Parameter Max. Units
VCES Collector-to-Emitter Breakdown Voltage 600 V
IC @ TC = 25°C Continuous Collector Current 12
IC @ TC = 100°C Continuous Collector Current 6.0 A
ICM Pulsed Collector Current 52
ILM Clamped Inductive Load Current 52
VGE Gate-to-Emitter Voltage ± 20 V
EARV Reverse Voltage Avalanche Energy 200 mJ
PD @ TC = 25°C Maximum Power Dissipation 34
PD @ TC = 100°C Maximum Power Dissipation 14
TJOperating Junction and -55 to + 150
TSTG Storage Temperature Range
Soldering Temperature, for 10 seconds 300 (0.063 in. (1.6mm) from case )
°C
Mounting torque, 6-32 or M3 screw. 10 lbf•in (1.1N•m)
IRG4IBC20WPbF
INSULATED GATE BIPOLAR TRANSISTOR
E
C
G
n-channel
Features
Designed expressly for Switch-Mode Power
Supply and PFC (power factor correction)
applications
2.5kV, 60s insulation voltage
Industry-benchmark switching losses improve
efficiency of all power supply topologies
50% reduction of Eoff parameter
Low IGBT conduction losses
Latest-generation IGBT design and construction offers
tighter parameters distribution, exceptional reliability
Industry standard Isolated TO-220 FullpakTM
outline
Lead-Free
Lower switching losses allow more cost-effective
operation than power MOSFETs up to 150 kHz
("hard switched" mode)
Of particular benefit to single-ended converters and
boost PFC topologies 150W and higher
Low conduction losses and minimal minority-carrier
recombination make these an excellent option for
resonant mode switching as well (up to >>300 kHz)
Benefits
VCES = 600V
VCE(on) typ. = 2.16V
@VGE = 15V, IC = 6.5A
Absolute Maximum Ratings
W
06/11/2010
TO-220 FULLPAK
Parameter Typ. Max. Units
RθJC Junction-to-Case - IGBT ––– 3.7
RθJA Junction-to-Ambient, typical socket mount ––– 65 °C/W
Wt Weight 2.0 (0.07) ––– g (oz)
Thermal Resistance
www.irf.com 1
PD -95636A
IRG4IBC20WPbF
2www.irf.com
Parameter Min. Typ. Max. Units Conditions
QgTotal Gate Charge (turn-on) 26 38 IC = 6.5A
Qge Gate - Emitter Charge (turn-on) 3.7 5.5 nC VCC = 400V See Fig.8
Qgc Gate - Collector Charge (turn-on) 10 15 VGE = 15V
td(on) Turn-On Delay Time 22
trRise Time 14 TJ = 25°C
td(off) Turn-Off Delay Time 110 160 IC = 6.5A, VCC = 480V
tfFall Time 64 96 VGE = 15V, RG = 50
Eon Turn-On Switching Loss 0.06 Energy losses include "tail"
Eoff Turn-Off Switching Loss 0.08 mJ See Fig. 9, 10, 14
Ets Total Switching Loss 0.14 0.2
td(on) Turn-On Delay Time 21 TJ = 150°C,
trRise Time 15 IC = 6.5A, VCC = 480V
td(off) Turn-Off Delay Time 150 VGE = 15V, RG = 50
tfFall Time 150 Energy losses include "tail"
Ets Total Switching Loss 0.34 mJ See Fig. 10, 11, 14
LEInternal Emitter Inductance 7.5 nH Measured 5mm from package
Cies Input Capacitance 490 VGE = 0V
Coes Output Capacitance 38 pF VCC = 30V See Fig. 7
Cres Reverse Transfer Capacitance 8.8 ƒ = 1.0MHz
Parameter Min. Typ. Max. Units Conditions
V(BR)CES Collector-to-Emitter Breakdown Voltage 600 V VGE = 0V, IC = 250µA
V(BR)ECS Emitter-to-Collector Breakdown Voltage 18 V VGE = 0V, IC = 1.0A
V(BR)CES/TJTemperature Coeff. of Breakdown Voltage 0.48 V/°C VGE = 0V, IC = 1.0mA
2.16 2.6 IC = 6.5A VGE = 15V
VCE(ON) Collector-to-Emitter Saturation Voltage 2.55 IC = 13A See Fig.2, 5
2.05 IC = 6.5A , TJ = 150°C
VGE(th) Gate Threshold Voltage 3.0 6.0 VCE = VGE, IC = 250µA
VGE(th)/TJTemperature Coeff. of Threshold Voltage -8.8 mV/°C VCE = VGE, IC = 250µA
gfe Forward Transconductance 5.5 8.3 S VCE = 100 V, IC = 6.5A
250 VGE = 0V, VCE = 600V
2.0 VGE = 0V, VCE = 10V, TJ = 25°C
1000 VGE = 0V, VCE = 600V, TJ = 150°C
IGES Gate-to-Emitter Leakage Current ±100 nA VGE = ±20V
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
ICES Zero Gate Voltage Collector Current
V
µA
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
ns
ns
Pulse width 80µs; duty factor 0.1%.
Pulse width 5.0µs, single shot.
Notes:
Repetitive rating; VGE = 20V, pulse width limited by
max. junction temperature. ( See fig. 13b )
VCC = 80%(VCES), VGE = 20V, L = 10µH, RG = 50,
(See fig. 13a)
Repetitive rating; pulse width limited by maximum
junction temperature.
t = 60s, f = 60Hz
IRG4IBC20WPbF
www.irf.com 3
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
Fig. 2 - Typical Output Characteristics Fig. 3 - Typical Transfer Characteristics
1
10
100
1 10
V , Collector-to-Emitter Voltage (V)
I , Collector-to-Emitter Current (A)
CE
C
V = 15V
20µs PULSE WIDTH
GE
T = 25 C
J°
T = 150 C
J°
1
10
100
5 6 7 9 10 11
V , Gate-to-Emitter Voltage (V)
I , Collector-to-Emitter Current (A)
GE
C
V = 50V
s PULSE WIDTH
CC
T = 25 C
J°
T = 150 C
J°
0
5
10
15
20
25
0.1 1 10 100 1000
f, Frequency (kHz)
A
60% of rated
voltage
Ideal diodes
Square wave:
For both:
Duty cycle: 50%
T = 125°C
T = 90°C
Gate drive as specified
sink
J
Triangular wave:
Clamp voltage:
80% of rated
Power Dissipation = 13W
Load Current ( A )
IRG4IBC20WPbF
4www.irf.com
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig. 5 - Typical Collector-to-Emitter Voltage
vs. Junction Temperature
Fig. 4 - Maximum Collector Current vs. Case
Temperature
-60 -40 -20 020 40 60 80 100 120 140 160
1.0
2.0
3.0
T , Junction Temperature ( C)
V , Collector-to-Emitter Voltage(V)
J°
CE
V = 15V
80 us PULSE WIDTH
GE I = A13
C
I = A6.5
C
I = A3.25
C
0.01
0.1
1
10
0.00001 0.0001 0.001 0.01 0.1 1
Notes:
1. Duty factor D = t / t
2. Peak T = P x Z + T
1 2
JDM thJC C
P
t
t
DM
1
2
t , Rectangular Pulse Duration (sec)
Thermal Response (Z )
1
thJC
0.01
0.02
0.05
0.10
0.20
D = 0.50
SINGLE PULSE
(THERMAL RESPONSE)
25 50 75 100 125 150
0
4
8
12
T , Case Temperature ( C)
Maximum DC Collector Current(A)
C°
IRG4IBC20WPbF
www.irf.com 5
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage
Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
Fig. 9 - Typical Switching Losses vs. Gate
Resistance
Fig. 10 - Typical Switching Losses vs.
Junction Temperature
0 5 10 15 20 25 30
0
4
8
12
16
20
Q , Total Gate Charge (nC)
V , Gate-to-Emitter Voltage (V)
G
GE
V= 400V
I = 6.5A
CC
C
010 20 30 40 50
0.12
0.13
0.14
0.15
R , Gate Resistance (Ohm)
Total Switching Losses (mJ)
G
V = 480V
V = 15V
T = 25 C
I = 6.5A
CC
GE
J
C
°
-60 -40 -20 020 40 60 80 100 120 140 160
0.01
0.1
1
10
T , Junction Temperature ( C )
Total Switching Losses (mJ)
J°
R = Ohm
V = 15V
V = 480V
G
GE
CC
I = A
13
C
I = A
6.5
C
I = A
3.25
C
50
1 10 100
0
200
400
600
800
1000
V , Collector-to-Emitter Voltage (V)
C, Capacitance (pF)
CE
V
C
C
C
=
=
=
=
0V,
C
C
C
f = 1MHz
+ C
+ C
C SHORTED
GE
ies ge gc , ce
res gc
oes ce gc
Cies
Coes
Cres
IRG4IBC20WPbF
6www.irf.com
1
10
100
1 10 100 1000
V = 20V
T = 125 C
GE
Jo
SAFE OPERATING AREA
V , Collector-to-Emitter Voltage (V)
I , Collector-to-Emitter Current (A)
CE
C
Fig. 11 - Typical Switching Losses vs.
Collector-to-Emitter Current
Fig. 12 - Turn-Off SOA
0246810 12 14
0.0
0.2
0.4
0.6
0.8
I , Collector-to-emitter Current (A)
Total Switching Losses (mJ)
C
R = Ohm
T = 150 C
V = 480V
V = 15V
G
J
CC
GE
°
50
IRG4IBC20WPbF
www.irf.com 7
D.U.T.
50V
L
V *
C
cd
* Driver same type as D.U.T.; Vc = 80% of Vce(max)
* Note: Due to the 50V power supply, pulse width and inductor
will increase to obtain rated Id.
1000V
Fig. 13a - Clamped Inductive
Load Test Circuit
Fig. 13b - Pulsed Collector
Current Test Circuit
t=5µs
d(on)
t
t
f
t
r
90%
t
d(off)
10%
90%
10%
5%
V
C
I
C
E
on
E
off
ts on off
E = (E +E )
c
d
e
Fig. 14b - Switching Loss
Waveforms
50V
Driver*
1000V
D.U.T.
I
C
C
V
c
de
L
Fig. 14a - Switching Loss
Test Circuit
* Driver same type
as D.U.T., VC = 480V
0 - VCC
RLICM
VCC
=
480µF
IRG4IBC20WPbF
8www.irf.com
Data and specifications subject to change without notice.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 06/2010
TO-220AB Full-Pak Package Outline
Dimensions are shown in millimeters (inches)
TO-220AB Full-Pak Part Marking Information
/2*2,17+($66(0%/</,1(.
$66(0%/('21::
(;$03/(
/27&2'(
7+,6,6$1,5),*
:,7+$66(0%/< 3$57180%(5
,17(51$7,21$/
5(&7,),(5
.
,5),*
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
LQGLFDWHV/HDG)UHH /,1(.
:((.
<($5 
'$7(&2'(
/27&2'(
$66(0%/<

TO-220AB Full-Pak package is not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/