austriamicrosystems AG
is now
ams AG
The technical content of this austriamicrosystems datasheet is still valid.
Contact information:
Headquarters:
ams AG
Tobelbaderstrasse 30
8141 Unterpremstaetten, Austria
Tel: +43 (0) 3136 500 0
e-Mail: ams_sales@ams.com
Please visit our website at www.ams.com
AS3710
Triple Buck High Cu rrent P MIC w ith Charg er
www.austriamicrosystems.com 1.2 1 - 98
Datasheet
1 General Description
The AS3710 is a compact System PMU with integrated battery
charger and back light driver.
The device offers advanced power management functions. All
necessary ICs and peripherals in a battery powered mobile device
are supplied by the AS3710. It features 3 DCDC buck converters as
well as 8 low noise LDOs. The different regulated supply voltages
are programmable via the serial control interface. 4MHz operation
with 1uH coils are reducing cost and PCB space.
The three step-up converter generate voltages for e.g.the backlight,
classD amplifier, USB host support or LCD display supply. Both
constant voltage (for e.g. OLED supply) as well as constant current
(white LED backlight) operations with three current sinks are
possible. An internal voltage protection is limiting the output voltage
in the case of external component failures.
AS3710 contains a linear or switching mode Li-Ion battery charger
with constant current and constant voltage. The maximum charging
current is 1.5A. An integrated battery switch and an optional external
switch are separating the battery during charging or whenever an
external power supply is present. With this switch it is also possible
to operate with no or deeply discharged batteries. A programmable
current limit (100mA - 2.5A) can be used to control the maximum
current used from a USB supply or charger input. Additional features
are a 30V OV protection and battery temperature supervision.
The single supply voltage may vary from 2.7V to 5.5V.
2 Key Features
Voltage Generation
3 DCDC step down regulators (2-4MHz)
- DVM (0.6V-3.3V;1x 1.2-1.5A, 2x 0.7-1A)
- 60µA quiescent current
- 2A with combined DCDC 2 & 3
2 analog low noise LDOs, 6 digital LDOs
- 2x 1.2-3-3V, 6x 0.9-3.3V; 150-300mA
- 30µA quiescent current (low power mode)
1 ultra low power always on LDO 2.5V, 10mA
Power supply supervision
4sec and 8sec emergency shut-down
Stand-by function with voltage selection
HV Backlight Driver
3x step up with external transistor
- e.g. 0.5-1A@5V; 40mA@50V
Voltage control mode and over-voltage protection
3 programmable current sinks (max. 40mA)
Possible external PWM dimming input (DLS, CABC)
Battery Charger
Programmable trickle charging (25-220mA)
Programmable constant current charging (up to 1500mA)
Programmable constant voltage charging (3.9V-4.25V)
Charger time-out and temperature supervision
Selectable current limitation for USB mode
Integrated battery switch & ideal diode (linear mode)
External battery switch control (switching mode)
External 30V OV protection
Supervisor
Automatic battery monitoring with interrupt generation and
selectable warning level
Automatic temperature monitoring with interrupt generation and
selectable warning and shutdown levels
Real Time Clock
Ultra low power 32kHz oscillator
Sec and minute counter, auto wake-up
Programmable alarm
Repeating alarm (seconds, minutes, 2 minutes, or 8 minutes)
32kHz clock output to peripheral
<1µA total power consumption
General Purpose IOs
10-bit general purpose ADC input
Wake-up/sleep and DVM input
PWM (DLS, CABC) dimming input
Status output for: charger, low battery, power good and step-up
over-current
Q32k clock output
Interrupt output
PWM output
Step-up feedback input
ams AG
Technical content still valid
www.austriamicrosystems.com 1.2 2 - 98
OTP programmable BOOT Sequence
Programmable regulator default voltages
Programmable start-up sequence
General Purpose ADC
10-bit resolution
Several internal / external sources
- VUSB, VSUP, CHGIN, VBAT
- GPIOx, CURRx
- XOUT32K, SENSEN_SU1, FB_SU3
- Chip temperature
Figure 1. AS3710 Block Diagram
Control Interface
I2C control lines, including watchdog
ON input
Bidirectional reset, with selectable delay
Ultra low power standby mode
Power-On Reset Circuit
Packaging
QFN56 7x7mm 0.4mm pitch
3 Application
The device is suitable for Portable Media Players, Portable
Navigation Devices, E-Books, Mobile Internet Devices, and Tablet
PCs.. .
ams AG
Technical content still valid
www.austriamicrosystems.com 1.2 3 - 98
AS3710 2V1
Datasheet - C o n te n t s
Contents
1 General Description .................................................................................................................................................................. 1
2 Key Features ............................................................................................................................................................................ 1
3 Application ................................................................................................................................................................................ 2
4 Pin Assignments ....................................................................................................................................................................... 4
4.1 Pin Descriptions ................................................................................................................................................................................... 4
5 Absolute Maximum Ratings ...................................................................................................................................................... 7
6 Electrical Characteristics .......................................................................................................................................................... 8
7 Typical Operating Characteristics ............................................................................................................................................. 9
8 Detailed Description - Power Management Functions ........................................................................................................... 10
8.1 DCDC Step-Down Converter ............................................................................................................................................................. 10
8.2 Analog LDO Regulators ..................................................................................................................................................................... 16
8.3 Digital LDO Regulators ...................................................................................................................................................................... 18
8.4 Low power LDO V2_5 Regulators ...................................................................................................................................................... 20
8.5 DCDC Step-Up Converter .................................................................................................................................................................. 21
8.6 Current Sinks ..................................................................................................................................................................................... 27
8.7 Charger .............................................................................................................................................................................................. 28
9 Detailed Description - System Functions ................................................................................................................................ 36
9.1 Start-up .............................................................................................................................................................................................. 36
9.2 Reset .................................................................................................................................................................................................. 38
9.3 Stand-by ............................................................................................................................................................................................. 40
9.4 Internal References ............................................................................................................................................................................ 41
9.5 GPIO Pins .......................................................................................................................................................................................... 42
9.6 Supervisor .......................................................................................................................................................................................... 45
9.7 Watchdog ........................................................................................................................................................................................... 46
9.8 Interrupt Generation ........................................................................................................................................................................... 47
9.9 10-Bit ADC ......................................................................................................................................................................................... 48
9.10 Real Time Clock ............................................................................................................................................................................... 50
9.11 2-Wire-Serial Control Interface ......................................................................................................................................................... 51
10 Register Overview ................................................................................................................................................................ 53
11 Application Information ......................................................................................................................................................... 91
12 Package Drawings and Markings ......................................................................................................................................... 94
13 Ordering Information ............................................................................................................................................................. 97
ams AG
Technical content still valid
www.austriamicrosystems.com 1.2 4 - 98
AS3710 2V1
Datasheet - P i n A ss ig n me n t s
4 Pin Assignments
Figure 2. Pin Assignments (Top View)
ams AG
Technical content still valid
www.austriamicrosystems.com 1.2 5 - 98
AS3710 2V1
Datasheet - P i n A ss ig n me n t s
4.1 Pin Descriptions
Table 1. Pin Descriptions
Pin
Number
Pin Name Pin Type Description if not used
AS3710
1 EXTBATSW ANA OUT External Battery Switch Gate Driver Output open
2 XOFF ANA OUT External OV NMOS Gate Driver Output open
3 CHGIN SUP IN Wall adapter or USB Bus Power Input (after protection) open
4 VSUP_CHG SUP IO Current Limiter Output, Charger Input, connect to VSUPx always needed
5 CHGOUT ANA OUT Linear and DCDC Charger output open
6 VSUP_SD3 SUP IN DCDC Step Down 3 Pos. Supply Terminal always needed
7 LX_SD3 DIG OUT DCDC Step Down 3 Switch Output to Coil open
8 FB_SD3 ANA IN DCDC Step Down 3 Feedback Pin open
9 FB_SD2 ANA IN DCDC Step Down 2 Feedback Pin open
10 LX_SD2 DIG OUT DCDC Step Down 2 Switch Output to Coil open
11 VSUP_SD2 SUP IN DCDC Step Down 2 Pos. Supply Terminal always needed
12 FB_SD1 ANA IN DCDC Step Down 1 Feedback Pin open
13 LX_SD1 DIG OUT DCDC Step Down 1 Switch Output to Coil open
14 VSUP_SD1 SUP IN DCDC Step Down 1 Pos. Supply Terminal always needed
15 CURR1 ANA IO Load Current Sink 1 Terminal open
16 CURR2 ANA IO Load Current Sink 2 Terminal open
17 CURR3 ANA IO Load Current Sink 3 Terminal open
18 VINLDO78 SUP IN LDO 7 & 8 Positive Supply Terminal, connect to VSUP_CHG always needed
19 LDO8 ANA OUT LDO8 Output open
20 LDO7 ANA OUT LDO7 Output open
21 VSUP_GPIO SUP IN GPIO Positive Supply Terminal, connect to VSUP_CHG always needed
22 ON DIG IN Power Up Input open
23 SCL DIG IN 2-wire Serial IF Clock Input open
24 SDA DIG IO 2-wire Serial IF Data I/O open
25 XRES DIG IO Reset IO open
26 GPIO1 ANA IO General Purpose IO 1 open
27 GPIO2 ANA IO General Purpose IO 2 open
28 GPIO3 ANA IO General Purpose IO 3 open
29 GPIO4 ANA IO General Purpose IO 4 open
30 LDO2 ANA OUT LDO2 Output open
31 VINLDO123 SUP IN LDO 1, 2 & 3 Positive Supply Terminal, connect to VSUP_CHG always needed
32 LDO1 ANA OUT LDO1 Output open
33 LDO3 ANA OUT LDO3 Output open
34 VBAT SUP IO Li-Ion Battery Terminal open
35 VUSB SUP IN Wall adapter or USB Bus Power Input (before protection) open
36 CREF ANA IO Reference Bypass Capacitor Terminal always needed
ams AG
Technical content still valid
www.austriamicrosystems.com 1.2 6 - 98
AS3710 2V1
Datasheet - P i n A ss ig n me n t s
37 V2_5 ANA OUT Internal 2.5V Regulator Supply Output always needed
38 XOUT32 ANA OUT RTC 32kHz Crystal Drive Terminal open
39 XIN32 ANA IN RTC 32kHz Crystal Feedback Terminal open
40 BATTEMP ANA IO Li-Ion Battery Charger Temperature Sensor Input open
41 SENSEN_SU3 ANA IN DCDC Step Up 3 Negative Sense Resistor Input open
42 GATE_SU3 ANA OUT DCDC Step Up 3 ext. NMOS Gate Driver Output open
43 FB_SU2 ANA IN DCDC Step Up 2 Feedback Pin open
44 n.c. not connected open
45 VSUP_SU SUP IN DCDC Step Up 3 Positive Supply Terminal, connect to VSUP_CHG always needed
46 FB_SU3 ANA IN DCDC Step Up 3 Feedback Pin open
47 SENSEN_SU1 ANA IN DCDC Step Up 1 Negative Sense Resistor Input open
48 GATE_SU1 ANA OUT DCDC Step Up 1 ext. NMOS Gate Driver Output open
49 GATE_SU2 ANA OUT DCDC Step Up 2 ext. NMOS Gate Driver Output open
50 SENSEP ANA IN DCDC Step Up 1, 2 & 3 Positive Sense Resistor Input open
51 SENSEN_SU2 ANA IN DCDC Step Up 2 Negative Sense Resistor Input open
52 FB_SU1 ANA IN DCDC Step Up 1 Feedback Pin open
53 LDO6 ANA OUT LDO6 Output open
54 LDO5 ANA OUT LDO5 Output open
55 LDO4 ANA OUT LDO4 Output open
56 LDO456 SUP IN LDO 4, 5 & 6 Positive Supply Terminal, connect to VSUP_CHG always needed
Table 1. Pin Descriptions
Pin
Number
Pin Name Pin Type Description if not used
AS3710
ams AG
Technical content still valid
www.austriamicrosystems.com 1.2 7 - 98
AS3710 2V1
Datasheet - A b s o lu t e M ax i m um R at in g s
5 Absolute Maximum Ratings
Stresses beyond those listed in Table 2 may cause permanent damage to the device. These are stress ratings only, and functional operation of
the device at these or any other conditions beyond those indicated in Electrical Characteristics on page 8 is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect device reliability.
Table 2. Absolute Maximum Ratings
Symbol Parameter Min Max Unit Comments
Electrical Parameters
5V pins -0.5 7.0 V
Applicable for pins VSUP_CHG, VSUP_SD1/2/3,
VSUP_SU, VSUP_GPIO, VIN_LDO123/456/78,
GPIO1/2/3/4, GATE_SU1/2/3, FB_SU1/2/3, SENSEP,
SENSEN_SU1/2/3, VBAT, LDO1/2/3/4/5/6/7/8,
FB_SD1/2/3, LX_SD1/2/3, XRES, SCL, SDA
3V pins -0.5 5.0 V Applicable for pins V2_5, CREF, ON, BATTEMP,
XIN32, XOUT32
30V pins -0.5 32 V Applicable for pin VUSB, XOFF, CURR1/2/3
Input Current (latch-up immunity) -100 100 mA Norm: JEDEC JESD78
Continuous Power Dissipation (TA = +70ºC)
PTContinuous power dissipation 1.8 W PT1 for QFN56 package (RTH ~ 30K/W)
1. Depending on actual PCB layout and PCB used
Electrostatic Discharge
Electrostatic Discharge HBM ±1.5 kV Norm: JEDEC JESD22-A114F
Temperature Ranges and Storage Conditions
T
AMB Operating Temperature -40 +85 ºC
T
JJunction Temperature +125 ºC
Storage Temperature Range -55 +150 ºC
Humidity non-condensing 5 85 %
Temperature (soldering)
T
BODY Package Body Temperature 260 ºC Norm IPC/JEDEC J-STD-0202
The lead finish for Pb-free leaded packages is matte tin
(100% Sn)
2. The reflow peak soldering temperature (body temperature) is specified according IPC/JEDEC J-STD-020 “Moisture/Reflow Sensitivity
Classification for Nonhermetic Solid State Surface Mount Devices”
Moisture Sensitive Level 3 Represents a max. floor life time of 168h
ams AG
Technical content still valid
www.austriamicrosystems.com 1.2 8 - 98
AS3710 2V1
Datasheet - E l e c tr i ca l C h ara ct e ri s t i cs
6 Electrical Characteristics
VSUPx=+2.7V...+5.5V, TA =-40ºC...+85ºC. Typical values are at VSUPx=+3.6V, TA=+25ºC, unless otherwise specified.
The parameters with min and max values are guaranteed with production tests or SQC (Statistical Quality Control) methods.
Table 3. Electrical Characteristics
Symbol Parameter Condition Min Typ Max Unit
VUSB Charger HV Input 0 5 30 V
CHGIN Charger LV Input 0 5 5.5 V
VSUPx Supply Voltage
VSUP_x 2.7 3.6 5.5 V
VINLDO123 Supply Voltage for LDO 1, 2 & 3 2.7 3.6 5.5 V
VINLDO456 Supply Voltage for LDO 4, 5 & 6 1.8 3.6 5.5 V
VINLDO78 Supply Voltage for LDO 7 & 8 1.8 3.6 5.5 V
V2_5 Voltage on Pin V2_5 2.4 2.5 2.6 V
Ilow_power Low Power current @ VSUPx = 4.2V 220 µA
Ipower_off Power-Off current All regulators off
V2_5 on 10 µA
ams AG
Technical content still valid
www.austriamicrosystems.com 1.2 9 - 98
AS3710 2V1
Datasheet - Ty pica l Opera t in g C h a r a c t e ri s t i c s
7 Typical Operating Characteristics
please see operating characteristics in the block description chapters.
ams AG
Technical content still valid
www.austriamicrosystems.com 1.2 10 - 98
AS3710 2V1
Datasheet - D e t a il e d D e s c ri pt io n - P o w er M a na ge m en t F un cti o ns
8 Detailed Description - Power Management Functions
8.1 DCDC Step-Down Converter
8.1.1 General Description
The step-down converter is a high efficiency fixed frequency current mode regulator. By using low resistance internal
PMOS and NMOS switches efficiency up to 95% can be achieved. The fast switching frequency allows using small
inductors, without increasing the current ripple. The unique feedback and regulation circuit guarantees optimum load
and line regulation over the whole output voltage range, up to an output current of 1A (SD2, SD3) and 1.5A for SD1,
with an output capacitor of only 10µF. The implemented current limitation protects the DCDC and the coil during
overload condition.
Figure 3. Step Down DC/DC Converter Block diagram
8.1.2 Mode Settings
Low ripple, low noise operation:
Bit settings: sdX_low_noise=1
In this mode there is no minimum coil current necessary before switching off the PMOS. As long as the load current is superior to the ripple
current the device operates in continuous mode. When the load current gets lower, the discontinuous mode is triggered. As result, the auto-zero
comparator stops the NMOS conduction to avoid load discharger and the duty cycle is reduced down to tmin_on to keep the regulation loop
stable. This results in a very low ripple and noise, but decreased efficiency, at light loads, especially at low input to output voltage differences.
Only in the case the load current gets so small that less than the minimum on-time of the PMOS would be needed to keep the loop in regulation
the regulator will enter low power mode operation. The crossover point is about 15mA for Vin=3V, Vout=1.2V, 1uH, 4MHz.
ams AG
Technical content still valid
www.austriamicrosystems.com 1.2 11 - 98
AS3710 2V1
Datasheet - D e t a il e d D e s c ri pt io n - P o w er M a na ge m en t F un cti o ns
Figure 4. DCDC Buck with enabled low noise mode
High efficiency operation (default setting):
Bit settings: sdX_low_noise=0
In this mode there is a minimum coil current necessary before switching off the PMOS. As a result there are less pulses necessary at low output
loads, and therefore the efficiency at low output load is increased. As drawback this mode increases the ripple up to a higher output currents.
The crossover point to low power mode is already reached at reasonable high output currents. (e.g. @110mA for Vin=3V, Vout=1.2V, 1uH,
4MHz)
Figure 5. DCDC Buck with disabled low noise mode
It’s possible to switch between these two modes during operation:
ams AG
Technical content still valid
www.austriamicrosystems.com 1.2 12 - 98
AS3710 2V1
Datasheet - D e t a il e d D e s c ri pt io n - P o w er M a na ge m en t F un cti o ns
Low power mode operation (automatically controlled):
As soon as the output voltage stays above the desired target value for a certain time, some internal blocks will be powered down leaving the
output floating to lower the power consumption. Normal operation starts as soon as the output drops below the target value for a similar amount
of time. To minimize the accuracy error some internal circuits are kept powered to assure a minimized output voltage ripple.
Two addition guard bands, based on comparators, are set at +/-5% of the target value to react quickly on large over/undershoots by immediately
turning on the output drivers without the normal time delays. This ensures a minimized ripple also in very extreme load conditions.
DVM (Dynamic Voltage Management)
To minimize the over-/undershoot during a change of the output voltage, the DVM can be enabled. With DVM the output voltage will ramp up/
down with a selectable slope after the new value was written to the registers. Without DVM the slew rate of the output voltage is only determined
by external components like the coil and load capacitor as well as the load current.
DVM can be selected for all step-down converters, but only for one at a time. (see sd_dvm_select and dvm_time description)
Fast Regulation Mode
This mode can be used to react faster on sudden load changes and thus minimize the over-/undershoot of the output voltage. This mode needs
an 22uF output capacitor instead the 10uF one to guarantee the stability of the regulator. the mode is enabled by setting sdX_fast =1.
Selectable Frequency Operation
Especially for very low load conditions, e.g. during a sleep mode of a processor, the switching frequency can be reduced to achieve a higher
efficiency. The frequency for SD1, SD2 and SD3 can be set to 2, 3 or 4MHz. This mode is selected by setting sdX_freq and sdX_fsel to the
appropriate values.
100% PMOS ON Mode for Low Dropout Regulation
For low input to output voltage difference the DCDC converter can use 100% duty cycle for the PMOS transistor, which is then in LDO mode.
8.1.3 Step-Down Converter Configuration Modes
The step down DCDC converters have two configuration modes to deliver different output currents for the applications. The operating mode is
selected by setting the bit sd3_slave (the default is set by the Boot-OTP).
Figure 6. DC/DC step-down SD1, SD2, SD3 Normal Operating Mode; sd3_slave = 0
ams AG
Technical content still valid
www.austriamicrosystems.com 1.2 13 - 98
AS3710 2V1
Datasheet - D e t a il e d D e s c ri pt io n - P o w er M a na ge m en t F un cti o ns
Figure 7. DC/DC step-down SD1, SD2, SD3 2A Operating Mode; sd3_slave = 1
8.1.4 Parameter
Table 4. Step Down DC/DC Converter Parameters
Symbol Parameter Note Min Typ Max Unit
VIN Input voltage Pin VSUP_SDx 2.7 5.5 V
VOUT Regulated output voltage 0.6125 3.35 V
VOUT_tol Output voltage tolerance min. 40mV -3 +3 %
ILIMIT Current limit SD1 1.8 A
SD2, SD3 1.2 A
RPSW P-Switch ON resistance SD1; VSUP_SDx=3.0V 0.17 0.4
SD2, SD3; VSUP_SDx=3.0V 0.25 0.5
RNSW N-Switch ON resistance SD1; VSUP_SDx=3.0V 0.17 0.4
SD2, SD3; VSUP_SDx=3.0V 0.25 0.5
Iload Load current SD1 0 1.5 A
SD2, SD3 0 1 A
fSW Switching frequency
sdX_frequ=1, sdX_fsel=1; fclk_int =4MHz 4 MHz
sdX_frequ=1, sdX_fsel=0; fclk_int =4MHz 3 MHz
sdX_frequ=0, sdX_fsel=0; fclk_int =4MHz 2 MHz
tmin_on minimum on time 40 ns
ηeff Efficiency Iout=300mA, Vout=2V, VSUP=3.5V 92 %
IVDD Current consumption Operating current without load 60 µA
Shutdown current 0.1
ams AG
Technical content still valid
www.austriamicrosystems.com 1.2 14 - 98
AS3710 2V1
Datasheet - D e t a il e d D e s c ri pt io n - P o w er M a na ge m en t F un cti o ns
All measurements where done with 55m chip coils (Murata LQM2HPN1R0MG0). Using coils with lower on-resistance will increase the
efficiency especially at higher output currents.
Figure 8. Step Down DC/DC SD1 Efficiency vs. Output Current; VSUP = 3.0V, 3MHz operation, TA = +25ºC
Figure 9. Step Down DC/DC SD1 Efficiency vs. Output Current; VSUP = 3.8V, 3MHz operation, TA = +25ºC
Table 5. Step Down DC/DC External Components
Symbol Parameter Note Min Typ Max Unit
CFB_SD1 Output capacitor Ceramic X5R or X7R 10.0 15 µF
Ceramic X5R or X7R, fast mode=1 20.0 30 µF
CFB_SD2-3 Output capacitor Ceramic X5R or X7R 8.0 10 µF
Ceramic X5R or X7R, fast mode=1 16.0 20 µF
CVSUP_SD1-3 Input capacitor Ceramic X5R or X7R 2.2 µF
LSD1-SD3 Inductor
4MHz operation 1
µH3MHz operation 1
2MHz operation 2.2
40
45
50
55
60
65
70
75
80
85
90
95
100
0.001 0.01 0.1 1 10
Efficiency (%)
Output Current (A)
Vout = 1.2V
Vout = 1.2V, low noise
Vout = 2.5V
Vout = 2.5V, low noise
40
45
50
55
60
65
70
75
80
85
90
95
100
0.001 0.01 0.1 1 10
Efficiency (%)
Output Current (A)
Vout = 1.0V
Vout = 1.0V, low noise
Vout = 1.8V
Vout = 1.8V, low noise
Vout = 3.0V
Vout = 3.0V, low noise
40
45
50
55
60
65
70
75
80
85
90
95
100
0.001 0.01 0.1 1 10
Efficiency (%)
Output Current (A)
Vout = 1.2V
Vout = 1.2V, low noise
Vout = 2.5V
Vout = 2.5V, low noise
40
45
50
55
60
65
70
75
80
85
90
95
100
0.001 0.01 0.1 1 10
Efficiency (%)
Output Current (A)
Vout = 1.0V
Vout = 1.0V, low noise
Vout = 1.8V
Vout = 1.8V, low noise
Vout = 3.0V
Vout = 3.0V, low noise
ams AG
Technical content still valid
www.austriamicrosystems.com 1.2 15 - 98
AS3710 2V1
Datasheet - D e t a il e d D e s c ri pt io n - P o w er M a na ge m en t F un cti o ns
Figure 10. Step Down DC/DC SD2 & SD3 Efficiency vs. Output Current; VSUP = 3.0V, 3MHz operation, TA = +25ºC
Figure 11. Step Down DC/DC SD2 & SD3 Efficiency vs. Output Current; VSUP = 3.8V, 3MHz operation, TA = +25ºC
40
45
50
55
60
65
70
75
80
85
90
95
100
0.001 0.01 0.1 1 10
Efficiency (%)
Output Current (A)
Vout = 1.2V
Vout = 1.2V, low noise
Vout = 2.5V
Vout = 2.5V, low noise
40
45
50
55
60
65
70
75
80
85
90
95
100
0.001 0.01 0.1 1 10
Efficiency (%)
Output Current (A)
Vout = 1.0V
Vout = 1.0V, low noise
Vout = 1.8V
Vout = 1.8V, low noise
Vout = 3.0V
Vout = 3.0V, low noise
40
45
50
55
60
65
70
75
80
85
90
95
100
0.001 0.01 0.1 1 10
Efficiency (%)
Output Current (A)
Vout = 1.2V
Vout = 1.2V, low noise
Vout = 2.5V
Vout = 2.5V, low noise
40
45
50
55
60
65
70
75
80
85
90
95
100
0.001 0.01 0.1 1 10
Efficiency (%)
Output Current (A)
Vout = 1.0V
Vout = 1.0V, low noise
Vout = 1.8V
Vout = 1.8V, low noise
Vout = 3.0V
Vout = 3.0V, low noise
ams AG
Technical content still valid
www.austriamicrosystems.com 1.2 16 - 98
AS3710 2V1
Datasheet - D e t a il e d D e s c ri pt io n - P o w er M a na ge m en t F un cti o ns
8.2 Analog LDO Regulators
8.2.1 General description
LDO1 and LDO2 are designed to supply sensitive analogue circuits like LNA’s, Transceivers, VCO’s and other critical RF components of cellular
radios. Another application is the supply of audio devices or as a reference for AD and DA converters. The design is optimized to deliver the best
compromise between quiescent current and regulator performance for battery powered devices.
Stability is guaranteed with ceramic output capacitors of 1µF ±20% (X5R) or 2.2µF +100/-50% (Z5U). The low ESR of these caps ensures low
output impedance at high frequencies. Regulation performance is excellent even under low dropout conditions, when the power transistor has to
operate in linear mode. Power supply rejection is high enough to suppress the PA-ripple on the battery in TDMA systems at the output. The low
noise performance allows direct connection of noise sensitive circuits without additional filtering networks. The low impedance of the power
device enables the device to deliver up to IOUT current even at nearly discharged batteries without any decrease of performance.
The default guaranteed operating current during start-up is 150mA, but can be set to 250mA with ldoX_ilimit = 1.
To save power in low-power states where the full performance is not needed the bias current can be reduce by setting
reg_low_bias_mode=1.
Figure 12. Analog LDO Block diagram
8.2.2 Parameter
Table 6. Analog LDO (LDO1, LDO2) Characteristics
VLDO123_IN=3.7V; ILOAD=150mA; Tamb=25ºC; CLOAD =2.2µF (Ceramic); unless otherwise specified
Symbol Parameter Note Min Typ Max Unit
VLDO123_IN Supply voltage range 2.7 5.5 V
IOUT Output current1ldoX_ilimit = 0 0 150 mA
ldoX_ilimit = 1 0 250
RON On resistance LDO1, LDO2 1
PSRR Power supply rejection ratio f=1kHz 70 dB
f=100kHz 40
IOFF Shut down current 100 nA
IVDD Supply current without load 50 µA
without load, reg_low_bias_mode=1 30 µA
Noise Output noise 10Hz < f < 100kHz 50 µVrms
tstart Startup time low current limit used during start-up 200 µs
ams AG
Technical content still valid
www.austriamicrosystems.com 1.2 17 - 98
AS3710 2V1
Datasheet - D e t a il e d D e s c ri pt io n - P o w er M a na ge m en t F un cti o ns
Vout Output voltage 1.2 3.3 V
Vout_tol Output voltage tolerance min. 40mV -3 3 %
VLineReg Line regulation Static -1 1 mV
Transient; Slope: tr=10µs -10 10
VLoadReg Load regulation Static -1 1 mV
Transient; Slope: tr=10µs -10 10
ILIMIT_LDO1,2_L low current limit ldoX_ilimit = 0 300 mA
ILIMIT_LDO1,2_H high current limit ldoX_ilimit = 1 500 mA
CLOAD_LDO1,2_L Ceramic load capacitor LDO1 / LDO2; ldoX_ilimit = 0 1 5 µF
CLOAD_LDO1,2_H Ceramic load capacitor LDO1 / LDO2; ldoX_ilimit = 1 2 5 µF
1.Guaranteed by design and verified by laboratory evaluation and characterization; not production tested.
Table 6. Analog LDO (LDO1, LDO2) Characteristics
VLDO123_IN=3.7V; ILOAD=150mA; Tamb=25ºC; CLOAD =2.2µF (Ceramic); unless otherwise specified
Symbol Parameter Note Min Typ Max Unit
ams AG
Technical content still valid
www.austriamicrosystems.com 1.2 18 - 98
AS3710 2V1
Datasheet - D e t a il e d D e s c ri pt io n - P o w er M a na ge m en t F un cti o ns
8.3 Digital LDO Regulators
8.3.1 General Description
Digital LDOs offer a wide input (1.8V to 5.5V) as well as a wide output (0.9 to 3.3V) voltage range to be used for general purpose peripheral
supply. Up to 300mA possible output currents are offered with good noise and regulation performance and very low quiescent current even
suitable for stand-by power supply.
Figure 13. Digital LDO Block diagram
8.3.2 Parameter
Table 7. Digital LDO (LDO3, LDO4, LDO5, LDO6, LDO7, LDO8) Characteristics
VLDOx_IN=3.7V; ILOAD=150mA; Tamb=25ºC; CLOAD =1µF (Ceramic); unless otherwise specified
Symbol Parameter Note Min Typ Max Unit
VLDO123_IN Supply voltage range 2.7 5.5 V
VLDO456_IN Supply voltage range 1.75 5.5 V
VLDO78_IN Supply voltage range 1.75 5.5 V
IOUT Output current1ldoX_ilimit = 0 0 150 mA
ldoX_ilimit = 1 0 300 mA
RON On resistance LDO4, LDO5, LDO6 1
LDO3, LDO7, LDO8 2
PSRR Power supply rejection ratio f=1kHz 60 dB
f=100kHz 30
IOFF Shut down current 100 nA
IVDD Supply current without load 30 43 µA
tstart Startup time low current used during start-up 200 µs
Vout Output voltage Vsupply>3.0V, VCP=5.2V, Iout<200mA 0.9 3.3 V
Vout_tol Output voltage tolerance min. 40mV -3 3 %
VLineReg Line regulation Static 0.07 %/V
Transient; Slope: tr=15µs; delta 1V 20 mV
VLoadReg Load regulation Static 0.014 %/mA
Transient; Slope: tr=15µs; 1mA->300mA 30 mV
ams AG
Technical content still valid
www.austriamicrosystems.com 1.2 19 - 98
AS3710 2V1
Datasheet - D e t a il e d D e s c ri pt io n - P o w er M a na ge m en t F un cti o ns
ILIMIT_LDO3-8_L low current limit ldoX_ilimit = 0 300 mA
ILIMIT_LDO3-8_H high current limit ldoX_ilimit = 1 500 mA
1.Guaranteed by design and verified by laboratory evaluation and characterization; not production tested
Table 7. Digital LDO (LDO3, LDO4, LDO5, LDO6, LDO7, LDO8) Characteristics
VLDOx_IN=3.7V; ILOAD=150mA; Tamb=25ºC; CLOAD =1µF (Ceramic); unless otherwise specified
Symbol Parameter Note Min Typ Max Unit
ams AG
Technical content still valid
www.austriamicrosystems.com 1.2 20 - 98
AS3710 2V1
Datasheet - D e t a il e d D e s c ri pt io n - P o w er M a na ge m en t F un cti o ns
8.4 Low power LDO V2_5 Regulators
8.4.1 General Description
The low power LDO V2_5 is needed to supply the chip core (analog and digital) of the device. It is designed to get the lowest possible power
consumption, and still offering reasonable regulation characteristics. The regulator has two supply inputs selecting automatically the higher one.
This gives the possibility to supply the chip core either with the battery or with the charger depending on the conditions. Bulk switch comparators
are used to avoid any parasitic current flow. To ensure high PSRR and stability, a low-ESR ceramic capacitor of min. 1µF must be connected to
the output.
8.4.2 Parameter
Table 8. Low power LDO (V2_5) Characteristics,VBAT=3.7V; ILOAD_ext=0; Tamb=25ºC; CLOAD =1 µF (Ceramic); unless otherwise specified
Symbol Parameter Note Min Typ Max Unit
VBAT Supply voltage rage 2.7 5.5 V
VUSB 4.2 5.5
RON On resistance Guaranteed per design 50
IOFF Shut down current 100 nA
IVDD Supply current Guaranteed per design, consider chip
internal load for measurements. 3 µA
tstart Startup time 200 µs
Vout Output voltage 2.4 2.5 2.6 V
ams AG
Technical content still valid
www.austriamicrosystems.com 1.2 21 - 98
AS3710 2V1
Datasheet - D e t a il e d D e s c ri pt io n - P o w er M a na ge m en t F un cti o ns
8.5 DCDC Step-Up Converter
8.5.1 General Description
The DC/DC Step Up converter is a high efficiency current mode PWM regulator, which provides an output voltage dependent on the maximum
VDS voltage of the external transistor, and maximum load current selectable by the external shunt resistor.
For Example:
5V, 0.5-1A @ 1Mhz
25V, 50mA @ 1MHz
40V, 20mA @ 500kHz
A constant switching frequency results in a low noise on supply and output voltage.
Figure 14. DC/DC step-up Converter 1 & 3
ams AG
Technical content still valid
www.austriamicrosystems.com 1.2 22 - 98
AS3710 2V1
Datasheet - D e t a il e d D e s c ri pt io n - P o w er M a na ge m en t F un ct i o n s
Figure 15. DC/DC step-up Converter 2
8.5.2 Feedback selection SU1, SU3
For step up SU1, the feedback is always FB_SU1.
For step up SU3, the feedback is always FB_SU3.
8.5.3 Feedback Selection SU2
For step up SU2 following feedback selections are possible (selected by setpup2_fb): (see Figure 15)
Current Feedback
CURR1, CURR2 or CURR3 can be selected by
stepup2_fb
as a current feedback pin.
The step-up converter is regulated such that the required current at the feedback path can be supported.
stepup2_fbprot
selects the over-
voltage protection feedback pin (FB2_SU2, GPIO2, GPIO3 or GPIO4). In this mode the output voltage will be limited by limiting the voltage on
the selected feedback pin to 1.25V (select the external resistor network and
stepup2_v
to adjust this limitation voltage).
stepup2_prot_dis
has to be set to 0, otherwise the protection is disabled.
Always choose the path with the higher voltage drop as feedback to guarantee adequate supply for the other, unregulated path.
Current Feedback with Automatic Feedback Selection
Same as above, but when currX_ctrl = 10b for the used current sinks, the chip automatically selects the highest string (CURR1, CURR2 or
CURR3) as feedback input.
www.austriamicrosystems.com 1.2 23 - 98
AS3710 2V1
Datasheet - D e t a il e d D e s c ri pt io n - P o w er M a na ge m en t F un ct i o n s
Voltage Feedback
stepup2_fb
= 00b. FB2_SU2, GPIO2, GPIO3 or GPIO4 can be selected by
stepup2_fbprot
as a voltage feedback input.
The step-up converter output voltage is regulated by regulating the selected feedback pin voltage to 1.25V.
Calculating Resistors for Voltage Feedback or Over-Voltage Protection
Bit stepupX_res should be set to 1 in voltage feedback mode using two resistors.
The output voltage is regulated to a constant value, given by:
If R2 is not used, the output voltage is:
V
SU
: Step up regulator output voltage
R
1
Feedback resistor R1
R
2
Feedback resistor R2
I
FB
: Tuning current on DCDC_FB pin: stepupX_v (0..31µA (1µA steps))
Example:
Note: The voltage on pin CURR1, CURR2 and CURR3 must never exceed 30V.
Table 9. Step Up Output Voltage (Voltage mode or protection voltage)
I
FB (stepupX_v)
V
SU
V
SU
µA R1=1M ,R2 not used R1=500k ,R2=64k
0 - 11
1 - 11.5
2 - 12
3 - 12.5
4 - 13
5 6.25 13.5
6 7.25 14
7 8.25 14.5
8 9.25 15
9 10.25 15.5
10 11.25 16
11 12.25 16.5
12 13.25 17
13 14.25 17.5
14 15.25 18
15 16.25 18.5
V
SU
R
1
R
2
+
R
2
------------------- 1 25 I
FB
R
1
×+,×=
V
SU
1 25 I
FB
R
1
×+,=
www.austriamicrosystems.com 1.2 24 - 98
AS3710 2V1
Datasheet - D e t a il e d D e s c ri pt io n - P o w er M a na ge m en t F un ct i o n s
8.5.4 Output disconnect
As the output voltage is always on, an additional output transistor can be added to reduce shutdown current through R1, R2 and the connected
output circuit.
Note: A similar circuit can be used for step up converter 2 or 3.
Figure 16. StepUp 1 with regulated output voltage (15V), and switch off function of output voltage, to reduce shutdown current
8.5.5 StepUp1 Load Detection and Over-current Protection Circuit
This circuit protects the DCDC step up1 converter during short circuit and startup, by regulation of the output current.
An additional feature is the detection of a minimum output load of the Step-up converter. It is also possible to use this circuit without the DCDC
step up converter, by using the sense resistor only:
Detection circuit: If the voltage on R
sense
exceeds V
DETECT
for more than 1ms, or the DCDC Step up converter is not in pulse-skip for more
than 1ms, the stepup1_det bit will be set.
Over-current protection: If the Over-current voltage V
OVCURRENT
has been exceeded by more than 5ms the bit
stpup1_oc
will be set and
can only reset, by switching off and on the Protection circuit by writing
stpup1_shortprot
0 – 1. If
stpup1_oc
is set the load will be dis-
connected, if
stpup1_oc_timeout
=1
www.austriamicrosystems.com 1.2 25 - 98
AS3710 2V1
Datasheet - D e t a il e d D e s c ri pt io n - P o w er M a na ge m en t F un ct i o n s
Figure 17. StepUp 1 Load Detection and Over-current Protection Application Circuit
8.5.6 Parameter
Table 10. DC/DC Step-up Controller Parameters
Symbol Parameter Note Min Typ Max Unit
I
VDD
Quiescent Current Pulse skipping mode 140 µA
V
FB1
Feedback voltage for external resistor
divider: for constant voltage control 1.20 1.25 1.30 V
V
FB2
Feedback voltage for current sink
regulation CURR1, CURR2 or CURR3 0.6 V
I
DCDC_FB
Additional tuning current at FB_SUx adjustable by software in 1µA steps 0 31 µA
Accuracy of feedback current @ full scale -7 7 %
V
rsense_max
Current limit voltage at Rsense E.g.: 0.65A for 0.15 sense resistor 100 mV
R
SW
switch resistance ON-resistance of external switching
transistor 1
I
load
Load current at 25V output voltage 0 50 mA
f
IN
Switching frequency internal CLK frequency/4, default 1MHz f
clk_int
/4 MHz
t
MIN_ON
Minimum on time 130 ns
MDC Maximum duty cycle @ 1MHz 91 %
Table 11. StepUp1 protection/detection circuit parameters
Symbol Parameter Note Min Typ Max Unit
V
DETECT
Detection Threshold For Rsense=0.150 =>
83mA typ. 2 12.5 25 mV
V
OVCURRENT
Over-current Threshold
rising
For Rsense=0.150 =>
1.2A typ. 150 180 215 mV
www.austriamicrosystems.com 1.2 26 - 98
AS3710 2V1
Datasheet - D e t a il e d D e s c ri pt io n - P o w er M a na ge m en t F un ct i o n s
8.5.7
Step-Up DC/DC Controller Efficiency vs. Output Current; V
SUP
= 3.8V, T
A
= +25ºC
V
OVhysteresis
Over-current Hysteresis 50 mV
t
OV_timeout
Over-current timeout
Interrupt and/or external PMOS switching
off after timeout
f
clk_int
= 2.2MHz
5 ms
t
detect
Detection de-bounce time f
clk_int
= 2.2MHz 1 ms
Table 12. DC/DC Step-up Controller External Components
Symbol Parameter Note Min Typ Max Unit
C
out
Output capacitor ceramic, ±20% 2.2 µF
L
SU
Inductor
Use inductors with small C
parasitic
(<100pF)
to get high efficiency; Vout >8V 10 µH
Use inductors with small C
parasitic
(<100pF)
to get high efficiency; Vout <8V 4.7 µH
Q
SU
Transistor
V
GS(TH)
threshold voltage 1.3 1.5 V
V
DS
max drain to source voltage V
out_max
+20% V
R
DS(ON)
drain - source on resistance 0.35
Q
GS
total gate charge @ V
GS
=4.5V 3 5 nC
C
1
/ C
2
Feedback capacitor ratio
ratio should be smaller than the feedback
resistor ratio (inverted) to avoid overshoots
during start-up
R
2
/ R
1
µF
Table 11. StepUp1 protection/detection circuit parameters
Symbol Parameter Note Min Typ Max Unit
80
82
84
86
88
90
92
0 0,2 0,4 0,6
E
f
f
[
%
]
ILoad[A]
www.austriamicrosystems.com 1.2 27 - 98
AS3710 2V1
Datasheet - D e t a il e d D e s c ri pt io n - P o w er M a na ge m en t F un ct i o n s
8.6 Current Sinks
8.6.1 General Description
These are general-purpose current sinks intended to control the backlight(s), buzzer and vibrator.
CURR1 and CURR2, CURR3 are high voltage (30V) current sinks, e.g. for series of white LEDs.
Current sinks CURR1, CURR2 and CURR3 can be controlled individually. The step-up DCDC converter (SU2) may supply them with voltages
up to 30V. For an automatic feedback selection the used current sinks can be assigned to the SU2 booster.
If not used as a current sink, CURR3 can be used to output several status signals. In this mode the CURR3 output acts like a open-drain output
and needs an external pull-up resistor for generating logic high levels.
8.6.2 Parameter
Table 13. Current Sinks Characteristics
Symbol Parameter Note Min Typ Max Unit
I
CURR1,2,3
CURR1,2 & 3 current,
00h-3Fh For V(DCDC_CURRx) > 0.5V
resolution = 0.157mA 0 40 mA
I
DCDC_protect
Current sink protection
Current Protection Current if stpup2_on=1
and currx_current=00h 2 µA
absolute Accuracy All Current sinks -8 +8 %
V
CURR1,2,3
Voltage compliance during normal operation 0.5 30 V
www.austriamicrosystems.com 1.2 28 - 98
AS3710 2V1
Datasheet - D e t a il e d D e s c ri pt io n - P o w er M a na ge m en t F un ct i o n s
8.7 Charger
8.7.1 General Description
The AS3710 device serves as a standalone battery charge controller supporting rechargeable lithium Ion (Li+) and) batteries. Requiring only a
few external components, a full-featured battery charger with a high degree of flexibility can easily be realized. The main features of the controller
are:
Charge adapter detection
PowerPath management & internal voltage regulator (V2_5), for dead battery startup
Low current (soft) charging
Low current (trickle) charging
Constant current charging
Constant voltage charging
30V Overvoltage protection
Battery presence indication
Operation without battery
Input current limitation
Input voltage drop regulation
Programmable linear or switched mode operation
Bypass mode for high input current application (up to 6A)
Figure 18. Charger Application Block Diagram, Step Down charger mode
www.austriamicrosystems.com 1.2 29 - 98
AS3710 2V1
Datasheet - D e t a il e d D e s c ri pt io n - P o w er M a na ge m en t F un ct i o n s
Figure 19. Charger Application Block Diagram, Linear charger mode
8.7.2 Charging Cycle Description
Charge adapter detection
The charge controller uses an integrated detection circuit to determine if an external charge adapter has been applied to the VUSB pin. If the
adapter voltage exceeds the battery voltage at pin VBAT by V
CHDET
the ChDet bit in the ChargerStatus register will be set. The detection circuit
will reset the charge controller (bit
ChDet
is cleared) as soon as the voltage at the VUSB pin drops to only V
CHMIN
above the battery voltage. In
case the AS3710AS3711 device is reset the charge controller will also be reset, even if a charge adapter is applied to the VUSB pin.
Soft charging
Soft charge mode is started when an external charge adapter has been detected, the bat_charging_enable is set and the battery voltage at pin
VBAT is below the V
SOFT
threshold.
Low current (trickle) charging
Trickle charge mode is started when an external charge adapter has been detected bat_charging_enable is set and the battery voltage at pin
VBAT is below the V
TRICKLE
threshold and above VSOFT threshold; bits
ChDet
and
Trickle
will be set in the ChargerStatus register. In this
mode the charge current will be limited to
TrickleCurrent
(set in the ChargerCurrent register) to prevent undue stress in case of deeply
discharged batteries. Once V
TRICKLE
has been exceeded, the charger will change over to constant current charging (
Trickle
is cleared).
Constant current charging
Constant current charging is initiated when bat_charging_enable is set and the battery voltage at pin VBAT is above the V
TRICKLE
and below
V
CHOFF.
The
CCM
bit is set when the charger has started, and the charge current will be limited to
ConstantCurrent
by the battery charge
controller. When the battery approaches full charge, its voltage will reach the charge termination threshold V
CHOFF
. V
CHOFF
depends on the
ChVoltEOC
bits settings. Top-off charge will be started (
CVM
will be set).
Constant voltage charging
Constant voltage charge mode is initiated and the
CVM
bit will be set when the V
CHOFF
threshold has been reached.
The charge current is monitored during constant voltage charging. It will be decreasing from its initial value during constant current charging and
eventually drop below the value set by
TrickleCurrent
. If the measured charge current is less than or equal to
TrickleCurrent
, the charging
cycle is terminated and
EOC
is set.
www.austriamicrosystems.com 1.2 30 - 98
AS3710 2V1
Datasheet - D e t a il e d D e s c ri pt io n - P o w er M a na ge m en t F un ct i o n s
8.7.3 Charger States
8.7.4 Stop charging conditions
There are multiple safety features implemented that trigger a stop_charging condition:
These are the following:
- Battery temperature too high. If ntc_on=1 and voltage at pin NTC is below V
BATTEMP
- Timeout timer expired (If ch_timeout>0 and charging time has been exceeded. (Can be reset by unplugging the charger, setting chg_on=0
or writing charging_tmax=0)
- VUSB over-voltage detected
- Die temp>140deg (ov_temp_140 set)
8.7.5 Battery presence indication and operation without battery
After
EOC
state is reached a timer for NOBAT detection is started. If there is no battery present, the VBAT voltage will drop to V
RESUME
.
Depending on the load on VBAT and the capacitor on VBAT this might take some milliseconds to 1 second. If the RESUME mode is enabled (Bit
auto_resume
=1), the charger will restart charging (ConstantCurrent charging) after 100msec delay.
The 100msec dead time is necessary to get a battery oscillation frequency below 10Hz, if there is no battery present.
If the NOBAT detection timer is below 2 seconds after reaching EOC state, and this happens 2 times in serial, the
Nobat
bit in ChargerStatus
register is set. If an battery is inserted the bit will be reset after the timer exceeds the 2 seconds.
In addition, if the
nobat_ntc_det
bit is set the looping will be stopped and a NTC detection is started.
A pull up current of 0.5uA is applied to BATTEMP. If the BATTEMP voltage is above 1.8V, the state machine stays in the no bat state. If the
BATTEMP voltage is below 1.8V, a charging cycle is initiated.
8.7.6 Charger overvoltage protection
This blocks checks if the charger voltage VUSB is above V
CHOVH
. If the VUSB voltage is above V
CHOVH
, the pin XOFF is pulled to GND
immediately, to protect the pin VCHG_IN, and the charger is set into off state. If the VUSB voltage is below V
CHOVH
the XOFF pin is charged up
to V
XOFF_REG
with an integrated charge pump. If the pin exceeds V
XOFF_MIN
the
usb_prot_ready
bit is set and the charger is started.
8.7.7 NTC supervision
This charger block also features a supply for an external NTC resistor to measure the battery temperature while charging. If the temperature is
too high (voltage on BATTEMP pin is below VBATTEMP_ON) the charger will stop operation. If needed an interrupt can be generated based on
this event. When the battery temperature drops the charger the voltage on BATTEMP pin will rise above VBATTEMP_OFF and the charger will
start charging again. This is forming a temperature hysteresis of about 3 to 5°C to avoid an oscillation of the charger.
www.austriamicrosystems.com 1.2 31 - 98
AS3710 2V1
Datasheet - D e t a il e d D e s c ri pt io n - P o w er M a na ge m en t F un ct i o n s
The levels for switching off the charger (
ntc_temp
: 45ºC or 55ºC) as well as the type of NTC (
ntc_10k
: 10k or 100k) can be selected via
register settings. The battery temperature supervision via the NTC can be switched off (
ntc_on
= 0).
The supply for the NTC will be only on when a charger is detected and
ntc_on
bit is set.
8.7.8 Charger Modes
Figure 20. Linear Charger Modes
www.austriamicrosystems.com 1.2 32 - 98
AS3710 2V1
Datasheet - D e t a il e d D e s c ri pt io n - P o w er M a na ge m en t F un ct i o n s
Figure 21. DCDC Charger Modes
8.7.9 Alternative Charger Input Configurations
Figure 22. Charger with Current Limiter Bypass
www.austriamicrosystems.com 1.2 33 - 98
AS3710 2V1
Datasheet - D e t a il e d D e s c ri pt io n - P o w er M a na ge m en t F un ct i o n s
8.7.10 Parameter
T
A
= 25ºC, unless otherwise specified.
Table 14. Charger Parameter
Symbol Parameter Condition Min Typ Max Unit
V
CHDET
Charger Detection threshold VUSB-VBAT
Hysteresis is > 40mV
50 75 105 mV
V
CHMIN
0 20 35 mV
V
SOFT
Apply I
SOFT
charging current below
that VBAT voltage 1.8 V
I
SOFT
Charging current if VBAT is below
V
SOFT
22 mA
V
TRICKLE
Trickle to CC current threshold V
BAT
rising 2.9 V
I
TRICKLE
Trickle/EOC current limit Programmable in 60mA steps 60..
240 mA
V
CHOFF
Charge termination threshold
programmable in 20mV steps between 3.5
and 4.44V
3.5..
4.44 V
@
ChVoltEOC
=35 (4.2V) 4.15 4.20 4.242 V
I
CC
CC current limit Programmable in 50mA steps 250..
1500 mA
linear charging mode -10% +10% mA
I
USB_limit
USB input current limit @ 470mA -7% 470 +6% mA
VRESUME Resume voltage limit to start
charger
VBAT falling threshold (depending on
ChVoltResume
)140/233 mV
VSUP_min
VSUP level for charging current
regulation (reduction), to avoid
voltage drop on VSUP
Trickle current (or constant current in linear
mode) will be regulated down, if VSUP
drops below this level
-6%
3.9
3% V
4.2
4.5
4.7
IREV_OFF Reverse current shut down VSUP_CHG = 5V, VUSB open 5 µA
V
Diode
Ideal Diode start voltage 50 mV
R
ON_BATSW
Battery Switch On-resistance 0.10
Temp Supervision
V
BATTEMP_ON
Battery Temp. high level
(50 or 55ºC)
VSUP >3V
NTC
beta
=4200
500 or
400 mV
V
BATTEMP_OFF
Battery Temp. low level
(45 or 50ºC)
VSUP >3V
NTC
beta
=4200
600 or
500 mV
I
BATTEMP
NTC Bias Current 100k NTC
10k NTC -15% 15
150 +15% µA
XOFF overvoltage protection
V
CHOVH
VUSB Overvoltage Detection monitor voltage on VUSB, disable charging
beyond this voltage (200mV hysteresis)
6.2 +3% V
-3% 6.0
V
XOFF_min
Minimum XOFF voltage for charger
startup 7.5 V
V
XOFF_REG
Regulation voltage for XOFF pin 10 V
I
XOFF
External pull down current on XOFF
pin Connect XOFF pin to MOSFET gates only 100 nA
www.austriamicrosystems.com 1.2 34 - 98
AS3710 2V1
Datasheet - D e t a il e d D e s c ri pt io n - P o w er M a na ge m en t F un ct i o n s
Figure 23. Step-Down vs Linear Charger; V
SUP
= 4.5/5.0V, T
A
= +25ºC
Table 15. External Components
Symbol Description Condition Min Typ Max Unit
Q1
PROT_NMOS
FDN337N Vds=30V, 2.2A 65 m
FDN339AN Vds=20V, 3A 35 m
FDN327N Vds=20V, 2A 70 m
FDG311N Vds=20V, 1.9A 115 m
Si1472DH 82 m
Q1
PROT_NMOS_HC
BYPASS
FDC637AN Vds=20V, 6.2A 24 m
FDT439N Vds=30V, 6.3A 45 m
Q2
BATSW_NMOS
FDN306P @ 4.5V 40 m
FDC602 @ 4.5V 33 m
FDC642 @ 4.5V 65 m
C
USB
Bypass capacitor on VUSB pin ± 20%, X5R or X7R dielectric / 25V 4.7 µF
C
VSUP_CHG
Bypass capacitor on
VSUP_CHG
X5R or X7R dielectric
near to pin VSUP_CHG 4.7 µF
C
VSUP_MIN
Bypass capacitor on VSUP X5R or X7R dielectric, total value 10 µF
C
VBAT
Bypass capacitor on VBAT X5R or X7R dielectric 10 µF
L
CHGOUT
LQM2HPN1R0MJ0 (MURATA) Ron=90mOhm / 1.5A rated current 1 µH
MLP2520S1R0M (TDK) Ron=85mOhm / 1.5A rated current 1 µH
D
CHGOUT
PMEG2010 (NXP) 1A
NSR10F20NXT5G (ONSEMI) 1A
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
12345
Efficiency (%)
Battery Voltage (V)
SD charger 4.5V
linear charger 4.5V
SD charger 5V
linear charger 5V
www.austriamicrosystems.com 1.2 35 - 98
AS3710 2V1
Datasheet - D e t a il e d D e s c ri pt io n - P o w er M a na ge m en t F un ct i o n s
Figure 24. Step-Down vs Linear Charger; V
SUP
= 4.5/5.0V, T
A
= +25ºC
0
0,5
1
1,5
2
2,5
12345
Internal Power Dissipation (W)
Battery Voltage (V)
SD charger 4.5V
linear charger 4.5V
SD charger 5V
linear charger 5V
www.austriamicrosystems.com 1.2 36 - 98
AS3710 2V1
Datasheet - D e t a il e d D e s c ri pt io n - S y s t em F u nc t io n s
9 Detailed Description - System Functions
9.1 Start-up
Figure 25. Startup flow chart
www.austriamicrosystems.com 1.2 37 - 98
AS3710 2V1
Datasheet - D e t a il e d D e s c ri pt io n - S y s t em F u nc t io n s
9.1.1 Normal Startup
During a normal reset cycle (e.g. after the battery or a charger is inserted), after V2_5 is above V
POR
and VSUP is above ResVoltRise a normal
startup happens:
The external capacitor on CREF is charged to 1.8V.
Configuration of Charger (DCDC or linear) and SD2/SD3 (combined mode or separated) is read from the Boot-OTP.
Startup State machine reads out the internal Boot-OTP. The start-up sequence of Step-Down Converter, LDO’s and GPIOs are controlled
by the Boot-OTP.
Reset-Timer is set by the Boot-OTP
The reset is released when the Reset Timer expires (external pin XRES)
9.1.2 Startup from Charger
If the voltage on pin VUSB is within VSTART
CHARGER
, the AS3710 is started (even with V
BAT
= 0V). This allows the battery to be charged (even
from deeply discharged batteries) and finally a normal startup to happen.
9.1.3 Parameter
Table 16. Charger and ON-input Startup Conditions
Symbol Parameter Note Min Typ Max unit
VSTART
CHARGER
Voltage on VUSB for system
to start on Pin VUSB 4.2 5.0 30 V
V
ON_IL
ON Low Level input voltage –0.3 0.4
V
ON_IH
ON High Level input 1.4 V
VSUP_G
PIO
I
ON_PD
ON Pull down current 4 12 µA
www.austriamicrosystems.com 1.2 38 - 98
AS3710 2V1
Datasheet - D e t a il e d D e s c ri pt io n - S y s t em F u nc t io n s
9.2 Reset
9.2.1 General Description
XRES is a low active bi-directional pin. An external pull-up to the periphery supply has to be added.
During each reset cycle the following states are controlled by the AS3710:
pin XRES is forced to GND
normal startup with programmable power-on sequence and regulator voltages (see Start-up on page 36)
reset is active until the programmable reset timer (set by register bits res_timer<2:0>) expires
all registers are set to their default values after power-on, except the reset control- and status-registers.
XRES is pulled high by the external resistor and the whole system is leaving the reset state
Note: Programming is controlled by the internal Boot-OTP
9.2.2 Parameter
9.2.3 Reset Conditions
Reset can be activated from 7 different sources:
Power on (battery or charger insertion)
Low Battery
Software forced reset
Power off mode
External triggered through the pin XRES
Over-temperature
Watchdog
On-key long press
Voltage detection:
There are two types of voltage dependent resets: V
POR
and V
XRES
. V
POR
monitors the voltage on V2_5 and V
XRES
monitors the voltage on
VSUP. The linear regulator for V2_5 is always on and uses the voltage CHGIN or VBAT VSUP as its source.
The pin XRES is only released if V2_5 is above V
POR
and VSUP is above ResVotlRise.
Table 17. XRES-input Characteristics
Symbol Parameter Note Min Typ Max Unit
V
XRES_IL
XRES Low Level input
voltage -0.3 0.4 V
V
XRES_IH
XRES High Level input
voltage 1.4 VSUP_G
PIO V
www.austriamicrosystems.com 1.2 39 - 98
AS3710 2V1
Datasheet - D e t a il e d D e s c ri pt io n - S y s t em F u nc t io n s
Note: VXRES
FALLING
is only accepted if the reset condition is longer than VXRES
MASK
. This guard time is used to avoid a complete reset of
the system in case of short drops of V
BAT
.
Power off:
To put the chip into ultra low power mode, write ‘1’ into power_off. The chip stays in power off mode until the external pin ON is pulled high, the
charger is inserted or the level V
POR
is touched to start a complete reset cycle. The bit power_off is automatically cleared by this reset cycle.
During power_off state all circuits are shut-off except the Low Power LDO (V2_5). Thus the current consumption of AS3710 is reduced to less
than 15 µA. The digital part is supplied by V2_5, all other circuits are turned off in this mode, including references and oscillator. Except the reset
control registers all other registers are set to their default value after power-on.
Software forced reset
Writing ‘1’ into the register bit force_reset immediately starts a reset cycle. The bit force_reset is automatically cleared by this reset.
External triggered reset:
If the pin XRES is pulled from high to low by an external source (e.g. microprocessor or button) a reset cycle is started as well.
Over-temperature reset:
The reset cycle can be started by over-temperature conditions. (see Supervisor on page 45)
Watchdog reset:
If the watchdog is armed (register bit
wtdg_on
= 1 and
wtdg_res_on
= 1) and the timer expires it causes a reset. (see Watchdog on page 46).
Long ON-key press:
When applying a high level on the ON input pin for 4s/8s (depending on
on_reset_delay
) a reset is initiated. This is thought as a safety feature
when the SW hangs up and no watchdog is used.
Table 18. Reset Levels
Symbol Parameter Note Min Typ Max Unit
V
POR
Overall power on reset Monitor voltage on V2_5; power on reset for
all internal functions 1.5 2.0 2.3 V
VXRES
RISE
Reset level for Vsupply
rising Monitor voltage on VSUP; rising level ResVolt
Rise
1
1. It’s recommended to set the ResVoltRise level 200mV above the ResVolt Fall level to have a hysteresis.
V
VXRES
FALLING
Reset level for Vsupply
falling
Monitor voltage on VSUP; falling level 2.7 V
if
SupResEn
=1 only ResVoltF
all V
VXRES
MASK
Mask time for
VXRES
FALLING.
Duration for
V
BAT
<ResVoltFall until a
reset cycle is started
2
2. XRES signal is de-bounced with the specified mask time for rising- and falling slope of V
BAT
.
FastResEn
= 0 3 ms
FastResEn
= 1 4 us
www.austriamicrosystems.com 1.2 40 - 98
AS3710 2V1
Datasheet - D e t a il e d D e s c ri pt io n - S y s t em F u nc t io n s
9.3 Stand-by
9.3.1 General Description
Stand-by allows shutting down a part or the complete system. Stand-by can be terminated by every possible interrupt or GPIO of the PMU. The
interrupt has to be enabled and GPIO has to be configured before going to hibernation.
Table 19. Hibernation
State Description
Enter via GPIO
To enter stand-by mode the following settings have to be done:
- Enable just these IRQ sources which should lead to leave hibernation mode.
- Make sure that IRQ is inactive (IRQ flags get cleared by register reading)
- Set the GPIO to input (gpioX_mode = 0)
- Set the GPIO for stand-by control (gpioX_iosf = 6)
- Set regX_select and regX_voltage if an other voltage is needing during stand-by for up to 3 regulators
- Define which regulators should be kept powered during stand-by (sdX_stby_on, ldoX_stby_on)
- set
chg_pwr_off_en
to 1
- Activate the selected GPIO
Enter via SW
To enter stand-by mode the following settings have to be done:
- Enable just these IRQ sources which should lead to leave hibernation mode.
- Make sure that IRQ is inactive (IRQ flags get cleared by register reading)
- Set the delay for going into stand-by after the SW command (
off_delay
)
- Define which regulators should be kept powered during stand-by (sdX_stby_on, ldoX_stby_on)
- set
chg_pwr_off_en
to 1
- set
standby_mode_on
to 1
Hibernation
V2_5 chip supply is kept ON
All other regulators are switched OFF dependent on the stby_on bits
XRES goes active (can be disabled in the boot ROM) and pwr_good goes inactive
Leave
The chip will come out of stand-by with
- IRQ activation or
- GPIO control (if entered via GPIO or interrupt
Start-Up sequence is provided defined by the boot ROM.
www.austriamicrosystems.com 1.2 41 - 98
AS3710 2V1
Datasheet - D e t a il e d D e s c ri pt io n - S y s t em F u nc t io n s
9.4 Internal References
The internal reference circuits needs the following external components:
9.4.1 Low Power Mode
Use bit low_power_on to activate the Low Power Mode. In this mode the on-chip voltage reference and the temperature supervision
comparators are operating in pulsed mode. This reduces the quiescent current of the AS3710 by 45uA (typ.). Because of the pulsed function
some specifications are not fulfilled in this mode (e.g. increased noise), but still the full functionality is available.
Note: Low power mode can be controlled by the serial interface.
9.4.2 Parameter
Table 20. Reference External Components
Symbol Parameter Note Min Typ Max Unit
C
EXT
External filter capacitor Ceramic low-ESR capacitor between CREF
and VSS -10% 100 +10% nF
Table 21. References Parameters
Symbol Parameter Note #Min Typ Max Unit
V
CEXT
Reference Voltage Low noise trimmed voltage reference –
connected to Pad CREF; do not load -1% 1.8 +1% V
f
CLK
Accuracy of Internal
reference clock Adjustable by serial interface register clk_int -12 f
CLK
+12 %
www.austriamicrosystems.com 1.2 42 - 98
AS3710 2V1
Datasheet - D e t a il e d D e s c ri pt io n - S y s t em F u nc t io n s
9.5 GPIO Pins
9.5.1 General Description
The device contains 4 GPIO pins. Each of the pins can be configured as digital input, digital input (with pull-up or pull-down), ADC input (tri-state,
or with pull down) only for GPIO2,3 and 4, push-pull output, or open drain output (with or without pull-up). When configured as output the output
source can be a register bit, or the PWM generator.
The polarity of the input and output signals can be inverted with the corresponding gpioX_invert bit, all further descriptions refer to normal (non-
inverted) mode.
Figure 26. GPIO block diagram
9.5.2 IO Functions
Normal IO operation:
If set to input, the logic level of the signal present at the GPIOx pin can be read from gpioX_in. If the output mode is chosen, gpioX_out specifies
the logic level of the GPIOx pin.
This mode is also used for the on/off controll of the DCDC and LDOs. The selection which regulator is controlled by which GPIO is done with the
gpio_ctrl_sdX or gpio_ctrl_ldoX bits.
This mode is also used for the regulator on/off control by setting the gpio_ctrl_x bits. The gpioX_mode should be set to input.
Interrupt output:
GPIOx pin logic state is derived from the interrupt signal INT. Whenever an interrupt is present the GPIOx pin will be pulled high. The
gpioX_mode should be set to output.
VSUP_low output
GPIOx pin will go high if VSUP falls below ResVoltFall and SupResEn = 0. The gpioX_mode should be set to output.
GPIO interrupt input
A falling or rising edge will set the gpio_int bit. The gpioX_mode should be set to input.
Current sink PWM input
The GPIO is used as PWM inptu for the current sink to control the current. 100% PMW mode will set the current to the value set currX_current
register. The PWM control has to be enabled with currX_ctrl = 11b for each current sink to be controlled. The gpioX_mode should be set to input.
Vselect input
As long as the GPIOx pin is high the DCDC/LDOs operate with the normal register settings. If the GPIOx pin goes low the settings will change to
the ones stored in regX_voltage. The gpioX_mode should be set to input.
www.austriamicrosystems.com 1.2 43 - 98
AS3710 2V1
Datasheet - D e t a il e d D e s c ri pt io n - S y s t em F u nc t io n s
The regulator effected by this mode is selected by regX_select. While GPIO3 & GPIO4 always control all regulators selected by regX_select,
GPIO1 and GPIO2 may be used to control two regulators separately.:
Stand-by and Vselect input
This mode is very similar to the Vselct mode described in the previous paragraph. In addition to switch between 2 register settings of 2 regulators
the chip is set into stand-by mode when the GPIOx pin goes low and wakes up again when the pin is pulled high. The gpioX_mode should be set
to input.
While GPIO3 & GPIO4 always control all regulators selected by regX_select, GPIO1 & GPIO2 may be used to control two regulators separately.:
PWRGOOD output
This signal will go high at the end of the start-up sequence. This can be used as an second reset signal to the processor to e.g. start oscillators.
The gpioX_mode should be set to output.
Q32k output
When selected the GPIOx will provide the 32kHz RTC crystal frequency. If the oscillator is not enabled or not assembled a internal RC oscillator
based clock will be used for the output. The gpioX_mode should be set to output.
Watchdog input
When pulling the GPIO high the watchdog will be triggered to avoid a reset cycle initiated ba the watchdog. The gpioX_mode should be set to
input.
SU1 OC output
This output signal can be used to control an external disconnect transistor if SU1 detects an over current condition. The gpioX_mode should be
set to output.
Charger active output
When selected, the GPIOx will go high if the charger is active. The gpioX_mode should be set to output.
EOC output
When selected, the GPIOx will go high if the charger has reached the EOC state. The gpioX_mode should be set to output.
100/500mA charger input
Whith this function the charger input current limiter can be set to 100 or 500mA (low power or high power USB limit). The gpioX_mode should be
set to input.
500/2.5A charger input
Whith this function the charger input current limiter can be set to 500 or 2.5A (high power USB limit or full current enabled). The gpioX_mode
should be set to input.
Table 22. GPIO Vselect modes
gpio1_iosf = gpio2_iosf = Vselect mode
<> 5 <> 5 no voltage select by GPIO for regulator
<> 5 5 GPIO2 controls regulator selected by
reg1_select
,
reg2_select
and
reg3_select
5 <> 5 GPIO1 controls regulator selected by
reg1_select
,
reg2_select
and
reg3_select
5 5 GPIO1 controls regulator selected by reg1_select
GPIO2 controls regulator selected by reg2_select
Table 23. GPIO Stand-by plus Vselect modes
gpio1_iosf = gpio2_iosf = Vselect mode stand-by control
<> 6 <> 6 no voltage select by GPIO for regulator no
<> 6 6 GPIO2 controls regulator selected by
reg1_select
,
reg2_select
and
reg3_select
yes
6 <> 6 GPIO1 controls regulator selected by
reg1_select
,
reg2_select
and
reg3_select
yes
6 6 GPIO1 controls regulator selected by reg1_select
GPIO2 controls regulator selected by reg2_select yes
www.austriamicrosystems.com 1.2 44 - 98
AS3710 2V1
Datasheet - D e t a il e d D e s c ri pt io n - S y s t em F u nc t io n s
Charging enable input
When pulling the GPIO to high the charger is being enabled and vice versa. This is to enable the charger without I2C communication. The
gpioX_mode should be set to input.
PWM output
The gpio block includes an internal programmable PWM generator (can be connected to any of the GPIO outputs). Its timing is defined by
pwm_h_time, pwm_l_time and pwm_div. The gpioX_mode should be set to output.
9.5.3 Parameter
Table 24. GPIO Pin Characteristics
V
VSUP
=2.7 to 5.5V; T
amb
= –20 to +70°C; unless otherwise specified
Symbol Parameter Note Min Typ Max Unit
V
GPIOMAX
Maximum voltage on
GPIO1…4 pins
Pin VSUP_GPIO is used as supply for the GPIO
pins V
VSUP_GPIO
+ 0.3 V
V
OL
Low level output
voltage I
OL
=+1mA; digital output –0.3 +0.4 V
V
OH
High level output
voltage I
OH
=–1mA; digital push-pull output 0.8·V
VSUP_GPIO
V
VSUP_GPIO
V
V
IL
Low level input voltage digital input –0.3 0.4 V
V
IH
High level input voltage digital input 1.4 V
VSUP_GPIO
V
I
LEAKAGE
Leakage current high impedance 10 µA
R
pull-up
Pull-up resistance if enabled,
VSUP_GPIO=3.6V 300 k
R
pull-down
Pull-down resistance digital input; if enabled;
VSUP_GPIO=3.6V 300 k
www.austriamicrosystems.com 1.2 45 - 98
AS3710 2V1
Datasheet - D e t a il e d D e s c ri pt io n - S y s t em F u nc t io n s
9.6 Supervisor
All LDO’s, the DCDC step ups and DCDC step downs have an integrated over-current protection.
An overtemperature protection of the chip is also integrated which can be switched on with the serial interface signal temp_pmc_on (enabled by
default; it is not recommended to disable the over-temperature protection).
9.6.1 General Description
The chip has two signals for the serial interface: ov_temp_110 and ov_temp_140. The flag ov_temp_110 is automatically reset if the
overtemperature condition is removed, whereas ov_temp_140 has to be reset by the serial interface with the signal rst_ov_temp_140.
If the flag ov_temp_140 is set, an automatic reset of the complete chip is initiated. The chip will only start-up when the temperature falls below
the T
110
level (including hysteresis). The flag ov_temp_140 is not affected by this reset cycle allowing the software to detect the reason for this
unexpected shutdown.
Table 25. Over-temperature Detection
Symbol Parameter Note Min Typ Max Unit
T
110
ov_temp_110 rising
threshold 95 110 125 ºC
T
140
ov_temp_140 rising
threshold 125 140 155 ºC
T
hyst
ov_temp_110 and
ov_temp_140 hysteresis 5 ºC
www.austriamicrosystems.com 1.2 46 - 98
AS3710 2V1
Datasheet - D e t a il e d D e s c ri pt io n - S y s t em F u nc t io n s
9.7 Watchdog
9.7.1 General Description
The purpose of the watchdog is to detect a deadlock of the software. If the watchdog is active, it must receive a continuous trigger signal within a
programmable time window. If there is no signal anymore for a certain time period from a defined pad or special serial interface bit, it starts either
a complete reset cycle or changes the state of an output pin, which can be used e.g. as an interrupt to the processor.
The watchdog is highly configurable by the following register bits:
The complete block can be switched on by wtdg_on = 1 and off by wtdg_on = 0.
The watchdog time window is defined by the register wtdg_min_timer and wtdg_max_timer.
The trigger signal can be configured by register wtdg_sw_sig and gpio1_iosf or gpio4_iosf.
If the watchdog expires, the system can start automatically a reset cycle if wtdg_reset_on = 1.
9.7.2 Parameter
Figure 27. Watchdog timing diagram
t
min
t
max
t
min
t
max
wtdg_trigger
www.austriamicrosystems.com 1.2 47 - 98
AS3710 2V1
Datasheet - D e t a il e d D e s c ri pt io n - S y s t em F u nc t io n s
9.8 Interrupt Generation
9.8.1 General Description
The interrupt controller generates an interrupt request for the host controller as soon as one or more of the bits in the Interrupt 1…3 register are
set by pulling high pin INT (INT has to be selected as a GPIO output function). The output polarity can be changed to active low (XINT) by using
the gpioX_invert bit of the selected GPIO. All the interrupt sources can be enabled in the Interrupt Mask 1…3 register. The Interrupt 1…3
registers are cleared automatically after the host controller has read them. To prevent the AS3710 device from losing an interrupt event, the
register that is read is captured before it is transmitted to the host controller via the serial interface. As soon as the transmission of the captured
value is complete a logical AND operation with the bit wise inverted captured value is applied to the register to clear all interrupt bits that have
already been transmitted. Clearing the read interrupt bits takes 2 clock cycles, a read access to the same register before the clearing process
has completed will yield a value of ‘0’. Note that an interrupt that has been present at the previous read access will be cleared as well in case it
occurs again before the clearing process has completed.
During a read access to one of the interrupt registers the INT pin will be released. As soon as the transferred bits of the interrupt register have
been cleared the INT pin will be pulled high in case a new interrupt has occurred in the meantime. By doing so the interrupt controller will work
correctly with host controllers that are edge- and level-sensitive on their interrupt request input. Multiple byte read access is recommended to
avoid reading the Interrupt 1 register over and over again in response to a new interrupt that has occurred in the same register (and thus pulling
high pin INT) before the Interrupt 2,3 register has been read.
www.austriamicrosystems.com 1.2 48 - 98
AS3710 2V1
Datasheet - D e t a il e d D e s c ri pt io n - S y s t em F u nc t io n s
9.9 10-Bit ADC
This general purpose ADC can be used for measuring several voltages and currents to perform functions like battery monitor, temperature
supervision, button press detection, etc.
9.9.1 Input Sources
9.9.2 Parameter
Table 26. ADC10 Input Sources
# Source Range LSB Mode Description
0 BATTEMP 1.8V 1.76mV 1:1 check battery charging temperature
1 DIE temperature 1.8V 1.76mV 1:1 Tj = (0.866 * ADC10<9:0>) - 274
2 XOUT32X 1.8V 1.76mV 1:1
3 CURR1 1.0V 1.76mV 1:1
4 CURR2 1.0V 1.76mV 1:1
5 CURR3 1.0V 1.76mV 1:1
6 VUSB 15V 26.4mV 15:1 check USB charger HV input
7 CHGIN 5.5V 7.03mV 4:1 check USB charger LV input
8 VBAT 5.5V 7.03mV 4:1 check Li-Ion battery voltage
9 VSUP 5.5V 7.03mV 4:1 check main system supply voltage
A SENSEN_SU1 1.8V / 5.5V 1.76 / 7.03mV 1:1 / 4:1
B FB_SU2 1.8V / 5.5V 1.76 / 7.03mV 1:1 / 4:1
C GPIO2 1.8V / 5.5V 1.76 / 7.03mV 1:1 / 4:1
D GPIO3 1.8V / 5.5V 1.76 / 7.03mV 1:1 / 4:1
E GPIO4 1.8V / 5.5V 1.76 / 7.03mV 1:1 / 4:1
F reserved
Table 27. ADC Characteristics
Symbol Parameter Note Min Typ Max Unit
Resolution 10 Bit
Input Voltage Range Vin for 1:1 mode 0 1.8 V
Differential
Nonlinearity DNL 1LSB 1.76mV for 1:1 (depending on selected
channel) ± 0.25 LSB
Integral Nonlinearity INL ± 0.5 LSB
Input Offset Voltage Vos 2 LSB
Input Impedance Rin 100 M
Input Capacitance Cin 9 pF
Power Supply Current Idd during conversion only 500 µA
Power Down Current Idd 100 nA
Transient Parameters (25°C)
Conversion Time Tc 40 µs
Clock Frequency fc internal CLK frequency/8 f
clk_int
/8 kHz
Settling time of S&H ts 1 µs
www.austriamicrosystems.com 1.2 49 - 98
AS3710 2V1
Datasheet - D e t a il e d D e s c ri pt io n - S y s t em F u nc t io n s
Figure 28. ADC Timing-diagram
I2C Bus
ADC_ON
Sample
275kHz
start_conversion=1
result_not ready
D<9:0>
old_Data Data not valid Data ready
start_adc
1 2 3 12 13
www.austriamicrosystems.com 1.2 50 - 98
AS3710 2V1
Datasheet - D e t a il e d D e s c ri pt io n - S y s t em F u nc t io n s
9.10 Real Time Clock
9.10.1 General Description
The RTC module provides time information to the system. It is implemented as a 6-bit counter that is incremented every second - with the 32kHz
oscillator delivering the necessary accurate time base – and is reset to 0 each time the counter value is 60. An additional 24-bit minute counter is
incremented each time the 6-bit counter is reset to 0. Both counters are set to 0 at a power-on-reset. The host controller can set the counter to
any value by setting the RTC 1…4 registers.
To prevent ambiguous time information because of the 30-bit value being incremented before all of the 4 registers have been read or written, a
30-bit parallel shadow register is implemented. Every time a write/read access via the serial interface occurs the parallel shadow register is
updated with the current value of the 30-bit counter. Any write access to the RTCSecond register will disable the update of the parallel register
and set the value of the appropriate byte of the parallel register. Any subsequent write access to the RTCMinute3 register will transfer the current
value of the 30-bit parallel register to the RTCSecond/Minute1..3 registers and the update of the parallel register is enabled again. Similarly, any
read access to the RTCSecond register will freeze the current value of the parallel register and submit the appropriate byte to the host controller
via the serial interface. Any subsequent read access to the RTCMinute3 register will enable the update of the parallel register again. This
mechanism makes sure that the maximum error of the value that is written to or read from the registers is 1 second.
To start the RTC, rtc_on bit has to be set to 1.
The RTC stops automatically at its highest value (3F,FF,FF,FF) to prevent overrun.
9.10.2 Alarm
The RTC module includes an alarm function. When the content of the RTCAlarm registers equals the content of the RTC registers bit rtc_alarm
will be set in the interrupt register. Furthermore the RTC module can generate a repeating interrupt every second, every minute, every 2 minutes
or every 8 minutes.
To avoid ambiguous behavior during write access to the RTCAlarm registers any write access to the RTCAlarmSecond register will disable the
alarm function; any subsequent write access to the RTCAlarmMinute3 will enable the alarm function again.
www.austriamicrosystems.com 1.2 51 - 98
AS3710 2V1
Datasheet - D e t a il e d D e s c ri pt io n - S y s t em F u nc t io n s
9.11 2-Wire-Serial Control Interface
9.11.1 Feature List
Fast-mode capability (max. SCL-frequency is 400 kHz)
7+1-bit addressing mode
60h x 8-bit data registers (word address 0x00 - 0x60)
Write formats: Single-Byte-Write, Page-Write
Read formats: Current-Address-Read, Random-Read, Sequential-Read
SDA input delay and SCL spike filtering by integrated RC-components
9.11.2 Protocol
Figure 29. Byte Write
Figure 30. Page Write
Byte Write and Page Write formats are used to write data to the slave.
The transmission begins with the START condition, which is generated by the master when the bus is in IDLE state (the bus is free). The device-
write address is followed by the word address. After the word address any number of data bytes can be sent to the slave. The word address is
incremented internally, in order to write subsequent data bytes on subsequent address locations.
For reading data from the slave device, the master has to change the transfer direction. This can be done either with a repeated START condition
followed by the device-read address, or simply with a new transmission START followed by the device-read address, when the bus is in IDLE
state. The device-read address is always followed by the 1st register byte transmitted from the slave. In Read Mode any number of subsequent
register bytes can be read from the slave. The word address is incremented internally.
Table 28. 2-Wire Serial Symbol Definition
Symbol Definition RW Note
S Start condition after stop R 1 bit
Sr Repeated start R 1 bit
DW Device address for write R 1000 0000b (80h)
DR Device address for read R 1000 0001b (81h)
WA Word address R 8 bit
A Acknowledge W 1 bit
N No Acknowledge R 1 bit
reg_data Register data/write R 8 bit
data (n) Register data/read W 8 bit
P Stop condition R 1 bit
WA++ Increment word address internally R during acknowledge
S DW A WA A reg_data A P
write register
WA++
S DW A WA A reg_data 1 A P
write register
WA++
reg_data 2 A
write register
WA++
reg_data n A
write register
WA++
...
www.austriamicrosystems.com 1.2 52 - 98
AS3710 2V1
Datasheet - D e t a il e d D e s c ri pt io n - S y s t em F u nc t io n s
Figure 31. Random Read
Random Read and Sequential Read are combined formats. The repeated START condition is used to change the direction after the data transfer
from the master.
The word address transfer is initiated with a START condition issued by the master while the bus is idle. The START condition is followed by the
device-write address and the word address.
In order to change the data direction a repeated START condition is issued on the 1st SCL pulse after the acknowledge bit of the word address
transfer. After the reception of the device-read address, the slave becomes the transmitter. In this state the slave transmits register data located
by the previous received word address vector. The master responds to the data byte with a not-acknowledge, and issues a STOP condition on
the bus.
Figure 32. Sequential Read
Sequential Read is the extended form of Random Read, as more than one register-data bytes are transferred subsequently. In difference to the
Random Read, for a sequential read the transferred register-data bytes are responded by an acknowledge from the master. The number of data
bytes transferred in one sequence is unlimited (consider the behavior of the word-address counter). To terminate the transmission the master
has to send a not-acknowledge following the last data byte and generate the STOP condition subsequently.
Figure 33. Current Address Read
To keep the access time as small as possible, this format allows a read access without the word address transfer in advance to the data transfer.
The bus is idle and the master issues a START condition followed by the Device-Read address. Analogous to Random Read, a single byte
transfer is terminated with a not-acknowledge after the 1st register byte. Analogous to Sequential Read an unlimited number of data bytes can
be transferred, where the data bytes has to be responded with an acknowledge from the master. For termination of the transmission the master
sends a not-acknowledge following the last data byte and a subsequent STOP condition.
9.11.3 Parameter
The AS3710 is compatible to the NXP two wire specification http://www.nxp.com/acrobat_download2/literature/9398/39340011.pdf Version 2.1
January 2000 for standard and fast mode (no high speed mode).
Table 29. I2C SDA,SCL Characteristics
Symbol Parameter Note Min Typ Max Unit
V
IL
SCL,SDA Low Level input
voltage -0.3 0.4 V
V
IH
SCL,SDA High Level input
voltage 1.4 VSUP_G
PIO V
S DW A WA A NA
read register
WA++
dataSr DR P
S DW A WA A NA
read register
WA++
dataSr DR Preg_data 2 A
read register
WA++
reg_data n...A
read register
WA++
S NA
read register
WA++
dataDR Preg_data 2 A
read register
WA++
reg_data n...A
read register
WA++
www.austriamicrosystems.com 1.2 53 - 98
AS3710 2V1
Datasheet - R e g i s t e r O v e rv ie w
10 Register Overview
Table 30. Register Overview
Addr Name <D7> <D6> <D5> <D4> <D3> <D2> <D1> <D0>
00h SD1Voltage sd1_frequ sd1_vsel<6:0>
01h SD2Voltage sd2_frequ sd2_vsel<6:0>
02h SD3Voltage sd3_frequ sd3_vsel<6:0>
04h LDO1Voltage ldo1_on ldo1_ilimit -ldo1_vsel<4:0>
05h LDO2Voltage ldo2_on ldo2_ilimit -ldo2_vsel<4:0>
06h LDO3Voltage ldo3_on ldo3_ilimit ldo3_vsel<5:0>
07h LDO4Voltage ldo4_on ldo4_ilimit ldo4_vsel<5:0>
08h LDO5Voltage ldo5_on ldo5_ilimit ldo5_vsel<5:0>
09h LDO6Voltage ldo6_on ldo6_ilimit ldo6_vsel<5:0>
0ah LDO7Voltage ldo7_on ldo7_ilimit ldo7_vsel<5:0>
0bh LDO8Voltage ldo8_on ldo8_ilimit ldo8_vsel<5:0>
0ch GPIO1control gpio1_invert gpio1_iosf<6:3> gpio1_mode<2:0>
0dh GPIO2control gpio2_invert gpio2_iosf<6:3> gpio2_mode<2:0>
0eh GPIO3control gpio3_invert gpio3_iosf<6:3> gpio3_mode<2:0>
0fh GPIO4control gpio4_invert gpio4_iosf<6:3> gpio4_mode<2:0>
10h SD_control - sd3_enable sd2_enable sd1_enable
20h GPIOsignal_out - gpio4_out gpio3_out gpio2_out gpio1_out
21h GPIOsignal_in - gpio4_in gpio3_in gpio2_in gpio1_in
22h Reg1_Voltage reg1_voltage<7:0>
23h Reg2_Voltage reg2_voltage<7:0>
24h Reg_control reg2_select<7:4> reg1_select<3:0>
25h GPIOctrl_sd gpio_ctrl_sd3<5:4> gpio_ctrl_sd2<3:2> gpio_ctrl_sd1<1:0>
26h GPIOctrl_ldo1 gpio_ctrl_ldo4<7:6> gpio_ctrl_ldo3<5:4> gpio_ctrl_ldo2<3:2> gpio_ctrl_ldo1<1:0>
27h GPIOctrl_ldo2 gpio_ctrl_ldo8<7:6> gpio_ctrl_ldo7<5:4> gpio_ctrl_ldo6<3:2> gpio_ctrl_ldo5<1:0>
2bh Reg3_Voltage reg3_voltage<7:0>
2ch Reg_control3 - reg3_select<3:0>
www.austriamicrosystems.com 1.2 54 - 98
AS3710 2V1
Datasheet - R e g i s t e r O v e rv ie w
30h SD_control1 sd3_low_noise sd2_low_noise sd1_low_noise sd3_fast sd2_fast sd1_fast
31h SD_control2 sd_dvm_select<7:6> dvm_time<5:4> sd3_slave sd3_fsel sd2_fsel sd1_fsel
32h Battery_voltage_monitor FastResEn SupResEn ResVoltFall<5:3> ResVoltRise<2:0>
33h Startup_Control - chg_pwr_off_en power_off_at_vsup
low
34h ResetTimer - stby_reset_disabl
eauto_off off_delay<4:3> - res_timer<1:0>
35h ReferenceControl on_reset_delay reg_low_bias_mo
de clk_div2 standby_mode_on clk_int<3:1> low_power_on
36h ResetControl onkey_reset reset_reason<6:3> on_input power_off force_reset
37h OvertemperatureControl rst_ov_temp_140 ov_temp_140 ov_temp_110 temp_pmc_on
38h WatchdogControl - wtdg_res_on wtdg_on
39h Reg_standby_mod1 disable_regpd -sd3_stby_on sd2_stby_on sd1_stby_on
3ah Reg_standby_mod2 ldo8_stby_on ldo7_stby_on ldo6_stby_on ldo5_stby_on ldo4_stby_on ldo3_stby_on ldo2_stby_on ldo1_stby_on
40h curr_control curr3_ctrl<7:4> curr2_ctrl<3:2> curr1_ctrl<1:0>
41h pwm_control_l pwm_l_time<7:0>
42h pwm_control_h pwm_h_time<7:0>
43h curr1_value curr1_current<7:0>
44h curr2_value curr2_current<7:0>
45h curr3_value curr3_current<7:0>
46h Watchdog_min_timer wtdg_min_timer<7:0>
47h Watchdog_max_timer wtdg_max_timer<7:0>
48h WatchdogSoftwareSignal pwm_div<7:6> - wtdg_sw_sig
50h Stepup_control1 stepup1_v<7:3> stepup1_res stepup1_freq stepup1_on
51h Stepup_control2 stepup2_v<7:3> stepup2_res stepup2_freq stepup2_on
52h Stepup_control3 stepup3_v<7:3> stepup3_res stepup3_freq stepup3_on
53h Stepup_control4 stpup1_det stpup1_oc stpup1_oc_timeout stpup1_shortprot stpup2_pwm_lowf stepup2_prot_dis stepup2_fb<1:0>
54h Stepup_control5 - stepup2_pwm_mod
estepup12_clkinv stepup2_fbprot<1:0>
Table 30. Register Overview
Addr Name <D7> <D6> <D5> <D4> <D3> <D2> <D1> <D0>
www.austriamicrosystems.com 1.2 55 - 98
AS3710 2V1
Datasheet - R e g i s t e r O v e rv ie w
60h RTCcontrol - rtc_irq_mode<4:3> rtc_on rtc_alarm_wakeup
_en
rtc_rep_wakeup_e
n
61h RTCSecond second<7:0>
62h RTCMinute1 minute0<7:0>
63h RTCMinute2 minute1<7:0>
64h RTCMinute3 minute2<7:0>
65h RTCAlarmSecond alarmsecond<7:0>
66h RTCAlarmMinute1 alarmminute0<7:0>
67h RTCAlarmMinute2 alarmminute1<7:0>
68h RTCAlarmMinute3 alarmminute2<7:0>
69h SRAM SRAM<7:0>
70h ADC_control start_conversion adc_on adc_slow gpio_lv adc_select<3:0>
71h ADC_MSB_result result_not_ready D9_3<6:0>
72h ADC_LSB_result - D2_0<2:0>
73h RegStatus curr3_lv curr2_lv curr1_lv -sd3_lv sd2_lv sd1_lv
74h InterruptMask1 LowBat_int_m ovtmp_int_m onkey_int_m chdet_int_m eoc_int_m resume_int_m nobat_int_m trickle_int_m
75h InterruptMask2 rtc_rep_int_m stpup1_det_m stpup1_oc_m bat_temp_m sd3_lv_int_m sd2_lv_int_m sd1_lv_int_m
76h InterruptMask3 - gpio_restart_int_m gpio_int_m rtc_alarm_int_m
77h InterruptStatus1 LowBat_int_i ovtmp_int_i onkey_int_i chdet_int_i eoc_int_i resume_int_i nobat_int_i trickle_int_i
78h InterruptStatus2 rtc_rep_int_i stpup1_det_i stpup1_oc_i bat_temp_i sd3_lv_int_i sd2_lv_int_i sd1_lv_int_i
79h InterrupStatus3 - gpio_restart_int_i gpio_int_i rtc_alarm_int_i
80h ChargerControl1 nobat_ntc_det auto_resume bat_charging_enab
le usb_current<4:1> usb_chgEn
81h ChargerVoltageControl vsup_min<7:6> ChVoltEOC<5:0>
82h ChargerCurrentControl eoc_current cc_lowlimit ConstantCurrent<5:2> TrickleCurrent<1:0>
83h Chargerconfig - Charging_1Hz_clk ChVoltResume temp_sel<4:3> vsup_voltage<2:0>
84h NTCsupervision - ntc_temp ntc_10k ntc_on
85h Chargersupervision - ovprot_dis dcdc_chmode charging_tmax ch_timeout<3:0>
Table 30. Register Overview
Addr Name <D7> <D6> <D5> <D4> <D3> <D2> <D1> <D0>
www.austriamicrosystems.com 1.2 56 - 98
AS3710 2V1
Datasheet - R e g i s t e r O v e rv ie w
86h ChargerStatus1 Nobat Battemp_hi EOC CVM Trickle Resume CCM ChDet
87h ChargerStatus2 - usb_prot_ready batsw_on batsw_mode
8eh LockRegister - charger_lock reg_lock<1:0>
90h ASIC_ID1 ID1<7:0>
91h ASIC_ID2 - revision<3:0>
Table 30. Register Overview
Addr Name <D7> <D6> <D5> <D4> <D3> <D2> <D1> <D0>
www.austriamicrosystems.com 1.2 57 - 98
AS3710 2V1
Datasheet - R e g is t e r O v e rvi e w
SD1Voltage Register (Address 00h).
SD2Voltage Register (Address 01h).
SD3Voltage Register (Address 02h).
Addr: 00h SD1Voltage
Bit Bit Name Default Access Bit Description
7sd1_frequ 0 RW
Selects between high and low frequency dependent on sd1_fsel
0 : 2MHz if
sd1_fsel
=0, 3MHz if
sd1_fsel
=1
1 : 3MHz if
sd1_fsel
=0, 4MHz if
sd1_fsel
=1
6:0 sd1_vsel 'b0000000 RW
The voltage select bits set the DC/DC output voltage level and power
the DC/DC converter down.
00h : DC/DC powered down
01h-40h : V_SD1=0.6V+
sd1_vsel
*12.5mV
41h-70h : V_SD1=1.4V+(
sd1_vsel
-40h)*25mV
71h-7Fh : V_SD1=2.6V+(
sd1_vsel
-70h)*50mV
Addr: 01h SD2Voltage
Bit Bit Name Default Access Bit Description
7sd2_frequ 0 RW
Selects between high and low frequency dependent on sd2_fsel
0 : 2MHz if
sd2_fsel
=0, 3MHz if
sd2_fsel
=1
1 : 3MHz if
sd2_fsel
=0, 4MHz if
sd2_fsel
=1
6:0 sd2_vsel 'b000 0000 RW
The voltage select bits set the DC/DC output voltage level and power
the DC/DC converter down.
00h : DC/DC powered down
01h-40h : V_SD2=0.6V+
sd2_vsel
*12.5mV
41h-70h : V_SD2=1.4V+(
sd2_vsel
-40h)*25mV
71h-7Fh : V_SD2=2.6V+(
sd2_vsel
-70h)*50mV
Addr: 02h SD3Voltage
Bit Bit Name Default Access Bit Description
7sd3_frequ 0 RW
Selects between high and low frequency dependent on sd3_fsel
0 : 2MHz if
sd3_fsel
=0, 3MHz if
sd3_fsel
=1
1 : 3MHz if
sd3_fsel
=0, 4MHz if
sd3_fsel
=1
6:0 sd3_vsel 'b000 0000 RW
The voltage select bits set the DC/DC output voltage level and power
the DC/DC converter down.
00h : DC/DC powered down
01h-40h : V_SD3=0.6V+
sd3_vsel
*12.5mV
41h-70h : V_SD3=1.4V+(
sd3_vsel
-40h)*25mV
71h-7Fh : V_SD3=2.6V+(
sd3_vsel
-70h)*50mV
www.austriamicrosystems.com 1.2 58 - 98
AS3710 2V1
Datasheet - R e g is t e r O v e rvi e w
LDO1Voltage Register (Address 04h).
LDO2Voltage Register (Address 05h).
LDO3Voltage Register (Address 06h).
Addr: 04h LDO1Voltage
Bit Bit Name Default Access Bit Description
7ldo1_on 0 RW
Switch on of LDO1
0 : LDO off
1 : LDO on
6ldo1_ilimit 0 RW
Sets limit of LDO1
0 : 150mA limit
1 : 250mA limit
4:0 ldo1_vsel 'b0 0000 RW
The voltage select bits set the LDO output voltage
0h-0Fh : 1.2V +
ldo1_vsel
*50mV
10h-1Fh : 1.8V + (
ldo1_vsel
-16)*100mV
Addr: 05h LDO2Voltage
Bit Bit Name Default Access Bit Description
7ldo2_on 0 RW
Switch on of LDO2
0 : LDO off
1 : LDO on
6ldo2_ilimit 0 RW
Sets limit of LDO2
0 : 150mA limit
1 : 250mA limit
4:0 ldo2_vsel 'b0 0000 RW
The voltage select bits set the LDO output voltage
0h-0Fh : 1.2V +
ldo2_vsel
*50mV
10h-1Fh : 1.8V + (
ldo2_vsel
-16)*100mV
Addr: 06h LDO3Voltage
Bit Bit Name Default Access Bit Description
7ldo3_on 0 RW
Switch on of LDO3
0 :LDO off
1 :LDO on
6ldo3_ilimit 0 RW
Sets limit of LDO3
0 : 150mA operating range
1 :300mA operating range
5:0 ldo3_vsel 'b00 0000 RW
The voltage select bits set the LDO output voltage
00h-10h : V_LDO3=0.9V+
ldo3_vsel
*50mV
11h-1fh : do not use
20h-3Fh : V_LDO3=1.75V+(
ldo3_vsel
-20h)*50mV
www.austriamicrosystems.com 1.2 59 - 98
AS3710 2V1
Datasheet - R e g is t e r O v e rvi e w
LDO4Voltage Register (Address 07h).
LDO5Voltage Register (Address 08h).
LDO6Voltage Register (Address 09h).
Addr: 07h LDO4Voltage
Bit Bit Name Default Access Bit Description
7ldo4_on 0 RW
Switch on of LDO4
0 :LDO off
1 :LDO on
6ldo4_ilimit 0 RW
Sets limit of LDO4
0 :150mA operating range
1 :300mA operating range
5:0 ldo4_vsel 'b00 0000 RW
The voltage select bits set the LDO output voltage
00h-10h :V_LDO4=0.9V+
ldo4_vsel
*50mV
11h-1fh :Do not use
20h-3Fh :V_LDO4=1.75V+(
ldo4_vsel
-20h)*50mV
Addr: 08h LDO5Voltage
Bit Bit Name Default Access Bit Description
7ldo5_on 0 RW
Switch on of LDO5
0 :LDO off
1 :LDO on
6ldo5_ilimit 0 RW
Sets limit of LDO5
0 :150mA operating range
1 :300mA operating range
5:0 ldo5_vsel 'b00 0000 RW
The voltage select bits set the LDO output voltage
00h-10h :V_LDO5=0.9V+
ldo5_vsel
*50mV
11h-1fh :Do not use
20h-3Fh :V_LDO5=1.75V+(
ldo5_vsel
-20h)*50mV
Addr: 09h LDO6Voltage
Bit Bit Name Default Access Bit Description
7ldo6_on 0 RW
Switch on of LDO6
0 :LDO off
1 :LDO on
6ldo6_ilimit 0 RW
Sets limit of LDO6
0 :150mA operating range
1 :300mA operating range
5:0 ldo6_vsel 'b00 0000 RW
The voltage select bits set the LDO output voltage
00h-10h :V_LDO6=0.9V+
ldo6_vsel
*50mV
11h-1fh :Do not use
20h-3Fh :V_LDO6=1.75V+(
ldo6_vsel
-20h)*50mV
www.austriamicrosystems.com 1.2 60 - 98
AS3710 2V1
Datasheet - R e g is t e r O v e rvi e w
LDO7Voltage Register (Address 0ah).
LDO8Voltage Register (Address 0bh).
Addr: 0ah LDO7Voltage
Bit Bit Name Default Access Bit Description
7ldo7_on 0 RW
Switch on of LDO7
0 :LDO off
1 :LDO on
6ldo7_ilimit 0 RW
Sets limit of LDO7
0 :150mA operating range
1 :300mA operating range
5:0 ldo7_vsel 'b00 0000 RW
The voltage select bits set the LDO output voltage
00h-10h :V_LDO7=0.9V+
ldo7_vsel
*50mV
11h-1fh :Do not use
20h-3Fh :V_LDO7=1.75V+(
ldo7_vsel
-20h)*50mV
Addr: 0bh LDO8Voltage
Bit Bit Name Default Access Bit Description
7ldo8_on 0 RW
Switch on of LDO8
0 :LDO off
1 :LDO on
6ldo8_ilimit 0 RW
Sets limit of LDO8
0 :150mA operating range
1 :300mA operating range
5:0 ldo8_vsel 'b00 0000 RW
The voltage select bits set the LDO output voltage
00h-10h :V_LDO8=0.9V+
ldo8_vsel
*50mV
11h-1fh :Do not use
20h-3Fh :V_LDO8=1.75V+(
ldo8_vsel
-20h)*50mV
www.austriamicrosystems.com 1.2 61 - 98
AS3710 2V1
Datasheet - R e g is t e r O v e rvi e w
GPIO1control Register (Address 0ch).
Addr: 0ch GPIO1control
Bit Bit Name Default Access Bit Description
7gpio1_invert 0 RW
Invert GPIO input/output
0 :Normal mode
1 :Invert input or output
6:3 gpio1_iosf 'b0000 RW
Select the GPIO special function
.0 :Normal I/O operation
.1 :Interrupt output
.2 :VSUP_low output
.3 :GPIO interrupt input
.4 :Current sink PWM input
.5 : Vselect input, (apply on
reg1_select
,
reg2_select
and
reg3_select
, if
gpio2_iosf
=5 then apply on
reg1_select
only)
.6 :standby + Vselect + restart interrupt input
.7 :pwr_good output
.8 :Q32k output (if osc_pd=1 then internal RC oscillator with 32kHz
divider is used)
.9 :Watchdog input
10 :Charger active output
11 :EOC output
12 :100/500mA charger input
13 :500mA/2.5A charger input
14 :PWM output
15 :Charger enable input
2:0 gpio1_mode 'b011 RW
Selects the GPIO mode (I, I/O, Tri, Pulls)
0 :Input
1 :Output (push and pull)
2 :IO (open drain, only NMOS is active)
3 :Tristate
4 :Input with pullup
5 :Input with pulldown
6 :IO (open drain (NMOS) with pullup)
7 :n/a
www.austriamicrosystems.com 1.2 62 - 98
AS3710 2V1
Datasheet - R e g is t e r O v e rvi e w
GPIO2control Register (Address 0dh).
Addr: 0dh GPIO2control
Bit Bit Name Default Access Bit Description
7gpio2_invert 0 RW
Invert GPIO input/output
0 :Normal mode
1 :Invert input or output
6:3 gpio2_iosf 'b0000 RW
Select the GPIO special function
.0 :Normal i/o operation
.1 :Interrupt output
.2 :VSUP_low output
.3 :GPIO interrupt input
.4 :Current sink PWM input
.5 :Vselect input, (apply on
reg1_select
,
reg2_select
and
reg3_select
, if
gpio1_iosf
=5 then apply on
reg2_select
and
reg3_select
only)
.6 :standby + Vselect + restart interrupt input
.7 :pwr_good output
.8 :Q32k output (if osc_pd=1 then internal RC oscillator with 32kHz
divider is used)
.9 :Stepup1 over-current output
10 :Charger active output
11 :EOC output
12 :100/500mA charger input
13 :500mA/2.5A charger input
14 :PWM output
15 :Charger enable input
2:0 gpio2_mode 'b011 RW
Selects the GPIO mode (I, I/O, Tri, Pulls)
0 :Input
1 :Output (push and pull)
2 :IO (open drain, only NMOS is active)
3 :ADC input (tristate)
4 :Input with pullup
5 :Input with pulldown
6 :IO (open drain (NMOS) with pullup)
7 :ADC input with pulldown
www.austriamicrosystems.com 1.2 63 - 98
AS3710 2V1
Datasheet - R e g is t e r O v e rvi e w
GPIO3control Register (Address 0eh).
Addr: 0eh GPIO3control
Bit Bit Name Default Access Bit Description
7gpio3_invert 0 RW
Invert GPIO input/output
0 : Normal mode
1 : Invert input or output
6:3 gpio3_iosf 'b0000 RW
Select the GPIO special function
.0 : Normal i/o operation
.1 : Interrupt output
.2 : VSUP_low output
.3 : GPIO interrupt input
.4 : Currentsink PWM input
.5 : Vselect input, (apply on
reg1_select
,
reg2_select
and
reg3_select
)
.6 : standby + Vselect + restart interrupt input
.7 : pwr_good output
.8 :Q32k output (if osc_pd=1 then internal RC oscillator with 32kHz
divider is used)
.9 : Stepup1 over-current output
10 : Charger active output
11 : EOC output
12 : 100/500mA charger input
13 : 500mA/2.5A charger input
14 : PWM output
15 : Charger enable input
2:0 gpio3_mode 'b011 RW
Selects the GPIO mode (I, I/O, Tri, Pulls)
0 :Input
1 :Output (push and pull)
2 :IO (open drain, only NMOS is active)
3 :ADC input (tristate)
4 :Input with pullup
5 :Input with pulldown
6 :IO (open drain (NMOS) with pullup)
7 :ADC input with pulldown
www.austriamicrosystems.com 1.2 64 - 98
AS3710 2V1
Datasheet - R e g is t e r O v e rvi e w
GPIO4control Register (Address 0fh).
SD_control Register (Address 10h).
Addr: 0fh GPIO4control
Bit Bit Name Default Access Bit Description
7gpio4_invert 0 RW
Invert GPIO input/output
0 :Normal mode
1 :Invert input or output
6:3 gpio4_iosf 'b0000 RW
Select the GPIO special function
.0 :Normal i/o operation
.1 :Interrupt output
.2 :VSUP_low output
.3 :GPIO interrupt input
.4 :Currentsink PWM input
.5 :Vselect input, (apply on
reg1_select
,
reg2_select
and
reg3_select
)
.6 :standby + Vselect + restart interrupt input
.7 :pwr_good output
.8 :Q32k output (if osc_pd=1 then internal RC oscillator with 32kHz
divider is used)
.9 :Watchdog input
10 :Charger active output
11 :EOC output
12 :100/500mA charger input
13 :500mA/2.5A charger input
14 :PWM output
15 :Charger enable input
2:0 gpio4_mode 'b011 RW
Selects the GPIO mode (I, I/O, Tri, Pulls)
0 :Input
1 :Output (push and pull)
2 :IO (open drain, only NMOS is active)
3 :ADC input (tristate)
4 :Input with pullup
5 :Input with pulldown
6 :IO (open drain (NMOS) with pullup)
7 :ADC input with pulldown
Addr: 10h SD_control
Bit Bit Name Default Access Bit Description
7:4 - 'b0000 n/a do not use
3 - 'b0 n/a do not use
2sd3_enable 'b1 RW
Global stepdown3 enable
0 :SD3 off
1 :SD3 on
1sd2_enable 'b1 RW
Global stepdown2 enable
0 :SD2 off
1 :SD2 on
0sd1_enable 'b1 RW
Global stepdown1 enable
0 :SD1 off
1 :SD1 on
www.austriamicrosystems.com 1.2 65 - 98
AS3710 2V1
Datasheet - R e g is t e r O v e rvi e w
GPIOsignal_out Register (Address 20h).
GPIOsignal_in Register (Address 21h).
Reg1_Voltage Register (Address 22h).
Reg2_Voltage Register (Address 23h).
Addr: 20h GPIOsignal_out
Bit Bit Name Default Access Bit Description
7:4 - 'b0000 n/a do not use
3gpio4_out 0 RW This bit determines the output signal of the GPIO4 pin when selected as
output source.
2gpio3_out 0 RW This bit determines the output signal of the GPIO3 pin when selected as
output source.
1gpio2_out 0 RW This bit determines the output signal of the GPIO2 pin when selected as
output source.
0gpio1_out 0 RW This bit determines the output signal of the GPIO1 pin when selected as
output source.
Addr: 21h GPIOsignal_in
Bit Bit Name Default Access Bit Description
7:4 - 'b0000 n/a do not use
3gpio4_in 0 RO This bit reflects the logic level of the GPIO4 pin when configured as
digital input pin.
2gpio3_in 0 RO This bit reflects the logic level of the GPIO3 pin when configured as
digital input pin.
1gpio2_in 0 RO This bit reflects the logic level of the GPIO2 pin when configured as
digital input pin.
0gpio1_in 0 RO This bit reflects the logic level of the GPIO1 pin when configured as
digital input pin.
Addr: 22h Reg1_Voltage
Bit Bit Name Default Access Bit Description
7:0 reg1_voltage 'b0000 0000 RW
This register is mapped to the register address 0h+Reg1_select , if
gioX_iosf = 5 or 6 (Vselect input), and the GPIOx input = 1. This feature
allows voltage switching of a predefined regulator with just one GPIO
input.
0 ..FFh :Selects voltage, ilimit, on or frequency bits of LDO or DCDC
Addr: 23h Reg2_Voltage
Bit Bit Name Default Access Bit Description
7:0 reg2_voltage 'b0000 0000 RW
This register is mapped to the register address 0h+Reg3_select , if
gioX_iosf=5 or 6 (Vselect input), and GPIOx input = 1, This feature
allows voltage switching of a predefined regulator with just one GPIO
input
 0 ..FFh : Selects voltage, ilimit, on or frequency bits of LDO or DCDC
www.austriamicrosystems.com 1.2 66 - 98
AS3710 2V1
Datasheet - R e g is t e r O v e rvi e w
Reg_control Register (Address 24h).
GPIOctrl_sd Register (Address 25h).
Addr: 24h Reg_control
Bit Bit Name Default Access Bit Description
7:4 reg2_select 'b1111 RW Selects regulator for mapping feature; if reg_select2 0Ch, then
feature is disabled.
3:0 reg1_select 'b1111 RW Selects regulator for mapping feature; if reg_select1 0Ch, then
feature is disabled.
Addr: 25h GPIOctrl_sd
Bit Bit Name Default Access Bit Description
7:6 - 'b00 n/a do not use
5:4 gpio_ctrl_sd3 'b00 RW
Enable GPIO control of DCDC SD3. GPIO ctrl only enabled, if
sd3_vsel
> 0
0 :No GPIO control
1 :Controlled by GPIO1
2 :Controlled by GPIO2
3 :Controlled by GPIO3
3:2 gpio_ctrl_sd2 'b00 RW
Enable GPIO control of DCDC SD2. GPIO ctrl only enabled, if
sd2_vsel
> 0
0 :No GPIO control
1 :Controlled by GPIO1
2 :Controlled by GPIO2
3 :Controlled by GPIO3
1:0 gpio_ctrl_sd1 'b00 RW
Enable GPIO control of DCDC SD1. GPIO ctrl only enabled, if
sd1_vsel
> 0
0 :No GPIO control
1 :Controlled by GPIO1
2 :Controlled by GPIO2
3 :Controlled by GPIO3
www.austriamicrosystems.com 1.2 67 - 98
AS3710 2V1
Datasheet - R e g is t e r O v e rvi e w
GPIOctrl_ldo1 Register (Address 26h).
GPIOctrl_ldo2 Register (Address 27h).
Addr: 26h GPIOctrl_ldo1
Bit Bit Name Default Access Bit Description
7:6 gpio_ctrl_ldo4 'b00 RW
Enable GPIO control of LDO4. GPIO ctrl only enabled, if
ldo4_on
= 1
0 :No GPIO control
1 :Controlled by GPIO1
2 :Controlled by GPIO2
3 :Controlled by GPIO3
5:4 gpio_ctrl_ldo3 'b00 RW
Enable GPIO control of LDO3. GPIO ctrl only enabled, if
ldo3_on
= 1
0 :No GPIO control
1 :Controlled by GPIO1
2 :Controlled by GPIO2
3 :Controlled by GPIO3
3:2 gpio_ctrl_ldo2 'b00 RW
Enable GPIO control of LDO2. GPIO ctrl only enabled, if
ldo2_on
= 1
0 :No GPIO control
1 :Controlled by GPIO1
2 :Controlled by GPIO2
3 :Controlled by GPIO3
1:0 gpio_ctrl_ldo1 'b00 RW
Enable GPIO control of LDO1. GPIO ctrl only enabled, if
ldo1_on
= 1
0 :No GPIO control
1 :Controlled by GPIO1
2 :Controlled by GPIO2
3 :Controlled by GPIO3
Addr: 27h GPIOctrl_ldo2
Bit Bit Name Default Access Bit Description
7:6 gpio_ctrl_ldo8 'b00 RW
Enable GPIO control of LDO8. GPIO ctrl only enabled, if
ldo8_on
= 1
0 :No GPIO control
1 :Controlled by GPIO1
2 :Controlled by GPIO2
3 :Controlled by GPIO3
5:4 gpio_ctrl_ldo7 'b00 RW
Enable GPIO control of LDO7. GPIO ctrl only enabled, if
ldo7_on
= 1
0 :No GPIO control
1 :Controlled by GPIO1
2 :Controlled by GPIO2
3 :Controlled by GPIO3
3:2 gpio_ctrl_ldo6 'b00 RW
Enable GPIO control of LDO6. GPIO ctrl only enabled, if
ldo6_on
= 1
0 :No GPIO control
1 :Controlled by GPIO1
2 :Controlled by GPIO2
3 :Controlled by GPIO3
1:0 gpio_ctrl_ldo5 'b00 RW
Enable GPIO control of LDO5. GPIO ctrl only enabled, if
ldo5_on
= 1
0 :No GPIO control
1 :Controlled by GPIO1
2 :Controlled by GPIO2
3 :Controlled by GPIO3
www.austriamicrosystems.com 1.2 68 - 98
AS3710 2V1
Datasheet - R e g is t e r O v e rvi e w
Reg3_Voltage Register (Address 2bh).
Reg_control3 Register (Address 2ch).
SD_control1 Register (Address 30h).
Addr: 2bh Reg3_Voltage
Bit Bit Name Default Access Bit Description
7:0 reg3_voltage 'b0000 0000 RW
This register is mapped to the register address 0h+Reg3_select , if
gioX_iosf=5 or 6 (Vselect input), and GPIOx input = 1, This feature
allows voltage switching of a predefined regulator with just one GPIO
input
 0 ..FFh : Selects voltage, ilimit, on or frequency bits of LDO or DCDC
Addr: 2ch Reg_control3
Bit Bit Name Default Access Bit Description
7:4 -'b0000 n/a do not use
3:0 reg3_select 'b1111 RW Selects regulator for mapping feature; if reg_select3 0Ch, then
feature is disabled.
Addr: 30h SD_control1
Bit Bit Name Default Access Bit Description
7-0 n/a do not use
6sd3_low_noise 0 RW
Enables low noise mode of SD3. If enabled, smaller current pulses and
output ripple is activated.
0 :Normal mode. Minimum current pulses of >100mA applied in skip
mode.
1 :Low noise mode. Only minimum on time applied in skip mode.
5sd2_low_noise 0 RW
Enables low noise mode of SD2. If enabled, smaller current pulses and
output ripple is activated.
0 :Normal mode. Minimum current pulses of >100mA applied in skip
mode.
1 :Low noise mode. Only minimum on time applied in skip mode.
4sd1_low_noise 0 RW
Enables low noise mode of SD1. If enabled, smaller current pulses and
output ripple is activated.
0 :Normal mode. Minimum current pulses of >100mA applied in skip
mode.
1 :Low noise mode. Only minimum on time applied in skip mode.
3-0 n/a do not use
2sd3_fast 0 RW
Selects a faster regulation mode for SD3 suitable for larger load
changes.
0 :normal mode
1 :fast mode, double Cext required (see external components)
1sd2_fast 0 RW
Selects a faster regulation mode for SD2 suitable for larger load
changes.
0 :normal mode
1 :fast mode, double Cext required (see external components)
0sd1_fast 0 RW
Selects a faster regulation mode for SD1 suitable for larger load
changes.
0 :normal mode
1 :fast mode, double Cext required (see external components)
www.austriamicrosystems.com 1.2 69 - 98
AS3710 2V1
Datasheet - R e g is t e r O v e rvi e w
SD_control2 Register (Address 31h).
Addr: 31h SD_control2
Bit Bit Name Default Access Bit Description
7:6 sd_dvm_select 'b00 RW
Apply DVM counter to the following DCDC converter:
0 :Select SD1 for DVM
1 :Select SD2 for DVM
2 :Select SD3 for DVM
3 :n/a
5:4 dvm_time 'b00 RW
Time steps of DVM voltage change of selected step down, if voltage of
step Down is changed during operation (sdx_vsel) voltage is
decreased/increased by single steps 12.5mV
0 :0 µsec, immediate change (no DVM)
1 :4 µsec time delay between steps
2 :8 µsec time delay between steps
3 :16 µsec time delay between steps
3sd3_slave 0 RW
Enables slave mode of SD3
0 :Normal mode of SD3
1 :SD3 is slave of SD2
2sd3_fsel 0 RW
Selects between high and low frequency range
0 :2 or 3MHz frequency (selectable by
sd3_frequ
)
1 :3 or 4MHz frequency (selectable by
sd3_frequ
)
1sd2_fsel 0 RW
Selects between high and low frequency range
0 :2 or 3MHz frequency (selectable by
sd2_frequ
)
1 :3 or 4MHz frequency (selectable by
sd2_frequ
)
0sd1_fsel 0 RW
Selects between high and low frequency range
0 :2 or 3MHz frequency (selectable by
sd1_frequ
)
1 :3 or 4MHz frequency (selectable by
sd1_frequ
)
www.austriamicrosystems.com 1.2 70 - 98
AS3710 2V1
Datasheet - R e g is t e r O v e rvi e w
Battery_voltage_monitor Register (Address 32h).
Startup_Control Register (Address 33h).
Addr: 32h Battery_voltage_monitor
Bit Bit Name Default Access Bit Description
7FastResEn 0 RW 0 :
ResVoltFall
debounce time = 3msec
1 :
ResVoltFall
debounce time = 4µsec
6SupResEn 0 RW
0 :A reset is generated if VSUP falls below 2.7V **
1 :A reset is generated if VSUP falls below
ResVoltFall
** If VBAT falls below
ResVoltFall
only an interrupt is generated (if
enabled) and the µProcessor can shut down the system)
5:3 ResVoltFall 'b000 RW
This value determines the reset level
ResVoltFall
for falling VBAT. It is
recommended to set this value at least 200mV lower than
ResVoltRise
0 :2.7V
1 :2.9V
2 :3.1V
3 :3.2V
4 :3.3V
5 :3.4V
6 :3.5V
7 :3.6V
2:0 ResVoltRise 'b000 RO (OTP)
This value determines the reset level
ResVoltRise
for rising VBAT. It is
recommended to set this value at least 200mV higher than
ResVoltFall
0 :2.7V
1 :2.9V
2 :3.1V
3 :3.2V
4 :3.3V
5 :3.4V
6 :3.5V
7 :3.6V
Addr: 33h Startup_Control
Bit Bit Name Default Access Bit Description
7:2 -‘b00 0000 n/a do not use
1chg_pwr_off_en 0 RO (OTP)
Select charger detection in power off mode Read only (OTP setting)
0 :Exit of Power Off mode, if charger is detected (level detection)
1 :Exit of Power Off mode, if charger insertion is detected (rising edge
detection) .
0power_off_at_vsuplow 0 RW
Switch on Power off mode if low VSUP is detected during active or
standby mode (Pin ON= low and bit
auto_off
=0)
0 :If low battery is detected, battery voltage is continuously monitored
and chip startup initiated if battery voltage is above
ResVoltRise
1 :If low battery is detected, enter power off mode
www.austriamicrosystems.com 1.2 71 - 98
AS3710 2V1
Datasheet - R e g is t e r O v e rvi e w
ResetTimer Register (Address 34h).
Addr: 34h ResetTimer
Bit Bit Name Default Access Bit Description
7 - 'b0 n/a do not use
6stby_reset_disable 0 RW
Disable Reset output signal (pin XRES) in standby mode.
0 :Normal mode, reset is active in standby mode
1 :No reset in standby mode and during exit of standy mode
5auto_off 0 RO
Defines startup behavior at first battery insertion
0 :Startup of chip if VBAT>ResVoltRise
1 :Enter power off mode (Startup with ON key or charger insertion)
4:3 off_delay 'b01 RW
Set Delay between I2C command, GPIO or Reset signal for power_off,
standby mode or reset and execution of that command.
0 :No delay
1 :8 msec
2 :16 msec
3 :32 msec
2 - 'b0 n/a do not use
1:0 res_timer 'b00 RW
Set RESTime, after the last regulator has started
0 :RESTIME = 10ms
1 :RESTIME = 50ms
2 :RESTIME = 100ms
3 :RESTIME = 150ms
www.austriamicrosystems.com 1.2 72 - 98
AS3710 2V1
Datasheet - R e g is t e r O v e rvi e w
ReferenceControl Register (Address 35h).
Addr: 35h ReferenceControl
Bit Bit Name Default Access Bit Description
7on_reset_delay 0 RW
Sets the on reset delay time
0 :8 sec (if
onkey_reset
=1)
1 :4 sec (if
onkey_reset
=1)
6reg_low_bias_mode 0 RW
Sets the on reset delay time
0 :normal operation
1 :reduces the bias for the analog LDO1 and LDO2
5clk_div2 0 RW
Divide internal clock oscillator by 2 to reduce quiescent current for low
power operation
0 :Normal mode
1 :Internal clock frequency divided by two. All timings are increased
by two. Switching frequency of all DCDC converters are divided by two.
Reduced transient performance of DCDC converters.
4standby_mode_on 0 RW
Setting to 1 sets the PMU into standby mode. All regulators are
disabled except those regulators enabled by register Reg standby
mode. XRES will be pulled to low. A normal startup of all regulators will
be done with any interrupt (has to be enabled before entering standby
mode). During this startup, regulators defined by Reg standby mode
register are continuously on.
3:1 clk_int 'b000 RW
Sets the internal CLK frequency f
CLK
used for DCDCs, PWM, ...
0 :4 MHz (default)
1 :3.8 MHz
2 :3.6 MHz
3 :3.4 MHz
4 :3.2 MHz
5 :3.0 MHz
6 :2.8 MHz
7 :2.6 MHz
All frequencies, timings and delays in this datasheet are based on
4MHz
clk_int
0low_power_on 0 RW
Enable low power mode of internal reference.
0 :Standard mode
1 :Low power mode - all specification except noise parameters are
still valid. Iq reduced by approx. 30µA
www.austriamicrosystems.com 1.2 73 - 98
AS3710 2V1
Datasheet - R e g is t e r O v e rvi e w
ResetControl Register (Address 36h).
OvertemperatureControl Register (Address 37h).
Addr: 36h ResetControl
Bit Bit Name Default Access Bit Description
7onkey_reset 0 RW 0 :Reset after 4/8 seconds ON pressed disabled
1 :Reset after 4/8 seconds ON pressed enabled
6:3 reset_reason 'b0000 RW
Flags to indicate to the software the reason for the last reset
.0 :V
POR
has been reached (battery or charger insertion from
scratch)
.1 :
ResVoltFall
was reached (battery voltage drop below 2.75V)
.2 :Software forced by
force_reset
.3 :Software forced by
power_off
and ON was pulled high
.4 :Software forced by
power_off
and charger was detected
.5 :External triggered through the pin XRES
.6 :Reset caused by overtemperature T140
.7 :Reset caused by watchdog
.8 :Reset caused by 4/8 seconds ON press
.9 :NA
10 :Reset caused by RTC repeated wakeup or alarm wakeup
11 :Reset caused by interrupt in standby mode
12 :Reset caused by ON pulled high in standby mode
2on_input 0 R_PUSH Read: This flag represents the state of the ON pad directly
Write: Setting to 1 resets the 4/8 sec.
onkey_reset
timer
1power_off 0 RW Setting to 1 starts a reset cycle, but waits after the Reg_off state for a
rising edge on the pin ON or until the charger is detected.
0force_reset 0 RW Setting to 1 starts a complete reset cycle
Addr: 37h OvertemperatureControl
Bit Bit Name Default Access Bit Description
7:4 -'b0000 n/a do not use
3rst_ov_temp_140 0 RW
If the over-temperature threshold 2 has been reached, the flag
ov_temp_140
is set and a reset cycle is started.
ov_temp_140
should be reset by writing 1 and afterward 0 to
rst_ov_temp_140
.
2ov_temp_140 0 RO
Flag that the over-temperature threshold 2 (T140) has been reached -
this flag is not reset by a over-temperature caused reset and has to be
reset by
rst_ov_temp_140
.
1ov_temp_110 0 RO Flag that the over-temperature threshold 1 (T110) has been reached
0temp_pmc_on 1 RO Switch on / off of temperature supervision; default: on - all other bits are
only valid if set to 1. Leave at 1, do not disable
www.austriamicrosystems.com 1.2 74 - 98
AS3710 2V1
Datasheet - R e g is t e r O v e rvi e w
WatchdogControl Register (Address 38h).
Reg_standby_mod1 Register (Address 39h).
Reg_standby_mod2 Register (Address 3ah).
Addr: 38h WatchdogControl
Bit Bit Name Default Access Bit Description
7:2 -'b00 0000 n/a do not use
1wtdg_res_on 0 RW If the watchdog expires and wtdg_res_on = 1 a reset cycle will be
started
0wtdg_on 0 RW
Switches on the complete watchdog
0 :Watchdog off
1 :Watchdog enabled
Addr: 39h Reg_standby_mod1
Bit Bit Name Default Access Bit Description
7disable_regpd 0 RW
This bit disables the pulldown of all regulators
0 :Normal operation approx. 1k pulldown of all regulators
1 :Pulldown disabled >100k of all regulators
6:4 -b000 n/a do not use
3-0 n/a do not use
2sd3_stby_on 0 RW Enable Step down 3 in standby mode
1sd2_stby_on 0 RW Enable Step down 2 in standby mode
0sd1_stby_on 0 RW Enable Step down 1 in standby mode
Addr: 3ah Reg_standby_mod2
Bit Bit Name Default Access Bit Description
7ldo8_stby_on 0 RW Enable LDO8 in standby mode
6ldo7_stby_on 0 RW Enable LDO7 in standby mode
5ldo6_stby_on 0 RW Enable LDO6 in standby mode
4ldo5_stby_on 0 RW Enable LDO5 in standby mode
3ldo4_stby_on 0 RW Enable LDO4 in standby mode
2ldo3_stby_on 0 RW Enable LDO3 in standby mode
1ldo2_stby_on 0 RW Enable LDO2 in standby mode
0ldo1_stby_on 0 RW Enable LDO1 in standby mode
www.austriamicrosystems.com 1.2 75 - 98
AS3710 2V1
Datasheet - R e g is t e r O v e rvi e w
curr_control Register (Address 40h).
pwm_control_l Register (Address 41h).
Addr: 40h curr_control
Bit Bit Name Default Access Bit Description
7:4 curr3_ctrl 'b0000 RW
On/Off control of the pad CURR3
...0 :Current sink is turned off
...1 :Current sink is active
.. .2 :Current sink is active and LED string connected to SU2. Required
for automatic feedback selection.
.3 :Controlled by internal PWM generator, or external, if gpioX_iosf=4
.4 :XINT output (active low interrupt output)
.5 :VSUP_low output
.6 :Charger active output
.7 :EOC output
.8 :Inverted signal of ON pin as output
.9 :Signal of ON pin as output
10: Q32k output (if osc_pd=1 then internal RC oscillator with 32kHz
divider is used)
.11 :PWM output
.12 :PWRGOOD output
13-15 :NA
3:2 curr2_ctrl 'b00 RW
On/Off control of the pad CURR2
0 :Current sink is turned off
1 :Current sink is active
2 :Current sink is active and LED string connected to SU2. Required
for automatic feedback selection.
3 :Controlled by internal PWM generator, or external, if gpioX_iosf=4
1:0 curr1_ctrl 'b00 RW
On/Off control of the pad CURR1
0 :Current sink is turned off
1 :Current sink is active
2 :Current sink is active and LED string connected to SU2. Required
for automatic feedback selection.
3 :Controlled by internal PWM generator, or external, if gpioX_iosf=4
Addr: 41h pwm_control_l
Bit Bit Name Default Access Bit Description
7:0 pwm_l_time 'b00000000 RW
This bit defines the low time of the PWM generator in 1MHz units.
.0 :
pwm_div
* 1µsec
.1 :
pwm_div
* 2µsec
.2 :
pwm_div
* 3µsec
... :...
255 :
pwm_div
* 256µsec
www.austriamicrosystems.com 1.2 76 - 98
AS3710 2V1
Datasheet - R e g is t e r O v e rvi e w
pwm_control_h Register (Address 42h).
curr1_value Register (Address 43h).
curr2_value Register (Address 44h).
curr3_value Register (Address 45h).
Addr: 42h pwm_control_h
Bit Bit Name Default Access Bit Description
7:0 pwm_h_time 'b00000000 RW
This bit defines the high time of the PWM generator in 1MHz units.
..0 :
pwm_div
* 1µsec
..1 :
pwm_div
* 2µsec
..2 :
pwm_div
* 3µsec
... :...
255 :
pwm_div
* 256µsec
Addr: 43h curr1_value
Bit Bit Name Default Access Bit Description
7:0 curr1_current 'b00000000 RW
Defines the current into CURR1, if enabled by curr1_ctrl
..0 :Power down (default state)
..1 :0.15mA (LSB)
... :...
255 :38.25mA
Addr: 44h curr2_value
Bit Bit Name Default Access Bit Description
7:0 curr2_current 'b00000000 RW
Defines the current into CURR2, if enabled by curr2_ctrl
..0 :Power down (default state)
..1 :0.15mA (LSB)
... :...
255 :38.25mA
Addr: 45h curr3_value
Bit Bit Name Default Access Bit Description
7:0 curr3_current 'b00000000 RW
Defines the current into CURR3, if enabled by curr3_ctrl
..0 :Power down (default state)
..1 :0.15mA (LSB)
... :...
255 :38.25mA
www.austriamicrosystems.com 1.2 77 - 98
AS3710 2V1
Datasheet - R e g is t e r O v e rvi e w
Watchdog_min_timer Register (Address 46h).
Watchdog_max_timer Register (Address 47h).
WatchdogSoftwareSignal Register (Address 48h).
Stepup_control1 Register (Address 50h).
Addr: 46h Watchdog_min_timer
Bit Bit Name Default Access Bit Description
7:0 wtdg_min_timer 'b00000000 RW Defines the minimum watchdog trigger time
(LSB=7.5ms, range: 0 - 1.9s)
Addr: 47h Watchdog_max_timer
Bit Bit Name Default Access Bit Description
7:0 wtdg_max_timer 'b11111111 RW Defines the maximum watchdog trigger time
(LSB=7.5ms, range: 7.5ms - 1.9s), do not set to (00)h
Addr: 48h WatchdogSoftwareSignal
Bit Bit Name Default Access Bit Description
7:6 pwm_div 'b00 RW
This bit defines the divider ratio of the prescaler for the PWM generator.
0 :Divide by 1
1 :Divide by 2
2 :Divide by 4
3 :Divide by 16
0wtdg_sw_sig 0 PUSH Trigger input by the serial interface if gpioX_iosf<>9
Addr: 50h Stepup_control1
Bit Bit Name Default Access Bit Description
7:3 stepup1_v 'b0000 RW
Defines the tuning current at FB_SU1 pin;
..0 :0 µA
..1 :1 µA
... :...
.31 :31 µA
2stepup1_res 0 RW
Gain selection for DCDC SU1
0 :If FB_SU1 is used with current feedback only (Only R1,C1
connected)
1 :If FB_SU1 is used with external resistor divider (2 resistors)
1stepup1_freq 0 RW
Selects SU1 frequency
0 :1 MHz
1 :0.5 MHz
0stepup1_on 0 RW
On/Off control of SU1
0 :SU1 off
1 :SU1 on
www.austriamicrosystems.com 1.2 78 - 98
AS3710 2V1
Datasheet - R e g is t e r O v e rvi e w
Stepup_control2 Register (Address 51h).
Stepup_control3 Register (Address 52h).
Addr: 51h Stepup_control2
Bit Bit Name Default Access Bit Description
7:3 stepup2_v 'b00000 RW
Defines the tuning current at FB_SU2 pin
..0 :0 µA
..1 :1 µA
... :...
.31 :31 µA
2stepup2_res 0 RW
Gain selection for DCDC SU2
0 :If DCDC is used with current feedback (CURR1,CURR2,CURR3)
or if FB_SU2 is used with current feedback only (Only R1,C1
connected)
1 :If FB_SU2 is used with external resistor divider (2 resistors)
1stepup2_freq 0 RW
Selects SU3 frequency
0 :1 MHz
1 :0.5 MHz
0stepup2_on 0 RW
On/Off control of SU2
0 :SU2 off
1 :SU2 on
Addr: 52h Stepup_control3
Bit Bit Name Default Access Bit Description
7:3 stepup3_v 'b00000 RW
Defines the tuning current at FB_SU3 pin
..0 :0 µA
..1 :1 µA
... :...
.31 :31 µA
2stepup3_res 0 RW
Gain selection for DCDC SU3
0 :If FB_SU3 is used with current feedback only (Only R1,C1
connected)
1 :If FB_SU3 is used with external resistor divider (2 resistors)
1stepup3_freq 0 RW
Selects SU3 frequency
0 :1 MHz
1 :0.5 MHz
0stepup3_on 0 RW
On/Off control of SU3.
0 :SU3 off
1 :SU3 on
www.austriamicrosystems.com 1.2 79 - 98
AS3710 2V1
Datasheet - R e g is t e r O v e rvi e w
Stepup_control4 Register (Address 53h).
Addr: 53h Stepup_control4
Bit Bit Name Default Access Bit Description
7stpup1_det 0 RO
SU1 detection status register
0 :VRsense < V
DETECT
for more than 1ms, and DCDC SU1 converter
is in pulseskip for more than 1ms.
1 :VRsense > V
DETECT
for more than 1ms, or the DCDC SU1
converter is not in pulseskip for more than 1ms.
6stpup1_oc 0 RO
SU1 overcurrent status bit
0 :VRsense < V
OVCURRENT
1 :VRsense > V
OVCURRENT
for more than 5ms (latched state)
5stpup1_oc_timeout 0 RW
Controls GPIOx switch-off, after overcurrent timeout (5ms) for DCDC
SU1
0 :Disabled
1 :Enabled
4stpup1_shortprot 0 RW
Enables Protection and Detection circuit for DCDC SU1
0 :No protection and load detection
1 :Short protection and load detection enabled
3stpup2_pwm_lowf 0 RW
Selects PWM operation of SU2
0 :High frequency operation PWM>20kHz**
1 :Low frequency PWM operation:
stepup2_on
and curr1…3_on (if
PWM enabled) switched off during PWM low time
** Step_up switched on all the time. (current sinks are not switched off
(currX_on=1 all the time), but currX_current masked to 00h during
PWM low time.). During PWM off-time then feedback voltage is
sampled.
2stepup2_prot_dis 0 RW
DCDC SU2 overvoltage protection to prevent damage of external
NFET, if CURR1, CURR2 or CURR3 feedback selected, and no LED
string connected.
0 :Switch off DCDC SU2 if the voltage on FB_SU2 exceeds 1.25V
1 :Overvoltage protection disabled
1:0 stepup2_fb 'b00 RW
Controls the feedback source
0 :voltage feedback (external resistor divider) selected by
stepup2_fbprot
1 :CURR1 feedback enabled (feedback through white LEDs)
2 :CURR2 feedback enabled (feedback through white LEDs)
3 :CURR3 feedback enabled (feedback through white LEDs)
www.austriamicrosystems.com 1.2 80 - 98
AS3710 2V1
Datasheet - R e g is t e r O v e rvi e w
Stepup_control5 Register (Address 54h).
RTCcontrol Register (Address 60h).
RTCSecond Register (Address 61h).
RTCMinute1 Register (Address 62h).
Addr: 54h Stepup_control5
Bit Bit Name Default Access Bit Description
7:4 -'b0000 n/a do not use
3stepup2_pwm_mode 0 RW
Enable PWM mode
0 :Normal operation
1 :PWM mode operation. Feedback is sampled during PWM off-time,
if stpup2_lowf=0.
2stepup12_clkinv 0 RW
Invert input clock of SU1 and SU2 converter
0 :Use positive edge of internal clk
1 :Use negative edge of internal clk
1:0 stepup2_fbprot 'b00 RW
Controls the feedback protection of SU2 with external resistor divider
(regulated to 0.8V).
0 : FB_SU2 enabled as input
1 : GPIO2 enabled as input
2 : GPIO3 enabled as input
3 : GPIO4 enabled as input
Addr: 60h RTCcontrol
Bit Bit Name Default Access Bit Description
7:5 -'b000 n/a do not use
4:3 rtc_irq_mode 'b00 RW
0 :Generates an interrupt every second
1 :Generates an interrupt every minute
2 :Generates an interrupt every 2 minute
3 :Generates an interrupt every 8 minute
2rtc_on 0 RW
Switch on the 32kHz RTC oscillator
0 :32kHz oscillator disabled
1 :32kHz oscillator enabled
1rtc_alarm_wakeup_en 0 RW 0 :Disables RTC alarm wake-up in power off mode
1 :Enable RTC alarm wake-up in power off mode
0rtc_rep_wakeup_en 0 RW 0 :Disables RTC repeated wake-up in power off mode
1 :Enable RTC repeated wake-up in power off mode
Addr: 61h RTCSecond
Bit Bit Name Default Access Bit Description
7:0 second 00h RW -
Addr: 62h RTCMinute1
Bit Bit Name Default Access Bit Description
7:0 minute0 00h RW -
www.austriamicrosystems.com 1.2 81 - 98
AS3710 2V1
Datasheet - R e g is t e r O v e rvi e w
RTCMinute2 Register (Address 63h).
RTCMinute3 Register (Address 64h).
RTCAlarmSecond Register (Address 65h).
RTCAlarmMinute Register (Address 66h).
RTCAlarmMinute2 Register (Address 67h).
RTCAlarmMinute3 Register (Address 68h).
SRAM Register (Address 69h).
Addr: 63h RTCMinute2
Bit Bit Name Default Access Bit Description
7:0 minute1 00h RW -
Addr: 64h RTCMinute3
Bit Bit Name Default Access Bit Description
7:0 minute2 00h RW -
Addr: 65h RTCAlarmSecond
Bit Bit Name Default Access Bit Description
7:0 alarmsecond 3Fh RW AlarmMinute2 has to be written to latch the whole alarm register
Addr: 66h RTCAlarmMinute
Bit Bit Name Default Access Bit Description
7:0 alarmminute0 FFh RW AlarmMinute2 has to be written to latch the whole alarm register
Addr: 67h RTCAlarmMinute2
Bit Bit Name Default Access Bit Description
7:0 alarmminute1 FFh RW AlarmMinute2 has to be written to latch the whole alarm register
Addr: 68h RTCAlarmMinute3
Bit Bit Name Default Access Bit Description
7:0 alarmminute2 FFh RW -
Addr: 69h SRAM
Bit Bit Name Default Access Bit Description
7:0 SRAM 00h RW -
www.austriamicrosystems.com 1.2 82 - 98
AS3710 2V1
Datasheet - R e g is t e r O v e rvi e w
ADC_control Register (Address 70h).
ADC_MSB_result Register (Address 71h).
ADC_LSB_result Register (Address 72h).
Addr: 70h ADC_control
Bit Bit Name Default Access Bit Description
7start_conversion 0 RW Writing a 1 into this bit starts one ADC conversion
6adc_on 0 RW
Writing a 1 into this bit continuously activates the ADC S/H and the
input multiplexer. The ADC and the MUX are also activated for a
conversion period when
start_conversion
is set to 1. Useful for high
impedance input sources on ADC inputs
5adc_slow 0 RW
Select ADC sampling frequency
0 :250kHz (conversion time: approx. 60µs)
1 :62.5kHz (conversion time:approx. 240µs)
4gpio_lv 0 RW
0 :High voltage range of GPIO1…4/SENSEN_SU1 (4:1 divider
active)
1 :Low voltage range of GPIO1…4/SENSEN_SU1 (1:1 divider, 1.8V
max)
3:0 adc_select 'b0000 RW
Selects an ADC channel
.0 :BATTEMP NTCADCIN (1:1)
.1 :Temperature sensor: DIE temperature [C] = adc_result * 0.866 -
274 (1:1)
.2 :XOUT32K (1:1, 1.8Vmax)
.3 :CURR1 (1:1, 1V max)
.4 :CURR2 (1:1, 1V max)
.5 :CURR3 (1:1, 1V max)
.6 :VUSB(15:1, 15V max)
.7 :CHGIN (4:1)
.8 :V
BAT
(4:1)
.9 :V
SUP
(4:1)
10 :SENSEN_SU1 (4:1 or 1:1 )
11 :FB_SU2 (4:1 or 1:1 )
12 :GPIO2 (4:1 or 1:1 )
13 :GPIO3 (4:1 or 1:1 )
14 :GPIO4 (4:1 or 1:1 )
15 :NA
Addr: 71h ADC_MSB_result
Bit Bit Name Default Access Bit Description
7result_not_ready 0 RO Indicates end of conversion 0 result is ready 1 conversion is running
6:0 D9_3 'b000 0000 RO ADC result register Bit9..Bit3
Addr: 72h ADC_LSB_result
Bit Bit Name Default Access Bit Description
7:3 -'b0000 0 n/a do not use
2:0 D2_0 'b000 RO ADC result register Bit2…Bit0
www.austriamicrosystems.com 1.2 83 - 98
AS3710 2V1
Datasheet - R e g is t e r O v e rvi e w
RegStatus Register (Address 73h).
InterruptMask1 Register (Address 74h).
Addr: 73h RegStatus
Bit Bit Name Default Access Bit Description
7curr3_lv 0 RO Bit is set when voltage of current sink CURR3 drops below low voltage
threshold (1ms debounce time default)
6curr2_lv 0 RO Bit is set when voltage of current sink CURR2 drops below low voltage
threshold (1ms debounce time default)
5curr1_lv 0 RO Bit is set when voltage of current sink CURR1 drops below low voltage
threshold (1ms debounce time default)
4-0 n/a do not use
3-0 n/a do not use
2sd3_lv 0 RO Bit is set when voltage of SD3 drops below low voltage threshold (-5%)
(1ms debounce time default)
1sd2_lv 0 RO Bit is set when voltage of SD2 drops below low voltage threshold (-5%)
(1ms debounce time default)
0sd1_lv 0 RO Bit is set when voltage of SD1 drops below low voltage threshold (-5%)
(1ms debounce time default)
Addr: 74h InterruptMask1
Bit Bit Name Default Access Bit Description
7LowBat_int_m 1 RW 0 :interrupt enabled
1 :interrupt masked (disabled)
6ovtmp_int_m 1 RW 0 :interrupt enabled
1 :interrupt masked (disabled)
5onkey_int_m 1 RW 0 :interrupt enabled
1 :interrupt masked (disabled)
4chdet_int_m 1 RW 0 :interrupt enabled
1 :interrupt masked (disabled)
3eoc_int_m 1 RW 0 :interrupt enabled
1 :interrupt masked (disabled)
2resume_int_m 1 RW 0 :interrupt enabled
1 :interrupt masked (disabled)
1nobat_int_m 1 RW 0 :interrupt enabled
1 :interrupt masked (disabled)
0trickle_int_m 1 RW 0 :interrupt enabled
1 :interrupt masked (disabled)
www.austriamicrosystems.com 1.2 84 - 98
AS3710 2V1
Datasheet - R e g is t e r O v e rvi e w
InterruptMask2 Register (Address 75h).
InterruptMask3 Register (Address 76h).
InterruptStatus1 Register (Address 77h).
Addr: 75h InterruptMask2
Bit Bit Name Default Access Bit Description
7rtc_rep_int_m 1 RW 0 :interrupt enabled
1 :interrupt masked (disabled)
6stpup1_det_m 1 RW 0 :interrupt enabled
1 :interrupt masked (disabled)
5stpup1_oc_m 1 RW 0 :interrupt enabled
1 :interrupt masked (disabled)
4bat_temp_m 1 RW 0 :interrupt enabled
1 :interrupt masked (disabled)
3-1 n/a do not use
2sd3_lv_int_m 1 RW 0 :interrupt enabled
1 :interrupt masked (disabled)
1sd2_lv_int_m 1 RW 0 :interrupt enabled
1 :interrupt masked (disabled)
0sd1_lv_int_m 1 RW 0 :interrupt enabled
1 :interrupt masked (disabled)
Addr: 76h InterruptMask3
Bit Bit Name Default Access Bit Description
7:3 -'b0000 0 n/a do not use
2gpio_restart_int_m 1 RW 0 :interrupt enabled
1 :interrupt masked (disabled)
1gpio_int_m 1 RW 0 :interrupt enabled
1 :interrupt masked (disabled)
0rtc_alarm_int_m 1 RW 0 :interrupt enabled
1 :interrupt masked (disabled)
Addr: 77h InterruptStatus1
Bit Bit Name Default Access Bit Description
7LowBat_int_i 0 POP Bit is set when V
SUP
drops below
ResVoltFall
6ovtmp_int_i 0 POP Bit is set when 110deg is exceeded
5onkey_int_i 0 POP Rising and falling edge
4chdet_int_i 0 POP Rising and falling edge
3eoc_int_i 0 POP Rising and falling edge
2resume_int_i 0 POP Rising and falling edge
1nobat_int_i 0 POP Rising and falling edge
0trickle_int_i 0 POP Rising and falling edge
www.austriamicrosystems.com 1.2 85 - 98
AS3710 2V1
Datasheet - R e g is t e r O v e rvi e w
InterruptStatus2 Register (Address 78h).
InterruptStatus3 Register (Address 79h).
Addr: 78h InterruptStatus2
Bit Bit Name Default Access Bit Description
7rtc_rep_int_i 0 POP Rising edge only
6stpup1_det_i 0 POP Rising edge only
5stpup1_oc_i 0 POP Rising edge only
4bat_temp_i 0 POP Rising and falling edge
3-0 n/a do not use
2sd3_lv_int_i 0 POP Rising edge only
1sd2_lv_int_i 0 POP Rising edge only
0sd1_lv_int_i 0 POP Rising edge only
Addr: 79h InterruptStatus3
Bit Bit Name Default Access Bit Description
7:3 -'b0000 0 n/a do not use
2gpio_restart_int_i 0 POP Falling edge
1gpio_int_i 0 POP Rising and falling edge
0rtc_alarm_int_i 0 POP Rising edge only
www.austriamicrosystems.com 1.2 86 - 98
AS3710 2V1
Datasheet - R e g is t e r O v e rvi e w
ChargerControl1 Register (Address 80h).
ChargerVoltageControl Register (Address 81h).
Addr: 80h ChargerControl1
Bit Bit Name Default Access Bit Description
7nobat_ntc_det 1 RW Enables nobat_det feature with NTC, ntc_nobat debounce time=100ms
6auto_resume 1 RW
0 :charger will stay in EOC even when the battery voltage drops
1 :charger will start charging when the battery voltage hits the resume
level
5bat_charging_enable 0 RW
0 :USB is supplying V
SUP
, but battery switch is open. USB charger
regulates to Vsup_voltage
1 :Normal battery charger operation form USB charger
4:1 usb_current 'b1000 RW
Sets the USB input current limit, if not GPIO controlled
.0 :94mA (USB low current, also if gpiox_iosf=12 and gpiox=0)
.1 :141mA
.2 :189mA
.3 :237mA
.4 :285mA
.5 :332mA
.6 :380mA
.7 :428mA
.8 :470mA (USB high current, also if gpiox_iosf=12 and gpiox=1)
.9 :517mA
10 :754A
11 :1.29A
12 :1.7A
13 :2.53A
14 :2.53A
15 :2.53A
0usb_chgEn 1 RW
ON/OFF control of USB charger input current limiter
0 :input current limiter disabled
1 :input current limiter enabled
Addr: 81h ChargerVoltageControl
Bit Bit Name Default Access Bit Description
7:6 vsup_min 'b01 RW
Regulate down battery charging current on that level of V
SUP
during
trickle charging and constant current charging, to prevent voltage drop
on V
SUP
.
0 :3.9V
1 :4.2V
2 :4.50V
3 :4.70V
5:0 ChVoltEOC 'b10 0011 RW
Sets the end-of-charge voltage level V
CHOFF
(20mV steps)
...0 :3.5V
...1 :3.52V
..... :...
.35 :4.2V
..... :...
47-63 :4.44V
www.austriamicrosystems.com 1.2 87 - 98
AS3710 2V1
Datasheet - R e g is t e r O v e rvi e w
ChargerCurrentControl Register (Address 82h).
Addr: 82h ChargerCurrentControl
Bit Bit Name Default Access Bit Description
7eoc_current 0 RW
Sets eoc_current
0 :eoc current =
TrickleCurrent
1 :eoc current =
TrickleCurrent
/ 2
6cc_lowlimit 1 RW
Sets the range of the charging current limit in constant current mode.
0 :Normal mode
1 :Low current mode Current=
ConstantCurrent
- 500mA
5:2 ConstantCurrent 'b0000 RW
Sets the charging current limit in constant current mode.
.0 :750mA
.1 :800mA
.2 :850mA
.3 :900mA
.4 :950mA
.5 :1000mA
.6 :1050mA
.7 :1100mA
.8 :1150mA
.9 :1200mA
10 :1250mA
11 :1300mA
12 :1350mA
13 :1400mA
14 :1450mA
15 :1500mA
1:0 TrickleCurrent 'b01 RW
Sets the charging current limit in trickle current mode.
0 :60mA
1 :120mA
2 :180mA
3 :240mA
www.austriamicrosystems.com 1.2 88 - 98
AS3710 2V1
Datasheet - R e g is t e r O v e rvi e w
ChargerConfig Register (Address 83h).
NTCsupervision Register (Address 84h).
Addr: 83h ChargerConfig
Bit Bit Name Default Access Bit Description
7-0 n/a do not use
6Charging_1Hz_clk 0 RW
Sets the mode for the charging output status (gpioX_iosf=10)
0 :Normal operation: charging=1, not charging=0
1 :1Hz blinking operation: charging=1Hz, not charging=0
5ChVoltResume 0 RW
Sets the resume voltage level V
CHRES
.
0 :120mV
1 :240mV
4:3 temp_sel 'b00 RW
Selects temperature regulation of charging current (die temperature)
0 :110ºC
1 :90ºC
2 :120ºC
3 :130ºC
2:0 vsup_voltage 'b101 RW
Voltage regulation of VSUP of the input current limiter
0 :4.4V
1 :4.5V
2 :4.6V
3 :4.7V
4 :4.8V
5 :4.9V
6 :5.0V
7 :5.5V
Addr: 84h NTCsupervision
Bit Bit Name Default Access Bit Description
7:3 -'b0000 0 n/a do not use
2ntc_temp 0 RW
Select NTC mode
0 :50deg temperature limit
1 :45deg temperature limit
1ntc_10k 0 RW
Select NTC resistor type
0 :100k
1 :10k
0ntc_on 0 RW
ON/OFF control of battery NTC supervision
0 :Disabled
1 :Enabled
www.austriamicrosystems.com 1.2 89 - 98
AS3710 2V1
Datasheet - R e g is t e r O v e rvi e w
Chargersupervision Register (Address 85h).
ChargerStatus1 Register (Address 86h).
Addr: 85h Chargersupervision
Bit Bit Name Default Access Bit Description
7-0 n/a do not use
6ovprot_dis 1 RW
Disables external overvoltage protection, function of XOFF pin
0 :Overvoltage protection enabled
1 :Overvoltage protection disabled
5dcdc_chmode 1 RW
Enables DCDC charger mode
0 :Linear charger mode enabled
1 :Step down charger enabled
4charging_tmax 1 RW 0 :Read: no time-out reached, Write: reset charger time-out counter
1 :
ch_timeout
reached and charging stopped
3:0 ch_timeout 'b0000 RW
Sets the charger time-out timer
.0 :Off
.1 :0.5 hour
.2 :1 hour
.3 :1.5 hour
.4 :2 hour
.5 :2.5 hour
.6 :3 hour
.7 :3.5 hour
.8 :4 hour
.9 :4.5 hour
10 :5 hour
11 :5.5 hour
12 :6 hour
13 :6.5 hour
14 :7 hour
15 :7.5 hour
Addr: 86h ChargerStatus1
Bit Bit Name Default Access Bit Description
7Nobat 0 RO Bit is set, if no battery has been detected (after EOC measured on NTC)
6Battemp_hi 0 RO Bit is set, if high battery temperature has been detected
5EOC 0 RO Bit is set, if End of charge state has been reached
4CVM 0 RO Bit is set, if charger is operating in constant voltage mode
3Trickle 0 RO Bit is set, if charger is operating in trickle current. V
BAT
< 2.9V
2Resume 0 RO Bit is set, if Battery voltage is below resume level
1CCM 0 RO Bit is set, if charger is operating in constant current mode
0ChDet 0 RO Bit is set when external charge adapter has been detected on pin
V
CHARGER
www.austriamicrosystems.com 1.2 90 - 98
AS3710 2V1
Datasheet - R e g is t e r O v e rvi e w
ChargerStatus2 Register (Address 87h).
Lock Register (Address 8eh).
ASIC_ID1 Register (Address 90h).
ASIC_ID2 Register (Address 91h).
Addr: 87h ChargerStatus2
Bit Bit Name Default Access Bit Description
7:3 -‘b0000 0 n/a do not use
2usb_prot_ready 0 RO
Bit indicates, that the USB input voltage protection pin X
OFF
is
precharged to a voltage > 7.5V X
OFF
is pull to GND if an overvoltage on
V
USB
is detected.
1batsw_on 0 RO Bits indicates the status of the battery switch
00 : Battery switch closed
01 : Battery switch open with ideal diode
10 : Charging mode
11 : Battery switch closed
0batsw_mode 0 RO
Addr: 8eh Lock
Bit Bit Name Default Access Bit Description
7:3 -‘b0000 0 n/a do not use
2charger_lock 0 RW
Enables lock of the following charger registers: 81h, 82h, 83h,
Chargervoltagecontrol, Chargercurrentcontrol, Chargerconfig.
Bits can only be set. Reset only with full reset cycle
1:0 reg_lock 'b00 RW
Enables lock of Regulator voltages Bits can only be set. Reset only with
full reset cycle
0 :No lock
1 :Lock of voltage of LDOs (LDO1..8_vsel) (all bits) and voltage of
StepDownBits(sd1..4_vsel) [5:6] only
2 :Lock voltage of StepDownbits 5:6 only (no LDOs)
3 :Lock voltage of StepDowns (all bits) and LDOs (all bits).
Note: Setting sdx_vsel to 0 is possible all the time to allow switching
off the regulator. Writing a non-zero value after that will restore the old
value.
Addr: 90h ASIC_ID1
Bit Bit Name Default Access Bit Description
7:0 ID1 0Ah RO -
Addr: 91h ASIC_ID2
Bit Bit Name Default Access Bit Description
3:0 revision 'b0000 RO Note: Metal fuse!!!
www.austriamicrosystems.com 1.2 91 - 98
AS3710 2V1
Datasheet - A p p li c a ti o n I n fo r m a ti o n
11 Application Information
Figure 34. AS3710 Application Schematics
1
1
2
2
3
3
4
4
D D
C C
B B
A A
Title
Size
Date
Project Title Revision
Sheet ofOriginator *
*
*
01/06/2011
*
*
A4
2.2uF
C9
2.2uF
C10
2.2uF
C11
2.2uF
C4
2.2uF
C3
1uF
C8
1uF
C2
1uF
C6
2.2uF
C7
2.2uF
C1
LDO8
LDO7
LDO6
LDO5
LDO4
LDO3
LDO2
LDO1
2.2uF
C12
1µHL1
SD1
2.2uF
C21
2.2uF
C16
1µHL2
SD2
1µHL4
SD3
2.2uF
C17
4.7µH L5
10µH
L6
D2
D3
D1 1
2 3
Q3 1M
R6
330k
R8
10uF
C27
SU1
VSUP
VSUP
1M
R11
100k
R14
2.2uF
C33
VSUP
VSUP
VSUP
S1
ON
1
122
3
344
5
566
J5
I2C
BUS_PWR 1
D- 2
D+ 3
BUS_GND 4
Shield 5
U2
BU1VUSB
BU2GND
Q1
1µH
L3
BU3VBAT
BU4GND
VSUP
47uF
C24
100nF
C28
1uF
C29
Y1
1M
R16
10k
R17
10k
R15
VSUP
15nF
C26
33nF
C30
2.2uF
C22
2.2uF
C31
1.5nF
C32
15nF
C34
2.2uF
C41
4.7uF
C13
10uF
C19
1
2 3
Q4
4.7uF
C15
10uF
C23
10µF
C14
10µF
C20
10µF
C25
150m
R4
150m
R7
2.2uF
C5
D7 D8 D9D6
CURR2
CURR3
GPIO1
GPIO2
GPIO3
GPIO4
CURR1
SU2
BATTEMP
D4
1k
R9
VSUP
S2
RESET
1
2 3
Q5
150m
R21
D5
VSUP
1M
R22
100k
R23
SU3
2.2uF
C37
1.5nF
C39
15nF
C40
2.2uF
C38
1
2 3
Q7
10µH L8
VIN_LDO123 31
LDO1 32
LDO2 30
LDO3 33
LDO4 55
LDO5 54
LDO6 53
VIN_LDO78 18
LDO7 20
LDO8 19
VIN_LDO456 56
EXTBATSW
1
XOFF
2
CHGIN
3
VSUP_CHG
4
CHGOUT
5
VUSB
35
VBAT
34
V2_5
37
CREF
36
BATTEMP
40
XIN32
39
XOUT32
38
VSS(exp)
57
ON
22
SCL
23
SDA
24
XRES
25
VSUP_GPIO
21
GPIO1
26
GPIO2
27
GPIO3
28
GPIO4
29
CURR1
15
CURR2
16
CURR3
17
LX_SD1 13
FB_SD1 12
VSUP_SD1 14
LX_SD2 10
FB_SD2 9
VSUP_SD2 11
LX_SD3 7
FB_SD3 8
VSUP_SD3 6
FB_SU3 46
GATE_SU3 42
NC 44
SENSEN_SU3 41
GATE_SU2 49
SENSEN_SU2 51
FB_SU1 52
GATE_SU1 48
SENSEN_SU1 47
SENSEP
50
VSUP_SU
45
FB_SU2 43
AS3710
Q2
www.austriamicrosystems.com 1.2 92 - 98
AS3710 2V1
Datasheet - A p p li c a ti o n I n fo r m a ti o n
Figure 35. PCB Layout Recommendation for SD1, SD2, SD3 and Switched Mode Charger
www.austriamicrosystems.com 1.2 93 - 98
AS3710 2V1
Datasheet - A p p li c a ti o n I n fo r m a ti o n
Figure 36. PCB Layout Recommendation for SU1, SU2, SU3
www.austriamicrosystems.com 1.2 94 - 98
AS3710 2V1
Datasheet - P a c k a ge D ra w i n gs a nd M arki ngs
12 Package Drawings and Markings
Figure 37. Package Drawings and Dimensions
www.austriamicrosystems.com 1.2 95 - 98
AS3710 2V1
Datasheet - P a c k a ge D ra w i n gs a nd M arki ngs
Figure 38. QFN Marking
Table 31. Package Code YWWZZZ
YY WW X ZZ
year working week assembly / packaging plant identifier free choice
Table 32. Start-up Revision Code
xx Sequence
FF engineering samples, no sequence programmed or sequence programmed on request
00 default sequence (no sequence programmed)
xx customer specified sequence programmed during production test
www.austriamicrosystems.com 1.2 96 - 98
AS3710 2V1
Datasheet - R e v is i o n H is t or y
Revision History
Note: Typos may not be explicitly mentioned under revision history.
Revision Date Owner Description
0.10 3.2011 pkm Initial draft
0.20 10.2011 pkm, cwo
typo corrections;
updated block diagrams, PCB layout recommendations, charger mode
diagrams, application schematics, DCDC performance characteristics
added register 2bh and 2ch for chip version 2v1.
1.0 10.2011 pkm first official release
1.1 12.2011 pkm corrected ntc_on bit description, adjusted max die temperature, updated dcdc
mode description
1.2 4.2012 pkm
corrected “enter standby mode”, GPIO1 input mode description, GPIO block
diagram, GPIO IOSF, interrupt signal polarity
added switching charger graphs, added step-up external components, ASIC
ID
www.austriamicrosystems.com 1.2 97 - 98
AS3710 2V1
Datasheet - O r d er i ng I n fo r ma t i o n
13 Ordering Information
The devices are available as the standard products shown below.
Note: All products are RoHS compliant and austriamicrosystems green.
Buy our products or get free samples online at ICdirect: http://www.austriamicrosystems.com/ICdirect
Technical Support is available at http://www.austriamicrosystems.com/Technical-Support
For further information and requests, please contact us mailto: sales@austriamicrosystems.com
or find your local distributor at http://www.austriamicrosystems.com/distributor
Table 33. Ordering Information
Ordering Code Marking Sequence Description Delivery Form Package
AS3710-BQFR-FF M2V1-FF sequence
programmable on
request
Triple Buck High Current PMIC
with Charger
Tray QFN56 7x7 0.4mm pitch
AS3710-BQFP-00 M2V1-00 default sequence Triple Buck High Current PMIC
with Charger
Tape & Reel
dry pack
QFN56 7x7 0.4mm pitch
AS3710-BQFP-xx M2V1-xx customer specified Triple Buck High Current PMIC
with Charger
Tape & Reel
dry pack
QFN56 7x7 0.4mm pitch
www.austriamicrosystems.com 1.2 98 - 98
AS3710 2V1
Datasheet - C o p yr i g h ts
Copyrights
Copyright © 1997-2012, austriamicrosystems AG, Tobelbaderstrasse 30, 8141 Unterpremstaetten, Austria-Europe. Trademarks Registered ®.
All rights reserved. The material herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of
the copyright owner.
All products and companies mentioned are trademarks or registered trademarks of their respective companies.
Disclaimer
Devices sold by austriamicrosystems AG are covered by the warranty and patent indemnification provisions appearing in its Term of Sale.
austriamicrosystems AG makes no warranty, express, statutory, implied, or by description regarding the information set forth herein or regarding
the freedom of the described devices from patent infringement. austriamicrosystems AG reserves the right to change specifications and prices at
any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with austriamicrosystems AG for
current information. This product is intended for use in normal commercial applications. Applications requiring extended temperature range,
unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment are
specifically not recommended without additional processing by austriamicrosystems AG for each application. For shipments of less than 100
parts the manufacturing flow might show deviations from the standard production flow, such as test flow or test location.
The information furnished here by austriamicrosystems AG is believed to be correct and accurate. However, austriamicrosystems AG shall not
be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use,
interruption of business or indirect, special, incidental or consequential damages, of any kind, in connection with or arising out of the furnishing,
performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of
austriamicrosystems AG rendering of technical or other services.
Contact Information
Headquarters
austriamicrosystems AG
Tobelbaderstrasse 30
A-8141 Unterpremstaetten, Austria
Tel: +43 (0) 3136 500 0
Fax: +43 (0) 3136 525 01
For Sales Offices, Distributors and Representatives, please visit:
http://www.austriamicrosystems.com/contact
Mouser Electronics
Authorized Distributor
Click to View Pricing, Inventory, Delivery & Lifecycle Information:
ams:
AS3710-BQFP AS3710-BQFP-01 AS3710-BQFR-FF