This is information on a product in full production.
September 2013 DocID023111 Rev 3 1/38
H3LIS331DL
MEMS motion sensor:
low-power high-g 3-axis digital accelerometer
Datasheet - production data
Features
Wide supply voltage, 2.16 V to 3.6 V
Low-voltage compatible IOs, 1.8 V
Ultra-low power consumption down to 10 μA in
low-power mode
±100g/±200g/±400g dynamically selectable full
scales
I2C/SPI digital output interface
16-bit data output
Sleep-to-wakeup function
10000 g high-shock survivability
ECOPACK®, RoHS and “Green” compliant
Applications
Shock detection
Impact recognition and logging
Concussion detection
Description
The H3LIS331DL is a low-power high-
performance 3-axis linear accelerometer
belonging to the “nano” family, with digital I2C/SPI
serial interface standard output.
The device features ultra-low power operational
modes that allow advanced power saving and
smart sleep-to-wakeup functions.
The H3LIS331DL has dynamically user-
selectable full scales of ±100g/±200g/±400g and it
is capable of measuring accelerations with output
data rates from 0.5 Hz to 1 kHz.
The H3LIS331DL is available in a small thin
plastic land grid array package (LGA) and it is
guaranteed to operate over an extended
temperature range from -40 °C to +85 °C.
TFLGA 3x3x1.0 mm3 16L
Table 1. Device summary
Order codes Temperature range [C] Package Packaging
H3LIS331DL -40 to +85 TFLGA 3x3x1.0 mm3 16L Tray
H3LIS331DLTR -40 to +85 TFLGA 3x3x1.0 mm3 16L Tape and reel
www.st.com
Contents H3LIS331DL
2/38 DocID023111 Rev 3
Contents
1 Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2 Mechanical and electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Mechanical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Communication interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.1 SPI - serial peripheral interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.2 I2C - inter-IC control interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5.1 Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5.2 Zero-g level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5.3 Sleep-to-wakeup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3 Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1 Sensing element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 IC interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Factory calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4 Application hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.1 Soldering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5 Digital interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.1 I2C serial interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.1.1 I2C operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2 SPI bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2.1 SPI read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2.2 SPI write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2.3 SPI read in 3-wire mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6 Register mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
DocID023111 Rev 3 3/38
H3LIS331DL Contents
38
7 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7.1 WHO_AM_I (0Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7.2 CTRL_REG1 (20h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7.3 CTRL_REG2 (21h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.4 CTRL_REG3 [interrupt CTRL register] (22h) . . . . . . . . . . . . . . . . . . . . . . 27
7.5 CTRL_REG4 (23h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.6 CTRL_REG5 (24h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
7.7 HP_FILTER_RESET (25h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.8 REFERENCE (26h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.9 STATUS_REG (27h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.10 OUT_X_L (28h), OUT_X_H (29h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.11 OUT_Y_L (2Ah), OUT_Y_H (2Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.12 OUT_Z_L (2Ch), OUT_Z_H (2Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.13 INT1_CFG (30h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.14 INT1_SRC (31h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.15 INT1_THS (32h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.16 INT1_DURATION (33h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.17 INT2_CFG (34h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.18 INT2_SRC (35h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.19 INT2_THS (36h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.20 INT2_DURATION (37h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
8 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
List of tables H3LIS331DL
4/38 DocID023111 Rev 3
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 3. Mechanical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 4. Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 5. SPI slave timing values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 6. I2C slave timing values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 7. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Table 8. Serial interface pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 9. Serial interface pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 10. SAD+Read/Write patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 11. Transfer when master is writing one byte to slave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 12. Transfer when master is writing multiple bytes to slave . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 13. Transfer when master is receiving (reading) one byte of data from slave . . . . . . . . . . . . . 19
Table 14. Transfer when master is receiving (reading) multiple bytes of data from slave . . . . . . . . . 19
Table 15. Register address map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 16. WHO_AM_I register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 17. CTRL_REG1 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 18. CTRL_REG1 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 19. Power mode and low-power output data rate configurations . . . . . . . . . . . . . . . . . . . . . . . 25
Table 20. Normal mode output data rate configurations and low-pass cutoff frequencies . . . . . . . . . 25
Table 21. CTRL_REG2 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 22. CTRL_REG2 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 23. High-pass filter mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
Table 24. High-pass filter cutoff frequency configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 25. CTRL_REG3 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 26. CTRL_REG3 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 27. Data signal on INT 1 and INT 2 pad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 28. CTRL_REG4 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 29. CTRL_REG4 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 30. CTRL_REG5 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 31. CTRL_REG5 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 32. Sleep-to-wake configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 33. REFERENCE register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 34. REFERENCE description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
Table 35. STATUS_REG register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 36. STATUS_REG description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
Table 37. INT1_CFG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 38. INT1_CFG description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 39. Interrupt 1 source configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 40. INT1_SRC register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 41. INT1_SRC description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 42. INT1_THS register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 43. INT1_THS description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 44. INT1_DURATION register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
Table 45. INT2_DURATION description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 46. INT2_CFG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 47. INT2_CFG description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 48. Interrupt mode configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
DocID023111 Rev 3 5/38
H3LIS331DL List of tables
38
Table 49. INT2_SRC register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 50. INT2_SRC description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 51. INT2_THS register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 52. INT2_THS description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 53. INT2_DURATION register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
Table 54. INT2_DURATION description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 55. TFLGA 3x3x1.0 mm3 16L mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 56. Document revision history. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
List of figures H3LIS331DL
6/38 DocID023111 Rev 3
List of figures
Figure 1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 2. Pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 3. SPI slave timing diagram (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 4. I2C slave timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 5. H3LIS331DL electrical connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 6. Read and write protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 7. SPI read protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 8. Multiple byte SPI read protocol (2-byte example). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 9. SPI write protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 10. Multiple byte SPI write protocol (2-byte example). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 11. SPI read protocol in 3-wire mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 12. TFLGA 3x3x1.0 mm3 16L mechanical drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
DocID023111 Rev 3 7/38
H3LIS331DL Block diagram and pin description
38
1 Block diagram and pin description
1.1 Block diagram
Figure 1. Block diagram
1.2 Pin description
Figure 2. Pin connections
CHARGE
AMPLIFIER
Y+
Z+
Y-
Z-
a
X+
X-
I
2
C
SPI
CS
SCL/SPC
SDA/SDO/SDI
SDO/SA0
CONTROL LOGIC
&
INTERRUPT GEN.
INT 1
CLOCK
TRIMMING
CIRCUITS
REFERENCE
CONTROL LOGIC
A/D
CONVERTER
INT 2
MUX
AM12624V1
(TOP VIEW)
DIRECTION OF THE
DETECTABLE
ACCELERATIONS
1
5
9
13
(BOTTOM VIEW)
Y
1
X
Z
Pin 1 indicator
AM12625V1
Block diagram and pin description H3LIS331DL
8/38 DocID023111 Rev 3
Table 2. Pin description
Pin# Name Function
1 Vdd_IO Power supply for I/O pins
2 NC Not connected
3 NC Not connected
4SCL
SPC
I2C serial clock (SCL)
SPI serial port clock (SPC)
5 GND 0 V supply
6
SDA
SDI
SDO
I2C serial data (SDA)
SPI serial data input (SDI)
3-wire interface serial data output (SDO)
7SDO
SA0
SPI serial data output (SDO)
I2C less significant bit of the device address (SA0)
8CS
SPI enable
I2C/SPI mode selection (1: I2C mode; 0: SPI enabled)
9 INT 2 Inertial interrupt 2
10 Reserved Connect to GND
11 INT 1 Inertial interrupt 1
12 GND 0 V supply
13 GND 0 V supply
14 Vdd Power supply
15 Reserved Connect to Vdd
16 GND 0 V supply
DocID023111 Rev 3 9/38
H3LIS331DL Mechanical and electrical specifications
38
2 Mechanical and electrical specifications
2.1 Mechanical characteristics
@ Vdd = 2.5 V, T = 25 °C unless otherwise noted (a).
a. The product is factory calibrated at 2.5 V. The operational power supply range is from 2.16 V to 3.6 V. The
product calibration is done at s1 g.
Table 3. Mechanical characteristics
Symbol Parameter Test conditions Min. Typ.(1) Max. Unit
FS Measurement range(2)
FS bit set to 00 ±100
gFS bit set to 01 ±200
FS bit set to 11 ±400
So Sensitivity(3)
FS bit set to 00
12-bit representation 49
mg/digit
FS bit set to 01
12-bit representation 98
FS bit set to 11
12-bit representation 195
TCSo Sensitivity change vs.
temperature FS bit set to 00 ±0.01 %/°C
TyOff Typical zero-g level offset
accuracy(4) FS bit set to 00 ±1 g
TCOff Zero-g level change vs.
temperature Max. delta from 25 °C ±5 mg/°C
An Acceleration noise density FS bit set to 00 15 mg/
NL Non-linearity FS bit set to 00
Range -70g .. +70g 2 %FS
Top Operating temperature range -40 +85 °C
Wh Product weight 20 mgram
1. Typical specifications are not guaranteed.
2. Verified by wafer level test and measurement of initial offset and sensitivity.
3. Factory calibrated at s1 g
4. Offset can be eliminated by enabling the built-in high-pass filter.
Hz
Mechanical and electrical specifications H3LIS331DL
10/38 DocID023111 Rev 3
2.2 Electrical characteristics
@ Vdd = 2.5 V, T = 25 °C unless otherwise noted (b).
b. The product is factory calibrated at 2.5 V. The operational power supply range is from 2.16 V to 3.6 V.
Table 4. Electrical characteristics
Symbol Parameter Test conditions Min. Typ.(1) Max. Unit
Vdd Supply voltage 2.16 2.5 3.6 V
Vdd_IO I/O pins supply voltage(2) 1.71 Vdd+0.1 V
Idd Current consumption
in normal mode 300 μA
IddLP Current consumption in low-
power mode 10 μA
IddPdn Current consumption in
power-down mode 1μA
VIH Digital high-level input
voltage 0.8*Vdd_IO V
VIL Digital low-level input voltage 0.2*Vdd_IO V
VOH High-level output voltage 0.9*Vdd_IO V
VOL Low-level output voltage 0.1*Vdd_IO V
ODR Output data rate
in normal mode
DR bit set to 00 50
Hz
DR bit set to 01 100
DR bit set to 10 400
DR bit set to 11 1000
ODRLP
Output data rate in
low-power mode
PM bit set to 010 0.5
Hz
PM bit set to 011 1
PM bit set to 100 2
PM bit set to 101 5
PM bit set to 110 10
BW System bandwidth(3) ODR/2 Hz
Ton Turn-on time(4) ODR = 100 Hz 1/ODR+1ms s
Top Operating temperature range -40 +85 °C
1. Typical specifications are not guaranteed.
2. It is possible to remove Vdd maintaining Vdd_IO without blocking the communication busses; in this condition the
measurement chain is powered off.
3. Refer to Table 20 for filter cutoff frequency.
4. Time to obtain valid data after exiting power-down mode.
DocID023111 Rev 3 11/38
H3LIS331DL Mechanical and electrical specifications
38
2.3 Communication interface characteristics
2.3.1 SPI - serial peripheral interface
Subject to general operating conditions for Vdd and Top.
Figure 3. SPI slave timing diagram (2)
2. Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO, for both input and output ports.
3. When no communication is ongoing, data on CS, SPC, SDI and SDO are driven by internal pull-up resistors.
Table 5. SPI slave timing values
Symbol Parameter
Value (1)
Unit
Min. Max.
tc(SPC) SPI clock cycle 100 ns
fc(SPC) SPI clock frequency 10 MHz
tsu(CS) CS setup time 6
ns
th(CS) CS hold time 8
tsu(SI) SDI input setup time 5
th(SI) SDI input hold time 15
tv(SO) SDO valid output time 50
th(SO) SDO output hold time 9
tdis(SO) SDO output disable time 50
1. Values are guaranteed at 10 MHz clock frequency for SPI with both 4 and 3 wires, based on characterization results, not
tested in production.
Mechanical and electrical specifications H3LIS331DL
12/38 DocID023111 Rev 3
2.3.2 I2C - inter-IC control interface
Subject to general operating conditions for Vdd and Top.
Figure 4. I2C slave timing diagram
Note: Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO, for both ports.
Table 6. I2C slave timing values
Symbol Parameter
I2C standard mode (1) I2C fast mode (1)
Unit
Min. Max. Min. Max.
f(SCL) SCL clock frequency 0 100 0 400 KHz
tw(SCLL) SCL clock low time 4.7 1.3
μs
tw(SCLH) SCL clock high time 4.0 0.6
tsu(SDA) SDA setup time 250 100 ns
th(SDA) SDA data hold time 0.01 3.45 0.01 0.9 μs
tr(SDA) tr(SCL) SDA and SCL rise time 1000 20 + 0.1Cb (2) 300
ns
tf(SDA) tf(SCL) SDA and SCL fall time 300 20 + 0.1Cb (2) 300
th(ST) START condition hold time 4 0.6
μs
tsu(SR)
Repeated START condition
setup time 4.7 0.6
tsu(SP) STOP condition setup time 4 0.6
tw(SP:SR)
Bus free time between STOP
and START condition 4.7 1.3
1. Data based on standard I2C protocol requirement, not tested in production.
2. Cb = total capacitance of one bus line, in pF.
SD A
SCL
t
f(SD A )
t
su (SP)
t
w(SC LL)
t
su (SD A )
t
r(SD A )
t
su (SR)
t
h(ST)
t
w(SC LH )
h(SD A )
t
r(SC L)
t
f(SC L)
t
w(SP:SR)
START
REPEA TED
STA RT
STO P
STA RT
DocID023111 Rev 3 13/38
H3LIS331DL Mechanical and electrical specifications
38
2.4 Absolute maximum ratings
Stresses above those listed as “absolute maximum ratings” may cause permanent damage
to the device. This is a stress rating only and functional operation of the device under these
conditions is not implied. Exposure to maximum rating conditions for extended periods may
affect device reliability.
Note: Supply voltage on any pin should never exceed 4.8 V.
Table 7. Absolute maximum ratings
Symbol Ratings Maximum value Unit
Vdd Supply voltage -0.3 to 4.8 V
Vdd_IO I/O pins supply voltage -0.3 to 4.8 V
Vin Input voltage on any control pin
(CS, SCL/SPC, SDA/SDI/SDO, SDO/SA0) -0.3 to Vdd_IO +0.3 V
APOW Acceleration (any axis, powered, Vdd = 2.5 V)
3000 g for 0.5 ms
10000 g for 0.1 ms
AUNP Acceleration (any axis, unpowered)
3000 g for 0.5 ms
10000 g for 0.1 ms
TOP Operating temperature range -40 to +85 °C
TSTG Storage temperature range -40 to +125 °C
ESD Electrostatic discharge protection
4 (HBM) kV
1.5 (CDM) kV
200 (MM) V
This device is sensitive to mechanical shock, improper handling can cause
permanent damage to the part.
This is an electrostatic-sensitive device (ESD), improper handling can cause
permanent damage to the part.
Mechanical and electrical specifications H3LIS331DL
14/38 DocID023111 Rev 3
2.5 Terminology
2.5.1 Sensitivity
Sensitivity describes the gain of the sensor and can be determined by applying 1 g
acceleration to it. As the sensor can measure DC accelerations this can be done easily by
pointing the axis of interest towards the center of the Earth, noting the output value, rotating
the sensor by 180 degrees (pointing to the sky) and noting the output value again. By doing
so, ±1 g acceleration is applied to the sensor. Subtracting the larger output value from the
smaller one, and dividing the result by 2, leads to the actual sensitivity of the sensor. This
value changes very little over temperature and time. The sensitivity tolerance describes the
range of sensitivities of a large population of sensors.
2.5.2 Zero-g level
The zero-g level offset (TyOff) describes the deviation of an actual output signal from the
ideal output signal if no acceleration is present. A sensor in a steady-state on a horizontal
surface measures 0 g for the X-axis and 0 g for the Y-axis whereas the Z-axis measures 1 g.
The output is ideally in the middle of the dynamic range of the sensor (content of OUT
registers 00h, data expressed as two’s complement number). A deviation from the ideal
value in this case is called zero-g offset. Offset is, to some extent, a result of stress to the
MEMS sensor and therefore can slightly change after mounting the sensor onto a printed
circuit board or exposing it to extensive mechanical stress. Offset changes little over
temperature, refer to “Zero-g level change vs. temperature” (see TCOff in Table 3). The
zero-g level tolerance (TyOff) describes the standard deviation of the range of zero-g levels
of a population of sensors.
2.5.3 Sleep-to-wakeup
The “sleep-to-wakeup” function, in conjunction with low-power mode, allows to further
reduce the system power consumption and develop new smart applications.
The H3LIS331DL may be set in a low-power operating mode, characterized by lower date
rate refreshments. In this way the device, even if sleeping, continues to sense acceleration
and generate interrupt requests.
When the “sleep-to-wakeup” function is activated, the H3LIS331DL is able to automatically
wake up as soon as the interrupt event has been detected, increasing the output data rate
and bandwidth.
With this feature the system may be efficiently switched from low-power mode to full
performance, depending on user-selectable positioning and acceleration events, therefore
ensuring power saving and flexibility.
DocID023111 Rev 3 15/38
H3LIS331DL Functionality
38
3 Functionality
The H3LIS331DL is a “nano”, low-power, digital output 3-axis linear accelerometer housed
in an LGA package. The complete device includes a sensing element and an IC interface
able to take the information from the sensing element and to provide a signal to the external
world through an I2C/SPI serial interface.
3.1 Sensing element
A proprietary process is used to create a surface micromachined accelerometer. The
technology allows processing suspended silicon structures, which are attached to the
substrate in a few points called anchors and are free to move in the direction of the sensed
acceleration. To be compatible with traditional packaging techniques, a cap is placed on top
of the sensing element to avoid blocking the moving parts during the molding phase of the
plastic encapsulation.
When an acceleration is applied to the sensor, the proof mass displaces from its nominal
position, causing an imbalance in the capacitive half bridge. This imbalance is measured
using charge integration in response to a voltage pulse applied to the capacitor.
At steady-state the nominal value of the capacitors are a few pF and when an acceleration
is applied, the maximum variation of the capacitive load is in the fF range.
3.2 IC interface
The complete measurement chain is composed of a low-noise capacitive amplifier which
converts the capacitive unbalancing of the MEMS sensor into an analog voltage that will be
available to the user through an analog-to-digital converter.
The acceleration data may be accessed through an I2C/SPI interface, making the device
particularly suitable for direct interfacing with a microcontroller.
The H3LIS331DL features a data-ready signal (RDY) which indicates when a new set of
measured acceleration data is available, therefore simplifying data synchronization in the
digital system that uses the device.
3.3 Factory calibration
The IC interface is factory calibrated for sensitivity (So) and zero-g level (TyOff).
The trim values are stored inside the device in non-volatile memory. Any time the device is
turned on, the trim parameters are downloaded into the registers to be used during active
operation. This allows the device to be used without further calibration.
Application hints H3LIS331DL
16/38 DocID023111 Rev 3
4 Application hints
Figure 5. H3LIS331DL electrical connections
The device core is supplied through the Vdd line while the I/O pads are supplied through the
Vdd_IO line. Power supply decoupling capacitors (100 nF ceramic, 10 μF aluminum) should
be placed as near as possible to pin 14 of the device (common design practice).
All the voltage and ground supplies must be present at the same time to have proper
behavior of the IC (refer to Figure 5). It is possible to remove Vdd maintaining Vdd_IO
without blocking the communication bus, in this condition the measurement chain is
powered off.
The functionality of the device and the measured acceleration data are selectable and
accessible through the I2C or SPI interfaces. When using the I2C, CS must be tied high.
The functions, the threshold and the timing of the two interrupt pins (INT 1 and INT 2) can be
completely programmed by the user through the I2C/SPI interface.
4.1 Soldering information
The LGA package is compliant with the ECOPACK®, RoHS and “Green” standards.
It is qualified for soldering heat resistance according to JEDEC J-STD-020C.
Leave “pin 1 indicator” unconnected during soldering.
Land pattern and soldering recommendations are available at www.st.com.
CS
10µF
Vdd
100nF
GND
Vdd_IO
SDO/SA0
SDA/SDI/SDO
INT 1
SCL/SPC
Digital signal from/to signal controller. Signal levels are defined by proper selection of Vdd_IO
1
5
8
13
TOP VIEW
6
9
1416
9
5
INT 2
AM12626V1
DocID023111 Rev 3 17/38
H3LIS331DL Digital interfaces
38
5 Digital interfaces
The registers embedded inside the H3LIS331DL may be accessed through both the I2C and
SPI serial interfaces. The latter may be SW configured to operate either in 3-wire or 4-wire
interface mode.
The serial interfaces are mapped onto the same pads. To select/exploit the I2C interface, the
CS line must be tied high (i.e. connected to Vdd_IO).
5.1 I2C serial interface
The H3LIS331DL I2C is a bus slave. The I2C is employed to write data into registers whose
content can also be read back.
The relevant I2C terminology is given in the table below.
There are two signals associated with the I2C bus: the serial clock line (SCL) and the serial
data line (SDA). The latter is a bi-directional line used for sending and receiving the data
to/from the interface. Both the lines are connected to Vdd_IO through a pull-up resistor
embedded inside the H3LIS331DL. When the bus is free both lines are high.
The I2C interface is compliant with fast mode (400 kHz) I2C standards as well as with
normal mode.
Table 8. Serial interface pin description
Pin name Pin description
CS SPI enable
I2C/SPI mode selection (1: I2C mode; 0: SPI enabled)
SCL
SPC
I2C serial clock (SCL)
SPI serial port clock (SPC)
SDA
SDI
SDO
I2C serial data (SDA)
SPI serial data input (SDI)
3-wire interface serial data output (SDO)
SA0
SDO
I2C less significant bit of the device address (SA0)
SPI serial data output (SDO)
Table 9. Serial interface pin description
Term Description
Transmitter The device which sends data to the bus
Receiver The device which receives data from the bus
Master The device which initiates a transfer, generates clock signals and terminates a
transfer
Slave The device addressed by the master
Digital interfaces H3LIS331DL
18/38 DocID023111 Rev 3
5.1.1 I2C operation
The transaction on the bus is started through a START (ST) signal. A START condition is
defined as a high-to-low transition on the data line while the SCL line is held high. After this
has been transmitted by the master, the bus is considered busy. The next byte of data
transmitted after the START condition contains the address of the slave in the first 7 bits and
the eighth bit tells whether the master is receiving data from the slave or transmitting data to
the slave. When an address is sent, each device in the system compares the first seven bits
after a START condition with its address. If they match, the device considers itself
addressed by the master.
The slave address (SAD) associated to the H3LIS331DL is 001100xb. The SDO/SA0 pad
can be used to modify the less significant bit of the device address. If the SA0 pad is
connected to the voltage supply, LSB is ‘1’ (address 0011001b) or else, if the SA0 pad is
connected to ground, the LSB value is ‘0’ (address 0011000b). This solution allows the
connection and addressing of two different accelerometers to the same I2C lines.
Data transfer with acknowledge is mandatory. The transmitter must release the SDA line
during the acknowledge pulse. The receiver must then pull the data line low so that it
remains stable low during the high period of the acknowledge clock pulse. A receiver which
has been addressed is obliged to generate an acknowledge after each byte of data
received.
The I2C embedded inside the H3LIS331DL behaves like a slave device and the following
protocol must be adhered to. After the START condition (ST) a slave address is sent, once a
slave acknowledge (SAK) has been returned, an 8-bit sub-address (SUB) is transmitted: the
7 LSB represent the actual register address while the MSB enables address auto increment.
If the MSB of the SUB field is ‘1’, the SUB (register address) is automatically increased to
allow multiple data read/write.
The slave address is completed with a Read/Write bit. If the bit is ‘1’ (read), a repeated
START (SR) condition must be issued after the two sub-address bytes; if the bit is ‘0’ (write),
the master transmits to the slave with the direction unchanged. Table 10 explains how the
SAD+Read/Write bit pattern is composed, listing all the possible configurations.
Table 10. SAD+Read/Write patterns
Command SAD[6:1] SAD[0] = SA0 R/W SAD+R/W
Read 001100 0 1 00110001 (31h)
Write 001100 0 0 00110000 (30h)
Read 001100 1 1 00110011 (33h)
Write 001100 1 0 00110010 (32h)
Table 11. Transfer when master is writing one byte to slave
Master ST SAD + W SUB DATA SP
Slave SAK SAK SAK
DocID023111 Rev 3 19/38
H3LIS331DL Digital interfaces
38
Data are transmitted in byte format (DATA). Each data transfer contains 8 bits. The number
of bytes transferred per transfer is unlimited. Data is transferred with the most significant bit
(MSB) first. If a receiver can’t receive another complete byte of data until it has performed
some other function, it can hold the clock line SCL low to force the transmitter into a wait
state. Data transfer only continues when the receiver is ready for another byte and releases
the data line. If a slave receiver doesn’t acknowledge the slave address (i.e. it is not able to
receive because it is performing some real-time function) the data line must be left high by
the slave. The master can then abort the transfer. A low-to-high transition on the SDA line
while the SCL line is high is defined as a STOP condition. Each data transfer must be
terminated by the generation of a STOP (SP) condition.
In order to read multiple bytes, it is necessary to assert the most significant bit of the sub-
address field. In other words, SUB(7) must be equal to 1 while SUB(6-0) represents the
address of first register to be read.
In the presented communication format MAK is master acknowledge and NMAK is no
master acknowledge.
5.2 SPI bus interface
The H3LIS331DL SPI is a bus slave. The SPI allows the writing and reading of the device
registers.
The serial interface interacts with the outside world with 4 wires: CS, SPC, SDI and SDO.
Table 12. Transfer when master is writing multiple bytes to slave
Master ST SAD + W SUB DATA DATA SP
Slave SAK SAK SAK SAK
Table 13. Transfer when master is receiving (reading) one byte of data from slave
Master ST SAD + W SUB SR SAD + R NMAK SP
Slave SAK SAK SAK DATA
Table 14. Transfer when master is receiving (reading) multiple bytes of data from slave
Master ST SAD+W SUB SR SAD+R MAK MAK NMAK SP
Slave SAK SAK SAK DATA DAT
A
DAT
A
Digital interfaces H3LIS331DL
20/38 DocID023111 Rev 3
Figure 6. Read and write protocol
CS is the serial port enable and it is controlled by the SPI master. It goes low at the start of
the transmission and goes back high at the end. SPC is the serial port clock and it is
controlled by the SPI master. It is stopped high when CS is high (no transmission). SDI and
SDO are respectively the serial port data input and output. Those lines are driven at the
falling edge of SPC and should be captured at the rising edge of SPC.
Both the read register and write register commands are completed in 16 clock pulses or in
multiples of 8 in the case of multiple read/write bytes. Bit duration is the time between two
falling edges of SPC. The first bit (bit 0) starts at the first falling edge of SPC after the falling
edge of CS while the last bit (bit 15, bit 23, ...) starts at the last falling edge of SPC just
before the rising edge of CS.
bit 0: RW bit. When 0, the data DI(7:0) is written into the device. When 1, the data DO(7:0)
from the device is read. In the latter case, the chip drives SDO at the start of bit 8.
bit 1: MS bit. When 0, the address remains unchanged in multiple read/write commands.
When 1, the address is auto-incremented in multiple read/write commands.
bit 2-7: address AD(5:0). This is the address field of the indexed register.
bit 8-15: data DI(7:0) (write mode). This is the data that is written into the device (MSB first).
bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSB first).
In multiple read/write commands further blocks of 8 clock periods are added. When the MS
bit is ‘0’, the address used to read/write data remains the same for every block. When the
MS bit is ‘1’ the address used to read/write data is increased at every block.
The function and the behavior of SDI and SDO remain unchanged.
5.2.1 SPI read
Figure 7. SPI read protocol
CS
SPC
SDI
SDO
RW
AD5 AD4 AD3 AD2 AD1 AD0
DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0
DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0
MS
CS
SPC
SDI
SDO
RW
DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0
AD5 AD4 AD3 AD2 AD1 AD0
MS
DocID023111 Rev 3 21/38
H3LIS331DL Digital interfaces
38
The SPI read command is performed with 16 clock pulses. A multiple byte read command is
performed by adding blocks of 8 clock pulses to the previous one.
bit 0: READ bit. The value is 1.
bit 1: MS bit. When 0, does not increment the address. When 1, increments the address in
multiple reads.
bit 2-7: address AD(5:0). This is the address field of the indexed register.
bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSB first).
bit 16-... : data DO(...-8). Further data in multiple byte reads.
Figure 8. Multiple byte SPI read protocol (2-byte example)
5.2.2 SPI write
Figure 9. SPI write protocol
The SPI write command is performed with 16 clock pulses. A multiple byte write command
is performed by adding blocks of 8 clock pulses to the previous one.
bit 0: WRITE bit. The value is 0.
bit 1: MS bit. When 0, does not increment the address. When 1, increments the address in
multiple writes.
bit 2 -7: address AD(5:0). This is the address field of the indexed register.
bit 8-15: data DI(7:0) (write mode). This is the data that is written inside the device (MSB
first).
bit 16-...: data DI(...-8). Further data in multiple byte writes.
CS
SPC
SDI
SDO
RW
DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0
AD5 AD4 AD3 AD2 AD1 AD0
DO15DO14DO13DO12DO11DO10DO9 DO8
MS
CS
SPC
SDI
RW DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0
AD5 AD4 AD3 AD2 AD1 AD0MS
Digital interfaces H3LIS331DL
22/38 DocID023111 Rev 3
Figure 10. Multiple byte SPI write protocol (2-byte example)
5.2.3 SPI read in 3-wire mode
3-wire mode is entered by setting bit SIM (SPI serial interface mode selection) to ‘1’ in
CTRL_REG4.
Figure 11. SPI read protocol in 3-wire mode
The SPI read command is performed with 16 clock pulses:
bit 0: READ bit. The value is 1.
bit 1: MS bit. When 0, does not increment the address. When 1, increments the address in
multiple reads.
bit 2-7: address AD(5:0). This is the address field of the indexed register.
bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSB first).
The multiple read command is also available in 3-wire mode.
CS
SPC
SDI
RW
AD5 AD4 AD3 AD2 AD1 AD0
DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0 DI15 DI14 DI13 DI12 DI11 DI10 DI9 DI8
MS
CS
SPC
SDI/O
RW DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0
AD5 AD4 AD3 AD2 AD1 AD0
MS
DocID023111 Rev 3 23/38
H3LIS331DL Register mapping
38
6 Register mapping
Table 15 provides a listing of the 8-bit registers embedded in the device and the related
addresses.
Registers marked as Reserved must not be changed as they contain the factory calibration
values. Their content is automatically restored when the device is powered up. Writing to
those registers may change calibration data and thus lead to improper functioning of the
device.
Table 15. Register address map
Name Type
Register address
Default Comment
Hex Binary
Reserved (do not modify) 00 - 0E Reserved
WHO_AM_I r 0F 000 1111 00110010 Dummy register
Reserved (do not modify) 10 - 1F Reserved
CTRL_REG1 rw 20 010 0000 00000111
CTRL_REG2 rw 21 010 0001 00000000
CTRL_REG3 rw 22 010 0010 00000000
CTRL_REG4 rw 23 010 0011 00000000
CTRL_REG5 rw 24 010 0100 00000000
HP_FILTER_RESET r 25 010 0101 Dummy register
REFERENCE rw 26 010 0110 00000000
STATUS_REG r 27 010 0111 00000000
OUT_X_L r 28 010 1000 Output
OUT_X_H r 29 010 1001 Output
OUT_Y_L r 2A 010 1010 Output
OUT_Y_H r 2B 010 1011 Output
OUT_Z_L r 2C 010 1100 Output
OUT_Z_H r 2D 010 1101 Output
Reserved (do not modify) 2E - 2F Reserved
INT1_CFG rw 30 011 0000 00000000
INT1_SRC r 31 011 0001 00000000
INT1_THS rw 32 011 0010 00000000
INT1_DURATION rw 33 011 0011 00000000
INT2_CFG rw 34 011 0100 00000000
INT2_SRC r 35 011 0101 00000000
INT2_THS rw 36 011 0110 00000000
INT2_DURATION rw 37 011 0111 00000000
Reserved (do not modify) 38 - 3F Reserved
Register description H3LIS331DL
24/38 DocID023111 Rev 3
7 Register description
The device contains a set of registers which are used to control its behavior and to retrieve
acceleration data. The register address, consisting of 7 bits, is used to identify them and to
write the data through the serial interface.
7.1 WHO_AM_I (0Fh)
Device identification register.
This register contains the device identifier that for the H3LIS331DL is set to 32h.
7.2 CTRL_REG1 (20h)
The PM bits allow the user to select between power-down and two operating active modes.
The device is in power-down mode when the PD bits are set to “000” (default value after
boot). Table 19 shows all the possible power mode configurations and respective output
data rates. Output data in the low-power mode are computed with the low-pass filter cutoff
frequency defined by the DR1, DR0 bits.
The DR bits, in normal mode operation, select the data rate at which acceleration samples
are produced. In low-power modes they define the output data resolution. Table 20 shows
all the possible configurations for the DR1 and DR0 bits.
Table 16. WHO_AM_I register
00110010
Table 17. CTRL_REG1 register
PM2 PM1 PM0 DR1 DR0 Zen Yen Xen
Table 18. CTRL_REG1 description
PM2 - PM0 Power mode selection. Default value: 000
(000: power-down; Others: refer to Table 19)
DR1, DR0 Data rate selection. Default value: 00
(00:50 Hz; Others: refer to Table 20)
Zen Z-axis enable. Default value: 1
(0: Z-axis disabled; 1: Z-axis enabled)
Yen Y-axis enable. Default value: 1
(0: Y-axis disabled; 1: Y-axis enabled)
Xen X-axis enable. Default value: 1
(0: X-axis disabled; 1: X-axis enabled)
DocID023111 Rev 3 25/38
H3LIS331DL Register description
38
7.3 CTRL_REG2 (21h)
Table 19. Power mode and low-power output data rate configurations
PM2 PM1 PM0 Power mode selection Output data rate [Hz]
ODRLP
0 0 0 Power-down --
0 0 1 Normal mode ODR
0 1 0 Low power 0.5
0 1 1 Low power 1
1 0 0 Low power 2
1 0 1 Low power 5
1 1 0 Low power 10
Table 20. Normal mode output data rate configurations and low-pass cutoff
frequencies
DR1 DR0 Output data rate [Hz]
ODR
Low-pass filter cutoff
frequency [Hz]
0 0 50 37
0 1 100 74
1 0 400 292
1 1 1000 780
Table 21. CTRL_REG2 register
BOOT HPM1 HPM0 FDS HPen2 HPen1 HPCF1 HPCF0
Table 22. CTRL_REG2 description
BOOT Reboot memory content. Default value: 0
(0: normal mode; 1: reboot memory content)
HPM1, HPM0 High-pass filter mode selection. Default value: 00
(00: normal mode; Others: refer to Table 23)
FDS Filtered data selection. Default value: 0
(0: internal filter bypassed; 1: data from internal filter sent to output register)
HPen2 High-pass filter enabled for interrupt 2 source. Default value: 0
(0: filter bypassed; 1: filter enabled)
Register description H3LIS331DL
26/38 DocID023111 Rev 3
The BOOT bit is used to refresh the content of the internal registers stored in the Flash
memory block. At device power-up, the content of the Flash memory block is transferred to
the internal registers related to trimming functions in order to permit correct operation of the
device itself. If for any reason the content of the trimming registers is changed, it is sufficient
to use this bit to restore the correct values. When the BOOT bit is set to ‘1’, the content of
the internal Flash is copied inside the corresponding internal registers and it is used to
calibrate the device. These values are factory trimmed and they are different for every
accelerometer. They permit correct operation of the device and normally they do not have to
be changed. At the end of the boot process the BOOT bit is set again to ‘0’.
HPCF[1:0]. These bits are used to configure the high-pass filter cutoff frequency ft which is
given by:
The equation can be simplified to the following approximated equation:
HPen1 High-pass filter enabled for interrupt 1 source. Default value: 0
(0: filter bypassed; 1: filter enabled)
HPCF1,
HPCF0
High-pass filter cutoff frequency configuration. Default value: 00
(00: HPc=8; 01: HPc=16; 10: HPc=32; 11: HPc=64)
Table 23. High-pass filter mode configuration
HPM1 HPM0 High-pass filter mode
00Normal mode (reset reading HP_RESET_FILTER)
01Reference signal for filtering
10Normal mode (reset reading HP_RESET_FILTER)
Table 24. High-pass filter cutoff frequency configuration
HPcoeff2,1 ft [Hz]
Data rate = 50 Hz
ft [Hz]
Data rate = 100 Hz
ft [Hz]
Data rate = 400 Hz
ft [Hz]
Data rate = 1000 Hz
00 1 2 8 20
01 0.5 1 4 10
10 0.25 0.5 2 5
11 0.125 0.25 1 2.5
Table 22. CTRL_REG2 description (continued)
ft11
HPc
------------


fs
2
------ln=
ft
fs
6HPc
-------------------=
DocID023111 Rev 3 27/38
H3LIS331DL Register description
38
7.4 CTRL_REG3 [interrupt CTRL register] (22h)
7.5 CTRL_REG4 (23h)
Table 25. CTRL_REG3 register
IHL PP_OD LIR2 I2_CFG1 I2_CFG0 LIR1 I1_CFG1 I1_CFG0
Table 26. CTRL_REG3 description
IHL Interrupt active high, low. Default value: 0
(0: active high; 1: active low)
PP_OD Push-pull/open drain selection on interrupt pad. Default value 0.
(0: push-pull; 1: open drain)
LIR2
Latch interrupt request on INT2_SRC register, with INT2_SRC register cleared by
reading INT2_SRC itself. Default value: 0.
(0: interrupt request not latched; 1: interrupt request latched)
I2_CFG1,
I2_CFG0
Data signal on INT 2 pad control bits. Default value: 00.
(see Table 27)
LIR1
Latch interrupt request on the INT1_SRC register, with the INT1_SRC register
cleared by reading the INT1_SRC register. Default value: 0.
(0: interrupt request not latched; 1: interrupt request latched)
I1_CFG1,
I1_CFG0
Data signal on INT 1 pad control bits. Default value: 00.
(see Table 27)
Table 27. Data signal on INT 1 and INT 2 pad
I1(2)_CFG1 I1(2)_CFG0 INT 1(2) Pad
0 0 Interrupt 1 (2) source
0 1 Interrupt 1 source OR interrupt 2 source
1 0 Data ready
1 1 Boot running
Table 28. CTRL_REG4 register
BDU BLE FS1 FS0 0 0 0 SIM
Register description H3LIS331DL
28/38 DocID023111 Rev 3
The BDU bit is used to inhibit output register updates between the reading of upper and
lower register parts. In default mode (BDU = ‘0’), the lower and upper register parts are
updated continuously. When the BDU is activated (BDU = ‘1’), the content of the output
registers is not updated until both MSB and LSB are read which avoids reading values
related to different sample times.
7.6 CTRL_REG5 (24h)
Turn-on bits are used for turning on the sleep-to-wake function.
Setting TurnOn[1:0] bits to 11, the “sleep-to-wake” function is enabled. When an interrupt
event occurs, the device is turned to normal mode, increasing the ODR to the value defined
in CTRL_REG1. Although the device is in normal mode, CTRL_REG1 content is not
automatically changed to “normal mode” configuration.
Table 29. CTRL_REG4 description
BDU
Block data update. Default value: 0
(0: continuous update; 1: output registers not updated between MSB and LSB
reading)
BLE Big/little endian data selection. Default value 0.
(0: data LSB @ lower address; 1: data MSB @ lower address)
FS1, FS0 Full scale selection. Default value: 00.
(00: ±100 g; 01: ±200 g; 11: ±400 g)
SIM SPI serial interface mode selection. Default value: 0.
(0: 4-wire interface; 1: 3-wire interface)
Table 30. CTRL_REG5 register
0 0 0 0 0 0 TurnOn1 TurnOn0
Table 31. CTRL_REG5 description
TurnOn1,
TurnOn0 Turn-on mode selection for sleep-to-wake function. Default value: 00.
Table 32. Sleep-to-wake configuration
TurnOn1 TurnOn0 Sleep-to-wake status
0 0 Sleep-to-wake function is disabled
11
Turned on: The device is in low-power mode (ODR is defined in
CTRL_REG1)
DocID023111 Rev 3 29/38
H3LIS331DL Register description
38
7.7 HP_FILTER_RESET (25h)
Dummy register. Reading at this address zeroes instantaneously the content of the internal
high-pass filter. If the high-pass filter is enabled, all three axes are instantaneously set to
0 g. This allows the settling time of the high-pass filter to be overcome.
7.8 REFERENCE (26h)
This register sets the acceleration value taken as a reference for the high-pass filter output.
When the filter is turned on (at least one of the FDS, HPen2, or HPen1 bits is equal to ‘1’)
and the HPM bits are set to “01”, filter-out is generated, taking this value as a reference.
7.9 STATUS_REG (27h)
Table 33. REFERENCE register
Ref7 Ref6 Ref5 Ref4 Ref3 Ref2 Ref1 Ref0
Table 34. REFERENCE description
Ref7 - Ref0 Reference value for high-pass filter. Default value: 00h.
Table 35. STATUS_REG register
ZYXOR ZOR YOR XOR ZYXDA ZDA YDA XDA
Table 36. STATUS_REG description
ZYXOR
X, Y and Z-axis data overrun. Default value: 0
(0: no overrun has occurred;
1: new data has overwritten the previous data before it was read)
ZOR
Z-axis data overrun. Default value: 0
(0: no overrun has occurred;
1: new data for the Z-axis has overwritten the previous data)
YOR
Y-axis data overrun. Default value: 0
(0: no overrun has occurred;
1: new data for the Y-axis has overwritten the previous data)
XOR
X-axis data overrun. Default value: 0
(0: no overrun has occurred;
1: new data for the X-axis has overwritten the previous data)
ZYXDA X, Y and Z-axis new data available. Default value: 0
(0: a new set of data is not yet available; 1: a new set of data is available)
Register description H3LIS331DL
30/38 DocID023111 Rev 3
7.10 OUT_X_L (28h), OUT_X_H (29h)
X-axis acceleration data. The value is expressed as two’s complement.
7.11 OUT_Y_L (2Ah), OUT_Y_H (2Bh)
Y-axis acceleration data. The value is expressed as two’s complement.
7.12 OUT_Z_L (2Ch), OUT_Z_H (2Dh)
Z-axis acceleration data. The value is expressed as two’s complement.
7.13 INT1_CFG (30h)
ZDA Z-axis new data available. Default value: 0
(0: new data for the Z-axis is not yet available;
1: new data for the Z-axis is available)
YDA Y-axis new data available. Default value: 0
(0: new data for the Y-axis is not yet available;
1: new data for the Y-axis is available)
XDA X-axis new data available. Default value: 0
(0: new data for the X-axis is not yet available;
1: new data for the X-axis is available)
Table 36. STATUS_REG description (continued)
Table 37. INT1_CFG register
AOI 0 ZHIE ZLIE YHIE YLIE XHIE XLIE
Table 38. INT1_CFG description
AOI AND/OR combination of interrupt events. Default value: 0.
(See Table 39)
ZHIE
Enable interrupt generation on Z high event. Default value: 0
(0: disable interrupt request;
1: enable interrupt request on measured accel. value higher than preset threshold)
ZLIE
Enable interrupt generation on Z low event. Default value: 0
(0: disable interrupt request;
1: enable interrupt request on measured accel. value lower than preset threshold)
YHIE
Enable interrupt generation on Y high event. Default value: 0
(0: disable interrupt request;
1: enable interrupt request on measured accel. value higher than preset threshold)
YLIE
Enable interrupt generation on Y low event. Default value: 0
(0: disable interrupt request;
1: enable interrupt request on measured accel. value lower than preset threshold)
DocID023111 Rev 3 31/38
H3LIS331DL Register description
38
Configuration register for interrupt 1 source.
7.14 INT1_SRC (31h)
Interrupt 1 source register. Read-only register.
Reading at this address clears the INT1_SRC IA bit (and the interrupt signal on the INT 1
pin) and allows the refreshment of data in the INT1_SRC register if the latched option is
chosen.
XHIE
Enable interrupt generation on X high event. Default value: 0
(0: disable interrupt request;
1: enable interrupt request on measured accel. value higher than preset threshold)
XLIE
Enable interrupt generation on X low event. Default value: 0
(0: disable interrupt request;
1: enable interrupt request on measured accel. value lower than preset threshold)
Table 39. Interrupt 1 source configurations
AOI Interrupt mode
0 OR combination of interrupt events
1 AND combination of interrupt events
Table 38. INT1_CFG description (continued)
Table 40. INT1_SRC register
0 IA ZHZLYHYLXHXL
Table 41. INT1_SRC description
IA Interrupt active. Default value: 0
(0: no interrupt has been generated; 1: one or more interrupts have been generated)
ZH Z high. Default value: 0
(0: no interrupt, 1: Z high event has occurred)
ZL Z low. Default value: 0
(0: no interrupt; 1: Z low event has occurred)
YH Y high. Default value: 0
(0: no interrupt, 1: Y high event has occurred)
YL Y low. Default value: 0
(0: no interrupt, 1: Y low event has occurred)
XH X high. Default value: 0
(0: no interrupt, 1: X high event has occurred)
XL X low. Default value: 0
(0: no interrupt, 1: X low event has occurred)
Register description H3LIS331DL
32/38 DocID023111 Rev 3
7.15 INT1_THS (32h)
7.16 INT1_DURATION (33h)
The D6 - D0 bits set the minimum duration of the interrupt 2 event to be recognized.
Duration steps and maximum values depend on the ODR chosen.
7.17 INT2_CFG (34h)
Table 42. INT1_THS register
0 THS6 THS5 THS4 THS3 THS2 THS1 THS0
Table 43. INT1_THS description
THS6 - THS0 Interrupt 1 threshold. Default value: 000 0000
Table 44. INT1_DURATION register
0 D6D5D4D3D2D1D0
Table 45. INT2_DURATION description
D6 - D0 Duration value. Default value: 000 0000
Table 46. INT2_CFG register
AOI 0 ZHIE ZLIE YHIE YLIE XHIE XLIE
Table 47. INT2_CFG description
AOI AND/OR combination of interrupt events. Default value: 0.
(See Table 48)
ZHIE
Enable interrupt generation on Z high event. Default value: 0
(0: disable interrupt request;
1: enable interrupt request on measured accel. value higher than preset threshold)
ZLIE
Enable interrupt generation on Z low event. Default value: 0
(0: disable interrupt request;
1: enable interrupt request on measured accel. value lower than preset threshold)
YHIE
Enable interrupt generation on Y high event. Default value: 0
(0: disable interrupt request;
1: enable interrupt request on measured accel. value higher than preset threshold)
YLIE
Enable interrupt generation on Y low event. Default value: 0
(0: disable interrupt request;
1: enable interrupt request on measured accel. value lower than preset threshold)
DocID023111 Rev 3 33/38
H3LIS331DL Register description
38
Configuration register for interrupt 2 source.
7.18 INT2_SRC (35h)
Interrupt 2 source register. Read-only register.
Reading at this address clears the INT2_SRC IA bit (and the interrupt signal on the INT 2
pin) and allows the refreshment of data in the INT2_SRC register if the latched option is
chosen.
XHIE
Enable interrupt generation on X high event. Default value: 0
(0: disable interrupt request;
1: enable interrupt request on measured accel. value higher than preset threshold)
XLIE
Enable interrupt generation on X low event. Default value: 0
(0: disable interrupt request;
1: enable interrupt request on measured accel. value lower than preset threshold)
Table 48. Interrupt mode configuration
AOI Interrupt mode
0 OR combination of interrupt events
1 AND combination of interrupt events
Table 47. INT2_CFG description (continued)
Table 49. INT2_SRC register
0 IA ZHZLYHYLXHXL
Table 50. INT2_SRC description
IA Interrupt active. Default value: 0
(0: no interrupt has been generated; 1: one or more interrupts have been generated)
ZH Z high. Default value: 0
(0: no interrupt, 1: Z high event has occurred)
ZL Z low. Default value: 0
(0: no interrupt; 1: Z low event has occurred)
YH Y high. Default value: 0
(0: no interrupt, 1: Y high event has occurred)
YL Y low. Default value: 0
(0: no interrupt, 1: Y low event has occurred)
XH X high. Default value: 0
(0: no interrupt, 1: X high event has occurred)
XL X Low. Default value: 0
(0: no interrupt, 1: X low event has occurred)
Register description H3LIS331DL
34/38 DocID023111 Rev 3
7.19 INT2_THS (36h)
7.20 INT2_DURATION (37h)
The D6 - D0 bits set the minimum duration of the interrupt 2 event to be recognized.
Duration time steps and maximum values depend on the ODR chosen.
Table 51. INT2_THS register
0 THS6 THS5 THS4 THS3 THS2 THS1 THS0
Table 52. INT2_THS description
THS6 - THS0 Interrupt 1 threshold. Default value: 000 0000
Table 53. INT2_DURATION register
0 D6D5D4D3D2D1D0
Table 54. INT2_DURATION description
D6 - D0 Duration value. Default value: 000 0000
DocID023111 Rev 3 35/38
H3LIS331DL Package information
38
8 Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK is an ST trademark.
Package information H3LIS331DL
36/38 DocID023111 Rev 3
Figure 12. TFLGA 3x3x1.0 mm3 16L mechanical drawing
Table 55. TFLGA 3x3x1.0 mm3 16L mechanical data
Dim.
mm
Min. Typ. Max.
A1 1
A2 0.785
A3 0.200
D1 2.850 3.000 3.150
E1 2.850 3.000 3.150
L1 1.000 1.060
L2 2.000 2.060
N1 0.500
N2 1.000
M 0.040 0.100 0.160
P1 0.875
P2 1.275
T1 0.290 0.350 0.410
T2 0.190 0.250 0.310
d 0.150
k 0.050
7983231_L
DocID023111 Rev 3 37/38
H3LIS331DL Revision history
38
9 Revision history
Table 56. Document revision history
Date Revision Changes
20-Apr-2012 1 Initial release
16-Jul-2013 2
Document status promoted from preliminary data to production data
Updated Table 3
Minor textual updates
16-Sep-2013 3 Updated Company information appearing on last page of document
H3LIS331DL
38/38 DocID023111 Rev 3
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
A
ll ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE
SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B)
AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS
OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT
PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS
EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY
DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE
DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2013 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com