MITSUBISHI <INTELLIGENT POWER MODULES>
PM450CLA120
FLAT -BASE TYPE
INSULATED PACKAGE
Jul. 2005
MITSUBISHI <INTELLIGENT POWER MODULES>
PM450CLA120
FLAT -BASE TYPE
INSULATED PACKAGE
PM450CLA120
FEATURE
a) Adopting new 5th generation IGBT (CSTBT) chip, which
performance is improved by 1µm fine rule process.
For example, typical Vce(sat)=1.9V @Tj=125°C
b) I adopt the over-temperature conservation by Tj detection of
CSTBT chip, and error output is possible from all each con-
servation upper and lower arm of IPM.
•3φ 450A, 1200V Current-sense IGBT type inverter
Monolithic gate drive & protection logic
Detection, protection & status indication circuits for, short-
circuit, over-temperature & under-voltage (Fo available from
all arm devices)
Acoustic noise-less 75kW class inverter application
UL Recognized Yellow Card No.E80276(N)
File No.E80271
APPLICATION
General purpose inverter, servo drives and other motor controls
PACKAGE OUTLINES Dimensions in mm
35.5
36.6
121110987
12 34 56
13
14
16
15
17
18
20
19
9.08
21 3-2.54
50
53.75 50 53.75
31.84
3-2.543.22
50
21
22
24
23
25
26
28
27
21 3-2.54
31.84
3-2.543.22
29
30
32
31
33
34
36
35
21 3-2.54
31.84
3-2.543.22
17
12
17
12
17
12
17
12
17
12
17
12
162
172
50±
0.5
6
14 22 28 22 2228
50±
0.5
50±
0.5
11
8-φ5.5
MOUNTING HOLES
6-φ2.5
12-M6 NUTS
94.5 7.75
55
3.75
(15.5)
150
137
123
110±
0.5
99
20
13.5
5.5
6.5
24- 0.64
(SCREWING DEPTH)
LABEL
(24)2
17
6
12
8-φ3.5
+1.0
–0.5
1. N
2. P
3. N
4. P
5. N
6. P
7. W
8. W
9. V
10. V
11. U
12. U
13. VUPC
14. UPFO
15. UP
16. VUP1
17. VUNC
18. UNFO
19. UN
20. VUN1
21. VVPC
22. VPFO
23. VP
24. VVP1
25. VVNC
26. VNFO
27. VN
28. VVN1
29. VWPC
30. WPFO
31. WP
32. VWP1
33. VWNC
34. WNFO
35. WN
36. VWN1
Terminal code
MITSUBISHI <INTELLIGENT POWER MODULES>
PM450CLA120
FLAT -BASE TYPE
INSULATED PACKAGE
Jul. 2005
VCES
±IC
±ICP
PC
Tj
Collector-Emitter Voltage
Collector Current
Collector Current (Peak)
Collector Dissipation
Junction Temperature
VD = 15V, VCIN = 15V
TC = 25°C
TC = 25°C
TC = 25°C (Note-1)
V
A
A
W
°C
MAXIMUM RATINGS (Tj = 25°C, unless otherwise noted)
INVERTER PART
Symbol Parameter Condition Ratings Unit
1200
450
900
2500
20 ~ +150
INTERNAL FUNCTIONS BLOCK DIAGRAM
UN VUN1
UNFOVUNC
UP VUP1
UPFOVUPC
VN VVN1
VNFOVVNC
VP VVP1
VPFOVVPC
WN VWN1
1.5k 1.5k 1.5k 1.5k 1.5k 1.5k
WNFOVWNC
WP VWP1
WPFOVWPC
NUP
Gnd Si Out OT
Gnd In Fo Vcc
Gnd Si Out OT
Gnd In Fo Vcc
NVP
Gnd Si Out OT
Gnd In Fo Vcc
Gnd Si Out OT
Gnd In Fo Vcc
NWP
Gnd Si Out OT
Gnd In Fo Vcc
Gnd Si Out OT
Gnd In Fo Vcc
CONTROL PART
VFO
IFO
V
mA
20
20
Supply Voltage
Input Voltage
Fault Output Supply Voltage
Fault Output Current
Symbol Parameter Condition Ratings Unit
Applied between : VUP1-VUPC, VVP1-VVPC, VWP1-VWPC
VUN1-VUNC, VVN1-VVNC, VWN1-VWNC
Applied between : UP-VUPC, VP-VVPC, WP-VWPC
UN-VUNC, VN-VVNC, WN-VWNC
Applied between : UPFO-VUPC, VPFO-VVPC, WPFO-VWPC
UNFO-VUNC, VNFO-VVNC, WNFO-VWNC
Sink current at UPFO, VPFO, WPFO, UNFO, VNFO, WNFO
terminals
20
20
VD
VCIN
V
V
MITSUBISHI <INTELLIGENT POWER MODULES>
PM450CLA120
FLAT -BASE TYPE
INSULATED PACKAGE
Jul. 2005
Parameter
Symbol
Supply Voltage Protected by
SC
Supply Voltage (Surge)
Storage Temperature
Isolation Voltage
Condition
VCC(surge)
Tstg
Viso
Ratings
VCC(PROT) 800
1000
40 ~ +125
2500
Unit
V
°C
Vrms
V
VD = 13.5 ~ 16.5V, Inverter Part,
Tj = +125°C Start
Applied between : P-N, Surge value
60Hz, Sinusoidal, Charged part to Base, AC 1 min.
TOTAL SYSTEM
0.05
0.09
0.014
°C/W
Rth(j-c)Q
Rth(j-c)F
Rth(c-f)
Inverter IGBT (per 1 element) (Note-1)
Inverter FWDi (per 1 element) (Note-1)
Case to fin, (per 1 module)
Thermal grease applied (Note-1)
Symbol Condition Unit
Min.
Junction to case Thermal
Resistances
THERMAL RESISTANCES
Contact Thermal Resistance
Parameter Limits
Typ. Max.
(Note-1) Tc measurement point is just under the chip.
If you use this value, Rth(f-a) should be measured just under the chips.
UP
IGBT
30.1
82.7
VP WP UN VN WN
FWDi
19.2
82.7
IGBT
80.1
82.7
FWDi
69.2
82.7
IGBT
130.1
82.7
FWDi
119.2
82.7
IGBT
19.8
27.2
FWDi
30.7
27.2
IGBT
69.8
27.2
FWDi
80.7
27.2
IGBT
119.8
27.2
FWDi
130.7
27.2
arm
axis
X
Y
2.3
2.4
3.9
2.5
0.8
1.0
3.5
1.2
1
10
Min. Typ. Max.
Collector-Emitter
Saturation Voltage
Collector-Emitter
Cutoff Current
IC = 450A, VD = 15V, VCIN = 15V (Fig. 2)
Tj = 25°C
Tj = 125°C
ELECTRICAL CHARACTERISTICS (Tj = 25°C, unless otherwise noted)
INVERTER PART
Parameter
Symbol Condition
VCE(sat)
ICES
VEC
ton
trr
tc(on)
toff
tc(off)
Limits
0.5
1.8
1.9
2.8
1.0
0.5
0.4
2.3
0.7
Tj = 25°C
Tj = 125°C
FWDi Forward Voltage
Switching Time
VD = 15V, VCIN = 0V15V
VCC = 600V, IC = 450A
Tj = 125°C
Inductive Load (Fig. 3, 4)
V
CE
= V
CES
, V
CIN
= 15V
(Fig. 5)
VD = 15V, IC = 450A
VCIN = 0V (Fig. 1) V
mA
V
µs
Unit
(Unit : mm)
Table 1: TC (under the chip) measurement point is below.
7
16
Name
plate
side
Bottom
view
13
Y
X
MITSUBISHI <INTELLIGENT POWER MODULES>
PM450CLA120
FLAT -BASE TYPE
INSULATED PACKAGE
Jul. 2005
VD = 15V
Detect Tj of IGBT chip
20 Tj 125°C
VD = 15V, VFO = 15V (Note-2)
VD = 15V (Note-2)
20 Tj 125°C, VD = 15V (Fig. 3,6)
VD = 15V (Fig. 3,6)
4.5
3.5
Main terminal screw : M6
Mounting part screw : M5
Symbol Parameter
Mounting torque
Mounting torque
Weight
Condition Unit
N m
N m
g
Limits
Min. Typ. Max.
3.5
2.5
4.0
3.0
1250
MECHANICAL RATINGS AND CHARACTERISTICS
VD = 15V, VCIN = 15V
Applied between : UP-VUPC, VP-VVPC, WP-VWPC
UN-VUNC, VN-VVNC, WN-VWNC
ID
µs
°C
V
mA
ms
27
27
1.8
2.3
12.5
0.01
15
mA
Circuit Current
Input ON Threshold Voltage
Input OFF Threshold Voltage
Short Circuit Trip Level
Short Circuit Current Delay
Time
Over Temperature Protection
Supply Circuit Under-Voltage
Protection
Fault Output Current
Minimum Fault Output Pulse
Width
Vth(ON)
Vth(OFF)
SC
toff(SC)
OT
OTr
UV
UVr
IFO(H)
IFO(L)
tFO
Trip level
Reset level
Trip level
Reset level
CONTROL PART
1.2
1.7
900
135
11.5
1.0
Parameter
Symbol Condition Max.
Min. Typ. Unit
Limits
20
20
1.5
2.0
0.2
145
125
12.0
12.5
10
1.8
(Note-2) Fault output is given only when the internal SC, OT & UV protections schemes of either upper or lower arm device operate to
protect it.
V
V*N1-V*NC
V*P1-V*PC
A
RECOMMENDED CONDITIONS FOR USE
Recommended value Unit
Condition
Symbol Parameter
V
Applied across P-N terminals
Applied between : VUP1-VUPC, VVP1-VVPC, VWP1-VWPC
VUN1-VUNC, VVN1-VVNC, VWN1-VWNC
(Note-3)
Applied between : UP-VUPC, VP-VVPC, WP-VWPC
UN-VUNC, VN-VVNC, WN-VWNC
Using Application Circuit of Fig. 8
For IPMs each input signals (Fig. 7)
Supply Voltage
Control Supply Voltage
Input ON Voltage
Input OFF Voltage
PWM Input Frequency
Arm Shoot-through
Blocking Time
800
15 ±1.5
0.8
9.0
20
3.0
VCC
VCIN(ON)
VCIN(OFF)
fPWM
tdead
VDV
kHz
µs
V
(Note-3) With ripple satisfying the following conditions: dv/dt swing ±5V/µs, Variation 2V peak to peak
MITSUBISHI <INTELLIGENT POWER MODULES>
PM450CLA120
FLAT -BASE TYPE
INSULATED PACKAGE
Jul. 2005
PRECAUTIONS FOR TESTING
1. Before appling any control supply voltage (VD), the input terminals should be pulled up by resistores, etc. to their corre-
sponding supply voltage and each input signal should be kept off state.
After this, the specified ON and OFF level setting for each input signal should be done.
2. When performing SC tests, the turn-off surge voltage spike at the corresponding protection operation should not be al-
lowed to rise above VCES rating of the device.
(These test should not be done by using a curve tracer or its equivalent.)
10%
90%
trr
Irr
trtd(on)
tc(on) tc(off)
td(off)
VCIN
Ic
VCE
10%
10% 10%
90%
tf
(ton= td(on) + tr) (toff= td(off) + tf)
VD (all)
IN
Fo
Fo
Fo
IN
Fo
VD (all)
VCIN
(0V)
Ic
V V
VCIN
(15V)
Ic
CS
CS
Vcc
Vcc
Ic
Ic
VD (all)
VD (all)
VCIN
VCIN
VCIN
(15V)
VCIN
(15V)
Fo
Fo
Fig. 3 Switching time and SC test circuit Fig. 4 Switching time test waveform
Fig. 1 VCE(sat) Test Fig. 2 VEC Test
a) Lower Arm Switching
Signal input
(Upper Arm)
Signal input
(Lower Arm)
Signal input
(Upper Arm)
Signal input
(Lower Arm)
b) Upper Arm Switching
VCIN
Fig. 7 Dead time measurement point example
Fig. 5 ICES Test
Fig. 6 SC test waveform
SC
Short Circuit Current
toff(SC)
VD (all) U,V,W, (N)
P, (U,V,W) A
Pulse VCE
VCIN
(15V) Ic
Fo
IN
Fo
0V 1.5V 1.5V
1.5V
2V
2V
2V
0V
t
t
tdeadtdeadtdead
1.5V: Input on threshold voltage Vth(on) typical value, 2V: Input off threshold voltage Vth(off) typical value
IPM input signal VCIN
(Upper Arm)
IPM input signal VCIN
(Lower Arm)
Constant Current
MITSUBISHI <INTELLIGENT POWER MODULES>
PM450CLA120
FLAT -BASE TYPE
INSULATED PACKAGE
Jul. 2005
NOTES FOR STABLE AND SAFE OPERATION ;
Design the PCB pattern to minimize wiring length between opto-coupler and IPMs input terminal, and also to minimize the
stray capacity between the input and output wirings of opto-coupler.
Connect low impedance capacitor between the Vcc and GND terminal of each fast switching opto-coupler.
Fast switching opto-couplers: tPLH, tPHL 0.8µs, Use High CMR type.
Slow switching opto-coupler: CTR > 100%
Use 6 isolated control power supplies (VD). Also, care should be taken to minimize the instantaneous voltage charge of the
power supply.
Make inductance of DC bus line as small as possible, and minimize surge voltage using snubber capacitor between P and N
terminal.
Use line noise filter capacitor (ex. 4.7nF) between each input AC line and ground to reject common-mode noise from AC line
and improve noise immunity of the system.
: Interface which is the same as the U-phase
Fig. 8 Application Example Circuit
OUT
Si
OT
OT
OT
GNDGND
In
Vcc
U
N
V
N
P
P
W
N
P
M
IF
+
OUT
Si
GNDGND
In
Vcc
OUT
Si
GNDGND
In
Vcc
Fo
Fo
Fo
VVP1
VP
VVPC
1.5k
1.5k
1.5k
VUN1
UN
VUNC
20k 10µ
0.1µ
UNFO
VPFO
UPFO
VUP1
UP
VUPC
VD
OT
OUT
Si
GNDGND
In
Vcc
Fo
VVN1
VN
VVNC
1.5k
VNFO
VD
OT
OUT
Si
GNDGND
In
Vcc
Fo
VWP1
WP
VWPC
1.5k
WPFO
VD
OT
OUT
Si
GNDGND
In
Vcc
Fo
VWN1
WN
VWNC
1.5k
WNFO
VD
VD
VD
MITSUBISHI <INTELLIGENT POWER MODULES>
PM450CLA120
FLAT -BASE TYPE
INSULATED PACKAGE
Jul. 2005
PERFORMANCE CURVES
10
0
10
2
7
5
3
2
10
1
23 5710
2
10
1
7
5
3
2
23 57
10
3
4
4
44
500
400
300
200
100
0010.5 1.5 2.52
2.5
2
1.5
1
0.5
00200100 300 500400
T
j = 25°CVD = 15V
Tj = 25°C
Tj = 125°C
2.5
2
1.5
1
0.5
018
1312 1514 1716 10
1
10
1
7
5
3
2
10
1
23 5710
2
10
0
7
5
3
2
23 57
10
3
4
4
44
10
1
10
1
7
5
3
2
10
1
23 5710
2
10
0
7
5
3
2
23 57
10
3
4
4
44
t
c(off)
tc(on)
toff
ton
IC = 450A
Tj = 25°C
Tj = 125°C
VCC = 600V
VD = 15V
Tj = 25°C
Tj = 125°C
Inductive load
VCC = 600V
VD = 15V
Tj = 25°C
Tj = 125°C
Inductive load
15V
13V
VD = 17V
E
SW(off)
VCC = 600V
VD = 15V
Tj = 25°C
Tj = 125°C
Inductive load
E
SW(on)
OUTPUT CHARACTERISTICS
(TYPICAL)
COLLECTOR CURRENT I
C
(A)
COLLECTOR-EMITTER VOLTAGE V
CE
(V)
COLLECTOR-EMITTER
SATURATION VOLTAGE VCE (sat)
(V)
CONTROL SUPPLY VOLTAGE V
D
(V)
SWITCHING TIME tc(on), tc(off) (µs)
COLLECTOR CURRENT I
C
(A)
COLLECTOR-EMITTER
SATURATION VOLTAGE V
CE (sat)
(V)
COLLECTOR CURRENT I
C
(A)
SWITCHING TIME ton, toff (µs)
COLLECTOR CURRENT I
C
(A) COLLECTOR CURRENT I
C
(A)
COLLECTOR-EMITTER SATURATION
VOLTAGE (VS. V
D
) CHARACTERISTICS
(TYPICAL)
COLLECTOR-EMITTER SATURATION
VOLTAGE (VS. Ic) CHARACTERISTICS
(TYPICAL)
SWITCHING TIME CHARACTERISTICS
(TYPICAL)
SWITCHING TIME CHARACTERISTICS
(TYPICAL) SWITCHING LOSS CHARACTERISTICS
(TYPICAL)
SWITCHING LOSS ESW(on), ESW(off) (mJ/pulse)
MITSUBISHI <INTELLIGENT POWER MODULES>
PM450CLA120
FLAT -BASE TYPE
INSULATED PACKAGE
Jul. 2005
3
10
1
10
3
7
5
3
2
0
10
2
7
5
3
2
0.5 1 1.5 2 32.5
4
4
V
D = 15V
Tj = 25°C
Tj = 125°C
10
1
23 5710
2
23 5710
3
44
10
3
10
0
7
5
3
2
10
2
7
5
3
2
10
1
7
5
3
2
10
3
23 57
10
2
23 57
10
1
10
5
23 57
10
4
23 57 23 57
10
0
23 57
10
1
Single Pulse
Per unit base = Rth(j c)Q = 0.05°C/ W
10
3
10
0
7
5
3
2
10
2
7
5
3
2
10
1
7
5
3
2
10
3
23 57
10
2
23 57
10
1
10
5
23 57
10
4
2 3 57 2 3 57
10
0
23 57
10
1
Single Pulse
Per unit base = Rth(j c)F = 0.09°C/ W
10
2
10
1
10
1
10
0
7
4
5
2
3
7
4
5
2
3
7
4
5
2
3
7
4
5
2
3
7
4
5
2
3
7
4
5
2
10
0
10
3
10
1
10
2
Tj = 25°C
Tj = 125°C
Inductive load
VCC = 600V
VD = 15V
trr
Irr
0
10
20
30
40
50
60
250 5101520
ID VS. fc CHARACTERISTICS
(TYPICAL)
CIRCUIT CURRENT I
D
(mA)
CARRIER FREQUENCY f
c
(kHz)
P-side or N-side
VD = 15V
Tj = 25°C
COLLECTOR RECOVERY CURRENT I
C
(A)
EMITTER-COLLECTOR VOLTAGE V
EC
(V)
DIODE FORWARD CHARACTERISTICS
(TYPICAL) DIODE REVERSE RECOVERY CHARACTERISTICS
(TYPICAL)
COLLECTOR RECOVERY CURRENT I
C
(A)
REVERSE RECOVERY TIME t
rr
(µs)
REVERSE RECOVERY CURRENT l
rr
(A)
TRANSIENT THERMAL
IMPEDANCE CHARACTERISTICS
(IGBT PART)
NORMALIZED TRANSIENT
THERMAL IMPEDANCE Z
th (j c)
TIME
(s)
TRANSIENT THERMAL
IMPEDANCE CHARACTERISTICS
(FWDi PART)
NORMALIZED TRANSIENT
THERMAL IMPEDANCE Z
th (j c)
TIME
(s)