Preliminary data
This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to
change without notice.
April 2011 Doc ID 018725 Rev 1 1/38
38
LSM303DLM
Sensor module:
3-axis accelerometer and 3-axis magnetometer
Features
Analog supply voltage: 2.16 V to 3.6 V
Digital supply voltage IOs: 1.8 V
Power-down mode
3 magnetic field channels and 3 acceleration
channels
±1.3 to ±8.1 gauss magnetic field full-scale
±2 g/±4 g/±8 g dynamically selectable full-
scale
High performance g-sensor
I2C serial interface
2 independent programmable interrupt
generators for free-fall and motion detection
Accelerometer sleep-to-wakeup function
6D orientation detection
ECOPACK®, RoHS, and “Green” compliant
Applications
Compensated compass
Map rotation
Position detection
Motion-activated functions
Free-fall detection
Intelligent power-saving for handheld devices
Display orientation
Gaming and virtual reality input devices
Impact recognition and logging
Vibration monitoring and compensation
Description
The LSM303DLM is a system-in-package
featuring a 3D digital linear acceleration sensor
and a 3D digital magnetic sensor.
The various sensing elements are manufactured
by using specialized micromachining processes,
while the IC interfaces are realized using a CMOS
technology that allows the design of a dedicated
circuit which is trimmed to better match the
sensing element characteristics. The
LSM303DLM has a linear acceleration full-scale
of ±2 g / ±4 g / ±8 g and a magnetic field full-scale
of ±1.3 / ±1.9 / ±2.5 / ±4.0 / ±4.7 / ±5.6 / ±8.1
gauss, both fully selectable by the user.
The LSM303DLM includes an I2C serial bus
interface that supports standard mode (100 kHz)
and fast mode (400 kHz). The system can be
configured to generate an interrupt signal by
inertial wakeup/free-fall events, as well as by the
position of the device itself. Thresholds and timing
of interrupt generators are programmable on the
fly by the end user.
Magnetic and accelerometer parts can be
enabled or put into power-down mode separately.
The LSM303DLM is available in a plastic land grid
array package (LGA), and is guaranteed to
operate over an extended temperature range from
-40 to +85 °C.
Table 1. Device summary
Part number
Temp.
range
[°C]
Package Packing
LSM303DLM
-40 to +85 LGA-28
Tray
LSM303DLMTR Tape and
reel
LGA-28L (5x5x1.0 mm)
www.st.com
Contents LSM303DLM
2/38 Doc ID 018725 Rev 1
Contents
1 Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2 Module specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1 Sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Communication interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.1 Sensor I2C - inter IC control interface . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.1 Linear acceleration sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2 Zero-g level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.3 Sleep-to-wakeup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5 Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.1 Factory calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6 Application hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
6.1 External capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
6.2 Soldering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.3 High current wiring effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
7 Digital interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
7.1 I2C serial interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
7.1.1 I2C operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
7.1.2 Linear acceleration digital interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
7.1.3 Magnetic field digital interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
8 Register mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
9 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
LSM303DLM Contents
Doc ID 018725 Rev 1 3/38
9.1 Linear acceleration register description . . . . . . . . . . . . . . . . . . . . . . . . . . 22
9.1.1 CTRL_REG1_A (20h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
9.1.2 CTRL_REG2_A (21h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
9.1.3 CTRL_REG3_A (22h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
9.1.4 CTRL_REG4_A (23h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
9.1.5 CTRL_REG5_A (24h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ) 26
9.1.6 HP_FILTER_RESET_A (25h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
9.1.7 REFERENCE_A (26h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
9.1.8 STATUS_REG_A(27h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
9.1.9 OUT_X_L_A (28h), OUT_X_H_A (29h) . . . . . . . . . . . . . . . . . . . . . . . . . 27
9.1.10 OUT_Y_L_A (2Ah), OUT_Y_H_A (2Bh) . . . . . . . . . . . . . . . . . . . . . . . . 27
9.1.11 OUT_Z_L_A (2Ch), OUT_Z_H_A (2Dh) . . . . . . . . . . . . . . . . . . . . . . . . 27
9.1.12 INT1_CFG_A (30h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
9.1.13 INT1_SRC_A (31h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
9.1.14 INT1_THS_A (32h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
9.1.15 INT1_DURATION_A (33h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
9.1.16 INT2_CFG_A (34h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
9.1.17 INT2_SRC_A (35h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
9.1.18 INT2_THS_A (36h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
9.1.19 INT2_DURATION_A (37h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
9.2 Magnetic field sensing register description . . . . . . . . . . . . . . . . . . . . . . . 32
9.2.1 CRA_REG_M (00h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
9.2.2 CRB_REG_M (01h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
9.2.3 MR_REG_M (02h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
9.2.4 OUT_X_H_M (03), OUT_X_LH_M (04h) . . . . . . . . . . . . . . . . . . . . . . . . 33
9.2.5 OUT_Z_H_M (05), OUT_Z_L_M (06h) . . . . . . . . . . . . . . . . . . . . . . . . . 34
9.2.6 OUT_Y_H_M (07), OUT_Y_L_M (08h) . . . . . . . . . . . . . . . . . . . . . . . . . 34
9.2.7 SR_REG_M (09h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
9.2.8 IR_REG_M (0Ah/0Bh/0Ch) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
9.2.9 WHO_AM_I _M (0F) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
10 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
11 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
List of tables LSM303DLM
4/38 Doc ID 018725 Rev 1
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Table 3. Sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Table 4. Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 5. I2C slave timing values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 6. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 7. Serial interface pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 8. Serial interface pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 9. Transfer when master is writing one byte to slave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 10. Transfer when master is writing multiple bytes to slave . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 11. Transfer when master is receiving (reading) one byte of data from slave . . . . . . . . . . . . . 16
Table 12. SAD and read/write patterns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 13. Transfer when master is receiving (reading) multiple bytes of data from slave . . . . . . . . . 17
Table 14. SAD and read/write patterns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 15. Register address map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 16. CTRL_REG1_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 17. CTRL_REG1_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 18. Power mode and low-power output data rate configurations . . . . . . . . . . . . . . . . . . . . . . . 21
Table 19. Normal-mode output data rate configurations and low-pass cut-off frequencies . . . . . . . . 22
Table 20. CTRL_REG2_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 21. CTRL_REG2_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 22. High-pass filter mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 23. High-pass filter cut-off frequency configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 24. CTRL_REG3_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 25. CTRL_REG3_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 26. Data signal on INT 1 and INT 2 pad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 27. CTRL_REG4_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 28. CTRL_REG4_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 29. CTRL_REG5_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 30. CTRL_REG5_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 31. Sleep-to-wakeup configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 32. REFERENCE_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 33. REFERENCE_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 34. STATUS_REG_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 35. STATUS_REG_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 36. INT1_CFG_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 37. INT1_CFG_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 38. Interrupt 1 source configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 39. INT1_SRC register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 40. INT1_SRC_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 41. INT1_THS register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 42. INT1_THS description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 43. INT1_DURATION_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 44. INT2_DURATION_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 45. INT2_CFG_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 46. INT2_CFG_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 47. Interrupt mode configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 48. INT2_SRC_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
LSM303DLM List of tables
Doc ID 018725 Rev 1 5/38
Table 49. INT2_SRC_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 50. INT2_THS register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 51. INT2_THS description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 52. INT2_DURATION_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 53. INT2_DURATION_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 54. CRA_REG_M register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 55. CRA_REG_M description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 56. Data rate configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 57. CRA_REG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 58. Gain setting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 59. MR_REG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 60. MR_REG description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 61. Magnetic sensor operating mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 62. SR register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 63. SR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 64. IRA_REG_M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 65. IRB_REG_M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 66. IRC_REG_M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 67. WHO_AM_I_M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 68. Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Block diagram and pin description LSM303DLM
6/38 Doc ID 018725 Rev 1
1 Block diagram and pin description
1.1 Block diagram
Figure 1. Block diagram
Y+
Z+
Y-
Z-
X+
X-
MUX
SDA_M
SCL_M
I (a)
+
-
CHARGE
AMPLIFIER
Sensing Block
Sensing Interface
A/D Control
Logic
converter
DI
I2C
INT1
INT2
MUX
I (M)
+
-
CHARGE
AMPLIFIER
Y+
Z+
Y-
Z-
X+
X-
INTERRUPT GEN.
CLOCK
TRIMMING
CIRCUITS
REFERENCE
OFFSET
CIRCUITS
BUILT-IN
CIRCUITS
SET/RESET
SDA_A
SCL_A
AM09239V1
LSM303DLM Block diagram and pin description
Doc ID 018725 Rev 1 7/38
1.2 Pin description
Figure 2. Pin connection
Table 2. Pin description
Pin# Name Function
1 Reserved Connect to GND
2 GND 0 V supply
3 Reserved Connect to GND
4 SA0_A Linear acceleration signal I2C less significant bit of the device
address (SA0)
5 NC Internally not connected
6VddPower supply
7 Reserved Connect to Vdd
8 Reserved Leave unconnected
9 Reserved Leave unconnected
10 Reserved Leave unconnected
11 Reserved Leave unconnected
12 SET2 S/R capacitor connection (C2)
13 Reserved Leave unconnected
14 Reserved Leave unconnected
15 C1 Reserved capacitor connection (C1)
16 SET1 S/R capacitor connection (C2)
17 Reserved Connect to GND
18 DRDY_M Magnetic signal interface data ready
19 SDA_M Magnetic signal interface I2C serial data (SDA)
$)2%#4)/./&
$%4%#4!",%
-!'.%4)#&)%,$3
9
8
:
$)2%#4)/./&
$%4%#4!",%
!##%,%2!4)/.3
2%3
&),46$$
3#,?!
2%3
&),4).9
'.$
"/44/-6)%7
2%3

2%3
3$!?!
).4
).4
6DD?)/
2%3
2%3
3%4
2%3
2%3
2%3
.#
3$!?-
.#
3#,?-
2%3
3%4 6$$
$2$9?-
,3-$-
3!?!
2%3



# 2%3
9
8
:
!-V
Block diagram and pin description LSM303DLM
8/38 Doc ID 018725 Rev 1
20 SCL_M Magnetic signal interface I2C serial clock (SCL)
21 NC Internally not connected
22 Vdd_IO Signal interface power supply for I/O pins
23 Reserved Connect to Vdd_IO
24 SCL_A Linear acceleration signal interface I2C serial clock (SCL)
25 SDA_A Linear acceleration signal interface I2C serial data (SDA)
26 INT1 Inertial Interrupt 1
27 INT2 Inertial Interrupt 2
28 Reserved Connect to GND
Table 2. Pin description (continued)
Pin# Name Function
LSM303DLM Module specifications
Doc ID 018725 Rev 1 9/38
2 Module specifications
2.1 Sensor characteristics
@ Vdd = 2.5 V, T = 25 °C unless otherwise noted(a).
a. The product is factory calibrated at 2.5 V. The operational power supply range is from 2.16 V to 3.6 V.
Table 3. Sensor characteristics
Symbol Parameter Test conditions Min. Typ.(1) Max. Unit
LA_FS Linear acceleration
measurement range(2)
FS bit set to 00 ±2.0
gFS bit set to 01 ±4.0
FS bit set to 11 ±8.0
M_FS Magnetic measurement range
GN bits set to 001 ±1.3
gauss
GN bits set to 010 ±1.9
GN bits set to 011 ±2.5
GN bits set to 100 ±4.0
GN bits set to 101 ±4.7
GN bits set to 110 ±5.6
GN bits set to 111 ±8.1
LA_So Linear acceleration sensitivity
FS bit set to 00
12-bit representation 1
mg/digit
FS bit set to 01
12-bit representation 2
FS bit set to 11
12-bit representation 3.9
M_GN Magnetic gain setting
GN bits set to 001 (X,Y) 1100
LSB/
gauss
GN bits set to 001 (Z) 980
GN bits set to 010 (X,Y) 855
GN bits set to 010 (Z) 760
GN bits set to 011 (X,Y) 670
GN bits set to 011 (Z) 600
GN bits set to 100 (X,Y) 450
GN bits set to 100 (Z) 400
GN bits set to 101 (X,Y) 400
GN bits set to 101 (Z) 355
GN bits set to 110 (X,Y) 330
GN bits set to 110 (Z) 295
GN bits set to 111(2) (X,Y) 230
GN bits set to 111(2) (Z) 205
Module specifications LSM303DLM
10/38 Doc ID 018725 Rev 1
2.2 Electrical characteristics
@ Vdd = 2.5 V, T = 25 °C unless otherwise noted.
LA_TCSo Linear acceleration sensitivity
change vs. temperature FS bit set to 00 ±0.01 %/°C
LA_TyOff
Linear acceleration typical
Zero-g level offset
accuracy(3),(4)
FS bit set to 00 ±60 mg
LA_TCOff Linear acceleration Zero-g level
change vs. temperature Max. delta from 25 °C ±0.5 mg/°C
M_CAS Magnetic cross-axis sensitivity Cross field = 0.5 gauss
H applied = ±3 gauss ±1 %FS/
gauss
M_EF Maximum exposed field No permitting effect on
zero reading 10000 gauss
M_R Magnetic resolution 5 mgauss
M_DF Disturbing field
Sensitivity starts to
degrade. Use S/R pulse to
restore sensitivity
20 gauss
Top Operating temperature range -40 +85 °C
1. Typical specifications are not guaranteed.
2. Verified by wafer level test and measurement of initial offset and sensitivity.
3. Typical Zero-g level offset value after MSL3 preconditioning.
4. Offset can be eliminated by enabling the built-in high-pass filter.
Table 3. Sensor characteristics (continued)
Symbol Parameter Test conditions Min. Typ.(1) Max. Unit
Table 4. Electrical characteristics
Symbol Parameter Test
conditions Min. Typ.(1) Max. Unit
Vdd Supply voltage
-
2.16 3.6 V
Vdd_IO Module power supply for I/O 1.71 1.8 Vdd+0.1 V
Idd Current consumption in normal
mode(2) 360 µA
IddPdn Current consumption in power-
down mode A
Top Operating temperature range -40 +85 °C
1. Typical specifications are not guaranteed.
2. Magnetic sensor setting ODR = 7.5 Hz. Accelerometer sensor ODR = 50 Hz.
LSM303DLM Module specifications
Doc ID 018725 Rev 1 11/38
2.3 Communication interface characteristics
2.3.1 Sensor I2C - inter IC control interface
Subject to general operating conditions for Vdd and top.
Figure 3. I2C slave timing diagram (b)
Table 5. I2C slave timing values
Symbol Parameter
I2C standard mode (1) I2C fast mode (1)
Unit
Min. Max. Min. Max.
f(SCL) SCL clock frequency 0 100 0 400 KHz
tw(SCLL) SCL clock low time 4.7 1.3
µs
tw(SCLH) SCL clock high time 4.0 0.6
tsu(SDA) SDA setup time 250 100 ns
th(SDA) SDA data hold time 0.01 3.45 0.01 0.9 µs
tr(SDA) tr(SCL) SDA and SCL rise time 1000 20 + 0.1Cb(2) 300
ns
tf(SDA) tf(SCL) SDA and SCL fall time 300 20 + 0.1Cb(2) 300
th(ST) START condition hold time 4 0.6
µs
tsu(SR) Repeated START condition
setup time 4.7 0.6
tsu(SP) STOP condition setup time 4 0.6
tw(SP:SR) Bus free time between STOP
and START condition 4.7 1.3
1. Data based on standard I2C protocol requirement, not tested in production.
2. Cb = total capacitance of one bus line, in pF.
b. Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO, for both ports.
6'$
6&/
W
I6'$
W
VX63
W
Z6&//
W
VX6'$
W
U6'$
W
VX65
W
K67
W
Z6&/+
W
K6'$
W
U6&/
W
I6&/
W
Z6365
67$57
5(3($7('
67$57
6723
67$57
Absolute maximum ratings LSM303DLM
12/38 Doc ID 018725 Rev 1
3 Absolute maximum ratings
Stresses above those listed as “absolute maximum ratings” may cause permanent damage
to the device. This is a stress rating only and functional operation of the device under these
conditions is not implied. Exposure to maximum rating conditions for extended periods may
affect device reliability.
Table 6. Absolute maximum ratings
Symbol Ratings Maximum value Unit
Vdd Supply voltage -0.3 to 4.8 V
Vdd_IO I/O pins supply voltage -0.3 to 4.8 V
Vin Input voltage on any control pin (SCL, SDA) -0.3 to Vdd_IO +0.3 V
APOW Acceleration (any axis, powered, Vdd = 2.5 V) 3,000 for 0.5 ms g
10,000 for 0.1 ms g
AUNP Acceleration (any axis, unpowered) 3,000 for 0.5 ms g
10,000 for 0.1 ms g
TOP Operating temperature range -40 to +85 °C
TSTG Storage temperature range -40 to +125 °C
This is a mechanical shock sensitive device, improper handling can cause permanent
damage to the part.
This is an ESD sensitive device, improper handling can cause permanent damage to
the part.
LSM303DLM Terminology
Doc ID 018725 Rev 1 13/38
4 Terminology
4.1 Linear acceleration sensitivity
Linear acceleration sensitivity describes the gain of the accelerometer sensor and can be
determined by applying 1 g acceleration to it. As the sensor can measure DC accelerations,
this can be done easily by pointing the selected axis towards the ground, noting the output
value, rotating the sensor 180 degrees (pointing to the sky) and noting the output value
again. By doing so, a ±1 g acceleration is applied to the sensor. Subtracting the larger
output value from the smaller one, and dividing the result by 2, leads to the actual sensitivity
of the sensor. This value changes very little over temperature and over time. The sensitivity
tolerance describes the range of sensitivities of a large number of sensors.
4.2 Zero-g level
Zero-g level Offset (LA_TyOff) describes the deviation of an actual output signal from the
ideal output signal if no linear acceleration is present. A sensor in steady-state on a
horizontal surface measures 0 g on both the X and Y axes, whereas the Z axis measures 1
g. Ideally, the output is in the middle of the dynamic range of the sensor (content of OUT
registers 00h, data expressed as 2’s complement number). A deviation from the ideal value
in this case is called Zero-g offset. Offset is, to some extent, a result of stress to the MEMS
sensor and therefore the offset can slightly change after mounting the sensor onto a printed
circuit board or exposing it to extensive mechanical stress. Offset changes little over
temperature, see “Linear acceleration Zero-g level change vs. temperature” (LA_TCOff) in
Table 3. The Zero-g level tolerance (TyOff) describes the standard deviation of the range of
Zero-g levels of a group of sensors.
4.3 Sleep-to-wakeup
The “sleep-to-wakeup” function, in conjunction with low-power mode, allows further
reduction of system power consumption and the development of new smart applications.
The LSM303DLM may be set to a low-power operating mode, characterized by lower data
rate refreshing. In this way, the device, even if sleeping, continues sensing acceleration and
generating interrupt requests.
When the sleep-to-wakeup function is activated, the LSM303DLM is able to automatically
wake up as soon as the interrupt event has been detected, increasing the output data rate
and bandwidth. With this feature the system may be efficiently switched from low-power
mode to full-performance depending on user-selectable positioning and acceleration events,
therefore ensuring power-saving and flexibility.
Functionality LSM303DLM
14/38 Doc ID 018725 Rev 1
5 Functionality
The LSM303DLM is a system-in-package featuring a 3D digital linear acceleration and 3D
digital magnetic field detection sensor.
The system includes specific sensing elements and an IC interface capable of measuring
both the linear acceleration and the magnetic field applied on it and to provide a signal to the
external world through an I2C serial interface with separated digital output.
The sensing system is manufactured using specialized micromachining processes, while
the IC interfaces are realized using a CMOS technology that allows the design of a
dedicated circuit which is trimmed to better match the sensing element characteristics.
The LSM303DLM features two data-ready signals (RDY) which indicate when a new set of
measured acceleration data and magnetic data are available, therefore simplifying data
synchronization in the digital system that uses the device.
The LSM303DLM may also be configured to generate an inertial wakeup and free-fall
interrupt signal according to a programmed acceleration event along the enabled axes. Both
free-fall and wakeup can be used simultaneously on two different accelerometer interrupts.
5.1 Factory calibration
The IC interface is factory calibrated for linear acceleration sensitivity (LA_So), and linear
acceleration Zero-g level (LA_TyOff).
The trimming values are stored inside the device in non-volatile memory. When the device is
turned on, the trimming parameters are downloaded into the registers to be used during
normal operation. This allows the use of the device without further calibration.
LSM303DLM Application hints
Doc ID 018725 Rev 1 15/38
6 Application hints
Figure 4. LSM303DLM electrical connection - recommended for I2C fast mode
6.1 External capacitors
The C1 and C2 external capacitors should have a low SR value ceramic type construction.
Reservoir capacitor C1 is nominally 4.7 µF in capacitance, with the set/reset capacitor C2
nominally 0.22 µF in capacitance.
The device core is supplied through the Vdd line. Power supply decoupling capacitors
(C4=100 nF ceramic, C3=10 µF Al) should be placed as near as possible to the supply pin
of the device (common design practice). All the voltage and ground supplies must be
present at the same time to obtain proper behavior of the IC (refer to Figure 4).
The functionality of the device and the measured acceleration/magnetic field data is
selectable and accessible through the I2C interface.
The functions, the threshold, and the timing of the two interrupt pins (INT 1 and INT 2) can
be completely programmed by the user through the I2C interface.
DIRECTIONS OF
DETECTABLE
MAGNETIC FIELDS
DIRECTIONS OF
DETECTABLE
ACCELERATIONS
RES
SCL_A
RES
GND
(TOP VIEW)
RES
418
RES
SDA_A
INT1
INT2
Vdd_IO
RES
VDD
SDA_M
NC
SCL_M
SET1
RES
DRDY_M
LSM303DLM
SA0
RES
1
7
2822
21
15
C1
C2=0.22uF
GND
C1=4.7uF
Vdd_IO
Vdd
C4 = 100uF
C3 = 10uF
Y
X
Z
1
Y
X
Z
1
NC
GND
SET2
RES
RES
RES
Vdd_IO
Rpu
Electrical connection
Rpu=10kOhm
RES
Vdd_IO
RpuRpu=10kOhm
AM09240V1
Application hints LSM303DLM
16/38 Doc ID 018725 Rev 1
6.2 Soldering information
The LGA package is compliant with the ECOPACK®, RoHS and “Green” standard.
It is qualified for soldering heat resistance according to JEDEC J-STD-020.
Leave “pin 1 indicator” unconnected during soldering.
Land pattern and soldering recommendations are available at www.st.com.
6.3 High current wiring effects
High current in the wiring and printed circuit traces can be the cause of errors in magnetic
field measurements for compassing.
Conductor-generated magnetic fields add to the Earth’s magnetic field, creating errors in
compass heading computation.
Keep currents that are higher than 10 mA a few millimeters further away from the sensor IC.
LSM303DLM Digital interfaces
Doc ID 018725 Rev 1 17/38
7 Digital interfaces
The registers embedded inside the LSM303DLM are accessible through two separate I2C
serial interfaces; one for the accelerometer core and the other for the magnetometer core.
The two interfaces can be connected together on the PCB.
7.1 I2C serial interface
The LSM303DLM I2C is a bus slave. The I2C is employed to write the data into the registers
whose content can also be read back.
The relevant I2C terminology is given in the table below.
There are two signals associated with the I2C bus; the serial clock line (SCL) and the serial
data line (SDA). The latter is a bidirectional line used for sending and receiving the data
to/from the interface.
Table 7. Serial interface pin description
Pin name Pin description
SCL_A I2C serial clock (SCL) for accelerometer
SDA_A I2C serial data (SDA) for accelerometer
SCL_M I2C serial clock (SCL) for magnetometer
SDA_M I2C serial data (SDA) for magnetometer
Table 8. Serial interface pin description
Term Description
Transmitter The device which sends data to the bus
Receiver The device which receives data from the bus
Master The device which initiates a transfer, generates clock signals, and terminates a
transfer
Slave The device addressed by the master
Digital interfaces LSM303DLM
18/38 Doc ID 018725 Rev 1
7.1.1 I2C operation
The transaction on the bus is started through a START (ST) signal. A START condition is
defined as a HIGH to LOW transition on the data line while the SCL line is held HIGH. After
this has been transmitted by the master, the bus is considered busy. The next byte of data
transmitted after the start condition contains the address of the slave in the first 7 bits and
the 8th bit tells whether the master is receiving data from the slave or transmitting data to the
slave. When an address is sent, each device in the system compares the first seven bits
after a start condition with its address. If they match, the device considers itself addressed
by the master.
Data transfer with acknowledge is mandatory. The transmitter must release the SDA line
during the acknowledge pulse. The receiver must then pull the data line LOW so that it
remains stable low during the HIGH period of the acknowledge clock pulse. A receiver which
has been addressed is obliged to generate an acknowledge after each byte of data
received.
The I2C embedded inside the LSM303DLM behaves like a slave device and the following
protocol must be adhered to. After the start condition (ST) a slave address is sent. Once a
slave acknowledge (SAK) has been returned, an 8-bit sub-address (SUB) is transmitted; the
7 LSBs represent the actual register address while the MSB enables address auto-
increment. If the MSb of the SUB field is ‘1’, the SUB (register address) is automatically
increased to allow multiple data read/write.
Data are transmitted in byte format (DATA). Each data transfer contains 8 bits. The number
of bytes transferred per transfer is unlimited. Data is transferred with the most significant bit
(MSb) first. If a receiver cannot receive another complete byte of data until it has performed
some other function, it can hold the clock line SCL LOW to force the transmitter into a wait
state. Data transfer only continues when the receiver is ready for another byte and releases
the data line. If a slave receiver does not acknowledge the slave address (i.e. it is not able to
receive because it is performing a real-time function) the data line must be left HIGH by the
slave. The master can then abort the transfer. A LOW to HIGH transition on the SDA line
while the SCL line is HIGH is defined as a STOP condition. Each data transfer must be
terminated by the generation of a STOP (SP) condition.
Table 9. Transfer when master is writing one byte to slave
Master ST SAD + W SUB DATA SP
Slave SAK SAK SAK
Table 10. Transfer when master is writing multiple bytes to slave
Master ST SAD + W SUB DATA DATA SP
Slave SAK SAK SAK SAK
Table 11. Transfer when master is receiving (reading) one byte of data from slave
Master ST SAD + W SUB SR SAD + R NMAK SP
Slave SAK SAK SAK DATA
LSM303DLM Digital interfaces
Doc ID 018725 Rev 1 19/38
7.1.2 Linear acceleration digital interface
For linear acceleration, the default (factory) 7-bit slave address is 001100xb. The SDO/SA0
pad can be used to modify the least significant bit of the device address. If the SA0 pad is
connected to voltage supply, the LSB is ‘1’ (address 0011001b) otherwise, if the SA0 pad is
connected to ground, the LSB value is ‘0’ (address 0011000b). This solution permits
connecting and addressing two different accelerometers to the same I2C lines.
The slave address is completed with a read/write bit. If the bit is ‘1’ (read), a repeated
START (SR) condition must be issued after the two sub-address bytes; if the bit is ‘0’ (write),
the master transmits to the slave with the direction unchanged. Table 12 explains how the
SAD+read/write bit pattern is composed, listing all the possible configurations.
In order to read multiple bytes, it is necessary to assert the most significant bit of the sub-
address field. In other words, SUB(7) must be equal to 1 while SUB(6-0) represents the
address of the first register to be read.
In the presented communication format, MAK is master acknowledge and NMAK is no
master acknowledge.
7.1.3 Magnetic field digital interface
For magnetic sensors the default (factory) 7-bit slave address is 0011110xb.
The slave address is completed with a read/write bit. If the bit is ‘1’ (read), a repeated
START (SR) condition must be issued after the two sub-address bytes; if the bit is ‘0’ (write),
the master transmits to the slave with the direction unchanged. Table 14 explains how the
SAD is composed.
Table 12. SAD and read/write patterns
Command SAD[6:1] SAD[0] = SA0 R/W SAD+R/W
Read 001100 0 1 00110001 (31h)
Write 001100 0 0 00110000 (30h)
Read 001100 1 1 00110011 (33h)
Write 001100 1 0 00110010 (32h)
Table 13. Transfer when master is receiving (reading) multiple bytes of data from slave
Master ST SAD+W SUB SR SAD+R MAK MAK NMAK SP
Slave SAK SAK SAK DATA DATA DATA
Table 14. SAD and read/write patterns
Command SAD[6:0] R/W SAD+R/W
Read 0011110 1 00111101 (3Dh)
Write 0011110 0 00111100 (3Ch)
Digital interfaces LSM303DLM
20/38 Doc ID 018725 Rev 1
Magnetic signal interface reading/writing
The interface uses an address pointer to indicate which register location is to be read from
or written to. These pointer locations are sent from the master to this slave device and
succeed the 7-bit address plus 1 bit read/write identifier.
To minimize communication between the master and magnetic digital interface of
LSM303DLM, the address pointer updates automatically without master intervention.
This automatic address pointer update has two additional features. First, when address 12
or higher is accessed, the pointer updates to address 00, and secondly, when address 08 is
reached, the pointer rolls back to address 03. Logically, the address pointer operation
functions as shown below.
If (address pointer = 08) then the address pointer = 03
Or else, if (address pointer >= 12) then the address pointer = 0
Or else, (address pointer) = (address pointer) + 1
The address pointer value itself cannot be read via the I2C bus.
Any attempt to read an invalid address location returns 0, and any write to an invalid
address location, or an undefined bit within a valid address location, is ignored by this
device.
LSM303DLM Register mapping
Doc ID 018725 Rev 1 21/38
8 Register mapping
Table 15 provides a listing of the 8-bit registers embedded in the device and the related
addresses:
Table 15. Register address map
Name Slave
address Type
Register address
Default Comment
Hex Binary
Reserved (do not modify) Table 12 -- 00 - 1F -- -- Reserved
CTRL_REG1_A Table 12 rw 20 010 0000 00000111
CTRL_REG2_A Table 12 rw 21 010 0001 00000000
CTRL_REG3_A Table 12 rw 22 010 0010 00000000
CTRL_REG4_A Table 12 rw 23 010 0011 00000000
CTRL_REG5_A Table 12 rw 24 010 0100 00000000
HP_FILTER_RESET_A Table 12 r 25 010 0101 -- Dummy register
REFERENCE_A Table 12 rw 26 010 0110 00000000
STATUS_REG_A Table 12 r 27 010 0111 00000000
OUT_X_L_A Table 12 r 28 010 1000 output
OUT_X_H_A Table 12 r 29 010 1001 output
OUT_Y_L_A Table 12 r 2A 010 1010 output
OUT_Y_H_A Table 12 r 2B 010 1011 output
OUT_Z_L_A Table 12 r 2C 010 1100 output
OUT_Z_H_A Table 12 r 2D 010 1101 output
Reserved (do not modify) Table 12 -- 2E - 2F -- -- Reserved
INT1_CFG_A Table 12 rw 30 011 0000 00000000
INT1_SOURCE_A Table 12 r 31 011 0001 00000000
INT1_THS_A Table 12 rw 32 011 0010 00000000
INT1_DURATION_A Table 12 rw 33 011 0011 00000000
INT2_CFG_A Table 12 rw 34 011 0100 00000000
INT2_SOURCE_A Table 12 r 35 011 0101 00000000
INT2_THS_A Table 12 rw 36 011 0110 00000000
INT2_DURATION_A Table 12 rw 37 011 0111 00000000
Reserved (do not modify) Table 12 -- 38 - 3F -- -- Reserved
CRA_REG_M Table 14 rw 00 00000000 00010000
CRB_REG_M Table 14 rw 01 00000001 00100000
MR_REG_M Table 14 rw 02 00000010 00000011
Register mapping LSM303DLM
22/38 Doc ID 018725 Rev 1
Registers marked as “reserved” must not be changed. Writing to these registers may cause
permanent damage to the device.
The content of the registers that are loaded at boot should not be changed. They contain the
factory calibrated values. Their content is automatically restored when the device is powered
up.
OUT_X_H_M Table 14 r 03 00000011 output
OUT_X_L_M Table 14 r 04 00000100 output
OUT_Y_H_M Table 14 r 07 00000101 output
OUT_Y_L_M Table 14 r 08 00000110 output
OUT_Z_H_M Table 14 r 05 00000111 output
OUT_Z_L_M Table 14 r 06 00001000 output
SR_REG_Mg Table 14 r 09 00001001 00000000
IRA_REG_M Table 14 r 0A 00001010 01001000
IRB_REG_M Table 14 r 0B 00001011 00110100
IRC_REG_M Table 14 r 0C 00001100 00110011
Reserved (do not modify) Table 14 -- 0D - 0E -- -- Reserved
WHO_AM_I_M Table 14 r 0F 00001111 00111100 Who am I ID
Reserved (do not modify) Table 14 -- 10 - 3A -- -- Reserved
Table 15. Register address map (continued)
Name Slave
address Type
Register address
Default Comment
Hex Binary
LSM303DLM Register description
Doc ID 018725 Rev 1 23/38
9 Register description
The device contains a set of registers which are used to control its behavior and to retrieve
acceleration data. The register address, made up of 7 bits, is used to identify them and to
write the data through the serial interface.
9.1 Linear acceleration register description
9.1.1 CTRL_REG1_A (20h)
PM bits allow selection between power-down and two operating active modes. The device is
in power-down mode when the PD bits are set to “000” (default value after boot). Table 18
shows all the possible power mode configurations and respective output data rates. Output
data in the low-power modes are computed with a low-pass filter cut-off frequency defined
by DR1 and DR0 bits.
DR bits, in normal-mode operation, select the data rate at which acceleration samples are
produced. In low-power mode they define the output data resolution. Table 19 shows all the
possible configurations for the DR1 and DR0 bits.
Table 16. CTRL_REG1_A register
PM2 PM1 PM0 DR1 DR0 Zen Yen Xen
Table 17. CTRL_REG1_A description
PM2 - PM0 Power mode selection. Default value: 000
(000: power-down; others: refer to Table 18)
DR1, DR0 Data rate selection. Default value: 00
(00:50 Hz; others: refer to Table 19)
Zen Z axis enable. Default value: 1
(0: Z axis disabled; 1: Z axis enabled)
Ye n Y axis enable. Default value: 1
(0: Y axis disabled; 1: Y axis enabled)
Xen X axis enable. Default value: 1
(0: X axis disabled; 1: X axis enabled)
Table 18. Power mode and low-power output data rate configurations
PM2 PM1 PM0 Power mode selection Output data rate [Hz]
ODRLP
0 0 0 Power-down --
0 0 1 Normal mode ODR
0 1 0 Low-power 0.5
Register description LSM303DLM
24/38 Doc ID 018725 Rev 1
9.1.2 CTRL_REG2_A (21h)
The BOOT bit is used to refresh the content of internal registers stored in the Flash memory
block. At device power-up, the content of the Flash memory block is transferred to the
internal registers related to trimming functions to permit good device behavior. If, for any
0 1 1 Low-power 1
1 0 0 Low-power 2
1 0 1 Low-power 5
1 1 0 Low-power 10
Table 19. Normal-mode output data rate configurations and low-pass cut-off
frequencies
DR1 DR0 Output data rate [Hz]
ODR
Low-pass filter cut-off
frequency [Hz]
00 50 37
01 100 74
1 0 400 292
1 1 1000 780
Table 18. Power mode and low-power output data rate configurations (continued)
PM2 PM1 PM0 Power mode selection Output data rate [Hz]
ODRLP
Table 20. CTRL_REG2_A register
BOOT HPM1 HPM0 FDS HPen2 HPen1 HPCF1 HPCF0
Table 21. CTRL_REG2_A description
BOOT Reboot memory content. Default value: 0
(0: normal mode; 1: reboot memory content)
HPM1, HPM0 High-pass filter mode selection. Default value: 00
(00: normal mode; others: refer to Table 22)
FDS Filtered data selection. Default value: 0
(0: internal filter bypassed; 1: data from internal filter sent to output register)
HPen2 High-pass filter enabled for Interrupt 2 source. Default value: 0
(0: filter bypassed; 1: filter enabled)
HPen1 High-pass filter enabled for Interrupt 1 source. Default value: 0
(0: filter bypassed; 1: filter enabled)
HPCF1,
HPCF0
High-pass filter cut-off frequency configuration. Default value: 00
(00: HPc=8; 01: HPc=16; 10: HPc=32; 11: HPc=64)
LSM303DLM Register description
Doc ID 018725 Rev 1 25/38
reason, the content of the trimming registers has changed, it is sufficient to use this bit to
restore the correct values. When the BOOT bit is set to ‘1’ the content of the internal Flash is
copied to the corresponding internal registers and is used to calibrate the device. These
values are factory-trimmed and are different for every accelerometer. They permit good
device behavior and normally do not have to be modified. At the end of the boot process, the
BOOT bit is again set to ‘0’.
HPCF[1:0]. These bits are used to configure the high-pass filter cut-off frequency (ft), which
is given by:
The equation can be simplified to the following approximated equation:
9.1.3 CTRL_REG3_A (22h)
Table 22. High-pass filter mode configuration
HPM1 HPM0 High-pass filter mode
0 0 Normal mode (reset reading HP_RESET_FILTER)
0 1 Reference signal for filtering
1 0 Normal mode (reset reading HP_RESET_FILTER)
Table 23. High-pass filter cut-off frequency configuration
HPcoeff2,1 ft [Hz]
Data rate = 50 Hz
ft [Hz]
Data rate = 100 Hz
ft [Hz]
Data rate = 400 Hz
ft [Hz]
Data rate = 1000 Hz
00 1 2 8 20
01 0.5 1 4 10
10 0.25 0.5 2 5
11 0.125 0.25 1 2.5
ft11
HPc
------------
⎝⎠
⎛⎞
fs
2π
------
ln=
ft
fs
6HPc
----------------------=
Table 24. CTRL_REG3_A register
IHL PP_OD LIR2 I2_CFG1 I2_CFG0 LIR1 I1_CFG1 I1_CFG0
Table 25. CTRL_REG3_A description
IHL Interrupt active high, low. Default value: 0
(0: active high; 1: active low)
PP_OD Push-pull/open drain selection on interrupt pad. Default value 0.
(0: push-pull; 1: open drain)
Register description LSM303DLM
26/38 Doc ID 018725 Rev 1
9.1.4 CTRL_REG4_A (23h)
The BDU bit is used to inhibit output register updates between the reading of the upper and
lower register parts. In default mode (BDU = ‘0’), the lower and upper register parts are
updated continuously. If it is not certain whether to read faster than the output data rate, it is
recommended to set BDU bit to ‘1’. In this way, after the reading of the lower (upper) register
part, the content of that output register is not updated until the upper (lower) part is read
also. This feature avoids reading LSB and MSB related to different samples.
LIR2
Latch interrupt request on INT2_SRC register, with INT2_SRC register cleared by
reading INT2_SRC itself. Default value: 0.
(0: interrupt request not latched; 1: interrupt request latched)
I2_CFG1,
I2_CFG0
Data signal on INT 2 pad control bits. Default value: 00.
(see Table 26)
LIR1
Latch interrupt request on INT1_SRC register, with INT1_SRC register cleared by
reading INT1_SRC register. Default value: 0.
(0: interrupt request not latched; 1: interrupt request latched)
I1_CFG1,
I1_CFG0
Data signal on INT 1 pad control bits. Default value: 00.
(see Table 26)
Table 26. Data signal on INT 1 and INT 2 pad
I1(2)_CFG1 I1(2)_CFG0 INT 1(2) Pad
0 0 Interrupt 1 (2) source
0 1 Interrupt 1 source OR Interrupt 2 source
1 0 Data ready
1 1 Boot running
Table 25. CTRL_REG3_A description (continued)
Table 27. CTRL_REG4_A register
BDU BLE FS1 FS0 0 0 0(1)
1. This bit must be set to ‘0’ for correct working of the device.
---
Table 28. CTRL_REG4_A description
BDU Block data update. Default value: 0
(0: continuos update; 1: output registers not updated between MSB and LSB reading)
BLE Big/little endian data selection. Default value 0.
(0: data LSB @ lower address; 1: data MSB @ lower address)
FS1, FS0 Full-scale selection. Default value: 00.
(00: ±2 g; 01: ±4 g; 11: ±8 g)
LSM303DLM Register description
Doc ID 018725 Rev 1 27/38
9.1.5 CTRL_REG5_A (24h)
TurnOn bits are used for turning on the sleep-to-wakeup function.
By setting the TurnOn [1:0] bits to 11, the “sleep-to-wakeup” function is enabled. When an
interrupt event occurs, the device goes into normal mode, increasing the ODR to the value
defined in CTRL_REG1_A. Although the device is in normal mode, CTRL_REG1_A content
is not automatically changed to “normal mode” configuration.
9.1.6 HP_FILTER_RESET_A (25h)
Dummy register. Reading at this address instantaneously zeroes the content of the internal
high-pass filter. If the high-pass filter is enabled, all three axes are instantaneously set to 0
g. This makes it possible to surmount the settling time of the high-pass filter.
9.1.7 REFERENCE_A (26h)
This register sets the acceleration value taken as a reference for the high-pass filter output.
When the filter is turned on (at least one FDS, HPen2, or HPen1 bit is equal to ‘1’) and HPM
bits are set to “01”, filter out is generated taking this value as a reference.
Table 29. CTRL_REG5_A register
000000TurnOn1TurnOn0
Table 30. CTRL_REG5_A description
Tu rn On 1 ,
Tu r n O n 0 Turn-on mode selection for sleep-to-wakeup function. Default value: 00.
Table 31. Sleep-to-wakeup configuration
TurnOn1 TurnOn0 Sleep-to-wakeup status
0 0 Sleep-to-wakeup function is disabled
11
Turned on: the device is in low-power mode
(ODR is defined in CTRL_REG1_A)
Table 32. REFERENCE_A register
Ref7 Ref6 Ref5 Ref4 Ref3 Ref2 Ref1 Ref0
Table 33. REFERENCE_A description
Ref7 - Ref0 Reference value for high-pass filter. Default value: 00h.
Register description LSM303DLM
28/38 Doc ID 018725 Rev 1
9.1.8 STATUS_REG_A(27h)
9.1.9 OUT_X_L_A (28h), OUT_X_H_A (29h)
X-axis acceleration data. The value is expressed as 2’s complement.
9.1.10 OUT_Y_L_A (2Ah), OUT_Y_H_A (2Bh)
Y-axis acceleration data. The value is expressed as 2’s complement.
9.1.11 OUT_Z_L_A (2Ch), OUT_Z_H_A (2Dh)
Z-axis acceleration data. The value is expressed as 2’s complement.
9.1.12 INT1_CFG_A (30h)
Table 34. STATUS_REG_A register
ZYXOR ZOR YOR XOR ZYXDA ZDA YDA XDA
Table 35. STATUS_REG_A description
ZYXOR X, Y, and Z axis data overrun. Default value: 0
(0: no overrun has occurred, 1: new data has overwritten the previous one)
ZOR
Z axis data overrun. Default value: 0
(0: no overrun has occurred, 1: new data for the Z-axis has overwritten the previous
one)
YOR
Y axis data overrun. Default value: 0
(0: no overrun has occurred, 1: new data for the Y-axis has overwritten the previous
one)
XOR
X axis data overrun. Default value: 0
(0: no overrun has occurred, 1: new data for the X-axis has overwritten the previous
one)
ZYXDA X, Y, and Z axis new data available. Default value: 0
(0: a new set of data is not yet available, 1: a new set of data is available)
ZDA Z axis new data available. Default value: 0
(0: new data for the Z-axis is not yet available, 1: new data for the Z-axis is available)
YDA Y axis new data available. Default value: 0
(0: new data for the Y-axis is not yet available, 1: new data for the Y-axis is available)
XDA X axis new data available. Default value: 0
(0: new data for the X-axis is not yet available, 1: new data for the X-axis is available)
Table 36. INT1_CFG_A register
AOI 6D ZHIE ZLIE YHIE YLIE XHIE XLIE
LSM303DLM Register description
Doc ID 018725 Rev 1 29/38
Configuration register for Interrupt 1 source.
9.1.13 INT1_SRC_A (31h)
Table 37. INT1_CFG_A description
AOI AND/OR combination of interrupt events. Default value: 0
(see Table 38).
6D 6-direction detection function enable. Default value: 0
(see Table 38).
ZHIE
Enable interrupt generation on Z high event. Default value: 0
(0: disable interrupt request,
1: enable interrupt request on measured accel. value higher than preset threshold)
ZLIE
Enable interrupt generation on Z low event. Default value: 0
(0: disable interrupt request,
1: enable interrupt request on measured accel. value lower than preset threshold)
YHIE
Enable interrupt generation on Y high event. Default value: 0
(0: disable interrupt request,
1: enable interrupt request on measured accel. value higher than preset threshold)
YLIE
Enable interrupt generation on Y low event. Default value: 0
(0: disable interrupt request,
1: enable interrupt request on measured accel. value lower than preset threshold)
XHIE
Enable interrupt generation on X high event. Default value: 0
(0: disable interrupt request,
1: enable interrupt request on measured accel. value higher than preset threshold)
XLIE
Enable interrupt generation on X low event. Default value: 0
(0: disable interrupt request,
1: enable interrupt request on measured accel. value lower than preset threshold)
Table 38. Interrupt 1 source configurations
AOI 6D Interrupt mode
0 0 OR combination of interrupt events
0 1 6-direction movement recognition
1 0 AND combination of interrupt events
1 1 6-direction position recognition
Table 39. INT1_SRC register
0 IA ZHZLYHYLXHXL
Register description LSM303DLM
30/38 Doc ID 018725 Rev 1
Interrupt 1 source register. Read-only register.
Reading at this address clears the INT1_SRC_A IA bit (and the interrupt signal on the INT 1
pin) and allows the refreshing of data in the INT1_SRC_A register if the latched option was
chosen.
9.1.14 INT1_THS_A (32h)
9.1.15 INT1_DURATION_A (33h)
The D6 - D0 bits set the minimum duration of the Interrupt 2 event to be recognized.
Duration steps and maximum values depend on the ODR chosen.
Table 40. INT1_SRC_A description
IA Interrupt active. Default value: 0
(0: no interrupt has been generated, 1: one or more interrupts have been generated)
ZH Z high. Default value: 0
(0: no interrupt, 1: Z high event has occurred)
ZL Z low. Default value: 0
(0: no interrupt, 1: Z low event has occurred)
YH Y high. Default value: 0
(0: no interrupt, 1: Y high event has occurred)
YL Y low. Default value: 0
(0: no interrupt, 1: Y low event has occurred)
XH X high. Default value: 0
(0: no interrupt, 1: X high event has occurred)
XL X low. Default value: 0
(0: no interrupt, 1: X low event has occurred)
Table 41. INT1_THS register
0 THS6 THS5 THS4 THS3 THS2 THS1 THS0
Table 42. INT1_THS description
THS6 - THS0 Interrupt 1 threshold. Default value: 000 0000
Table 43. INT1_DURATION_A register
0 D6D5D4D3D2D1D0
Table 44. INT2_DURATION_A description
D6 - D0 Duration value. Default value: 000 0000
LSM303DLM Register description
Doc ID 018725 Rev 1 31/38
9.1.16 INT2_CFG_A (34h)
Configuration register for Interrupt 2 source.
Table 45. INT2_CFG_A register
AOI 6D ZHIE ZLIE YHIE YLIE XHIE XLIE
Table 46. INT2_CFG_A description
AOI AND/OR combination of interrupt events. Default value: 0
(see Table 47).
6D 6-direction detection function enable. Default value: 0
(see Table 47).
ZHIE
Enable interrupt generation on Z high event. Default value: 0
(0: disable interrupt request,
1: enable interrupt request on measured accel. value higher than preset threshold)
ZLIE
Enable interrupt generation on Z low event. Default value: 0
(0: disable interrupt request,
1: enable interrupt request on measured accel. value lower than preset threshold)
YHIE
Enable interrupt generation on Y high event. Default value: 0
(0: disable interrupt request,
1: enable interrupt request on measured accel. value higher than preset threshold)
YLIE
Enable interrupt generation on Y low event. Default value: 0
(0: disable interrupt request,
1: enable interrupt request on measured accel. value lower than preset threshold)
XHIE
Enable interrupt generation on X high event. Default value: 0
(0: disable interrupt request,
1: enable interrupt request on measured accel. value higher than preset threshold)
XLIE
Enable interrupt generation on X low event. Default value: 0
(0: disable interrupt request,
1: enable interrupt request on measured accel. value lower than preset threshold)
Table 47. Interrupt mode configuration
AOI 6D Interrupt mode
0 0 OR combination of interrupt events
0 1 6-direction movement recognition
1 0 AND combination of interrupt events
1 1 6-direction position recognition
Register description LSM303DLM
32/38 Doc ID 018725 Rev 1
9.1.17 INT2_SRC_A (35h)
Interrupt 2 source register. Read-only register.
Reading at this address clears the INT2_SRC_A IA bit (and the interrupt signal on the INT 2
pin) and allows the refreshing of data in the INT2_SRC_A register if the latched option was
chosen.
9.1.18 INT2_THS_A (36h)
9.1.19 INT2_DURATION_A (37h)
Table 48. INT2_SRC_A register
0 IA ZHZLYHYLXHXL
Table 49. INT2_SRC_A description
IA Interrupt active. Default value: 0
(0: no interrupt has been generated; 1: one or more interrupts have been generated)
ZH Z high. Default value: 0
(0: no interrupt, 1: Z high event has occurred)
ZL Z low. Default value: 0
(0: no interrupt; 1: Z low event has occurred)
YH Y high. Default value: 0
(0: no interrupt, 1: Y high event has occurred)
YL Y low. Default value: 0
(0: no interrupt, 1: Y low event has occurred)
XH X high. Default value: 0
(0: no interrupt, 1: X high event has occurred)
XL X Low. Default value: 0
(0: no interrupt, 1: X low event has occurred)
Table 50. INT2_THS register
0 THS6 THS5 THS4 THS3 THS2 THS1 THS0
Table 51. INT2_THS description
THS6 - THS0 Interrupt 1 threshold. Default value: 000 0000
Table 52. INT2_DURATION_A register
0 D6D5D4D3D2D1D0
LSM303DLM Register description
Doc ID 018725 Rev 1 33/38
The D6 - D0 bits set the minimum duration of the Interrupt 2 event to be recognized.
Duration time steps and maximum values depend on the ODR chosen.
9.2 Magnetic field sensing register description
9.2.1 CRA_REG_M (00h)
9.2.2 CRB_REG_M (01h)
Table 53. INT2_DURATION_A description
D6 - D0 Duration value. Default value: 000 0000
Table 54. CRA_REG_M register
0(1) 0(1)
1. This bit must be set to ‘0’ for correct working of the device.
0(1) DO2 DO1 DO0 0(1) 0(1)
Table 55. CRA_REG_M description
DO2 to DO0 Data output rate bits. These bits set the rate at which data is written to all three data
output registers (refer to Table 56). Default value: 100
Table 56. Data rate configurations
DO2 DO1 DO0 Minimum data output rate (Hz)
00 0 0.75
00 1 1.5
01 0 3.0
01 1 7.5
10 0 15
10 1 30
11 0 75
1 1 1 220
Table 57. CRA_REG register
GN2 GN1 GN0 0(1)
1. This bit must be set to ‘0’ for correct working of the device.
0(1) 0(1) 0(1) 0(1)
CRA_REG description
GN1-0 Gain configuration bits. The gain configuration is common for all channels (refer to
Table 58)
Register description LSM303DLM
34/38 Doc ID 018725 Rev 1
9.2.3 MR_REG_M (02h)
9.2.4 OUT_X_H_M (03), OUT_X_LH_M (04h)
X-axis magnetic field data. The value is expressed as 2’s complement.
9.2.5 OUT_Z_H_M (05), OUT_Z_L_M (06h)
Z-axis magnetic field data. The value is expressed as 2’s complement.
9.2.6 OUT_Y_H_M (07), OUT_Y_L_M (08h)
Y-axis magnetic field data. The value is expressed as 2’s complement.
Table 58. Gain setting
GN2 GN1 GN0
Sensor input
field range
[Gauss]
Gain X/Y and
Z
[LSB/Gauss]
Gain Z
[LSB/Gauss] Output range
0 0 1 ±1.3 1100 980
0xF800–0x07FF
(-2048–2047)
010 ±1.9 855 760
011 ±2.5 670 600
100 ±4.0 450 400
101 ±4.7 400 355
110 ±5.6 330 295
111 ±8.1 230 205
Table 59. MR_REG
0(1)
1. This bit must be set to ‘0’ for correct working of the device
0(1) 0(1) 0(1) 0(1) 0(1) MD1 MD0
Table 60. MR_REG description
MD1-0 Mode select bits. These bits select the operation mode of this device (refer to
Table 61)
Table 61. Magnetic sensor operating mode
MD1 MD0 Mode
0 0 Continuous-conversion mode
0 1 Single-conversion mode
1 0 Sleep-mode. Device is placed in sleep-mode
1 1 Sleep-mode. Device is placed in sleep-mode
LSM303DLM Register description
Doc ID 018725 Rev 1 35/38
9.2.7 SR_REG_M (09h)
9.2.8 IR_REG_M (0Ah/0Bh/0Ch)
9.2.9 WHO_AM_I _M (0F)
Table 62. SR register
-- -- -- -- -- -- LOCK DRDY
Table 63. SR register description
LOCK Data output register lock. Once a new set of measurements is available, this bit
is set when the first magnetic field data register has been read.
DRDY Data ready bit. This bit is when a new set of measurements is available.
Table 64. IRA_REG_M
01001000
Table 65. IRB_REG_M
00110100
Table 66. IRC_REG_M
00110011
Table 67. WHO_AM_I_M
00111100
Package information LSM303DLM
36/38 Doc ID 018725 Rev 1
10 Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK
specifications, grade definitions, and product status are available at: www.st.com.
ECOPACK is an ST trademark.
Figure 5. LGA-28: mechanical data and package dimensions
Dimensions
Ref. mm
Min. Typ. Max.
A1 1
A2 0.785
A3 0.200
D1 4.850 5.000 5.150
E1 4.850 5.000 5.150
L1 1.650
L2 3.300
N1 0.550
M 0.040 0.100 0.160
T1 0.260 0.300 0.340
T2 0.360 0.400 0.440
d 0.200
k 0.050
h 0.100
LGA-28 (5x5x1)
Land Grid Array Packages
Outline and
8192208_B
mechanical data
LSM303DLM Revision history
Doc ID 018725 Rev 1 37/38
11 Revision history
Table 68. Document revision history
Date Revision Changes
11-Apr-2011 1 Initial release.
LSM303DLM
38/38 Doc ID 018725 Rev 1
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2011 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com