Features
High Pe rformance, Low Power AVR®32 UC 32-Bit Microcontroller
Compact Single-cycle RISC Instruction Set In cluding DSP Instru ction Set
Read-Modify-Write Instructions and Atomic Bit Manipulation
Performing 1.38 DMIPS / MHz
Up to 75 DMIPS Running at 60 MHz from Flash
Up to 45 DMIPS Running at 33 MHz from Fash
Memory Protectio n Unit
Multi-hierarchy Bus System
High-Performance Data Transfers on Separate Buses for IIncreased Performance
7 Peripheral DMA Channels Improves Speed for Peripheral Communication
Internal High-Speed Flash
256K Bytes, 128K Bytes, 64K Bytes V ersions
Single Cycle Access up to 30 MHz
Prefetch Buffer Optimizing Instruction Ex ecution at Maximum Speed
4ms Page Programming Time and 8ms Full-Chip Erase Time
100,000 Write Cycles, 15-year Data Retention Capability
Flash Security Locks and User Defined Configuration Area
Internal High-Speed SRAM, Single-Cycle Access at Full Speed
32K Bytes (256KB and 128KB Flash), 16K Bytes (64KB Flash)
Interrupt Controller
Autovectored Low Latency Interrupt Service with Programmab le Pri ority
System Functions
Power and Clock Manager Including Internal RC Clock and One 32KHz Oscillator
Two Multipurpose Oscillators and Two Phase-Lock-Loop (PLL) allowing
Independant CPU Frequency from USB Frequency
Watchdog Timer, Real-Ti me Clock Timer
Universal Serial Bus (USB)
Device 2.0 Full/Low Speed and On-The-Go (OTG)
Flexible End-Point Configuration and Managemen t with Dedicated DMA Channels
On-chip Transceivers Including Pull-Ups
USB Wake Up from Sleep Functional ity
One Three-Channel 16-bit Timer/Counter (TC)
Three External Clock Inputs, PWM, Capture and Various Counting Capabilities
One 7-Channel 16-bit Pulse Width Modulation Controller (PWM)
Three Universal Synch ronous/Asynchronous Receiver/Transmitters (USART)
Independant Baudrate Generator, Support for SPI, IrDA and ISO7816 interfaces
Support for Hardware Handshaking, RS485 Interfaces and Modem Line
One Master/Slave Serial Peripheral Interfaces (SPI) with Chip Select Signals
One Synchronous Serial Protocol Controller
Supports I2S and Generic Frame-Based Protocols
One Master/Slave Two-Wire Interface (TWI), 400kbit/s I2C-compatible
One 8-channel 10-bit Analog-To-Digital Converter
On-Chip Debug System (JTAG interface)
Nexus Class 2+, Runtime Control, Non-Intrusive Data and Program Trace
64-pin TQFP/QFN (44 GPIO pins), 48-pin TQFP/QFN (28 GPIO pins)
5V Input Tolerant I/Os, including 4 high-drive pins.
Single 3.3V Power Supply or Dual 1.8V-3.3V Power Supply
32059ES–AVR32–12/07
AVR®32
32-Bit
Microcontroller
AT32UC3B0256
AT32UC3B0128
AT32UC3B064
AT32UC3B1256
AT32UC3B1128
AT32UC3B164
Preliminary
Summary
2
32059ES–AVR32–12/07
AT32UC3B
1. Description
The AT32UC3B is a complete System-On-Ch ip microcontroller based on the AVR32 UC RISC
processor running at frequencies up to 60 MHz. AVR32 UC is a high-performance 32-bit RISC
microprocessor core , designed f or co st - sensit ive emb edded applicat ion s, with p ar ticular emph a-
sis on low power consumption, high code density and high performance.
The processor implements a M emory Protection Unit (MPU) and a fast a nd flexible interru pt con-
troller for supporting modern operating systems and real-time operating systems.
Higher computation capability is achieved using a rich set of DSP instructions.
The AT32UC3B incorporates on-chip Flash and SRAM memories for secure and fast access.
The Peripheral Direct Memory Access controller e nables data transf ers between peri pherals and
memories without processor involvement. PDC drastically reduces processing overhead when
transferring continuous and large data streams between modules within the MCU.
The Power Manager improves design flexibility and security: the on-chip Brown-Out Detector
monitors the power supply, the CPU runs from the on-chip RC oscillator or from one of external
oscillator sources, a Real-Time Clock and its associated timer keeps track of the time.
The Timer/Counter includes three identical 16-bit timer/counter channels. Each channel can be
independently programmed to perform frequency measurement, event counting, interval mea-
surement, pulse gen eration, delay timing and pul se width modulation.
The PWM modules provides seven independent channels with many configuration options
including polarity, ed ge alignment and waveform non overlap control. O ne PWM channel can
trigger ADC conversions for more accurate close loop contro l implementations.
The AT32UC3B also features many communication interfaces for communication intensive
applications. In ad diti on t o stand ar d seri al int erfa ces like UART, SPI or TWI , ot he r int erface s like
flexible Synchronous Serial Controller and USB are available.
The Synchronous Serial Controller provides easy access to serial communication protocols and
audio standards like I2S, UART or SPI.
The Full-Speed USB 2.0 Device interface supports several USB Classes at the same tim e
thanks to the rich End-Point configuration. The On-The-GO (OTG) Host interface allows device
like a USB Flash disk or a USB printer to be directly connected to the processor.
AT32UC3B integrates a class 2+ Nexus 2.0 On-Chip Debug (OCD) System, with non-in trusive
real-time trace , full-speed read/write memory a ccess in addition to basic runtime con trol. The
Nanotrace interface en ables trace feature for JTAG-based debuggers.
3
32059ES–AVR32–12/07
AT32UC3B
2. Configuration Summary
The table below lists all AT32UC3B memory and package configurations:
Device Flash SRAM USART SSC ADC OSC USB Configuration Package
AT32UC3B0256 25 6 Kbytes 32 Kbytes 3 1 8 2 Mini-Host + Device 64 lead TQFP/QFN
AT32UC3B0128 12 8 Kbytes 32 Kbytes 3 1 8 2 Mini-Host + Device 64 lead TQFP/QFN
AT32UC3B064 64 Kbytes 16 Kbytes 3 1 8 2 Mini-Host + Device 64 lead TQFP/QFN
AT32UC3B1256 256 Kbytes 32 Kbytes 2 0 6 1 Device 48 lead TQFP/QFN
AT32UC3B1128 128 Kbytes 32 Kbytes 2 0 6 1 Device 48 lead TQFP/QFN
AT32UC3B164 64 Kbytes 16 Kbytes 2 0 6 1 Device 48 lead TQFP/QFN
4
32059ES–AVR32–12/07
AT32UC3B
3. Blockdiagram
Figure 3-1. Block diagram
TIMER/COUNTER
INTERRUPT
CONTROLLER
REAL TIME
COUNTER
PERIPHERAL
DMA
CONTROLLER
HSB-PB
BRID G E B HSB-PB
BRID GE A
S
MM M
S
S
M
EXTERNAL
INTERRUPT
CONTROLLER
HIGH SPEED
BUS MATRIX
GENERAL PURPOSE IOs
GENERAL PURPOSE IOs
PA
PB
A[2..0]
B[2..0]
CLK[2..0]
EXTINT[7..0]
KPS[7..0]
NMI_N
GCLK[3..0]
XIN32
XOUT32
XIN0
XOUT0
PA
PB
RESET_N
32 KHz
OSC
115 kHz
RCOSC
OSC0
PLL0
PULSE WIDTH
MODULATION
CONTROLLER
SERIAL
PERIPHERAL
INTERFACE
TWO-WIRE
INTERFACE
PDCPDC PDC
MISO, MOSI
NPCS[3..0]
PWM[6..0]
SCL
SDA
USART1
PDC
RXD
TXD
CLK
RTS, CTS
DSR, DTR, DCD, RI
USART0
USART2
PDC
RXD
TXD
CLK
RTS, CTS
SYNCHRONOUS
SERIAL
CONTROLLER
PDC
TX_CLOCK, TX_FRAME_SYNC
RX_DATA
TX_DATA
RX_CLOCK, RX_FRAME_SYNC
ANALOG TO
DIGITAL
CONVERTER
PDC
AD[7..0]
ADVREF
WATCHDOG
TIMER
XIN1
XOUT1 OSC1
PLL1
SCK
JTAG
INTERFACE
MCKO
MDO[5..0]
MSEO[1..0]
EVTI_N
TCK
TDO
TDI
TMS
POWER
MANAGER
RESET
CONTROLLER
SLEEP
CONTROLLER
CLOCK
CONTROLLER
CLOCK
GENERATOR
CONFIGURATION REGISTERS BUS
PB
PB
HSB
HS
B
256 KB
FLASH
S
FLASH
CONTROLLER
M
S
USB
INTERFACE
DMA
ID
VBOF
VBUS
D-
D+
EVTO_N
UC CPU
NEXUS
CLASS 2+
OCD INSTR
INTERFACE DATA
INTERFACE
MEMORY INTERFACE
FAST GPIO
32 KB
SRAM
MEMORY PROTECTION UNIT
LOCAL BUS
INTERFACE
5
32059ES–AVR32–12/07
AT32UC3B
3.1 Processor and architecture
3.1.1 AVR32UC CPU
32-bit load/store AVR32A RISC architecture.
15 general-purpose 32-bit registers.
32-bit Stac k Pointer, Program Counter and Link Register reside in register file.
Fully orthogonal instruction set.
Privileged and unprivileged modes enabling efficient and secure Operating Systems.
Innov ative instruction set together with v ariab le instruction length ensuring industry leading
code density.
DSP extention with saturating arithmetic, and a wide variety of multipl y instru ctio ns.
3 stage pipeline allows one instruction per clock cycle for most instructions.
Byte, half-word, word and double word memory access.
Multiple interrupt priority levels.
MPU allows for operating systems with memory protection.
3.1.2 Debug and Test system
IEEE1149.1 compliant JTA G and boundary scan
Direct memory access and programming capabilities through JTAG interface
Extensive On-Chip Debug features in compliance with IEEE-ISTO 5001-2003 (Nexus 2.0) Class 2+
Low-cost NanoTrace suppor t ed.
Au xiliary port for high-speed trace information
Hardware supp ort for 6 Program and 2 data breakpoints
Unlimited number of software breakpoints supported
Advanced Program, Data, Owner sh ip , and Watchpoint trace supported
3.1.3 Peripheral DMA Controller (PDCA)
Transfers from/to peripheral to/from any memory space without interven tion of the processor.
Next Pointer Support, forbids strong real-time constraints on buffer management.
7 channels that can be dynamically attributed to
all USARTs
the Serial Synchronous Controller
the Serial Peripheral Interface
–the ADC
the TWI Interface
3.1.4 Bus system
High Speed Bus (HSB) matrixs
Handles Requests from
Masters: the CPU (instruction and Data Fetch), PDCA, USBB, CPU SAB,
Slaves: the internal Flash, internal SRAM, Peripheral Bus A, P e ripheral Bus B, USBB.
Round-Robin Arbitrati on (three modes su pported: no default master, last accessed defa ul t
master, fixed default master)
Burst Breaking with Slot Cycle Limit
One Address Decoder Provided per Master
Peripheral Bus A able to run on at divided bus speeds compared to the High Speed Bus
All modules connected to the same bus use the same clock, but the clock to each module
can be individually shut off by the Power Manager.
6
32059ES–AVR32–12/07
AT32UC3B
4. Package and Pinout
The device pins are multiplexed with peripheral f unctions as described in ”Peripheral Multiplexing on I/O lines” on page 24.
Figure 4-1. QFP64 Pinout
115
16
31
3247
48
64
Table 4-1. QFP64 Package Pinout
1GND 17 GND 33 PA13 49 GND
2TCK 18 ADVREF 34 PA14 50 DP
3TDI 19 VDDANA 35 PA15 51 DM
4TDO 20 VDDOUT 36 PA16 52 VBUS
5TMS 21 VDDIN 37 PA17 53 VDDPLL
6PB00 22 VDDCORE 38 PB06 54 PB08
7PB01 23 GND 39 PA18 55 PB09
8VDDCORE 24 PB02 40 PA19 56 VDDCORE
9PA03 25 PB03 41 PA28 57 PB10
10 PA04 26 PB04 42 PA29 58 PB11
11 PA05 27 PB05 43 PB07 59 PA24
12 PA06 28 PA09 44 PA20 60 PA25
13 PA07 29 PA10 45 PA21 61 PA26
14 PA08 30 PA11 46 PA22 62 PA27
15 PA30 31 PA12 47 PA23 63 RESET_N
16 PA31 32 VDDIO 48 VDDIO 64 VDDIO
7
32059ES–AVR32–12/07
AT32UC3B
Figure 4-2. QFP48 Pinout
112
13
24
2536
37
48
Table 4-2. QFP48 Package Pinout
1GND 13 GND 25 PA13 37 GND
2TCK 14 ADVREF 26 PA14 38 DP
3TDI 15 VDDANA 27 PA15 39 DM
4TDO 16 VDDOUT 28 PA16 40 VBUS
5TMS 17 VDDIN 29 PA17 41 VDDPLL
6VDDCORE 18 VDDCORE 30 PA18 42 VDDCORE
7PA03 19 GND 31 PA19 43 PA24
8PA04 20 PA09 32 PA20 44 PA25
9PA05 21 PA10 33 PA21 45 PA26
10 PA06 22 PA11 34 PA22 46 PA27
11 PA07 23 PA12 35 PA23 47 RESET_N
12 PA08 24 VDDIO 36 VDDIO 48 VDDIO
8
32059ES–AVR32–12/07
AT32UC3B
5. Signals Description
The following table gives de tails on the signal name classified by peripheral
The signals are multiplexed wit h GPIO pins as descr ibed in ”Peripheral Multiplexing on I/O lines”
on page 24.
Table 5-1. Signal Description List
Signal Name Function Type Active
Level Comments
Power
VDDPLL PLL Power Supply Power
Input 1.65V to 1.95 V
VDDCORE Core P ower Supply Power
Input 1.65V to 1.95 V
VDDIO I/O Power Supply Power
Input 3.0V to 3.6V
VDDANA Analog Power Supply Power
Input 3.0V to 3.6V
VDDIN Volta ge Regulator Input Supply Power
Input 3.0V to 3.6V
VDDOUT Volta ge Regulator Output Power
Output 1.65V to 1.95 V
GNDANA Analog Ground Ground
GND Ground Ground
Clocks, Oscillators, and PLLs
XIN0, XIN1, XIN32 Crystal 0, 1, 32 Input Analog
XOUT0, XOUT1,
XOUT32 Crystal 0, 1, 32 Output Analog
JTAG
TCK Test Clock Input
TDI Test Data In Input
TDO Test Data Out Output
TMS Test Mode Select Input
Auxiliary Port - AUX
MCKO Trace Data Output Clock Output
MDO0 - MDO5 Trace Data Output Output
9
32059ES–AVR32–12/07
AT32UC3B
MSEO0 - MSEO1 Trace Frame Control Output
EVTI_N Event In Output Low
EVTO_N Event Out Output Low
Power Manager - PM
GCLK0 - GCLK2 Generic Clock Pins Output
RESET_N Reset Pin Input Low
External Interrupt Module - EIM
EXTINT0 - EXTINT7 Exter nal Interrupt Pins Input
KPS0 - KPS7 Keypad Scan Pins Output
NMI_N Non-Maskable In te rrupt Pin Input Lo w
General Purpose I/O pin- GPIOA, GPIOB
PA0 - PA31 Parallel I/O Controller GPIOA I/O
PB0 - PB11 Parallel I/O Controller GPIOB I/O
Serial Peripheral Interface - SPI0
MISO Master In Slave Out I/O
MOSI Master Out Slave In I/O
NPCS0 - NPCS3 SPI Peripheral Chip Select I/O Low
SCK Clock Output
Synchronous Serial Controller - SSC
RX_CLOCK SSC Receive Clock I/O
RX_DATA SSC Receive Data Input
RX_FRAME_SYNC SSC Receive Frame Sync I/O
TX_CLOCK SSC Transmit Clock I/O
TX_DATA SSC Transmit Data Output
TX_FRAME_SYNC SSC Transmit Frame Sync I/O
Timer/Counter - TIMER
A0 Channel 0 Line A I/O
A1 Channel 1 Line A I/O
Table 5-1. Signal Description List
Signal Name Function Type Active
Level Comments
10
32059ES–AVR32–12/07
AT32UC3B
A2 Channel 2 Line A I/O
B0 Channel 0 Line B I/O
B1 Channel 1 Line B I/O
B2 Channel 2 Line B I/O
CLK0 Channel 0 External Clock Input Input
CLK1 Channel 1 External Clock Input Input
CLK2 Channel 2 External Clock Input Input
Two-wire Interface - TWI
SCL Serial Clock I/O
SDA Serial Data I/O
Universal Synchronous Asynchronous Receiver Transmitter - USART0, USART1, USART2
CLK Clock I/O
CTS Clear To Send Input
DCD Data Carrier Detect Only USART1
DSR Data Set Ready Only USART1
DTR Data Terminal Ready Only USART1
RI Ring Indicator Only USART1
RTS Request To Send Output
RXD Receive Data Input
TXD Transmi t Data Output
Analog to Digital Converter - ADC
AD0 - AD7 Analog input pins Analog
input
ADVREF Analog positive reference voltage input Analog
input 2.6 to 3.6V
Pulse Width Modulator - PWM
PWM0 - PWM6 PWM Output Pins Output
Universal Serial Bus Device - USB
DDM USB Device Port Data - Analog
Table 5-1. Signal Description List
Signal Name Function Type Active
Level Comments
11
32059ES–AVR32–12/07
AT32UC3B
DDP USB Device Port Data + Analog
VBUS USB VBUS Monitor and OTG Negociation Analog
Input
USBID ID Pin of the USB Bus Input
USB_VBOF USB VBUS On/off: bus power cont ro l po rt output
Table 5-1. Signal Description List
Signal Name Function Type Active
Level Comments
12
32059ES–AVR32–12/07
AT32UC3B
6. Power Considerations
6.1 Power Supplies
The AT32UC3B has several types of power supply pins:
VDDIO: Powers I/O lines. Voltage is 3.3V nominal.
VDDANA: Powers the ADC Voltage is 3.3V nominal.
VDDIN: Input voltage for the voltage regulator. Voltage is 3.3V nominal.
VDDCORE: Powers the core, memories, and peripherals. Voltag e is 1.8V nominal.
VDDPLL: Powers the PLL. Voltage is 1.8V nominal.
The ground pins GND are common to VDDCORE, VDDIO and VDDPLL. The ground pin for
VDDANA is GNDANA.
Refer to ”Electrical Characteristics” on page 30 for power consumption on the various supply
pins.
The main requireme nt for power supplies con nection is to respect a star topology for a ll electrical
connection.
3.3V VDDAN
A
VDDI
O
VDDI
N
VDDCOR
E
VDDOU
T
VDDPL
L
ADVREF
3.3V
1.8
V
VDDAN
A
VDDI
O
VDDI
N
VDDCOR
E
VDDOU
T
VDDPL
L
ADVREF
Single Power Supply Dual Power Supply
1.8V
Regulator
1.8V
Regulator
13
32059ES–AVR32–12/07
AT32UC3B
6.2 Voltage Regulator
6.2.1 Single Power Supply
The AT32UC3B embeds a voltage regula tor that conve rts from 3.3V t o 1.8V. The regu lator takes
its input voltage from VDDIN, and supplies the output voltage on VDDOUT that should be exter-
nally connected to the 1. 8V do m ain s.
Adequate input supply decoupling is mandatory for VDDIN in order to improve startup stability
and reduce source voltage drop. Two input decoupling capacitors must be placed close to the
chip.
Adequate output supply decoupling is mandatory for VDDOUT to reduce ripple and avoid oscil-
lations. The best way to achieve this is to use two capacitors in parallel between VDDOUT and
GND as close to the chip as possible
Refer to Section 11.3 on page 32 for decoupling capacitors values and regulator characteristics.
6.2.2 Dual Power Supply
In case of dual power supply, VDDIN and VDDOUT should be connected to ground to prevent
from leakage current.
3.3V
1.8V
VDDIN
VDDOUT
1.8V
Regulator
CIN1
COUT1
COUT2
CIN2
VDDIN
VDDOUT
14
32059ES–AVR32–12/07
AT32UC3B
6.3 Analog-to-Digital Converter (A.D.C) reference.
The ADC reference (ADVREF) must be provided from an external source. Two decoupling
capacitors must be used to insure proper decoupling.
Refer to Section 11.4 on page 32 for decoupling capacitors values and electrical characteristics.
ADVREF
CC VREF1VREF2
3.3V
15
32059ES–AVR32–12/07
AT32UC3B
7. I/O Line Considerations
7.1 JTAG pins
TMS and TDI pins have pull-up resistors. TDO pin is an output, driven at up to VDDIO, and has
no pull-up resistor. These 3 pins can be used as GPIO-pins. At reset state, these pins are in
GPIO mode.
TCK pin cannot be used as GPIO pin. JTAG interface is enabled when TCK pin is tied low. This
pins must be pulled-up exter nally on application board.
7.2 RESET _N pin
The RESET_N pin is a schm itt input and integrates a permanent pull-up resistor to VDDIO. As
the product integrates a power-on reset cell, the RESET_N pin can be left unconnected in case
no reset from the system needs to be applied to the product.
7.3 TWI pins
When these pins are used for TWI, the pins are open-drain outputs with slew-rate limitation and
inputs with inputs with spike-f iltering. When u sed as GPIO-pins or used fo r other perip herals, the
pins have the same characteristics as PIO pins.
7.4 GPIO pins
All the I/O lines integrate a pull-up resistor. Programming of this pull-up resistor is performed
independently for each I/O line through the GPIO Controllers. After reset, I/O lines default as
inputs with pull-up resistors disabled, except when indicated othe rwise in the column “Reset
State” of the GPIO Controller multiplexing tables.
7.5 High drive pins
The four pins PA20, PA21, PA22, PA23 have high drive output capabilities. Refer to Figure 11.
on page 30 for electrical characteristics.
16
32059ES–AVR32–12/07
AT32UC3B
8. Memories
8.1 Embedded Memories
Internal High-Speed Flash
256 KBytes (AT32UC3B0256, AT32UC3B1256)
128 KBytes (AT32UC3B0128, AT32UC3B1128)
64 KBytes (AT32UC3B064, AT32UC3B164)
- 0 W ait State Access at up to 30 MHz in Worst Case Conditions
- 1 W ait State Access at up to 60 MHz in Worst Case Conditions
- Pipelined Flash Ar chitecture, allo wing b urst reads fr om sequential Flash locations, hiding
penalty of 1 wait state access
- Pipelined Flash Architecture typically reduces the cycle penalty of 1 wait state operation
to only 8% compared to 0 wait state operation
- 100 000 Write Cycles, 15-year Data Retention Capability
- 4 ms Page Programming Time, 8 ms Chip Erase Time
- Sector Lock Capabilities, Bootloader Protection, Security Bit
- 32 Fuses, Erased During Chip Erase
- User Page For Data To Be Preserved During Chip Erase
Internal High-Speed SRAM, Single-cyc l e access at full speed
32KBytes (AT32UC3B0256, AT32UC3B0128, AT32UC3B1256 and AT32UC3B1128)
16KBytes (AT32UC3B064 and AT32UC3B164)
8.2 Physical Memory Map
The system bus is implemented as a bus matrix. All system bus addresses are fixed, and they
are never remapp ed in a ny way, not even in boot . Note tha t AVR32 UC CPU uses unsegm ented
translation, as described in the AVR32 Architecture Manual. The 32-bit physical address space
is mapped as follows:
Table 8-1. AT32UC3B Physical Memory Map
Device Start Address Size
AT32UC3B0256 AT32UC3B1256 AT32UC3B0128 AT32UC3B1128 AT32UC3B064 AT32UC3B164
Embedded SRAM 0x0000_0000 32 Kbytes 32 Kbytes 32 Kbytes 32 Kbytes 16 Kbytes 16 Kbytes
Embedded Flash 0x8000_0000 256 Kbytes 256 Kbytes 128 Kbytes 128 Kbytes 64 Kbytes 64 Kbytes
USB Configuration 0xD000_0000 64 Kbytes 64 Kbytes 64 Kbytes 64 Kbytes 64 Kbytes 64 Kbytes
HSB-PB Bridge A 0xFFFE_0000 64 Kbytes 64 Kbytes 64 Kbytes 64 Kbytes 64 Kbytes 64 Kbytes
HSB-PB Bridge B 0xFFFF_0000 64 Kbytes 64 Kbytes 64 kBytes 64 kBytes 64 Kbytes 64 Kbytes
Table 8-2. Flash Mem or y P ar am e te rs
Part Number Flash Size
(FLASH_PW)Number of pages
(FLASH_P)Page size
(FLASH_W)
AT32UC3B0256 256 Kbytes 512 128 words
AT32UC3B1256 256 Kbytes 512 128 words
AT32UC3B0128 128 Kbytes 256 128 words
17
32059ES–AVR32–12/07
AT32UC3B
8.3 Bus Matrix Connections
Accesses to unused areas returns an error result to the master requesting such an access.
The bus matrix has the several masters and slaves. Each master has its own bus and its own
decoder, thus allowing a different memory mapping per master. The master number in the table
below can be used to index the HMATRIX control registers. For example, HMATRIX MCFG0
register is associated with the CPU Data mast er interface.
Each slave has its own arbiter, thus allowing a different arbitration per slave. The slave number
in the table below can be used to index the HMATRIX control registers. For example, SCFG3 is
associated with the Interna l SRAM Slave Interface.
AT32UC3B1128 128 Kbytes 256 128 words
AT32UC3B064 64 Kbytes 128 128 words
AT32UC3B164 64 Kbytes 128 128 words
Table 8-2. Flash Mem or y P ar am e te rs
Table 8-3. High Speed Bus masters
Master 0 CPU Data
Master 1 CPU Instruction
Master 2 CPU SAB
Master 3 PDCA
Master 4 USBB DMA
Table 8-4. High Speed Bus slaves
Slave 0 Internal Flash
Slave 1 HSB-PB Bridge 0
Slave 2 HSB-PB Bridge 1
Slave 3 Internal SRAM
Slave 4 USBB DPRAM
18
32059ES–AVR32–12/07
AT32UC3B
Figure 8-1. HMatrix Master / Slave Connections
CPU Data 0
CPU
Instruction 1
CPU SAB 2
PDCA 3
USBB DMA 4
Internal Flash
0
HSB-PB
Bridge 0
1
HSB-PB
Bridge 1
2
Internal SRAM
3
USBB DPRAM
4
HMATRIX SLAVES
HMATRIX MASTERS
19
32059ES–AVR32–12/07
AT32UC3B
9. Peripherals
9.1 Peripheral Address Map
Table 9-1. Peripheral Address Mapping
Address Peripheral Name Bus
0xFFFE0000 USBB USB 2.0 OTG - USBB PBB
0xFFFE1000 HMATRIX HMATRIX Configuration Interface - HMATRIX PBB
0xFFFE1400 FLASHC Flash controller - FLASHC PBB
0xFFFF0000 PDCA Peripheral Direct Memory Access - PDCA PBA
0xFFFF0800 INTC Interrupt controller - INTC PBA
0xFFFF0C00 PM Power Manager - PM PBA
0xFFFF0D00 RTC Real Time Counter - RTC PBA
0xFFFF0D30 WDT Watchdog Timer - WDT PBA
0xFFFF0D80 EIC External Interrupt Controller - EIC PBA
0xFFFF1000 GPIO General Purpose Input/Output - GPIO PBA
0xFFFF1400 USART0 Universal Synchronous Asynchronous Receiver
Transmitter - USART0 PBA
0xFFFF1800 USART1 Universal Synchronous Asynchronous Receiver
Transmitter - USART1 PBA
0xFFFF1C00 USART2 Universal Synchronous Asynchronous Receiver
Transmitter - USART2 PBA
0xFFFF2400 SPI Serial P eripheral Interface - SPI PBA
0xFFFF2C00 TWI Two-wire Interface - TWI PBA
0xFFFF3000 PWM Pulse Width Modulation Controller - PWM PBA
0xFFFF3400 SSC Synchronous Serial Controller - SSC PBA
20
32059ES–AVR32–12/07
AT32UC3B
9.2 CPU Local Bus Mapping
Some of the registers in the GPIO module are mapped onto the CPU local bus, in addition to
being mapped on the Peripheral Bus. These registers can therefore be reached both by
accesses on the Peripheral Bu s, and by accesses on the local bus.
Mapping these registers on the local bus allows cycle-deterministic toggling of GPIO pins since
the CPU and GPIO are the only modules connected to this bus. Also, since the local bus runs at
CPU speed, one write or read operation can be performed per clock cycle to the local bus-
mapped GPIO registers.
The following GPIO registers are mapped on the loca l bus:
9.3 Interrupt Request Signal Map
The various modules may out put Inte rrup t request signals. These sig nals are route d to the Inte r-
rupt Controller (INTC), described in a later chapter. The Interrupt Controller supports up to 64
0xFFFF3800 TC Timer/Counter - TC PBA
0xFFFF3C00 ADC Analog to Digital Converter - ADC PBA
Table 9-1. Peripheral Address Mapping
Table 9-2. Local bus mapped GPIO registers
Port Register Mode Local Bus
Address Access
A Output Driver Enable Register (ODER) WRITE 0x4000_0040 Write-only
SET 0x4000_0044 Write-only
CLEAR 0x4000_0048 Write-only
TOGGLE 0x4000_004C Write-only
Output Va lue Register (OVR) WRITE 0x4000_0050 Write-only
SET 0x4000_0054 Write-only
CLEAR 0x4000_0058 Write-only
TOGGLE 0x4000_005C Write-only
Pin Value Register (PVR) - 0x4000_0060 Read-only
B Output Driver Enable Register (ODER) WRITE 0x4000_0140 Write-only
SET 0x4000_0144 Write-only
CLEAR 0x4000_0148 Write-only
TOGGLE 0x4000_014C Write-only
Output Va lue Register (OVR) WRITE 0x4000_0150 Write-only
SET 0x4000_0154 Write-only
CLEAR 0x4000_0158 Write-only
TOGGLE 0x4000_015C Write-only
Pin Value Register (PVR) - 0x4000_0160 Read-only
21
32059ES–AVR32–12/07
AT32UC3B
groups of interr upt requests. Each gr oup can have up to 32 interrupt request signals. All inter rupt
signals in the same group share the same autovector address and priority level. Refer to the
documentatio n for the individual submodule s for a description of the sem antic of the different
interrupt requests.
The interrupt request signals are connected to the INTC as follows.
Table 9-3. Interrupt Re qu es t Sign al Ma p
Group Line Module Signal
00
AVR32 UC CPU with optional MPU and
optional OCD SYSBLOCK
COMPARE
1
0 External Interrupt Controller EIC 0
1 External Interrupt Controller EIC 1
2 External Interrupt Controller EIC 2
3 External Interrupt Controller EIC 3
4 External Interrupt Controller EIC 4
5 External Interrupt Controller EIC 5
6 External Interrupt Controller EIC 6
7 External Interrupt Controller EIC 7
8 Real Time Counter RTC
9 Power Manager PM
2
0 General Purpose Input/Output GPIO 0
1 General Purpose Input/Output GPIO 1
2 General Purpose Input/Output GPIO 2
3 General Purpose Input/Output GPIO 3
4 General Purpose Input/Output GPIO 4
5 General Purpose Input/Output GPIO 5
3
0 P eripheral Direct Memory Access PDCA 0
1 P eripheral Direct Memory Access PDCA 1
2 P eripheral Direct Memory Access PDCA 2
3 P eripheral Direct Memory Access PDCA 3
4 P eripheral Direct Memory Access PDCA 4
5 P eripheral Direct Memory Access PDCA 5
6 P eripheral Direct Memory Access PDCA 6
4 0 Flash controller FLASHC
50
Universal Synchronous Asynchronous
Receiver Transmitter USART0
60
Universal Synchronous Asynchronous
Receiver Transmitter USART1
70
Universal Synchronous Asynchronous
Receiver Transmitter USART2
22
32059ES–AVR32–12/07
AT32UC3B
9.4 Clock Connections
9.4.1 Timer/Counters
Each Timer/Counte r channel can independe ntly select an interna l or ext ernal clo ck source fo r its
counter:
9.4.2 USARTs
Each USART can be connected to an internally divided clock:
9 0 Serial Peripheral Interface SPI
11 0 Two-wire Interface TWI
12 0 Pulse Width Modulation Controller PWM
13 0 Synchronous Serial Controller SSC
14
0 Timer/Counter TC0
1 Timer/Counter TC1
2 Timer/Counter TC2
15 0 Analog to Digital Converter A DC
17 0 USB 2.0 OTG USBB
Table 9-3. Interrupt Re qu es t Sign al Ma p
Table 9-4. Timer/Counter clock connections
Source Name Connection
Intern al TIMER_CLOCK1 Slow Clock (Internal RC oscillator)
TIMER_CLOCK2 PBA Clock / 2
TIMER_CLOCK3 PBA Clock / 8
TIMER_CLOCK4 PBA Clock / 32
TIMER_CLOCK5 PBA Clock / 128
External XC0 See Section 9.8
XC1
XC2
Table 9-5. USART clock connections
USART Source Name Connection
0 Internal CLK_DIV PBA Clock / 8
1
2
23
32059ES–AVR32–12/07
AT32UC3B
9.4.3 SPIs
SPI can be connected to an internally divided clock:
9.5 Nexus OCD AUX port connections
If the OCD trace system is enabled, the trace system will take control over a number of pins, irre-
spectively of the PIO configuration. Two different OCD trace pin mappings are possible,
depending on the con f igur ation of th e O CD AXS reg iste r. For de ta ils, see t he AVR32 UCTe ch ni-
cal Reference Manual.
9.6 DMA handshake signals
The PDCA and the peripheral modules communicate through a set of handshake signals. The
following table defines the valid settings for the Peripheral Iden tifier (PID) in the PDCA Periph-
eral Select Register (PSR).
Table 9-6. SPI clock connections
SPI Source Name Connection
0 Internal CLK_DIV PBA clock or
PBA clock / 32
Table 9-7. Nexus OCD AUX port connections
Pin AXS=0 AXS=1
EVTI_N PB05 PA14
MDO[5] PB04 PA08
MDO[4] PB03 PA07
MDO[3] PB02 PA06
MDO[2] PB01 PA05
MDO[1] PB00 PA03
MDO[0] PA31 PA02
EVTO_N PA15 PA15
MCKO PA30 PA13
MSEO[1] PB06 PA09
MSEO[0] PB07 PA10
Table 9-8. PDCA Handshake Signals
PID Value Peripheral module & direction
0ADC
1 SSC - RX
2 USART0 - RX
3 USART1 - RX
4 USART2 - RX
24
32059ES–AVR32–12/07
AT32UC3B
9.7 High Drive Current GPIO
Ones of GPIOs can be used to drive twice current than other GPIO ca pability (see Electrical
Characteristics chapter). The list of those GPIOs is shown in Table 9-9.
9.8 Peripheral Multiplexing on I/O lines
Each GPIO line can be assigned to one of 3 peripheral functions; A, B or C. The following table
define how the I/ O lines on the peripherals A, B and C are multiplexed by th e GPIO.
5TWI - RX
6 SPI0 - RX
7 SSC - TX
8 USART0 - TX
9 USART1 - TX
10 USART2 - TX
11 TWI - TX
12 SPI0 - TX
Table 9-8. PDCA Handshake Signals
PID Value Peripheral module & direction
Table 9-9. High Drive Current GPIO
GPIO Name
GPIO/0/P21
GPIO/0/P22
GPIO/0/P23
GPIO/0/P24
Table 9-10. GPIO Controller Function Multiplexing
QFP48 QFP64 PIN GPIO Pin Function A Function B Function C
7 9 PA03 GPIO 3 ADC - AD[0] PM - GCLK[0] USBB - USB_ID
8 10 PA04 GPIO 4 ADC - AD[1] PM - GCLK[1] USBB - USB_VBOF
9 11 PA05 GPIO 5 EIC - EXTINT[0] ADC - AD[2] USART1 - DCD
10 12 PA06 GPIO 6 EIC - EXTINT[1] ADC - AD[3] USART1 - DSR
11 13 PA07 GPIO 7 PWM - PWM[0] ADC - AD[4] USART1 - DTR
12 14 PA08 GPIO 8 PWM - PWM[1] ADC - AD[5] USART1 - RI
20 28 PA09 GPIO 9 TWI - SCL SPI - NPCS[2] USART1 - CTS
21 29 PA10 GPIO 10 TWI - SDA SPI - NPCS[3] USART1 - RTS
22 30 PA11 GPIO 11 USART0 - RTS TC - A2 PWM - PWM[0]
23 31 PA12 GPIO 12 USART0 - CTS TC - B2 PWM - PWM[1]
25 33 PA13 GPIO 13 NMI PWM - PWM[2] USART0 - CLK
25
32059ES–AVR32–12/07
AT32UC3B
9.9 Oscillator Pinout
The oscillators are not mapped to the normal A,B or C functions and their muxings are controlled
by registers in the Power Manager (PM). Please refer to the power manager chapter for more
information about this.
26 34 PA14 GPIO 14 SPI - MOSI PWM - PWM[3] EIC - EXTINT[2]
27 35 PA15 GPIO 15 SPI - SCK PWM - PWM[4] USART2 - CLK
28 36 PA16 GPIO 16 SPI - NPCS[0] TC - CLK1
29 37 PA17 GPIO 17 SPI - NPCS[1] TC - CLK2 SPI - SCK
30 39 PA18 GPIO 18 USART0 - RXD PWM - PWM[5] SPI - MISO
31 40 PA19 GPIO 19 USART0 - TXD PWM - PWM[6] SPI - MOSI
32 44 PA20 GPIO 20 USART1 - CLK TC - CLK0 USART2 - RXD
33 45 PA21 GPIO 21 PWM - PWM[2] TC - A1 USART2 - TXD
34 46 PA22 GPIO 22 PWM - PWM[6] TC - B1 ADC - TRIGGER
35 47 PA23 GPIO 23 USART1 - TXD SPI - NPCS[1] EIC - EXTINT[3]
43 59 PA24 GPIO 24 USART1 - RXD SPI - NPCS[0] EIC - EXTINT[4]
44 60 PA25 GPIO 25 SPI - MISO PWM - PWM[3] EIC - EXTINT[5]
45 61 PA26 GPIO 26 USBB - USB_ID USART2 - TXD TC - A0
46 62 PA27 GPIO 27 USBB - USB_VBOF USART2 - RXD TC - B0
41 PA28 GPIO 28 USART0 - CLK PWM - PWM[4] SPI - MISO
42 PA29 GPIO 29 TC - CLK0 TC - CLK1 SPI - MOSI
15 PA30 GPIO 30 ADC - AD[6] EIC - SCAN[0] PM - GCLK[2]
16 PA31 GPIO 31 ADC - AD[7] EIC - SCAN[1]
6 PB00 GPIO 32 TC - A0 EIC - SCAN[2] USART2 - CTS
7 PB01 GPIO 33 TC - B0 EIC - SCAN[3] USART2 - RTS
24 PB02 GPIO 34 EIC - EXTINT[6] TC - A1 USART1 - TXD
25 PB03 GPIO 35 EIC - EXTINT[7] TC - B1 USART1 - RXD
26 PB04 GPIO 36 USART1 - CTS SPI - NPCS[3] TC - CLK2
27 PB05 GPIO 37 USART1 - RTS SPI - NPCS[2] PWM - PWM[5]
38 PB06 GPIO 38 SSC - RX_CLOCK USART1 - DCD EIC - SCAN[4]
43 PB07 GPIO 39 SSC - RX_DATA USART1 - DSR EIC - SCAN[5]
54 PB08 GPIO 40 SSC -
RX_FRAME_SYNC USART1 - DTR EIC - SCAN[6]
55 PB09 GPIO 41 SSC - TX_CLOCK USART1 - RI EIC - SCAN[7]
57 PB10 GPIO 42 SSC - TX_DATA TC - A2 USART0 - RXD
58 PB11 GPIO 43 SSC -
TX_FRAME_SYNC TC - B2 USART0 - TXD
33TDIGPIO 0
44TDOGPIO 1
55TMSGPIO 2
Table 9-10. GPIO Controller Function Multiplexing
26
32059ES–AVR32–12/07
AT32UC3B
9.10 P e ripheral overview
9.10.1 USB Controller
USB 2.0 Compliant, Full-/Low-Speed (FS/LS) and On-The-Go (OTG), 12 Mbit/s
7 Pipes/Endpoints
960 bytes of Embedded Dual-Port RAM (DPRAM) for Pipes/Endpoints
Up to 2 Memory Banks per Pipe/Endpoint (Not for Control Pipe/Endpoint)
Flexible Pipe/Endpoint Configuration and Management with Dedicated DMA Channels
On-Chip Transceivers Including Pull-Ups
System wake-up on USB line activity
9.10.2 Serial Peripheral Interface
Supports communication with serial external devices
Four chip selects with external decoder support allow communication with up to 15
peripherals
Serial memories, such as DataFlash and 3-wire EEPROMs
Serial peripherals, such as ADCs, DACs, LCD Controllers, CAN Controllers and Sensors
External co-processors
Master or slave serial peripheral bus interface
8- to 16-bit programmable data length per chip select
Programmable phase and polarity per chip select
Programmable transfer delays between consecutive transfers and between clock and data
per chip select
Programmable delay between consecutive transfers
Selectable mode fault detection
Very fast transfers supported
Transfers with baud ra tes up to Peripheral Bus A (PBA) max frequency
The chip select line may be left active to speed up transfers on the same device
Table 9-11. Oscillator pinout
QFP48 pin QFP64 pin Pad Oscillator pin
30 39 PA18 xin0
41 PA28 xin1
22 30 PA11 xin32
31 40 PA19 xout0
42 PA29 xout1
23 31 PA12 xout32
27
32059ES–AVR32–12/07
AT32UC3B
9.10.3 Two-wire Interface
High speed up to 400kbit/s
Compatibility with standard two-wire serial memory
One, two or three bytes for slave address
Sequential read/write operations
9.10.4 USART
Programmable Baud Rate Generator
5- to 9-bit full-duplex synchronous or asynchronous serial communications
1, 1.5 or 2 stop bits in Asynchronous Mode or 1 or 2 stop bits in Synchronous Mode
Parity genera tio n an d er ror detec tion
Framing error detection, overrun error detection
MSB- or LSB-first
Optional break generation and detection
By 8 or by-16 over-sampling receiver frequency
Hardware handshaking RTS-CTS
Receiver time-out and transmitter ti meguard
Optional Multi-drop Mode with address generation and detection
Optional Manch e ster Enco di ng
RS485 with driver control signal
ISO7816, T = 0 or T = 1 Protocols for interfacing with smart cards
NACK handling, error counter with repetition and iteration limit
IrDA modulation and demodulation
Communication at up to 115.2 Kbps
Test Modes
Remote Loopback, Local Loopback, Automatic Echo
SPI Mode
Master or Slave
Serial Clock Programmabl e Phase and Polarity
SPI Serial Clock (SCK) Frequency up to Internal Clock Frequency PBA/4
Supports Connection of Two Peripheral DMA Controller Channels (PDC)
Offers Buffer Transfer without Processor Interv ention
9.10.5 Serial Synchronous Controller
Provides serial synchronous communication links used in audio and telecom applic ations (with
CODECs in Master or Slave Modes, I2S, TDM Buses, Magnetic Card Reader, etc.)
Contains an independent receiver and transmitter and a common clock divider
Offers a configurable frame sync and data length
Receiver and transmitter can be programmed to start automatically or on detection of different
even t on the frame sync signal
Receiver and transmitter include a data signal, a cloc k signal and a frame synchronization signal
9.10.6 Timer Counter
Three 16-bit Timer Counter Channels
Wide range of functions including:
Frequency Measurement
Event Counting
Interval Measurement
Pulse Generation
Delay Timing
28
32059ES–AVR32–12/07
AT32UC3B
Pulse Width Modulation
Up/down Capabilities
Each channel is user-configurable and cont ains:
Three external clo ck inpu ts
Five internal clock inputs
Two multi-purpose input/output signals
Two global registers that act on all three TC Channels
9.10.7 Pulse Width Modulation Controller
7 channels, one 16-bit counter per channel
Common clock generator, providing Thirteen Different Clocks
A Modulo n counter providing eleven clocks
Two independent Linear Dividers working on modulo n counter outputs
Independent channel programming
Independent Enable Disable Commands
Independent Cloc k
Independent Period and Duty Cycle, with Double Bu fferization
Programmable selection of the output waveform polarity
Programmable center or left aligned output waveform
29
32059ES–AVR32–12/07
AT32UC3B
10. Boot Sequence
This chapter summa rizes the boot se quence of the AT32UC3B. The beh aviour afte r powe r-up is
controlled by the Power Manager. For specific details, refer to Section 13. ”Power Manager
(PM)” on page 45 .
10.1 Starting of clocks
After power-up, the device will be held in a reset state by the Power-On Reset circuitry, until the
power has stabilized throughout the device . Once the power has stabilized, the device will u se
the internal RC Oscillator as clock source.
On system start-up, the PLLs are disabled. All clocks to all modules are running. No clocks have
a divided frequency, all parts of the system recieves a clock with the same frequency as the
internal RC Oscillator.
10.2 Fetching of initial instructions
After reset has been released, the AVR32 UC CPU starts fetching instructions from the reset
address, which is 0x8000_0000. This address points to the first address in the internal Flash.
The code read from the internal Flash is free to configure the system to use for example the
PLLs, to divide the frequency of the clock routed to some of the peripherals, and to gate the
clocks to unused peripherals.
30
32059ES–AVR32–12/07
AT32UC3B
11. Electrical Characteristics
11.1 Absolute Maximum Ratings*
Operating Te mperature.................................... -40°C to +85°C*NOTICE: Stresses beyond those listed under “Absolute
Maximum Ratings” may cause permanent dam-
age to the device. This is a stress rating only and
functional operation of the device at these or
other conditions beyond those indicated in the
operational sections of this specification is not
implied. Exposure to absolute maximum rating
conditions for extended periods may affect
device reliability.
Storage Temperature..................................... -60°C to +150°C
Voltage on GPIO Pins
with respect to Ground .............................................-0.3 to 5V
Maximum Voltage on RESET_N Pin ................................ 3.3V
Maximum Operating Voltage (VDDCOR E , VDDPLL)..... 1.95V
Maximum Operating Voltage (VDDIO).............................. 3.6V
Total DC Output Curren t on all I/O Pin
for 48-pin package....................................................... 200 mA
for 64-pin package....................................................... 265 mA
31
32059ES–AVR32–12/07
AT32UC3B
11.2 DC Characteristics
The following chara cteristics are applica ble to the ope rating temperat ure range: T A = -40°C to 85°C, un less otherwise spec-
ified and are certified for a junction temperature up to TJ = 100°C.
Symbol Parameter Condition Min. Typ. Max. Units
VVDDCOR
EDC Supply Core 1.65 1.95 V
VVDDPLL DC Supply PLL 1.65 1.95 V
VVDDIO DC Supply Peripheral I/Os 3.0 3.6 V
VREF Analog reference voltage 2.6 3.6 V
VIL Input Low-level Voltage -0.3 +0.8 V
VIH Input High-level Vo ltage 2.0 VVDDIO+0.
3V
VOL Output Low-level Voltage 0.4 V
VOH Output High-level Voltage VVDDIO= VVDDIOM or VVDDIOP VVDDIO-0.4
ILEAK Input Leakage Current Pullup resistors disabled TBD µA
CIN Input Capacitance TBD pF
RPULLUP Pull-up Resistance TBD
IOI/O Output Current 4mA
ISC Static Current
On VVDDCORE = 1.8V,
de vice in static mode TA
=25°C A
All inputs driven
including JTAG;
RESET_N=1
TA
=85°C 25 µA
ISCR Static Current of internal
regulator
Low Power mode
(stop, deep stop or
static
TA
=25°C 10 µA
32
32059ES–AVR32–12/07
AT32UC3B
11.3 Regulator characteristics
11.3.1 Electrical characteristics
11.3.2 Decoupling requirements
11.4 Analog characteristics
11.4.1 Electrical characteristics
11.4.2 Decoupling requirements
11.4.3 BOD
Table 11-1. BODLEVEL Values
The values in Table 11-1 describes the values of the BODLEVEL in the flash General Purpose
Fuse register.
Symbol Parameter Condition Min. Typ. Max. Units
VVDDIN Supply voltage (input) 2.7 3.3 3.6 V
VVDDOUT Supply voltage (output) 1.81 1.85 1.89 V
IOUT Maximum DC output current with VVDDIN = 3.3V 100 mA
Maximum DC output current with VVDDIN = 2.7V 90 mA
Symbol Parameter Condition Typ. Techno. Units
CIN1 Input Regulator Capacitor 1 1 NPO nF
CIN2 Input Regulator Capacitor 2 4.7 X7R uF
COUT1 Output Regulator Capacitor 1 470 NPO pF
COUT2 Output Regulator Capacitor 2 2.2 X7R uF
Symbol Parameter Condition Min. Typ. Max. Units
VADVREF Analog voltage reference (input) 2.6 3.6 V
Symbol Parameter Condition Typ. Techno. Units
CVREF1 Voltage reference Capacitor 1 10 - nF
CVREF2 Voltage reference Capacitor 2 1 - uF
BODLEVEL Value Typ. Units.
000000b 1.58 V
010111b 1.62 V
011111b 1.67 V
100111b 1.77 V
111111b 1.92 V
33
32059ES–AVR32–12/07
AT32UC3B
11.5 Power Consumption
The values in Table 11-2 and Table 11-3 on page 34 are measured values of power consump-
tion with operatin g conditions as follows:
•VDDIO = 3.3V
•VDDCORE = VDDPLL = 1.8V
•TA = 25°C, TA = 85°C
•I/Os are inactive
Figure 11-1. Measure schematic
Internal
Voltage
Regulator
Amp0
Amp2
VDDANA
VDDIO
VDDIN
VDDOUT
VDDCORE
VDDPLL
34
32059ES–AVR32–12/07
AT32UC3B
These figures represent the power consumption measured on the power supplies.
Table 11-2. Power Consumption for Different Modes(1)
Mode Conditions Consumption
Typ. Unit
Active
CPU running from flash.
CPU clocked from PLL0 at f MHz
Voltage regulator is on.
XIN0 : external clock. (1)
XIN1 stopped. XIN32 stopped
PLL0 running
All peripheral clocks activated.
GPIOs on internal pull-up.
JTAG unconnected with ext pull-up.
f = 12 MHz 5.5 mA
f = 24 MHz 10 mA
f = 36MHz 14.5 mA
f = 50 MHz 19.5 mA
f = 60 MHz 23.5 mA
Static
Typ : Ta = 25 °C
CPU is in static mode
GPIOs on internal pull-up.
All peripheral clocks de-activated.
DM and DP pins connected to ground.
XIN0,Xin1 and XIN2 are stopped
on Amp0 15.5 uA
on Amp1 6 uA
1. Core frequency is generated from XIN0 using the PLL so that 140 MHz < fpll0 < 160 MHz and
10 MHz < fxin0 < 12MHz.
Table 11-3. Power Consumption by Peripheral in Active Mode
Peripheral Consumption Unit
INTC 20
µA/MHz
GPIO 27
PDCA 27
USART 35
USB 30
ADC 18
TWI 14
PWM 26
SPI 11
SSC 35
TC 26
35
32059ES–AVR32–12/07
AT32UC3B
11.6 Clock Characteristics
These parameters are given in the following conditions:
•V
DDCORE = 1.8V
Ambient Temperature = 25°C
11.6.1 CPU/HSB Clock Characteristics
11.6.2 PBA Clock Characteristics
11.6.3 PBB Clock Characteristics
11.6.4 XIN Clock Characteri stics
Note: 1. These characteristics apply only when the Main Oscillator is in bypass mode.
Table 11-4. Core Clock Waveform Parameters
Symbol Parameter Conditions Min Max Units
1/(tCPCPU) CPU Clock Frequency 60 M Hz
tCPCPU CPU Clock Period 16.6 ns
Table 11-5. PBA Clock Waveform Parameters
Symbol Parameter Conditions Min Max Units
1/(tCPPBA) PBA Clock Frequency 60 MHz
tCPPBA PBA Clock Period 16.6 ns
Table 11-6. PBB Clock Waveform Parameters
Symbol Parameter Conditions Min Max Units
1/(tCPPBB) PBB Clock Frequency 60 MHz
tCPPBB PBB Clock Period 16.6 ns
Table 11-7. XIN Clock Electrical Characteristics
Symbol Parameter Conditions Min Max Units
1/(tCPXIN) XIN Clock Frequency 3 24 MHz
tCPXIN XIN Clock Period 41.0 ns
tCHXIN XIN Clock High Half-period 0.4 x tCPXIN 0.6 x tCPXIN
tCLXIN XIN Clock Low Half-period 0.4 x tCPXIN 0.6 x tCPXIN
CIN XIN Input Capacitance (1) 12 pF
RIN XIN Pulldown Resistor (1) TBD kΩ
36
32059ES–AVR32–12/07
AT32UC3B
11.6.5 RESET_N Characteristics
Table 11-8. RESET_N Clock Waveform Parameters
Symbol Parameter Conditions Min Max Units
tRESET RESET_N minimum pulse length 10 ns
37
32059ES–AVR32–12/07
AT32UC3B
11.7 Crystal Oscillator Characteristis
The following characteristics are applicable to the operating temperature range: TA = -40°C to 85°C and worst case of
power supply, unless otherwise specified.
11.7.1 32 KHz Oscillator Characteristics
Note: 1. CL is the equivalent load capacitance.
11.7.2 Main Osc illa tors Characterist ic s
Table 11-9. 32 KHz Oscillator Characteristics
Symbol Parameter Conditions Min Typ Max Unit
1/(tCP32KHz) Crystal Oscillator Frequency 32 768 Hz
Duty Cycle 40 50 60 %
CL Equivalent Load Capacitance 6 12.5 pF
tST Startup Time CL = 6pF(1)
CL = 12.5pF(1) 600
1200 ms
IOSC Current Consumption Active mode 1.8 µA
Standby mode 0.1 µA
Table 11-10. Main Oscillator Characteristics
Symbol Parameter Conditions Min Typ Max Unit
1/(tCPMAIN) Crystal Oscillator Frequency 3 16 MHz
CL1, CL2 Internal Load Capacitance
(CL1 = CL2)12 pF
CLEquivalent Load Capacitance 6 pF
Duty Cycle 40 50 60 %
tST Startup Time
@3MHz
@8MHz
@16MHz
@20MHz
14.5
4
1.4
1
ms
IOSC Current Consumption
Active mode @3 MHz
Active mode @8 MHz
Active mode @16 MHz
Active mode @20 MHz
150
150
300
400
µA
Standby mode @TBD V 1 µA
38
32059ES–AVR32–12/07
AT32UC3B
11.7.3 PLL Characteristics
Table 11-11. Phase Lock Lo o p Cha racteristics
Symbol Parameter Conditions Min Typ Max Unit
FOUT Output Frequency 80 240 MHz
FIN Input Frequency 4 32 MHz
IPLL Current Consumption
Active mode FVCO@96MHz
Active mode FVCO@128MHz
Active mode FVCO@160MHz
320
410
450 µA
Standby mode 5 µA
39
32059ES–AVR32–12/07
AT32UC3B
11.8 ADC Characteristics
Notes: 1. Corresponds to 13 clock cycles at 5 MHz: 3 clock cycles for track and hold acquisition time and 10 clock cycles for
conversion.
2. Corresponds to 15 clock cycles at 8 MHz: 5 cloc k cycles for track and hold acquisition time and 10 clock cycles for
conversion.
Table 11-12. Channel Conversion Time and ADC Clock
Parameter Conditions Min Typ Max Units
ADC Clock Frequency 10-bit resolution mode 5 MHz
ADC Clock Frequency 8-bit resolution mode 8 MHz
Startup Time Return from Idle Mode 20 µs
Track and Hold Acquisition Time 600 ns
Conversion Time ADC Clock = 5 MHz 2 µs
Conversion Time ADC Clock = 8 MHz 1.25 µs
Throughput Rate ADC Clock = 5 MHz 384(1) kSPS
Throughput Rate ADC Clock = 8 MHz 533(2) kSPS
Table 11-13. External Voltage Refe rence Input
Parameter Conditions Min Typ Max Units
ADVREF Input Voltage Range 2.6 VDDANA V
ADVREF Av erage Current On 13 samples with ADC Clock = 5 MHz 200 250 µA
Current Consumption on VDDANA TBD mA
Table 11-14. Analog Inputs
Parameter Min Typ Max Units
Input Voltage Range 0V
ADVREF
Input Leakage Current TBD µA
Input Capacitance TBD pF
Table 11-15. Transfer Characteristics
Parameter Conditions Min Typ Max Units
Resolution 10 Bit
Absolute Accuracy f=5MHz 0.8 LSB
Integral Non-linearity f=5MHz 0.35 0.5 LSB
Differential Non-linearity f=5MHz 0.3 0.5 LSB
Offset Error f=5MHz -0.5 0.5 LSB
Gain Error f=5MHz -0.5 0.5 LSB
40
32059ES–AVR32–12/07
AT32UC3B
11.9 JTAG/ICE Timings
11.9.1 ICE Interface Signals
Note: 1. VVDDIO from 3.0V to 3.6V, maximum external capaci tor = 40pF
Figure 11-2. ICE Interface Signals
Table 11-16. ICE Interface Timing Specification
Symbol Parameter Conditions Min Max Units
ICE0TCK Low Half-period (1) ns
ICE1TCK High Half-period (1) ns
ICE2TCK Period (1) ns
ICE3TDI, TMS, Setup before TCK High (1) ns
ICE4TDI, TMS, Hold after TCK High (1) ns
ICE5TDO Hold Time (1) ns
ICE6TCK Low to TDO Valid (1) ns
TCK
ICE3ICE4
ICE6
T
MS/TDI
TDO
ICE5
ICE1
ICE2
ICE0
41
32059ES–AVR32–12/07
AT32UC3B
11.9.2 JTAG Interface Signals
Note: 1. VVDDIO from 3.0V to 3.6V, maximum external capaci tor = 40pF
Table 11-17. JTAG Interface Timing specification
Symbol Parameter Conditions Min Max Units
JTAG0TCK Low Half-period (1) 6ns
JTAG1TCK High Half-period (1) 3ns
JTAG2TCK Period (1) 9ns
JTAG3TDI, TMS Setup before TCK High (1) 1ns
JTAG4TDI, TMS Hold after TCK High (1) 0ns
JTAG5TDO Hold Time (1) 4ns
JTAG6TCK Low to TDO Valid (1) 6ns
JTAG7Device Inputs Setup Time (1) ns
JTAG8Device Inputs Hold Time (1) ns
JTAG9Device Outputs Hold Time (1) ns
JTAG10 TCK to Device Outputs Valid (1) ns
42
32059ES–AVR32–12/07
AT32UC3B
Figure 11-3. JTAG Interface Signals
11.10 SPI Characteristics
Figure 11-4. SPI Master mode with (CPOL = NCPHA = 0) or (CPOL= NCPHA= 1)
TCK
JTAG9
TMS/TDI
TDO
Device
Outputs
JTAG5
JTAG4
JTAG3
JTAG
0JTAG1
JTAG2
JTAG10
Device
Inputs
JTAG8
JTAG7
JTAG6
SPCK
MISO
MOSI
SPI2
SPI0SPI1
43
32059ES–AVR32–12/07
AT32UC3B
Figure 11-5. SPI Master mode with (CPOL=0 and NCPHA=1) or (CPOL=1 and NCPHA=0)
Figure 11-6. SPI Slave mode with (CPOL=0 and NCPHA=1) or (CPOL=1 and NCPHA=0)
Figure 11-7. SPI Slave mode with (CPOL = NCPHA = 0) or (CPOL= NCPHA= 1)
SPCK
MISO
MOSI
SPI5
SPI3SPI4
SPCK
MISO
MOSI
SPI6
SPI7SPI8
SPCK
MISO
MOSI
SPI9
SPI10 SPI11
44
32059ES–AVR32–12/07
AT32UC3B
Notes: 1. 3.3V domain: VVDDIO from 3.0V to 3.6V, maximum external capacitor = 40 pF.
2. tCPMCK: Master Clock period in ns.
11.11 Flash Characteristics
The following table gives the device maximum operating frequency depending on the field FWS
of the Flash FSR register. This field defines the number of wait states required to access the
Flash Mem or y.
Table 11-18. SPI Timings
Symbol Parameter Conditions Min Max Units
SPI0MISO Setup time bef ore SPCK rises (master) 3.3V domain(1) 22 + (tCPMCK)/2(2) ns
SPI1MISO Hold time after SPCK rises (master) 3.3V domain(1) 0ns
SPI2SPCK rising to MOSI Dela y (master) 3.3V domain(1) 7ns
SPI3MISO Setup time bef ore SPCK falls (master) 3.3V domain(1) 22 + (tCPMCK)/2(2) ns
SPI4MISO Hold time after SPCK falls (master) 3.3V domain (1) 0ns
SPI5SPCK f alling to MOSI Delay (master) 3.3V domain (1) 7ns
SPI6SPCK falling to MISO Delay (slave) 3.3V domain (1) 26.5 ns
SPI7MOSI Setup time bef ore SPCK rises (slave) 3.3V domain (1) 0ns
SPI8MOSI Hold time after SPCK rises (slave) 3.3V domain (1) 1.5 ns
SPI9SPCK rising to MISO Delay (slave) 3.3V domain (1) 27 ns
SPI10 MOSI Setup time bef ore SPCK falls (slave) 3.3V domain (1) 0ns
SPI11 MOSI Hold time after SPCK falls (slave) 3.3V domain (1) 1ns
Table 11-19. Flash Wait States
FWS Read Operations Maximum Operating Frequency (MHz)
0 1 cycle 33
1 2 cycles 60
45
32059ES–AVR32–12/07
AT32UC3B
12. Mechanical Characteristics
12.1 Thermal Considerations
12.1.1 Thermal Data Table 12-1 summarizes the thermal resistance data depending on the package.
12.1.2 J unction Temperature
The average chip-junction temperature, TJ, in °C can be obtained from the following:
1.
2.
where:
θJA = packag e thermal resistance, J unction-t o-ambien t (°C/W), pro vid ed in Table 12- 1 on page
45.
θJC = package thermal resistance, Junction-to-ca se thermal resistance (°C/W), provided in
Table 12-1 on page 45.
θHEAT SINK = cooling device thermal resistance (°C/W), provided in the device datasheet.
•P
D = device power consumption (W) estimated from data provided in the section Power
Consumption” on page 33.
•T
A = ambient temperature (°C).
From the first equation, the user can derive the estimated lifetime of the chip and decide if a
cooling device is necessary or not. If a cooling device is to be fitted on the chip, the second
equation shou ld be used to compute the resulting average chip-junction temperature TJ in °C.
Table 12-1. Thermal Resistance Data
Symbol Parameter Condition Package Typ Unit
θJA Junction-to-ambient thermal resistan ce Still Air TQFP64 TBD °C/W
θJC Junction-to-case thermal resistance TQFP64 TBD
θJA Junction-to-ambient thermal resistan ce Still Air TQFP48 TBD °C/W
θJC Junction-to-case thermal resistance TQFP48 TBD
TJTAPDθJA
×()
+=
TJTAP(Dθ( HEATSINK
×θ
JC))
++=
46
32059ES–AVR32–12/07
AT32UC3B
12.2 Package Drawings
Figure 12-1. TQFP-64 package dr awing
Table 12-2. Device and Package Maximum Weight
TBD mg
Table 12-3. Package Characteristics
Moisture Sensitivity Level TBD
Table 12-4. Package Reference
JEDEC Drawing Reference MS-026
JESD97 Classification E3
47
32059ES–AVR32–12/07
AT32UC3B
Figure 12-2. TQFP-48 package dr awing
Table 12-5. Device and Package Maximum Weight
TBD mg
Table 12-6. Package Characteristics
Moisture Sensitivity Level TBD
Table 12-7. Package Reference
JEDEC Drawing Reference MS-026
JESD97 Classification E3
48
32059ES–AVR32–12/07
AT32UC3B
Figure 12-3. QFN-64 packa g e dr awing
Table 12-8. Device and Package Maximum Weight
TBD mg
Table 12-9. Package Characteristics
Moisture Sensitivity Level TBD
Table 12-10. Package Reference
JEDEC Drawing Reference M0-220
JESD97 Classification E3
49
32059ES–AVR32–12/07
AT32UC3B
Figure 12-4. QFN-48 packa g e dr awing
Table 12-11. Device and Package Maximum Weight
TBD mg
Table 12-12. Package Characteristics
Moisture Sensitivity Level TBD
Table 12-13. Package Reference
JEDEC Drawing Reference M0-220
JESD97 Classification E3
50
32059ES–AVR32–12/07
AT32UC3B
12.3 Soldering Profile
Table 12-14 gives the recommended soldering profile from J-STD-20.
Note: It is recommended to apply a soldering temperature higher than 250°C.
A maximum of three reflow passes is allowed per component.
Table 12-14. Soldering Profile
Profile Feature Green Package
Average Ramp-up Rate (217°C to Peak) TBD
Preheat Temperature 175°C ±25°C TBD
Temperature Maintained Above 217°C TBD
Time within 5°C of Actual Peak Temperature TBD
Peak Temperature Range TBD
Ramp-down Rate TBD
Time 25°C to Peak Temperature TBD
51
32059ES–AVR32–12/07
AT32UC3B
13. Ordering Information
Device Ordering Code Package Conditioning Temperature Operating
Range
AT32UC3B0256 AT32UC3B0256-A2UT TQFP 64 Tray Industrial (-40°C to 85°C)
AT32UC3B0256-Z2UT QFN 64 Tray Industrial (-40°C to 85°C)
AT32UC3B0128 AT32UC3B0128-A2UT TQFP 64 Tray Industrial (-40°C to 85°C)
AT32UC3B0128-Z2UT QFN 64 Tray Industrial (-40°C to 85°C)
AT32UC3B064 AT32UC3B064-A2UT TQFP 64 Tray Industrial (-40°C to 85°C)
AT32UC3B064-Z2U T QFN 64 Tray Industrial (-40°C to 85°C)
AT32UC3B1256 AT32UC3B1256-AUT TQFP 48 Tray Industrial (-40°C to 85°C)
AT32UC3B1256-Z1UT QFN 48 Tray Industrial (-40°C to 85°C)
AT32UC3B1128 AT32UC3B1128-AUT TQFP 48 Tray Industrial (-40°C to 85°C)
AT32UC3B1128-Z1UT QFN 48 Tray Industrial (-40°C to 85°C)
AT32UC3B164 AT32UC3B164-AUT TQFP 48 Tray Industrial (-40°C to 85°C)
AT32UC3B164-Z1U T QFN 48 Tray Industrial (-40°C to 85°C)
52
32059ES–AVR32–12/07
AT32UC3B
14. Errata
All parts labelled with -ES (for engineering samples) are revision B parts.
All part not labelled with -ES are revision E parts.
14.1 Rev. E
This version will be sampled in January 2008.
14.1.1 PWM
1. PWM channel interrupt enabling triggers an interrupt
When enabling a PWM channel that is configured with center aligned period (CALG=1), an
interrupt is signalled.
Fix/Workaround
When using center aligned mode, enable the channel and read the status before channel
interrupt is enabled.
14.1.2 SPI
1. SPI Slave / PDCA transfer: no TX UNDERRUN flag
There is no TX UNDERRUN flag available, therefore in SPI slave mode, there is no way to
be informed of a character lost in transmission.
Fix/Workaround
For PDCA transfer: none.
2. SPI Bad serial clock generation on 2nd chip select when SCBR=1, CPOL=1 and
CNCPHA=0
When multiple CS are in use, if one of the baudrate equals to 1 and one of the others
doesn’t equal to 1, and CPOL=1 and CPHA=0, then an additional pulse will be generated on
SCK.
Fix/Workaround
When multiple CS are in use, if one of the baudrate equals to 1, the other must also equal 1
if CPOL=1 and CPHA=0.
3. SPI Glitch on RXREADY flag in slave mode when enabling the SPI or during the first
transfer
In slave mode, the SPI can generate a false RXREADY signal during enabling of the SPI or
during the first transfer.
Fix/Workaround
1. Set slave mode, set required CPOL/CPHA.
2. Enable SPI.
3. Set the polarity CPOL of the line in t he opposite value of the required one.
4. Set the polarity CPOL to the required one.
5. Read the RXHOLDING register.
Transfers can now befin and RXREADY will now behave as expected.
53
32059ES–AVR32–12/07
AT32UC3B
14.2 Rev. B
14.2.1 Processor and Architecture
1. Local Busto fast GPIO not availab le on silicon Rev B
Local bus is only available for silicon RevE and later.
Fix/Workaround
Do not use if silicon revison older than E.
2. Memory Protection Unit (MPU) is non functional.
Fix/Workaround
Do not use the MPU.
3. Bus error should be masked in Debug mode
If a bus error occurs during debug mode, the processor will n ot respond to debug com-
mands through the DINST register.
Fix/Workaround
A reset of the device will make the CPU respond to debug commands again.
4. Read Modify Write (RMW) instructions on data outside the internal RAM does not
work.
Read Modify Write (RMW) instructions on data outside the internal RAM does not work.
Fix/Workaround
Do not perform RMW instructions on data outside the internal RAM.
5. Need two NOPs instruction after instructions masking interrupts
The instructions following in the pipeline the instruction masking the interrupt through SR
may behave abnormally.
Fix/Workaround
Place two NOPs instru ctions after each SSRF or MTSR instruction setting IxM or GM in SR
6. Clock connection table on Rev B
Here is the table of Rev B
Figure 14-1. Timer/Counter clock connections on RevB
Source Name Connection
Intern al TIMER_CLOCK1 Slow Clock (Internal RC oscillator)
TIMER_CLOCK2 PBA Clock / 4
TIMER_CLOCK3 PBA Clock / 8
TIMER_CLOCK4 PBA Clock / 16
TIMER_CLOCK5 PBA Clock / 32
External XC0
XC1
XC2
54
32059ES–AVR32–12/07
AT32UC3B
14.2.2 PWM
1. PWM counter restart s at 0x0001
The PWM counter restarts at 0x0001 and not 0x0000 as specified. Because of this the first
PWM period has one mo r e cloc k c ycle .
Fix/Workaround
- The first period is 0x00 00 , 0x0001, ..., period
- Consecutive periods are 0x0001, 0x0002, ..., period
2. PWM channel interrupt enabling triggers an interrupt
When enabling a PWM channel that is configured with center aligned period (CALG=1), an
interrupt is signalled.
Fix/Workaround
When using center aligned mode, enable the channel and read the status before channel
interrupt is enabled.
3. PWM update period to a 0 value does not work
It is impossible to update a period equal to 0 by the using the PWM update register
(PWM_CUPD).
Fix/Workaround
Do not update the PWM_CUPD register with a value equal to 0.
4. PWM channel status may be wrong if disabled before a period has elapsed
Before a PWM period has elapsed, the read channel status may be wrong. The CHIDx-bit
for a PWM channel in the PWM Enable Register will read '1' for one full PWM period even if
the channel was disabled before the period elapsed. It will then read '0' as expected.
Fix/Workaround
Reading the PWM channel status of a disabled channel is only correct after a PWM period
has elapsed.
14.2.3 SPI
1. SPI FDIV option does not work
Selecting clock signal using FDIV = 1 does not work as specified.
Fix/Workaround
Do not set FDIV = 1.
2. SPI FDIV option does not work
Selecting clock signal using FDIV = 1 does not work as specified.
Fix/Workaround
Do not set FDIV = 1.
55
32059ES–AVR32–12/07
AT32UC3B
3. SPI Slave / PDCA transfer: no TX UNDERRUN flag
There is no TX UNDERRUN flag available, therefore in SPI slave mode, there is no way to
be informed of a character lost in transmission.
Fix/Workaround
For PDCA transfer: none.
4. SPI Bad serial clock generation on 2nd chip select when SCBR=1, CPOL=1 and
CNCPHA=0
When multiple CS are in use, if one of the baudrate equals to 1 and one of the others
doesn’t equal to 1, and CPOL=1 and CPHA=0, then an additional pulse will be generated on
SCK.
Fix/Workaround
When multiple CS are in use, if one of the baudrate equals to 1, the other must also equal 1
if CPOL=1 and CPHA=0.
5. SPI Glitch on RXREADY flag in slave mode when enabling the SPI or during the first
transfer
In slave mode, the SPI can generate a false RXREADY signal during enabling of the SPI or
during the first transfer.
Fix/Workaround
1. Set slave mode, set required CPOL/CPHA.
2. Enable SPI.
3. Set the polarity CPOL of the line in t he opposite value of the required one.
4. Set the polarity CPOL to the required one.
5. Read the RXHOLDING register.
Transfers can now befin and RXREADY will now behave as expected.
14.2.4 Power Manager
1. PLL Lock control does not work
PLL lock Control does not work.
Fix/Workaround
In PLL Control register, the bit 7 should be set in order to prevent unexpected behaviour.
2. Wrong reset causes when BOD is activated
Setting the BOD enable fuse will cause the Reset Cause Register to list BOD reset as the
reset source even though the part was reset by another source.
Fix/Workaround
Do not set the BOD enable fuse, but activate the BOD as soon as your program starts.
14.2.5 SSC
1. SSC does not trigger RF when data is low
The SSC cannot transmit or r eceive data when CKS = CKDIV and CKO = none, in TCMR or
RCMR respectively.
56
32059ES–AVR32–12/07
AT32UC3B
Fix/Workaround
Set CKO to a value that is not "non e" and bypass t he output of the TK/RK pin wit h the GPIO.
14.2.6 USB
1. USB No end of host reset signaled upon disconnection
In host mode, in case of an unexpected device disconnection whereas a usb reset is being
sent by the usb controller, the UHCON.RESET bit may not been cleared by the hardware at
the end of the reset.
Fix/Workaround
A software workaround consists in testing (by polling or interrupt) the disconnection
(UHINT.DDISCI == 1) while waiting for the end of reset (UHCON.RESET == 0) to avoid
being stuck.
2. USBFSM and UHADDR1/2/3 regi sters are not available.
Do not use USBFSM register.
Fix/Workaround
Do not use USBFSM register and use HCO N[6:0] field instead f or all the pipes.
14.2.7 Cycle counter
1. CPU Cycle Counter does not reset the COUNT system register on COMPARE match.
The device revision B does not reset the COUNT system register on COMPARE match. In
this revision, the COUNT register is clocked by the CPU clock, so when th e CPU clock
stops, so does incrementing of COUNT.
Fix/Workaround
None.
14.2.8 ADC
1. ADC possible miss on DRDY when disabling a channel
The ADC does not work properly when more than one channel is enabled.
Fix/Workaround
Do not use the ADC with more than one channel enabled at a time.
2. ADC OVRE flag sometimes not reset on Status Register read
The OVRE flag does not clear properly if read simultaneously to an end of conversion.
Fix/Workaround
None.
14.2.9 USART
1. USART Manchester Encoder Not Working
Mancheste r en co din g /de co d ing is not wor kin g.
Fix/Workaround
57
32059ES–AVR32–12/07
AT32UC3B
Do not use manchester encoding.
2. USART RXBREAK problem when no timeguard
In asynchronous mode the RXBREAK flag is not correctly handled when the timeguard is 0
and the break character is located just after the stop bit.
Fix/Workaround
If the NBSTOP is 1, timeguard should be different from 0.
3. USART Handshaking: 2 characters sent / CTS rise s when TX
If CTS switches from 0 to 1 during the TX of a ch ar acter, if t he Holding r egist er is not emp ty,
the TXHOLDING is also transmitted.
Fix/Workaround
None.
4. USART PDC and TIMEGUARD not supported in MANCHESTER
Mancheste r en co din g /de co d ing is not wor kin g.
Fix/Workaround
Do not use manchester encoding.
5. USART SPI mode is non functional on this revision
Fix/Workaround
Do not use the USART SPI mode.
14.2.10 HMATRIX
1. HMatrix fixed priority arbitration does not work
Fixed priority ar bit ra tio n do es not work.
Fix/Workaround
Use Round-Robin ar bitration instead.
14.2.11 Clock caracteristic
1. PBA max frequency
The Peripheral bus A (PBA) max frequency is 30MHz instead of 60MHz.
Fix/Workaround
Do not set the PBA maximum frequency higher than 30MHz.
58
32059ES–AVR32–12/07
AT32UC3B
15. Datasheet Revision History
Please note that the referring page numbers in this section are referred to this document. The
referring re visio n in th is section are referring to the document revision.
15.1 Rev. E – 12/07
15.2 Rev. D – 11/07
15.3 Rev. C – 10/07
15.4 Rev. B – 07/07
15.5 Rev. A – 05/07
1. Updated ”Memory protection” on pag e 18.
1. Updated ”The AVR32UC CPU” on pa ge 16.
2. Updated ”Electr ical Characteristics” on page 30.
1. Updated ”Features” on page 1.
2. Updated block diagram with local bus Figure 3-1 on page 4.
3. Add schematic for HMatrix master/slave connection Figure 9-1 on page 29.
4. Updated ”Peripherals” on page 32 with local bus.
5. Added SPI feature ”Universial Synchronous/Asynchronous Receiver/Transmitter
(USART)” on page 298.
6. Updated ”USB On-The-Go Interface (USBB)” on page 367.
7. Updated ADC trigger selection in ”Analog-to-Digital Converter (ADC)” on page 568.
8. Updated ”JTAG and Boundary Scan” on page 594 with programming procedure.
9. Add description for silicon revision D page 52.
10. Add ABDAC Chapter
1. Updated registered trademarks
2. Updated address page.
1. Initial re vision.
59
32059ES–AVR32–12/07
AT32UC3B
i
32059ES–AVR32–12/07
AT32UC3B
Table of Contents
1 Description ...............................................................................................2
2 Configuration Summary ..........................................................................3
3 Blockdiagram ...........................................................................................4
3.1Proce sso r an d ar ch ite ctu re ..... .... ... ... ... ................ .... ... ... ... ................. ... ... ... ... ............5
4 Package and Pinout .................................................................................6
5 Signals Description ..................................................................................8
6 Power Considerations ...........................................................................12
6.1Power Supplies ........................................................................................................12
6.2Voltag e Re gu lat or ...... ................. ... ... ... .... ................ ... ... ... .... ................ ... ... ... .... ......13
6.3Analog-to-Digital Converter (A.D.C) reference. .......................................................14
7 I/O Line Considerations .........................................................................15
7.1JTAG pins ...... ... ................ ... ... .... ... ... ................ ... .... ... ... ... .... ................ ... ... ... .... ... ...15
7.2RESET_N pin ..........................................................................................................15
7.3TWI pins ..................................................................................................................15
7.4GPIO pins ................................................................................................................15
7.5High drive pins .........................................................................................................15
8 Memories ................................................................................................16
8.1Embedded Memories ..............................................................................................16
8.2Physical Memory Map .............................................................................................16
8.3Bus Matrix Connections ...........................................................................................17
9 Peripherals ..............................................................................................19
9.1Peripheral Address Map ..........................................................................................19
9.2CPU Local Bus Mapping .........................................................................................20
9.3Interrupt Request Signal Map ..................................................................................20
9.4Clock Connections ...................................................................................................22
9.5Nexus OCD AUX port connections ..........................................................................23
9.6DMA handshake signals ..........................................................................................23
9.7High Drive Current GPIO .........................................................................................24
9.8Peripheral Multiplexing on I/O lines .........................................................................24
9.9Oscillator Pinout ......................................................................................................25
9.10Peripher al ove r view .................. ... ... ................ ... .... ... ... ... .... ................ ... ... ... .... ... ...26
ii
32059ES–AVR32–12/07
AT32UC3B
10 Boot Sequence .......................................................................................29
10.1Starting of clocks ...................................................................................................29
10.2Fetching of initial instructions ................................................................................29
11 Electrical Characteristics ......................................................................30
11.1Absolute Ma xim u m Ra ting s* ....... ... ... .... ... ... ... ................ .... ... ... ... .... ................ ... ...30
11.2DC Characteristics .................................................................................................31
11.3Regulato r cha r act er istics ................ ... ................ .... ... ... ... .... ... ................ ... ... .... ... ...32
11.4Analog characteristics ...........................................................................................32
11.5Power Consu m ption .................... ... ... ................ .... ... ... ... .... ................ ... ... ... .... ... ...33
11.6Clock Characteristics .............................................................................................35
11.7Crystal Oscillator Characteristis ............ ... ... ... ... .... ... ... ... .... ... ... ... .... ... ... ... ... .... ... ...37
11.8ADC Characteristics ..............................................................................................39
11.9JTAG/ICE Timings .................................................................................................40
11.10SPI Charact er i stic s .... ... ... ... .... ... ... ................ ... .... ... ... ... ................. ... ... ... ... .... ... ...42
11.11Flash Characteristics ...........................................................................................44
12 Mechanical Characteristics ...................................................................45
12.1Thermal Considerations ........................................................................................45
12.2Package Dra win gs ... .... ... ... ... .... ................ ... ... ... .... ... ................................ ... .... ... ...46
12.3Soldering Profile ....................................................................................................50
13 Ordering Information .............................................................................51
14 Errata .......................................................................................................52
14.1Rev. E ....................................................................................................................52
14.2Rev. B ....................................................................................................................53
15 Datasheet Revision History ...................................................................58
15.1Rev. E – 12/07 .......................................................................................................58
15.2Rev. D – 11/07 .......................................................................................................58
15.3Rev. C – 10/07 .......................................................................................................58
15.4Rev. B – 07/07 .......................................................................................................58
15.5Rev. A – 05/07 .......................................................................................................58
32059ES–AVR32–12/07
Headquarters International
Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600
Atmel Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369
Atmel Europe
Le Krebs
8, Rue Jean-Pierre Timbaud
BP 309
78054 Saint-Quentin-en-
Yvelines Cedex
France
Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11
Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581
Product Contact
Web Site
www.atmel.com Technical Support
avr32@atmel.com Sales Contact
www.atmel.com/contacts
Literature Requests
www.atmel.com/literature
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-
TIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-
TAL DAMAGES ( INCLUDING, WITHOUT LIMITATION, D AMAGES FOR LO SS OF P R OFIT S, BU SINESS I NTERR UPTI ON, OR L OSS OF INFORMATION) ARISING OUT OF
THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or comp leteness of the contents of this document and reserves the right to make changes to specifications
and product description s at any time without no tice. Atmel does not make any commitment to update the i nformation conta ined herein. Unless specifi cally provided
otherwise, Atmel products are n ot suitable for, and shall not be used in, automotive applications. Atmel’s products are not intend ed, authorized, or warranted for use
as components in appl ications intended to support or sustain life.
© 2007 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, AVR® and others are registered trademarks or trade-
marks of Atmel Cor poration or its subsidiaries. Other ter ms and product n ames may be trademarks of others.