Standard Power MOSFETs IRF510, IRF511, IRF512, IRF513 Power MOS Field-Effect Transistors N-Channel Enhancement-Mode Power Field-Effect Transistors 3.5A and 4.0A, 60V-100V fos(On) = 0.6 Q and0.8Q Features: @ SOA is power-dissipation limited Nanosecond switching speeds @ Linear transfer characteristics @ High input impedance @ Majority carrier device The (tRF510, IRF511, IRF512 and IRF513 are n-channel enhancement-mode silicon-gate power field- effect transistors designed for applications such as switch- ing regulators, switching converters, motor drivers, relay drivers, and drivers for high-power bipolar switching tran- sistors requiring high speed and low gate-drive power. These types can be operated directly from integrated File Number 1573 N-CHANNEL ENHANCEMENT MODE od 6 5 9208-33741 TERMINAL DIAGRAM TERMINAL DESIGNATION DRAIN a (FLANGE) O SOURCE a = C DRAIN circuits. TOP ViEW GATE . Pr 2 . 92Cs-39528 The IRF-types are supplied in the JEDEC TO-220AB plastic ackage. packag JEDEC TO-220AB Absolute Maximum Ratings Parameter JRF510. tRES1 IRF512 IRF513 Units Vos Orain - Source Voltage 100 60 100 60 v pga Drain - Gate Vottage (Ags = 20K) D 100 60 100 60 v Ip @ Te = 25C Continuous Drain Current 4.0 40 3.5 3.5 A ign @ Te = 100C Continuous Drain Current 2.5 2.5 2.0 2.0 A lom Pulsed Drain Current @ 16 16 14 14 A vi Gate - Source Voltage +20 v Pp @Tc = 25C Max. Power Dissipation 20 (See Fig. 14) w Linear Derating Factor 0.16 (See Fig. 14) wee iim Inductive Current, Clamped {See Fig. 15 and 16) L = 100uH A 16 | 16 ] 14 V4 Ty Operating Junction and -55 to 160 C Tet Storage Temperature Range Lead Temperature 300 {0.063 in. (1.6mm) from case for 10s) c 3-134Standard Power MOSFETs IRF510, IRF511, IRF512, IRF513 Electrical Characteristics @Tc = 25C (Unless Otherwise Specified) Parameter Type Min. Typ. | Max. Units Test Conditions BVpsg_ Drain - Source Breakdown Voltage {RF510 _ _ = IREB12 100 Vv Ves = OV IRFS11 = IRF513 60 - - Ig = 250uA VGSith) Gate Threshold Voltage ALL 2.0 = 4.0 v Vps = Vgs-'p = 250nA Iggg __ Gate-Source Leakage Forward ALL = = 500 oA Vos = 20V Iggg _ Gate-Source Leakage Reverse ALL = - |-500 nA Veg = -20V Ipsg Zero Gate Voltage Drain Current - = 250 pA Vps = Max. Rating, Vgg = OV ate - $1000, vA Vpg = Max. Rating x 0.8, VGg = OV. Te = 128C Ipfon; _ On-State Drain Current @ IRF510 | 49 _ _ A Vos? 'piom * Rpsion) max. Veg = 10V iarsi3 | 28 - _ A Rpston) Static Drain-Source On-State (RE510 . Resistance IRF511 0.6 06 2 Vee = 10V,1p = 2.08 R512 | | os | og 0 cs ube IRFS13. . . os Forward Transconductance @ ALL 1.9 1.5 - Stat Vos > pion * Rpsion) max. 'p = 2-04 Ciss input Capacitance ALL = 135 - pF V@s = OV. Vpg = 25V, f = 1.0MHz Coss Output Capacitance ALL = 80 _- pF See Fig. 10 Creg Reverse Transfer Capacitance ALL = 20 | pF tafon) _Turn-On Delay Time ALL = 10 20 ns Voo = 9-5 BVogg. Ip = 2.0A,Z, = 500 t Rise Time ALL = 16 25 os See Fig. 17 tglott) Turn-Off Delay Time ALL 7 15 28 ns. (MOSFET switching times are essentially tf Fall Time ALU 10 20 ns independent of operating temperature.) a, Total Gate Charge Vag = 10V. Ip = 8.0A, Ving = 0.8 Max. Rating. 9 - . Gs D os (Gate-Source Plus Gate-Drain} aut 501 75 | Ac See Fig. 18 for test circuit. (Gate charge is essentially 0 Gate-Source Charge ALL _ 2.0 3.0 nc independent of operating temperature.) Oo Gate-Drain ("Miller''} Charge ALL _ 3.0 45 nc bo Internal Drain Inductance = 3.5 ~ nH Measured from the Modified MOSFET contact screw on tab symbol showing the to center of die. internal device ALL i - 45 - nH Measured from the drain lead, 6mm (0.25 D in.) from package to center of die. to lg Internal Source Inductance ALL ~ 5 - nH Measured from the source lead, 6mm & ts (0.25 in.) from package to source bonding pad. s Thermal Resistance Rinsc Junction-to-Case ALL 6.4 oc Ww Rincs _Case-to-Sink ALL 1.0 oC/w Mounting surface flat, smooth, and greased. RinJA Junction-to-Ambient ALL = 80 C/W Free Air Operation Source-Drain Diode Ratings and Characteristics Ig Continuous Source Current IRF510 _ 4.0 A Modified MOSFET symbol (Body Diode} IRFS11 showing the integral IAFS12 reverse P-N junction rectifier. o msia | ~ | ~ | 384 A Isom Pulse Source Current IRF510 _ _ 16 A (Body Diode) @ IRF514 Ss ~ IRFS12 _ s (RF513 - | a Vsp Diode Forward Voltage @ esto | Pt as | ov Te = 28C, Ig = 4.08, Vag = OV IRF512 = = = inrsia | - | 20 v To = 25C, Ig = 3.5A, Vgg = OV ter Reverse Recovery Time ALL - 230 - ns Ty = 150C, lp = 4.0A, dig/dt = 100A/us Oar Reverse Recovered Charge ALL = 1.4 = ac Ty = 150C, ig = 4.0A, dip/dt = 100A/us ton Forward Turn-on Time ALL Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by Lg + Lo. @Ty = 26C to 150C. @ Pulse Test: Pulse width < 300us, Duty Cycle < 2%. @ Repetitive Rating: Pulse width limited by max. junction temperature. See Transient Thermal Impedance Curve (Fig. 5). 3-135Standard Power MOSFETs IRF510, IRF511, IRF512, IRF513 3-136 Zensct)/Aypyc. NORMALIZED EFFECTIVE TRANSIENT THEAMAL IMPEDANCE (PER UNIT! ip, ORAIN CURRENT (AMPERES) Ip, ORAIN CURRENT AMPERES ao ~ 2 on 2s s => 2 2 a ao 12 64 5.6 48 40 32 ws 16 Oe 0 0 10 20 wo 40 Vos, DRAIN-TO-SOURCE VOLTAGE (VOLTS) Fig. 1 Typical Output Characteristics OS 16 #15 #20 25 #30 35 40 Vos, DRAIN-TO-SOUACE VOLTAGE (VOLTS) Fig. 3 Typical Saturation Characteristics THERMAL IMPEDANCE) 5 10-4 2 5 3 Ip, ORAIN CURRENT (AMPERES) Ip. DRAIN CURRENT (AMPERES) 10-2 $0 12 64 5.6 48 49 3.2 2 ", Hi Vos > 'pion) Roston) max. Ty 12590 Ty= 259C Ty * 85C 2 4 6 8 10 Vas, GATE-TO-SQUACE VOLTAGE (VOLTS) Fig. 2 Typical Transfer Characteristics AREA 1S LIMITED BY Rosion) Tg + 25C Ty= 180C MAK Rhye = 6 SINGLE PULSE Vos. DRAIN-TO SQUACE VOLTAGE (VOLTS) Fig. 4 Maximum Safe Operating Area babel bo 17 1, DUTY FACTOR, D = z 2. PER UNIT BASE = Rrnyc = 6.4 DEG. C/W. 3. Tym- Te Pom Ztnaclt- 5 190-1 2 5 10 2 5 10 ty, SQUARE WAVE PULSE OURATION (SECONDS) Fig. 5 Maxi Effective T d: J ion-to-Case Vs. Pulse Duration4 t 1 Vos > 'Dton) * Rosion) fs, TRANSCONOUCTANCE (SIEMENS) 0 08 16 24 32 40 48 56 64 72 Ip, ORAIN CURRENT (AMPERES) Fig. 6 Typical Transconductance Vs. Drain Current 1S 1,10 85 Voss ORAIN-TO-SOUACE BREAKDOWN VOLTAGE {NQAMALIZED} 8 oso a7 Ty JUNCTION TEMPERATURE (C) Fig. 8 Breakdown Voltage Vs. Temperature 500 =0 (= 1 te t bed Cigg = Cys + Cag, Cog SHORTED Crm = Cys = x0 Cog = Cos * p> 2 = Cast Cy < & S < Ss m s 1090 a 10 2 xa a Vog. DRAIN-TO-SOURCE VOLTAGE (VOLTS) Fig. 10 Typical Capacitance Vs. Drain-to-Source Voltage s 2 46 -2 0 MO OM GB 8 100 (120 140 Standard Power MOSFETs IRF510, IRF511, IRF512, IRF513 ipp, REVERSE ORAIN CURRENT (AMPERES) OF 0 02 04 O06 O8 10 12 14 16 18 20 Vgp, SOUACE-TO-DRAIN VOLTAGE {VOLTS} Fig. 7 Typical Source-Drain Diode Forward Voltage 2.50 2.25 - sg ss 8 (NORMALIZED) a & DRAIN-TO-SOURCE ON RESISTANCE e a a Apsion)- & 025 er ee ee ee ee ee Ty, JUNCTION TEMPERATURE (C) Fig. 9 Normalized On-Resistance Vs. Temperature 20 am w Vgs. GATE-TO-SOURCE VOLTAGE (VOLTS) s ip = 8A FOR TEST CIRCUIT SEE FIGURE 1B Q 2 4 6 8 10 Qy, TOTAL GATE CHARGE (nC) Fig. 11 Typical Gate Charge Vs. Gate-to-Source Voltage 3-137Standard Power MOSFETs IRF510, IRF511, IRF512, IRF513 2h r T r Apsion) MEASURED WITH CURRENT PULSE OF apse DURATION. INITIAL Ty = 25C, (HEATING r EFFECT OF 2.0 us PULSE IS MINIMAL) Vgg= OV _T 05 pmats La Veg = 20V Rosion). ORAIN-TO-SOUACE ON RESISTANCE (OHMS) 0 5 10 15 Ip, DRAIN CURRENT (AMPERES) Fig. 12 Typical On-Resistance V's. Drain Current nw Ww Py, POWER DISSIPATION (WATTS) o 20 3 HRFSIO, 511 IAF512, $13 tp, GRAIN CURRENT (AMPERES) 0 3B 50 78 100 125 150 Tg. CASE TEMPERATURE {C} Fig. 13 Maximum Drain Current Vs. Case Temperature 80 100 120 140 Te. CASE TEMPERATURE (C) Fig. 14 Power Vs. Temperature Derating Curve VARY 1, TO OBTAIN REQUIRED PEAK 1, H ADJUST Ry TO OBTAIN SPECIFIED Ip GOIN HIGH FREQUENCY SHUNT Fig. 17 Switching Time Test Circuit 3-138 manent FY SCOPE Ey = DSBVoss Vc * 0.758Vps5 Fig. 16 Ciamped Inductive Waveforms Vos CURRENT USOLATED REGULATOR SUPPLY} SAME TYPE AS DUT 12v T Battery | _ O2Qut CURRENT = CURRENT SHUNT SHUNT Fig. 18 Gate Charge Test Circuit