-4 .
Table 5-1 summarizes the external pins of the video DAC.
Table 5-1. External Pins of 10-bit Video DAC
PIN NAME I/O DESCRIPTION
tv_out1 O TV analog output composite DAC1 video output. An external resistor is connected between thisnode and tv_vfb1. The nominal value of ROUT1 is 1650 . Finally,note that this is the output node that drives the load (75 ).
Submit Documentation Feedback VIDEO DAC SPECIFICATIONS 147
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Table 5-1. External Pins of 10-bit Video DAC (continued)
PIN NAME I/O DESCRIPTION
tv_out2 O TV analog output S-VIDEO DAC2 video output. An external resistor is connected between thisnode and tv_vfb2. The nominal value of ROUT2 is 1650 . Finally,note that this is the output node that drives the load (75 ).tv_vref I Reference output voltage from internal A decoupling capacitor (CBG) needs to be connected for optimumbandgap performance.tv_vfb1 O Amplifier feedback node Amplifier feedback node. An external resistor is connected betweenthis node and tv_out1. The nominal value of ROUT1 is 1650 (1%).tv_vfb2 O Amplifier feedback node Amplifier feedback node. An external resistor is connected betweenthis node and tv_out2. The nominal value of ROUT2 is 1650 (1%).
VIDEO DAC SPECIFICATIONS148 Submit Documentation Feedback
5.2 Electrical Specifications Over Recommended Operating Conditions
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
(T
MIN
to T
MAX
, vdda_dac = 1.8 V, R
OUT1/2
= 1650 , R
LOAD
= 75 , unless otherwise noted)
Table 5-2. DAC Static Electrical Specification
PARAMETER CONDITIONS/ASSUMPTIONS MIN TYP MAX UNIT
R Resolution 10 Bits
DC ACCURACY
INL
(1)
Integral nonlinearity –1 1 LSBDNL
(2)
Differential nonlinearity –1 1 LSB
ANALOG OUTPUT
- Full-scale output voltage R
LOAD
= 75 0,7 0.88 1 V- Output offset voltage 50 mV- Output offset voltage drift 20 mV/ °C- Gain error –17 19 % FSR
VOUT
Output impedance 67.5 75 82.5
REFERENCE
V
REF
Reference voltage range 0.525 0.55 0.575 V- Reference noise density 100-kHz reference noise 129bandwidthR
SET
Full-scale current adjust resistor 3700 4000 4200 P
SRR
Reference PSRR
(3)
(Up to 6 MHz) 40 dB
POWER CONSUMPTION
I
vdda-up
Analog Supply Current
(4)
2 channels, no load 8 mA- Analog supply driving a 75- load 2 channels 50 mA(RMS)I
vdda-up
(peak) Peak analog supply current: Lasts less than 1 ns 60 mAI
vdd-up
Digital supply current
(5)
Measured at f
CLK
= 54 MHz, f
OUT
2 mA= 2 MHz sine wave, vdd = 1.3 VI
vdd-up (peak)
Peak digital supply current
(6)
Lasts less than 1 ns 2.5 mAI
vdda-down
Analog power at power-down T = 30 °C, vdda = 1.8 V 1.5 mAI
vdd-down
Digital power at power-down T = 30 °C, vdd = 1.3 V 1 mA
(1) The INL is measured at the output of the DAC (accessible at an external pin during bypass mode).(2) The DNL is measured at the output of the DAC (accessible at an external pin during bypass mode).(3) Assuming a capacitor of 0.1 µF at the tv_ref node.(4) The analog supply current I
vdda
is directly proportional to the full-scale output current IFS and is insensitive to f
CLK(5) The digital supply current I
VDD
is dependent on the digital input waveform, the DAC update rate f
CLK
, and the digital supply VDD.(6) The peak digital supply current occurs at full-scale transition for duration less than 1 ns.
Submit Documentation Feedback VIDEO DAC SPECIFICATIONS 149
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
(T
MIN
to T
MAX
, vdda_dac = 1.8 V, R
OUT1/2
= 1650 , R
LOAD
= 75 , unless otherwise noted)
Table 5-3. Video DAC Dynamic Electrical Specification
PARAMETER CONDITIONS/ASSUMPTIONS MIN TYP MAX UNIT
f
CLK
(1)
Output update rate Equal to input clock frequency 54 MHzClock jitter rms clock jitter required in order to assure 40 ps10-bit accuracyAttenuation at 5.1 MHz Corner frequency for signal 0.1 0.5 1.5 dBAttenuation at 54 MHz
(1)
Image frequency 25 30 33 dBt
ST
Output settling time Time from the start of the output transition to 85 nsoutput within ±1 LSB of final value.t
Rout
Output rise time Measured from 10% to 90% of full-scale 25 nstransitiont
Fout
Output fall time Measured from 10% to 90% of full-scale 25 nstransitionBW Signal bandwidth 6 MHzDifferential gain
(2)
1.5%Differential phase
(2)
1 deg.SFDR Within bandwidth f
CLK
= 54 MHz, f
OUT
= 1 MHz 45 dBSNR Signal-to-noise ratio f
CLK
= 54 MHz, f
OUT
= 1 MHz 55
(3)
dB1 kHz to 6 MHz bandwidthPSRR Power supply rejection ratio Up to 6 MHz 20
(4)
dBCrosstalk Between the two video –50 –40 dBchannels
(1) For internal input clock information, For more information, see the DSS chapter of the OMAP35x Technical Reference Manual (TRM)[literature number SPRUF98 ].(2) The differential gain and phase value is for dc coupling. Note that there is degradation for the ac coupling.(3) The SNR value is for dc coupling. Note that there is a 6-dB degradation for ac coupling.(4) The PSSR value is for dc coupling. Note that there is a 10-dB degradation for ac coupling.
VIDEO DAC SPECIFICATIONS150 Submit Documentation Feedback
5.3 Analog Supply (vdda_dac) Noise Requirements
supply variation as shown in the following equation:
AC
OUTFS
OUT
DAC V
I
I
PSRR
D
×
=
100
%FSR
V
1
100kHz 1MHz
10
PSRR(%FSR/V)
f
Firstpoleof
DACoutputload
030-019
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
In order to assure 10-bit accuracy of the DAC analog output, the analog supply vdda_dac has to meet thenoise requirements stated in this section.
The DAC Power Supply Rejection Ratio is defined as the relative variation of the full-scale output currentdivided by the supply variation. Thus, it is expressed in percentage of Full-Scale Range (FSR) per volt of
Depending on frequency, the PSRR is defined in Table 5-4 .
Table 5-4. Video DAC Power Supply Rejection Ratio
Supply Noise Frequency PSRR % FSR/V
0 to 100 kHz 1> 100 kHz The rejection decreases 20 dB/dec.Example: at 1 MHz the PSRR is 10% of FSR/V
A graphic representation is shown in Figure 5-2 .
Figure 5-2. Video DAC Power Supply Rejection Ratio
To ensure that the DAC SFDR specification is met, the PSRR values and the clock jitter requirementstranslate to the following limits on vdda_dac (for the Video DAC).
The maximum peak-to-peak noise on vdda (ripple) is defined in Table 5-5 :
Table 5-5. Video DAC Maximum Peak-to-Peak Noise on vdda_dac
Tone Frequency Maximum Peak-to-Peak Noise on vdda_dac
0 to 100 kHz < 30 mVpp> 100 kHz Decreases 20 dB/dec.Example: at 1 MHz the maximum is 3 mVpp
The maximum noise spectral density (white noise) is defined in Table 5-6 :
Table 5-6. Video DAC Maximum Noise Spectral Density
Supply Noise Bandwidth Maximum Supply Noise Density
0 to 100 kHz < 20 µV / Hz> 100 kHz Decreases 20 dB/dec.Example: at 1 MHz the maximum noise density is 2 µ/Hz
Submit Documentation Feedback VIDEO DAC SPECIFICATIONS 151
5.4 External Component Value Choice
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Because the DAC PSRR deteriorates at a rate of 20 dB/dec after 100 kHz, it is highly recommended tohave vdda_dac low pass filtered (proper decoupling) (see the illustrated application: Section 5.4 ,ExternalComponent Value Choice).
The full-scale output voltage V
OUTMAX
is regulated by the reference amplifier, and is set by an internalresistor R
SET
. I
OUTMAX
can be expressed as:
I
OUTMAX
= I
REF
/8 * (63 + 15/16)
Where:
V
REF
= 0.55VI
REF
= V
REF
/ (2* R
SET
)
The output current I
OUT
appearing at DAC output is a function of both the input code and I
OUTMAX
and canbe expressed as:
I
OUT
= (DAC_CODE/1023) * I
OUTMAX
Where:
DAC_CODE = 0 to 1023 is the DAC input code in decimal.
The output voltage is:
V
OUT
= I
OUT
*N* R
CABLE
Where:
(N = amplifier gain = 21)R
CABLE
= 75 (cable typical impedance)
The TV-out buffer requires a per channel external resistors: R
OUT1/2
. The equation below can be used toselect different resistor values (if necessary):
R
OUT
= (N+1) R
CABLE
= 1650
Recommended parameter values are:
Table 5-7. Video DAC Recommended External Components Values
Recommended Value UNIT
C
BG
100 nFR
OUT1/2
1650
In order to limit the reference noise bandwidth and to suppress transients on V
REF
, it is necessary toconnect a large decoupling capacitor
BG
) between the tv_vref and vssa_dac pins.
VIDEO DAC SPECIFICATIONS152 Submit Documentation Feedback
6 TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
6.1 Timing Test Conditions
6.2 Interface Clock Specifications
6.2.1 Interface Clock Terminology
6.2.2 Interface Clock Frequency
6.2.3 Clock Jitter Specifications
Cycle(orPeriod)Jitter
Tn-1 TnTn+1
Max.CycleJitter=Max(T )
i
Min.CycleJitter=Min(T )
i
JitterStandardDeviation(orrmsJitter)=StandardDeviation(T )
i
030-020
6.2.4 Clock Duty Cycle Error
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
All timing requirements and switching characteristics are valid over the recommended operating conditionsof Table 3-3 , unless otherwise specified.
The Interface clock is used at the system level to sequence the data and/or control transfers accordinglywith the interface protocol.
The two interface clock characteristics are:The maximum clock frequencyThe maximum operating frequency
The interface clock frequency documented in this document is the maximum clock frequency, whichcorresponds to the maximum frequency programmable on this output clock. This frequency defines themaximum limit supported by the OMAP35 15/03 IC and doesn’t take into account any system consideration(PCB, peripherals).
The system designer will have to consider these system considerations and OMAP35 15/03 IC timingscharacteristics as well, to define properly the maximum operating frequency, which corresponds to themaximum frequency supported to transfer the data on this interface.
Jitter is a phase noise, which may alter different characteristics of a clock signal. The jitter specified in thisdocument is the time difference between the typical cycle period and the actual cycle period affected bynoise sources on the clock. The cycle (or period) jitter terminology identifies this type of jitter.
Figure 6-1. Cycle (or Period) Jitter
The duty cycle error is the ratio between either the high-level pulse duration or the low-level pulse durationand the cycle time of a clock signal.
Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 153
6.3 Timing Parameters
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
The timing parameter symbols used in the timing requirement and switching characteristic tables arecreated in accordance with JEDEC Standard 100. To shorten the symbols, some pin names and otherrelated terminologies have been abbreviated as follows:
Table 6-1. Timing Parameters
LOWERCASE SUBSCRIPTS
Symbols Parameter
c Cycle time (period)d Delay timedis Disable timeen Enable timeh Hold timesu Setup timeSTART Start bitt Transition timev Valid timew Pulse duration (width)X Unknown, changing, or don’t care levelH HighL LowV ValidIV InvalidAE Active EdgeFE First EdgeLE Last EdgeZ High impedance
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS154 Submit Documentation Feedback
6.4 External Memory Interfaces
6.4.1 General-Purpose Memory Controller (GPMC)
6.4.1.1 GPMC/NOR Flash Interface Synchronous Timing
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
The OMAP35 15/03 processor includes the following external memory interfaces:General-purpose memory controller (GPMC)SDRAM controller (SDRC)
The GPMC is the OMAP35 15/03 unified memory controller used to interface external memory devicessuch as:Asynchronous SRAM-like memories and ASIC devicesAsynchronous page mode and synchronous burst NOR flashNAND flash
Table 6-3 and Table 6-4 assume testing over the recommended operating conditions (see Figure 6-2through Figure 6-5 ) and electrical characteristic conditions.
Table 6-2. GPMC/NOR Flash Synchronous Mode Timing Conditions
TIMING CONDITION PARAMETER VALUE UNIT
Input Conditions
t
R
Input signal rise time 1.8 nst
F
Input signal fall time 1.8 ns
Output Conditions
C
LOAD
Output load capacitance 15.94 pF
Table 6-3. GPMC/NOR Flash Interface Timing Requirements Synchronous Mode
(1)
NO. PARAMETER OPP3 OPP2 OPP1
(2)
UNIT
MIN MAX MIN MAX MIN MAX
F12 t
su(DV-CLKH)
Setup time, read gpmc_d[15:0] 1.9 1.9 3.2 nsvalid before gpmc_clk highF13 t
h(CLKH-DV)
Hold time, read gpmc_d[15:0] 1.9 1.9 1.9 nsvalid after gpmc_clk highF21 t
su(WAITV-CLKH)
Setup time, gpmc_waitx
(3)
valid 1.9 1.9 3.2 nsbefore gpmc_clk highF22 t
h(CLKH-WAITV)
Hold Time, gpmc_waitx
(3)
valid 2.5 2.5 2.5 nsafter gpmc_clk high
(1) For VDD2 (vdd_core) OPP voltages, see Table 3-3 ,Recommended Operating Conditions.(2) Cannot boot in OPP1. If OPP1 is desired, boot in higher OPP then switch to OPP1.(3) Wait monitoring support is limited to a WaitMonitoringTime value > 0. For a full description of wait monitoring feature, see the OMAP35xTechnical Reference Manual (literature number ).
Table 6-4. GPMC/NOR Flash Interface Switching Characteristics Synchronous Mode
NO. PARAMETER 1.15 V 1.0 V 0.9 V UNIT
MIN MAX MIN MAX MIN MAX
F0 t
c(CLK)
Cycle time
(15)
, output 10 12.05 25 nsclock gpmc_clk periodF1 t
w(CLKH)
Typical pulse duration, 0.5 P
(12)
0.5 P
(12)
0.5 P
(12)
0.5 P
(12)
0.5 P
(12)
0.5 P
(12)
nsoutput clock gpmc_clkhighF1 t
w(CLKL)
Typical pulse duration, 0.5 P
(12)
0.5 P
(12)
0.5 P
(12)
0.5 P
(12)
0.5 P
(12)
0.5 P
(12)
nsoutput clock gpmc_clk lowt
dc(CLK)
Duty cycle error, output –500 500 –602 602 –1250 1250 psclk gpmc_clk
Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 155
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Table 6-4. GPMC/NOR Flash Interface Switching Characteristics Synchronous Mode (continued)
NO. PARAMETER 1.15 V 1.0 V 0.9 V UNIT
MIN MAX MIN MAX MIN MAX
t
j(CLK)
Jitter standard 33.3 33.3 33.3 psdeviation
(16)
, output clockgpmc_clkt
R(CLK)
Rise time, output clock 1.6 2 2 nsgpmc_clkt
F(CLK)
Fall time, output clock 1.6 2 2 nsgpmc_clkt
R(DO)
Rise time, output data 2 2 2 nst
F(DO)
Fall time, output data 2 2 2 nsF2 t
d(CLKH-nCSV)
Delay time, gpmc_clk F
(6)
1.9 F
(6)
+ 3.3 F
(6)
1.8 F
(6)
+ 4.1 F
(6)
2.6 F
(6)
+ 4.9 nsrising edge togpmc_ncsx
(11)
transitionF3 t
d(CLKH-nCSIV)
Delay time, gpmc_clk E
(5)
1.9 E
(5)
+ 3.3 E
(5)
1.8 E
(5)
+ 4.1 E
(5)
2.6 E
(5)
+ 4.9 nsrising edge togpmc_ncsx
(11)
invalidF4 t
d(ADDV-CLK)
Delay time, address bus B
(2)
4.1 B
(2)
+ 2.1 B
(2)
4.1 B
(2)
+ 2.1 B
(2)
4.9 B
(2)
+ 2.6 nsvalid to gpmc_clk firstedgeF5 t
d(CLKH-ADDIV)
Delay time, gpmc_clk –2.1 –2.1 –2.6 nsrising edge togpmc_a[16:1] invalidF6 t
d(nBEV-CLK)
Delay time, B
(2)
1.1 B
(2)
+ 2.1 B
(2)
0.9 B
(2)
+ 1.9 B
(2)
2.6 B
(2)
+ 2.6 nsgpmc_nbe0_cle,
gpmc_nbe1 valid togpmc_clk first edgeF7 t
d(CLKH-nBEIV)
Delay time, gpmc_clk D
(4)
2.1 D
(4)
+ 1.1 D
(4)
1.9 D
(4)
+ 0.9 D
(4)
2.6 D
(4)
+ 2.6 nsrising edge togpmc_nbe0_cle,
gpmc_nbe1 invalidF8 t
d(CLKH-nADV)
Delay time, gpmc_clk G
(7)
1.9 G
(7)
+ 4.1 G
(7)
2.1 G
(7)
+ 4.1 G
(7)
2.6 G
(7)
+ 4.9 nsrising edge togpmc_nadv_ale transitionF9 t
d(CLKH-nADVIV)
Delay time, gpmc_clk D
(4)
1.9 D
(4)
+ 4.1 D
(4)
2.1 D
(4)
+ 4.1 D
(4)
2.6 D
(4)
+ 4.9 nsrising edge togpmc_nadv_ale invalidF10 t
d(CLKH-nOE)
Delay time, gpmc_clk H
(8)
2.1 H
(8)
+ 2.1 H
(8)
2.1 H
(8)
+ 2.1 H
(8)
2.6 H
(8)
+ 4.9 nsrising edge to gpmc_noetransitionF11 t
d(CLKH-nOEIV)
Delay time, gpcm rising E
(5)
2.1 E
(5)
+ 2.1 E
(5)
2.1 E
(5)
+ 2.1 E
(5)
2.6 E
(5)
+ 4.9 nsedge to gpmc_noe invalidF14 t
d(CLKH-nWE)
Delay time, gpmc_clk I
(9)
1.9 I
(9)
+ 4.1 I
(9)
2.1 I
(9)
+ 4.1 I
(9)
2.6 I
(9)
+ 4.9 nsrising edge to gpmc_nwetransitionF15 t
d(CLKH-Data)
Delay time, gpmc_clk J
(10)
2.1 J
(10)
+ 1.1 J
(10)
1.9 J
(10)
+ 0.9 J
(10)
2.6 J
(10)
+ 2.6 nsrising edge to data bustransitionF17 t
d(CLKH-nBE)
Delay time, gpmc_clk J
(10)
2.1 J
(10)
+ 1.1 J
(10)
1.9 J
(10)
+ 0.9 J
(10)
2.6 J
(10)
+ 2.6 nsrising edge togpmc_nbex_cle transitionF18 t
W(nCSV)
Pulse duration, Read A
(1)
A
(1)
A
(1)
nsgpmc_ncsx
(11)
Write A
(1)
A
(1)
A
(1)
nslowF19 t
W(nBEV)
Pulse duration, Read C
(3)
C
(3)
C
(3)
nsgpmc_nbe0_cle,
Write C
(3)
C
(3)
C
(3)
nsgpmc_nbe1 lowF20 t
W(nADVV)
Pulse duration, Read K
(13)
K
(13)
K
(13)
nsgpmc_nadv_ale
Write K
(13)
K
(13)
K
(13)
nslow
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS156 Submit Documentation Feedback
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Table 6-4. GPMC/NOR Flash Interface Switching Characteristics Synchronous Mode (continued)
NO. PARAMETER 1.15 V 1.0 V 0.9 V UNIT
MIN MAX MIN MAX MIN MAX
F23 t
d(CLKH-IODIR)
Delay time, gpmc_clk H
(8)
2.1 H
(8)
+ 4.1 H
(8)
2.1 H
(8)
+ 4.1 H
(8)
2.6 H
(8)
+ 4.9 nsrising edge to gpmc_io_dirhigh (IN direction)F24 t
d(CLKH-IODIV)
Delay time, gpmc_clk M
(17)
2.1 M
(17)
+ 4.1 M
(17)
2.1 M
(17)
+ 4.1 M
(17)
2.6 M
(17)
+ 4.9 nsrising edge to gpmc_io_dirlow (OUT direction)(1) For single read: A = (CSRdOffTime CSOnTime) * (TimeParaGranularity + 1) * GPMC_FCLK periodFor burst read: A = (CSRdOffTime CSOnTime + (n 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK periodFor burst write: A = (CSWrOffTime CSOnTime + (n 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK periodwith n being the page burst access number.(2) B = ClkActivationTime * GPMC_FCLK(3) For single read: C = RdCycleTime * (TimeParaGranularity + 1) * GPMC_FCLKFor burst read: C = (RdCycleTime + (n 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLKFor burst write: C = (WrCycleTime + (n 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK with n being thepage burst access number.(4) For single read: D = (RdCycleTime AccessTime) * (TimeParaGranularity + 1) * GPMC_FCLKFor burst read: D = (RdCycleTime AccessTime) * (TimeParaGranularity + 1) * GPMC_FCLKFor burst write: D = (WrCycleTime AccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK(5) For single read: E = (CSRdOffTime AccessTime) * (TimeParaGranularity + 1) * GPMC_FCLKFor burst read: E = (CSRdOffTime AccessTime) * (TimeParaGranularity + 1) * GPMC_FCLKFor burst write: E = (CSWrOffTime AccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK(6) For nCS falling edge (CS activated):Case GpmcFCLKDivider = 0: F = 0.5 * CSExtraDelay * GPMC_FCLKCase GpmcFCLKDivider = 1: F = 0.5 * CSExtraDelay * GPMC_FCLK if (ClkActivationTime and CSOnTime are odd) or (ClkActivationTime and CSOnTimeare even) F = (1 + 0.5 * CSExtraDelay) * GPMC_FCLK otherwiseCase GpmcFCLKDivider = 2: F = 0.5 * CSExtraDelay * GPMC_FCLK if ((CSOnTime ClkActivationTime) is a multiple of 3) F = (1 + 0.5 * CSExtraDelay) * GPMC_FCLK if ((CSOnTime ClkActivationTime 1) is a multiple of 3) F = (2 + 0.5 * CSExtraDelay) * GPMC_FCLK if ((CSOnTime ClkActivationTime 2) is a multiple of 3)(7) For ADV falling edge (ADV activated):Case GpmcFCLKDivider = 0: G = 0.5 * ADVExtraDelay * GPMC_FCLKCase GpmcFCLKDivider = 1: G = 0.5 * ADVExtraDelay * GPMC_FCLK if (ClkActivationTime and ADVOnTime are odd) or (ClkActivationTime andADVOnTime are even) G = (1 + 0.5 * ADVExtraDelay) * GPMC_FCLK otherwiseCase GpmcFCLKDivider = 2: G = 0.5 * ADVExtraDelay * GPMC_FCLK if ((ADVOnTime ClkActivationTime) is a multiple of 3) G = (1 + 0.5 * ADVExtraDelay) * GPMC_FCLK if ((ADVOnTime ClkActivationTime 1) is a multiple of 3) G = (2 + 0.5 * ADVExtraDelay) * GPMC_FCLK if ((ADVOnTime ClkActivationTime 2) is a multiple of 3)
For ADV rising edge (ADV deactivated) in Reading mode:Case GpmcFCLKDivider = 0: G = 0.5 * ADVExtraDelay * GPMC_FCLKCase GpmcFCLKDivider = 1: G = 0.5 * ADVExtraDelay * GPMC_FCLK if (ClkActivationTime and ADVRdOffTime are odd) or (ClkActivationTime andADVRdOffTime are even) G = (1 + 0.5 * ADVExtraDelay) * GPMC_FCLK otherwise Case GpmcFCLKDivider = 2: G = 0.5 * ADVExtraDelay * GPMC_FCLK if ((ADVRdOffTime ClkActivationTime) is a multiple of 3) G = (1 + 0.5 * ADVExtraDelay) * GPMC_FCLK if ((ADVRdOffTime ClkActivationTime 1) is a multiple of 3) G = (2 + 0.5 * ADVExtraDelay) * GPMC_FCLK if ((ADVRdOffTime ClkActivationTime 2) is a multiple of 3)
For ADV rising edge (ADV deactivated) in Writing mode:Case GpmcFCLKDivider = 0: G = 0.5 * ADVExtraDelay * GPMC_FCLKCase GpmcFCLKDivider = 1: G = 0.5 * ADVExtraDelay * GPMC_FCLK if (ClkActivationTime and ADVWrOffTime are odd) or (ClkActivationTime andADVWrOffTime are even) G = (1 + 0.5 * ADVExtraDelay) * GPMC_FCLK otherwiseCase GpmcFCLKDivider = 2:
Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 157
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
G = 0.5 * ADVExtraDelay * GPMC_FCLK if ((ADVWrOffTime ClkActivationTime) is a multiple of 3) G = (1 + 0.5 * ADVExtraDelay) * GPMC_FCLK if ((ADVWrOffTime ClkActivationTime 1) is a multiple of 3) G = (2 + 0.5 * ADVExtraDelay) * GPMC_FCLK if ((ADVWrOffTime ClkActivationTime 2) is a multiple of 3)(8) For OE falling edge (OE activated) / IO DIR rising edge (Data Bus input direction):Case GpmcFCLKDivider = 0: H = 0.5 * OEExtraDelay * GPMC_FCLKCase GpmcFCLKDivider = 1: H = 0.5 * OEExtraDelay * GPMC_FCLK if (ClkActivationTime and OEOnTime are odd) or (ClkActivationTime and OEOnTimeare even) H = (1 + 0.5 * OEExtraDelay) * GPMC_FCLK otherwiseCase GpmcFCLKDivider = 2: H = 0.5 * OEExtraDelay * GPMC_FCLK if ((OEOnTime ClkActivationTime) is a multiple of 3) H = (1 + 0.5 * OEExtraDelay) * GPMC_FCLK if ((OEOnTime ClkActivationTime 1) is a multiple of 3) H = (2 + 0.5 * OEExtraDelay) * GPMC_FCLK if ((OEOnTime ClkActivationTime 2) is a multiple of 3)
For OE rising edge (OE deactivated):GpmcFCLKDivider = 0: H = 0.5 * OEExtraDelay * GPMC_FCLKCase GpmcFCLKDivider = 1: H = 0.5 * OEExtraDelay * GPMC_FC if (ClkActivationTime and OEOffTime are odd) or (ClkActivationTime and OEOffTime areeven)
H = (1 + 0.5 * OEExtraDelay) * GPMC_FCLK otherwiseCase GpmcFCLKDivider = 2: H = 0.5 * OEExtraDelay * GPMC_FCLK if ((OEOffTime ClkActivationTime) is a multiple of 3) H = (1 + 0.5 * OEExtraDelay) * GPMC_FCLK if ((OEOffTime ClkActivationTime 1) is a multiple of 3) H = (2 + 0.5 * OEExtraDelay) * GPMC_FCLK if ((OEOffTime ClkActivationTime 2) is a multiple of 3)(9) For WE falling edge (WE activated):Case GpmcFCLKDivider = 0: I = 0.5 * WEExtraDelay * GPMC_FCLKCase GpmcFCLKDivider = 1: I = 0.5 * WEExtraDelay * GPMC_FCLK if (ClkActivationTime and WEOnTime are odd) or (ClkActivationTime and WEOnTimeare even) I = (1 + 0.5 * WEExtraDelay) * GPMC_FCLK otherwiseCase GpmcFCLKDivider = 2: I = 0.5 * WEExtraDelay * GPMC_FCLK if ((WEOnTime ClkActivationTime) is a multiple of 3) I = (1 + 0.5 * WEExtraDelay) * GPMC_FCLK if ((WEOnTime ClkActivationTime 1) is a multiple of 3) I = (2 + 0.5 * WEExtraDelay) * GPMC_FCLK if ((WEOnTime ClkActivationTime 2) is a multiple of 3)
For WE rising edge (WE deactivated):Case GpmcFCLKDivider = 0: I = 0.5 * WEExtraDelay * GPMC_FCLKCase GpmcFCLKDivider = 1: I = 0.5 * WEExtraDelay * GPMC_FCLK if (ClkActivationTime and WEOffTime are odd) or (ClkActivationTime and WEOffTimeare even) I = (1 + 0.5 * WEExtraDelay) * GPMC_FCLK otherwiseCase GpmcFCLKDivider = 2: I = 0.5 * WEExtraDelay * GPMC_FCLK if ((WEOffTime ClkActivationTime) is a multiple of 3) I = (1 + 0.5 * WEExtraDelay) * GPMC_FCLK if ((WEOffTime ClkActivationTime 1) is a multiple of 3) I = (2 + 0.5 * WEExtraDelay) * GPMC_FCLK if ((WEOffTime ClkActivationTime 2) is a multiple of 3)(10) J = GPMC_FCLK period(11) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.(12) P = gpmc_clk period(13) For read: K = (ADVRdOffTime ADVOnTime) * (TimeParaGranularity + 1) * GPMC_FCLKFor write: K = (ADVWrOffTime ADVOnTime) * (TimeParaGranularity + 1) * GPMC_FCLK(14) GPMC_FCLK is General-Purpose Memory Controller internal functional clock.(15) Related to the gpmc_clk output clock maximum and minimum frequencies programmable in the I/F module by setting theGPMC_CONFIG1_CSx configuration register bit field GpmcFCLKDivider.(16) The jitter probability density can be approximated by a Gaussian function.(17) M = (RdCycleTime - AccessTime) * (TimeParaGranularity + 1) * GPMC_FCLKAbove M parameter expression is given as one example of GPMC programming. IO DIR signal will go from IN to OUT after bothRdCycleTime and BusTurnAround completion. Behavior of IO direction signal does depend on kind of successive Read/Write accessesperformed to Memory and multiplexed or non-multiplexed memory addressing scheme, bus keeping feature enabled or not. IO DIRbehavior is automatically handled by GPMC controller. For a full description of the gpmc_io_dir feature, see the OMAP35x TechnicalReference Manual (TRM) [literature number SPRUF98 ].
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS158 Submit Documentation Feedback
gpmc_clk
gpmc_ncsx
gpmc_a[10:1]
gpmc_nbe0_cle
gpmc_nbe1
gpmc_nadv_ale
gpmc_noe
gpmc_d[15:0]
gpmc_waitx
gpmc_io_dir
Valid Address
D0
OUTOUT IN OUT
F0
F12
F13
F4
F6
F2
F8
F3
F7
F9
F11
F1
F1
F8
F19
F18
F20
F10
F6
F19
030-021
F23 F24
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.
Figure 6-2. GPMC/NOR Flash Synchronous Single Read (GpmcFCLKDivider = 0)
Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 159
gpmc_clk
gpmc_ncsx
gpmc_a[10:1]
gpmc_nbe0_cle
gpmc_nbe1
gpmc_nadv_ale
gpmc_noe
gpmc_d[15:0]
gpmc_waitx
gpmc_io_dir
Valid Address
D0 D1 D2 D3
OUTOUT IN OUT
F0
F12
F13 F13
F12
F4
F1
F1
F2
F6
F3
F7
F8 F8 F9
F10 F11
F21 F22
F6
F7
030-022
F23 F24
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.
Figure 6-3. GPMC/NOR Flash Synchronous Burst Read 4x16-bit (GpmcFCLKDivider = 0)
160 TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS Submit Documentation Feedback
gpmc_clk
gpmc_ncsx
gpmc_a[10:1]
gpmc_nbe0_cle
gpmc_nbe1
gpmc_nadv_ale
gpmc_nwe
gpmc_d[15:0]
gpmc_waitx
gpmc_io_dir
Valid Address
D0 D1 D2 D3
OUT
F4
F15 F15 F15
F1
F1
F2
F6
F8F8
F0
F14F14
F3
F17
F17
F17
F9F6
F17
F17
F17
030-023
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.
Figure 6-4. GPMC/NOR Flash Synchronous Burst Write (GpmcFCLKDivider = 0)
Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 161
gpmc_clk
gpmc_ncsx
gpmc_nbe0_cle
gpmc_nbe1
gpmc_a[26:17]
gpmc_a[16:1]_d[15:0]
gpmc_nadv_ale
gpmc_noe
gpmc_waitx
gpmc_io_dir
Valid
Valid
Address(MSB)
Address(LSB) D0 D1 D2 D3
OUTOUT IN OUT
F4
F6
F4
F2
F8 F8
F10
F13
F12
F12
F11
F9
F7
F3
F0 F1
F1
F5
F6 F7
030-024
F23 F24
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.
Figure 6-5. GPMC/Multiplexed NOR Flash Synchronous Burst Read
162 TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS Submit Documentation Feedback
gpmc_clk
gpmc_ncsx
gpmc_a[26:17]
gpmc_nbe0_cle
gpmc_nbe1
gpmc_nadv_ale
gpmc_nwe
gpmc_d[15:0]
gpmc_waitx
gpmc_io_dir
Address(MSB)
Address(LSB) D0 D1 D2 D3
OUT
F4
F15 F15 F15
F1
F1
F2
F6
F8F8
F0
F3
F17
F17
F17
F9F6
F17
F17
F17
F14F14
030-025
6.4.1.2 GPMC/NOR Flash Interface Asynchronous Timing
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.
Figure 6-6. GPMC/Multiplexed NOR Flash Synchronous Burst Write
Table 6-7 and Table 6-8 assume testing over the recommended operating conditions (see Figure 6-7through Figure 6-12 ) and electrical characteristic conditions.
Table 6-5. GPMC/NOR Flash Asynchronous Mode Timing Conditions
TIMING CONDITION PARAMETER VALUE UNIT
Input Conditions
t
R
Input signal rise time 1.8 nst
F
Input signal fall time 1.8 ns
Output Conditions
C
LOAD
Output load capacitance 15.94 pF
Table 6-6. GPMC/NOR Flash Interface Asynchronous Timing Internal Parameters
(1) (2)
NO. PARAMETER 1.15 V 1.0 V 0.9 V UNIT
MIN MAX MIN MAX MIN MAX
FI1 Maximum output data generation delay from internal 6.5 9.1 13.7 nsfunctional clockFI2 Maximum input data capture delay by internal 4 5.6 8.1 nsfunctional clockFI3 Maximum device select generation delay from internal 6.5 9.1 13.7 nsfunctional clock
(1) The internal parameters table must be used to calculate Data Access Time stored in the corresponding CS register bit field.(2) Internal parameters are referred to the GPMC functional internal clock which is not provided externally.
Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 163
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Table 6-6. GPMC/NOR Flash Interface Asynchronous Timing Internal Parameters (continued)
NO. PARAMETER 1.15 V 1.0 V 0.9 V UNIT
MIN MAX MIN MAX MIN MAX
FI4 Maximum address generation delay from internal 6.5 9.1 13.7 nsfunctional clockFI5 Maximum address valid generation delay from internal 6.5 9.1 13.7 nsfunctional clockFI6 Maximum byte enable generation delay from internal 6.5 9.1 13.7 nsfunctional clockFI7 Maximum output enable generation delay from internal 6.5 9.1 13.7 nsfunctional clockFI8 Maximum write enable generation delay from internal 6.5 9.1 13.7 nsfunctional clockFI9 Maximum functional clock skew 100 170 200 ps
Table 6-7. GPMC/NOR Flash Interface Timing Requirements Asynchronous Mode
NO. PARAMETER 1.15 V 1.0 V 0.9 V UNIT
MIN MAX MIN MAX MIN MAX
FA5
(1)
t
acc(DAT)
Data maximum access H
(2)
H
(2)
H
(2)
GPMC_FCLK cyclestimeFA20
(3)
t
acc1-pgmode(DAT)
Page mode successive P
(4)
P
(4)
P
(4)
GPMC_FCLK cyclesdata maximum accesstimeFA21
(5)
t
acc2-pgmode(DAT)
Page mode first data H
(2)
H
(2)
H
(2)
GPMC_FCLK cyclesmaximum access time
(1) The FA5 parameter illustrates the amount of time required to internally sample input Data. It is expressed in number of GPMC functionalclock cycles. From start of read cycle and after FA5 functional clock cycles, input Data is internally sampled by active functional clockedge. FA5 value must be stored inside the AccessTime register bit field.(2) H = AccessTime * (TimeParaGranularity + 1)(3) The FA20 parameter illustrates amount of time required to internally sample successive input Page Data. It is expressed in number ofGPMC functional clock cycles. After each access to input Page Data, next input Page Data is internally sampled by active functionalclock edge after FA20 functional clock cycles. The FA20 value must be stored in the PageBurstAccessTime register bit field.(4) P = PageBurstAccessTime * (TimeParaGranularity + 1)(5) The FA21 parameter illustrates amount of time required to internally sample first input Page Data. It is expressed in number of GPMCfunctional clock cycles. From start of read cycle and after FA21 functional clock cycles, First input Page Data is internally sampled byactive functional clock edge. FA21 value must be stored inside the AccessTime register bit field.
Table 6-8. GPMC/NOR Flash Interface Switching Characteristics Asynchronous Mode
NO. PARAMETER 1.15 V 1.0 V 0.9 V UNIT
MIN MAX MIN MAX MIN MAX
t
R(DO)
Rise time, output data 2.0 2.0 2.0 nst
F(DO)
Fall time, output data 2.0 2.0 2.0 nsFA0 t
W(nBEV)
Pulse duration, Read N
(12)
N
(12)
N
(12)
nsgpmc_nbe0_cl
Write N
(12)
N
(12)
N
(12)
nse, gpmc_nbe1
valid timeFA1 t
W(nCSV)
Pulse duration, Read A
(1)
A
(1)
A
(1)
nsgpmc_ncsx
(13)
Write A
(1)
A
(1)
A
(1)
nsv lowFA3 t
d(nCSV-nADVIV)
Delay time, Read B
(2)
0.2 B
(2)
+ 2.0 B
(2)
0.2 B
(2)
+ 2.6 B
(2)
0.2 B
(2)
+ 3.7 nsgpmc_ncsx
(13)
Write B
(2)
0.2 B
(2)
+ 2.0 B
(2)
0.2 B
(2)
+ 2.6 B
(2)
0.2 B
(2)
+ 3.7 nsvalid togpmc_nadv_al
e invalidFA4 t
d(nCSV-nOEIV)
Delay time, C
(3)
0.2 C
(3)
+ 2.0 C
(3)
0.2 C
(3)
+ 2.6 C
(3)
0.2 C
(3)
+ 3.7 nsgpmc_ncsx
(13)
valid togpmc_noe invalid(Single read)
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS164 Submit Documentation Feedback
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Table 6-8. GPMC/NOR Flash Interface Switching Characteristics Asynchronous Mode (continued)
NO. PARAMETER 1.15 V 1.0 V 0.9 V UNIT
MIN MAX MIN MAX MIN MAX
FA9 t
d(AV-nCSV)
Delay time, address J
(9)
0.2 J
(9)
+ 2.0 J
(9)
0.2 J
(9)
+ 2.6 J
(9)
0.2 J
(9)
+ 3.7 nsbus valid togpmc_ncsx
(13)
validFA10 t
d(nBEV-nCSV)
Delay time, J
(9)
0.2 J
(9)
+ 2.0 J
(9)
0.2 J
(9)
+ 2.6 J
(9)
0.2 J
(9)
+ 3.7 nsgpmc_nbe0_cle,
gpmc_nbe1 valid togpmc_ncsx
(13)
validFA12 t
d(nCSV-nADVV)
Delay time, K
(10)
0.2 K
(10)
+ 2.0 K
(10)
0.2 K
(10)
+ 2.6 K
(10)
0.2 K
(10)
+ 3.7 nsgpmc_ncsx
(13)
valid togpmc_nadv_ale validFA13 t
d(nCSV-nOEV)
Delay time, L
(11)
0.2 L
(11)
+ 2.0 L
(11)
0.2 L
(11)
+ 2.6 L
(11)
0.2 L
(11)
+ 3.7 nsgpmc_ncsx
(13)
valid togpmc_noe validFA14 t
d(nCSV-IODIR)
Delay time, L
(11)
0.2 L
(11)
+ 2.0 L
(11)
0.2 L
(11)
+ 2.6 L
(11)
0.2 L
(11)
+ 3.7 nsgpmc_ncsx
(13)
valid togpmc_io_dir highFA15 t
d(nCSV-IODIR)
Delay time, M
(14)
0.2 M
(14)
+ 2.0 M
(14)
0.2 M
(14)
+ 2.6 M
(14)
0.2 M
(14)
+ 3.7 nsgpmc_ncsx
(13)
valid togpmc_io_dir lowFA16 t
w(AIV)
Address invalid G
(7)
G
(7)
G
(7)
nsduration between 2successive R/WaccessesFA18 t
d(nCSV-nOEIV)
Delay time, I
(8)
0.2 I
(8)
+ 2.0 I
(8)
0.2 I
(8)
+ 2.6 I
(8)
0.2 I
(8)
+ 3.7 nsgpmc_ncsx
(13)
valid togpmc_noe invalid(Burst read)FA20 t
w(AV)
Pulse duration, address D
(4)
D
(4)
D
(4)
nsvalid 2nd, 3rd, and4th accessesFA25 t
d(nCSV-nWEV)
Delay time, E
(5)
0.2 E
(5)
+ 2.0 E
(5)
0.2 E
(5)
+ 2.6 E
(5)
0.2 E
(5)
+ 3.7 nsgpmc_ncsx
(13)
valid togpmc_nwe validFA27 t
d(nCSV-nWEIV)
Delay time, F
(6)
0.2 F
(6)
+ 2.0 F
(6)
0.2 F
(6)
+ 2.6 F
(6)
0.2 F
(6)
+ 3.7 nsgpmc_ncsx
(13)
valid togpmc_nwe invalidFA28 t
d(nWEV-DV)
Delay time, gpmc_ new 2.0 2.6 3.7 nsvalid to data bus validFA29 t
d(DV-nCSV)
Delay time, data bus J
(9)
0.2 J
(9)
+ 2.0 J
(9)
0.2 J
(9)
+ 2.6 J
(9)
0.2 J
(9)
+ 3.7 nsvalid to gpmc_ncsx
(13)
validFA37 t
d(nOEV-AIV)
Delay time, gpmc_noe 2.0 2.6 3.7 nsvalid togpmc_a[16:1]_d[15:0]
address phase end(1) For single read: A = (CSRdOffTime CSOnTime) * (TimeParaGranularity + 1) * GPMC_FCLKFor single write: A = (CSWrOffTime CSOnTime) * (TimeParaGranularity + 1) * GPMC_FCLKFor burst read: A = (CSRdOffTime CSOnTime + (n 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLKFor burst write: A = (CSWrOffTime CSOnTime + (n 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK with nbeing the page burst access number(2) For reading: B = ((ADVRdOffTime CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (ADVExtraDelay CSExtraDelay)) * GPMC_FCLKFor writing: B = ((ADVWrOffTime CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (ADVExtraDelay CSExtraDelay)) * GPMC_FCLK(3) C = ((OEOffTime CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (OEExtraDelay CSExtraDelay)) * GPMC_FCLK(4) D = PageBurstAccessTime * (TimeParaGranularity + 1) * GPMC_FCLK(5) E = ((WEOnTime CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (WEExtraDelay CSExtraDelay)) * GPMC_FCLK(6) F = ((WEOffTime CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (WEExtraDelay CSExtraDelay)) * GPMC_FCLK(7) G = Cycle2CycleDelay * GPMC_FCLK(8) I = ((OEOffTime + (n 1) * PageBurstAccessTime CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (OEExtraDelay CSExtraDelay)) *GPMC_FCLK
Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 165
GPMC_FCLK
gpmc_clk
gpmc_ncsx
gpmc_a[10:1]
gpmc_nbe0_cle
gpmc_nbe1
gpmc_nadv_ale
gpmc_noe
gpmc_d[15:0]
gpmc_waitx
gpmc_io_dir
Valid Address
Valid
Valid
DataIN0 DataIN0
OUTOUT IN OUT
FA0
FA9
FA10
FA3
FA1
FA4
FA12
FA13
FA0
FA10
FA5
030-026
FA15
FA14
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
(9) J = (CSOnTime * (TimeParaGranularity + 1) + 0.5 * CSExtraDelay) * GPMC_FCLK(10) K = ((ADVOnTime CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (ADVExtraDelay CSExtraDelay)) * GPMC_FCLK(11) L = ((OEOnTime CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (OEExtraDelay CSExtraDelay)) * GPMC_FCLK(12) For single read: N = RdCycleTime * (TimeParaGranularity + 1) * GPMC_FCLKFor single write: N = WrCycleTime * (TimeParaGranularity + 1) * GPMC_FCLKFor burst read: N = (RdCycleTime + (n 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLKFor burst write: N = (WrCycleTime + (n 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK(13) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7.(14) M = ((RdCycleTime - CSOnTime) * (TimeParaGranularity + 1) - 0.5 * CSExtraDelay) * GPMC_FCLKAbove M parameter expression is given as one example of GPMC programming. IO DIR signal will go from IN to OUT after bothRdCycleTime and BusTurnAround completion. Behavior of IO direction signal does depend on kind of successive Read/Write accessesperformed to Memory and multiplexed or non-multiplexed memory addressing scheme, bus keeping feature enabled or not. IO DIRbehavior is automatically handled by GPMC controller. For a full description of the gpmc_io_dir feature, see the OMAP35x TechnicalReference Manual (TRM) [literature number SPRUF98 ].
Figure 6-7. GPMC/NOR Flash Asynchronous Read Single Word Timing
(1) (2) (3)
(1) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.(2) FA5 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC functional clockcycles. From start of read cycle and after FA5 functional clock cycles, input data is internally sampled by active functional clock edge.FA5 value must be stored inside AccessTime register bit field.(3) GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.
166 TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS Submit Documentation Feedback
GPMC_FCLK
gpmc_clk
gpmc_ncsx
gpmc_a[10:1]
gpmc_nbe0_cle
gpmc_nbe1
gpmc_nadv_ale
gpmc_noe
gpmc_d[15:0]
gpmc_waitx
gpmc_io_dir
Address0 Address1
Valid Valid
Valid Valid
DataUpper
OUTOUT IN OUT IN
FA9
FA10
FA3
FA9
FA3
FA13 FA13
FA1 FA1
FA4 FA4
FA12 FA12
FA10
FA0 FA0
FA16
FA0 FA0
FA10 FA10
FA5 FA5
030-027
FA15 FA15
FA14
FA14
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Figure 6-8. GPMC/NOR Flash Asynchronous Read 32-bit Timing
(1) (2) (3)
(1) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.(2) FA5 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC functional clockcycles. From start of read cycle and after FA5 functional clock cycles, input data is internally sampled by active functional clock edge.FA5 value must be stored inside AccessTime register bit field.(3) GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.
Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 167
GPMC_FCLK
gpmc_clk
gpmc_ncsx
gpmc_a[10:1]
gpmc_nbe0_cle
gpmc_nbe1
gpmc_nadv_ale
gpmc_noe
gpmc_d[15:0]
gpmc_waitx
gpmc_io_dir
Add0 Add1 Add2 Add3 Add4
D0 D1 D2 D3 D3
OUT IN OUT
FA1
FA0
FA18
FA13
FA12
FA0
FA9
FA10
FA10
FA21 FA20 FA20 FA20
030-028
FA15
FA14
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Figure 6-9. GPMC/NOR Flash Asynchronous Read Page Mode 4x16-bit Timing
(1) (2) (3) (4)
(1) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.(2) FA21 parameter illustrates amount of time required to internally sample first input page data. It is expressed in number of GPMCfunctional clock cycles. From start of read cycle and after FA21 functional clock cycles, first input page data is internally sampled byactive functional clock edge. FA21 value must be stored inside AccessTime register bit field.(3) FA20 parameter illustrates amount of time required to internally sample successive input page data. It is expressed in number of GPMCfunctional clock cycles. After each access to input page data, next input page data is internally sampled by active functional clock edgeafter FA20 functional clock cycles. FA20 is also the duration of address phases for successive input page data (excluding first inputpage data). FA20 value must be stored in PageBurstAccessTime register bit field.(4) GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.
168 TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS Submit Documentation Feedback
gpmc_fclk
gpmc_clk
gpmc_ncsx
gpmc_a[10:1]
gpmc_nbe0_cle
gpmc_nbe1
gpmc_nadv_ale
gpmc_nwe
gpmc_d[15:0]
gpmc_waitx
gpmc_io_dir
Valid Address
DataOUT
OUT
FA0
FA1
FA10
FA3
FA25
FA29
FA9
FA12
FA27
FA0
FA10
030-029
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.
Figure 6-10. GPMC/NOR Flash Asynchronous Write Single Word Timing
Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 169
GPMC_FCLK
gpmc_clk
gpmc_ncsx
gpmc_a[26:17]
gpmc_nbe0_cle
gpmc_nbe1
gpmc_nadv_ale
gpmc_noe
gpmc_a[16:1]_d[15:0]
gpmc_io_dir
gpmc_waitx
Address(MSB)
Valid
Valid
Address(LSB) DataIN DataIN
OUT IN OUT
FA0
FA9
FA10
FA3
FA13
FA29
FA1
FA37
FA12
FA4
FA10
FA0
FA5
030-030
FA15
FA14
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Figure 6-11. GPMC/Multiplexed NOR Flash Asynchronous Read Single Word Timing
(1) (2) (3)
(1) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.(2) FA5 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC functional clockcycles. From start of read cycle and after FA5 functional clock cycles, input data is internally sampled by active functional clock edge.FA5 value must be stored inside AccessTime register bit field.(3) GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.
170 TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS Submit Documentation Feedback
gpmc_fclk
gpmc_clk
gpmc_ncsx
gpmc_a[26:17]
gpmc_nbe0_cle
gpmc_nbe1
gpmc_nadv_ale
gpmc_nwe
gpmc_a[16:1]_d[15:0]
gpmc_waitx
gpmc_io_dir
Address(MSB)
Valid Address(LSB) DataOUT
OUT
FA0
FA1
FA9
FA10
FA3
FA25
FA29
FA12
FA27
FA28
FA0
FA10
030-031
6.4.1.3 GPMC/NAND Flash Interface Timing
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.
Figure 6-12. GPMC/Multiplexed NOR Flash Asynchronous Write Single Word Timing
Table 6-10 through Table 6-12 assume testing over the recommended operating conditions (seeFigure 6-13 through Figure 6-16 ) and electrical characteristic conditions.
Table 6-9. GPMC/NAND Flash Asynchronous Mode Timing Conditions
TIMING CONDITION PARAMETER VALUE UNIT
Input Conditions
t
R
Input signal rise time 1.8 nst
F
Input signal fall time 1.8 ns
Output Conditions
C
LOAD
Output load capacitance 15.94 pF
Table 6-10. GPMC/NAND Flash Interface Asynchronous Timing Internal Parameters
(1) (2)
NO. PARAMETER 1.15 V 1.0 V 0.9 V UNIT
MIN MAX MIN MAX MIN MAX
GNFI1 Maximum output data generation delay from 6.5 9.1 13.7 nsinternal functional clockGNFI2 Maximum input data capture delay by internal 4 5.6 8.1 nsfunctional clock
(1) Internal parameters table must be used to calculate data access time stored in the corresponding CS register bit field.(2) Internal parameters are referred to the GPMC functional internal clock which is not provided externally.
Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 171
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Table 6-10. GPMC/NAND Flash Interface Asynchronous Timing Internal Parameters (continued)
NO. PARAMETER 1.15 V 1.0 V 0.9 V UNIT
MIN MAX MIN MAX MIN MAX
GNFI3 Maximum device select generation delay from 6.5 9.1 13.7 nsinternal functional clockGNFI4 Maximum address latch enable generation delay 6.5 9.1 13.7 nsfrom internal functional clockGNFI5 Maximum command latch enable generation 6.5 9.1 13.7 nsdelay from internal functional clockGNFI6 Maximum output enable generation delay from 6.5 9.1 13.7 nsinternal functional clockGNFI7 Maximum write enable generation delay from 6.5 9.1 13.7 nsinternal functional clockGNFI8 Maximum functional clock skew 100 170 200 ps
Table 6-11. GPMC/NAND Flash Interface Timing Requirements
NO. PARAMETER 1.15 V 1.0 V 0.9 V UNIT
MIN MAX MIN MAX MIN MAX
GNF12
(1)
t
acc(DAT)
Data maximum access time J
(2)
J
(2)
J
(2)
GPMC_FCLK
cycles
(1) The GNF12 parameter illustrates the amount of time required to internally sample input data. It is expressed in number of GPMCfunctional clock cycles. From start of the read cycle and after GNF12 functional clock cycles, input data is internally sampled by theactive functional clock edge. The GNF12 value must be stored inside AccessTime register bit field.(2) J = AccessTime * (TimeParaGranularity + 1)
Table 6-12. GPMC/NAND Flash Interface Switching Characteristics
NO. PARAMETER 1.15 V 1.0 V 0.9 V UNIT
MIN MAX MIN MAX MIN MAX
t
R(DO)
Rise time, output 2.0 2.0 2.0 nsdatat
F(DO)
Fall time, output 2.0 2.0 2.0 nsdataGNF0 t
w(nWEV)
Pulse duration, A
(1)
A
(1)
A
(1)
nsgpmc_nwe validtimeGNF1 t
d(nCSV-nWEV)
Delay time, B
(2)
0.2 B
(2)
+ 2.0 B
(2)
0.2 B
(2)
+ 2.6 B
(2)
0.2 B
(2)
+ 3.7 nsgpmc_ncsx
(13)
valid togpmc_nwe validGNF2 t
w(CLEH-nWEV)
Delay time, C
(3)
0.2 C
(3)
+ 2.0 C
(3)
0.2 C
(3)
+ 2.6 C
(3)
0.2 C
(3)
+ 3.7 nsgpmc_nbe0_cle
high to gpmc_nwe
validGNF3 t
w(nWEV-DV)
Delay time, D
(4)
0.2 D
(4)
+ 2.0 D
(4)
0.2 D
(4)
+ 2.6 D
(4)
0.2 D
(4)
+ 3.7 nsgpmc_d[15:0]
valid togpmc_nwe validGNF4 t
w(nWEIV-DIV)
Delay time, E
(5)
0.2 E
(5)
+ 2.0 E
(5)
0.2 E
(5)
+ 2.6 E
(5)
0.2 E
(5)
+ 3.7 nsgpmc_nwe invalidto gpmc_d[15:0]
invalidGNF5 t
w(nWEIV-CLEIV)
Delay time, F
(6)
0.2 F
(6)
+ 2.0 F
(6)
0.2 F
(6)
+ 2.6 F
(6)
0.2 F
(6)
+ 3.7 nsgpmc_nwe invalidto
gpmc_nbe0_cle
invalid
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS172 Submit Documentation Feedback
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Table 6-12. GPMC/NAND Flash Interface Switching Characteristics (continued)
NO. PARAMETER 1.15 V 1.0 V 0.9 V UNIT
MIN MAX MIN MAX MIN MAX
GNF6 t
w(nWEIV-nCSIV)
Delay time, G
(7)
0.2 G
(7)
+ 2.0 G
(7)
0.2 G
(7)
+ 2.6 G
(7)
0.2 G
(7)
+ 3.7 nsgpmc_nwe invalidto gpmc_ncsx
(13)
invalidGNF7 t
w(ALEH-nWEV)
Delay time, C
(3)
0.2 C
(3)
+ 2.0 C
(3)
0.2 C
(3)
+ 2.6 C
(3)
0.2 C
(3)
+ 3.7 nsgpmc_nadv_ale
High togpmc_nwe validGNF8 t
w(nWEIV-ALEIV)
Delay time, F
(6)
0.2 F
(6)
+ 2.0 F
(6)
0.2 F
(6)
+ 2.6 F
(6)
0.2 F
(6)
+ 3.7 nsgpmc_nwe invalidto
gpmc_nadv_ale
invalidGNF9 t
c(nWE)
Cycle time, Write H
(8)
H
(8)
H
(8)
nscycle timeGNF10 t
d(nCSV-nOEV)
Delay time, I
(9)
0.2 I
(9)
+ 2.0 I
(9)
0.2 I
(9)
+ 2.6 I
(9)
0.2 I
(9)
+ 3.7 nsgpmc_ncsx
(13)
valid to gpmc_noe
validGNF13 t
w(nOEV)
Pulse duration, K
(10)
K
(10)
K
(10)
nsgpmc_noe validtimeGNF14 t
c(nOE)
Cycle time, Read L
(11)
L
(11)
L
(11)
nscycle timeGNF15 t
w(nOEIV-nCSIV)
Delay time, M
(12)
0.2 M
(12)
+ 2.0 M
(12)
0.2 M
(12)
+ 2.6 M
(12)
0.2 M
(12)
+ 3.7 nsgpmc_noe invalidto gpmc_ncsx
(13)
invalid(1) A = (WEOffTime WEOnTime) * (TimeParaGranularity + 1) * GPMC_FCLK(2) B = ((WEOnTime CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (WEExtraDelay CSExtraDelay)) * GPMC_FCLK(3) C = ((WEOnTime ADVOnTime) * (TimeParaGranularity + 1) + 0.5 * (WEExtraDelay ADVExtraDelay)) * GPMC_FCLK(4) D = (WEOnTime * (TimeParaGranularity + 1) + 0.5 * WEExtraDelay ) * GPMC_FCLK(5) E = ((WrCycleTime WEOffTime) * (TimeParaGranularity + 1) 0.5 * WEExtraDelay ) * GPMC_FCLK(6) F = ((ADVWrOffTime WEOffTime) * (TimeParaGranularity + 1) + 0.5 * (ADVExtraDelay WEExtraDelay )) * GPMC_FCLK(7) G = ((CSWrOffTime WEOffTime) * (TimeParaGranularity + 1) + 0.5 * (CSExtraDelay WEExtraDelay )) * GPMC_FCLK(8) H = WrCycleTime * (1 + TimeParaGranularity) * GPMC_FCLK(9) I = ((OEOnTime CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (OEExtraDelay CSExtraDelay)) * GPMC_FCLK(10) K = (OEOffTime OEOnTime) * (1 + TimeParaGranularity) * GPMC_FCLK(11) L = RdCycleTime * (1 + TimeParaGranularity) * GPMC_FCLK(12) M = ((CSRdOffTime OEOffTime) * (TimeParaGranularity + 1) + 0.5 * (CSExtraDelay OEExtraDelay )) * GPMC_FCLK(13) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7.
Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 173
GPMC_FCLK
gpmc_ncsx
gpmc_nbe0_cle
gpmc_nadv_ale
gpmc_noe
gpmc_nwe
gpmc_a[16:1]_d[15:0] Command
GNF0
GNF1
GNF2
GNF3 GNF4
GNF5
GNF6
030-032
GPMC_FCLK
gpmc_ncsx
gpmc_nbe0_cle
gpmc_nadv_ale
gpmc_noe
gpmc_nwe
gpmc_a[16:1]_d[15:0] Address
GNF0
GNF1
GNF7
GNF3 GNF4
GNF6
GNF8
GNF9
030-033
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7.
Figure 6-13. GPMC/NAND Flash Command Latch Cycle Timing
In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7.
Figure 6-14. GPMC/NAND Flash Address Latch Cycle Timing
174 TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS Submit Documentation Feedback
GPMC_FCLK
gpmc_ncsx
gpmc_nbe0_cle
gpmc_nadv_ale
gpmc_noe
gpmc_a[16:1]_d[15:0]
gpmc_waitx
DATA
GNF10
GNF13
GNF14
GNF15
GNF12
030-034
GPMC_FCLK
gpmc_ncsx
gpmc_nbe0_cle
gpmc_nadv_ale
gpmc_noe
gpmc_nwe
gpmc_a[16:1]_d[15:0] DATA
GNF0
GNF1
GNF4
GNF6
GNF9
GNF3
030-035
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Figure 6-15. GPMC/NAND Flash Data Read Cycle Timing
(1) (2) (3)
(1) The GNF12 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC functionalclock cycles. From start of read cycle and after GNF12 functional clock cycles, input data is internally sampled by active functional clockedge. The GNF12 value must be stored inside AccessTime register bit field.(2) GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.(3) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0 ,1, 2, or 3.
In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0 or 1.
Figure 6-16. GPMC/NAND Flash Data Write Cycle Timing
Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 175
6.4.2 SDRAM Controller Subsystem (SDRC)
6.4.2.1 SDRAM Controller Subsystem Device-Specific Information
6.4.2.2 LPDDR Interface
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
The SDRAM controller subsystem (SDRC) module provides connectivity between the OMAP35xApplications Processor and external DRAM memory components. The SDRC module only supportslow-power double-data-rate (LPDDR) SDRAM devices. Memory devices can be interfaced to the SDRCusing a stacked-memory approach or through the printed circuit board (PCB). The stacked-memoryapproach uses the package on package interface pins (available on CBB & CBC package).
The approach to specifying interface timing for the SDRC memory bus is different than on other interfacessuch as the general-purpose memory controller (GPMC) and the multi-channel buffered serial ports(McBSPs). For these other interfaces the device timing was specified in terms of data manualspecifications and I/O buffer information specification (IBIS) models.
For the SDRC memory bus, the approach is to specify compatible memory devices and provide theprinted circuit board (PCB) solution and guidelines directly to the user. Texas Instruments (TI) hasperformed the simulation and system characterization to ensure all interface timings in this solution aremet.
The LPDDR interface is balled out on the bottom side of all OMAP35x packages and on the top side ofOMAP35x POP packages. The LPDDR interface on the top of the POP package has been designed forcompatibility any POP LPDDR device with a matching footprint and compliance with the JEDECLPDDR-266 specification.
This section provides the timing specification for the bottom-side LPDDR interface as a PCB design andmanufacturing specification. The design rules constrain PCB trace length, PCB trace skew, signalintegrity, cross-talk, and signal timing. These rules, when followed, result in a reliable LPDDR memorysystem without the need for a complex timing closure process. For more information regarding guidelinesfor using this LPDDR specification, see the Understanding TI's PCB Routing Rule-Based DDR TimingSpecification Application Report (literature number SPRAAV0 ).6.4.2.2.1 LPDDR Interface Schematic
Figure 6-17 and Figure 6-18 show the LPDDR interface schematics for a LPDDR memory system. The 1x16 LPDDR system schematic is identical to Figure 6-17 except that the high word LPDDR device isdeleted.
176 TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS Submit Documentation Feedback
sdrc_d0
sdrc_d7
sdrc_dm0
sdrc_dqs0
sdrc_d8
sdrc_d15
sdrc_dm1
sdrc_dqs1
sdrc_d16
sdrc_d23
sdrc_dm2
sdrc_dqs2
sdrc_d24
sdrc_d31
sdrc_dm3
sdrc_dqs3
sdrc_ba0
sdrc_ba1
sdrc_a0
sdrc_a14
sdrc_ncs0
sdrc_ncs1 N/C
sdrc_ncas
sdrc_nras
sdrc_nwe
sdrc_cke0
sdrc_cke1 N/C
sdrc_clk
sdrc_nclk
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
DQ0
DQ7
LDM
LDQS
DQ8
DQ15
UDM
UDQS
BA0
BA1
A0
A14
CS
CAS
RAS
WE
CKE
CK
CK
BA0
BA1
A0
A14
CS
CAS
RAS
WE
CKE
CK
CK
T
T
T
T
T
T
T
T
LPDDR
OMAP35x
DQ0
DQ7
LDM
LDQS
DQ8
DQ15
UDM
UDQS
LPDDR
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Figure 6-17. OMAP35x LPDDR High Level Schematic (x16 memories)
Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 177
sdrc_d0
sdrc_d7
sdrc_dm0
sdrc_dqs0
sdrc_d8
sdrc_d15
sdrc_dm1
sdrc_dqs1
sdrc_d16
sdrc_d23
sdrc_dm2
sdrc_dqs2
sdrc_d24
sdrc_d31
sdrc_dm3
sdrc_dqs3
sdrc_ba0
sdrc_ba1
sdrc_a0
sdrc_a14
sdrc_ncs0
sdrc_ncas
sdrc_nras
sdrc_nwe
sdrc_cke0
sdrc_clk
sdrc_nclk
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
BA0
BA1
A0
A14
CS
CAS
RAS
WE
CKE
CK
CK
T
T
T
T
T
T
T
T
OMAP35x
DQ0
DQ7
DM0
DQS0
DQ8
DQ15
DM1
DQS1
LPDDR
DQ16
DQ23
DM2
DQS2
DQ24
DQ31
DM3
DQS3
N/C
N/C
sdrc_ncs1
sdrc_cke1
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Figure 6-18. OMAP35x LPDDR High Level Schematic (x32 memory)
6.4.2.2.2 Compatible JEDEC LPDDR Devices
Table 6-13 shows the parameters of the JEDEC LPDDR devices that are compatible with this interface.Generally, the LPDDR interface is compatible with x16 and x32 LPDDR266 and LPDDR333 speed gradeLPDDR devices.
Table 6-13. Compatible JEDEC LPDDR Devices
NO. PARAMETER MIN MAX UNIT NOTES
JEDEC LPDDR Device Speed1 LPDDR-266 See Note
(1)Grade2 JEDEC LPDDR Device Bit Width 16 32 Bits3 JEDEC LPDDR Device Count 1 2 Devices See Note
(2)
JEDEC LPDDR Device Ball4 60 90 BallsCount
(1) Higher LPDDR speed grades are supported due to inherent JEDEC LPDDR backwards compatibility.(2) 1 x16 LPDDR device is used for 16 bit LPDDR memory system. 1x32 or 2x16 LPDDR devices are used for a 32-bit LPDDR memorysystem.
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS178 Submit Documentation Feedback
6.4.2.3 Placement
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
6.4.2.2.3 PCB Stackup
The minimum stackup required for routing the OMAP35x is a six layer stack as shown in Table 6-14 .Additional layers may be added to the PCB stack up to accommodate other circuity or to reduce the sizeof the PCB footprint.
Table 6-14. OMAP35x Minimum PCB Stack Up
LAYER TYPE DESCRIPTION
1 Signal Top Routing Mostly Horizontal2 Plane Ground3 Plane Power4 Signal Internal Routing5 Plane Ground6 Signal Bottom Routing Mostly Vertical
Table 6-15. PCB Stack Up Specifications
NO. PARAMETER MIN TYP MAX UNIT NOTES
1 PCB Routing/Plane Layers 62 Signal Routing Layers 33 Full ground layers under LPDDR routing region 24 Number of ground plane cuts allowed within LPDDR routing region 0Number of ground reference planes required for each LPDDR routing 15 1layerNumber of layers between LPDDR routing layer and reference ground 06 0plane7 PCB Routing Feature Size 4 Mils8 PCB Trace Width w 4 Mils9 PCB BGA escape via pad size 18 Mils10 PCB BGA escape via hole size 8 Mils11 Device BGA Pad Size See Note
(1)
12 LPDDR Device BGA Pad Size See Note
(2)
13 Single Ended Impedance, ZO 50 75 14 Impedance Control Z-5 Z Z + 5 See Note
(3)
(1) Please see the Flip Chip Ball Grid Array Package Reference Guide (literature number SPRU811 ) for device BGA pad size.(2) Please see the LPDDR device manufacturer documentation for the LPDDR device BGA pad size.(3) Z is the nominal singled ended impedance selected for the PCB specified by item 12.
Figure 6-19 shows the required placement for the OMAP35x device as well as the LPDDR devices. Thedimensions for Figure 6-19 are defined in Table 6-16 . The placement does not restrict the side of the PCBthat the devices are mounted on. The ultimate purpose of the placement is to limit the maximum tracelengths and allow for proper routing space. For 1x16 and 1x32 LPDDR memory systems, the secondLPDDR device is omitted from the placement.
Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 179
A1
A1
X
Y
OFFSET
RecommendedLPDDRDevice
Orientation
Y
Y
OFFSET
LPDDR
Device
LPDDR
Controller
OMAP
6.4.2.4 LPDDR Keep Out Region
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Figure 6-19. OMAP35x and LPDDR Device Placement
Table 6-16. Placement Specifications
NO. PARAMETER MIN MAX UNIT NOTES
1 X 1440 Mils See Notes
(1)
,
(2)
2 Y 1030 Mils See Notes
(1)
,
(2)
3 Y Offset 525 Mils See Notes
(1)
,
(2)
,
(3)
4 LPDDR Keepout Region See Note
(4)
Clearance from non-LPDDR signal to LPDDR5 4 w See Note
(5)Keepout Region
(1) See Figure 6-17 for dimension definitions.(2) Measurements from center of device to center of LPDDR device.(3) For 16 bit memory systems it is recommended that Y Offset be as small as possible.(4) LPDDR keepout region to encompass entire LPDDR routing area.(5) Non-LPDDR signals allowed within LPDDR keepout region provided they are separated from LPDDR routing layers by a ground plane.
The region of the PCB used for the LPDDR circuitry must be isolated from other signals. The LPDDRkeep out region is defined for this purpose and is shown in Figure 6-20 . The size of this region varies withthe placement and LPDDR routing. Additional clearances required for the keep out region are shown inTable 6-16 .
180 TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS Submit Documentation Feedback
A1
A1
LPDDRController
LPDDRDevice
RegionshouldencompassallLPDDRcircuitryandvariesdepending
onplacement.Non-LPDDRsignalsshouldnotberoutedonthe
LPDDRsignallayerswithintheLPDDRkeepoutregion.Non-LPDDR
signalsmayberoutedintheregionprovidedtheyareroutedon
layersseparatedfromLPDDRsignallayersbyagroundlayer.No
breaksshouldbeallowedinthereferencegroundlayersinthis
region.Inaddition,the1.8Vpowerplaneshouldcovertheentirekeep
outregion.
6.4.2.5 Net Classes
6.4.2.6 LPDDR Signal Termination
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Figure 6-20. LPDDR Keepout Region
Table 6-17 lists the clock net classes for the LPDDR interface. Table 6-18 lists the signal net classes, andassociated clock net classes, for the signals in the LPDDR interface. These net classes are used for thetermination and routing rules that follow.
Table 6-17. Clock Net Class Definitions
CLOCK NET CLASS OMAP PIN NAMES
CK sdrc_clk/sdrc_nclkDQS0 sdrc_dqs0DQS1 sdrc_dqs1DQS2 sdrc_dqs2DQS3 sdrc_dqs3
Table 6-18. Signal Net Class Definitions
CLOCK NET CLASS ASSOCIATED CLOCK NET CLASS OMAP PIN NAMES
sdrc_ba, sdrc_a, sdrc_ncs0, sdrc_ncas,ADDR_CTRL CK
sdrc_nras, sdrc_nwe, sdrc_cke0DQ0 DQS0 sdrc_d, sdrc_dm0DQ1 DQS1 sdrc_d, sdrc_dm1DQ2 DQS2 sdrc_d, sdrc_dm2DQ3 DQS3 sdrc_d, sdrc_dm3
No terminations of any kind are required in order to meet signal integrity and overshoot requirements.Serial terminators are permitted, if desired, to reduce EMI risk; however, serial terminations are the onlytype permitted. Table 6-19 shows the specifications for the series terminators.
Table 6-19. LPDDR Signal Terminations
NO. PARAMETER MIN TYP MAX UNIT NOTES
1 CK Net Class 0 10 See Note
(1)
(1) Only series termination is permitted, parallel or SST specifically disallowed.
Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 181
6.4.2.7 LPDDR CK and ADDR_CTRL Routing
A1
A1
C B
A
T
LPDDR
Controller
OMAP
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Table 6-19. LPDDR Signal Terminations (continued)
NO. PARAMETER MIN TYP MAX UNIT NOTES
2 ADDR_CTRL Net Class 0 22 Zo See Notes
(1)
,
(2)
,
(3)
Data Byte Net Classes3 0 22 Zo See Notes
(1)
,
(2)
,
(3)(DQS0-DQS3, DQ0-DQ3)
(2) Terminator values larger than typical only recommended to address EMI issues.(3) Termination value should be uniform across net class.
Figure 6-21 shows the topology of the routing for the CK and ADDR_CTRL net classes. The route is abalanced T as it is intended that the length of segments B and C be equal. In addition, the length of Ashould be maximized.
Figure 6-21. CK and ADDR_CTRL Routing and Topology
Table 6-20. CK and ADDR_CTRL Routing Specification
NO. PARAMETER MIN TYP MAX UNIT NOTES
1 Center to Center CK-CK spacing 2w2 CK A to B/A to C Skew Length Mismatch 25 Mils See Note
(1)
3 CK B to C Skew Length Mismatch 25 MilsCenter to Center CK to other4 4w See Note
(2)LPDDR trace spacing5 CK/ADDR_CTRL nominal trace length CACLM-50 CACLM CACLM+50 Mils See Note
(3)
6 ADDR_CTRL to CK Skew Length Mismatch 100 MilsADDR_CTRL to ADDR_CTRL7 100 MilsSkew Length MismatchCenter to Center ADDR_CTRL to other8 4w See Note
(2)LPDDR trace 4w spacingCenter to Center ADDR_CTRL to other9 3w See Note
(2)ADDR_CTRL 3w trace spacingADDR_CTRL A to B/A to C Skew Length10 100 Mils See Note
(1)Mismatch11 ADDR_CTRL B to C Skew Length Mismatch 100 Mils
(1) Series terminator, if used, should be located closest to device.(2) Center to center spacing is allowed to fall to minimum (w) for up to 500 mils of routed length to accommodate BGA escape and routingcongestion.
(3) CACLM is the longest Manhattan distance of the CK and ADDR_CTRL net classes.
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS182 Submit Documentation Feedback
A1
A1
E0
T
E1
T
E2
OMAP
E3
T
LPDDR
Controller
T
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Figure 6-22 shows the topology and routing for the DQS and DQ net classes; the routes are point to point.Skew matching across bytes is not needed nor recommended.
Figure 6-22. DQS and DQ Routing and Topology
Table 6-21. DQS and DQ Routing Specification
(1)
NO. PARAMETER MIN TYP MAX UNIT NOTES
2 DQS E Skew Length Mismatch 25 MilsCenter to Center DQS to other LPDDR3 4w See Note
(2)trace spacing4 DQS/DQ nominal trace length DQLM - 50 DQLM DQLM + 50 Mils See Note
(3)
5 DQ to DQS Skew Length Mismatch 100 Mils6 DQ to DQ Skew Length Mismatch 100 MilsCenter to Center DQ to other LPDDR7 4w See Note
(2)trace spacingCenter to Center DQ to other DQ trace8 3w See Note
(2)
,
(4)spacing9 DQ E Skew Length Mismatch 100 Mils
(1) Series terminator, if used, should be located closest to LPDDR.(2) Center to center spacing is allowed to fall to minimum (w) for up to 500 mils of routed length to accommodate BGA escape and routingcongestion.
(3) Center to center spacing is allowed to fall to minimum (w) for up to 500 mils of routed length to accommodate BGA escape and routingcongestion.
(4) DQLM is the longest Manhattan distance of the DQS and DQ net classes.
Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 183
6.5 Video Interfaces
6.5.1 Camera Interface
6.5.1.1 Parallel Camera Interface Timing
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
The camera subsystem provides the system interfaces and the processing capability to connect raw, YUV,or JPEG image sensor modules to the OMAP35 15/03 device for video-preview, video-record, andstill-image-capture applications. The camera subsystem supports up to two simultaneous pixel flows butonly one of them can use the video processing hardware:PARALLEL : the parallel interface data must go through the video processing hardware.
The parallel camera interface is a 12-bit interface which can be used in two modes:1. SYNC mode: progressive and interlaced image sensor modules for 8-, 10-, 11-, and 12-bit data. Thepixel clock can be up to 75 MHz in 12-bit mode. The pixel clock can be up to 130 MHz in 8-bit packedmode.
2. ITU mode provides an ITU-R BT 656 compatible data stream with progressive image sensor modulesonly in 8- and 10-bit configurations. The pixel clock can be up to 75 MHz.
6.5.1.1.1 SYNC Normal Mode
6.5.1.1.1.1 12-Bit SYNC Normal Progressive Mode
Table 6-23 and Table 6-24 assume testing over the recommended operating conditions and electricalcharacteristic conditions (see Figure 6-23 ).
Table 6-22. ISP Timing Conditions 12-Bit SYNC Normal Progressive Mode
TIMING CONDITION PARAMETER VALUE UNIT
Input Conditions
t
R
Input signal rise time 2.7 nst
F
Input signal fall time 2.7 ns
Output Condition
C
LOAD
Output load capacitance 8.6 pF
Table 6-23. ISP Timing Requirements 12-Bit SYNC Normal Progressive Mode
(1)
NO. PARAMETER 1.15 V 1.0 V UNIT
MIN MAX MIN MAX
ISP17 t
c(pclk)
Cycle time
(2)
, cam_pclk period 13.3 22.2 nsISP18 t
W(pclkH)
Typical pulse duration, cam_pclk high 0.5*P
(3)
0.5*P
(3)
nsISP18 t
W(pclkL)
Typical pulse duration, cam_pclk low 0.5*P
(3)
0.5*P
(3)
nst
dc(pclk)
Duty cycle error, cam_pclk 667 1111 pst
j(pclk)
Cycle jitter
(4)
, cam_pclk 133 200 psISP19 t
su(dV-pclkH)
Setup time, cam_d[11:0] valid before cam_pclk rising 1.82 3.25 nsedgeISP20 t
h(pclkH-dV)
Hold time, cam_d[11:0] valid after cam_pclk rising 1.82 3.25 nsedgeISP21 t
su(dV-vsH)
Setup time, cam_vs valid before cam_pclk rising 1.82 3.25 nsedgeISP22 t
h(pclkH-vsV)
Hold time, cam_vs valid after cam_pclk rising edge 1.82 3.25 nsISP23 t
su(dV-hsH)
Setup time, cam_hs valid before cam_pclk rising 1.82 3.25 nsedge
(1) The timing requirements are assured for the cycle jitter and duty cycle error conditions specified.(2) Related with the input maximum frequency supported by the ISP module.(3) P = cam_pclk period in ns(4) Maximum cycle jitter supported by cam_pclk input clock.
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS184 Submit Documentation Feedback
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Table 6-23. ISP Timing Requirements 12-Bit SYNC Normal Progressive Mode (continued)
NO. PARAMETER 1.15 V 1.0 V UNIT
MIN MAX MIN MAX
ISP24 t
h(pclkH-hsV)
Hold time, cam_hs valid after cam_pclk rising edge 1.82 3.25 nsISP25 t
su(dV-hsH)
Setup time, cam_wen valid before cam_pclk rising 1.82 3.25 nsedgeISP26 t
h(pclkH-hsV)
Hold time, cam_wen valid after cam_pclk rising edge 1.82 3.25 ns
Table 6-24. ISP Switching Characteristics 12-Bit SYNC Normal Progressive Mode
NO. PARAMETER 1.15 V 1.0 V UNIT
MIN MAX MIN MAX
ISP15 t
c(xclk)
Cycle time
(1)
, cam_xclk period 4.6 4.6 nsISP16 t
W(xclkH)
Typical pulse duration, cam_xclk high 0.5*PO
(2)
0.5*PO
(2)
nsISP16 t
W(xclkL)
Typical pulse duration, cam_xclk low 0.5*PO
(2)
0.5*PO
(2)
nst
dc(xclk)
Duty cycle error, cam_xclk 231 231 pst
j(xclk)
Jitter standard deviation
(3)
, cam_xclk 33 33 pst
R(xclk)
Rise time, cam_xclk 0.93 0.93 nst
F(xclk)
Fall time, cam_xclk 0.93 0.93 ns
(1) Related with the cam_xclk maximum and minimum frequencies programmable in the ISP module.Warning: The camera sensor or the camera module must be disabled to change the frequency configuration. For more information, seethe OMAP35x Technical Reference Manual (TRM) [literature number SPRUF98 ](2) PO = cam_xclk period in ns(3) The jitter probability density can be approximated by a Gaussian function.
Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 185
cam_xclki
cam_pclk
cam_vs
cam_hs
cam_d[11:0]
cam_wen
cam_fld
D(0) D(n-3) D(n-2) D(n-1) D(0) D(1) D(n-1)
ISP15
ISP16
ISP16
ISP17 ISP18
ISP19 ISP20
ISP21 ISP22
ISP24ISP23
ISP25 ISP26
ISP18
030-056
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Figure 6-23. ISP 12-Bit SYNC Normal Progressive Mode
(1) (2) (3) (4) (5) (6) (7) (8)
(1) The polarity of cam_pclk, cam_fld, cam_vs, and cam_hs are configurable. If the cam_hs, cam_vs, and cam_fld signals are output, thesignal length can be set.(2) The parallel camera in SYNC mode supports progressive image sensor modules and 8-, 10-, 11-, or 12-bit data.(3) When the image sensor has fewer than 12 data lines, it must be connected to the lower data lines and the unused lines must begrounded.
(4) However, it is possible to shift the data to 0, 2, or 4 data internal lanes.(5) The bit configurations are: cam_d[11:4] or cam_d[7:0] in 8-bit mode, cam_d[11:2] or cam_d[9:0] in 10-bit mode, cam_d[10:0] in 11-bitmode, and cam_d[11:0] in 12-bit mode.(6) Optionally, the data write to memory can be qualified by the external cam_wen signal.(7) The cam_wen signal can be used as a external memory write-enable signal. The data is stored to memory only if cam_hs, cam_vs, andcam_wen signals are asserted.(8) In cam_xclki; I is equal to a or b.
6.5.1.1.1.2 8-bit Packed SYNC Progressive Mode
Table 6-26 and Table 6-27 assume testing over the recommended operating conditions and electricalcharacteristic conditions (see Figure 6-24 ).
Table 6-25. ISP Timing Conditions 8-bit Packed SYNC Progressive Mode
TIMING CONDITION PARAMETER VALUE UNIT
Input Conditions
t
R
Input signal rise time 2.5 nst
F
Input signal fall time 2.5 ns
Output Conditions
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS186 Submit Documentation Feedback
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Table 6-25. ISP Timing Conditions 8-bit Packed SYNC Progressive Mode (continued)
TIMING CONDITION PARAMETER VALUE UNIT
C
LOAD
Output load capacitance 8.6 pF
Table 6-26. ISP Timing Requirements 8-bit Packed SYNC Progressive Mode
(1)
NO. PARAMETER 1.15 V 1.0 V UNIT
MIN MAX MIN MAX
ISP3 t
c(pclk)
Cycle time
(2)
, cam_pclk period 7.7 15.4 nsISP4 t
W(pclkH)
Typical pulse duration, cam_pclk high 0.5*P
(3)
0.5*P
(3)
nsISP4 t
W(pclkL)
Typical pulse duration, cam_pclk low 0.5*P
(3)
0.5*P
(3)
nst
dc(pclk)
Duty cycle error, cam_pclk 385 769 pst
j(pclk)
Cycle jitter
(4)
, cam_pclk 83 167 psISP5 t
su(dV-pclkH)
Setup time, cam_d[11:0] valid before cam_pclk 1.08 2.27 nsrising edgeISP6 t
h(pclkH-dV)
Hold time, cam_d[11:0] valid after cam_pclk rising 1.08 2.27 nsedgeISP7 t
su(dV-vsH)
Setup time, cam_vs valid before cam_pclk rising 1.08 2.27 nsedgeISP8 t
h(pclkH-vsV)
Hold time, cam_vs valid after cam_pclk rising edge 1.08 2.27 nsISP9 t
su(dV-hsH)
Setup time, cam_hs valid before cam_pclk rising 1.08 2.27 nsedgeISP10 t
h(pclkH-hsV)
Hold time, cam_hs valid after cam_pclk rising edge 1.08 2.27 nsISP11 t
su(dV-hsH)
Setup time, cam_wen valid before cam_pclk rising 1.08 2.27 nsedgeISP12 t
h(pclkH-hsV)
Hold time, cam_wen valid after cam_pclk rising edge 1.08 2.27 ns
(1) The timing requirements are assured for the cycle jitter and duty cycle error conditions specified.(2) Related with the input maximum frequency supported by the ISP module.(3) P = cam_pclk period in ns.(4) Maximum cycle jitter supported by cam_pclk input clock.
Table 6-27. ISP Switching Characteristics 8-bit packed SYNC Progressive Mode
NO. PARAMETER 1.15 V 1.0 V UNIT
MIN MAX MIN MAX
ISP1 t
c(xclk)
Cycle time
(1)
, cam_xclk period 4.6 4.6 nsISP2 t
W(xclkH)
Typical pulse duration, cam_xclk high 0.5*PO
(2)
0.5*PO
(2)
nsISP2 t
W(xclkL)
Typical pulse duration, cam_xclk low 0.5*PO
(2)
0.5*PO
(2)
nst
dc(xclk)
Duty cycle error, cam_xclk 231 231 pst
j(xclk)
Jitter standard deviation
(3)
, cam_xclk 67 67 pst
R(xclk)
Rise time, cam_xclk 0.93 0.93 nst
F(xclk)
Fall time, cam_xclk 0.93 0.93 ns
(1) Related with the cam_xclk maximum and minimum frequencies programmable in the ISP module.Warning: You must disable the camera sensor or the camera module to change the frequency configuration. For more information, seethe OMAP35x Technical Reference Manual (TRM) [literature number SPRUF98(2) PO = cam_xclk period in ns(3) The jitter probability density can be approximated by a Gaussian function.
Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 187
cam_xclki
cam_pclk
cam_vs
cam_hs
cam_d[7:0]
cam_wen
cam_fld
D(0) D(n-3) D(n-2) D(n-1) D(0) D(1) D(n-1)
ISP1 ISP2 ISP2
ISP3 ISP4
ISP5 ISP6
ISP7 ISP8
ISP10
ISP4
ISP9
ISP11
030-059
ISP12
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Figure 6-24. ISP 8-bit Packed SYNC Progressive Mode
(1) (2) (3) (4) (5)
(1) The polarity of cam_pclk, cam_fld, cam_vs, and cam_hs are configurable.(2) The image sensor must be connected to the lower data lines and the unused lines must be grounded. However, it is possible to shift thedata to 0, 2, or 4 data internal lanes. The bit configurations are: cam_d[11:4] or cam_d[7:0] in 8-bit packed mode.(3) Optionally, the data write to memory can be qualified by the external cam_wen signal. The cam_wen signal can be used as a externalmemory write-enable signal. The data is stored to memory only if cam_hs, cam_vs, and cam_wen signals are asserted. The polarity ofcam_fld is programmable.(4) The camera module can pack 8-bit data into 16 bits. It doubles the maximum pixel clock. This mode can be particularly useful to transfera YCbCr data stream or compressed stream to memory at very high speed.(5) In cam_xclki; I is equal to a or b.
6.5.1.1.1.3 12-Bit SYNC Normal Interlaced Mode
Table 6-29 and Table 6-30 assume testing over the recommended operating conditions and electricalcharacteristic conditions (see Figure 6-25 ).
Table 6-28. ISP Timing Conditions 12-Bit SYNC Normal Interlaced Mode
TIMING CONDITION PARAMETER VALUE UNIT
Input Conditions
t
R
Input signal rise time 2.7 nst
F
Input signal fall time 2.7 ns
Output Conditions
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS188 Submit Documentation Feedback
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Table 6-28. ISP Timing Conditions 12-Bit SYNC Normal Interlaced Mode (continued)
TIMING CONDITION PARAMETER VALUE UNIT
C
LOAD
Output load capacitance 8.6 pF
Table 6-29. ISP Timing Requirements 12-Bit SYNC Normal Interlaced Mode
(1)
NO. PARAMETER 1.15 V 1.0 V UNIT
MIN MAX MIN MAX
ISP17 t
c(pclk)
Cycle time
(2)
, cam_pclk period 13.3 22.2 nsISP18 t
W(pclkH)
Typical pulse duration, cam_pclk high 0.5*P
(3)
0.5*P
(3)
nsISP18 t
W(pclkL)
Typical pulse duration, cam_pclk low 0.5*P
(3)
0.5*P
(3)
nst
dc(pclk)
Duty cycle error, cam_pclk 667 1111 pst
j(pclk)
Cycle jitter
(4)
, cam_pclk 133 200 psISP19 t
su(dV-pclkH)
Setup time, cam_d[11:0] valid before cam_pclk 1.82 3.25 nsrising edgeISP20 t
h(pclkH-dV)
Hold time, cam_d[11:0] valid after cam_pclk rising 1.82 3.25 nsedgeISP21 t
su(dV-vsH)
Setup time, cam_vs valid before cam_pclk rising 1.82 3.25 nsedgeISP22 t
h(pclkH-vsV)
Hold time, cam_vs valid after cam_pclk rising edge 1.82 3.25 nsISP23 t
su(dV-hsH)
Setup time, cam_hs valid before cam_pclk rising 1.82 3.25 nsedgeISP24 t
h(pclkH-hsV)
Hold time, cam_hs valid after cam_pclk rising edge 1.82 3.25 nsISP25 t
su(dV-hsH)
Setup time, cam_wen valid before cam_pclk rising 1.82 3.25 nsedgeISP26 t
h(pclkH-hsV)
Hold time, cam_wen valid after cam_pclk rising 1.82 3.25 nsedgeISP27 t
su(dV-fldH)
Setup time, cam_fld valid before cam_pclk rising 1.82 3.25 nsedgeISP28 t
h(pclkH-fldV)
Hold time, cam_fld valid after cam_pclk rising edge 1.82 3.25 ns
(1) The timing requirements are assured for the cycle jitter and duty cycle error conditions specified.(2) Related with the input maximum frequency supported by the ISP module.(3) P = cam_lclk period in ns.(4) Maximum cycle jitter supported by cam_pclk input clock.
Table 6-30. ISP Switching Characteristics 12-Bit SYNC Normal Interlaced Mode
NO. PARAMETER 1.15 V 1.0 V UNIT
MIN MAX MIN MAX
ISP15 t
c(xclk)
Cycle time
(1)
, cam_xclk period 4.6 4.6 nsISP16 t
W(xclkH)
Typical pulse duration, cam_xclk high 0.5*PO
(2)
0.5*PO
(2)
nsISP16 t
W(xclkL)
Typical pulse duration, cam_xclk low 0.5*PO
(2)
0.5*PO
(2)
nst
dc(xclk)
Duty cycle error, cam_xclk 231 231 pst
j(xclk)
Jitter standard deviation
(3)
, cam_xclk 33 33 pst
R(xclk)
Rise time, cam_xclk 0.93 0.93 nst
F(xclk)
Fall time, cam_xclk 0.93 0.93 ns
(1) Related with the cam_xclk maximum and minimum frequencies programmable in the ISP module.Warning: You must disable the camera sensor or the camera module to change the frequency configuration. For more information, seethe OMAP35x Technical Reference Manual (TRM) [literature number SPRUF98(2) PO = cam_xclk period in ns.(3) The jitter probability density can be approximated by a Gaussian function.
Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 189
cam_xclki
cam_pclk
cam_vs
cam_hs
cam_d[11:0]
cam_wen
cam_fld
FRAME(0) FRAME(0)
L(0) L(n-1) L(0)
D(0) D(n-3) D(n-2) D(n-1) D(0) D(1) D(2) D(n-1)
PAIR IMPAIR
ISP15
ISP16
ISP16
ISP17 ISP18
ISP18
ISP27
ISP19
ISP21 ISP22
ISP23
ISP20
ISP28
ISP24
ISP25 ISP26
030-057
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Figure 6-25. ISP 12-Bit SYNC Normal Interlaced Mode
(1) (2) (3) (4) (5) (6) (7) (8)
(1) The polarity of cam_pclk, cam_fld, cam_vs, and cam_hs are configurable. If the cam_hs, cam_vs, and cam_fld signals are output, thesignal length can be set.(2) The parallel camera in SYNC mode supports interlaced image sensor modules and 8-, 10-, 11-, or 12-bit data.(3) When the image sensor has fewer than 12 data lines, it must be connected to the lower data lines and the unused lines must begrounded.
(4) It is possible to shift the data to 0, 2, or 4 data internal lanes.(5) The bit configurations are: cam_d[11:4] or cam_d[7:0] in 8-bit mode, cam_d[11:2] or cam_d[9:0] in 10-bit mode, cam_d[10:0] in 11-bitmode, and cam_d[11:0] in 12-bit mode.(6) Optionally, the data write to memory can be qualified by the external cam_wen signal.(7) The cam_wen signal can be used as a external memory write-enable signal. The data is stored to memory only if cam_hs, cam_vs, andcam_wen signals are asserted.(8) In cam_xclki; I is equal to a or b.
6.5.1.1.1.4 8-bit Packed SYNC Interlaced Mode
Table 6-32 and Table 6-33 assume testing over the recommended operating conditions and electricalcharacteristic conditions (see Figure 6-26 ).
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS190 Submit Documentation Feedback
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Table 6-31. ISP Timing Conditions 8-bit Packed SYNC Interlaced Mode
TIMING CONDITION PARAMETER VALUE UNIT
Input Conditions
t
R
Input signal rise time 2.5 nst
F
Input signal fall time 2.5 ns
Output Conditions
C
LOAD
Output load capacitance 8.6 pF
Table 6-32. ISP Timing Requirements 8-bit Packed SYNC Interlaced Mode
(1)
NO. PARAMETER 1.15 V 1.0 V UNIT
MIN MAX MIN MAX
ISP3 t
c(pclk)
Cycle time
(2)
, cam_pclk period 7.7 15.4 nsISP4 t
W(pclkH)
Typical pulse duration, cam_pclk high 0.5*P
(3)
0.5*P
(3)
nsISP4 t
W(pclkL)
Typical pulse duration, cam_pclk low 0.5*P
(3)
0.5*P
(3)
nst
dc(pclk)
Duty cycle error, cam_pclk 385 769 pst
j(pclk)
Cycle jitter
(4)
, cam_pclk 83 167 psISP5 t
su(dV-pclkH)
Setup time, cam_d[11:0] valid before cam_pclk 1.08 2.27 nsrising edgeISP6 t
h(pclkH-dV)
Hold time, cam_d[11:0] valid after cam_pclk rising 1.08 2.27 nsedgeISP7 t
su(dV-vsH)
Setup time, cam_vs valid before cam_pclk rising 1.08 2.27 nsedgeISP8 t
h(pclkH-vsV)
Hold time, cam_vs valid after cam_pclk rising edge 1.08 2.27 nsISP9 t
su(dV-hsH)
Setup time, cam_hs valid before cam_pclk rising 1.08 2.27 nsedgeISP10 t
h(pclkH-hsV)
Hold time, cam_hs valid after cam_pclk rising edge 1.08 2.27 nsISP11 t
su(dV-hsH)
Setup time, cam_wen valid before cam_pclk rising 1.08 2.27 nsedgeISP12 t
h(pclkH-hsV)
Hold time, cam_wen valid after cam_pclk rising edge 1.08 2.27 nsISP13 t
su(dV-fldH)
Setup time, cam_fld valid before cam_pclk rising 1.08 2.27 nsedgeISP14 t
h(pclkH-fldV)
Hold time, cam_fld valid after cam_pclk rising edge 1.08 2.27 ns
(1) The timing requirements are assured for the cycle jitter and duty cycle error conditions specified.(2) Related with the input maximum frequency supported by the ISP module.(3) P = cam_lclk period in ns.(4) Maximum cycle jitter supported by cam_pclk input clock.
Table 6-33. ISP Switching Characteristics 8-bit Packed SYNC Interlaced Mode
NO. PARAMETER 1.15 V 1.0 V UNIT
MIN MAX MIN MAX
ISP16 t
c(xclk)
Cycle time
(1)
, cam_xclk period 4.6 4.6 nsISP2 t
W(xclkH)
Typical pulse duration, cam_xclk high 0.5*PO
(2)
0.5*PO
(2)
nsISP2 t
W(xclkL)
Typical pulse duration, cam_xclk low 0.5*PO
(2)
0.5*PO
(2)
nst
dc(xclk)
Duty cycle error, cam_xclk 231 231 pst
j(xclk)
Jitter standard deviation
(3)
, cam_xclk 67 67 pst
R(xclk)
Rise time, cam_xclk 0.93 0.93 nst
F(xclk)
Fall time, cam_xclk 0.93 0.93 ns
(1) Related with the cam_xclk maximum and minimum frequencies programmable in the ISP module.Warning: You must disable the camera sensor or the camera module to change the frequency configuration. For more information, seethe OMAP35x Technical Reference Manual (TRM) [literature number SPRUF98(2) PO = cam_xclk period in ns.(3) The jitter probability density can be approximated by a Gaussian function.
Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 191
cam_xclki
cam_pclk
cam_vs
cam_hs
cam_d[7:0]
cam_wen
cam_fld
FRAME(0) FRAME(0)
L(0) L(n-1) L(0)
D(0) D(n-3) D(n-2) D(n-1) D(0) D(1) D(2) D(n-1)
PAIR IMPAIR
ISP1
ISP2
ISP2
ISP3 ISP4
ISP4
ISP13
ISP5
ISP7 ISP8
ISP9
ISP6
ISP14
ISP10
ISP11 ISP12
030-060
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Figure 6-26. ISP 8-bit Packed SYNC Interlaced Mode
(1) (2) (3) (4) (5)
(1) The polarity of cam_pclk, cam_fld, cam_vs, and cam_hs are configurable.(2) The image sensor must be connected to the lower data lines and the unused lines must be grounded. However, it is possible to shift thedata to 0, 2, or 4 data internal lanes. The bit configurations are: cam_d[11:4] or cam_d[7:0] in 8-bit packed mode.(3) Optionally, the data write to memory can be qualified by the external cam_wen signal. The cam_wen signal can be used as a externalmemory write-enable signal. The data is stored to memory only if cam_hs, cam_vs, and cam_wen signals are asserted.(4) The camera module can pack 8-bit data into 16 bits. It doubles the maximum pixel clock. This mode can be particularly useful to transfera YCbCr data stream or compressed stream to memory at very high speed.(5) In cam_xclki; I is equal to a or b.
6.5.1.1.2 ITU Mode
Table 6-35 and Table 6-36 assume testing over the recommended operating conditions and electricalcharacteristic conditions (see Figure 6-27 ).
Table 6-34. ISP Timing Conditions ITU Mode
TIMING CONDITION PARAMETER VALUE UNIT
Input Conditions
t
R
Input signal rise time 2.7 ns
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS192 Submit Documentation Feedback
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Table 6-34. ISP Timing Conditions ITU Mode (continued)
TIMING CONDITION PARAMETER VALUE UNIT
t
F
Input signal fall time 2.7 ns
Output Conditions
C
LOAD
Output load capacitance 8.6 pF
Table 6-35. ISP Timing Requirements ITU Mode
(1)
NO. PARAMETER 1.15 V 1.0 V UNIT
MIN MAX MIN MAX
ISP17 t
c(pclk)
Cycle time
(2)
, cam_pclk period 13.3 22.2 nsISP18 t
W(pclkH)
Typical pulse duration, cam_pclk high 0.5*P
(3)
0.5*P
(3)
nsISP18 t
W(pclkL)
Typical pulse duration, cam_pclk low 0.5*P
(3)
0.5*P
(3)
nst
dc(pclk)
Duty cycle error, cam_pclk 667 1111 pst
j(pclk)
Cycle jitter
(4)
, cam_pclk 133 200 psISP23 t
su(dV-pclkH)
Setup time, cam_d[9:0] valid before cam_pclk 1.82 3.25 nsrising edgeISP24 t
h(pclkH-dV)
Hold time, cam_d[9:0] valid after cam_pclk rising 1.82 3.25 nsedge
(1) The timing requirements are assured for the cycle jitter and duty cycle error conditions specified.(2) Related with the input maximum frequency supported by the ISP module.(3) P = cam_lclk period in ns.(4) Maximum cycle jitter supported by cam_lclk input clock.
Table 6-36. ISP Switching Characteristics ITU Mode
NO. PARAMETER 1.15 V 1.0 V UNIT
MIN MAX MIN MAX
ISP15 t
c(xclk)
Cycle time
(1)
, cam_xclk period 4.6 4.6 nsISP16 t
W(xclkH)
Typical pulse duration, cam_xclk high 0.5*PO
(2)
0.5*PO
(2)
nsISP16 t
W(xclkL)
Typical pulse duration, cam_xclk low 0.5*PO
(2)
0.5*PO
(2)
nst
dc(xclk)
Duty cycle error, cam_xclk 231 231 pst
j(xclk)
Jitter standard deviation
(3)
, cam_xclk 33 33 pst
R(xclk)
Rise time, cam_xclk 0.93 0.93 nst
F(xclk)
Fall time, cam_xclk 0.93 0.93 ns
(1) Related with the cam_xclk maximum and minimum frequencies programmable in the ISP module.Warning: The camera sensor or the camera module must be disabled to change the frequency configuration. For more information, seethe OMAP35x Technical Reference Manual (TRM) [literature number SPRUF98(2) PO = cam_xclk period in ns(3) The jitter probability density can be approximated by a Gaussian function.
Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 193
cam_xclki
cam_pclk
cam_d[9:0] SOF D(0) D(n-1) EOF SOF D(0) D(n-1) EOF
ISP15
ISP16
ISP16
ISP17
ISP23 ISP24
ISP18 ISP18
030-058
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Figure 6-27. ISP ITU Mode
(1) (2)
(1) The unused lines must be grounded and the data bus must be connected to the lower data lines. It is possible to shift the data to 0, 2, or4 data internal lanes. The different configurations are: cam_d[11:4] or cam_d[7:0] in 8-bit mode and cam_d[11:2] or cam_d[9:0] in 10-bitmode.
(2) The parallel camera in ITU mode supports progressive camera modules.
194 TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS Submit Documentation Feedback
6.5.2 Display Subsystem (DSS)
6.5.2.1 LCD Display in Bypass Mode
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
The display subsystem (DSS) provides the logic to display the video frame from external (SDRAM) orinternal (SRAM) memory on an LCD panel or a TV set. The DSS integrates a display controller, a remoteframe buffer module (RFBI), and a TV-out module. It can be used in two configurations:LCD display in: Bypass mode (RFBI module bypassed) RFBI mode (through RFBI module)TV display (not discussed in this document because of its analog IO signals)
The two displays can be active at the same time.
NOTEFor more information, see Display Subsystem / Display Subsystem Functional Descriptionsection of the OMAP35x Technical Reference Manual (TRM) [literature numberSPRUF98 .
Two types of LCD panel are supported:Thin film transistor (TFT) or active matrix technologySupertwisted nematic (STN) or passive matrix technology
Both configurations are discussed in the following paragraphs.6.5.2.1.1 LCD Display in TFT Mode
6.5.2.1.1.1 LCD Display in TFT Mode HDTV Application
Table 6-37 assumes testing over the recommended operating conditions (see Figure 6-28 ).
Table 6-37. LCD Display Switching Characteristics in TFT Mode HDTV Application
(3) (4)
NO. PARAMETER OPP3 OPP2 UNIT
MIN MAX MIN MAX
DL0 t
d(PCLKA-HSYNCT)
Delay time, dss_pclk active edge to dss_hsync –4.2 4.2 –4.7 4.7 nstransitionDL1 t
d(PCLKA-VSYNCT)
Delay time, dss_pclk active edge to dss_vsync –4.2 4.2 –4.7 4.7 nstransitionDL2 t
d(PCLKA-ACBIASA)
Delay time, dss_pclk active edge to –4.2 4.2 –4.7 4.7 nsdss_acbias active levelDL3 t
d(PCLKA-DATAV)
Delay time, dss_pclk active edge to dss_data –4.2 4.2 –4.7 4.7 nsbus validDL4 t
c(PCLK)
Cycle time
(2)
, dss_pclk 13.468 15.152 nsDL5 t
w(PCLK)
Pulse duration, dss_pclk low or high 0.45*P
(1)
0.55*P
(1)
0.45*P
(1)
0.55*P
(1)
ns
(1) P = dss_pclk period.(2) The pixel clock frequency is software programmable via the pixel clock divider configuration from 1 to 255 division range in theDISPC_DIVISOR register.(3) The capacitive load is equivalent to 25 pF at 1.15 V and 30 pF at 1.0 V.(4) For more information, see the DSS chapter in the OMAP35x Technical Reference Manual (TRM) [literature number SPRUF98 .
Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 195
dss_pclk
dss_vsync
dss_hsync
dss_acbias
dss_data[23:0]
DL4
DL5
DL3
DL0
DL2
DL1
030-061
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Figure 6-28. LCD Display in TFT Mode HDTV Application
(1) (2) (3) (4)
(1) The pixel data bus depends on the use of 8-, 9-, 12-, 16-, 18-, or 24-bit per pixel data output pins.(2) The pixel clock frequency is programmable.(3) All timings not illustrated in the waveform are programmable by software, control signal polarity, and driven edge of dss_pclk.(4) For more information, see the DSS chapter in the OMAP35x Technical Reference Manual (TRM) [literature number SPRUF98 .
6.5.2.1.2 LCD Display in STN Mode
Table 6-38 assumes testing over the recommended operating conditions (see Figure 6-29 ).
Table 6-38. LCD Display Switching Characteristics in STN Mode
(3) (4) (5)
NO. PARAMETER OPP3 OPP2 UNIT
MIN MAX MIN MAX
DL3 t
d(PCLKA-DATAV)
Delay time, dss_pclk active edge to dss_data –6.9 6.9 –6.9 6.9 nsbus validDL4 t
c(PCLK)
Cycle time
(2)
, dss_pclk 22.727 22.727 nsDL5 t
w(PCLK)
Pulse duration, dss_pclk low or high 0.45*P
(1)
0.55*P
(1)
0.45*P
(1)
0.55*P
(1)
ns
(1) P = dss_pclk period.(2) The pixel clock frequency is software programmable via the pixel clock divider configuration from 1 to 255 division range in theDISPC_DIVISOR register.(3) The DSS in STN mode is used with 4 or 8 pins only; unused pixel data bits always remain low.(4) The capacitive load is equivalent to 40 pF.(5) For more information, see the DSS chapter in the OMAP35x Technical Reference Manual (TRM) [literature number SPRUF98 .
196 TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS Submit Documentation Feedback
dss_pclk
dss_vsync
dss_hsync
dss_acbias
dss_data[23:0]
DL4
DL5
DL3
030-062
6.5.2.2 LCD Display in RFBI Mode
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Figure 6-29. LCD Display in STN Mode
(1) (2) (3) (4) (5)
(1) The pixel data bus depends on the use 4-, 8-, 12-, 16-, 18-, or 24-bit per pixel data output pins.(2) All timings not illustrated in the waveform are programmable by software, control signal polarity, and driven edge of dss_pclk.(3) dss_vsync width must be programmed to be as small as possible.(4) The pixel clock frequency is programmable.(5) For more information, see the DSS chapter in the OMAP35x Technical Reference Manual (TRM) [literature number SPRUF98 .
Table 6-40 and Table 6-41 assume testing over the recommended operating conditions (see Figure 6-30through Figure 6-32 ).
Table 6-39. LCD Timing Conditions RFBI Mode
TIMING CONDITION PARAMETER VALUE UNIT
MIN MAX
Input Conditions
t
R
Input signal rise time 15 nst
F
Input signal fall time 15 ns
Output Conditions
C
LOAD
Output load capacitance 30 pF
Table 6-40. LCD Display Timing Requirements in RFBI Mode
NO. PARAMETER OPP3 OPP2 OPP1
(1)
UNIT
MIN MAX MIN MAX MIN MAX
DR0 t
su(DAV-RDH)
Setup time, rfbi_da[15:0] valid to rfbi_rd 7.0 9.0 nshighDR1 t
h(RDH-DAIV)
Hold time, rfbi_rd high to rfbi_da[15:0] 5.0 5.0 nsinvalidt
d(Data sampled)
rfbi_da[15:0] are sampled at the end off N
(2)
N
(2)
nsthe access time
(1) Cannot boot in OPP1. If OPP1 is desired, boot in higher OPP then switch to OPP1.(2) N = (AccessTime) * (TimeParaGranularity + 1) * L4CLK
Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 197
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Table 6-41. LCD Display Switching Characteristics in RFBI Mode
PARAMETER OPP3 OPP2 OPP1
(1)
UNIT
MIN MAX MIN MAX MIN MAX
t
w(rfbi_wrH)
Pulse duration, rfbi_wr high A
(2)
A
(2)
nst
w(rfbi_wrL)
Pulse duration, rfbi_wr low B
(3)
B
(3)
nst
d(rfbi_a0-rfbi_wrL)
Delay time, rfbi_a0 transition to rfbi_wr C
(4)
C
(4)
nslowt
d(rfbi_wrH-rfbi_a0)
Delay time, rfbi_wr high to rfbi_a0 D
(5)
D
(5)
nstransitiont
d(rfbi_csx-rfbi_wrL)
Delay time, rfbi_csx
(15)
low to rfbi_wr low E
(6)
E
(6)
nst
d(rfbi_wrH-rfbi_csxH)
Delay time, rfbi_wr high to rfbi_csx
(15)
F
(7)
F
(7)
nshight
d(dataV)
rfbi_da[15:0] valid G
(8)
G
(8)
nst
d(rfbi_a0H-rfbi_rdL)
Delay time, rfbi_a0 high to rfbi_rd low H
(9)
H
(9)
nst
d(rfbi_rdlH-rfbi_a0)
Delay time, rfbi_rd high to rfbi_a0 I
(10)
I
(10)
nstransitiont
w(rfbi_rdH)
Pulse duration, rfbi_rd high J
(11)
J
(11)
nst
w(rfbi_rdL)
Pulse duration, rfbi_rd low K
(12)
K
(12)
nst
d(rfbi_rdL-rfbi_csxL)
Delay time, rfbi_rd low to rfbi_csx
(15)
low L
(13)
L
(13)
nst
d(rfbi_rdH-rfbi_csxH)
Delay time, rfbi_rd high to rfbi_csx
(15)
M
(14)
M
(14)
nshight
R(rfbi_wr)
Rise time, rfbi_wr 10 10 nst
F(rfbi_wr)
Fall time, rfbi_wr 10 10 nst
R(rfbi_a0)
Rise time, rfbi_a0 10 10 nst
F(rfbi_a0)
Fall time, rfbi_a0 10 10 nst
R(rfbi_csx)
Rise time, rfbi_csx
(15)
10 10 nst
F(rfbi_csx)
Fall time, rfbi_csx
(15)
10 10 nst
R(rfbi_da[15:0])
Rise time, rfbi_da[15:0] 10 10 nst
F(rfbi_da[15:0])
Fall time, rfbi_da[15:0] 10 10 nst
R(rfbi_rd)
Rise time, rfbi_rd 10 10 nst
F(rfbi_rd)
Fall time, rfbi_rd 10 10 ns
(1) Cannot boot in OPP1. If OPP1 is desired, boot in higher OPP then switch to OPP1.(2) A = (WECycleTime WEOffTime) * (TimeParaGranularity + 1) * L4CLK(3) B = (WEOffTime WEOntime) * (TimeParaGranularity + 1) * L4CLK(4) C = WEOnTime * (TimeParaGranularity + 1) * L4CLK(5) D = (WECycleTime + CSPulseWidth WEOffTime) * (TimeParaGranularity + 1) * L4CLKif mode Write to Read or Read to Write is enabled(6) E = (WEOnTime CSOnTime) * (TimeParaGranularity + 1) * L4CLK(7) F = (CSOffTime WEOffTime) * (TimeParaGranularity + 1) * L4CLK(8) G = (WECycleTime) * (TimeParaGranularity + 1) * L4CLK(9) H = (REOnTime) * (TimeParaGranularity + 1) * L4CLK(10) I = (RECycleTime + CSPulseWidth REOffTime) * (TimeParaGranularity + 1) * L4CLKif mode Write to Read or Read to Write is enabled(11) J = (RECycleTime REOffTime) * (TimeParaGranularity + 1) * L4CLK(12) K = (REOffTime REOntime) * (TimeParaGranularity + 1) * L4CLK(13) L = (REOnTime CSOnTime) * (TimeParaGranularity + 1) * L4CLK(14) M = (CSOffTime REOffTime) * (TimeParaGranularity + 1) * L4CLK(15) In rfbi_csx, x stands for 0 or 1.
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS198 Submit Documentation Feedback
rfbi_a0
WeCycleTime
CsPulseWidth
WeCycleTime
CsOffTime
CsOnTime
WeOnTime
WeOffTime
DATA1
DATA0
CsOffTime
CsOnTime
WeOffTime
WeOnTime
rfbi_csx
rfbi_wr
rfbi_da[15:0]
rfbi_rd
034-002
DATA1
DATA0
rfbi_a0
rfbi_csx
rfbi_wr
rfbi_da[15:0]
rfbi_rd
AccessTime
ReCycleTime
AccessTime
ReCycleTime
CsPulseWidth
CsOffTime
CsOnTime
CsOffTime
CsOnTime
ReOnTime
ReOffTime
ReOnTime
ReOffTime
DR0 DR1
034-003
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Figure 6-30. LCD Display in RFBI Mode Command / Data Write Mode
(1) (2)
(1) In rfbi_csx, x is equal to 0 or 1.(2) For more information, see the DSS chapter in the OMAP35x Technical Reference Manual (TRM) [literature number SPRUF98 .
Figure 6-31. LCD Display in RFBI Mode Data Read Mode
(1) (2)
(1) In rfbi_csx, x is equal to 0 or 1.(2) For more information, see the DSS chapter in the OMAP35x Technical Reference Manual (TRM) [literature number SPRUF98 .
Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 199
WeCycleTime
WeCycleTime
AccessTime
ReCycleTime
CsOffTime
CsOnTime CsOnTime CsOnTime
CsOffTime CsOffTime
WeOffTime
WeOnTime
WeOffTime
WeOnTime
ReOffTime
ReOnTime
CsPulseWidth CsPulseWidth
READ WRITEWRITE
rfbi_a0
rfbi_csx
rfbi_wr
rfbi_rd
rfbi_da[15:0]
034-004
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Figure 6-32. LCD Display in RFBI Mode Command / Data Write-to-Read and Read-to-Write TimingModes
(1) (2)
(1) In rfbi_csx, x is equal to 0 or 1.(2) For more information, see the DSS chapter in the OMAP35x Technical Reference Manual (TRM) [literature number SPRUF98 .
200 TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS Submit Documentation Feedback
6.6 Serial Communications Interfaces
6.6.1 Multichannel Buffered Serial Port (McBSP) Timing
6.6.1.1 McBSP in Normal Mode
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
There are five McBSP modules called McBSP1 through McBSP5. McBSP provides a full-duplex, directserial interface between the OMAP35 15/03 device and other devices in a system such as otherapplication devices or codecs. It can accommodate a wide range of peripherals and clockedframe-oriented protocols (I2S, PCM, and TDM) due to its high level of versatility.
The McBSP1-5 modules may support two types of data transfer at the system level:The full-cycle mode, for which one clock period is used to transfer the data, generated on one edgeand captured on the same edge (one clock period later).The half-cycle mode, for which one half clock period is used to transfer the data, generated on oneedge and captured on the opposite edge (one half clock period later). Note that a new data isgenerated only every clock period, which secures the required hold time.
The interface clock (CLKX/CLKR) activation edge (data/frame sync capture and generation) has to beconfigured accordingly with the external peripheral (activation edge capability) and the type of datatransfer required at the system level.
The OMAP35 15/03 McBSP1-5 timing characteristics are described for both rising and falling activationedges. McBSP1 supports:6-pin mode: dx and dr as data pins; clkx, clkr, fsx, and fsr as control pins.4-pin mode: dx and dr as data pins; clkx and fsx pins as control pins. The clkx and fsx pins areinternally looped back via software configuration, respectively, to the clkr and fsr internal signals fordata receive.
McBSP2, 3, 4, and 5 support only the 4-pin mode.
The following sections describe the timing characteristics for applications in normal mode (that is,OMAP35 15/03 McBSPx connected to one peripheral) and TDM applications in multipoint mode.
Table 6-42. McBSP Timing Conditions—Normal Mode
TIMING CONDITION PARAMETER VALUE UNIT
Input Conditions
t
R
Input signal rise time 2 nst
F
Input signal fall time 2 ns
Output Conditions
C
LOAD
Output load capacitance 10 pF
Table 6-43. McBSP Output Clock Pulse Duration
NO. PARAMETER OPP3 OPP2 UNIT
MIN MAX MIN MAX
Inputs and Outputs
McBSP1 t
c(CLK)
Cycle time, mcbsp1_clkx / mcbsp1_clkr (multiplexing mode 20.83 41.67 ns0)McBSP2 t
c(CLK)
Cycle time, mcbsp2_clkx (multiplexing mode 0) 20.83 41.67 nsMcBSP3 t
c(CLK)
Cycle time, IO set 1 (multiplexing mode 0) 31.25 62.50 nsmcbsp3_clkx
IO set 2 (multiplexing mode 1) 20.83 41.67IO set 3 (multiplexing mode 2) 20.83 41.67McBSP4 t
c(CLK)
Cycle time, IO set 1 (multiplexing mode 0) 20.83 41.67 nsmcbsp4_clkx
IO set 2 (multiplexing mode 2) 31.25 62.50McBSP5 t
c(CLK)
Cycle time, mcbsp5_clkx (multiplexing mode 1) 31.25 62.50 ns
Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 201
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Table 6-43. McBSP Output Clock Pulse Duration (continued)
NO. PARAMETER OPP3 OPP2 UNIT
MIN MAX MIN MAX
Outputs
t
w(CLKH)
Typical pulse duration, mcbsp1_clkr / mcbspx_clkx high
(2)
0.5*P
(1)
0.5*P
(1)
nst
w(CLKL)
Typical pulse duration, mcbsp1_clkr / mcbspx_clkx low
(2)
0.5*P
(1)
0.5*P
(1)
nst
dc(CLK)
Duty cycle error, mcbsp1_clkr / mcbspx_clkx
(2)
–0.75 0.75 –0.75 0.75 ns
(1) P = mcbsp1_clkr / mcbspx_clkx clock period.(2) In mcbspx, x identifies the McBSP number: 1, 2, 3, 4, or 5.
6.6.1.1.1 Receive Timing with Rising Edge as Activation Edge
Table 6-44 through Table 6-49 assume testing over the recommended operating conditions (seeFigure 6-33 through Figure 6-34 ).
Table 6-44. McBSP1, 2, and 3 (Sets #2 and #3) Timing Requirements Rising Edge and Receive Mode
(1)
NO. PARAMETER 1.15 V 1.0 V UNIT
MIN MAX MIN MAX
B3 t
su(DRV-CLKAE)
Setup time, mcbspx_dr valid before mcbsp1_clkr / Master 3.5 7.7 nsmcbspx_clkx active edge
Slave 3.7 7.9 nsB4 t
h(CLKAE-DRV)
Hold time, mcbspx_dr valid after mcbsp1_clkr / Master 1 1 nsmcbspx_clkx active edge
Slave 0.4 0.4 nsB5 t
su(FSV-CLKAE)
Setup time, mcbsp1_fsr / mcbspx_fsx valid before mcbsp1_clkr / 3.7 7.9 nsmcbspx_clkx active edgeB6 t
h(CLKAE-FSV)
Hold time, mcbsp1_fsr / mcbspx_fsx valid after mcbsp1_clkr / 0.5 0.5 nsmcbspx_clkx active edge
(1) In mcbspx, x identifies the McBSP number: 1, 2, or 3. Note that for the McBSP3, these timings concern only Set #2 (multiplexing modeon UART pins) and Set #3 (multiplexing mode on McBSP1 pins).
Table 6-45. McBSP1, 2, and 3 (Sets #2 and #3) Switching Characteristics Rising Edge and ReceiveMode
(1)
NO. PARAMETER 1.15 V 1.0 V UNIT
MIN MAX MIN MAX
B2 t
d(CLKAE-FSV)
Delay time, mcbsp1_clkr / mcbspx_clkx active edge to mcbsp1_fsr / 0.7 14.8 0.7 29.6 nsmcbspx_fsx valid
(1) In mcbspx, x identifies the McBSP number: 1, 2, or 3. Note that for the McBSP3, these timings concern only Set #2 (multiplexing modeon UART pins) and Set #3 (multiplexing mode on McBSP1 pins).
Table 6-46. McBSP4 (Set #1) Timing Requirements Rising Edge and Receive Mode
(1)
NO. PARAMETER 1.15 V 1.0 V UNIT
MIN MAX MIN MAX
B3 t
su(DRV-CLKXAE)
Setup time, mcbspx_dr valid before Master 2.7 7.7 nsmcbspx_clkx active edge
Slave 3.7 7.9 nsB4 t
h(CLKXAE-DRV)
Hold time, mcbspx_dr valid after mcbspx_clkx Master 1 1 nsactive edge
Slave 0.4 0.4 nsB5 t
su(FSXV-CLKXAE)
Setup time mcbspx_fsx valid before mcbspx_clkx active edge 3.7 7.9 nsB6 t
h(CLKXAE-FSXV)
Hold Time mcbspx_fsx valid after mcbspx_clkx active edge 0.5 0.5 ns
(1) In mcbspx, x identifies the McBSP number: 4. Note that for the McBSP4, these timings concern only Set #1: multiplexing mode bydefault. The McBSP4 is also multiplexed on GPMC pins (Set #2): the corresponding timings are specified in Table 6-48 and Table 6-49
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS202 Submit Documentation Feedback
mcbspx_clkr
mcbspx_fsr
mcbspx_dr D7 D6 D5
B2 B2
B3 B4
030-068
mcbspx_clkr
mcbspx_fsr
mcbspx_dr D7 D6 D5
B3 B4
B5 B6
030-069
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Table 6-47. McBSP4 (Set #1) Switching Characteristics Rising Edge and Receive Mode
(1)
NO. PARAMETER 1.15 V 1.0 V UNIT
MIN MAX MIN MAX
B2 t
d(CLKXAE-FSXV)
Delay time, mcbspx_clkx active edge to mcbspx_fsx valid 0.7 16.6 0.7 33.1 ns
(1) In mcbspx, x identifies the McBSP number: 4. Note that for the McBSP4, these timings concern only Set #1: multiplexing mode bydefault. The McBSP4 is also multiplexed on GPMC pins (Set #2): the corresponding timings are specified in Table 6-48 and Table 6-49
Table 6-48. McBSP3 (Set #1), 4 (Set #2), and 5 Timing Requirements Rising Edge and Receive Mode
(1)
NO. PARAMETER 1.15 V 1.0 V UNIT
MIN MAX MIN MAX
B3 t
su(DRV-CLKXAE)
Setup time, mcbspx_dr valid before Master 5.6 12 nsmcbspx_clkx active edge
Slave 5.8 12.2 nsB4 t
h(CLKXAE-DRV)
Hold time, mcbspx_dr valid after mcbspx_clkx Master 1 1 nsactive edge
Slave 0.4 0.4 nsB5 t
su(FSXV-CLKXAE)
Setup time, mcbspx_fsx valid before mcbspx_clkx active edge 5.8 12.2 nsB6 t
h(CLKXAE-FSXV)
Hold time, mcbspx_fsx valid after mcbspx_clkx active edge 0.5 0.5 ns
(1) In mcbspx, x identifies the McBSP number: 3, 4, or 5. Note that for the McBSP3, these timings concern only Set #1: multiplexing modeby default. The McBSP3 is also multiplexed on UART pins (Set #2) and on McBSP1 pins (Set #3): the corresponding timings arespecified in Table 6-46 and Table 6-47 .For the McBSP4, these timings concern only Set #2 (multiplexing mode on GPMC pins).
Table 6-49. McBSP3 (Set #1), 4 (Set #2), and 5 Switching Requirements Rising Edge and ReceiveMode
(1)
NO. PARAMETER 1.15 V 1.0 V UNIT
MIN MAX MIN MAX
B2 t
d(CLKXAE-FSXV)
Delay time, mcbspx_clkx active edge to mcbspx_fsx valid 0.7 22.2 0.7 44.4 ns
Figure 6-33. McBSP Rising Edge Receive Timing in Master Mode
Figure 6-34. McBSP Rising Edge Receive Timing in Slave Mode
(1) In mcbspx, x identifies the McBSP number: 3, 4, or 5. Note that for the McBSP3, these timings concern only Set #1: multiplexing modeby default. The McBSP3 is also multiplexed on UART pins (Set #2) and on McBSP1 pins (Set #3): the corresponding timings arespecified in Table 6-46 and Table 6-47 .For the McBSP4, these timings concern only Set #2 (multiplexing mode on GPMC pins).
Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 203
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
6.6.1.1.2 Transmit Timing with Rising Edge as Activation Edge
Table 6-50 through Table 6-55 assume testing over the recommended operating conditions (seeFigure 6-35 and Figure 6-36 ).
Table 6-50. McBSP1, 2, and 3 (Sets #2 and #3) Timing Requirements Rising Edge and Transmit Mode
(1)
NO. PARAMETER 1.15 V 1.0 V UNIT
MIN MAX MIN MAX
B5 t
su(FSXV-CLKXAE)
Setup time, mcbspx_fsx valid before mcbspx_clkx 3.7 7.9 nsactive edgeB6 t
h(CLKXAE-FSXV)
Hold time, mcbspx_fsx valid after mcbspx_clkx active 0.5 0.5 nsedge
(1) In mcbspx, x identifies the McBSP number: 1, 2, or 3. Note that for the McBSP3, these timings concern only Set #2 (multiplexing modeon UART pins) and Set #3 (multiplexing mode on McBSP1 pins).
Table 6-51. McBSP1, 2, and 3 (Sets #2 and #3) Switching Characteristics Rising Edge and TransmitMode
(1)
NO. PARAMETER 1.15 V 1.0 V UNIT
MIN MAX MIN MAX
B2 t
d(CLKXAE-FSXV)
Delay time, mcbspx_clkx active edge to mcbspx_fsx 0.7 14.8 0.7 29.6 nsvalidB8 t
d(CLKXAE-DXV)
Delay time, mcbspx_clkx active edge to Master 0.6 14.8 0.6 29.6 nsmcbspx_dx valid
Slave 0.6 14.8 0.6 29.6 ns
(1) In mcbspx, x identifies the McBSP number: 1, 2, or 3. Note that for the McBSP3, these timings concern only Set #2 (multiplexing modeon UART pins) and Set #3 (multiplexing mode on McBSP1 pins).
Table 6-52. McBSP4 (Set #1) Timing Requirements Rising Edge and Transmit Mode
(1)
NO. PARAMETER 1.15 V 1.0 V UNIT
MIN MAX MIN MAX
B5 t
su(FSXV-CLKXAE)
Setup time, mcbspx_fsx valid before mcbspx_clkx 3.7 7.9 nsactive edgeB6 t
h(CLKXAE-FSXV)
Hold time, mcbspx_fsx valid after mcbspx_clkx active 0.5 0.5 nsedge
(1) In mcbspx, x identifies the McBSP number: 4. Note that for the McBSP4, these timings concern only Set #1: multiplexing mode bydefault. The McBSP4 is also multiplexed on GPMC pins (Set #2): the corresponding timings are specified in Table 6-54 .
Table 6-53. McBSP4 (Set #1) Switching Characteristics Rising Edge and Transmit Mode
(1)
NO. PARAMETER 1.15 V 1.0 V UNIT
MIN MAX MIN MAX
B2 t
d(CLKXAE-FSXV)
Delay time, mcbspx_clkx active edge to 0.7 16.6 0.7 33.1 nsmcbspx_fsx validB8 t
d(CLKXAE-DXV)
Delay time, mcbspx_clkx active edge Master 0.6 16.6 0.6 33.1 nsto mcbspx_dx valid
Slave 0.6 17.3 0.6 33.1 ns
(1) In mcbspx, x identifies the McBSP number: 4. Note that for the McBSP4, these timings concern only Set #1: multiplexing mode bydefault. The McBSP4 is also multiplexed on GPMC pins (Set #2): the corresponding timings are specified in Table 6-54 .
Table 6-54. McBSP3 (Set #1), 4 (Set #2), and 5 Timing Requirements Rising Edge and Transmit Mode
(1)
NO. PARAMETER 1.15 V 1.0 V UNIT
MIN MAX MIN MAX
B5 t
su(FSXV-CLKXAE)
Setup time, mcbspx_fsx valid before mcbspx_clkx 5.8 12.2 nsactive edge
(1) In mcbspx, x identifies the McBSP number: 4. Note that for the McBSP4, these timings concern only Set #1: multiplexing mode bydefault. The McBSP4 is also multiplexed on GPMC pins (Set #2): the corresponding timings are specified in Table 6-54 .
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS204 Submit Documentation Feedback
mcbspx_clkx
mcbspx_fsx
mcbspx_dx D7 D6 D5
B2 B2
B8
030-070
mcbspx_clkx
mcbspx_fsx
mcbspx_dx D7 D6 D5
B8
B5 B6
030-071
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Table 6-54. McBSP3 (Set #1), 4 (Set #2), and 5 Timing Requirements Rising Edge and Transmit Mode(continued)
NO. PARAMETER 1.15 V 1.0 V UNIT
MIN MAX MIN MAX
B6 t
h(CLKXAE-FSXV)
Hold time, mcbspx_fsx valid after mcbspx_clkx active 0.5 0.5 nsedge
Table 6-55. McBSP 3 (Set #1), 4 (Set #2), and 5 Switching Requirements Rising Edge and TransmitMode
(1)
NO. PARAMETER 1.15 V 1.0 V UNIT
MIN MAX MIN MAX
B2 t
d(CLKXAE-FSXV)
Delay time, mcbspx_clkx active edge to mcbspx_fsx 0.7 22.2 0.7 44.4 nsvalidB8 t
d(CLKXAE-DXV)
Delay time, mcbspx_clkx active edge to Master 0.6 22.2 0.6 44.4 nsmcbspx_dx valid
Slave 0.6 22.2 0.6 44.4 ns
Figure 6-35. McBSP Rising Edge Transmit Timing in Master Mode
Figure 6-36. McBSP Rising Edge Transmit Timing in Slave Mode
(1) In mcbspx, x identifies the McBSP number: 3, 4 or 5. Note that for the McBSP3, these timings concern only Set #1: multiplexing modeby default. The McBSP3 is also multiplexed on UART pins (Set #2) and on McBSP1 pins (Set #3): the corresponding timings arespecified in the table above. For the McBSP4, these timings concern only Set #2 (multiplexing mode on GPMC pins).
6.6.1.1.3 Receive Timing with Falling Edge as Activation Edge
Table 6-56 through Table 6-61 assume testing over the recommended operating conditions (seeFigure 6-37 and Figure 6-38 ).
Table 6-56. McBSP1, 2, and 3 (Sets #2 and #3) Timing Requirements Falling Edge and Receive Mode
(1)
NO. PARAMETER 1.15 V 1.0 V UNIT
MIN MAX MIN MAX
B3 t
su(DRV-CLKAE)
Setup time, mcbspx_dr valid before Master 3.5 7.7 nsmcbsp1_clkr / mcbspx_clkx active edge
Slave 3.7 7.9 nsB4 t
h(CLKAE-DRV)
Hold time, mcbspx_dr valid after Master 1 1 nsmcbsp1_clkr / mcbspx_clkx active edge
Slave 0.4 0.4 nsB5 t
su(FSV-CLKAE)
Setup time, mcbsp1_fsr / mcbspx_fsx valid before 3.7 7.9 nsmcbsp1_clkr /mcbspx_clkx active edge
(1) In mcbspx, x identifies the McBSP number: 1, 2, or 3. Note that for the McBSP3, these timings concern only Set #2 (multiplexing modeon UART pins) and Set #3 (multiplexing mode on McBSP1 pins).
Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 205
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Table 6-56. McBSP1, 2, and 3 (Sets #2 and #3) Timing Requirements Falling Edge and Receive Mode(continued)
NO. PARAMETER 1.15 V 1.0 V UNIT
MIN MAX MIN MAX
B6 t
h(CLKAE-FSV)
Hold time, mcbsp1_fsr / mcbspx_fsx valid after 0.5 0.5 nsmcbsp1_clkr /mcbspx_clkx active edge
Table 6-57. McBSP1, 2, and 3 (Sets #2 and #3) Switching Characteristics Falling Edge and ReceiveMode
(1)
NO. PARAMETER 1.15 V 1.0 V UNIT
MIN MAX MIN MAX
B2 t
d(CLKAE-FSV)
Delay time, mcbsp1_clkr / mcbspx_clkx active edge to 0.7 14.8 0.7 29.6 nsmcbsp1_fsr / mcbspx_fsx valid
(1) In mcbspx, x identifies the McBSP number: 1, 2, or 3. Note that for the McBSP3, these timings concern only Set #2 (multiplexing modeon UART pins) and Set #3 (multiplexing mode on McBSP1 pins).
Table 6-58. McBSP4 (Set #1) Timing Requirements Falling Edge and Receive Mode
(1)
NO. PARAMETER 1.15 V 1.0 V UNIT
MIN MAX MIN MAX
B3 t
su(DRV-CLKXAE)
Setup time, mcbspx_dr valid before Master 2.7 7.7 nsmcbspx_clkx active edge
Slave 3.7 7.9 nsB4 t
h(CLKXAE-DRV)
Hold time, mcbspx_dr valid after Master 1 1 nsmcbspx_clkx active edge
Slave 0.4 0.4 nsB5 t
su(FSXV-CLKXAE)
Setup time mcbspx_fsx valid before mcbspx_clkx active 3.7 7.9 nsedgeB6 t
h(CLKXAE-FSXV)
Hold time mcbspx_fsx valid after mcbspx_clkx active 0.5 0.5 nsedge
(1) In mcbspx, x identifies the McBSP number: 4. Note that for the McBSP4, these timings concern only Set #1: multiplexing mode bydefault. The McBSP4 is also multiplexed on GPMC pins (Set #2): the corresponding timings are specified in Table 6-60
Table 6-59. McBSP4 (Set #1) Switching Characteristics Falling Edge and Receive Mode
(1)
NO. PARAMETER 1.15 V 1.0 V UNIT
MIN MAX MIN MAX
B2 t
d(CLKXAE-FSXV)
Delay time, mcbspx_clkx active edge to mcbspx_fsx valid 0.7 16.6 0.7 33.1 ns
(1) In mcbspx, x identifies the McBSP number: 4. Note that for the McBSP4, these timings concern only Set #1: multiplexing mode bydefault. The McBSP4 is also multiplexed on GPMC pins (Set #2): the corresponding timings are specified in Table 6-60
Table 6-60. McBSP3 (Set #1), 4 (Set #2), and 5 Timing Requirements Falling Edge and Receive Mode
(1)
NO. PARAMETER 1.15 V 1.0 V UNIT
MIN MAX MIN MAX
B3 t
su(DRV-CLKXAE)
Setup time, mcbspx_dr valid before Master 5.6 12 nsmcbspx_clkx active edge
Slave 5.8 12.2 nsB4 t
h(CLKXAE-DRV)
Hold time, mcbspx_dr valid after mcbspx_clkx Master 1 1 nsactive edge
Slave 0.4 0.4 nsB5 t
su(FSXV-CLKXAE)
Setup time, mcbspx_fsx valid before mcbspx_clkx active 5.8 12.2 nsedgeB6 t
h(CLKXAE-FSXV)
Hold time, mcbspx_fsx valid after mcbspx_clkx active 0.5 0.5 nsedge
(1) In mcbspx, x identifies the McBSP number: 3, 4, or 5. Note that for the McBSP3, these timings concern only Set #1: multiplexing modeby default. The McBSP3 is also multiplexed on UART pins (Set #2) and on McBSP1 pins (Set #3): the corresponding timings arespecified in the table above. For the McBSP4, these timings concern only Set #2 (multiplexing mode on GPMC pins).
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS206 Submit Documentation Feedback
mcbspx_clkr
mcbspx_fsr
mcbspx_dr D7 D6 D5
B2 B2
B3 B4
030-072
mcbspx_clkr
mcbspx_fsr
mcbspx_dr D7 D6 D5
B3 B4
B5 B6
030-073
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Table 6-61. McBSP3 (Set #1), 4 (Set #2), and 5 Switching Requirements Falling Edge and ReceiveMode
(1)
NO. PARAMETER 1.15 V 1.0 V UNIT
MIN MAX MIN MAX
B2 t
d(CLKXAE-FSXV)
Delay time, mcbspx_clkx active edge to mcbspx_fsx 0.7 22.2 0.7 44.4 nsvalid
(1) In mcbspx, x identifies the McBSP number: 3, 4, or 5. Note that for the McBSP3, these timings concern only Set #1: multiplexing modeby default. The McBSP3 is also multiplexed on UART pins (Set #2) and on McBSP1 pins (Set #3): the corresponding timings arespecified in the table above. For the McBSP4, these timings concern only Set #2 (multiplexing mode on GPMC pins).
Figure 6-37. McBSP Falling Edge Receive Timing in Master Mode
Figure 6-38. McBSP Falling Edge Receive Timing in Slave Mode
6.6.1.1.4 Transmit Timing with Falling Edge as Activation Edge
Table 6-62 through Table 6-67 assume testing over the recommended operating conditions (seeFigure 6-39 and Figure 6-40 ).
Table 6-62. McBSP1, 2, and 3 (Sets #2 and #3) Timing Requirements Falling Edge and Transmit Mode
(1)
NO. PARAMETER 1.15 V 1.0 V UNIT
MIN MAX MIN MAX
B5 t
su(FSXV-CLKXAE)
Setup time, mcbspx_fsx valid before mcbspx_clkx 3.7 7.9 nsactive edgeB6 t
h(CLKXAE-FSXV)
Hold time, mcbspx_fsx valid after mcbspx_clkx 0.5 0.5 nsactive edge
(1) In mcbspx, x identifies the McBSP number: 1, 2, or 3. Note that for the McBSP3, these timings concern only Set #2 (multiplexing modeon UART pins) and Set #3 (multiplexing mode on McBSP1 pins).
Table 6-63. McBSP1, 2, and 3 (Sets #2 and #3) Switching Characteristics Falling Edge and TransmitMode
(1)
NO. PARAMETER 1.15 V 1.0 V UNIT
MIN MAX MIN MAX
B2 t
d(CLKXAE-FSXV)
Delay time, mcbspx_clkx active edge to mcbspx_fsx 0.7 14.8 0.7 29.6 nsvalidB8 t
d(CLKXAE-DXV)
Delay time, mcbspx_clkx active edge to Master 0.6 14.8 0.6 29.6 nsmcbspx_dx valid
Slave 0.6 14.8 0.6 29.6 ns
(1) In mcbspx, x identifies the McBSP number: 1, 2, or 3. Note that for the McBSP3, these timings concern only Set #2 (multiplexing modeon UART pins) and Set #3 (multiplexing mode on McBSP1 pins).
Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 207
mcbspx_clkx
mcbspx_fsx
mcbspx_dx D7 D6 D5
B2 B2
B8
030-074
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Table 6-64. McBSP4 (Set #1) Timing Requirements Falling Edge and Transmit Mode
(1)
NO. PARAMETER 1.15 V 1.0 V UNIT
MIN MAX MIN MAX
B5 t
su(FSXV-CLKXAE)
Setup time, mcbspx_fsx valid before 3.7 7.9 nsmcbspx_clkx active edgeB6 t
h(CLKXAE-FSXV)
Hold time, mcbspx_fsx valid after mcbspx_clkx 0.5 0.5 nsactive edge
(1) In mcbspx, x identifies the McBSP number: 4. Note that for the McBSP4, these timings concern only Set #1: multiplexing mode bydefault. The McBSP4 is also multiplexed on GPMC pins (Set #2): the corresponding timings are specified in Table 6-66 .
Table 6-65. McBSP4 (Set #1) Switching Characteristics Falling Edge and Transmit Mode
(1)
NO. PARAMETER 1.15 V 1.0 V UNIT
MIN MAX MIN MAX
B2 t
d(CLKXAE-FSXV)
Delay time, mcbspx_clkx active edge to mcbspx_fsx 0.7 16.6 0.7 33.1 nsvalidB8 t
d(CLKXAE-DXV)
Delay time, mcbspx_clkx active edge to Master 0.6 16.6 0.6 33.1 nsmcbspx_dx valid
Slave 0.6 17.3 0.6 33.1 ns
(1) In mcbspx, x identifies the McBSP number: 4. Note that for the McBSP4, these timings concern only Set #1: multiplexing mode bydefault. The McBSP4 is also multiplexed on GPMC pins (Set #2): the corresponding timings are specified in Table 6-66 .
Table 6-66. McBSP3 (Set #1), 4 (Set #2), and 5 Timing Requirements Falling Edge and Transmit Mode
(1)
NO. PARAMETER 1.15 V 1.0 V UNIT
MIN MAX MIN MAX
B5 t
su(FSXV-CLKXAE)
Setup time, mcbspx_fsx valid before mcbspx_clkx 5.8 12.2 nsactive edgeB6 t
h(CLKXAE-FSXV)
Hold time, mcbspx_fsx valid after mcbspx_clkx 0.5 0.5 nsactive edge
(1) In mcbspx, x identifies the McBSP number: 3, 4, or 5. Note that for the McBSP3, these timings concern only Set #1: multiplexing modeby default. The McBSP3 is also multiplexed on UART pins (Set #2) and on McBSP1 pins (Set #3): the corresponding timings arespecified in Table 6-66 . For the McBSP4, these timings concern only Set #2 (multiplexing mode on GPMC pins).
Table 6-67. McBSP3 (Set #1), 4 (Set #2), and 5 Switching Requirements Falling Edge and TransmitMode
(1)
NO. PARAMETER 1.15 V 1.0 V UNIT
MIN MAX MIN MAX
B2 t
d(CLKXAE-FSXV)
Delay time, mcbspx_clkx active edge to mcbspx_fsx valid 0.7 22.2 0.7 44.4 nsB8 t
d(CLKXAE-DXV)
Delay time, mcbspx_clkx active edge to Master 0.6 22.2 0.6 44.4 nsmcbspx_dx valid
Slave 0.6 22.2 0.6 44.4 ns
(1) In mcbspx, x identifies the McBSP number: 3, 4, or 5. Note that for the McBSP3, these timings concern only Set #1: multiplexing modeby default. The McBSP3 is also multiplexed on UART pins (Set #2) and on McBSP1 pins (Set #3): the corresponding timings arespecified in Table 6-66 . For the McBSP4, these timings concern only Set #2 (multiplexing mode on GPMC pins).
Figure 6-39. McBSP Falling Edge Transmit Timing in Master Mode
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS208 Submit Documentation Feedback
mcbspx_clkx
mcbspx_fsx
mcbspx_dx D7 D6 D5
B8
B5 B6
030-075
6.6.1.2 McBSP in TDM—Multipoint Mode (McBSP3)
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Figure 6-40. McBSP Falling Edge Transmit Timing in Slave Mode
For TDM application in multipoint mode, OMAP35 15/03 is considered as a slave. Table 6-69 andTable 6-70 assume testing over the operating conditions and electrical characteristic conditions describedbelow.
Table 6-68. McBSP3 Timing Conditions—TDM in Multipoint Mode
TIMING CONDITION PARAMETER VALUE UNIT
MIN MAX
Input Conditions
t
R
Input signal rising time 1.0 8.5 nst
F
Input signal falling time 1.0 8.5 ns
Output Conditions
C
LOAD
Output Load Capacitance 40 pF
Table 6-69. McBSP3 Timing Requirements—TDM in Multipoint Mode
(1)
NO. PARAMETER 1.15 V 1.0 V UNIT
MIN MAX MIN MAX
t
W(CLKH)
Cycle Time, mcbsp3_clkx 162.8 162.8 nst
W(CLKH)
Typical Pulse duration, mcbsp3_clkx high 0.5*P
(2)
0.5*P
(2)
nst
W(CLKL)
Typical Pulse duration, mcbsp3_clkx low 0.5*P
(2)
0.5*P
(2)
nst
dc(CLK)
Duty cycle error, mcbsp3_clkx –8.14 8.14 –8.14 8.14 nsB3
(3)
t
su(DRV-CLKAE)
Setup time, mcbsp3_dr valid before 9 9 nsmcbsp3_clkx active edgeB4
(3)
t
h(CLKAE-DRV)
Hold time, mcbsp3_dr valid after mcbsp3_clkx 2.4 2.4 nsactive edgeB5
(3)
t
su(FSV-CLKAE)
Setup time, mcbsp3_fsx valid before 9 9 nsmcbsp3_clkx active edgeB6
(3)
t
h(CLKAE-FSV)
Hold time, mcbsp3_fsx valid after 2.4 2.4 nsmcbsp3_clkx active edge
(1) For McBSP3, these timings concern only Set #3 (multiplexing mode in McBSP1 pins).(2) P = mcbsp3_clkx period in ns(3) See Section 6.6.1.1 ,McBSP in Normal Mode for corresponding figures.
Table 6-70. McBSP3 Switching Characteristics—TDM in Multipoint Mode
(1)
NO. PARAMETER 1.15 V 1.0 V UNIT
MIN MAX MIN MAX
B8
(2)
t
d(CLKXAE-DXV)
Delay time, mcbsp3_clkx active edge to 0.6 16.8 0.6 29.6 nsmcbsp3_dx valid
(1) For McBSP3, these timings concern only Set #3 (multiplexing mode in McBSP1 pins).(2) See Section 6.6.1.1 ,McBSP in Normal Mode for corresponding figures.
Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 209
6.6.2 Multichannel Serial Port Interface (McSPI) Timing
6.6.2.1 McSPI in Slave Mode
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
The multichannel SPI is a master/slave synchronous serial bus. The McSPI1 module supports up to fourperipherals and the others (McSPI2, McSPI3, and McSPI4) support up to two peripherals. The followingtimings are applicable to the different configurations of McSPI in master/slave mode for any McSPI andany channel (n).
Table 6-71 and Table 6-72 assume testing over the recommended operating conditions (see Figure 6-41 ).
Table 6-71. McSPI Interface Timing Requirements Slave Mode
(1) (2)
NO. PARAMETER 1.15 V 1.0 V UNIT
MIN MAX MIN MAX
1/SS 1/t
c(CLK)
Frequency, mcspix_clk 24 12 MHz0
t
j(CLK)
Cycle jitter
(3)
, mcspix_clk -200 200 -200 200 psSS1 t
w(CLK)
Pulse duration, mcspix_clk high or low 0.45*P
(4)
0.55*P
(4)
0.45*P
(4)
0.55*P
(4)
nsSS2 t
su(SIMOV-CLKAE)
Setup time, mcspix_simo valid before mcspix_clk 4.2 9.5 nsactive edgeSS3 t
h(SIMOV-CLKAE)
Hold time, mcspix_simo valid after mcspix_clk active 4.6 9.9 nsedgeSS4 t
su(CS0V-CLKFE)
Setup time, mcspix_cs0 valid before mcspix_clk first 13.8 28.6 nsedgeSS5 t
h(CS0I-CLKLE)
Hold time, mcspix_cs0 invalid after mcspix_clk last 13.8 28.6 nsedge
(1) The input timing requirements are given by considering a rise time and a fall time of 4 ns.(2) In mcspix, x is equal to 1, 2, 3, or 4.(3) Maximum cycle jitter supported by mcspix_clk input clock.(4) P = mcspix_clk clock period
Table 6-72. McSPI Interface Switching Requirements
(1) (2) (3) (4)
NO. PARAMETER 1.15 V 1.0 V UNIT
MIN MAX MIN MAX
SS6 t
d(CLKAE-SOMIV)
Delay time, mcspix_clk active edge to mcspix_somi 1.8 15.9 3.2 31.7 nsshiftedSS7 t
d(CS0AE-SOMIV)
Delay time, mcspix_cs0 active edge to Modes 0 and 2 15.9 31.7 nsmcspix_somi shifted
(1) The capacitive load is equivalent to 20 pF.(2) In mcspix, x is equal to 1, 2, 3, or 4.(3) The polarity of mcspix_clk and the active edge (rising or falling) on which mcspix_simo is driven and mcspix_somi is latched is allsoftware configurable.(4) This timing applies to all configurations regardless of mcspix_clk polarity and which clock edges are used to drive output data andcapture input data.
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS210 Submit Documentation Feedback
6.6.2.2 McSPI in Master Mode
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Figure 6-41. McSPI Interface Transmit and Receive in Slave Mode
(1) (2)
(1) The active clock edge (rising or falling) on which mcspi_somi is driven and mcspi_simo data is latched is software configurable with thebit MSPI_CHCONFx[0] = PHA and the bit MSPI_CHCONFx[1] = POL.(2) The polarity of mcspix_csi is software configurable with the bit MSPI_CHCONFx[6] = EPOL In mcspix, x is equal to 1, 2, 3, or 4.
Table 6-73 and Table 6-74 assume testing over the recommended operating conditions (see Figure 6-42 ).
Table 6-73. McSPI1, 2, and 4 Interface Timing Requirements Master Mode
(1) (2)
NO. PARAMETER 1.15 V 1.0 V UNIT
MIN MAX MIN MAX
SM2 t
su(SOMIV-CLKAE)
Setup time, mcspix_somi valid before mcspix_clk 1.1 1.5 nsactive edgeSM3 t
h(SOMIV-CLKAE)
Hold time, mcspix_somi valid after mcspix_clk active 1.9 2.8 nsedge
(1) The input timing requirements are given by considering a rise time and a fall time of 4 ns.(2) In mcspix, x is equal to 1, 2, or 4. In mcspix_csn, n is equal to 0, 1, 2, or 3 for x equal to 1, n is equal to 0 or 1 for x equal to 2 and 4.
Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 211
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Table 6-74. McSPI1, 2, and 4 Interface Switching Characteristics Master Mode
(1) (2) (3)
NO. PARAMETER 1.15 V 1.0 V UNIT
MIN MAX MIN MAX
1/SM0 1/t
c(CLK)
Frequency, mcspix_clk 48 24 MHzt
j(CLK)
Cycle jitter
(4)
, mcspix_clk -200 200 -200 200 psSM1 t
w(CLK)
Pulse duration, mcspix_clk high or low 0.45*P
(5)
0.55*P
(5)
0.45*P
(
0.55*P
(5)
ns5)
SM4 t
d(CLKAE-SIMOV)
Delay time, mcspix_clk active edge to mcspix_simo –2.1 5 –2.1 11.3 nsshiftedSM5 t
d(CSnA-CLKFE)
Delay time, mcspix_csi active to Modes 1 A
(6)
3.1 A
(6)
nsmcspix_clk first edge and 3 4.4Modes 0 B
(7)
3.1 B
(7)
nsand 2 4.4SM6 t
d(CLKLE-CSnI)
Delay time, mcspix_clk last edge to Modes 1 B
(7)
3.1 B
(7)
nsmcspix_csi inactive and 3 4.4Modes 0 A
(6)
3.1 A
(6)
nsand 2 4.4SM7 t
d(CSnAE-SIMOV)
Delay time, mcspix_csi active edge to Modes 0 5.0 11.3 nsmcspix_simo shifted and 2
(1) Timings are given for a maximum load capacitance of 20 pF for spix_csn signals, 30 pF for spix_clk and spix_simo signals with x = 1 or2, and 20 pF for spi4_clk and spi4_simo signals.(2) In mcspix, x is equal to 1, 2, or 4. In mcspix_csn, n is equal to 0, 1, 2, or 3 for x equal to 1, n is equal to 0 or 1 for x equal to 2 and 4.(3) The polarity of mcspix_clk and the active edge (rising or falling) on which mcspix_simo is driven and mcspix_somi is latched is allsoftware configurable.(4) Maximum cycle jitter supported by mcspix_clk input clock.(5) P = mcspix_clk clock period(6) Case P = 20.8 ns, A = (TCS+0.5)*P (TCS is a bit field of MSPI_CHCONFx[26:25] register). Case P > 20.8 ns, A = TCS*P (TCS is abitfield of MSPI_CHCONFx[26:25] register). For more information, see the McSPI chapter of the OMAP35x Technical Reference Manual(TRM) [literature number SPRUF98 ].(7) B = TCS*P (TCS is a bit field of MSPI_CHCONFx[26:25] register). For more information, see the McSPI chapter of the OMAP35xTechnical Reference Manual (TRM) [literature number SPRUF98 ].
Table 6-75 and Table 6-76 assume testing over the recommended operating conditions (see Figure 6-42 ).
Table 6-75. McSPI 3 Interface Timing Requirements Master Mode
(1) (2)
NO. PARAMETER 1.15 V 1.0 V UNIT
MIN MAX MIN MAX
SM2 t
su(SOMIV-CLKAE)
Setup time, mcspi3_somi valid before 1.5 4.3 nsmcspi3_clk active edgeSM3 t
h(SOMIV-CLKAE)
Hold time, mcspi3_somi valid after mcspi3_clk 2.8 5.9 nsactive edge
(1) The input timing requirements are given by considering a rise time and a fall time of 4 ns.(2) In mcspi3_csn, n is equal to 0 or 1. The polarity of mcspi3_clk and the active edge (rising or falling) on which mcspi3_simo is driven andmcspi3_somi is latched is all software configurable.
Table 6-76. McSPI3 Interface Switching Requirements Master Mode
(1) (2) (3)
NO. PARAMETER 1.15 V 1.0 V UNIT
MIN MAX MIN MAX
1/SM 1/t
c(CLK)
Frequency, mcspix_clk 24 12 MHz0
t
j(CLK)
Cycle jitter
(4)
, mcspix_clk -200 200 -200 200 ps
(1) The capacitive load is equivalent to 20 pF.(2) In mcspi3_csn, n is equal to 0 or 1. The polarity of mcspi3_clk and the active edge (rising or falling) on which mcspi3_simo is driven andmcspi3_somi is latched is all software configurable.(3) This timing applies to all configurations regardless of McSPI3_CLK polarity and which clock edges are used to drive output data andcapture input data.(4) Maximum cycle jitter supported by mcspix_clk input clock.
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS212 Submit Documentation Feedback
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Table 6-76. McSPI3 Interface Switching Requirements Master Mode (continued)
NO. PARAMETER 1.15 V 1.0 V UNIT
MIN MAX MIN MAX
SM1 t
w(CLK)
Pulse duration, mcspix_clk high or low 0.45*P
(5)
0.55*P
(5)
0.45*P
(5)
0.55*P
(5)
nsSM4 t
d(CLKAE-SIMOV)
Delay time, mcspix_clk active edge to –2.1 11.3 –5.3 23.6 nsmcspix_simo shiftedSM5 t
d(CSnA-CLKFE)
Delay time, mcspix_csi active Modes 1 –4.4 + A
(6)
–10.1 + A
(6)
nsto mcspix_clk first edge and 3Modes 0 –4.4 + B
(7)
–10.1 + B
(7)
nsand 2SM6 t
d(CLK-CSn)
Delay time, mcspix_clk last Modes 1 B 4.4
(7)
B 10.1
(7)
nsedge to mcspix_csi inactive and 3Modes 0 A
(6)
4.4 A
(6)
10.1 nsand 2SM7 t
d(CSnAE-SIMOV)
Delay time, mcspix_csi active Modes 0 11.3 23.6 nsedge to mcspix_simo shifted and 2
(5) P = mcspi3_clk clock period(6) Case P = 20.8 ns, A = (TCS + 0.5)*P (TCS is a bit field of MSPI_CHCONFx[26:25] register). Case P > 20.8 ns, A = TCS*P (TCS is a bitfield of MSPI_CHCONFx[26:25] register). For more information, see the McSPI chapter of the OMAP35x Technical Reference Manual(TRM) [literature number SPRUF98 ].(7) B = TCS*P (TCS is a bit field of MSPI_CHCONFx[26:25] register). For more information, see the McSPI chapter of the OMAP35xTechnical Reference Manual (TRM) [literature number SPRUF98 ].
Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 213
mcspix_csn(EPOL=1)
mcspix_clk(POL=0)
mcspix_clk(POL=1)
mcspix_simo
mcspix_somi
mcspix_csn(EPOL=1)
mcspix_clk(POL=0)
mcspix_clk(POL=1)
mcspix_simo
mcspix_somi
Bitn-1 Bitn-2 Bitn-3 Bitn-4 Bit0
Bitn-1 Bitn-2 Bitn-3 Bitn-4 Bit0
Bitn-1 Bitn-2 Bitn-3 Bit1 Bit0
Bitn-1 Bitn-2 Bitn-3 Bit1 Bit0
SM5 SM6
SM4
SM3
SM1
SM0
SM2
SM1
SM0
SM5 SM6
SM3
SM1
SM0
SM1
SM0
SM2
SM4
SM7
Mode0&2
Mode1&3
030-077
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Figure 6-42. McSPI Interface Transmit and Receive in Master Mode
(1) (2) (3)
(1) The active clock edge (rising or falling) on which mcspix_simo is driven and mcspi_somi data is latched is software configurable with thebit MSPI_CHCONFx[0] = PHA and the bit MSPI_CHCONFx[1] = POL.(2) The polarity of mcspix_csi is software configurable with the bit MSPI_CHCONFx[6] = EPOL.(3) In mcspix, x is equal to 1. In mcspix_csn, n is equal to 0, 1, 2, or 3.
214 TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS Submit Documentation Feedback
6.6.3 Multiport Full-Speed Universal Serial Bus (USB) Interface
6.6.3.1 Multiport Full-Speed Universal Serial Bus (USB) Unidirectional Standard 6-pin Mode
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
The OMAP35 15/03 processor provides three USB ports working in full- and low-speed data transactions(up to 12Mbit/s).
Connected to either a serial link controller (TLL modes) or a serial PHY (PHY interface modes) it supports:6-pin (Tx: Dat/Se0 or Tx: Dp/Dm) unidirectional mode4-pin bidirectional mode3-pin bidirectional mode
Table 6-78 and Table 6-79 assume testing over the recommended operating conditions (see Figure 6-43 ).
Table 6-77. Low-/Full-Speed USB Timing Conditions Unidirectional Standard 6-pin Mode
TIMING CONDITION PARAMETER VALUE UNIT
Input Conditions
t
R
Input signal rise time 2.0 nst
F
Input signal fall time 2.0 ns
Output Conditions
C
LOAD
Output load capacitance 15.0 pF
Table 6-78. Low-/Full-Speed USB Timing Requirements Unidirectional Standard 6-pin Mode
NO. PARAMETER 1.15 V 1.0 V UNIT
MIN MAX MIN MAX
FSU1 t
d(Vp,Vm)
Time duration, mmx_rxdp and mmx_rxdm low together during 14.0 14.0 nstransitionFSU2 t
d(Vp,Vm)
Time duration, mmx_rxdp and mmx_rxdm high together during 8.0 8.0 nstransitionFSU3 t
d(RCVU0)
Time duration, mmx_rrxcv undefine during a single end 0 14.0 14.0 ns(mmx_rxdp and mmx_rxdm low together)FSU4 t
d(RCVU1)
Time duration, mmx_rxrcv undefine during a single end 1 8.0 8.0 ns(mmx_rxdp and mmx_rxdm high together)
Table 6-79. Low-/Full-Speed USB Switching Characteristics Unidirectional Standard 6-pin Mode
NO. PARAMETER 1.15 V 1.0 V UNIT
MIN MAX MIN MAX
FSU5 t
d(TXENL-DATV)
Delay time, mmx_txen_n low to mmx_txdat valid 81.8 84.8 81.8 84.8 nsFSU6 t
d(TXENL-SE0V)
Delay time, mmx_txen_n low to mmx_txse0 valid 81.8 84.8 81.8 84.8 nsFSU7 t
s(DAT-SE0)
Skew between mmx_txdat and mmx_txse0 transition 1.5 1.5 nsFSU8 t
d(DATI-TXENH)
Delay time, mmx_txdat invalid to mmx_txen_n high 81.8 81.8 nsFSU9 t
d(SE0I-TXENH)
Delay time, mmx_txse0 invalid to mmx_txen_n high 81.8 81.8 nst
R(do)
Rise time, mmx_txen_n 4.0 4.0 nst
F(do)
Fall time, mmx_txen_n 4.0 4.0 nst
R(do)
Rise time, mmx_txdat 4.0 4.0 nst
F(do)
Fall time, mmx_txdat 4.0 4.0 nst
R(do)
Rise time, mmx_txse0 4.0 4.0 nst
F(do)
Fall time, mmx_txse0 4.0 4.0 ns
Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 215
mmx_txen_n
mmx_txdat
mmx_txse0
mmx_rxdp
mmx_rxdm
mmx_rxrcv
FSU5
FSU6 FSU7
FSU1
FSU1
FSU2
FSU2
FSU3 FSU4
FSU8
FSU9
Transmit Receive
030-080
6.6.3.2 Multiport Full-Speed Universal Serial Bus (USB) Bidirectional Standard 4-pin Mode
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
In mmx, x is equal to 0, 1, or 2.
Figure 6-43. Low-/Full-Speed USB Unidirectional Standard 6-pin Mode
Table 6-81 and Table 6-82 assume testing over the recommended operating conditions (see Figure 6-44 ).
Table 6-80. Low-/Full-Speed USB Timing Conditions Bidirectional Standard 4-pin Mode
TIMING CONDITION PARAMETER VALUE UNIT
Input Conditions
t
R
Input signal rise time 2.0 nst
F
Input signal fall time 2.0 ns
Output Conditions
C
LOAD
Output load capacitance 15.0 pF
Table 6-81. Low-/Full-Speed USB Timing Requirements Bidirectional Standard 4-pin Mode
NO. PARAMETER 1.15 V 1.0 V UNIT
MIN MAX MIN MAX
FSU10 t
d(DAT,SE0)
Time duration, mmx_txdat and mmx_txse0 low together 14.0 14.0 nsduring transitionFSU11 t
d(DAT,SE0)
Time duration, mmx_txdat and mmx_txse0 high together 8.0 8.0 nsduring transitionFSU12 t
d(RCVU0)
Time duration, mmx_rrxcv undefine during a single end 0 14.0 14.0 ns(mmx_txdat and mmx_txse0 low together)FSU13 t
d(RCVU1)
Time duration, mmx_rxrcv undefine during a single end 1 8.0 8.0 ns(mmx_txdat and mmx_txse0 high together)
Table 6-82. Low-/Full-Speed USB Switching Characteristics Bidirectional Standard 4-pin Mode
NO. PARAMETER 1.15 V 1.0 V UNIT
MIN MAX MIN MAX
FSU14 t
d(TXENL-DATV)
Delay time, mmx_txen_n low to mmx_txdat valid 81.8 84.8 81.8 84.8 nsFSU15 t
d(TXENL-SE0V)
Delay time, mmx_txen_n low to mmx_txse0 valid 81.8 84.8 81.8 84.8 nsFSU16 t
s(DAT-SE0)
Skew between mmx_txdat and mmx_txse0 1.5 1.5 nstransitionFSU17 t
d(DATV-TXENH)
Delay time, mmx_txdat invalid before mmx_txen_n 81.8 81.8 nshigh
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS216 Submit Documentation Feedback
mmx_txen_n
mmx_txdat
mmx_txse0
mmx_rxrcv
FSU16
FSU14
FSU15
FSU10
FSU10
FSU11
FSU11
FSU12 FSU13
FSU17
FSU18
Transmit Receive
030-081
6.6.3.3 Multiport Full-Speed Universal Serial Bus (USB) Bidirectional Standard 3-pin Mode
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Table 6-82. Low-/Full-Speed USB Switching Characteristics Bidirectional Standard 4-pin Mode(continued)
NO. PARAMETER 1.15 V 1.0 V UNIT
MIN MAX MIN MAX
FSU18 t
d(SE0V-TXENH)
Delay time, mmx_txse0 invalid before mmx_txen_n 81.8 81.8 nshight
R(txen)
Rise time, mmx_txen_n 4.0 4.0 nst
F(txen)
Fall time, mmx_txen_n 4.0 4.0 nst
R(dat)
Rise time, mmx_txdat 4.0 4.0 nst
F(dat)
Fall time, mmx_txdat 4.0 4.0 nst
R(se0)
Rise time, mmx_txse0 4.0 4.0 nst
F(se0)
Fall time, mmx_txse0 4.0 4.0 ns
In mmx, x is equal to 0, 1, or 2.
Figure 6-44. Low-/Full-Speed USB Bidirectional Standard 4-pin Mode
Table 6-84 and Table 6-85 assume testing over the recommended operating conditions below (seeFigure 6-45 ).
Table 6-83. Low-/Full-Speed USB Timing Conditions Bidirectional Standard 3-pin Mode
TIMING CONDITION PARAMETER VALUE UNIT
Input Conditions
t
R
Input signal rise time 2.0 nst
F
Input signal fall time 2.0 ns
Output Conditions
C
LOAD
Output load capacitance 15.0 pF
Table 6-84. Low-/Full-Speed USB Timing Requirements Bidirectional Standard 3-pin Mode
NO. PARAMETER 1.15 V 1.0 V UNIT
MIN MAX MIN MAX
FSU19 t
d(DAT,SE0)
Time duration, mmx_txdat and mmx_txse0 low together 14.0 14.0 nsduring transitionFSU20 t
d(DAT,SE0)
Time duration, mmx_tsdat and mmx_txse0 high 8.0 8.0 nstogether during transition
Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 217
mmx_txen_n
mmx_txdat
mmx_txse0
FSU23
FSU21
FSU22
FSU19
FSU19
FSU20
FSU20
FSU24
FSU25
Transmit Receive
030-082
6.6.3.4 Multiport Full-Speed Universal Serial Bus (USB) Unidirectional TLL 6-pin Mode
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Table 6-85. Low-/Full-Speed USB Switching Characteristics Bidirectional Standard 3-pin Mode
NO. PARAMETER 1.15 V 1.0 V UNIT
MIN MAX MIN MAX
FSU21 t
d(TXENL-DATV)
Delay time, mmx_txen_n low to mmx_txdat valid 81.8 84.8 81.8 84.8 nsFSU22 t
d(TXENL-SE0V)
Delay time, mmx_txen_n low to mmx_txse0 valid 81.8 84.8 81.8 84.8 nsFSU23 t
s(DAT-SE0)
Skew between mmx_txdat and mmx_txse0 1.5 1.5 nstransitionFSU24 t
d(DATI-TXENH)
Delay time, mmx_txdat invalid to mmx_txen_n 81.8 81.8 nshighFSU25 t
d(SE0I-TXENH)
Delay time, mmx_txse0 invalid to mmx_txen_n 81.8 81.8 nshight
R(do)
Rise time, mmx_txen_n 4.0 4.0 nst
F(do)
Fall time, mmx_txen_n 4.0 4.0 nst
R(do)
Rise time, mmx_txdat 4.0 4.0 nst
F(do)
Fall time, mmx_txdat 4.0 4.0 nst
R(do)
Rise time, mmx_txse0 4.0 4.0 nst
F(do)
Fall time, mmx_txse0 4.0 4.0 ns
In mmx, x is equal to 0, 1, or 2.
Figure 6-45. Low-/Full-Speed USB Bidirectional Standard 3-pin Mode
Table 6-87 and Table 6-88 assume testing over the recommended operating conditions (see Figure 6-46 ).
Table 6-86. Low-/Full-Speed USB Timing Conditions Unidirectional TLL 6-pin Mode
TIMING CONDITION PARAMETER VALUE UNIT
Input Conditions
t
R
Input signal rise time 2 nst
F
Input signal fall time 2 ns
Output Conditions
C
LOAD
Output load capacitance 15 pF
Table 6-87. Low-/Full-Speed USB Timing Requirements Unidirectional TLL 6-pin Mode
NO. PARAMETER 1.15 V 1.0 V UNIT
MIN MAX MIN MAX
FSUT1 t
d(SE0,DAT)
Time duration, mmx_txse0 and mmx_txdat low 14 14 nstogether during transitionFSUT2 t
d(SE0,DAT)
Time duration, mmx_txse0 and mmx_txdat high 8 8 nstogether during transition
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS218 Submit Documentation Feedback
mmx_txen_n
mmx_txdat
mmx_txse0
mmx_rxdp
mmx_rxdm
mmx_rxrcv
FSUT3 FSUT5
FSUT4 FSUT6FSUT7
FSUT8
FSUT1
FSUT1
FSUT2
FSUT2
Transmit Receive
030-083
6.6.3.5 Multiport Full-Speed Universal Serial Bus (USB) Bidirectional TLL 4-pin Mode
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Table 6-88. Low-/Full-Speed USB Switching Characteristics Unidirectional TLL 6-pin Mode
NO. PARAMETER 1.15 V 1.0 V UNIT
MIN MAX MIN MAX
FSUT3 t
d(TXENH-DPV)
Delay time, mmx_txen_n high to mmx_rxdp valid 81.8 84.8 81.8 84.8 nsFSUT4 t
d(TXENH-DMV)
Delay time, mmx_txen_n high to mmx_rxdm valid 81.8 84.8 81.8 84.8 nsFSUT5 t
d(DPI-TXENL)
Delay time, mmx_rxdp invalid mmx_txen_n low 81.8 81.8 nsFSUT6 t
d(DMI-TXENL)
Delay time, mmx_rxdm invalid mmx_txen_n low 81.8 81.8 nsFSUT7 t
s(DP-DM)
Skew between mmx_rxdp and mmx_rxdm 1.5 1.5 nstransitionFSUT8 t
s(DP,DM-RCV)
Skew between mmx_rxdp, mmx_rxdm, and 1.5 1.5 nsmmx_rxrcv transitiont
R(rxrcv)
Rise time, mmx_rxrcv 4 4 nst
F(rxrcv)
Fall time, mmx_rxrcv 4 4 nst
R(dp)
Rise time, mmx_rxdp 4 4 nst
F(dp)
Fall time, mmx_rxdp 4 4 nst
R(dm)
Rise time, mmx_rxdm 4 4 nst
F(dm)
Fall time, mmx_rxdm 4 4 ns
In mmx, x is equal to 0, 1, or 2.
Figure 6-46. Low-/Full-Speed USB Unidirectional TLL 6-pin Mode
Table 6-90 and Table 6-91 assume testing over the recommended operating conditions (see Figure 6-47 ).
Table 6-89. Low-/Full-Speed USB Timing Conditions Bidirectional TLL 4-pin Mode
TIMING CONDITION PARAMETER VALUE UNIT
Input Conditions
t
R
Input signal rise time 2 nst
F
Input signal fall time 2 ns
Output Conditions
C
LOAD
Output load capacitance 15 pF
Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 219
mmx_txen_n
mmx_txdat
mmx_txse0
mmx_rxrcv
FSUT13
FSUT11
FSUT12
FSUT9
FSUT9
FSUT10
FSUT10
FSUT14
FSUT15
FSUT16
ReceiveTransmit
030-084
6.6.3.6 Multiport Full-Speed Universal Serial Bus (USB) Bidirectional TLL 3-pin Mode
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Table 6-90. Low-/Full-Speed USB Timing Requirements Bidirectional TLL 4-pin Mode
NO. PARAMETER 1.15 V 1.0 V UNIT
MIN MAX MIN MAX
FSUT9 t
d(DAT,SE0)
Time duration, mmx_txdat and mmx_txse0 low 14 14 nstogether during transitionFSUT10 t
d(DAT,SE0)
Time duration, mmx_tsdat and mmx_txse0 high 8 8 nstogether during transition
Table 6-91. Low-/Full-Speed USB Switching Characteristics Bidirectional TLL 4-pin Mode
NO. PARAMETER 1.15 V 1.0 V UNIT
MIN MAX MIN MAX
FSUT11 t
d(TXENL-DATV)
Delay time, mmx_txen_n active to mmx_txdat valid 81.8 84.8 81.8 84.8 nsFSUT12 t
d(TXENL-SE0V)
Delay time, mmx_txen_n active to mmx_txse0 valid 81.8 84.8 81.8 84.8 nsFSUT13 t
s(DAT-SE0)
Skew between mmx_txdat and mmx_txse0 1.5 1.5 nstransitionFSUT14 t
s(DP,DM-RCV)
Skew between mmx_rxdp, mmx_rxdm, and 1.5 1.5 nsmmx_rxrcv transitionFSUT15 t
d(DATI-TXENL)
Delay time, mmx_txse0 invalid to mmx_txen_n Low 81.8 81.8 nsFSUT16 t
d(SE0I-TXENL)
Delay time, mmx_txdat invalid to mmx_txen_n Low 81.8 81.8 nst
R(rcv)
Rise time, mmx_rxrcv 4 4 nst
F(rcv)
Fall time, mmx_rxrcv 4 4 nst
R(dat)
Rise time, mmx_txdat 4 4 nst
F(dat)
Fall time, mmx_txdat 4 4 nst
R(se0)
Rise time, mmx_txse0 4 4 nst
F(se0)
Fall time, mmx_txse0 4 4 ns
In mmx, x is equal to 0, 1, or 2.
Figure 6-47. Low-/Full-Speed USB Bidirectional TLL 4-pin Mode
Table 6-93 and Table 6-94 assume testing over the recommended operating conditions (see Figure 6-48 ).
Table 6-92. Low-/Full-Speed USB Timing Conditions Bidirectional TLL 3-pin Mode
TIMING CONDITION PARAMETER VALUE UNIT
Input Conditions
t
R
Input signal rise time 2 nst
F
Input signal fall time 2 ns
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS220 Submit Documentation Feedback
mmx_txen_n
mmx_txdat
mmx_txse0
FSUT21
FSUT19
FSUT20
FSUT17
FSUT17
FSUT18
FSUT18
FSUT22
FSUT23
Transmit Receive
030-085
6.6.4 Multiport High-Speed Universal Serial Bus (USB) Timing
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Table 6-92. Low-/Full-Speed USB Timing Conditions Bidirectional TLL 3-pin Mode (continued)
TIMING CONDITION PARAMETER VALUE UNIT
Output Conditions
C
LOAD
Output load capacitance 15 pF
Table 6-93. Low-/Full-Speed USB Timing Requirements Bidirectional TLL 3-pin Mode
NO. PARAMETER 1.15 V 1.0 V UNIT
MIN MAX MIN MAX
FSUT17 t
d(DAT,SE0)
Time duration, mmx_txdat and mmx_txse0 low 14 14 nstogether during transitionFSUT18 t
d(DAT,SE0)
Time duration, mmx_tsdat and mmx_txse0 high 8 8 nstogether during transition
Table 6-94. Low-/Full-Speed USB Switching Characteristics Bidirectional TLL 3-pin Mode
NO. PARAMETER 1.15 V 1.0 V UNIT
MIN MAX MIN MAX
FSUT19 t
d(TXENH-DATV)
Delay time, mmx_txen_n high to mmx_txdat valid 81.8 84.8 81.8 84.8 nsFSUT20 t
d(TXENH-SE0V)
Delay time, mmx_txen_n high to mmx_txse0 valid 81.8 84.8 81.8 84.8 nsFSUT21 t
s(DAT-SE0)
Skew between mmx_txdat and mmx_txse0 1.5 1.5 nstransitionFSUT22 t
d(DATI-TXENL)
Delay time, mmx_txdat invalid mmx_txen_n low 81.8 81.8 nsFSUT23 t
d(SE0I-TXENL)
Delay time, mmx_txse0 invalid mmx_txen_n low 81.8 81.8 nst
R(dat)
Rise time, mmx_txdat 4 4 nst
F(dat)
Fall time, mmx_txdat 4 4 nst
R(se0)
Rise time, mmx_txse0 4 4 nst
F(se0)
Fall time, mmx_txse0 4 4 nst
R(do)
Rise time, mmx_txse0 4 4 nst
F(do)
Fall time, mmx_txse0 4 4 ns
In mmx, x is equal to 0, 1, or 2.
Figure 6-48. Low-/Full-Speed USB Bidirectional TLL 3-pin Mode
In addition to the full-speed USB controller, a high-speed (HS) USB OTG controller is instantiated insideOMAP35 15/03. It allows high-speed transactions (up to 480 Mbit/s) on the USB ports 0, 1, 2, and 3.Port 0: 12-bit slave mode (SDR)Port 1 and port 2: 12-bit master mode (SDR) 12-bit TLL master mode (SDR)
Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 221
6.6.4.1 High-Speed Universal Serial Bus (USB) on Port 0 12-bit Slave Mode
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
8-bit TLL master mode (DDR)Port 3: 12-bit TLL master mode (SDR) 8-bit TLL master mode (DDR)
Table 6-96 and Table 6-97 assume testing over the recommended operating conditions (see Figure 6-49 ).
Table 6-95. High-Speed USB Timing Conditions 12-bit Slave Mode
TIMING CONDITION PARAMETER VALUE UNIT
Input Conditions
t
r
Input Signal Rising Time 2.00 nst
f
Input Signal Falling Time 2.00 ns
Output Conditions
C
load
Output Load Capacitance 3.50 pF
Table 6-96. High-Speed USB Timing Requirements 12-bit Slave Mode
(1)
NO. PARAMETER 1.15 V UNIT
MIN MAX
HSU0 f
p(CLK)
hsusb0_clk clock frequency
(2) (3)
60.03 MHzt
j(CLK)
Cycle Jitter
(3)
, hsusb0_clk 500.00 psHSU3 t
s(DIRV-CLKH)
Setup time, hsusb0_dir valid before hsusb0_clk rising edge 6.7 nst
s(NXTV-CLKH)
Setup time, hsusb0_nxt valid before hsusb0_clk rising edge 6.7 nsHSU4 t
h(CLKH-DIRIV)
Hold time, hsusb0_dir valid after hsusb0_clk rising edge 0.0 nst
h(CLKH-NXT/IV)
Hold time, hsusb0_nxt valid after hsusb0_clk rising edge 0.0 nsHSU5 t
s(DATAV-CLKH)
Setup time, hsusb0_data[0:7] valid before hsusb0_clk rising edge 6.7 nsHSU6 t
h(CLKH-DATIV)
Hold time, hsusb0_data[0:7] valid after hsusb0_clk rising edge 0.0 ns
(1) The timing requirements are assured for the cycle jitter error condition specified.(2) Related with the input maximum frequency supported by the I/F module.(3) Maximum cycle jitter supported by clk input clock.
Table 6-97. High-Speed USB Switching Characteristics 12-bit Slave Mode
NO. PARAMETER 1.15 V UNIT
MIN MAX
HSU1 t
d(clkL-STPV)
Delay time, hsusb0_clk high to output usb0_stp valid 9.0 nst
d(clkL-STPIV)
Delay time, hsusb0_clk high to output usb0_stp invalid 0.5 nsHSU2 t
d(clkL-DV)
Delay time, hsusb0_clk high to output hsusb0_data[0:7] valid 9.0 nst
d(clkL-DIV)
Delay time, hsusb0_clk high to output hsusb0_data[0:7] invalid 0.5 nst
r(do)
Rising time, output signals 2.0 nst
f(do)
Falling time, output signals 2.0 ns
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS222 Submit Documentation Feedback
hsusb0_clk
hsusb0_stp
hsusb0_dir_&_nxt
hsusb0_data[7:0] Data_OUT Data_IN
HSU1
HSU0
HSU1
HSU4
HSU2 HSU2 HSU6
HSU3
HSU5
030-086
6.6.4.2 High-Speed Universal Serial Bus (USB) on Ports 1 and 2 12-bit Master Mode
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Figure 6-49. High-Speed USB 12-bit Slave Mode
Table 6-99 and Table 6-100 assume testing over the recommended operating conditions (seeFigure 6-50 ).
Table 6-98. High-Speed USB Timing Conditions 12-bit Master Mode
TIMING CONDITION PARAMETER VALUE UNIT
Input Conditions
t
R
Input signal rise time 2 nst
F
Input signal fall time 2 ns
Output Conditions
C
LOAD
Output load capacitance 3 pF
Table 6-99. High-Speed USB Timing Requirements 12-bit Master Mode
(1)
NO. PARAMETER 1.15 V UNIT
MIN MAX
HSU3 t
s(DIRV-CLKH)
Setup time, hsusbx_dir valid before hsusbx_clk rising edge 9.3 nst
s(NXTV-CLKH)
Setup time, hsusbx_nxt valid before hsusbx_clk rising edge 9.3 nsHSU4 t
h(CLKH-DIRIV)
Hold time, hsusbx_dir valid after hsusbx_clk rising edge 0.2 nst
h(CLKH-NXT/IV)
Hold time, hsusbx_nxt valid after hsusbx_clk rising edge 0.2 nsHSU5 t
s(DATAV-CLKH)
Setup time, hsusbx_data[0:7] valid before hsusbx_clk rising edge 9.3 nsHSU6 t
h(CLKH-DATIV)
Hold time, hsusbx_data[0:7] valid after hsusbx_clk rising edge 0.2 ns
(1) In hsusbx, x is equal to 1 or 2.
Table 6-100. High-Speed USB Switching Characteristics 12-bit Master Mode
(1)
N O. PARAMETER 1.15 V UNIT
MIN MAX
HSU0 f
p(CLK)
hsusbx_clk clock frequency 60 MHzt
j(CLK)
Jitter standard deviation
(2)
, hsusbx_clk 200 psHSU1 t
d(clkL-STPV)
Delay time, hsusbx_clk high to output hsusbx_stp valid 13 nst
d(clkL-STPIV)
Delay time, hsusbx_clk high to output hsusbx_stp invalid 2 nsHSU2 t
d(clkL-DV)
Delay time, hsusbx_clk high to output hsusbx_data[0:7] valid 13 nst
d(clkL-DIV)
Delay time, hsusbx_clk high to output hsusbx_data[0:7] invalid 2 ns
(1) In hsusbx, x is equal to 1 or 2.(2) The jitter probability density can be approximated by a Gaussian function.
Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 223
hsusbx_clk
hsusbx_stp
hsusbx_dir_&_nxt
hsusbx_data[7:0] Data_OUT Data_IN
HSU1
HSU0
HSU1
HSU4
HSU2 HSU2 HSU6
HSU3
HSU5
030-087
6.6.4.3 High-Speed Universal Serial Bus (USB) on Ports 1, 2, and 3 12-bit TLL Master Mode
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Table 6-100. High-Speed USB Switching Characteristics 12-bit Master Mode (continued)
N O. PARAMETER 1.15 V UNIT
MIN MAX
t
R(do)
Rise time, output signals 2 nst
F(do)
Fall time, output signals 2 ns
In hsusbx, x is equal to 1 or 2.
Figure 6-50. High-Speed USB 12-bit Master Mode
Table 6-102 and Table 6-103 assume testing over the recommended operating conditions (seeFigure 6-51 ).
Table 6-101. High-Speed USB Timing Conditions 12-bit TLL Master Mode
TIMING CONDITION PARAMETER VALUE UNIT
Input Conditions
t
R
Input signal rise time 2 nst
F
Input signal fall time 2 ns
Output Conditions
C
LOAD
Output load capacitance 3 pF
Table 6-102. High-Speed USB Timing Requirements 12-bit TLL Master Mode
(1)
NO. PARAMETER 1.15 V UNIT
MIN MAX
HSU2 t
s(STPV-CLKH)
Setup time, hsusbx_tll_stp valid before hsusbx_tll_clk rising edge 6 nsHSU3 t
s(CLKH-STPIV)
Hold time, hsusbx_tll_stp valid after hsusbx_tll_clk rising edge 0 nsHSU4 t
s(DATAV-CLKH)
Setup time, hsusbx_tll_data[7:0] valid before hsusbx_tll_clk rising edge 6 nsHSU5 t
h(CLKH-DATIV)
Hold time, hsusbx_tll_data[7:0] valid after hsusbx_tll_clk rising edge 0 ns
(1) In hsusbx, x is equal to 1, 2, or 3.
Table 6-103. High-Speed USB Switching Characteristics 12-bit TLL Master Mode
(1)
NO. PARAMETER 1.15 V UNIT
MIN MAX
HSU0 f
p(CLK)
hsusbx_tll_clk clock frequency 60 MHz
(1) In hsusbx, x is equal to 1, 2, or 3.
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS224 Submit Documentation Feedback
hsusbx_tll_clk
hsusbx_tll_stp
hsusbx_tll_dir_&_nxt
hsusbx_tll_data[7:0] Data_IN Data_OUT
HSU0
HSU6
HSU2
HSU3
HSU5
HSU4 HSU7
HSU7
HSU6
030-088
6.6.4.4 High-Speed Universal Serial Bus (USB) on Ports 1, 2, and 3 8-bit TLL Master Mode
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Table 6-103. High-Speed USB Switching Characteristics 12-bit TLL Master Mode (continued)
NO. PARAMETER 1.15 V UNIT
MIN MAX
t
j(CLK)
Jitter standard deviation
(2)
, hsusbx_tll_clk 200 psHSU6 t
d(CLKL-DIRV)
Delay time, hsusbx_tll_clk high to output hsusbx_tll_dir valid 9 nst
d(CLKL-DIRIV)
Delay time, hsusbx_tll_clk high to output hsusbx_tll_dir invalid 0 nst
d(CLKL-NXTV)
Delay time, hsusbx_tll_clk high to output hsusbx_tll_nxt valid 9 nst
d(CLKL-NXTIV)
Delay time, hsusbx_tll_clk high to output hsusbx_tll_nxt invalid 0 nsHSU7 t
d(CLKL-DV)
Delay time, hsusbx_tll_clk high to output hsusbx_tll_data[7:0] valid 9 nst
d(CLKL-DIV)
Delay time, hsusbx_tll_clk high to output hsusbx_tll_data[7:0] invalid 0 nst
R(do)
Rise time, output signals 2 nst
F(do)
Fall time, output signals 2 ns
(2) The jitter probability density can be approximated by a Gaussian function.
In hsusbx, x is equal to 1, 2, or 3.
Figure 6-51. High-Speed USB 12-bit TLL Master Mode
Table 6-105 and Table 6-106 assume testing over the recommended operating conditions (seeFigure 6-52 ).
Table 6-104. High-Speed USB Timing Conditions 8-bit TLL Master Mode
TIMING CONDITION PARAMETER VALUE UNIT
Input Conditions
t
R
Input signal rise time 2 nst
F
Input signal fall time 2 ns
Output Conditions
C
LOAD
Output load capacitance 3 pF
Table 6-105. High-Speed USB Timing Requirements 8-bit TLL Master Mode
(1)
NO. PARAMETER 1.15 V UNIT
MIN MAX
HSU2 t
s(STPV-CLKH)
Setup time, hsusbx_tll_stp valid before hsusbx_tll_clk rising edge 6 nsHSU3 t
s(CLKH-STPIV)
Hold time, hsusbx_tll_stp valid after hsusbx_tll_clk rising edge 0 nsHSU4 t
s(DATAV-CLKH)
Setup time, hsusbx_tll_data[3:0] valid before hsusbx_tll_clk rising edge 3 ns
(1) In hsusbx, x is equal to 1, 2, or 3.
Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 225
hsusbx_tll_clk
hsusbx_tll_stp
hsusbx_tll_dir_&_nxt
hsusbx_tll_data[3:0] Data_IN Data_IN_(n+1) Data_IN_(n+2) Data_OUT Data_OUT_(n+1)
HSU0
HSU6
HSU2
HSU3
HSU6
HSU1 HSU1
HSU4 HSU4
HSU5 HSU5
HSU7
HSU8
HSU7
030-089
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Table 6-105. High-Speed USB Timing Requirements 8-bit TLL Master Mode (continued)
NO. PARAMETER 1.15 V UNIT
MIN MAX
HSU5 t
h(CLKH-DATIV)
Hold time, hsusbx_tll_data[3:0] valid after hsusbx_tll_clk rising edge –0.8 ns
Table 6-106. High-Speed USB Switching Characteristics 8-bit TLL Master Mode
(1)
NO. PARAMETER 1.15 V UNIT
MIN MAX
HSU0 f
p(CLK)
hsusbx_tll_clk clock frequency 60 MHzt
j(CLK)
Jitter standard deviation
(2)
, hsusbx_tll_clk 200 psHSU1 t
j(CLK)
Duty cycle, hsusbx_tll_clk pulse duration (low and high) 47.6% 52.4%HSU6 t
d(CLKL-DIRV)
Delay time, hsusbx_tll_clk high to output hsusbx_tll_dir valid 9 nst
d(CLKL-DIRIV)
Delay time, hsusbx_tll_clk high to output hsusbx_tll_dir invalid 0 nst
d(CLKL-NXTV)
Delay time, hsusbx_tll_clk high to output hsusbx_tll_nxt valid 9 nst
d(CLKL-NXTIV)
Delay time, hsusbx_tll_clk high to output hsusbx_tll_nxt invalid 0 nsHSU7 t
d(CLKL-DV)
Delay time, hsusbx_tll_clk high to output hsusbx_tll_data[3:0] valid 4 nsHSU8 t
d(CLKL-DIV)
Delay time, hsusbx_tll_clk high to output hsusbx_tll_data[3:0] invalid 0 nst
R(do)
Rise time, output signals 2 nst
F(do)
Fall time, output signals 2 ns
(1) In hsusbx, x is equal to 1, 2, or 3.(2) The jitter probability density can be approximated by a Gaussian function.
In hsusbx, x is equal to 1, 2, or 3.
Figure 6-52. High-Speed USB 8-bit TLL Master Mode
226 TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS Submit Documentation Feedback
6.6.5 I
2
C Interface
6.6.5.1 I
2
C Standard/Fast-Speed Mode
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
The multimaster I
2
C peripheral provides an interface between two or more devices via an I
2
C serial bus.The I
2
C controller supports the multimaster mode which allows more than one device capable ofcontrolling the bus to be connected to it. Each I
2
C device is recognized by a unique address and canoperate as either transmitter or receiver, according to the function of the device. In addition to being atransmitter or receiver, a device connected to the I
2
C bus can also be considered as master or slave whenperforming data transfers. This data transfer is carried out via two serial bidirectional wires:An SDA data lineAn SCL clock line
The following sections illustrate the data transfer is in master or slave configuration with 7-bit addressingformat. The I
2
C interface is compliant with Philips I
2
C specification version 2.1. It supports standard mode(up to 100K bits/s), fast mode (up to 400K bits/s) and high-speed mode (up to 3.4Mb/s) .
Table 6-107. I
2
C Standard/Fast-Speed Mode Timings
NO. PARAMETER
(1)
Standard Mode Fast Mode UNIT
MIN MAX MIN MAX
f
SCL
Clock Frequency, i2cX_scl 100 400 kHzI1 t
w(SCLH)
Pulse Duration, i2cX_scl high 4 0.6 µsI2 t
w(SCLL)
Pulse Duration, i2cX_scl low 4.7 1.3 µsI3 t
su(SDAV-SCLH)
Setup time, i2cX_sda valid before i2cX_scl active level 250 100
(2)
nsI4 t
h(SCLH–SDAV)
Hold time, i2cX_sda valid after i2cX_scl active level 0
(3)
3.45
(4)
0
(3)
0.9
(4)
µsI5 t
su(SDAL-SCLH)
Setup time, i2cX_scl high after i2cX_sda low (for a 4.7 0.6 µsSTART
(5)
condition or a repeated START condition)I6 t
h(SCLH–SDAH)
Hold time, i2cX_sda low level after i2cX_scl high level 4 0.6 µs(STOP condition)I7 t
h(SCLH–RSTART)
Hold time, i2cX_sda low level after i2cX_scl high level (for 4 0.6 µsa repeated START condition)I8 t
w(SDAH)
Pulse duration, i2cX_sda high between STOP and START 4.7 1.3 µsconditionst
R(SCL)
Rise time, i2cX_scl 1000 300 nst
F(SCL)
Fall time, i2cX_scl 300 300 nst
R(SDA)
Rise time, i2cX_sda 1000 300 nst
F(SDA)
Fall time, i2cX_sda 300 300 nsCB Capacitive load for each bus line 60
(6)
60
(6)
pF
(1) In i2cX, X is equal to 1, 2, 3, or 4. Note that I2C4 is master transmitter only.(2) A fast-mode I
2
C-bus device can be used in a standard-mode I
2
C-bus system, but the requirement t
su(SDAV-SCLH)
250 ns must then bemet. This is automatically the case if the device does not stretch the low period of the i2cx_scl. If such a device does stretch the lowperiod of the i2cx_scl, it must output the next data bit to the i2cx_sda line t
r(SDA)
max + t
su(SDAV-SCLH)
= 1000 + 250 = 1250 ns (accordingto the standard-mode I
2
C-bus specification) before the i2cx_scl line is released.(3) The device provides (via the I
2
C bus) a hold time of at least 300 ns for the i2cx_sda signal (refer to the fall and rise time of i2cx_scl) tobridge the undefined region of the falling edge of i2cx_scl.(4) The maximum t
h(SCLH-SDA)
has only to be met if the device does not stretch the low period of the i2cx_scl signal.(5) After this time, the first clock is generated.(6) Maximum reference load for i2c4_scl and i2c4_sda is CB = 15 pF.
Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 227
i2cX_sda
i2cX_scl
START REPEAT
STOPSTART
START
I1
I2
I3 I4
I5
I6I6 I7
I8
030-093
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Figure 6-53. I
2
C Standard/Fast Mode
228 TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS Submit Documentation Feedback
6.6.5.2 I
2
C High-Speed Mode
i2cX_sda
i2cX_scl
STOPSTART REPEAT
I1 I2 I3 I4I6I5 I7
030-094
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Table 6-108. I
2
C HighSpeed Mode Timings
(1) (2)
NO. PARAMETER CB = 100 pF MAX CB = 400 pF MAX UNIT
MIN MAX MIN MAX
f
SCL
Clock frequency, i2cX_scl 3.4 1.7 MHzI1 t
w(SCLH)
Pulse duration, i2cX_scl high 60
(3)
120
(3)
µsI2 t
w(SCLL)
Pulse duration, i2cX_scl low 160
(3)
320
(3)
µsI3 t
su(SDAV-SCLH)
Setup time, i2cX_sda valid before i2cX_scl 10 10 nsactive levelI4 t
h(SCLH–SDAV)
Hold time, i2cX_sda valid after i2cX_scl active 0
(2)
70 0
(2)
150 µslevelI5 t
su(SDAL-SCLH)
Setup time, i2cX_scl high after i2cX_sda low 160 160 µs(for a START
(4)
condition or a repeated STARTcondition)I6 t
h(SCLH–SDAH)
Hold time, i2cX_sda low level after i2cX_scl high 160 160 µslevel (STOP condition)I7 t
h(SCLH–RSTART)
Hold time, i2cX_sda low level after i2cX_scl high 160 160 nslevel (for a repeated START condition)t
R(SCL)
Rise time, i2cX_scl 40 80 nst
R(SCL)
Rise time, i2cX_scl after a repeated START 80 160 nscondition and after a bit acknowledget
F(SCL)
Fall time, i2cX_scl 40 80 nst
R(SDA)
Rise time, i2cX_sda 80 160 nst
F(SDA)
Fall time, i2cX_sda 80 160 nsC
B
Capacitive load for each bus line 60
(5)
pF
(1) In i2cX, X is equal to 1, 2, 3, or 4. Note that I2C4 is master transmitter only.(2) The device provides (via the I
2
C bus) a hold time of at least 300 ns for the i2cx_sda signal (refer to the fall and rise time of i2cx_scl) tobridge the undefined region of the falling edge of i2cx_scl.(3) HS-mode master devices generate a serial clock signal with a high to low ratio of 1 to 2. t
w(SCLL)
> 2 ×t
w(SCLH)
.(4) After this time, the first clock is generated.(5) Maximum reference load for i2c4_scl and i2c4_sda is C
B
= 15 pF.
Figure 6-54. I
2
C High-Speed Mode
(1) (2) (3)
(1) HS-mode master devices generate a serial clock signal with a high-to-low ratio of 1 to 2. t
w(SCLL)
> 2 x t
w(SCLH)
.(2) In i2cX, X is equal to 1, 2, 3, or 4. Note that I2C4 is master transmitter only.(3) After this time, the first clock is generated.
Table 6-109. Correspondence Standard vs. TI Timing References
TI-OMAP STANDARD-I
2
C
S/F Mode HS Mode
f
SCL
F
SCL
F
SCLH
I1 t
w(SCLH)
T
HIGH
T
HIGH
I2 t
w(SCLL)
T
LOW
T
LOW
I3 t
su(SDAV-SCLH)
T
SU;DAT
T
SU;DAT
I4 t
h(SCLH-SDAV)
T
SU;DAT
T
SU;DAT
I5 t
su(SDAL-SCLH)
T
SU;STA
T
SU;STA
Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 229
6.6.6 HDQ / 1-Wire Interfaces
6.6.6.1 HDQ Protocol
HDQ
tB tBR
030-095
HDQ
tHW1
tHW0
tCYCH
030-096
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Table 6-109. Correspondence Standard vs. TI Timing References (continued)
TI-OMAP STANDARD-I
2
C
S/F Mode HS Mode
I6 t
h(SCLH-SDAH)
T
HD;STA
T
HD;STA
I7 t
h(SCLH-RSTART)
T
SU;STO
T
SU;STO
I8 t
w(SDAH)
T
BUF
This module is intended to work with both the HDQ and the 1-Wire protocols. The protocols use a singlewire to communicate between the master and the slave. The protocols employ an asynchronous return to1 mechanism where, after any command, the line is pulled high.
Table 6-110 and Table 6-111 assume testing over the recommended operating conditions (seeFigure 6-55 through Figure 6-58 ).
Table 6-110. HDQ Timing Requirements
PARAMETER DESCRIPTION MIN MAX UNIT
t
CYCD
Bit window 253 µst
HW1
Reads 1 68t
HW0
Reads 0 180t
RSPS
Command to host respond time
(1)
(1) Defined by software.
Table 6-111. HDQ Switching Characteristics
PARAMETER DESCRIPTION MIN TYP MAX UNIT
t
B
Break timing 193 µst
BR
Break recovery 63t
CYCH
Bit window 253t
DW1
Sends1 (write) 1.3t
DW0
Sends0 (write) 101
Figure 6-55. HDQ Break (Reset) Timing
Figure 6-56. HDQ Read Bit Timing (Data)
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS230 Submit Documentation Feedback
HDQ
tDW1
tDW0
tCYCD
030-097
HDQ
Break
0_(LSB )
1 6 7_(MSB )
tRSPS
0_(LSB)
1
6
Command _byte_written Data_byte_received
030-098
6.6.6.2 1-Wire Protocol
1-WIRE
tRSTH
tPDLtPDHtRTSL
030-099
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Figure 6-57. HDQ Write Bit Timing (Command/Address or Data)
Figure 6-58. HDQ Communication Timing
Table 6-112 and Table 6-113 assume testing over the recommended operating conditions (seeFigure 6-59 through Figure 6-61 ).
Table 6-112. 1-Wire Timing Requirements
PARAMETER DESCRIPTION MIN MAX UNIT
t
PDH
Presence pulse delay high 68 µst
PDL
Presence pulse delay low 68 t
PDH
t
RDV
+ t
REL
Read bit-zero time 102
Table 6-113. 1-Wire Switching Characteristics
PARAMETER DESCRIPTION MIN TYP MAX UNIT
t
RSTL
Reset time low 484 µst
RSTH
Reset time high 484t
SLOT
Write bit cycle time 102t
LOW1
Write bit-one time 1.3t
LOW0
Write bit-zero time 101t
REC
Recovery time 134t
LOWR
Read bit strobe time 13
Figure 6-59. 1-Wire Break (Reset) Timing
Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 231
1-WIRE tLOWR
tRDV_and_ tREL
tSLOT_and_ tREC
030-100
1-WIRE tLOW1
tLOW0
tSLOT_and_tREC
030-101
6.6.7 UART IrDA Interface
030-118
Pulseduration
90%
50%
10%
tf
90%
50%
10%
tr
6.6.7.1 IrDA—Receive Mode
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Figure 6-60. 1-Wire Read Bit Timing (Data)
Figure 6-61. 1-Wire Write Bit Timing (Command/Address or Data)
The IrDA module can operate in three different modes:Slow infrared (SIR) ( 115.2 Kbits/s)Medium infrared (MIR) (0.576 Mbits/s and 1.152 Mbits/s)Fast infrared (FIR) (4 Mbits/s)
For more information about this interface, see the UART/IrDA chapter in the OMAP35x TechnicalReference Manual (TRM) [literature number SPRUF98 ].
Figure 6-62. UART IrDA Pulse Parameters
Table 6-114. UART IrDA—Signaling Rate and Pulse Duration—Receive Mode
ELECTRICAL PULSE DURATIONSIGNALING RATE UNITMIN NOMINAL MAX
SIR
2.4 Kbit/s 1.41 78.1 88.55 µs9.6 Kbit/s 1.41 19.5 22.13 µs19.2 Kbit/s 1.41 9.75 11.07 µs
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS232 Submit Documentation Feedback
6.6.7.2 IrDA—Transmit Mode
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Table 6-114. UART IrDA—Signaling Rate and Pulse Duration—Receive Mode(continued)
ELECTRICAL PULSE DURATIONSIGNALING RATE UNITMIN NOMINAL MAX
38.4 Kbit/s 1.41 4.87 5.96 µs57.6 Kbit/s 1.41 3.25 4.34 µs115.2 Kbit/s 1.41 1.62 2.23 µs
MIR
0.576 Mbit/s 297.2 416 518.8 ns1.152 Mbit/s 149.6 208 258.4 ns
FIR
4.0 Mbit/s (Single pulse) 67 125 164 ns4.0 Mbit/s (Double pulse) 190 250 289 ns
Table 6-115. UART IrDA—Rise and Fall Time—ReceiveMode
PARAMETER MAX UNIT
t
R
Rising time, 200 nsuart3_rx_irrxt
F
Falling time, 200 nsuart3_rx_irrx
Table 6-116. UART IrDA—Signaling Rate and Pulse Duration—Transmit Mode
SIGNALING RATE ELECTRICAL PULSE DURATION UNIT
MIN NOMINAL MAX
SIR
2.4 Kbit/s 78.1 78.1 78.1 µs9.6 Kbit/s 19.5 19.5 19.5 µs19.2 Kbit/s 9.75 9.75 9.75 µs38.4 Kbit/s 4.87 4.87 4.87 µs57.6 Kbit/s 3.25 3.25 3.25 µs115.2 Kbit/s 1.62 1.62 1.62 µs
MIR
0.576 Mbit/s 414 416 419 ns1.152 Mbit/s 206 208 211 ns
FIR
4.0 Mbit/s (Single pulse) 123 125 128 ns4.0 Mbit/s (Double pulse) 248 250 253 ns
Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 233
6.7 Removable Media Interfaces
6.7.1 High-Speed Multimedia Memory Card (MMC) and Secure Digital IO Card (SDIO) Timing
6.7.1.1 MMC/SD/SDIO in SD Identification Mode
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
The MMC/SDIO host controller provides an interface to high-speed and standard MMC, SD memorycards, or SDIO cards. The application interface is responsible for managing transaction semantics. TheMMC/SDIO host controller deals with MMC/SDIO protocol at transmission level, packing data, addingCRC, start/end bit, and checking for syntactical correctness.
There are three MMC interfaces on the OMAP35 15/03:MMC/SD/SDIO Interface 1: 1.8 V/3 V support 8 bitsMMC/SD/SDIO Interface 2: 1.8 V support 8 bits 4 bits with external transceiver allowing to support 3 V peripherals. Transceiver direction controlsignals are multiplexed with the upper four data bits.MMC/SD/SDIO Interface 3: 1.8 V support 8 bits
Table 6-118 and Table 6-119 assume testing over the recommended operating conditions and electricalcharacteristic conditions.
Table 6-117. MMC/SD/SDIO Timing Conditions SD Identification Mode
TIMING CONDITION PARAMETER VALUE UNIT
SD Identification Mode
Input Conditions
t
R
Input signal rise time 10 nst
F
Input signal fall time 10 ns
Output Conditions
C
LOAD
Output load capacitance 40 pF
Table 6-118. MMC/SD/SDIO Timing Requirements SD Identification Mode
(1) (2) (3)
NO. PARAMETER 1.15 V 1.0 V UNIT
MIN MAX MIN MAX
SD Identification Mode
MMC/SD/SDIO Interface 1 (1.8 V IO)
HSSD3/SD3 t
su(CMDV-CLKIH)
Setup time, mmc1_cmd valid before 1198.4 1198.4 nsmmc1_clk rising clock edgeHSSD4/SD4 t
su(CLKIH-CMDIV)
Hold time, mmc1_cmd valid after 1249.2 1249.2 nsmmc1_clk rising clock edge
MMC/SD/SDIO Interface 1 (3.0 V IO)
HSSD3/SD3 t
su(CMDV-CLKIH)
Setup time, mmc1_cmd valid before 1198.4 1198.4 nsmmc1_clk rising clock edgeHSSD4/SD4 t
su(CLKIH-CMDIV)
Hold time, mmc1_cmd valid after 1249.2 1249.2 nsmmc1_clk rising clock edge
MMC/SD/SDIO Interface 2
(1) Timing parameters are referred to output clock specified in Table 6-119 .(2) The timing requirements are assured for the cycle jitter and duty cycle error conditions specified in Table 6-119 .(3) Corresponding figures showing timing parameters are common with other interface modes. (See SD and HS SD modes).
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS234 Submit Documentation Feedback
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Table 6-118. MMC/SD/SDIO Timing Requirements SD Identification Mode (continued)
NO. PARAMETER 1.15 V 1.0 V UNIT
MIN MAX MIN MAX
HSSD3/SD3 t
su(CMDV-CLKIH)
Setup time, mmc2_cmd valid before 1198.4 1198.4 nsmmc2_clk rising clock edgeHSSD4/SD4 t
su(CLKIH-CMDIV)
Hold time, mmc2_cmd valid after 1249.2 1249.2 nsmmc2_clk rising clock edge
MMC/SD/SDIO Interface 3
HSSD3/SD3 t
su(CMDV-CLKIH)
Setup time, mmc3_cmd valid before 1198.4 1198.4 nsmmc3_clk rising clock edgeHSSD4/SD4 t
su(CLKIH-CMDIV)
Hold time, mmc3_cmd valid after 1249.2 1249.2 nsmmc3_clk rising clock edge
Table 6-119. MMC/SD/SDIO Switching Characteristics SD Identification Mode
(1)
NO. PARAMETER 1.15 V 1.0 V UNIT
MIN MAX MIN MAX
SD Identification Mode
1 / 1/t
c(clk)
Frequency
(2)
, mmcx_ clk
(3)
0.4 0.4 MHz(HSSD1/SD1
)
HSSD2/SD2 t
W(clkH)
Typical pulse duration, output clk high X
(4)
*PO
(5)
X
(4)
*PO
(5)
nsHSSD2/SD2 t
W(clkL)
Typical pulse duration, output clk low Y
(6)
*PO
(5)
Y
(6)
*PO
(5)
nst
dc(clk)
Duty cycle error, output clk 125 125 nst
j(clk)
Jitter standard deviation
(7)
, output clk 200 200 ps
MMC/SD/SDIO Interface 1 (1.8 V IO)
t
c(clk)
Rise time, output clk 10 10 nst
W(clkH)
Fall time, output clk 10 10 nst
W(clkL)
Rise time, output data 10 10 nst
dc(clk)
Fall time, output data 10 10 nsHSSD5/SD5 t
d(CLKOH-CMD)
Delay time, mmc1_clk rising clock edge to 6.3 2492.7 6.3 2492.7 nsmmc1_cmd transition
MMC/SD/SDIO Interface 1 (3.0 V IO)
t
c(clk)
Rise time, output clk 10 0 nst
W(clkH)
Fall time, output clk 10 0 nst
W(clkL)
Rise time, output data 10 10 nst
dc(clk)
Fall time, output data 10 10 nsHSSD5/SD5 t
d(CLKOH-CMD)
Delay time, mmc1_clk rising clock edge to 6.3 2492.7 6.3 2492.7 nsmmc1_cmd transition
MMC/SD/SDIO Interface 2
t
c(clk)
Rise time, output clk 10 10 nst
W(clkH)
Fall time, output clk 10 10 nst
W(clkL)
Rise time, output data 10 10 nst
dc(clk)
Fall time, output data 10 10 nsHSSD5/SD5 t
d(CLKOH-CMD)
Delay time, mmc2_clk rising clock edge to 6.3 2492.7 6.3 2492.7 nsmmc2_cmd transition
MMC/SD/SDIO Interface 3
t
c(clk)
Rise time, output clk 10 10 ns
(1) Corresponding figures showing timing parameters are common with other interface modes (see SD and HS SD modes).(2) Related with the output clk maximum and minimum frequencies programmable in I/F module.(3) In mmcx_clk, 'x' is equal to 1, 2, or 3.(4) The X parameter is defined as shown in Table 6-120 .(5) PO = output clk period in ns.(6) The Y parameter is defined as shown in Table 6-121 .(7) The jitter probability density can be approximated by a Gaussian function.
Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 235
6.7.1.2 MMC/SD/SDIO in High-Speed MMC Mode
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Table 6-119. MMC/SD/SDIO Switching Characteristics SD Identification Mode (continued)
NO. PARAMETER 1.15 V 1.0 V UNIT
MIN MAX MIN MAX
t
W(clkH)
Fall time, output clk 10 10 nst
W(clkL)
Rise time, output data 10 10 nst
dc(clk)
Fall time, output data 10 10 nsHSSD5/SD5 t
d(CLKOH-CMD)
Delay time, mmc3_clk rising clock edge to 6.3 2492.7 6.3 2492.7 nsmmc3_cmd transition
Table 6-120. X Parameter
CLKD X
1 or Even 0.5Odd (trunk[CLKD/2]+1)/CLKD
Table 6-121. Y Parameter
CLKD Y
1 or Even 0.5Odd (trunk[CLKD/2])/CLKD
For details about clock division factor CLKD, see the OMAP35x Technical Reference Manual (TRM)[literature number SPRUF98 ].
Table 6-123 and Table 6-124 assume testing over the recommended operating conditions and electricalcharacteristic conditions (see Figure 6-63 and Figure 6-64 ).
Table 6-122. MMC/SD/SDIO Timing Conditions High-Speed MMC Mode
TIMING CONDITION PARAMETER VALUE UNIT
High-Speed MMC Mode
Input Conditions
t
R
Input signal rise time 3 nst
F
Input signal fall time 3 ns
Output Conditions
C
LOAD
Output load capacitance 30 pF
Table 6-123. MMC/SD/SDIO Timing Requirements High-Speed MMC Mode
(1) (2) (3) (4)
NO. PARAMETER 1.15 V 1.0 V UNIT
MIN MAX MIN MAX
High-Speed MMC Mode
MMC/SD/SDIO Interface 1 (1.8 V IO)
MMC3 t
su(CMDV-CLKIH)
Setup time, mmc1_cmd valid before mmc1_clk 5.6 26 nsrising clock edgeMMC4 t
su(CLKIH-CMDIV)
Hold time, mmc1_cmd valid after mmc1_clk 2.3 1.9 nsrising clock edgeMMC7 t
su(DATxV-CLKIH)
Setup time, mmc1_datx valid before mmc1_clk 5.6 26 nsrising clock edgeMMC8 t
su(CLKIH-DATxIV)
Hold time, mmc1_datx valid after mmc1_clk 2.3 1.9 nsrising clock edge
(1) Timing parameters are referred to output clock specified in Table 6-124 .(2) The timing requirements are assured for the cycle jitter and duty cycle error conditions specified in Table 6-124 .(3) Corresponding figures showing timing parameters are common with Standard MMC mode (See Figure 6-63 and Figure 6-64 )(4) In datx, x is equal to 1, 2, 3, 4, 5, 6, or 7.
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS236 Submit Documentation Feedback
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Table 6-123. MMC/SD/SDIO Timing Requirements High-Speed MMC Mode (continued)
NO. PARAMETER 1.15 V 1.0 V UNIT
MIN MAX MIN MAX
MMC/SD/SDIO Interface 1 (3.0 V IO)
MMC3 t
su(CMDV-CLKIH)
Setup time, mmc1_cmd valid before mmc1_clk 5.6 26 nsrising clock edgeMMC4 t
su(CLKIH-CMDIV)
Hold time, mmc1_cmd valid after mmc1_clk 2.3 1.9 nsrising clock edgeMMC7 t
su(DATxV-CLKIH)
Setup time, mmc1_datx valid before mmc1_clk 5.6 26 nsrising clock edgeMMC8 t
su(CLKIH-DATxIV)
Hold time, mmc1_datx valid after mmc1_clk 2.3 1.9 nsrising clock edge
MMC/SD/SDIO Interface 2
MMC3 t
su(CMDV-CLKIH)
Setup time, mmc2_cmd valid before mmc2_clk 5.6 26 nsrising clock edgeMMC4 t
su(CLKIH-CMDIV)
Hold time, mmc2_cmd valid after mmc2_clk 2.3 1.9 nsrising clock edgeMMC7 t
su(DATxV-CLKIH)
Setup time, mmc2_datx valid before mmc2_clk 5.6 26 nsrising clock edgeMMC8 t
su(CLKIH-DATxIV)
Hold time, mmc2_datx valid after mmc2_clk 2.3 1.9 nsrising clock edge
MMC/SD/SDIO Interface 3
MMC3 t
su(CMDV-CLKIH)
Setup time, mmc3_cmd valid before mmc3_clk 5.6 26 nsrising clock edgeMMC4 t
su(CLKIH-CMDIV)
Hold time, mmc3_cmd valid after mmc3_clk 2.3 1.9 nsrising clock edgeMMC7 t
su(DATxV-CLKIH)
Setup time, mmc3_datx valid before mmc3_clk 5.6 26 nsrising clock edgeMMC8 t
su(CLKIH-DATxIV)
Hold time, mmc3_datx valid after mmc3_clk 2.3 1.9 nsrising clock edge
Table 6-124. MMC/SD/SDIO Switching Characteristics High-Speed MMC Mode
(1)
N O. PARAMETER 1.15 V 1.0 V UNIT
MIN MAX MIN MAX
High-Speed MMC Mode
1/MMC 1/t
c(clk)
Frequency
(2)
, mmcx_ clk
(3)
48 24 MHz1
MMC2 t
W(clkH)
Typical pulse duration, output clk high X
(4)
*PO
(5)
X
(4)
*PO
(5)
nsMMC2 t
W(clkL)
Typical pulse duration, output clk low Y
(6)
*PO
(5)
Y
(6)
*PO
(5)
nst
dc(clk)
Duty cycle error, output clk 1041.7 2083.3 pst
j(clk)
Jitter standard deviation
(7)
, output clk 200 200 ps
MMC/SD/SDIO Interface 1 (1.8 V IO)
t
c(clk)
Rise time, output clk 3 3 nst
W(clkH)
Fall time, output clk 3 3 nst
W(clkL)
Rise time, output data 3 3 nst
dc(clk)
Fall time, output data 3 3 nsMMC5 t
d(CLKOH-CMD)
Delay time, mmc1_clk rising clock edge to 3.7 14.1 4.1 34.5 nsmmc1_cmd transition
(1) In datx, x is equal to 1, 2, 3, 4, 5, 6, or 7.(2) Related with the output clk maximum and minimum frequencies programmable in I/F module.(3) In mmcx_clk, 'x' is equal to 1, 2, or 3.(4) The X parameter is defined as shown in Table 6-125 .(5) PO = output clk period in ns.(6) The Y parameter is defined as shown in Table 6-126 .(7) The jitter probability density can be approximated by a Gaussian function.
Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 237
6.7.1.3 MMC/SD/SDIO in Standard MMC Mode and MMC Identification Mode
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Table 6-124. MMC/SD/SDIO Switching Characteristics High-Speed MMC Mode (continued)
N O. PARAMETER 1.15 V 1.0 V UNIT
MIN MAX MIN MAX
MMC6 t
d(CLKOH-DATx)
Delay time, mmc1_clk rising clock edge to 3.7 14.1 4.1 34.5 nsmmc1_datx transition
MMC/SD/SDIO Interface 1 (3.0 V IO)
t
c(clk)
Rise time, output clk 3 3 nst
W(clkH)
Fall time, output clk 3 3 nst
W(clkL)
Rise time, output data 3 3 nst
dc(clk)
Fall time, output data 3 3 nsMMC5 t
d(CLKOH-CMD)
Delay time, mmc1_clk rising clock edge to 3.7 14.1 4.1 34.5 nsmmc1_cmd transitionMMC6 t
d(CLKOH-DATx)
Delay time, mmc1_clk rising clock edge to 3.7 14.1 4.1 34.5 nsmmc1_datx transition
MMC/SD/SDIO Interface 2
t
c(clk)
Rise time, output clk 3 3 nst
W(clkH)
Fall time, output clk 3 3 nst
W(clkL)
Rise time, output data 3 3 nst
dc(clk)
Fall time, output data 3 3 nsMMC5 t
d(CLKOH-CMD)
Delay time, mmc2_clk rising clock edge to 3.7 14.1 4.1 34.5 nsmmc2_cmd transitionMMC6 t
d(CLKOH-DATx)
Delay time, mmc2_clk rising clock edge to 3.7 16.5 4.1 36.9 nsmmc2_datx transition
MMC/SD/SDIO Interface 3
t
c(clk)
Rise time, output clk 3 3 nst
W(clkH)
Fall time, output clk 3 3 nst
W(clkL)
Rise time, output data 3 3 nst
dc(clk)
Fall time, output data 3 3 nsMMC5 t
d(CLKOH-CMD)
Delay time, mmc3_clk rising clock edge to 3.7 14.1 4.1 34.5 nsmmc3_cmd transitionMMC6 t
d(CLKOH-DATx)
Delay time, mmc3_clk rising clock edge to 3.7 14.1 4.1 34.5 nsmmc3_datx transition
Table 6-125. X Parameter
CLKD X
1 or Even 0.5Odd (trunk[CLKD/2]+1)/CLKD
Table 6-126. Y Parameter
CLKD Y
1 or Even 0.5Odd (trunk[CLKD/2])/CLKD
For details about clock division factor CLKD, see the OMAP35x Technical Reference Manual (TRM)[literature number SPRUF98 ].
Table 6-128 and Table 6-129 assume testing over the recommended operating conditions and electricalcharacteristic conditions.
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS238 Submit Documentation Feedback
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Table 6-127. MMC/SD/SDIO Timing Conditions Standard MMC Mode and MMC Identification Mode
TIMING CONDITION PARAMETER VALUE UNIT
Standard MMC Mode and MMC Identification Mode
Input Conditions
t
R
Input signal rise time 10 nst
F
Input signal fall time 10 ns
Output Conditions
C
LOAD
Output load capacitance 30 pF
Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 239
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Table 6-128. MMC/SD/SDIO Timing Requirements Standard MMC Mode and MMC IdentificationMode
(1) (2)
NO. PARAMETER 1.15 V 1.0 V UNIT
MIN MAX MIN MAX
Standard MMC Mode and MMC Identification Mode
MMC/SD/SDIO Interface 1 (1.8 V IO)
MMC3 t
su(CMDV-CLKIH)
Setup time, mmc1_cmd valid before 13.6 65.7 nsmmc1_clk rising clock edgeMMC4 t
su(CLKIH-CMDIV)
Hold time, mmc1_cmd valid after mmc1_clk 8.9 8.9 nsrising clock edgeMMC7 t
su(DATxV-CLKIH)
Setup time, mmc1_datx valid before 13.6 65.7 nsmmc1_clk rising clock edgeMMC8 t
su(CLKIH-DATxIV)
Hold time, mmc1_datx valid after mmc1_clk 8.9 8.9 nsrising clock edge
MMC/SD/SDIO Interface 1 (3.0 V IO)
MMC3 t
su(CMDV-CLKIH)
Setup time, mmc1_cmd valid before 13.6 65.7 nsmmc1_clk rising clock edgeMMC4 t
su(CLKIH-CMDIV)
Hold time, mmc1_cmd valid after mmc1_clk 8.9 8.9 nsrising clock edgeMMC7 t
su(DATxV-CLKIH)
Setup time, mmc1_datx valid before 13.6 65.7 nsmmc1_clk rising clock edgeMMC8 t
su(CLKIH-DATxIV)
Hold time, mmc1_datx valid after mmc1_clk 8.9 8.9 nsrising clock edge
MMC/SD/SDIO Interface 2
MMC3 t
su(CMDV-CLKIH)
Setup time, mmc2_cmd valid before 13.6 65.7 nsmmc2_clk rising clock edgeMMC4 t
su(CLKIH-CMDIV)
Hold time, mmc2_cmd valid after mmc2_clk 8.9 8.9 nsrising clock edgeMMC7 t
su(DATxV-CLKIH)
Setup time, mmc2_datx valid before 13.6 65.7 nsmmc2_clk rising clock edgeMMC8 t
su(CLKIH-DATxIV)
Hold time, mmc2_datx valid after mmc2_clk 8.9 8.9 nsrising clock edge
MMC/SD/SDIO Interface 3
MMC3 t
su(CMDV-CLKIH)
Setup time, mmc3_cmd valid before 13.6 65.7 nsmmc3_clk rising clock edgeMMC4 t
su(CLKIH-CMDIV)
Hold time, mmc3_cmd valid after mmc3_clk 8.9 8.9 nsrising clock edgeMMC7 t
su(DATxV-CLKIH)
Setup time, mmc3_datx valid before 13.6 65.7 nsmmc3_clk rising clock edgeMMC8 t
su(CLKIH-DATxIV)
Hold time, mmc3_datx valid after mmc3_clk 8.9 8.9 nsrising clock edge
(1) Timing parameters are referred to output clock specified in Table 6-129 .(2) The timing requirements are assured for the cycle jitter and duty cycle error conditions specified in Table 6-129 .
Table 6-129. MMC/SD/SDIO Switching Characteristics Standard MMC Mode and MMC IdentificationMode
NO. PARAMETER 1.15 V 1.0 V UNIT
MIN MAX MIN MAX
MMC Identification Mode
1/MMC 1/t
c(clk)
Frequency
(1)
, mmcx_ clk
(2)
0.4 0.4 MHz1
MMC2 t
W(clkH)
Typical pulse duration, output clk high X
(3)
*PO
(4)
X
(3)
*PO
(4)
ns
(1) Related with the output clk maximum and minimum frequencies programmable in I/F module.(2) In mmcx_clk, 'x' is equal to 1, 2, or 3.(3) The X parameter is defined as shown in Table 6-130 .(4) PO = output clk period in ns.
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS240 Submit Documentation Feedback
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Table 6-129. MMC/SD/SDIO Switching Characteristics Standard MMC Mode and MMC IdentificationMode (continued)
NO. PARAMETER 1.15 V 1.0 V UNIT
MIN MAX MIN MAX
MMC2 t
W(clkL)
Typical pulse duration, output clk low Y*PO
(4)
Y*PO
(4)
nst
dc(clk)
Duty cycle error, output clk 125 125 nst
j(clk)
Jitter standard deviation
(5)
, output clk 200 200 ps
Standard MMC Mode
1/MMC 1/t
c(clk)
Frequency
(1)
, mmcx_ clk
(2)
19.2 9.6 MHz1
MMC2 t
W(clkH)
Typical pulse duration, output clk high X
(3)
*PO
(4)
X
(3)
*PO
(4)
nsMMC2 t
W(clkL)
Typical pulse duration, output clk low Y*PO
(4)
Y*PO
(4)
nst
dc(clk)
Duty cycle error, output clk 2604.2 5208.3 pst
j(clk)
Jitter standard deviation
(5)
, output clk 200 200 ps
MMC/SD/SDIO Interface 1 (1.8 V IO)
t
c(clk)
Rise time, output clk 10 10 nst
W(clkH)
Fall time, output clk 10 10 nst
W(clkL)
Rise time, output data 10 10 nst
dc(clk)
Fall time, output data 10 10 nsMMC5 t
d(CLKOH-CMD)
Delay time, mmc1_clk rising clock edge to 4.3 47.8 4.3 99.9 nsmmc1_cmd transitionMMC6 t
d(CLKOH-DATx)
Delay time, mmc1_clk rising clock edge to 4.3 47.8 4.3 99.9 nsmmc1_datx transition
MMC/SD/SDIO Interface 1 (3.0 V IO)
t
c(clk)
Rise time, output clk 10 10 nst
W(clkH)
Fall time, output clk 10 10 nst
W(clkL)
Rise time, output data 10 10 nst
dc(clk)
Fall time, output data 10 10 nsMMC5 t
d(CLKOH-CMD)
Delay time, mmc1_clk rising clock edge to 4.3 47.8 4.3 99.9 nsmmc1_cmd transitionMMC6 t
d(CLKOH-DATx)
Delay time, mmc1_clk rising clock edge to 4.3 47.8 4.3 99.9 nsmmc1_datx transition
MMC/SD/SDIO Interface 2
t
c(clk)
Rise time, output clk 10 10 nst
W(clkH)
Fall time, output clk 10 10 nst
W(clkL)
Rise time, output data 10 10 nst
dc(clk)
Fall time, output data 10 10 nsMMC5 t
d(CLKOH-CMD)
Delay time, mmc2_clk rising clock edge to 4.3 47.8 4.3 99.9 nsmmc2_cmd transitionMMC6 t
d(CLKOH-DATx)
Delay time, mmc2_clk rising clock edge to 4.3 47.8 4.3 99.9 nsmmc2_datx transition
MMC/SD/SDIO Interface 3
t
c(clk)
Rise time, output clk 10 10 nst
W(clkH)
Fall time, output clk 10 10 nst
W(clkL)
Rise time, output data 10 10 nst
dc(clk)
Fall time, output data 10 10 nsMMC5 t
d(CLKOH-CMD)
Delay time, mmc3_clk rising clock edge to 4.3 47.8 4.3 99.9 nsmmc3_cmd transitionMMC6 t
d(CLKOH-DATx)
Delay time, mmc3_clk rising clock edge to 4.3 47.8 4.3 99.9 nsmmc3_datx transition
(5) The jitter probability density can be approximated by a Gaussian function.
Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 241
mmcx_clk
mmcx_cmd
mmcx_dat[3:0]
MMC3
MMC7
MMC4
MMC8
MMC1 MMC2
030-104
mmcx_clk
mmcx_cmd
mmcx_dat[3:0]
MMC5 MMC5
MMC6 MMC6
MMC1 MMC2
030-105
6.7.1.4 MMC/SD/SDIO in High-Speed SD Mode
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Table 6-130. X Parameter
CLKD X
1 or Even 0.5Odd (trunk[CLKD/2]+1)/CLKD
Table 6-131. Y Parameter
CLKD Y
1 or Even 0.5Odd (trunk[CLKD/2])/CLKD
For details about clock division factor CLKD, see the OMAP35x Technical Reference Manual (TRM)[literature number SPRUF98 ].
In mmcx, x is equal to 1, 2, or 3.
Figure 6-63. MMC/SD/SDIO High-Speed and Standard MMC Modes Data/Command Receive
In mmcx, x is equal to 1, 2, or 3.
Figure 6-64. MMC/SD/SDIO High-Speed and Standard MMC Modes Data/Command Transmit
Table 6-133 and Table 6-134 assume testing over the recommended operating conditions and electricalcharacteristic conditions.
Table 6-132. MMC/SD/SDIO Timing Conditions High-Speed SD Mode
TIMING CONDITION PARAMETER VALUE UNIT
High-Speed SD Mode
Input Conditions
t
R
Input signal rise time 3 nst
F
Input signal fall time 3 ns
Output Conditions
C
LOAD
Output load capacitance 40 pF
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS242 Submit Documentation Feedback
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Table 6-133. MMC/SD/SDIO Timing Requirements High-Speed SD Mode
(1) (2) (3)
NO. PARAMETER 1.15 V 1.0 V UNIT
MIN MAX MIN MAX
High-Speed SD Mode
MMC/SD/SDIO Interface 1 (1.8 V IO)
HSSD3 t
su(CMDV-CLKIH)
Setup time, mmc1_cmd valid before 5.6 26 nsmmc1_clk rising clock edgeHSSD4 t
su(CLKIH-CMDIV)
Hold time, mmc1_cmd valid after mmc1_clk 2.3 1.9 nsrising clock edgeHSSD7 t
su(DATxV-CLKIH)
Setup time, mmc1_datx valid before 5.6 26 nsmmc1_clk rising clock edgeHSSD8 t
su(CLKIH-DATxIV)
Hold time, mmc1_datx valid after mmc1_clk 2.3 1.9 nsrising clock edge
MMC/SD/SDIO Interface 1 (3.0 V IO)
HSSD3 t
su(CMDV-CLKIH)
Setup time, mmc1_cmd valid before 5.6 26 nsmmc1_clk rising clock edgeHSSD4 t
su(CLKIH-CMDIV)
Hold time, mmc1_cmd valid after mmc1_clk 2.3 1.9 nsrising clock edgeHSSD7 t
su(DATxV-CLKIH)
Setup time, mmc1_datx valid before 5.6 26 nsmmc1_clk rising clock edgeHSSD8 t
su(CLKIH-DATxIV)
Hold time, mmc1_datx valid after mmc1_clk 2.3 1.9 nsrising clock edge
MMC/SD/SDIO Interface 2
HSSD3 t
su(CMDV-CLKIH)
Setup time, mmc2_cmd valid before 5.6 26 nsmmc2_clk rising clock edgeHSSD4 t
su(CLKIH-CMDIV)
Hold time, mmc2_cmd valid after mmc2_clk 2.3 1.9 nsrising clock edgeHSSD7 t
su(DATxV-CLKIH)
Setup time, mmc2_datx valid before 5.6 26 nsmmc2_clk rising clock edgeHSSD8 t
su(CLKIH-DATxIV)
Hold time, mmc2_datx valid after mmc2_clk 2.3 1.9 nsrising clock edge
MMC/SD/SDIO Interface 3
HSSD3 t
su(CMDV-CLKIH)
Setup time, mmc3_cmd valid before 5.6 26 nsmmc3_clk rising clock edgeHSSD4 t
su(CLKIH-CMDIV)
Hold time, mmc3_cmd valid after mmc3_clk 2.3 1.9 nsrising clock edgeHSSD7 t
su(DATxV-CLKIH)
Setup time, mmc3_datx valid before 5.6 26 nsmmc3_clk rising clock edgeHSSD8 t
su(CLKIH-DATxIV)
Hold time, mmc3_datx valid after mmc3_clk 2.3 1.9 nsrising clock edge
(1) Timing Parameters are referred to output clock specified in Table 6-134 .(2) The timing requirements are assured for the cycle jitter and duty cycle error conditions specified in Table 6-134 .(3) In datx, x is equal to 1, 2, 3, 4, 5, 6, or 7.
Table 6-134. MMC/SD/SDIO Switching Characteristics High-Speed SD Mode
NO. PARAMETER 1.15 V 1.0 V UNIT
MIN MAX MIN MAX
High-Speed SD Mode
1/HSSD 1/t
c(clk)
Frequency
(1)
, mmcx_ clk
(2)
48 24 ns1
HSSD2 t
W(clkH)
Typical pulse duration, output clk high X
(3)
*PO
(4)
X
(3)
*PO
(4)
ns
(1) Related with the output clk maximum and minimum frequencies programmable in I/F module.(2) In mmcx_clk, 'x' is equal to 1, 2, or 3.(3) The X parameter is defined as shown in Table 6-135 .(4) PO = output clk period in ns.
Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 243
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Table 6-134. MMC/SD/SDIO Switching Characteristics High-Speed SD Mode (continued)
NO. PARAMETER 1.15 V 1.0 V UNIT
MIN MAX MIN MAX
HSSD2 t
W(clkL)
Typical pulse duration, output clk low Y
(5)
*PO
(4)
Y
(5)
*PO
(4)
nst
dc(clk)
Duty cycle error, output clk 1041.7 2083.3 pst
j(clk)
Jitter standard deviation
(6)
, output clk 200 200 ps
MMC/SD/SDIO Interface 1 (1.8 V IO)
t
c(clk)
Rise time, output clk 3 3 nst
W(clkH)
Fall time, output clk 3 3 nst
W(clkL)
Rise time, output data 3 3 nst
dc(clk)
Fall time, output data 3 3 nsHSSD5 t
d(CLKOH-CMD)
Delay time, mmc1_clk rising clock edge to 3.7 14.1 4.1 34.5 nsmmc1_cmd transitionHSSD6 t
d(CLKOH-DATx)
Delay time, mmc1_clk rising clock edge to 3.7 14.1 4.1 34.5 nsmmc1_datx transition
MMC/SD/SDIO Interface 1 (3.0 V IO)
t
c(clk)
Rise time, output clk 3 3 nst
W(clkH)
Fall time, output clk 3 3 nst
W(clkL)
Rise time, output data 3 3 nst
dc(clk)
Fall time, output data 3 3 nsHSSD5 t
d(CLKOH-CMD)
Delay time, mmc1_clk rising clock edge to 3.7 14.1 4.1 34.5 nsmmc1_cmd transitionHSSD6 t
d(CLKOH-DATx)
Delay time, mmc1_clk rising clock edge to 3.7 14.1 4.1 34.5 nsmmc1_datx transition
MMC/SD/SDIO Interface 2
t
c(clk)
Rise time, output clk 3 3 nst
W(clkH)
Fall time, output clk 3 3 nst
W(clkL)
Rise time, output data 3 3 nst
dc(clk)
Fall time, output data 3 3 nsHSSD5 t
d(CLKOH-CMD)
Delay time, mmc2_clk rising clock edge to 3.7 14.1 4.1 34.5 nsmmc2_cmd transitionHSSD6 t
d(CLKOH-DATx)
Delay time, mmc2_clk rising clock edge to 3.7 14.1 4.1 34.5 nsmmc2_datx transition
MMC/SD/SDIO Interface 3
t
c(clk)
Rise time, output clk 3 3 nst
W(clkH)
Fall time, output clk 3 3 nst
W(clkL)
Rise time, output data 3 3 nst
dc(clk)
Fall time, output data 3 3 nsHSSD5 t
d(CLKOH-CMD)
Delay time, mmc3_clk rising clock edge to 3.7 14.1 4.1 34.5 nsmmc3_cmd transitionHSSD6 t
d(CLKOH-DATx)
Delay time, mmc3_clk rising clock edge to 3.7 14.1 4.1 34.5 nsmmc3_datx transition
(5) The Y parameter is defined as shown in Table 6-136 .(6) The jitter probability density can be approximated by a Gaussian function.
Table 6-135. X Parameters
CLKD X
1 or Even 0.5Odd (trunk[CLKD/2]+1)/CLKD
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS244 Submit Documentation Feedback
mmcx_clk
mmcx_cmd
mmcx_dat[3:0]
HSSD3
HSSD7
HSSD4
HSSD8
HSSD1 HSSD2
030-106
mmcx_clk
mmcx_cmd
mmcx_dat[3:0]
HSSD5 HSSD5
HSSD6 HSSD6
HSSD1 HSSD2
030-107
6.7.1.5 MMC/SD/SDIO in Standard SD Mode
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Table 6-136. Y Parameters
CLKD Y
1 or Even 0.5Odd (trunk[CLKD/2])/CLKD
For details about clock division factor CLKD, see the OMAP35x Technical Reference Manual (TRM)[literature number SPRUF98 ].
In mmcx, x is equal to 1, 2, or 3.
Figure 6-65. MMC/SD/SDIO High-Speed SD Mode Data/Command Receive
In mmcx, x is equal to 1, 2, or 3.
Figure 6-66. MMC/SD/SDIO High-Speed SD Mode Data/Command Transmit
Table 6-138 and Table 6-139 assume testing over the recommended operating conditions and electricalcharacteristic conditions (see Figure 6-67 ).
Table 6-137. MMC/SD/SDIO Timing Conditions Standard SD Mode
TIMING CONDITION PARAMETER VALUE UNIT
Standard SD Mode
Input Conditions
t
R
Input signal rise time 10 nst
F
Input signal fall time 10 ns
Output Conditions
C
LOAD
Output load capacitance 40 pF
Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 245
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Table 6-138. MMC/SD/SDIO Timing Requirements Standard SD Mode
(1) (2) (3)
NO. PARAMETER 1.15 V 1.0 V UNIT
MIN MAX MIN MAX
Standard SD Mode
MMC/SD/SDIO Interface 1 (1.8 V IO)
SD3 t
su(CMDV-CLKIH)
Setup time, mmc1_cmd valid before mmc1_clk 6.2 47.7 nsrising clock edgeSD4 t
su(CLKIH-CMDIV)
Hold time, mmc1_cmd valid after mmc1_clk 19.4 19.2 nsrising clock edgeSD7 t
su(DATxV-CLKIH)
Setup time, mmc1_datx valid before mmc1_clk 6.2 47.7 nsrising clock edgeSD8 t
su(CLKIH-DATxIV)
Hold time, mmc1_datx valid after mmc1_clk 19.4 19.2 nsrising clock edge
MMC/SD/SDIO Interface 1 (3.0 V IO)
SD3 t
su(CMDV-CLKIH)
Setup time, mmc1_cmd valid before mmc1_clk 6.2 47.7 nsrising clock edgeSD4 t
su(CLKIH-CMDIV)
Hold time, mmc1_cmd valid after mmc1_clk 19.4 19.2 nsrising clock edgeSD7 t
su(DATxV-CLKIH)
Setup time, mmc1_datx valid before mmc1_clk 6.2 47.7 nsrising clock edgeSD8 t
su(CLKIH-DATxIV)
Hold time, mmc1_datx valid after mmc1_clk 19.4 19.2 nsrising clock edge
MMC/SD/SDIO Interface 2
SD3 t
su(CMDV-CLKIH)
Setup time, mmc2_cmd valid before mmc2_clk 6.2 47.7 nsrising clock edgeSD4 t
su(CLKIH-CMDIV)
Hold time, mmc2_cmd valid after mmc2_clk 19.4 19.2 nsrising clock edgeSD7 t
su(DATxV-CLKIH)
Setup time, mmc2_datx valid before mmc2_clk 6.2 47.7 nsrising clock edgeSD8 t
su(CLKIH-DATxIV)
Hold time, mmc2_datx valid after mmc2_clk 19.4 19.2 nsrising clock edge
MMC/SD/SDIO Interface 3
SD3 t
su(CMDV-CLKIH)
Setup time, mmc3_cmd valid before mmc3_clk 6.2 47.7 nsrising clock edgeSD4 t
su(CLKIH-CMDIV)
Hold time, mmc3_cmd valid after mmc3_clk 19.4 19.2 nsrising clock edgeSD7 t
su(DATxV-CLKIH)
Setup time, mmc3_datx valid before mmc3_clk 6.2 47.7 nsrising clock edgeSD8 t
su(CLKIH-DATxIV)
Hold time, mmc3_datx valid after mmc3_clk 19.4 19.2 nsrising clock edge
(1) Timing parameters are referred to output clock specified in Table 6-139 .(2) The timing requirements are assured for the cycle jitter and duty cycle error conditions specified in Table 6-139 .(3) In datx, x is equal to 1, 2, 3, 4, 5, 6, or 7.
Table 6-139. MMC/SD/SDIO Switching Characteristics Standard SD Mode
NO. PARAMETER 1.15 V 1.0 V UNIT
MIN MAX MIN MAX
Standard SD Mode
1/SD 1/t
c(clk)
Frequency
(1)
, mmcx_clk
(2)
24 12 MHz1
SD2 t
W(clkH)
Typical pulse duration, output clk high X
(3)
*PO
(4)
X
(3)
*PO
(4)
ns
(1) Related with the output clk maximum and minimum frequencies programmable in I/F module.(2) In mmcx_clk, 'x' is equal to 1, 2, or 3.(3) The X parameter is defined as shown in Table 6-140 .(4) PO = output clk period in ns.
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS246 Submit Documentation Feedback
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Table 6-139. MMC/SD/SDIO Switching Characteristics Standard SD Mode (continued)
NO. PARAMETER 1.15 V 1.0 V UNIT
MIN MAX MIN MAX
SD2 t
W(clkL)
Typical pulse duration, output clk low Y
(5)
*PO
(4)
Y
(5)
*PO
(4)
nst
dc(clk)
Duty cycle error, output clk 2083.3 4166.7 pst
j(clk)
Jitter standard deviation
(6)
, output clk 200 200 ps
MMC/SD/SDIO Interface 1 (1.8 V IO)
t
c(clk)
Rise time, output clk 10 10 nst
W(clkH)
Fall time, output clk 10 10 nst
W(clkL)
Rise time, output data 10 10 nst
dc(clk)
Fall time, output data 10 10 nsSD5 t
d(CLKOH-CMD)
Delay time, mmc1_clk rising clock edge to 6.1 35.5 6.3 77 nsmmc1_cmd transitionSD6 t
d(CLKOH-DATx)
Delay time, mmc1_clk rising clock edge to 6.1 35.5 6.3 77 nsmmc1_datx transition
MMC/SD/SDIO Interface 1 (3.0 V IO)
t
c(clk)
Rise time, output clk 10 10 nst
W(clkH)
Fall time, output clk 10 10 nst
W(clkL)
Rise time, output data 10 10 nst
dc(clk)
Fall time, output data 10 10 nsSD5 t
d(CLKOH-CMD)
Delay time, mmc1_clk rising clock edge to 6.1 35.5 6.3 77 nsmmc1_cmd transitionSD6 t
d(CLKOH-DATx)
Delay time, mmc1_clk rising clock edge to 6.1 35.5 6.3 77 nsmmc1_datx transition
MMC/SD/SDIO Interface 2
t
c(clk)
Rise time, output clk 10 10 nst
W(clkH)
Fall time, output clk 10 10 nst
W(clkL)
Rise time, output data 10 10 nst
dc(clk)
Fall time, output data 10 10 nsSD5 t
d(CLKOH-CMD)
Delay time, mmc2_clk rising clock edge to 6.1 35.5 6.3 77 nsmmc2_cmd transitionSD6 t
d(CLKOH-DATx)
Delay time, mmc2_clk rising clock edge to 6.1 35.5 6.3 77 nsmmc2_datx transition
MMC/SD/SDIO Interface 3
t
c(clk)
Rise time, output clk 10 10 nst
W(clkH)
Fall time, output clk 10 10 nst
W(clkL)
Rise time, output data 10 10 nst
dc(clk)
Fall time, output data 10 10 nsSD5 t
d(CLKOH-CMD)
Delay time, mmc3_clk rising clock edge to 6.1 35.5 6.3 77 nsmmc3_cmd transitionSD6 t
d(CLKOH-DATx)
Delay time, mmc3_clk rising clock edge to 6.1 35.5 6.3 77 nsmmc3_datx transition
(5) The Y parameter is defined as shown in Table 6-141 .(6) The jitter probability density can be approximated by a Gaussian function.
Table 6-140. X Parameter
CLKD X
1 or Even 0.5Odd (trunk[CLKD/2]+1)/CLKD
Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 247
mmcx_clk
mmcx_cmd
mmcx_dat[3:0]
SD3
SD7
SD4
SD8
SD1 SD2
030-108
mmcx_clk
mmcx_cmd
mmcx_dat[3:0]
SD1 SD2
SD5
SD6
SD5
SD6
030-109
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Table 6-141. Y Parameter
CLKD Y
1 or Even 0.5Odd (trunk[CLKD/2])/CLKD
For details about clock division factor CLKD, see the OMAP35x Technical Reference Manual (TRM)[literature number SPRUF98 ].
In mmcx, x is equal to 1, 2, or 3.
Figure 6-67. MMC/SD/SDIO Standard SD Mode Data/Command Receive
In mmcx, x is equal to 1, 2, or 3.
Figure 6-68. MMC/SD/SDIO Standard SD Mode Data/Command Transmit
248 TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS Submit Documentation Feedback
6.8 Test Interfaces
6.8.1 Embedded Trace Macro Interface (ETM)
etk_clk
etk_ctl
etk_d[15:0]
ETM0
ETM2
ETM3
ETM2
ETM1
ETM3
030-110
6.8.2 System Debug Trace Interface (SDTI)
6.8.2.1 System Debug Trace Interface in Dual-Edge Mode
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
The emulation and trace interfaces allow tracing activities of the following CPUs:ARM1136JF-STM through an Embedded Trace Macro-cell (ETM11) dedicated to enable real-timetrace of the ARM subsystem operations and a Serial Debug Trace Interface (SDTI)
All processors can be emulated via JTAG ports.
Table 6-142 assumes testing over the recommended operating conditions (see Figure 6-69 ).
Table 6-142. Embedded Trace Macro Interface Switching Characteristics
(1)
NO. PARAMETER 1.15 V UNIT
MIN MAX
f 1/t
c(CLK)
Frequency, etk_clk 166 MHzETM0 t
c(CLK)
Cycle time
(2)
, etk_clk 6 nsETM1 t
W(CLK)
Clock pulse width, etk_clk 2.7 nsETM2 t
d(CLK-CTL)
Delay time, etk_clk clock edge to etk_ctl transition –0.5 0.5 nsETM3 t
d(CLK-D)
Delay time, etk_clk clock high to etk_d[15:0] transition –0.5 0.5 ns
(1) The capacitive load is equivalent to 25 pF.(2) Cycle time is given by considering a jitter of 5%.
Figure 6-69. Embedded Trace Macro Interface
The system debug trace interface (SDTI) module provides real-time software tracing functionality to theOMAP35 15/03 device.
The trace interface has four trace data pins and a trace clock pin.
This interface is a dual-edge interface: the data are available on rising and falling edges of sdti_clk but canbe also configured in single edge mode where data are available on falling edge of sdti_clk.
Serial interface operates in clock stop regime: serial clock is not free running, when there is no trace datathere is no trace clock.
Table 6-144 assumes testing over the recommended operating conditions and electrical characteristicconditions (see Figure 6-70 ).
Table 6-143. System Debug Trace Interface Timing Conditions Dual-Edge Mode
TIMING CONDITION PARAMETER VALUE UNIT
Output Conditions
C
LOAD
Output load capacitance 25 pF
Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 249
sdti_clk
sdti_txd[3:0] Header Header Ad[7:4] Ad[3:0] Da[15:12] Da[11:8] Da[7:4] Da[3:0]
SD1 SD2
SD3 SD3
030-111
6.8.2.2 System Debug Trace Interface in Single-Edge Mode
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Table 6-144. System Debug Trace Interface Switching Characteristics Dual-Edge Mode
NO. PARAMETER 1.15 V 1.0 V UNIT
MIN MAX MIN MAX
SD1 t
c(CLK)
Cycle time, sdti_clk period 29 29 nsSD2 t
w(CLK)
Typical pulse duration, sdti_clk high or low 0.5*P
(1)
0.5*P
(1)
nst
dc(CLK)
Duty cycle error, sdti_clk –1.2 1.2 –1.2 1.2 nst
R(CLK)
Rise time, sdti_clk 5 5 nst
F(CLK)
Fall time, sdti_clk 5 5 nsSD3 t
d(CLK-TxD)
Delay time, sdti_clk Multiplexing mode on etk pins 2.3 10.9 2.3 10.9 nstransition to sdti_txd[3:0]
Multiplexing mode on 2.3 13.9 2.3 13.9transition
jtag_emu pinst
R(CLK)
Rise time, sdti_txd[3:0] 5 5 nst
F(CLK)
Fall time, sdti_txd[3:0] 5 5 ns
(1) P = sdti_clk clock period
Figure 6-70. System Debug Trace Interface Dual-Edge Mode
Table 6-146 assumes testing over the recommended operating conditions and electrical characteristicconditions (see Figure 6-71 ).
Table 6-145. System Debug Trace Interface Timing Conditions Single-Edge Mode
TIMING CONDITION PARAMETER VALUE UNIT
Output Conditions
C
LOAD
Output load capacitance 25 pF
Table 6-146. System Debug Trace Interface Switching Characteristics Single-Edge Mode
NO. PARAMETER 1.15 V 1.0 V UNIT
MIN MAX MIN MAX
SD1 t
c(CLK)
Cycle time, sdti_clk period 29 29 nsSD2 t
w(CLK)
Typical pulse duration, sdti_clk high or low 0.5*P
(1)
0.5*P
(1)
nst
dc(CLK)
Duty cycle error, sdti_clk –1.2 1.2 –1.2 1.2 nst
R(CLK)
Rise time, sdti_clk 5 5 nst
F(CLK)
Fall time, sdti_clk 5 5 nsSD3 t
d(CLK-TxD)
Delay time, sdti_clk Multiplexing mode on etk pins 2.3 26.5 2.3 26.5 nstransition to sdti_txd[3:0]
Multiplexing mode on jtag_emu 2.3 33.2 2.3 33.2transition
pinst
R(CLK)
Rise time, sdti_txd[3:0] 5 5 nst
F(CLK)
Fall time, sdti_txd[3:0] 5 5 ns
(1) P = sdti_clk clock period.
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS250 Submit Documentation Feedback
sdti_clk
sdti_txd[3:0] Header Header Ad[7:4] Ad[3:0] Da[15:12] Da[11:8] Da[7:4] Da[3:0]
SD1 SD2
SD3 SD3
030-112
6.8.3 JTAG Interfaces
6.8.3.1 JTAG Free Running Clock Mode
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Figure 6-71. System Debug Trace Interface Single-Edge Mode
OMAP35 15/03 JTAG TAP controller handles standard IEEE JTAG interfaces. The following sectionsdefine the timing requirements for several tools used to test the OMAP35 15/03 processors as:Free running clock tool, like XDS560 and XDS510 toolsAdaptive clock tool, like RealView® ICE tool and Lauterbach™ tool
Table 6-148 and Table 6-149 assume testing over the recommended operating conditions and electricalcharacteristic conditions (see Figure 6-72 ).
Table 6-147. JTAG Timing Conditions Free Running Clock Mode
TIMING CONDITION PARAMETER VALUE UNIT
Input Conditions
t
R
Input signal rise time 5 nst
F
Input signal fall time 5 ns
Output Conditions
C
LOAD
Output load capacitance 30 pF
Table 6-148. JTAG Timing Requirements Free Running Clock Mode
(1)
NO. PARAMETER 1.15 V 1.0 V UNIT
MIN MAX MIN MAX
JT4 t
c(tck)
Cycle time
(2)
, jtag_tck period 25 33 nsJT5 t
w(tckL)
Typical pulse duration, jtag_tck low 0.5*P
(3)
0.5*P
(3)
nsJT6 t
w(tckH)
Typical pulse duration, jtag_tck high 0.5*P
(3)
0.5*P
(3)
nst
dc(tck)
Duty cycle error, jtag_tck –1250 1250 –1667 1667 pst
j(tck)
Cycle jitter
(4)
, jtag_tck –1250 1250 –1667 1667 psJT7 t
su(tdiV-rtckH)
Setup time, jtag_tdi valid before jtag_rtck high 1.8 1.8 nsJT8 t
h(tdiV-rtckH)
Hold time, jtag_tdi valid after jtag_rtck high 0.7 1 nsJT9 t
su(tmsV-rtckH)
Setup time, jtag_tms valid before jtag_rtck high 1.8 1.8 nsJT10 t
h(tmsV-rtckH)
Hold time, jtag_tms valid after jtag_rtck high 0.7 1 nsJT12 t
su(emuxV-rtckH)
Setup time, jtag_emux
(5)
valid before jtag_rtck 14.6 19.8 nshighJT13 t
h(emuxV-rtckH)
Hold time,jtag_emux
(5)
valid after jtag_rtck high 2 2.7 ns
(1) The timing requirements are assured for the cycle jitter and duty cycle error conditions specified.(2) Related with the input maximum frequency supported by the JTAG module.(3) P = jtag _tck period in ns.(4) Maximum cycle jitter supported by jtag _tck input clock.(5) x = 0 to 1
Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 251
jtag_tck
jtag_rtck
jtag_tdi
jtag_tms
jtag_emux(IN)
jtag_tdo
jtag_emux(OUT)
JT7
JT11
JT1
JT2 JT3
JT8
JT10JT9
JT4
JT5 JT6
JT12 JT13
JT14
030-113
6.8.3.2 JTAG Adaptive Clock Mode
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Table 6-149. JTAG Switching Characteristics Free Running Clock Mode
NO. PARAMETER 1.15 V 1.0 V UNIT
MIN MAX MIN MAX
JT1 t
c(rtck)
Cycle time
(1)
, jtag_rtck period 25 33 nsJT2 t
w(rtckL)
Typical pulse duration, jtag_rtck low 0.5*PO
(2)
0.5*PO
(2)
nsJT3 t
w(rtckH)
Typical pulse duration, jtag_rtck high 0.5*PO
(2)
0.5*PO
(2)
nst
dc(rtck)
Duty cycle error, jtag_rtck –1250 1250 –1667 1667 pst
j(rtck)
Jitter standard deviation
(3)
, jtag_rtck 33.3 33.3 pst
R(rtck)
Rise time, jtag_rtck 4 4 nst
F(rtck)
Fall time, jtag_rtck 4 4 nsJT11 t
d(rtckL-tdoV)
Delay time, jtag_rtck low to jtag_tdo valid –5.8 5.8 –7.9 7.9 nst
R(tdo)
Rise time, jtag_tdo 4 4 nst
F(tdo)
Fall time, jtag_tdo 4 4 nsJT14 t
d(rtckH-emuxV)
Delay time, jtag_rtck high to ,jtag_emux
(4)
valid 2.7 15.1 2.7 20.4 nst
R(emux)
Rise time, jtag_emux
(4)
6 6 nst
F(emux)
Fall time, jtag_emux
(4)
6 6 ns
(1) Related with the jtag_rtck maximum frequency.(2) PO = jtag _rtck period in ns.(3) The jitter probability density can be approximated by a Gaussian function.(4) x = 0 to 1
In jtag_emux, x is equal to 0 to 1.
Figure 6-72. JTAG Interface Timing Free Running Clock Mode
Table 6-151 and Table 6-152 assume testing over the recommended operating conditions and electricalcharacteristic conditions (see Figure 6-73 ):
Table 6-150. JTAG Timing Conditions Adaptive Clock Mode
TIMING CONDITION PARAMETER VALUE UNIT
Input Conditions
t
R
Input signal rise time 5 ns
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS252 Submit Documentation Feedback
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Table 6-150. JTAG Timing Conditions Adaptive Clock Mode (continued)
TIMING CONDITION PARAMETER VALUE UNIT
t
F
Input signal fall time 5 ns
Output Conditions
C
LOAD
Output load capacitance 30 pF
Table 6-151. JTAG Timing Requirements Adaptive Clock Mode
(1)
NO. PARAMETER 1.15 V 1.0 V UNIT
MIN MAX MIN MAX
JA4 t
c(tck)
Cycle time
(2)
, jtag_tck period 50 50 nsJA5 t
w(tckL)
Typical pulse duration, jtag_tck low 0.5*P
(3)
0.5*P
(3)
nsJA6 t
w(tckH)
Typical pulse duration, jtag_tck high 0.5*P
(3)
0.5*P
(3)
nst
dc(lclk)
Duty cycle error, jtag_tck –2500 2500 –2500 2500 pst
j(lclk)
Cycle jitter
(4)
, jtag_tck –1500 1500 –1500 1500 psJA7 t
su(tdiV-tckH)
Setup time, jtag_tdi valid before jtag_tck high 13.8 13.8 nsJA8 t
h(tdiV-tckH)
Hold time, jtag_tdi valid after jtag_tck high 13.8 13.8 nsJA9 t
su(tmsV-tckH)
Setup time, jtag_tms valid before jtag_tck high 13.8 13.8 nsJA10 t
h(tmsV-tckH)
Hold time, jtag_tms valid after jtag_tck high 13.8 13.8 ns
(1) The timing requirements are assured for the cycle jitter and duty cycle error conditions specified.(2) Related with the input maximum frequency supported by the JTAG module.(3) P = jtag _tck period in ns.(4) Maximum cycle jitter supported by jtag _tck input clock.
Table 6-152. JTAG Switching Characteristics Adaptive Clock Mode
NO. PARAMETER 1.15 V 1.0 V UNIT
MIN MAX MIN MAX
JA1 t
c(rtck)
Cycle time
(1)
, jtag_rtck period 50 50 nsJA2 t
w(rtckL)
Typical pulse duration, jtag_rtck low 0.5*PO
(2)
0.5*PO
(2)
nsJA3 t
w(rtckH)
Typical pulse duration, jtag_rtck high 0.5*PO
(2)
0.5*PO
(2)
nst
dc(rtck)
Duty cycle error, jtag_rtck –2500 2500 –2500 2500 pst
j(rtck)
Jitter standard deviation
(3)
, jtag_rtck 33.3 33.3 pst
R(rtck)
Rise time, jtag_rtck 4 4 nst
F(rtck)
Fall time, jtag_rtck 4 4 nsJA11 t
d(rtckL-tdoV)
Delay time, jtag_rtck low to jtag_tdo valid –14.6 14.6 –14.6 14.6 nst
R(tdo)
Rise time, jtag_tdo, 4 4 nst
F(tdo)
Fall time, jtag_tdo 4 4 ns
(1) Related with the jtag _rtck maximum frequency programmable.(2) PO = jtag _rtck period in ns.(3) The jitter probability density can be approximated by a Gaussian function.
Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 253
jtag_tck
jtag_tdi
jtag_tms
jtag_rtck
jtag_tdo
JA1
JA2 JA3
JA4
JA5 JA6
JA7 JA8
JA10JA9
JA11
030-114
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Figure 6-73. JTAG Interface Timing Adaptive Clock Mode
254 TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS Submit Documentation Feedback
7 PACKAGE CHARACTERISTICS
7.1 Package Thermal Resistance
7.2 Device Support
7.2.1 Device and Development-Support Tool Nomenclature
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
Table 7-1 provides the thermal resistance characteristics for the recommended package types used on theOMAP35 15/03 Applications Processor.
Table 7-1. OMAP35 15/03 Thermal Resistance Characteristics
(1) (2)
Package Power (W)
(3)
R
θJA
(°C/W) R
θJB
(°C/W) R
θJC
(°C/W)
(4)
Board Type
OMAP35 15/03 0.92871 24.46 10.94
(5)
2S2P
(6)
(CBB Pkg.)OMAP35 15/03 0.92871 21.89 6.23
(5)
2S2P
(6)
(CBC Pkg.)OMAP35 15/03 0.92871 23.69 8.1 2.31 2S2P
(6)
(CUS Pkg.)
(1) R
θJA
(Theta-JA) = Thermal Resistance Junction-to-Ambient, °C/W(2) This table provides simulation data and may not represent actual use-case values.R
θJB
(Theta-JB) = Thermal Resistance Junction-to-Board, °C/WR
θJC
(Theta-JC) = Thermal Resistance Junction-to-Case, °C/W(3) These numbers are based on simulation results and don’t necessarily represent the wattage that the part will take in actual use.(4) It is recommended to dissipate the heat to the board instead of attempting to remove it from the top of the chip; therefore, top-side heatsinks should not be used for package.(5) Not applicable if the POP package has a memory package on top; no heat sink can be used.(6) The board types are defined by JEDEC (reference JEDEC standard JESD51-9, Test Board for Area Array Surface Mount PackageThermal Measurements).
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of allOMAP processors and support tools. Each OMAP device has one of three prefixes: X, P, or null (noprefix). Texas Instruments recommends two of three possible prefix designators for its support tools:TMDX and TMDS. These prefixes represent evolutionary stages of product development from engineeringprototypes (TMDX) through fully qualified production devices/tools (TMDS).
Device development evolutionary flow:
XExperimental device that is not necessarily representative of the final device’s electricalspecifications and may not use production assembly flow. (TMX definition)
PPrototype device that is not necessarily the final silicon die and may not necessarily meetfinal electrical specifications. (TMP definition)
null Production version of the silicon die that is fully qualified. (TMS definition)
Support tool development evolutionary flow:
TMDX Development support product that has not yet completed Texas Instruments internalqualification testing.
TMDS Fully qualified development support product.
TMX and TMP devices and TMDX development-support tools are shipped against the followingdisclaimer:
“Developmental product is intended for internal evaluation purposes.”
Production devices and TMDS development-support tools have been characterized fully, and the qualityand reliability of the device have been demonstrated fully. TI’s standard warranty applies.
Submit Documentation Feedback PACKAGE CHARACTERISTICS 255
PREFIX
X OMAP3530 D
X = Experimental Device
P = Prototype Device
blank= Production Device
DEVICE
PACKAGE TYPE
CBB = 515 pin s-PBGA
CBC = 515 pin s-PBGA
CUS = 423 pin s-PBGA
SILICON REVISION
CBB ( ) ( )
blank = 0° C to 90° C (commercial temperature)
A = -40° C to 105° C (extended temperature)
blank = 600 MHz Cortex - A8
= 720 MHz Cortex - A872
( )
blank = Tray
R = Tape and Reel
7.2.2 Documentation Support
7.2.2.1 Related Documentation from Texas Instruments
7.2.2.2 Related Documentation from Other Sources
OMAP3 515/03 Applications Processor
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
www.ti.com
Predictions show that prototype devices (X or P), have a greater failure rate than the standard productiondevices. Texas Instruments recommends that these devices not be used in any production systembecause their expected end-use failure rate still is undefined. Only qualified production devices are to beused.
For additional description of the device nomenclature markings, see the OMAP35x Applications ProcessorSilicon Errata (literature number SPRZ278 ).
A. For more information on the silicon revision, please see the OMAP3530/25/15/03 Applications Processor SiliconErrata (literature number SPRZ278 ).
Figure 7-1. Device Nomenclature
(A)
The following documents describe the OMAP35 15/03 Applications Processor. Copies of these documentsare available on the Internet at www.ti.com . Tip: Enter the literature number in the search box provided atwww.ti.com .
The current documentation that describes the OMAP35 15/03 Applications Processor, related peripherals,and other technical collateral, is available in the product folder at: www.ti.com .
SPRUF98 OMAP35x Technical Reference Manual. Collection of documents providing detailedinformation on the OMAP3 architecture including power, reset, and clock control, interrupts,memory map, and switch fabric interconnect. Detailed information on the microprocessor unit(MPU) subsystem, the image, video, and audio (IVA2.2) subsystem, as well a functionaldescription of the peripherals supported on OMAP35x devices is also included.
SPRU889 High-Speed DSP Systems Design Reference Guide. Provides recommendations formeeting the many challenges of high-speed DSP system design. These recommendationsinclude information about DSP audio, video, and communications systems for the C5000 andC6000 DSP platforms.
The following documents are related to the OMAP35 15/03 Applications Processor. Copies of thesedocuments can be obtained directly from the internet or from your Texas Instruments representative.
Cortex
TM
-A8 Technical Reference Manual. This is the technical reference manual for the Cortex-A8processor. A copy of this document can be obtained via the internet at http://infocenter.arm.com . Pleasesee the OMAP35x Applications Processor Silicon Errata (literature number SPRZ278 ) to determine therevision of the Cortex-A8 core used on your device.
PACKAGE CHARACTERISTICS 256 Submit Documentation Feedback
OMAP3 515/03 Applications Processor
www.ti.com
SPRS505F FEBRUARY 2008 REVISED SEPTEMBER 2009
ARM Core Cortex
TM
-A8 (AT400/AT401) Errata Notice. Provides a list of advisories for the differentrevisions of the Cortex-A8 processor. Contact your TI representative for a copy of this document. Pleasesee the OMAP35x Applications Processor Silicon Errata (literature number SPRZ278 ) to determine therevision of the Cortex-A8 core used on your device.
Submit Documentation Feedback PACKAGE CHARACTERISTICS 257
PACKAGE OPTION ADDENDUM
www.ti.com 31-Aug-2012
Addendum-Page 1
PACKAGING INFORMATION
Orderable Device Status (1) Package Type Package
Drawing Pins Package Qty Eco Plan (2) Lead/
Ball Finish MSL Peak Temp (3) Samples
(Requires Login)
OMAP3503DCBB OBSOLETE POP-FCBGA CBB 515 Green (RoHS
& no Sb/Br) SNAGCU Level-3-260C-168 HR
OMAP3503DCBBA OBSOLETE POP-FCBGA CBB 515 TBD Call TI Call TI
OMAP3503DCBC OBSOLETE POP-FCBGA CBC 515 Green (RoHS
& no Sb/Br) SNAGCU Level-3-260C-168 HR
OMAP3503DCBCA OBSOLETE POP-FCBGA CBC 515 Green (RoHS
& no Sb/Br) SNAGCU Level-3-260C-168 HR
OMAP3503DCUS OBSOLETE FCBGA CUS 423 Green (RoHS
& no Sb/Br) SNAGCU Level-4-260C-72 HR
OMAP3503DCUS72 OBSOLETE FCBGA CUS 423 TBD Call TI Call TI
OMAP3503DCUSA OBSOLETE FCBGA CUS 423 Green (RoHS
& no Sb/Br) SNAGCU Level-4-260C-72 HR
OMAP3503ECBB ACTIVE POP-FCBGA CBB 515 168 TBD Call TI Call TI
OMAP3503ECBBA ACTIVE POP-FCBGA CBB 515 168 TBD Call TI Call TI
OMAP3503ECBC ACTIVE POP-FCBGA CBC 515 119 TBD Call TI Call TI
OMAP3503ECBCA ACTIVE POP-FCBGA CBC 515 119 TBD Call TI Call TI
OMAP3503ECUS ACTIVE FCBGA CUS 423 90 TBD Call TI Call TI
OMAP3503ECUS72 ACTIVE FCBGA CUS 423 90 Green (RoHS
& no Sb/Br) SNAGCU Level-4-260C-72 HR
OMAP3503ECUSA ACTIVE FCBGA CUS 423 90 TBD Call TI Call TI
OMAP3515DCBB OBSOLETE POP-FCBGA CBB 515 TBD Call TI Call TI
OMAP3515DCBBA OBSOLETE POP-FCBGA CBB 515 Green (RoHS
& no Sb/Br) SNAGCU Level-3-260C-168 HR
OMAP3515DCBC OBSOLETE POP-FCBGA CBC 515 Green (RoHS
& no Sb/Br) SNAGCU Level-3-260C-168 HR
OMAP3515DCBCA OBSOLETE POP-FCBGA CBC 515 Green (RoHS
& no Sb/Br) SNAGCU Level-3-260C-168 HR
OMAP3515DCUS OBSOLETE FCBGA CUS 423 TBD Call TI Call TI
OMAP3515DCUS72 OBSOLETE FCBGA CUS 423 TBD Call TI Call TI
OMAP3515DCUSA OBSOLETE FCBGA CUS 423 Green (RoHS
& no Sb/Br) SNAGCU Level-4-260C-72 HR
OMAP3515ECBB ACTIVE POP-FCBGA CBB 515 168 TBD Call TI Call TI
PACKAGE OPTION ADDENDUM
www.ti.com 31-Aug-2012
Addendum-Page 2
Orderable Device Status (1) Package Type Package
Drawing Pins Package Qty Eco Plan (2) Lead/
Ball Finish MSL Peak Temp (3) Samples
(Requires Login)
OMAP3515ECBBA ACTIVE POP-FCBGA CBB 515 168 TBD Call TI Call TI
OMAP3515ECBC ACTIVE POP-FCBGA CBC 515 119 TBD Call TI Call TI
OMAP3515ECBCA ACTIVE POP-FCBGA CBC 515 119 TBD Call TI Call TI
OMAP3515ECUS ACTIVE FCBGA CUS 423 90 TBD Call TI Call TI
OMAP3515ECUS72 ACTIVE FCBGA CUS 423 90 Green (RoHS
& no Sb/Br) SNAGCU Level-4-260C-72 HR
OMAP3515ECUSA ACTIVE FCBGA CUS 423 90 TBD Call TI Call TI
(1) The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which
have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such
components to meet such requirements.
Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated