BF966S
Vishay Telefunken
www.vishay.de FaxBack +1-408-970-5600
Rev. 3, 20-Jan-99 1 (8)
Document Number 85004
N–Channel Dual Gate MOS-Fieldeffect Tetrode,
Depletion Mode
Electrostatic sensitive device.
Observe precautions for handling.
Applications
Input- and mixer stages especially UHF-tuners.
Features
D
Integrated gate protection diodes
D
High cross modulation performance
D
Low noise figure
D
High AGC-range
D
Low feedback capacitance
D
Low input capacitance
1
4
3
2
94 9307 96 12647
BF966S Marking: BF966S
Plastic case (TO 50)
1=Drain, 2=Source, 3=Gate 1, 4=Gate 2
G2
G1
D
S
12623
Absolute Maximum Ratings
Tamb = 25
_
C, unless otherwise specified
Parameter Test Conditions Type Symbol Value Unit
Drain - source voltage VDS 20 V
Drain current ID30 mA
Gate 1/Gate 2 - source peak current ±IG1/G2SM 10 mA
Total power dissipation Tamb 60
°
C Ptot 200 mW
Channel temperature TCh 150
°
C
Storage temperature range Tstg –55 to +150
°
C
Maximum Thermal Resistance
Tamb = 25
_
C, unless otherwise specified
Parameter Test Conditions Symbol Value Unit
Channel ambient on glass fibre printed board (40 x 25 x 1.5) mm3
plated with 35
m
m Cu RthChA 450 K/W
BF966S
Vishay Telefunken
www.vishay.de FaxBack +1-408-970-5600 Rev. 3, 20-Jan-99
2 (8) Document Number 85004
Electrical DC Characteristics
Tamb = 25
_
C, unless otherwise specified
Parameter Test Conditions Type Symbol Min Typ Max Unit
Drain - source
breakdown voltage ID = 10
m
A, –VG1S = –VG2S = 4 V V(BR)DS 20 V
Gate 1 - source
breakdown voltage ±IG1S = 10 mA, VG2S = VDS = 0 ±V(BR)G1SS 8 14 V
Gate 2 - source
breakdown voltage ±IG2S = 10 mA, VG1S = VDS = 0 ±V(BR)G2SS 8 14 V
Gate 1 - source
leakage current ±VG1S = 5 V, VG2S = VDS = 0 ±IG1SS 50 nA
Gate 2 - source
leakage current ±VG2S = 5 V, VG1S = VDS = 0 ±IG2SS 50 nA
Drain current VDS = 15 V, VG1S = 0, VG2S = 4 V BF966S IDSS 4 18 mA
DS G1S G2S
BF966SA IDSS 4 10.5 mA
BF966SB IDSS 9.5 18 mA
Gate 1 - source
cut-off voltage VDS = 15 V, VG2S = 4 V, ID = 20
m
A –VG1S(OFF) 2.5 V
Gate 2 - source
cut-off voltage VDS = 15 V, VG1S = 0, ID = 20
m
A –VG2S(OFF) 2.0 V
Electrical AC Characteristics
VDS = 15 V, ID = 10 mA, VG2S = 4 V, f = 1 MHz , Tamb = 25
_
C, unless otherwise specified
Parameter Test Conditions Symbol Min Typ Max Unit
Forward transadmittance y21s15 18.5 mS
Gate 1 input capacitance Cissg1 2.2 2.6 pF
Gate 2 input capacitance VG1S = 0, VG2S = 4 V Cissg2 1.1 pF
Feedback capacitance Crss 25 35 fF
Output capacitance Coss 0.8 1.2 pF
Power gain GS = 2 mS, GL = 0.5 mS, f = 200 MHz Gps 25 dB
g
GS = 3,3 mS, GL = 1 mS, f = 800 MHz Gps 18 dB
AGC range VG2S = 4 to –2 V, f = 800 MHz
D
Gps 40 dB
Noise figure GS = 2 mS, GL = 0.5 mS, f = 200 MHz F 1.0 dB
g
GS = 3,3 mS, GL = 1 mS, f = 800 MHz F 1.8 dB
BF966S
Vishay Telefunken
www.vishay.de FaxBack +1-408-970-5600
Rev. 3, 20-Jan-99 3 (8)
Document Number 85004
Typical Characteristics (Tamb = 25
_
C unless otherwise specified)
0
50
100
150
200
250
300
0 20 40 60 80 100 120 140 160
Tamb – Ambient Temperature ( °C )96 12159
P – Total Power Dissipation ( mW )
tot
Figure 1. Total Power Dissipation vs.
Ambient Temperature
0
4
8
12
16
20
24
28
32
36
0246810121416
VDS – Drain Source Voltage ( V )12762
I – Drain Current ( mA )
D
VG1S=2V 1.5V
1V
0V
–0.5V
–1V
0.5V
VG2S=4V
Figure 2. Drain Current vs. Drain Source Voltage
0
10
20
30
40
50
60
70
80
90
100
1012345
VG1S – Gate 1 Source Voltage ( V )12763
I – Drain Current ( mA )
D
VG2S=6V
5V
4V
0V
2V
1V
3V
VDS=15V
–1V
Figure 3. Drain Current vs. Gate 1 Source Voltage
0
10
20
30
40
50
60
70
80
1012345
VG2S – Gate 2 Source Voltage ( V )12764
I – Drain Current ( mA )
D
0V
2V
1V
3V
VDS=15V
–1V
VG1S=4V
Figure 4. Drain Current vs. Gate 2 Source Voltage
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
0 3 6 9 12 15 18 21 24 27 30
ID – Drain Current ( mA )12765
C – Gate 1 Input Capacitance ( pF )
issg1
VDS=15V
VG2S=4V
f=1MHz
Figure 5. Gate 1 Input Capacitance vs. Drain Current
0
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
0 2 4 6 8 101214161820
VDS – Drain Source Voltage ( V )12766
C – Output Capacitance ( pF )
oss
VG2S=4V
ID=10mA
f=1MHz
Figure 6. Output Capacitance vs. Drain Source Voltage
BF966S
Vishay Telefunken
www.vishay.de FaxBack +1-408-970-5600 Rev. 3, 20-Jan-99
4 (8) Document Number 85004
0
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2
3.6
4.0
3210123456
VG2S – Gate 2 Source Voltage ( V )12767
C – Gate 2 Input Capacitance ( pF )
issg2
VDS=15V
VG1S=0
f=1MHz
Figure 7. Gate 2 Input Capacitance vs.
Gate 2 Source Voltage
–70
–60
–50
–40
–30
–20
–10
0
10
543210123
VG1S – Gate 1 Source Voltage ( V )12768
S – Transducer Gain ( dB )
2
21
4V
0V
2V
1V
3V
f=200MHz
–0.5V
VG2S=–2...–3V
–1V
Figure 8. Transducer Gain vs. Gate 1 Source Voltage
0
2
4
6
8
10
12
14
16
18
20
22
24
0 5 10 15 20 25 30
ID – Drain Current ( mA )12769
Y – Forward Transadmittance ( mS )
21S
VDS=15V
f=1MHz
VG2S=4V
2V
3V
1V
0.5V
0V
Figure 9. Forward Transadmittance vs. Drain Current
0
2
4
6
8
10
12
14
16
18
20
0 2 4 6 8 101214161820
Re (y11) ( mS )12770
Im ( y ) ( mS )
11
VDS=15V
VG2S=4V
f=100...1300MHz
f=1300MHz
700MHz
400MHz
1000MHz
100MHz
ID=5mA ID=10mA
ID=20mA
Figure 10. Short Circuit Input Admittance
–0.1
0.0
0.1
0.2
0.3
0 0.1 0.2 0.3 0.4 0.5
Re (y12) ( mS )12772
Im ( y ) ( mS )
12
VDS=15V
VG2S=4V
f=100...1300MHz
f=1300MHz
700MHz
ID=5mA
10mA
20mA
1000MHz
Figure 11. Short Circuit Reverse Transfer Admittance
–40
–35
–30
–25
–20
–15
–10
–5
0
5
–8 –4 0 4 8 12 16 20 24
Re (y21) ( mS )12771
Im ( y ) ( mS )
21
VDS=15V
VG2S=4V
f=100...1300MHz
f=100MHz
1300MHz
1000MHz
400MHz
700MHz
ID=5mA
10mA
20mA
Figure 12. Short Circuit Forward Transfer Admittance
BF966S
Vishay Telefunken
www.vishay.de FaxBack +1-408-970-5600
Rev. 3, 20-Jan-99 5 (8)
Document Number 85004
0
1
2
3
4
5
6
7
8
0 0.5 1.0 1.5 2.0 2.5
Re (y22) ( mS )12773
Im ( y ) ( mS )
22
VDS=15V
VG2S=4V
f=100...1300MHz
f=1300MHz
1000MHz
400MHz
100MHz
ID=5mA 20mA
700MHz
ID=10mA
Figure 13. Short Circuit Output Admittance
BF966S
Vishay Telefunken
www.vishay.de FaxBack +1-408-970-5600 Rev. 3, 20-Jan-99
6 (8) Document Number 85004
VDS = 15 V, ID = 5 to 20 mA, VG2S = 4 V , Z0 = 50
W
S11
12 924
–j0.2
–j0.5
–j
–j2
–j5
0
j0.2
j0.5
j
j2
j5
1
ÁÁÁ
ÁÁÁ
0.2
ÁÁÁ
ÁÁÁ
0.5
ÁÁ
ÁÁ
1
ÁÁ
ÁÁ
2
ÁÁ
ÁÁ
5
1300MHz 400
700
1000
100
Figure 14. Input reflection coefficient
S21
12 926
0°
90°
180°
–90°
0.8 1.6
–150°
–120°–60°
–30°
120°
150°
60°
30°
1300MHz
400 700 1000
100
–30°
ID= 20mA
10mA
5mA
Figure 15. Forward transmission coefficient
S12
12 925
0°
90°
180°
–90°
0.008 0.016
–150°
–120°–60°
–30°
120°
150°
60°
30°
1300MHz
400
100
1000
ID= 20mA
10mA
5mA
Figure 16. Reverse transmission coefficient
S22
12 927
–j0.2
–j0.5
–j
–j2
–j5
0
j0.2
j0.5
j
j2
j5
1
ÁÁ
0.2
ÁÁ
0.5
ÁÁ
1
ÁÁ
2
ÁÁ
5
1300MHz
700
100
Figure 17. Output reflection coefficient
BF966S
Vishay Telefunken
www.vishay.de FaxBack +1-408-970-5600
Rev. 3, 20-Jan-99 7 (8)
Document Number 85004
Dimensions in mm
96 12242
BF966S
Vishay Telefunken
www.vishay.de FaxBack +1-408-970-5600 Rev. 3, 20-Jan-99
8 (8) Document Number 85004
Ozone Depleting Substances Policy Statement
It is the policy of V ishay Semiconductor GmbH to
1. Meet all present and future national and international statutory requirements.
2. Regularly and continuously improve the performance of our products, processes, distribution and operating
systems with respect to their impact on the health and safety of our employees and the public, as well as their
impact on the environment.
It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as
ozone depleting substances (ODSs).
The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and
forbid their use within the next ten years. V arious national and international initiatives are pressing for an earlier ban
on these substances.
Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of
ODSs listed in the following documents.
1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental
Protection Agency (EPA) in the USA
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.
Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting
substances and do not contain such substances.
We reserve the right to make changes to improve technical design and may do so without further notice.
Parameters can vary in different applications. All operating parameters must be validated for each customer application
by the customer. Should the buyer use Vishay-Telefunken products for any unintended or unauthorized application, the
buyer shall indemnify Vishay-Telefunken against all claims, costs, damages, and expenses, arising out of, directly or
indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.
Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany
Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423