Preliminary Data
This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to
change without notice.
December 2008 Rev 2 1/43
1
STA680
HD Radio™ baseband receiver
Features
General
HD Radio signal decoding for AM and FM
digital audio
Tensilica™ signal/audio processing core
architecture running up to 166 MHz
Hardware support for conditional access
(one-time programmable 640-bit memory)
2 internal PLLs: processor cores and
peripheral bus
1 Internal clock oscillator and external clock input
Less than 200 mW with core voltage of 1.2 V
and I/O voltage of 3.3 V
Temperature range: -40 to +85 °C
Memories
Internal boot ROM
SDRAM controller addressing up to 512 Mbit of
SDRAM in x16 configuration
Serial Flash memory interface for application
code loading
Turner interface
Support of RF-IF peripheral processor (RIPP)
and other front ends such as STA3004 and
STA7506
Input from RF front-end via programmable
serial interface supporting 650 kS/s, 675 kS/s,
744.1875 kS/s, 882 kS/s, 912 kS/s sample rates
Secondary RF front-end interface for dual tuner
applications
Other interfaces
One stereo audio sample rate converter
(44.1 kS/s, 45.6 kS/s, 48 kS/s)
One input and three stereo channels audio
output (by IIS serial audio interface)
2 IIC and 3 SPI serial interfaces
1 UART interface
1 GPIO interface (8 lines)
SD/MMC interface via SPI
JTAG interface
Supported HD Radio system capabilities
Multicasting
Program service data
Real-time traffic
Audio time shifting
iTunes Tagging ™
Surround sound
Applications
Car radio
Personal navigation device (PND)
Portable battery operated systems
LQFP144 (20x20x1.4 mm) LFBGA 168 balls
(12x12x1.4 mm)
Table 1. Device summary
Order code Package(1)
1. ECOPACK® compliant.
Packing
STA680 LFBGA 168 balls (12x12x1.4 mm) Tray
STA680Q LQFP144 (20x20mm) Tray
www.st.com
Contents STA680
2/43
Contents
1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2 System overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1 HD Radio processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Dual stream HD Radio processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Additional processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.1 AM/FM processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.2 Audio codec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.3 Other . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Overview of main functional blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4.1 Adjacent channel filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4.2 HiFi2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4.3 Vectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4.4 DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4.5 Hardware accelerator (VITERBI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3 I/O description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1 LQFP description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 LFBGA description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Pin list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4 I/Os supply groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4 Operation and general remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.1 Clock schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Power on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2.1 Power supply ramp up phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2.2 Oscillator setting time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2.3 Boot sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2.4 Normal operation mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5 Digital I/O and memory interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.1 Interfaces: LQFP vs. LFBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2 Tuner interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
STA680 Contents
3/43
5.3 Audio interface (AIF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.3.1 Output serial audio interface (SAI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.3.2 Input serial audio interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.3.3 S/PDIF interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.3.4 Audio sample rate converter (ASRC) . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.4 Serial peripheral interfaces (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.4.1 Host micro serial peripheral interface (SPI1) . . . . . . . . . . . . . . . . . . . . . 31
5.4.2 Flash serial peripheral interface (SPI2) . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.4.3 SD/MMC serial peripheral interface (SPI3) . . . . . . . . . . . . . . . . . . . . . . 32
5.4.4 I2C interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.4.5 Host micro I2C interface (I2C1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.4.6 Auxiliary I2C interface (I2C2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.5 SDRAM interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.2 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
8 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
List of tables STA680
4/43
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. Pins description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Table 3. Reference clock configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 4. Power on timing parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 5. Interface list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 6. Baseband interfaces pin list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 7. BBI timing values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 8. AIF pin list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 9. Serial audio interface timing values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 10. SPI interface timing values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 11. Host Micro SPI pin list. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 12. Flash SPI pin list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 13. SD/MMC SPI pin list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 14. Host and auxiliary I2C interface pin list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 15. I2C interface timing values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 16. I2C1 interface device address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 17. I2C2 interface device address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 18. SDRAM Interface pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 19. SDRAM interface timing values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 20. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 21. Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 22. DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 23. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
STA680 List of figures
5/43
List of figures
Figure 1. Functional data flow diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 2. STA680 block diagram (detailed) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 3. Single channel application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 4. Dual channel application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 5. LQFP pinout (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 6. LFBGA ballout (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 7. Clock generation unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 8. Power on timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 9. BBI waveforms and timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 10. Serial audio interface waveforms and timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 11. Three SPI timing diagrams and waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 12. Timing diagrams and waveform for the two I2C interfaces . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 13. Timing diagrams and waveform for the SDRAM interface . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 14. LQFP144 (20x20mm) mechanical data and package dimensions . . . . . . . . . . . . . . . . . . . 40
Figure 15. LFBGA 168 balls (12x12x1.4 mm) mechanical data and package dimensions . . . . . . . . . 41
Description STA680
6/43
1 Description
The STA680 from STMicroelectronics is a system on a chip designed for demodulating and
decoding of HD Radio(a) signals. The STA680 is compliant with the iBiquity specification and
extends the possibility to implement new and optional features and to manage additional
services.
The device combines it all into a single IC consisting of several hardware blocks and a
programmable core to guarantee the proper level of flexibility, low current consumption and
an optimized die size.
The STA680 implements the entire signal processing chain of an HD Radio receiver.
The digital channel demodulation and decoding, including OFDM demodulation and
error correction.
Source decoding, consisting of audio and data decoding of the digital channel.
The analog demodulator extracting the audio signal from the legacy analog AM/FM
signal (can be implemented as an optional feature)
The blending of the analog and digital audio signals
Figure 1 presents a functional diagram describing the data flow inside STA680 for HD Radio
demodulating and decoding.
The architecture consists of an effective and balanced hardware/software implementation,
to pursue the best combination in terms of current consumption, system flexibility and
device cost.
Functional blocks which are standard, and computation intensive, are implemented using
custom logic. Software implementation is more efficient for functional blocks where flexibility
is needed. Such flexibility enables the STA680 to be ready for future evolution, and allows
the implementation of specific and optional features.
Figure 1. Functional data flow diagram
a. HD Radio™ technology manufactured under license from iBiquity Digital Corp. U.S. and Foreign Patents.
HD Radio™ and the HD Radio logo are proprietary trademarks of iBiquity Digital Corp.
AC00175
SRC
Main BB Interface
SRC
Main BB Interface
SRC
Secondary
BB Interface
SRC
Secondary
BB Interface
OFDM
Demod
PSK/QAM
Demod
Deinterleaver
and
Convolutional
Decoding
Channel Decoder
OFDM
Demod
PSK/QAM
Demod
Deinterleaver
and
Convolutional
Decoding
Channel Decoder
Digital
Digital
Analog
AM/FM
Demodulation
DEMUX
HDC
Decoder
Data
Processing
Source Decoder
Blending
Blended Audio
Sample Rate Converter and Serial Interfaces
Audio Samples
DATA
I2S
SPI
I2C
BBI1
BBI2
I2S
*
*
*
This features may be performed outside STA680 depending on the software configuration
Legacy AM/FM Samples
STA680
STA680 System overview
7/43
2 System overview
Figure 2 shows the partitioning of the HD Radio receiver system, composed by an AM/FM
RF front-end, IF channel signal processor and the HD Radio decoder (STA680).
Figure 2. STA680 block diagram (detailed)
The analog IF signal from the tuner front-end is digitized by a high-resolution sigma-delta
A/D converter. A digital down-converter block, embedded into the IF channel signal
processor, transforms the IF into a complex baseband signal. Its Bandwidth and sample rate
have been adapted by filtering and decimation to match the specification of the HD Radio
system. The complex baseband signal feed the HD Radio decoder (STA680) where the HD
Radio stream is demodulated and decoded. The STA680 receives a digital baseband signal
from the IF channel signal processor and returns the recovered audio and data services.
STA680 can be configured to work with digital IF baseband inputs based on standard front-
ends. Front-ends must conform to HD Radio standards for filter bandwidth and linearity.
The STA680 requires external serial Flash memory to boot but can also be configured to
boot from a host controller on IIC or SPI interfaces. The FLASH memory Is issued for
program code and configuration data storage. STA680 needs SDRAM for bulk data storage
required during the IBOC signal processing.
Core
System
I/O &
Control
Interface
BBI 1
I2S
AM/FM Baseband
Tuner
(i.e. STA3004)
RF Tuner
(i.e. TDA7528)
BaseBand
Interface
Peripheral Bus
AHB Bus
Audio
Interface
Vectra LX
Tensilica DSP
HiFi
Tensilica Core
Viterbi DMA
SPI
Flash
SPI
SD/MMC GPIO
Clock Gen. Unit
System
PLL
Peripheral
PLL
LDO
Crystal
Oscillator
Opt. Xtal 28.224 MHz
STA680
AHB/APB
Bridge
Slave Connection
Master Connection
1MB
SERIAL FLASH
(bootable)
8 Mbit (1Mx8)
MMC,SD
SDIO
Cards
(4/8bit)
MMC,SD
SDIO
Cards
(4/8bit)
MAIN MICRO
SDRAM
Interface
8MB
SDRAM
64 Mbit (4Mx16)
OTP
SPI/I2C
Micro i/f
Boundary Scan
JTAG
Tuner & Audio
Interface
BBI 2
System overview STA680
8/43
2.1 HD Radio processing
The STA680 HD Radio Decoder does the processing of the IBOC signal. It receives a
complex digital signal from an AM/FM IF channel signal processor. The native sample rate is
744.1875 kS/s for FM and 46.51171875 kS/s for AM. However, other input sample rates are
acceptable because of the sample rate converter in the baseband Interface (BBI). These
include: 650 kS/s, 675 kS/s, 882 kS/s and 912 kS/s. If a baseband signal is provided that is
not at the native sample frequency of 744.1875 kHz it must be sample rate converted to this
rate. Sample rate conversion hardware is provided on-chip to support this. This feature
allows the STA680 to operate with various AM/FM front-ends.
The STA680is then responsible for detection, acquisition, and demodulation of the IBOC
signal. Such function is primarily implemented by the Vectra DSP core. The demodulated
signal is then passes to the Hi-Fi processor, for decoding, audio blending and handling of
data services. A digital 44.1 kHz decompressed audio is output via the Digital Audio
Interface.
The STA680 uses sophisticated algorithms to recover IBOC data even in the presence of
signal impairments including fading and a variety of other interferences.
To process the HD Radio stream STA680 requires a 4Mx16 external SDRAM (with up to
32Mx16 supported) for data storage.
2.2 Dual stream HD Radio processing
STA680 is capable to simultaneously demodulate two different HD Radio streams. This
unique feature enables the device to decode an HD Radio audio stream, in parallel with any
data service broadcasted by a different radio channel. The implementation of the dual
stream HD Radio processing requires that two AM/FM RF tuners are connected to the
STA680.
In a single channel implementation a single RF tuner is used. In such configuration STA680
is able to demodulate at the same time both the audio and the data associated with the radio
channel (i.e. 92.5 MHz or 102.5 MHz). This means that if the user sets the tuner 102.5 MHz,
he or she can listed to FM2 audio and receive traffic information broadcasted on that
channel. At the same time if the user tunes to another frequency (FM1), current traffic
information will be lost.
Figure 3. Single channel application
FM1
Audio
FM1
News
FM 1
FM1
Audio
FM1
News
FM 1
FM2
Audio
FM2
Traffic
FM 2
FM2
Audio
FM2
Traffic
FM 2
92.5 102.5 MHz
FM1 News
FM1
Audio
FM1 News
FM1
Audio
FM2 Traffic
FM2
Audio
FM2 Traffic
FM2
Audio
OR
Data received are bound to the selected Audio channel
STA680 System overview
9/43
In a dual channels implementation STA680 can simultaneously demodulate audio and data
associated to different radio channels. This means that in the example above it would be still
possible to receive traffic information broadcasted on FM2 (102.5 MHz) while listening FM1
audio program broadcasted on 92.5 MHz
Figure 4. Dual channel application
2.3 Additional processing
The HD Radio stream demodulation and decoding take up only part of the computation
power and memories resources available on STA680. This makes it possible to use the
spare resources to implement additional features.
Depending on memory and computation power required by the additional features, it is
possible to run them in parallel with the HD Radio stream decoding or in alternative, having
all the hardware resources available for the additional features.
2.3.1 AM/FM processing
It is possible to implement legacy AM/FM processing in parallel with the HD Radio stream
demodulation and decoding. Such solution is particularly suitable and appealing when the
STA680 processor works jointly with an AM/FM RF front-end not incorporating the AM/FM
demodulation.
2.3.2 Audio codec
STA680 can be used as a media processor to decode MP3/WMA audio stream. Thanks to
the availability of the MMC and SD interface it is possible to reproduce an MP3 stream
stored into any MMC or SD cards
FM1
Audio
FM1
News
FM 1
FM1
Audio
FM1
News
FM 1
FM2
Audio
FM2
Traffic
FM 2
92.5 102.5 MHz
FM1 News
FM1
Audio
FM1 News
FM1
Audio
OR
Audio and Data can belong to different channels
FM2 Traffic
FM1
Audio
OR
FM1 News
FM2
Audio
OR
FM2 Traffic
FM1
Audio
System overview STA680
10/43
2.3.3 Other
The spare computation power and memories are suitable to implement other specific
algorithms or custom software application. For example sophisticated sound and audio
processing could be implemented on the HD Radio decompressed audio. Audio output can
be provided either in IIS master clock mode or in slave mode with the on-chip audio sample
rate converter. Up to six audio channels may be provided in a standard configuration.
Another possibility is to implement on the STA680 the handling of data services.
2.4 Overview of main functional blocks
2.4.1 Adjacent channel filter
This module performs time domain filtering specifically for IBOC system. It receives a
complex baseband IBOC signal input from SRC module and pre-conditions the signal for
subsequent modem processing. The module is a front end device.
2.4.2 HiFi2
The HiFi2 is a signal processing engine specifically designed to provide high quality 24-bit
audio processing. The HiFi2 is also useful for advanced data applications such as storage
and playback of received audio and conditional access processing. The HiFi2 leverages the
Tensilica Xtensa LX engine with additional useful hardware capabilities such as:
Specialized instructions for 24-bit Audio MAC & stream coding
Dual MAC (each supports 24x24 and 32x16 bit format)
Huffman Encode / Decode and truncate functions
Two way SIMD arithmetic and Boolean operations
2.4.3 Vectra
The Vectra LX is a powerful, configurable 32-bit RISC engine optimized for DSP with VLIW
capabilities. The Vectra LX on board the STA680 includes eight MAC units, sixteen 160-bit
vector operation registers, and a number of SIMD arithmetic instructions. Custom
instructions in the Vectra are targeted for DSP applications such as filters and FFTs. The
Vectra processor has been further configured with specific instructions for efficient
performance on the HD Radio application.
2.4.4 DMA
A ten-channel DMA controller is attached to the AHB bus to allow the Vectra and HiFi2
processor cores to move large blocks of data efficiently. Certain channels are dedicated for
use with certain hardware blocks because of hardware handshaking signals.
2.4.5 Hardware accelerator (VITERBI)
A complex convolutional Viterbi module is designed to fully comply with the HD Radio
system. The module supports both K constant of 7 and 9, for IBOC digital FM and AM bands
respectively.
STA680 I/O description
11/43
3 I/O description
The STA680 has two package options to suit different application needs. The first option is a
20x20mm LQFP package with 144 pins while the second one is a 12x12mm LFBGA with
169 balls and 0.8mm pitch.
3.1 LQFP description
Figure 5 presents the pinout of the STA680 for the LQFP package option. Different colors
have been used for I/O signals from different interfaces according to Ta b l e 2 reported in
Section 3.3.
Figure 5. LQFP pinout (top view)
VDD
GND
SDR_A3
SDR_A2
SDR_A1
SDR_A0
SDR_A10
GND_RAM_IO
VDD_RAM_IO
SDR_BA1
SDR_BA0
SDR_CS_N
GND
VDD
SDR_RAS
SDR_CAS
SDR_WE_N
SDR_A4
GND_RAM_IO
VDD_RAM_IO
SDR_A5
SDR_A6
SDR_A7
GND
VDD
SDR_A8
SDR_A9
SDR_A11
SDR_A12
GND_RAM_IO
VDD_RAM_IO
SDR_CKE
SDR_DQM1
SDR_DQM0
GND
VDD
SDR_D7
SDR_D6
SDR_D5
VDD_RAM_IO
GND_RAM_IO
SDR_D4
SDR_D3
SDR_D2
VDD
GND
SDR_D1
SDR_D0
SDR_D8
SDR_D9
VDD_RAM_IO
GND_RAM_IO
SDR_D10
SDR_D11
SDR_D12
VDD
GND
SDR_D13
SDR_D14
SDR_D15
SDR_FEED_CLK
SDR_CLK_RAM3V3
VDD_RAM_IO_1V8
GND_RAM_IO_1V8
GND
VDD
SPI2_MISO
SPI2_SCK
SPI2_SS0_N
SPI2_MOSI
VDD_FSH_IO
GND
GND_GEN_IO
VDD_GEN_IO
BB1_I
BB1_WS
BB1_BCK
SPDIF
AUDIO_IN_ABCK
AUDIO_IN_AWS
VDD
GND
GND_GEN_IO
VDD_GEN_IO
AUDIO_IN_ADAT
DAC256X
ADAT3
ADAT2
ADAT
AWS
ABCK
CLK_IN
GND
VDD
GND_PLL_DIG
VDD_PLL_DIG
GND_PLL0_ANA
VDD_PLL0_ANA
GND_OSC
VDD_OSC
OSC_IN
OSC_OUT
VDD_REG3V3
VDD_REG1V8
GND
VDD
GND_FSH_IO
144
143
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
1108
2107
3106
4105
5104
6103
7102
8101
9100
10 99
11 98
12 97
13 96
14 95
15 94
16 93
17 92
18 91
19 90
20 89
21 88
22 87
23 86
24 85
25 84
26 83
27 82
28 81
29 80
30 79
31 78
32 77
33 76
34 75
35 74
36 73
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
142
TESTMODE
TRST_N
TCK
TMS
TDI
TDO
RTS_GPIO0
VDD
GND
CTS_GPIO1
GND_GEN_IO
VDD_GEN_IO
TXD_GPIO2
RXD_GPIO3
RESET_N
SPI1_SS0_N
SPI1_SCK
SPI1_MOSI
VDD
GND
SPI1_MISO
GND_GEN_IO
VDD_GEN_IO
IIC1_SCL
IIC1_SDA
BB2_Q
GND
VDD
GND_GEN_IO
VDD_GEN_IO
BB2_I
BB2_WS
BB2_BCK
BLEND
BB1_Q
VDD
AC00504
Color legenda:
SDRAM Interface
IIS Tuner Interfaces
Flash/Card Interfaces
Host Processor Interfaces
GPIO & UART Interfaces
IIS Audio Input Interface
Audio Output Interfaces
I/O description STA680
12/43
3.2 LFBGA description
Figure 6 presents the ballout of the STA680 for the LFBGA package option. Different colors
have been used for I/O signals from different interfaces according to Ta b l e 2 reported in
Section 3.3.
Figure 6. LFBGA ballout (top view)
1234567891011121314
A
B
C
D
E
F
G
H
J
K
L
M
N
P
GPIO6 BB2_BCK BB2_I GND_IO_GEN IIC1_SDA SPI1_MISO SPI1_SCK RESET_N TXD_GPIO2 RTS_GPIO0 VDD_GEN_IO TESTMODE
GPIO5 BB1_Q BLEND BB2_WS GND_IO_GEN BB2_Q IIC1_SCL SPI1_MOSI SPI1_SS0_N RXD_GPIO3 CTS_GPIO1 VDD_GEN_IO SDR_A3SDR_A3 TRST_NTRST_N
BB1_WS BB1_I ADAT2 IIC2_SDA GPIO7 IIC2_SCL IIC1_DA SPI3_MOSI SPI3_MISO SPI3_SCK TDI TCK SDR_A1SDR_A1 SDR_A2SDR_A2
VDD_GEN_IO VDD_GEN_IO BB1_BCK IIC2_DA VDD VDD SPI3_SS_N GPIO4 TDO TMS SDR_A10SDR_A10 SDR_A0SDR_A0
AUDIO_IN_
ABCK
SPDIF ADAT3 VDD_PLL_DIG VDD MODEOP_FSH SDR_BA0SDR_BA0 SDR_BA1SDR_BA1
AUDIO_IN_
ADAT
AUDIO_IN_
AWS
GND_PLL_
DIG
GND_PLL_
DIG
GND GND GND GND VDD MODEOP_GEN SDR_RAS_NSDR_RAS_N SDR_CS_NSDR_CS_N
AWS ADAT DAC256X GND GND GND GND SDR_CAS_NSDR_CAS_N SDR_WE_NSDR_WE_N VDD_RAM_IOVDD_RAM_IO
GND_IO_GEN GND_IO_GEN ABCK GND GND GND GND SDR_A4SDR_A4 SDR_A5SDR_A5 GND_RAM_IOGND_RAM_IO
VDD_OSC GND_OSC GND_PLL1_
ANA
GND_PLL0_
ANA
GND GND GND GND VDD VDD SDR_A7SDR_A7 SDR_A6SDR_A6
OSC_OUT CLK_IN VDD VDD_REG3V3 VDD VDD SDR_A9SDR_A9 SDR_A8SDR_A8
OSC_IN GND_OSC VDD VDD_REG3V3 VDD_FSH_IO GND_FSH_IO VDD_RAM_
IO_1V8
GND_RAM_
IO_1V8
GND_RAM_IO GND_RAM_IO SDR_A12SDR_A12 SDR_A11SDR_A11
VDD_PLL1_
ANA
VDD_PLL0_
ANA
SPI2_SS1_N SPI2_SS2_N SPI2_SS3_N SDR_CLK_
RAM1V8
SDR_D13 SDR_D10 VDD_RAM_IO VDD_RAM_IO GND_RAM_IO GND_RAM_IO SDR_DQM1 SDR_CKE
VDD_REG1V8 VDD_REG1V8 SPI2_MOSI SPI2_SCK SDR_CLK_
RAM3V3
SDR_D15SDR_D15 SDR_D12SDR_D12 SDR_D9SDR_D9 SDR_D0SDR_D0 SDR_D2SDR_D2 SDR_D4SDR_D4 SDR_D6SDR_D6 SDR_DQM0
SPI2_SS0_N SPI2_MISO SDR_FEED_
CLK
SDR_D14SDR_D14 SDR_D11SDR_D11 SDR_D8SDR_D8 SDR_D1SDR_D1 SDR_D3SDR_D3 SDR_D5SDR_D5 SDR_D7SDR_D7
Ball unused Ball not present
AC0070
7
Color legenda:
SDRAM
Interface
IIS Tuner
Interfaces
Flash/Card
Interfaces
Host Processor
Interfaces
GPIO & UART
Interfaces
IIS Audio Input
Interface
Audio Output
Interfaces
STA680 I/O description
13/43
3.3 Pin list
The Ta bl e 2 briefly describes the main function and characteristics of the STA680 I/O
signals in normal operation mode.
Table 2. Pins description
Pin # Ball # Signal name Type Electrical Supply
group Description
Test
1 A13 TESTMODE input 1.8 V or 3.3 V Generic IO
Supply Factory test mode
Standard 1149.1 JTAG interface
2 B14 TRST_N input 1.8 V or 3.3 V Generic IO
Supply JTAG active-low test reset
3 C12 TCK input 1.8 V or 3.3 V Generic IO
Supply JTAG test clock
4 D12 TMS input 1.8 V or 3.3 V Generic IO
Supply JTAG test mode state
5 C11 TDI input 1.8 V or 3.3 V Generic IO
Supply JTAG test data in
6 D11 TDO input 1.8 V or 3.3 V Generic IO
Supply JTAG test data out
GPIO & UART interfaces
7 A11 RTS_GPIO0 in/out 1.8 V or 3.3 V Generic IO
Supply UART ready to send /GPIO bit 0
10 B11 CTS_GPIO1 in/out 1.8 V or 3.3 V Generic IO
Supply UART clear to send /GPIO bit 1
13 A10 TXD_GPIO2 in/out 1.8 V or 3.3 V Generic IO
Supply UART transmit data /GPIO bit 2
14 B10 RXD_GPIO3 in/out 1.8 V or 3.3 V Generic IO
Supply UART receive data /GPIO bit 3
Not
bonded D10 GPIO4 in/out 1.8 V or 3.3 V Generic IO
Supply GPIO bit 4
Not
bonded B1 GPIO5 in/out 1.8 V or 3.3 V Generic IO
Supply GPIO bit 5
Not
bonded B2 GPIO6 in/out 1.8 V or 3.3 V Generic IO
Supply GPIO bit 6
Not
bonded C5 GPIO7 in/out 1.8 V or 3.3 V Generic IO
Supply GPIO bit 7
Reset
15 A9 RESET_N input 1.8 V or 3.3 V Generic IO
Supply Device active-low reset
I/O description STA680
14/43
Host processor interfaces
16 B9 SPI1_SS0_N input 1.8 V or 3.3 V Generic IO
Supply
SPI interface 1 active-low slave
select
17 A8 SPI1_SCK input 1.8 V or 3.3 V Generic IO
Supply SPI interface 1 serial clock
18 B8 SPI1_MOSI input 1.8 V or 3.3 V Generic IO
Supply
SPI interface 1 serial data master
out/slave in
21 A7 SPI1_MISO output 1.8 V or 3.3 V Generic IO
Supply
SPI interface 1 serial data master
in/slave out
24 B7 IIC1_SCL in/out 1.8 V or 3.3 V Generic IO
Supply IIC interface 1 serial clock line
25 A6 IIC1_SDA in/out 1.8 V or 3.3 V Generic IO
Supply IIC interface 1 serial data line
Not
bonded C7 IIC1_DA in/out 1.8 V or 3.3 V Generic IO
Supply
IIC interface 1 data
acknowledged
Not
bonded C6 IIC2_SCL in/out 1.8 V or 3.3 V Generic IO
Supply IIC interface 2 serial clock line
Not
bonded C4 IIC2_SDA in/out 1.8 V or 3.3 V Generic IO
Supply IIC interface 2 serial data line
Not
bonded D4 IIC2_DA in/out 1.8 V or 3.3 V Generic IO
Supply
IIC interface 2 data
acknowledged
I2S tuner interfaces
40 C2 BB1_I input 1.8 V or 3.3 V Generic IO
Supply
Primary baseband interface serial
I data
35 B2 BB1_Q input 1.8 V or 3.3 V Generic IO
Supply
Primary baseband interface
serial Q data
41 C1 BB1_WS input 1.8 V or 3.3 V Generic IO
Supply
Primary baseband interface word
strobe
42 D3 BB1_BCK input 1.8 V or 3.3 V Generic IO
Supply
Primary baseband interface bit
clock
31 A4 BB2_I input 1.8 V or 3.3 V Generic IO
Supply
Secondary baseband interface
serial I data
26 B6 BB2_Q input 1.8 V or 3.3 V Generic IO
Supply
Secondary baseband interface
serial Q data
32 B4 BB2_WS input 1.8 V or 3.3 V Generic IO
Supply
Secondary baseband interface
word strobe
33 A3 BB2_BCK input 1.8 V or 3.3 V Generic IO
Supply
Secondary baseband interface
bit clock
Table 2. Pins description (continued)
Pin # Ball # Signal name Type Electrical Supply
group Description
STA680 I/O description
15/43
I2S audio input interface
45 F2 AUDIO_IN_AWS input 1.8 V or 3.3 V Generic IO
Supply Digital audio input word strobe
44 E1 AUDIO_IN_ABCK input 1.8 V or 3.3 V Generic IO
Supply Digital audio input bit clock
50 F1 AUDIO_IN_ADAT input 1.8 V or 3.3 V Generic IO
Supply Digital audio input serial data
Audio output interfaces
55 G1 AWS in/out 1.8 V or 3.3 V Generic IO
Supply Digital audio output word strobe
56 H3 ABCK in/out 1.8 V or 3.3 V Generic IO
Supply Digital audio output clock
54 G2 ADAT output 1.8 V or 3.3 V Generic IO
Supply Digital audio output serial data
53 C3 ADAT2 output 1.8 V or 3.3 V Generic IO
Supply
Digital audio output serial data
channel 2
52 E3 ADAT3 output 1.8 V or 3.3 V Generic IO
Supply
Digital audio output serial data
channel 3
43 E2 SPDIF output 1.8 V or 3.3 V Generic IO
Supply
Digital audio output in SPDIF
format
34 B3 BLEND output 1.8 V or 3.3 V Generic IO
Supply Digital audio output blend output
51 G3 DAC256X output 1.8 V or 3.3 V Generic IO
Supply
Digital audio output
oversupplying clock (256 x Fs)
Clock and oscillator
57 K2 CLK_IN input 1.8 V or 3.3 V Generic IO
Supply Reference digital clock
66 L1 OSC_IN analo
g1.8 V Osc
Supply
28,224MHz crystal in or digital
clock input
67 L2 OSC_OUT analo
g1.8 V Osc
Supply Crystal output
SPI Flash interface
77 P4 SPI2_MISO input 1.8 V or 3.3 V Flash IO
Supply
SPI interface 2 serial data master
in/slave out
74 N3 SPI2_MOSI output 1.8 V or 3.3 V Flash IO
Supply
SPI interface 2 serial data master
out/slave in
75 P3 SPI2_SS0_N output 1.8 V or 3.3 V Flash IO
Supply
SPI interface 2 active-low slave
select 0
Not
bonded M3 SPI2_SS1_N output 1.8 V or 3.3 V Flash IO
Supply
SPI interface 2 active-low slave
select 1
Table 2. Pins description (continued)
Pin # Ball # Signal name Type Electrical Supply
group Description
I/O description STA680
16/43
Not
bonded M4 SPI2_SS2_N output 1.8 V or 3.3 V Flash IO
Supply
SPI interface 2 active-low slave
select 2
Not
bonded M5 SPI2_SS3_N output 1.8 V or 3.3 V Flash IO
Supply
SPI interface 2 active-low slave
select 3
76 N4 SPI2_SCK output 1.8 V or 3.3 V Flash IO
Supply SPI interface 2 serial clock
SPI SD/MMC interface
Not
bonded C9 SPI3_MISO input 1.8 V or 3.3 V Generic IO
Supply
SPI interface 3 serial data master
in/slave out
Not
bonded C8 SPI3_MOSI output 1.8 V or 3.3 V Generic IO
Supply
SPI interface 3 serial data master
out/slave in
Not
bonded D9 SPI3_SS_N output 1.8 V or 3.3 V Generic IO
Supply
SPI interface 3 active-low slave
select
Not
bonded C10 SPI3_SCK output 1.8 V or 3.3 V Generic IO
Supply SPI interface 3 serial clock
SDRAM interface
83 P5 SDR_FEED_CLK input 3.3 V SDRAM IO
Supply
Feedback clock farmsteads
interface
82 N5 SDR_CLK_RAM3.3 V output 3.3 V SDRAM IO
Supply Clock distrain for 3.3 V interface
Not
bonded M6 SDR_CLK_RAM1.8 V output 1.8 V SDRAM
Supply
Clock to SDRAM for 1.8 V
interface
96 N9 SDR_D0 in/out 3.3 V SDRAM IO
Supply SDRAM bidirectional data bit 0
97 P9 SDR_D1 in/out 3.3 V SDRAM IO
Supply SDRAM bidirectional data bit 1
100 N10 SDR_D2 in/out 3.3 V SDRAM IO
Supply SDRAM bidirectional data bit 2
101 P10 SDR_D3 in/out 3.3 V SDRAM IO
Supply SDRAM bidirectional data bit 3
102 N11 SDR_D4 in/out 3.3 V SDRAM IO
Supply SDRAM bidirectional data bit 4
105 P11 SDR_D5 in/out 3.3 V SDRAM IO
Supply SDRAM bidirectional data bit 5
106 N12 SDR_D6 in/out 3.3 V SDRAM IO
Supply SDRAM bidirectional data bit 6
107 P12 SDR_D7 in/out 3.3 V SDRAM IO
Supply SDRAM bidirectional data bit 7
95 P8 SDR_D8 in/out 3.3 V SDRAM IO
Supply SDRAM bidirectional data bit 8
94 P9 SDR_D9 in/out 3.3 V SDRAM IO
Supply SDRAM bidirectional data bit 9
Table 2. Pins description (continued)
Pin # Ball # Signal name Type Electrical Supply
group Description
STA680 I/O description
17/43
91 M8 SDR_D10 in/out 3.3 V SDRAM IO
Supply SDRAM bidirectional data bit 10
90 P7 SDR_D11 in/out 3.3 V SDRAM IO
Supply SDRAM bidirectional data bit 11
89 N7 SDR_D12 in/out 3.3 V SDRAM IO
Supply SDRAM bidirectional data bit 12
86 M7 SDR_D13 in/out 3.3 V SDRAM IO
Supply SDRAM bidirectional data bit 13
85 P6 SDR_D14 in/out 3.3 V SDRAM IO
Supply SDRAM bidirectional data bit 14
84 N6 SDR_D15 in/out 3.3 V SDRAM IO
Supply SDRAM bidirectional data bit 15
110 N13 SDR_DQM0 output 3.3 V SDRAM IO
Supply low-byte data input/output mask
111 M13 SDR_DQM1 output 3.3 V SDRAM IO
Supply high-byte data input/output mask
127 G13 SDR_WE_N output 3.3 V SDRAM IO
Supply Active-low write enable
128 G12 SDR_CAS_N output 3.3 V SDRAM IO
Supply Active-low column address strobe
129 F13 SDR_RAS_N output 3.3 V SDRAM IO
Supply Active-low row address strobe
112 M14 SDR_CKE output 3.3 V SDRAM IO
Supply Clock enable
132 F14 SDR_CS_N output 3.3 V SDRAM IO
Supply Active-low chip select
133 E13 SDR_BA0 output 3.3 V SDRAM IO
Supply Bank select address 0
134 E14 SDR_BA1 output 3.3 V SDRAM IO
Supply Bank select address 1
138 D14 SDR_A0 output 3.3 V SDRAM IO
Supply Address bit 0 toSDRAM
139 C13 SDR_A1 output 3.3 V SDRAM IO
Supply Address bit 1 toSDRAM
140 C14 SDR_A2 output 3.3 V SDRAM IO
Supply Address bit 2 toSDRAM
141 B13 SDR_A3 output 3.3 V SDRAM IO
Supply Address bit 3 toSDRAM
126 H12 SDR_A4 output 3.3 V SDRAM IO
Supply Address bit 4 toSDRAM
123 H13 SDR_A5 output 3.3 V SDRAM IO
Supply Address bit 5 toSDRAM
Table 2. Pins description (continued)
Pin # Ball # Signal name Type Electrical Supply
group Description
I/O description STA680
18/43
122 J14 SDR_A6 output 3.3 V SDRAM IO
Supply Address bit 6 toSDRAM
121 J13 SDR_A7 output 3.3 V SDRAM IO
Supply Address bit 7 toSDRAM
118 K14 SDR_A8 output 3.3 V SDRAM IO
Supply Address bit 8 toSDRAM
117 K13 SDR_A9 output 3.3 V SDRAM IO
Supply Address bit 10 toSDRAM
137 D13 SDR_A10 output 3.3 V SDRAM IO
Supply Address bit 10 toSDRAM
116 L14 SDR_A11 output 3.3 V SDRAM IO
Supply Address bit 11 toSDRAM
115 L13 SDR_A12 output 3.3 V SDRAM IO
Supply Address bit 12 toSDRAM
Supplies
Not
bonded F12 MODEOP_GEN input 3.3 V SDRAM IO
Supply
Define the operating voltage of
the "Generic I/O" supply group. If
tied low the I/Os work at 1.8V else
they work at 3.3V. Default value is
3.3V.
Not
bonded E12 MODEOP_FSH input 3.3 V SDRAM IO
Supply
Define the operating voltage of
the "Flash I/O" supply group. If
tied low the I/Os work at 1.8V else
they work at 3.3V. Default value is
3.3V.
8, 19,
28, 36,
46, 59,
71, 78,
88, 99,
108,
119,
130, 143
D5, D6,
E11,
F11,
J11,
J12,
K3,
K11,
K12, L3
VDD power 1.2 V Core
Supply Power supply for core logic
9, 20,
27, 37,
47, 58,
70, 79,
87, 98,
109,
120,
131, 142
F6, F7,
F8, F9,
G6, G7,
G8, G9,
H6, H7,
H8, H9,
J6, J7,
J8, J9
GND power - Core
Supply Ground for core logic
11, 22,
27, 38,
48
A5, B5,
H1, H2 GND_GEN_IO power - Generic IO
Supply Generic I/Os ground
Table 2. Pins description (continued)
Pin # Ball # Signal name Type Electrical Supply
group Description
STA680 I/O description
19/43
12, 23,
30, 39,
49
A12,
B12,
D1, D2
VDD_GEN_IO power 1.8 V or 3.3 V Generic IO
Supply Generic I/Os power supply
72 L6 GND_FSH_IO power - Flash IO
Supply Ground for Flash Interface I/Os
73 L5 VDD_FSH_IO power 1.8 V or 3.3 V Flash IO
Supply
Power supply for Flash Inteface
I/Os
92, 103,
114,
125, 136
H14,
L11,
L12,
M11,
M12
GND_RAM_IO power - SDRAM IO
Supply Ground forSDRAM Interface I/Os
93, 104,
113,
124, 135
G14,
M9,
M10
VDD_RAM_IO power 3.3 V SDRAM IO
Supply
Power supply forSDRAM
Interface I/Os
81 L9 VDD_RAM_IO_1.8 V power 1.8 V
1.8 V
SDRAM
Clock
Supply
Power supply forSDRAM clock
pad at 1.8 Volt
80 L10 GND_RAM_IO_1.8 V power -
1.8 V
SDRAM
Clock
Supply
Ground forSDRAM clock pad at
1.8 volt
60 F3, F4 GND_PLL_DIG power - PLL Digital
Supply Ground for PLL digital part
61 E4 VDD_PLL_DIG power 1.2 V PLL Digital
Supply Power supply for PLL digital part
62 J4 GND_PLL0_ANA(1) power -
PLL
Analog
Supply
Ground for PLL0 analog part
62 J3 GND_PLL1_ANA(1) power -
PLL
Analog
Supply
Ground for PLL1 analog part
63 M2 VDD_PLL0_ANA(2) power 1.8 V
PLL
Analog
Supply
Power supply for PLL0 analog
part
63 M1 VDD_PLL1_ANA(2) power 1.8 V
PLL
Analog
Supply
Power supply for PLL1 analog
part
64 J2, L2 GND_OSC power - Osc
Supply Ground for oscillator core
65 J1 VDD_OSC power 1.8 V Osc
Supply Power supply for oscillator core
Table 2. Pins description (continued)
Pin # Ball # Signal name Type Electrical Supply
group Description
I/O description STA680
20/43
3.4 I/Os supply groups
The STA680 I/O signals are arranged into three different supply groups: Generic IO supply,
Flash IO supply and SDRAM IO supply group (see Ta b le 2 ).
In the LQFP package option all three groups must be supplied with 3.3 V.
In the LFBGA package the three supply groups can independently operate at 3.3 V or 1.8 V.
The SDRAM_IO supply group must always be supplied at 3.3 V.
The MODEOP_GEN pin selects the operating voltage of the Generic_IO supply group.
If the it is shorted to ground then all the I/O signals belonging to the Generic_IO supply
group will work at 1.8 V; if the MODEOP_GEN pin is left floating or it is tied high (3.3 V)
all the group I/Os will operate at 3.3 V.
The MODEOP_FSH pin selects the operating voltage of the Flash_IO supply group. If
the it is shorted to ground then all the I/O signals belonging to the Flash_IO supply
group will work at 1.8 V; if the MODEOP_FSH pin is left floating or it is tied high (3.3 V)
the Flash Interface I/Os will operate at 3.3 V.
68 K4, L4 VDD_REG3.3 V power 3.3 V LDO
Supply
Input power supply for voltage
regulator at 3.3 Volt
69 N1, N2 VDD_REG1.8 V power 1.8 V LDO
Supply
Output power supply from voltage
regulator at 1.8 Volt
Table 2. Pins description (continued)
Pin # Ball # Signal name Type Electrical Supply
group Description
STA680 Operation and general remarks
21/43
4 Operation and general remarks
4.1 Clock schemes
The STA680 needs an external clock source to feed the internal Phase Locked Loops
(PLLs) to generate all the frequency needed by its cores and peripherals. This reference
clock may be supplied in several ways thus offering flexibility in the development of the final
application:
The reference clock may be supplied through the use of an external crystal or as a
digital signal coming from an external IC.
The reference clock may have different frequencies and can be fed to the STA680
through different input pins.
The selection of the clock input mode is performed during the power-on phase of the device
by latching the value of the pins ADAT3, BLEND and DAC256X on the rising edge of the
RESET_N signal (see Chapter 4.2); this value shall be selected according to Ta bl e 3 .
Table 3. Reference clock configuration
[ADAT3, BLEND,
DAC256X] Clock type Input pin Clock frequency
(MHz)
[0,0,0] (1)
1. Default setting.
Crystal OSC_IN 28.224
[0,0,1] Digital OSC_IN or CLK_IN (2)
2. When using OSC_IN pin to input the reference clock the CLK_IN pin must be connected to ground and vice
versa.
23.3472
[0,1,0] Digital OSC_IN or CLK_IN (2) 36.48
[0,1,1] Digital OSC_IN or CLK_IN (2) 2.9184
[1,0,0] Digital BB1_BCK 10.4
[1,0,1] Digital BB1_BCK 10.8
[1,1,0] Digital BB1_BCK 14.112
[1,1,1] Digital AUDIO_IN_ABCK 2.9184
Operation and general remarks STA680
22/43
Figure 7 shows a simplified version of the internal clock generation unit.
Figure 7. Clock generation unit
Some remarks on the choice of the clock input pin must be done:
OSC_IN is always a 1.8 V input pin.
CLK_IN, BB1_BCK and AUDIO_IN_ABCK are 3.3 V pins when the LQFP package is
selected while they can be configured as a 3.3 V or 1.8 V pins if the LFBGA is chosen
(see Chapter 3.4)
When the clock is fed through CLK_IN pin, the OSC_IN pin must be connected to
ground. Similarly if the clock is fed using CLK_IN pin then the OSC_IN pin must be
connected to ground.
The BB1_BCK pin is the bit clock of the digital interface to the baseband Tuner, so to
fed the reference clock through this pin the selected clock frequency must be chosen
accordingly to the Primary baseband Interface settings (see Chapter 5.2):
10.4 MHz = 16 * 2 * 650 kHz BBI set to 650 Ksample/s
10.8 MHz = 16 * 2 * 675 kHz BBI set to 675 Ksample/s
14.112 MHz = 16 * 2 * 882 kHz BBI set to 882 Ksample/s
The AUDIO_IN_ABCK is the bit clock of the digital audio input interface to the Tuner.
When this pin is selected as clock source the STA680 Input Serial Audio Interface (see
Chapter 5.3.2) must be set according to following specification:
–Slave mode
Input sample rate = 45.6 kHz
Word length = 32 bit
With this settings the reference clock frequency is 2.9184 MHz = 32 * 2 * 45.6 kHz.
Internal
Oscillator
OSCI_OUT
OSCI_IN
BB1_BCK
AUDIO_IN_ABCK
CLK_IN
ADAT3
BLEND
DAC256X
Encoder
OSC_EN
CLK_SEL
Core Clock
PLL
Peripheral
Clock PLL
PLL Settings
Clock to Cores
Clock to Peripherals
AC00712
STA680 Operation and general remarks
23/43
4.2 Power on
This chapter describes the power-on procedure for the cold start (cold start means that the
device is completely disconnected from the power supply before being turned on). Figure 8
and Ta bl e 4 show the timing for the power up sequence of the cold start.
Figure 8. Power on timing
4.2.1 Power supply ramp up phase
All power supplies must be ramped-up to their specified levels within the time TRamp-up, set
by the external power supply circuit on the board. The ramp up phase of each power domain
should start at the same time.
The RESET_N pin must be kept low since the beginning. For normal applications, the
TESTMODE pin (Factory test mode enable, see Ta bl e 2 ) must be connected to ground.
Table 4. Power on timing parameters
Symbol Parameter Min Max Unit
Tramp-up External supply ramp-up time TBD µs
TDC1V8 DC1V8 regulator start-up time 300 µs
TOSC Oscillator start-up time 0.18 ms
TRST Reset release time 1.1 µs
TCFG Setup of clock/jtag configuration 0.1 µs
Core Clock
T
DC1V8
T
OSC
T
RST
T
CFG
primary boot
Min @ 2.9184MHz
Max @ 38.48MHz
secondary boot
@ 28.224MHz
functional mode
max @ 166MHz
set for jtag /tap config .
set for clock config .
Core Supply
(1.2V)
I/Os Supply
(3.3V or 1.8 V)
LDO Input Supply
(3.3V)
LDO Output Supply
(1.8V)
OSC_IN
OSC_OUT
RESET_N
ADAT
ADAT2
ADAT3
BLEND
DAC256X
T
Ramp - up
AC00708
Operation and general remarks STA680
24/43
4.2.2 Oscillator setting time
Once the power supply has reached the operating level, the internal voltage regulator gets
functional after TDC1V8 = 300 µs (see Ta bl e 4 ) and starts supplying the 1.8 V voltage to
internal IPs such as PLLs and Crystal Oscillator.
The PLL is powered up but not yet functioning since the internal logic keeps it in bypass
mode until a stable clock is available and STA680 has entered the secondary boot phase.
As shown in Figure 8, if an external crystal is connected to the internal oscillator this will
output a correct waveform after TOSC = 0.18 ms (seeTa b l e 4 ).
At this time, if no crystal is used, a digital clock must be supplied according to the
instructions detailed in Section 4.1.
Either if an external crystal is used or the reference clock is provided through a digital
source, the RESET_N pin must be kept low for an additional TRST = 1.1 µs.
As described in Section 4.1 the internal clock configuration is defined latching on the rising
edge of the RESET_N signal the value of the pins ADAT3, BLEND and DAC256X; the value
of this three signals must be stable at least TCFG = 0.1 µs before the leading edge of the
RESET_N signal.
4.2.3 Boot sequence
Once the RESET_N signal has been released and the power up sequence correctly
performed, the STA680 enters the boot procedure, which consists of two phases consisting
of device setup and application authentication and download.
During the first phase the STA680 executes the on-chip primary boot code contained in the
32 kilobyte Boot ROM. The primary boot synchronizes the internal cores, initializes the SPI
and IIC interfaces and automatically selects the secondary boot code source by searching a
pre-defined pattern into UART1, Flash, SPI1, IIC1 and IIC2.
Once the device on which the secondary boot resides has been found, following tasks are
performed: the code is authenticated, the SDRAM is initialized and the secondary boot code
is downloaded into it.
The downloading speed depends on the device reference clock frequency even if this
parameter does not have a big impact on the overall boot time since the dimension of this
part of the code is small.
During the second phase of the boot procedure to achieve acceptable boot time the STA680
performs PLLs setup and takes the internal clock frequency to 28.224 MHz (see Figure 8)
then downloads and validates the application code from the external Flash memory. This
last task ends the boot procedure.
4.2.4 Normal operation mode
After the execution of the boot code, the device enters the normal operation mode by
jumping to the main program loop.
STA680 Digital I/O and memory interfaces
25/43
5 Digital I/O and memory interfaces
5.1 Interfaces: LQFP vs. LFBGA
The STA680 interface set depends on the package option selected, the LFBGA giving the
maximum flexibility where the LQFP package has a slightly smaller set of interfaces, due to
its smaller pin count.
The differences between the two package options are detailed in Ta bl e 5 .
Table 5. Interface list
Interface name Direction LQFP LFBGA
Baseband interface 1 I ✓✓
Baseband interface 2 (data only) I ✓✓
I2S audio input I ✓✓
I2S audio output (six channels) O ✓✓
I2C primary interface (Micro) I/O ✓✓
I2C secondary Interface I/O x
SPI micro interface I/O ✓✓
SPI Flash interface (single chip select) I/O ✓✓
SPI Flash interface extension (up to 4 chip select) I/O x
SPI SD/MMC I/O x
SDRAM interface I/O ✓✓
S/PDIF interface O ✓✓
UART interface I/O ✓✓
4 GPIO lines I/O x
JTAG test interface (boundary scan only) I/O ✓✓
Digital I/O and memory interfaces STA680
26/43
5.2 Tuner interface
The STA680 provides two digital baseband interfaces, named BBI1 and BBI2, through which
the demodulated IBOC signals can enter the HD Radio decoder. The baseband Tuner
accepts the analog signal from the RF Tuner, samples it, performs down conversion and
filtering, and sends the zero-IF signal across a baseband interface (BBI) to the STA680.
Using two interfaces the STA680 is able to decode two channels at the same time, allowing
the implementation of features such as the background scanning of HD Radio channels in
search of traffic or weather information.
The BBI consists of four-wires, 16 bit wide I and Q data and two clocks. MSB is always
transmitted first. All signals are assumed to be zero-if.
The native rate for FM is 744.1875 kS/s and for AM it is 46.51171875 kS/s. Sample rates of
650 kS/s, 675 kS/s, 882 kS/s and 912 kS/s are acceptable via the use of a sample rate
converter.
BBI2 is similar to BBI1 except BBI2 doesn’t have center filter so it is intended to be used for
digital modulated signal only. For pin description refers to the Ta b l e 5 .
The data stream of the baseband interface varies depending on the mode selected.
Split mode splits I and Q data onto the BB1_I and BB1_Q pins, respectively. The rising and
falling edges of BB1_WS mark the beginning of each I and Q pair.
Multiplexed mode places the I and Q data onto the BB1_I data pin. The falling edge of
BB1_WS marks the start of the I data and the rising edge marks the start of Q data.
AFE mode uses a single clock pulse on BB1_WS to indicate the start of I data followed by Q
data using the BB1_I pin only.
Figure 9 show signals waveform for the three modes.
Table 6. Baseband interfaces pin list
Pin name Designation Type Drive
BB1_WS Secondary base band interface word strobe I -
BB1_BCK Primary baseband interface bit clock I -
BB1_I Primary baseband interface serial I data I -
BB1_Q Primary baseband interface serial Q data I -
BB2_WS Secondary baseband interface word strobe I -
BB2_BCK Secondary baseband interface bit clock I -
BB2_I Secondary baseband interface serial I data I -
BB2_Q Secondary baseband interface serial Q data I -
STA680 Digital I/O and memory interfaces
27/43
Figure 9. BBI waveforms and timings
In Ta b l e 7 are reported the timing values for the BB interface.
I15 I14 I13 I12 I11 I10 I9 I8 I7 I6 I5 I4 I3 I2 I1 I0 Q15 Q14 Q13 Q12 Q11 Q10 Q9 Q8 Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q0
I15 I14 I13 I12 I11 I10 I9 I8 I7 I6 I5 I4 I3 I2 I1 I0 Q15 Q14 Q13 Q12 Q11 Q10 Q9 Q8 Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q0
I15 I14 I13 I12 I11 I4 I3 I2 I1 I0 I15 I14 I13 I12 I11 ……I4 I3 I2 I1 I0
Q15 Q14 Q13 Q12 Q11 ... ... Q4 Q3 Q2 Q1 Q0 Q15 Q14 Q13 Q12 Q11 Q4 Q3 Q2 Q1 Q0
Sample N (I and Q) Sample N+1 (I and Q)
Split Mode
BBx_WS
BBx_BCK
BBx_I
BBx_Q
Sample N (I) Sample N (Q)
Sample N (I) Sample N (Q)
BBx_WS
BBx_BCK
BBx_I
Multiplexed Mode
I15 I14 I13 I12 I11 I10 I9 I8 I7 I6 I5 I4 I3 I2 I1 I0 Q15 Q14 Q13 Q12 Q11 Q4 Q3 Q2 Q1 Q0
Sample N (I) Sample N (Q)
BBx_WS
BBx_BCK
BBx_I
AFE Mode
Ts Th
Th
Ts
Th
Ts
2/Fws
1/Fws
1/Fws
1/Fbck,mux
1/Fbck,split
1/Fbck,afe
AC00713
Table 7. BBI timing values
Symbol Parameter Condition Working rate Unit
Fws Word strobe 650 675 744.188 882 912 kHz
Fbck,split Bit clock in split mode 16 x Fws - - 66 - MHz
Fbck,mux Bit clock in multiplexed
mode 32 x Fws - - 32 x Fws - MHz
Fbck,afe Bit clock in AFE mode 32 x Fws 66 MHz
Th Data hold time 4 ns
Ts Data setup time 8 ns
Digital I/O and memory interfaces STA680
28/43
5.3 Audio interface (AIF)
The AIF (Audio Interface) is used for the communication with external digital signal sources
and receivers. The main AIF features are:
1 Input SAI interface.
3 Output SAI interface.
1 S/PDIF transmitter.
Audio Sample Rate Converter (ASRC).
I/O sample rates: 44.1 kHz, 45.6 kHz, 48 kHz.
The AIF includes 1 Input SAI interface, 3 Output SAI interface and 1 S/PDIF (industry
standard) transmitter. The receivers and transmitters can be used either in master-mode,
running with the STA680 internal audio frequency of 44.1 kHz or in slave mode running with
a frequency determined by the external device. In slave mode, in order to adapt the external
data rate to the internal audio data rate, it is possible to use an internal Audio Sample Rate
Converter (ASRC, see Chapter 5.3.4).
5.3.1 Output serial audio interface (SAI)
The output serial audio interface is used to send decoded audio samples from the HD Radio
Decoder to an external IC for audio processing, or directly to a digital power amplifier.
The output SAI is an I2S interface which provides audio samples in stereo at a 44,1 kS/s
sample rate. Other sample rates may be provided by means of the internal ASRC (see
Chapter 5.3.4).
The output SAI interface shares the word strobe and the bit clock signal with three data
output signals in order to support up to a total of 3 stereo channels of audio output. For
interfacing the STA680 to an external DAC an oversampling clock whose frequency is 256
times the sampling frequency is provided. For pin description refers to Ta bl e 8 .
The output SAI supports a 32x or 64x bit clock. The 32x clock mode shifts out serial data
with no padding. The 64x clock mode shifts out the 16-bit audio data first followed by 16 bits
of zero padding. Figure 10 shows timing diagrams for the supported modes.
Table 8. AIF pin list
Pin name Designation Type Drive
AUDIO_IN_AWS Digital audio input word strobe I -
AUDIO_IN_ABCK Digital audio input bit clock I -
AUDIO_IN_ADAT Digital audio input serial data I -
AWS Digital audio output word strobe I/O 4mA
ABCK Digital audio output clock I/O 4mA
ADAT Digital audio output serial data O 4mA
ADAT2 Digital audio output serial data channel 2 O 4mA
ADAT3 Digital audio output serial data channel 3 O 4mA
DAC256X Digital audio output oversampling clock (256 x Fs) O 4mA
SPDIF Digital audio output in SPDIF format O 4mA
BLEND Digital audio output blend output O 4mA
STA680 Digital I/O and memory interfaces
29/43
Figure 10. Serial audio interface waveforms and timings
In Ta b l e 9 are reported the timing values for the output SAI interface.
5.3.2 Input serial audio interface
The input serial audio interface is used to receive the legacy AM/FM demodulated samples
from an external AM/FM Tuner for blending purpose.
The input SAI is an I2S interface which accepts 16 bit audio samples in stereo at a 44,100
S/s sample rate. Other sample rates may be supported by means of the internal ASRC. For
pin description refers to Ta bl e 8 .
The input SAI supports a 32x or 64x bit clock. The 32x clock mode shifts out serial data with
no padding. The 64x clock mode shifts out the 16-bit audio data first followed by 16 bits of
zero padding. Figure 10 shows timing diagrams for the supported modes.
5.3.3 S/PDIF interface
The S/PDIF Interface is an output only. It is compliant to the standard IEC 958 type II. For
pin description refers to Ta bl e 8 .
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
LEFT RIGHT
AWS
ABCK
ADAT
32X Mode (16 - bit data)
D15 D14 D13 D3 D2 D1 D0 0 0000D15
D14 D13 D3 D2 D1 D0 00000
LEFT RIGHT
AWS
ABCK
ADAT
64X Mode (32 - bit data)
1/Faws
1/Faws
1/Fabck,16
1/Fabck,32
Th
Ts
AC00717
Table 9. Serial audio interface timing values
Symbol Parameter Condition Working rate Unit
Faws Word strobe 44.1 ±10 Hz 45.6 ±15 Hz 48 ±15 Hz kHz
Fabck,16 Bit clock for 16-bit data 32 x Faws MHz
Fabck,32 Bit clock for 32-bit data 64 x Faws MHz
Th Data hold time 5 ns
Ts Data setup time 20 ns
Digital I/O and memory interfaces STA680
30/43
5.3.4 Audio sample rate converter (ASRC)
The STA680 supports various external host audio interfaces. The audio sample rate
converter is designed to interface the audio output to systems with local master audio clock
sources.
Output sample rates of 44,100 (± 10 Hz), 45,600 (± 15 Hz) and 48,000 (± 15 Hz) are
acceptable. Total harmonic distortion plus noise (THD+N) at 1 kHz is greater than 85 dB
down (0.0056%).
One stereo channel (i.e. single ADAT line) either from the input SAI or from the output SAI
can be used with the audio sample rate converter.
In applications where the STA680 supplies the master clock to the audio D/A converter, the
ASRC will be bypassed.
5.4 Serial peripheral interfaces (SPI)
The STA680 provides three serial peripheral interfaces, each one intended for a different
and specific purpose:
SPI1 - The first SPI is intended for communicating with the Host Microcontroller.
Alternatively to this purpose can be also the Host Micro I2C Interface (see
Chapter 5.4.1)
SPI2 - The second SPI has been taught to interface the STA680 with the external an
external flash typically used to store the application code.
SPI3 - The third SPI allow the HD Radio decoder to control an external SD/MMC card.
For master mode the SPI clock frequency is a divide down by n of the internal peripheral
clock frequency, where n is an integer number comprised between 2 and 65536. The
maximum SPI clock frequency in master mode is 25 MHz.
For slave mode the maximum input frequency value accepted for the SPI clock from an
external device is a function of the internal peripheral clock.
In particular the maximum frequency is .
Figure 11 shows timing diagrams and waveform for the three SPI.
FSPI
Fperif
8
---------------=
STA680 Digital I/O and memory interfaces
31/43
Figure 11. Three SPI timing diagrams and waveform
In Ta b l e 1 0 are reported the timing values for the SPI interface.
5.4.1 Host micro serial peripheral interface (SPI1)
The Host Micro SPI is used as a host processor interface. The usage of this interface is
optional because the STA680 is able to communicate with an external microcontroller also
via I2C protocol (see Chapter 5.4.5, Host micro I2C interface).
The Host Micro SPI is a slave only interface.
For pin description see Ta b l e 1 1 .
Table 10. SPI interface timing values
Symbol Parameter Condition
Working rate
Unit
Min. Max.
Tss Chip select 8/Fsck kHz
Fsck Serial bit clock, slave mode 1.076 8000 kHz
Fsck Serial bit clock, master mode 1.076 25000 kHz
Th Data hold time 7 ns
Ts Data setup time 15 ns
D6 D5 D4 D3 D2 D1 D0
SPIx_SCK cpol =0
Ts Th
1/Fsck
D7 Z
Z
SPIx_SCK cpol =1
D6 D5 D4 D3 D2 D1 D0
D7 Z
Z
1/Fsck
Ts Th
Tss
SPIx_MOSI/MISO
SPIx_MOSI/MISO
SPIx_SS_N
AC0071
8
Table 11. Host Micro SPI pin list
Pin name Designation Type Drive
SPI1_MISO (1)
1. Slave only interface.
Host Micro SPI data master in/slave out O 4mA
SPI1_MOSI (1) Host Micro SPI data master out/slave in I -
SPI1_SCK Host Micro SPI clock O 4mA
SPI1_SS_N Host Micro SPI active-low slave select 1 O 4mA
Digital I/O and memory interfaces STA680
32/43
5.4.2 Flash serial peripheral interface (SPI2)
The Flash SPI is useful for storing boot code and other configuration parameters. The
minimum required capacity for this purpose is 1 Mbit.
The STA680 is SPI master only on the FLASH bus. No glue logic is necessary to connect an
external Flash to the HD Radio Decoder.
In the BGA package up to 4 chips selects are available. For pin description see Ta bl e 1 2 .
5.4.3 SD/MMC serial peripheral interface (SPI3)
The SPI SD/MMC SPI allows to connect the STA680 to a Secure Digital Card or a
Multimedia Card for data storage purposes.
This interface can be configured to be master or slave and is available only in the BGA
Package. For pin description see Ta b l e 1 3 .
5.4.4 I2C interfaces
The STA680 provides two I2C interfaces that can be used to communicate with the Host
Microcontroller. The first one may be used by the Host Micro in replacement of the SPI1 to
control the main function of the HD Radio Decoder. The second one is an auxiliary interface
and is available only in the LFBGA package option. For pin description see Ta b l e 1 4 .
Table 12. Flash SPI pin list
Pin name Designation Type Drive
SPI2_MISO(1)
1. Slave only interface.
Flash SPI data master in/slave out I -
SPI2_MOSI(1) Flash SPI data master out/slave in O 4mA
SPI2_SCK Flash SPI clock O 4mA
SPI2_SS_N Flash SPI active-low slave select 1 O 4mA
SPI2_SS1_N Flash SPI active-low slave select 2 (2))
2. Only available in BGA package.
O4mA
SPI2_SS2_N Flash SPI active-low slave select 3 (2) O4mA
SPI2_SS3_N Flash SPI active-low slave select 4 (2) O4mA
Table 13. SD/MMC SPI pin list
Pin name Designation(1)
1. Only available in BGA package
Type Drive
SPI3_MISO SD/MMC SPI data master in/slave out I/O 4mA
SPI3_MOSI SD/MMC SPI data master out/slave in I/O 4mA
SPI3_SCK SD/MMC SPI clock O 4mA
SPI3_SS_N SD/MMC SPI active-low slave select 1 O 4mA
STA680 Digital I/O and memory interfaces
33/43
The data pins of the two I2C interfaces are open drain drivers and must have resistive pull-
up conforming to Philip's IIC specification.
Figure 12 shows timing diagrams and waveform for the two I2C interfaces.
Figure 12. Timing diagrams and waveform for the two I2C interfaces
In Ta b l e 1 5 are reported the timing values for the I2C interface.
Table 14. Host and auxiliary I2C interface pin list
Pin name Designation Type Drive
IIC1_SCL Host Micro I2C interface serial clock line I/O 4mA
IIC1_SDA Host Micro I2C interface serial data line I/O 4mA
IIC1_DA Host Micro I2C interface data acknowledged I/O 4mA
IIC2_SCL Auxiliary I2C interface serial clock line I/O 4mA
IIC2_SDA Auxiliary I2C interface serial data line I/O 4mA
IIC2_DA Auxiliary I2C interface data acknowledged I/O 4mA
Ts,dat Th,dat
Thigh
IICx_SDA
IICx_SCL
Bit 1 Bit 2 Bit n
Start Stop
1/Fscl Tlow
Th,sta Th,sto
AC00719
Table 15. I2C interface timing values
Symbol Parameter Condition
Standard-mode Fast-mode
Unit
Min. Max. Min. Max.
Fscl Scl clock frequency 100 400 kHz
Tlow Low period of scl clock 4.7 1.3 µs
Thigh High period of scl clock 4 0.6 µs
Th,dat Data hold time 5 µs
Ts,dat Data setup time 250 100 µs
Th,sta Hold time for start condition 4 0.6 µs
Ts,sto Setup time for stop
condition 40.6µs
Digital I/O and memory interfaces STA680
34/43
5.4.5 Host micro I2C interface (I2C1)
The Host Micro I2C Interface enables the host processor to pass commands, diagnostic
information, and data between the host processor and HD Radio Decoder.
The I2C1 interface is a standard I2C interface where the STA680 acts as a slave to the Host
Micro and only responds to requests for information. It is also configurable by the Host Micro
to work as a master to better support bi-directional flow of data and audio.
The I2C1 interface supports 7-bit addressing and 8-bit data. It can run in both standard
mode (serial clock frequency up to 100 kHz) and fast mode (up to 400 kHz). The I2C device
addresses are reported in Ta b le 1 6 .
Although not part of the IIC standard, an additional control line called IIC1_DA is provided.
This line is useful for indicating when data is available and can be polled by either master or
slave.
5.4.6 Auxiliary I2C interface (I2C2)
The Auxiliary I2C interface can be programmed to be a master or slave. The usage of this
interface by the host processor is optional and by default it is disabled after reset.
The I2C2 interface supports 7-bit addressing and 8-bit data. It can run in both standard
mode (serial clock frequency up to 100 kHz) and fast mode (up to 400 kHz). The I2C device
addresses are reported in Ta b le 1 7 .
Although not part of the IIC standard, an additional control line called IIC1_DA is provided.
This line is useful for indicating when data is available and can be polled by either master or
slave.
Table 16. I2C1 interface device address
I2C1 Primary address Secondary address
Read Address 0101111b 0101101b
Write Address 0101110b 0101100b
Table 17. I2C2 interface device address
I2C2 Primary Address Secondary Address
Read Address 0101011b 0101001b
Write Address 0101010b 0101000b
STA680 Digital I/O and memory interfaces
35/43
5.5 SDRAM interface
The SDRAM interface supports up to 32M x 16 SDRAM and supports both standard and
mobile protocols. For pin description see Ta b l e 1 8
The minimum required SDRAM size for single channel application is 64 Mbit while for a dual
channel application at least 128 Mbit are needed.
Figure 13 shows timing diagrams and waveform for the SDRAM interface.
Figure 13. Timing diagrams and waveform for the SDRAM interface
In Ta b l e 1 9 are reported the timing values for the SDRAM interface.
Table 18. SDRAM Interface pin description
Pin Name Designation Type Drive
SDR_D[0:15] SDRAM interface data bus I/O 4 mA
SDR_A[0:12] SDRAM interface address bus O 4 mA
SDR_BA[0:1] Bank address O 4 mA
SDR_CAS_N Active-low column address strobe O 8 mA
SDR_RAS_N Active-low row address strobe O 8 mA
SDR_WE_N Active-low write enable O 8 mA
SDR_CS_N Active-low chip select O 8 mA
SDR_DQM0 low-byte data input/output mask O 4 mA
SDR_DQM1 high-byte data input/output mask O 4 mA
SDR_CKE Clock enable O 4 mA
SDR_CLK_RAM3V3 Clock to SDRAM for 3.3 V interface O 8 mA
SDR_FEED_CLK Feedback clock from SDRAM I 8 mA
SDR_CLK_RAM
SDR_CAS
SDR_A
SDR_D
SDR_BA
SDR_WE_N
SDR_CLK_CS
SDR_RAS
ROW
BANK
COL
BANK
Din
Tds Tdh
Toh
Tac
Dout
Tcl
Tch
Tck
BANK BANK
ROW COL
CAS latency = 3
write read
AC0072
0
Digital I/O and memory interfaces STA680
36/43
Table 19. SDRAM interface timing values
Symbol Parameter Condition Min. Max. Unit
Tck SCL clock period 6.06 - ns
Tch CLK high level width 2.5 - ns
Tcl CLK low level width 2.5 - ns
Tdh Data hold time 2 - ns
Tds Data setup time 2 - ns
Ta c Access time from clock
(posedge) -5.4ns
Toh Data out hold time 1.8 - ns
Tt Transition time - 1.2 ns
STA680 Electrical specifications
37/43
6 Electrical specifications
6.1 Absolute maximum ratings
6.2 Thermal data
Table 20. Absolute maximum ratings
Symbol Parameter Value Unit
VDD Core supply voltage 1.3 V
VDD_GEN_IO Generic IO supply voltage 3.6 V
VDD_FSH_IO Flash IO supply voltage 3.6 V
VDD_RAM_IO SDRAM IO supply voltage 3.6 V
VDD_OSC Osc 1V8 supply voltage 1.95 V
VDD_PLL_ANA Pll analog supply voltage 2.75 V
VDD_PLL_DIG Pll digital supply voltage 1.3 V
VDD_SAF Saf core supply voltage 1.3 V
Vi Voltage on input pin -0.5 to (VDDIO* + 0.5) V
VoVoltage on output pin -0.5 to (VDDIO* + 0.5) V
Tstg Operative storage temperature -40 to +150 °C
TjOperative junction temperature -40 to +125 °C
Tamb Operative ambient temperature -40 to +85 °C
Table 21. Thermal data
Symbol Parameter LQFP LFBGA Unit
Rth j-amb Thermal resistance junction to ambient(1)
1. According to JEDEC specification on a 4 layers board.
30 35 °C/W
Electrical specifications STA680
38/43
6.3 Operating conditions
Table 22. DC electrical characteristics
Symbol Parameter Test condition Min. Typ. Max. Unit
VDD Core supply voltage 1.1 1.2 1.3 V
VDD_GEN_IO Generic IO supply voltage 3.0 3.3 3.6 V
VDD_FSH_IO Flash IO supply voltage 3.0 3.3 3.6 V
VDD_RAM_IO SDRAM IO supply voltage 3.0 3.3 3.6 V
VDD_OSC Oscillator analog supply
voltage 1.7 1.8 1.95 V
VDD_PLL_ANA PLL analog supply voltage 1.7 1.8 2.75 V
VDD_PLL_DIG PLL digital supply voltage 1.1 1.2 1.3 V
VDD_SAF SAF supply voltage 1.1 1.2 1.3 V
IDD_1V2 Core supply current at 1.2V mA
IDD_IO IO supply current mA
Pd Power dissipation mW
Iil Low level input leakage
current(1) Vi = 0V 1.9 µA
Iih High level input leakage
current(1) Vi = VDD_GEN_IO(2) 1.9 µA
Ilpu High level input leakage
current on pull up(3) Vi = VDD_GEN_IO(2) 2.9 µA
Ilpd Low level input leakage
current on pull-down(4) Vi = 0V 10 µA
Ipu Pull-up current Vi = 0V 72 µA
Ipd Pull-down current Vi = VDD_GEN_IO(2) 72 µA
Rpu Equivalent pull-up
resistance(5) Vi = 0V 50 KΩ
Rpd Equivalent pull-down
resistance(6) Vi = VDD_GEN_IO(2) 50 KΩ
Vil Low level input voltage 3.3 supply mode -0.3 0.8 V
Vih High level input voltage 3.3 supply mode 2.0
VDD_G
EN_IO
+0.3
V
Vhyst Input hysteresis voltage 3.3 supply mode 50 mV
Voh Output high voltage Ioh =XmA(7) VDD_R
AM_IO
– 0.2V
V
Vol Output low voltage Iol =XmA(7) 0.2 V
STA680 Electrical specifications
39/43
Vesd Electrostatic discharge voltage
Human Body Model 2000 V
Machine Model 200 V
Charge device Model 500 V
Ilatchup Injection current
Maximum operating
junction temperature
125 °C
100 mA
VDD_RAM_IO SDRAM IO supply voltage 3.0 3.3 3.6 V
Iil_ram Low level input leakage
current(1) Vi = 0V µA
Iih_ram High level input leakage
current(1) Vi = VDD_RAM_IO µA
Ilpu_ram High level input leakage
current on pull up(3) Vi = VDD_RAM_IO µA
Ilpd_ram Low level input leakage
current on pull-down(4) Vi = 0V µA
Ipu_ram Pull-up current Vi = 0V 44 122 µA
Ipd_ram Pull-down current Vi = VDD_RAM_IO 29 122 µA
Rpu_ram Equivalent pull-up
resistance(5) Vi = 0V 29 67 KΩ
Rpd_ram Equivalent pull-down
resistance(6) Vi = VDD_RAM_IO 29 103 KΩ
Vil_ram Low level input voltage 0.8 V
Vih_ram High level input voltage 2 V
Vhyst_ram Schmitt trigger hysteresis 300 800 mV
Voh_ram High level output voltage Ioh = -XmA(7) VDD_R
AM_IO -
0.3
V
Vol_ram Low level output voltage Iol =XmA(7) 0.3 V
1. Performed on all the input pins excluded the pull-down and pull-up ones.
2. VDD_GEN_IO may be VDD_FHS_IO or VDD_GEN_IO depending on interface considered.
3. Performed only on the Input pins with pull up.
4. Performed only on the Input pins with pull down.
5. Guaranteed by Ipu measurements.
6. Guaranteed by Ipd measurements.
7. XmA = 4mA for a BD4, 8mA for BD8 pad type.
Table 22. DC electrical characteristics (continued)
Symbol Parameter Test condition Min. Typ. Max. Unit
Package information STA680
40/43
7 Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
Figure 14. LQFP144 (20x20mm) mechanical data and package dimensions
OUTLINE AND
MECHANICAL DATA
DIM.
mm inch
MIN. TYP. MAX. MIN. TYP. MAX.
A1.600 0.0630
A1 0.050 0.150 0.0020 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b0.170 0.220 0.270 0.0067 0.0087 0.0106
c0.090 0.200 0.0035 0.0079
D21.800 22.000 22.200 0.8583 0.8661 0.8740
D1 19.800 20.000 20.200 0.7795 0.7874 0.7953
D3 17.500 0.6890
E21.800 22.000 22.200 0.8583 0.8661 0.8740
E1 19.800 20.000 20.200 0.7795 0.7874 0.7953
E3 17.500 0.6890
e0.500 0.0197
L0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 1.000 0.0394
k0˚(min.), 3.5˚(typ.), 7˚(max.)
ccc 0.080 0.0031
LQFP144 (20x20x1.40mm)
Low profile plastic Quad Flat Package
Note 1: Exact shape of each corner is optional.
0099183 C
STA680 Package information
41/43
Figure 15. LFBGA 168 balls (12x12x1.4 mm) mechanical data and package
dimensions
OUTLINE AND
MECHANICAL DATA
DIM.
mm inch
MIN. TYP. MAX. MIN. TYP. MAX.
A 1.400 0.0551
A1 0.210 0.0083
A2 0.200 0.0078
A4 0.800 0.0315
b 0.350 0.400 0.450 0.0138 0.0157 0.0177
D 11.850 12.000 12.150 0.4665 0.4724 0.4783
D1 10.400 0.4094
E 11.850 12.000 12.150 0.4665 0.4724 0.4783
E1 10.400 0.4094
e 0.800 0.0315
Z 0.800 0.0315
ddd 0.100 0.0039
eee 0.150 0.0059
fff 0.080 0.0031
LFBGA 168 balls
Low profile Fine Pitch Ball Grid Array
8123111 B
Body: 12 x 12 x 1.4mm
Revision history STA680
42/43
8 Revision history
Table 23. Document revision history
Date Revision Changes
25-Jul-2008 1 Initial release.
19-Dec-2008 2 Update ECOPACK® information in Section 7 on page 40.
STA680
43/43
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2008 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com