Wideband Synthesizer with Integrated VCO
Data Sheet
ADF4350
Rev. B Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 ©20082016 Analog Devices, Inc. All rights reserved.
Technical Support www.analog.com
FEATURES
Output frequency range: 137.5 MHz to 4400 MHz
Fractional-N synthesizer and integer-N synthesizer
Low phase noise VCO
Programmable divide-by-1/-2/-4/-8/-16 output
Typical rms jitter: <0.4 ps rms
Power supply: 3.0 V to 3.6 V
Logic compatibility: 1.8 V
Programmable dual-modulus prescaler of 4/5 or 8/9
Programmable output power level
RF output mute function
3-wire serial interface
Analog and digital lock detect
Switched bandwidth fast-lock mode
Cycle slip reduction
APPLICATIONS
Wireless infrastructure (W-CDMA, TD-SCDMA, WiMAX,
GSM, PCS, DCS, DECT)
Test equipment
Wireless LANs, CATV equipment
Clock generation
GENERAL DESCRIPTION
The ADF4350 allows implementation of fractional-N or
integer-N phase-locked loop (PLL) frequency synthesizers
if used with an external loop filter and external reference
frequency.
The ADF4350 has an integrated voltage controlled oscillator
(VCO) with a fundamental output frequency ranging from
2200 MHz to 4400 MHz. In addition, divide-by-1/2/4/8 or 16
circuits allow the user to generate RF output frequencies as low
as 137.5 MHz. For applications that require isolation, the RF
output stage can be muted. The mute function is both pin- and
software-controllable. An auxiliary RF output is also available,
which can be powered down if not in use.
Control of all the on-chip registers is through a simple 3-wire
interface. The device operates with a power supply ranging
from 3.0 V to 3.6 V and can be powered down when not in use.
FUNCTIONAL BLOCK DIAGRAM
MUXOUT
CPOUT
LD
SW
VCOM
TEMP
REFIN
CLK
DATA
LE
AVDD
SDVDD DVDD VP
AGND
CE DGND CPGND SDGND AGNDVCO
RSET VVCO
VTUNE
VREF
RFOUTA+
RFOUTA–
RFOUTB+
RFOUTB–
VCO
CORE
PHASE
COMPARATOR
FLO SWITCH
CHARGE
PUMP
OUTPUT
STAGE
OUTPUT
STAGE
PDBRF
MULTIPLEXER
MULTIPLEXER
10-BI T R
COUNTER ÷2
DIVIDER
×2
DOUBLER
FUNCTION
LATCH
DATA REGI S TER
INTEGER
REG
N COUNT E R
FRACTION
REG
THIRD-ORDER
FRACTIONAL
INTERPOLATOR
MODULUS
REG
MULTIPLEXER
LOCK
DETECT
÷1/2/4/8/16
ADF4350
07325-001
Figure 1.
ADF4350* PRODUCT PAGE QUICK LINKS
Last Content Update: 02/23/2017
COMPARABLE PARTS
View a parametric search of comparable parts.
EVALUATION KITS
ADF4350 Evaluation Board
DOCUMENTATION
Application Notes
AN-0974: Multicarrier TD-SCMA Feasibility
Data Sheet
ADF4350: Wideband Synthesizer with Integrated VCO
Data Sheet
User Guides
UG-109: Evaluation Board User Guide for ADF4350
UG-110: Evaluation User Guide for ADF4350
UG-476: PLL Software Installation Guide
SOFTWARE AND SYSTEMS REQUIREMENTS
ADF4350 IIO Wideband Synthesizer Linux Driver
AD9739A Native FMC Card / Xilinx Reference Designs
TOOLS AND SIMULATIONS
ADIsimPLL™
ADIsimRF
ADF4350 IBIS Model
REFERENCE DESIGNS
CN0134
CN0144
CN0147
CN0232
CN0245
REFERENCE MATERIALS
Press
Analog Devices’ 4-GHz PLL Synthesizer Offers Leading
Phase Noise Performance
New Analog Devices’ PLL Synthesizers Deliver Utmost
Flexibility and Phase Noise Performance
Product Selection Guide
RF Source Booklet
Technical Articles
Direct Conversion Receiver Designs Enable Multi-
standard/Multi-band Operation
Get the Best from Your Low-Dropout Regulator
DESIGN RESOURCES
ADF4350 Material Declaration
PCN-PDN Information
Quality And Reliability
Symbols and Footprints
DISCUSSIONS
View all ADF4350 EngineerZone Discussions.
SAMPLE AND BUY
Visit the product page to see pricing options.
TECHNICAL SUPPORT
Submit a technical question or find your regional support
number.
DOCUMENT FEEDBACK
Submit feedback for this data sheet.
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not
trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.
ADF4350 Data Sheet
Rev. B | Page 2 of 34
TABLE OF CONTENTS
Features .............................................................................................. 1
Applications ....................................................................................... 1
General Description ......................................................................... 1
Functional Block Diagram .............................................................. 1
Revision History ............................................................................... 2
Specifications ..................................................................................... 3
Timing Characteristics ................................................................ 5
Absolute Maximum Ratings ............................................................ 6
Transistor Count ........................................................................... 6
ESD Caution .................................................................................. 6
Pin Configuration and Function Descriptions ............................. 7
Typical Performance Characteristics ............................................. 9
Circuit Description ......................................................................... 11
Reference Input Section ............................................................. 11
RF N Divider ............................................................................... 11
INT, FRAC, MOD, and R Counter Relationship .................... 11
INT N MODE ............................................................................. 11
R Counter .................................................................................... 11
Phase Frequency Detector (PFD) and Charge Pump ............ 11
MUXOUT and LOCK Detect ................................................... 12
Input Shift Registers ................................................................... 12
Program Modes .......................................................................... 12
VCO.............................................................................................. 12
Output Stage ................................................................................ 13
Register Maps .................................................................................. 14
Register 0 ..................................................................................... 18
Register 1 ..................................................................................... 18
Register 2 ..................................................................................... 18
Register 3 ..................................................................................... 20
Register 4 ..................................................................................... 20
Register 5 ..................................................................................... 20
Initialization Sequence .............................................................. 21
RF Synthesizer—A Worked Example ...................................... 21
Modulus ....................................................................................... 21
Reference Doubler and Reference Divider ............................. 21
12-Bit Programmable Modulus ................................................ 21
Cycle Slip Reduction for Faster Lock Times ........................... 22
Spurious Optimization and Fast lock ...................................... 22
Fast-Lock Timer and Register Sequences ............................... 22
Fast Lock—An Example ............................................................ 22
Fast Lock—Loop Filter Topology ............................................. 23
Spur Mechanisms ....................................................................... 23
Spur Consistency and Fractional Spur Optimization ........... 24
Phase Resync ............................................................................... 24
Applications Information .............................................................. 25
Direct Conversion Modulator .................................................. 25
Interfacing ................................................................................... 26
PCB Design Guidelines for a Chip Scale Package ................. 26
Output Matching ........................................................................ 27
Outline Dimensions ....................................................................... 31
Ordering Guide .......................................................................... 31
REVISION HISTORY
5/16—Rev. A to Rev. B
Changes to Figure 3 .......................................................................... 7
Changes to the ADuC7019 to ADuC7029 Family Interface
Section, Figure 35, and Figure 35 Caption .................................. 26
Updated Outline Dimensions ....................................................... 30
Changes to Ordering Guide .......................................................... 30
4/11—Rev. 0 to Rev. A
Changes to Typical rms Jitter in Features Section ......................... 1
Changes to Specifications ................................................................. 3
Changes Output Stage Section ...................................................... 13
Changes to Figure 29 ...................................................................... 17
Changes to Fast Lock—An Example Section ............................. 22
Changes to Direct Conversion Modulator Section and
Figure 34 ......................................................................................... 25
Changes to ADuC70xx Interface Section and ADSP-BF527
Interface Section ............................................................................. 26
Changes to Output Matching Section and Table 7 .................... 27
Added Table 8 ................................................................................. 28
Changes to Ordering Guide .......................................................... 29
11/08—Revision 0: Initial Version
Data Sheet ADF4350
Rev. B | Page 3 of 34
SPECIFICATIONS
AVDD = DVDD = VVCO = SDVDD = VP = 3.3 V ± 10%; AGND = DGND = 0 V; TA = TMIN to TMAX, unless otherwise noted. Operating
temperature range is −40°C to +85°C.
Table 1.
Parameter
B Version
Unit Test Conditions/Comments Min Typ Max
REFIN CHARACTERISTICS
Input Frequency 10 250 MHz For f < 10 MHz ensure slew rate > 21 V/µs
Input Sensitivity 0.7 AVDD V p-p Biased at AVDD/21
Input Capacitance 10 pF
Input Current ±60 µA
PHASE DETECTOR
Phase Detector Frequency2 32 MHz
CHARGE PUMP
ICP Sink/Source3 With RSET = 5.1 k
High Value 5 mA
Low Value 0.312 mA
RSET Range 2.7 10 k
Sink and Source Current Matching 2 % 0.5 V ≤ VCP2.5 V
ICP vs. VCP 1.5 % 0.5 V ≤ VCP2.5 V
ICP vs. Temperature 2 % VCP = 2.0 V
LOGIC INPUTS
Input High Voltage, V
INH
1.5
V
Input Low Voltage, VINL 0.6 V
Input Current, IINH/IINL ±1 µA
Input Capacitance, CIN 3.0 pF
LOGIC OUTPUTS
Output High Voltage, VOH DVDD0.4 V CMOS output chosen
Output High Current, IOH 500 µA
Output Low Voltage, VOL 0.4 V IOL = 500 µA
POWER SUPPLIES
AVDD 3.0 3.6 V
DVDD, VVCO, SDVDD, VP AVDD These voltages must equal AVDD
DIDD + AIDD4 21 27 mA
Output Dividers 6 to 24 mA Each output divide-by-2 consumes 6 mA
IVCO4
80
mA
IRFOUT4 21 26 mA RF output stage is programmable
Low Power Sleep Mode 7 1000 µA
RF OUTPUT CHARACTERISTICS
Maximum VCO Output Frequency
4400
MHz
Minimum VCO Output Frequency 2200 MHz Fundamental VCO mode
Minimum VCO Output Frequency
Using Dividers
137.5 MHz 2200 MHz fundamental output and divide by 16 selected
VCO Sensitivity 33 MHz/V
Frequency Pushing (Open-Loop) 1 MHz/V
Frequency Pulling (Open-Loop) 90 kHz Into 2.00 VSWR load
Harmonic Content (Second) 19 dBc Fundamental VCO output
Harmonic Content (Third)
dBc
Fundamental VCO output
Harmonic Content (Second) 20 dBc Divided VCO output
Harmonic Content (Third) −10 dBc Divided VCO output
Minimum RF Output Power 5 −4 dBm Programmable in 3 dB steps
Maximum RF Output Power5 5 dBm
Output Power Variation ±1 dB
Minimum VCO Tuning Voltage 0.5 V
Maximum VCO Tuning Voltage 2.5 V
ADF4350 Data Sheet
Rev. B | Page 4 of 34
Parameter
B Version
Unit Test Conditions/Comments Min Typ Max
NOISE CHARACTERISTICS
VCO Phase-Noise Performance6 −89 dBc/Hz 10 kHz offset from 2.2 GHz carrier
−114 dBc/Hz 100 kHz offset from 2.2 GHz carrier
−134 dBc/Hz 1 MHz offset from 2.2 GHz carrier
−148 dBc/Hz 5 MHz offset from 2.2 GHz carrier
dBc/Hz
10 kHz offset from 3.3 GHz carrier
−111 dBc/Hz 100 kHz offset from 3.3 GHz carrier
−134 dBc/Hz 1 MHz offset from 3.3 GHz carrier
−145 dBc/Hz 5 MHz offset from 3.3 GHz carrier
−83 dBc/Hz 10 kHz offset from 4.4 GHz carrier
dBc/Hz
100 kHz offset from 4.4 GHz carrier
−132 dBc/Hz 1 MHz offset from 4.4 GHz carrier
−145 dBc/Hz 5 MHz offset from 4.4 GHz carrier
Normalized Phase Noise Floor (PNSYNTH)7 −220 dBc/Hz PLL Loop BW = 500 kHz
Normalized 1/f Noise (PN1_f)8 −111 dBc/Hz 10 kHz offset; normalized to 1 GHz
In-Band Phase Noise9 −97 dBc/Hz 3 kHz offset from 2113.5 MHz carrier
Integrated RMS Jitter10 0.5 ps
Spurious Signals Due to PFD Frequency −70 dBc
Level of Signal With RF Mute Enabled −40 dBm
1 AC coupling ensures AVDD/2 bias.
2 Guaranteed by design. Sample tested to ensure compliance.
3 ICP is internally modified to maintain constant loop gain over the frequency range.
4 TA = 25°C; AVDD = DVDD = VVCO = 3.3 V; prescaler = 8/9; fREFIN = 100 MHz; fPFD = 25 MHz; fRF = 4.4 GHz.
5 Using 50 resistors to VVCO, into a 50 load. Power measured with auxiliary RF output disabled. The current consumption of the auxiliary output is the same as for the
main output.
6 The noise of the VCO is measured in open-loop conditions.
7 The synthesizer phase noise floor is estimated by measuring the in-band phase noise at the output of the VCO and subtracting 20 log N (where N is the N divider
value) and 10 log FPFD. PNSYNTH = PNTOT − 10 log FPFD − 20 log N.
8 The PLL phase noise is composed of 1/f (flicker) noise plus the normalized PLL noise floor. The formula for calculating the 1/f noise contribution at an RF frequency, fRF,
and at a frequency offset f is given by PN = P1_f + 10log(10 kHz/f) + 20log(fRF/1 GHz). Both the normalized phase noise floor and flicker noise are modeled in ADIsimPLL.
9 fREFIN = 100 MHz; fPFD = 25 MHz; offset frequency = 10 kHz; VCO frequency = 4227 MHz, output divide by two enabled. RFOUT = 2113.5 MHz; N = 169; loop BW = 40 kHz,
ICP = 313 µA; low noise mode. The noise was measured with an EVAL-ADF4350EB1Z and the Agilent E5052A signal source analyzer.
10 fREFIN = 100 MHz; fPFD = 25 MHz; VCO frequency = 4400 MHz, RFOUT = 4400 MHz; N = 176; loop BW = 40 kHz, ICP = 313 µA; low noise mode. The noise was measured with
an EVAL-ADF4350EB1Z and the Agilent E5052A signal source analyzer.
Data Sheet ADF4350
Rev. B | Page 5 of 34
TIMING CHARACTERISTICS
AVDD = DVDD = VVCO = SDVDD = VP = 3.3 V ± 10%; AGND = DGND = 0 V; 1.8 V and 3 V logic levels used; TA = TMIN to TMAX, unless
otherwise noted.
Table 2.
Parameter Limit (B Version) Unit Test Conditions/Comments
t1 20 ns min LE setup time
t2 10 ns min DATA to CLK setup time
t3 10 ns min DATA to CLK hold time
t4 25 ns min CLK high duration
t5 25 ns min CLK low duration
t6 10 ns min CLK to LE setup time
t7 20 ns min LE pulse width
CLK
DATA
LE
LE
DB31 (MSB) DB30 DB1
(CONTROL BIT C2)
DB2
(CONTROL BIT C3) DB0 (L SB)
(CONTROL BIT C1)
t
1
t
2
t
3
t
7
t
6
t
4
t
5
07325-002
Figure 2. Timing Diagram
ADF4350 Data Sheet
Rev. B | Page 6 of 34
ABSOLUTE MAXIMUM RATINGS
TA = 25°C, unless otherwise noted.
Table 3.
Parameter Rating
AVDD to GND1 0.3 V to +3.9 V
AVDD to DVDD 0.3 V to +0.3 V
VVCO to GND 0.3 V to +3.9 V
VVCO to AVDD 0.3 V to +0.3 V
Digital Input/Output Voltage to GND 0.3 V to VDD + 0.3 V
Analog Input/Output Voltage to GND 0.3 V to VDD + 0.3 V
REF
IN
to GND
0.3 V to V
DD
+ 0.3 V
Operating Temperature Range −40°C to +85°C
Storage Temperature Range −65°C to +125°C
Maximum Junction Temperature 150°C
LFCSP θJA Thermal Impedance 27.3°C/W
(Paddle-Soldered)
Reflow Soldering
Peak Temperature 260°C
Time at Peak Temperature 40 sec
1 GND = AGND = DGND = 0 V
Stresses at or above those listed under Absolute Maximum
Ratings may cause permanent damage to the product. This is a
stress rating only; functional operation of the product at these
or any other conditions above those indicated in the operational
section of this specification is not implied. Operation beyond
the maximum operating conditions for extended periods may
affect product reliability.
This device is a high-performance RF integrated circuit with an
ESD rating of <0.5 kV and is ESD sensitive. Proper precautions
must be taken for handling and assembly.
TRANSISTOR COUNT
24202 (CMOS) and 918 (bipolar).
ESD CAUTION
Data Sheet ADF4350
Rev. B | Page 7 of 34
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
CLK
DATA
LE
CE
SW
V
P
CP
OUT
CP
GND
SDV
DD
REF
IN
DGND
DV
DD
SD
GND
MUXOUT
PDB
RF
LD
AGND
AV
DD
RF
OUT
A+
RF
OUT
B+
RF
OUT
B−
RF
OUT
A−
V
VCO
A
GNDVCO
V
REF
V
COM
R
SET
V
TUNE
A
GNDVCO
A
GNDVCO
TEM
P
V
VCO
07325-003
NOTES
1. T HE LF CS P HAS AN E X P OSE D P ADDLE THAT
MUST BE CO NNE CTED TO GND.
24
23
22
21
20
19
18
17
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
32
31
30
29
28
27
26
25
ADF4350
TOP VIEW
(No t t o Scal e)
Figure 3. Pin Configuration
Table 4. Pin Function Descriptions
Pin No. Mnemonic Description
1 CLK Serial Clock Input. Data is clocked into the 32-bit shift register on the CLK rising edge. This input is a high
impedance CMOS input.
2 DATA Serial Data Input. The serial data is loaded MSB first with the three LSBs as the control bits. This input is a high
impedance CMOS input.
3 LE Load Enable, CMOS Input. When LE goes high, the data stored in the shift register is loaded into the register
that is selected by the three LSBs.
4 CE Chip Enable. A logic low on this pin powers down the device and puts the charge pump into three-state mode.
A logic high on this pin powers up the device depending on the status of the power-down bits.
5 SW Fast-Lock Switch. A connection must be made from the loop filter to this pin when using the fast-lock mode.
6 VP Charge Pump Power Supply. This pin is to be equal to AVDD. Decoupling capacitors to the ground plane are to
be placed as close as possible to this pin.
7 CPOUT Charge Pump Output. When enabled, this provides ±ICP to the external loop filter. The output of the loop filter is
connected to VTUNE to drive the internal VCO.
8 CPGND Charge Pump Ground. This is the ground return pin for CPOUT.
9 AGND Analog Ground. This is a ground return pin for AVDD.
10 AVDD Analog Power Supply. This pin ranges from 3.0 V to 3.6 V. Decoupling capacitors to the analog ground plane are
to be placed as close as possible to this pin. AVDD must have the same value as DVDD.
11, 18, 21 AGNDVCO VCO Analog Ground. These are the ground return pins for the VCO.
12 RFOUTA+ VCO Output. The output level is programmable. The VCO fundamental output or a divided down version is available.
13 RFOUTA− Complementary VCO Output. The output level is programmable. The VCO fundamental output or a divided
down version is available.
14 RFOUTB+ Auxilliary VCO Output. The output level is programmable. The VCO fundamental output or a divided down
version is available.
15 RFOUTB− Complementary Auxilliary VCO Output. The output level is programmable. The VCO fundamental output or a
divided down version is available.
16, 17 VVCO Power Supply for the VCO. This ranges from 3.0 V to 3.6 V. Decoupling capacitors to the analog ground plane
must be placed as close as possible to these pins. VVCO must have the same value as AVDD.
19 TEMP Temperature Compensation Output. Decoupling capacitors to the ground plane are to be placed as close as
possible to this pin.
20 VTUNE Control Input to the VCO. This voltage determines the output frequency and is derived from filtering the CPOUT
output voltage.
ADF4350 Data Sheet
Rev. B | Page 8 of 34
Pin No. Mnemonic Description
22 RSET Connecting a resistor between this pin and GND sets the charge pump output current. The nominal voltage
bias at the RSET pin is 0.55 V. The relationship between ICP and RSET is
SET
CP R
25.5
I=
where:
RSET = 5.1 kΩ
ICP = 5 mA
23 VCOM Internal Compensation Node Biased at Half the Tuning Range. Decoupling capacitors to the ground plane must
be placed as close as possible to this pin.
24 VREF Reference Voltage. Decoupling capacitors to the ground plane must be placed as close as possible to this pin.
25 LD Lock Detect Output Pin. This pin outputs a logic high to indicate PLL lock. A logic low output indicates loss of PLL lock.
26 PDBRF RF Power-Down. A logic low on this pin mutes the RF outputs. This function is also software controllable.
27 DGND Digital Ground. Ground return path for DVDD.
28 DVDD Digital Power Supply. This pin must be the same voltage as AVDD. Decoupling capacitors to the ground plane
must be placed as close as possible to this pin.
29
REF
IN
Reference Input. This is a CMOS input with a nominal threshold of V
DD
/2 and a dc equivalent input resistance of
100 kΩ. This input can be driven from a TTL or CMOS crystal oscillator, or it can be ac-coupled.
30 MUXOUT Multiplexer Output. This multiplexer output allows either the lock detect, the scaled RF, or the scaled reference
frequency to be accessed externally.
31 SDGND Digital Sigma-Delta (Σ-Δ) Modulator Ground. Ground return path for the Σ-Δ modulator.
32 SDVDD Power Supply Pin for the Digital Σ-Δ Modulator. Must be the same voltage as AVDD. Decoupling capacitors to the
ground plane are to be placed as close as possible to this pin.
33 EP Exposed Pad.
Data Sheet ADF4350
Rev. B | Page 9 of 34
TYPICAL PERFORMANCE CHARACTERISTICS
–150
–160
–140
–120
–100
–80
–130
–110
–90
–70
–60
–50
–40
1k 10k 100k 1M 10M 100M
07325-028
FREQUENCY ( Hz )
PHASE NOISE (dBc/Hz)
Figure 4. Open-Loop VCO Phase Noise, 2.2 GHz
1k 10k 100k 1M 10M 100M
07325-029
FREQUENCY ( Hz )
PHASE NOISE (dBc/Hz)
–150
–160
–140
–120
–100
–80
–130
–110
–90
–70
–60
–50
–40
Figure 5. Open-Loop VCO Phase Noise, 3.3 GHz
–140
–120
–100
–80
–130
–160
–150
–110
–90
–70
–60
–50
–40
1k 10k 100k 1M 10M 100M
07325-030
FREQUENCY ( Hz )
PHASE NOISE (dBc/Hz)
Figure 6. Open-Loop VCO Phase Noise, 4.4 GHz
–170
–160
–150
–140
–130
–120
–110
–100
–90
–70
–80
1k 10k 100k 1M 10M 100M
07325-031
FREQUENCY ( Hz )
PHASE NOISE (dBc/Hz)
FUND
DIV2
DIV4
DIV8
DIV16
Figure 7. Closed-Loop Phase Noise, Fundamental VCO and Dividers,
VCO = 2.2 GHz, PFD = 25 MHz, Loop Bandwidth = 40 kHz
–170
–160
–150
–140
–130
–120
–110
–100
–90
–70
–80
PHASE NOISE (dBc/Hz)
FUND
DIV2
DIV4
DIV8
DIV16
1k 10k 100k 1M 10M 100M
07325-032
FREQUENCY ( Hz )
PHASE NOISE (dBc/Hz)
Figure 8. Closed-Loop Phase Noise, Fundamental VCO and Dividers,
VCO = 3.3 GHz, PFD = 25 MHz, Loop Bandwidth = 40 kHz
–170
–160
–150
–140
–130
–120
–110
–100
–90
–70
–80 FUND
DIV2
DIV4
DIV8
DIV16
1k 10k 100k 1M 10M 100M
07325-033
FREQUENCY ( Hz )
PHASE NOISE (dBc/Hz)
Figure 9. Closed-Loop Phase Noise, Fundamental VCO and Dividers,
VCO = 4.4 GHz, PFD = 25 MHz, Loop Bandwidth = 40 kHz
ADF4350 Data Sheet
Rev. B | Page 10 of 34
0
–20
–40
–60
–80
–100
–120
–140
–160
PHASE NOISE (dBc/Hz)
1k 10k FREQUENCY (Hz)
100k 1M
07325-034
10M
Figure 10. Integer-N Phase Noise and Spur Performance. GSM900 Band,
RFOUT = 904 MHz, REFIN = 100 MHz, PFD = 800 kHz, Output Divide-by-4
Selected; Loop-Filter Bandwidth = 16 kHz, Channel Spacing = 200 kHz.
0
–20
–40
–60
–80
–100
–120
–140
–160
PHASE NOISE (dBc/Hz)
1k 10k FREQUENCY (Hz)
100k 1M
07325-035
10M
Figure 11. Fractional-N Spur Performance; Low Noise Mode. W-CDMA Band,
RFOUT = 2113.5 MHz, REFIN = 100 MHz, PFD = 25 MHz, Output Divide-by-2
Selected; Loop Filter Bandwidth = 40 kHz, Channel Spacing = 200 kHz.
0
–20
–40
–60
–80
–100
–120
–140
–160
PHASE NOISE (dBc/Hz)
1k 10k FREQUENCY (Hz)
100k 1M
07325-036
10M
Figure 12. Fractional-N Spur Performance. Low Spur Mode, W-CDMA Band
RFOUT = 2113.5 MHz, REFIN = 100 MHz, PFD = 25 MHz, Output Divide-by-2
Selected; Loop Filter Bandwidth = 40 kHz, Channel Spacing = 200 kHz
0
–20
–40
–60
–80
–100
–120
–140
–160
PHASE NOISE (dBc/Hz)
1k 10k FREQUENCY (Hz)
100k 1M
07325-037
10M
Figure 13. Fractional-N Spur Performance. Low Noise Mode, RFOUT =
2.591 GHz, REFIN = 105 MHz, PFD = 17.5 MHz, Output Divide-by-1 Selected;
Loop Filter Bandwidth = 20 kHz, Channel Spacing = 100 kHz.
0
–20
–40
–60
–80
–100
–120
–140
–160
PHASE NOISE (dBc/Hz)
1k 10k FREQUENCY (Hz)
100k 1M
07325-038
10M
Figure 14. Fractional-N Spur Performance. Low Spur Mode RFOUT =
2.591 GHz, REFIN = 105 MHz, PFD = 17.5 MHz, Output Divide-by-1 Selected.
Loop Filter Bandwidth = 20 kHz, Channel Spacing = 100 kHz (Note That
Fractional Spurs Are Removed and Only the Integer Boundary Spur Remains
in Low Spur Mode).
2.95
2.96
2.97
2.98
2.99
3.00
3.01
3.02
FREQUENCY (GHz)
CSR OFF
CSR ON
0100 200 300
TIME (µs) 400 500 600
07325-039
Figure 15. Lock Time for 100 MHz Jump from 3070 MHz to 2970 MHz with
CSR On and Of f, PFD = 25 MHz, ICP = 313 µA, Loop Filter Bandwidth = 20 kHz
Data Sheet ADF4350
Rev. B | Page 11 of 34
CIRCUIT DESCRIPTION
REFERENCE INPUT SECTION
The reference input stage is shown in Figure 16. SW1 and SW2
are normally closed switches. SW3 is normally open. When
power-down is initiated, SW3 is closed, and SW1 and SW2 are
opened. This ensures that there is no loading of the REFIN pin
during power-down.
07325-005
BUFFER TO R COUNT E R
REF
IN
100k
NC
SW2
SW3
NO
NC
SW1
POWER-DOWN
CONTROL
Figure 16. Reference Input Stage
RF N DIVIDER
The RF N divider allows a division ratio in the PLL feedback
path. The division ratio is determined by INT, FRAC and MOD
values, which build up this divider.
INT, FRAC, MOD, AND R COUNTER RELATIONSHIP
The INT, FRAC, and MOD values, in conjunction with the
R counter, make it possible to generate output frequencies
that are spaced by fractions of the PFD frequency. See the RF
SynthesizerA Worked Example section for more information.
The RF VCO frequency (RFOUT) equation is
RFOUT = fPFD × (INT + (FRAC/MOD)) (1)
where RFOUT is the output frequency of external voltage
controlled oscillator (VCO).
INT is the preset divide ratio of the binary 16-bit counter
(23 to 65535 for 4/5 prescaler, 75 to 65,535 for 8/9 prescaler).
MOD is the preset fractional modulus (2 to 4095).
FRAC is the numerator of the fractional division (0 to MOD − 1).
fPFD = REFIN × [(1 + D)/(R × (1 + T))] (2)
where:
REFIN is the reference input frequency.
D is the REFIN doubler bit.
T is the REFIN divide-by-2 bit (0 or 1).
R is the preset divide ratio of the binary 10-bit programmable
reference counter (1 to 1023).
THIRD-ORDER
FRACTIONAL
INTERPOLATOR
FRAC
VALUE
MOD
REG
INT
REG
RF N DI V IDER
N = INT + FRAC/ M OD
FROM
VCO OUTPUT/
OUT P UT DI V IDERS TO PFD
N COUNT E R
07325-006
Figure 17. RF INT Divider
INT N MODE
If the FRAC = 0 and DB8 in Register 2 (LDF) is set to 1, the
synthesizer operates in integer-N mode. The DB8 in Register 2
(LDF) must be set to 1 to get integer-N digital lock detect.
R COUNTER
The 10bit R counter allows the input reference frequency
(REFIN) to be divided down to produce the reference clock
to the PFD. Division ratios from 1 to 1023 are allowed.
PHASE FREQUENCY DETECTOR (PFD) AND
CHARGE PUMP
The phase frequency detector (PFD) takes inputs from the
R counter and N counter and produces an output proportional
to the phase and frequency difference between them. Figure 18
is a simplified schematic of the phase frequency detector. The
PFD includes a fixed delay element that sets the width of the
antibacklash pulse, which is typically 3 ns. This pulse ensures
there is no dead zone in the PFD transfer function, and gives a
consistent reference spur level.
U3
CLR2
Q2D2 U2
DOWN
UP
HIGH
HIGH
CP
–IN
+IN
CHARGE
PUMP
DELAY
CLR1
Q1D1
U1
07325-007
Figure 18. PFD Simplified Schematic
ADF4350 Data Sheet
Rev. B | Page 12 of 34
MUXOUT AND LOCK DETECT
The output multiplexer on the ADF4350 allows the user
to access various internal points on the chip. The state of
MUXOUT is controlled by M3, M2, and M1 (for details,
see Figure 26). Figure 19 shows the MUXOUT section in
block diagram form.
DGND
DV
DD
CONTROL
MUX MUXOUT
ANALOG LO CK DET E CT
DIGI TAL LO CK DE TE CT
R COUNTER OUT P UT
N COUNTER OUT P UT
DGND
RESERVED
THREE-STATE O UT PUT
DV
DD
Figure 19. MUXOUT Schematic
INPUT SHIFT REGISTERS
The ADF4350 digital section includes a 10–bit RF R counter,
a 16–bit RF N counter, a 12-bit FRAC counter, and a 12–bit
modulus counter. Data is clocked into the 32–bit shift register
on each rising edge of CLK. The data is clocked in MSB first.
Data is transferred from the shift register to one of six latches
on the rising edge of LE. The destination latch is determined by
the state of the three control bits (C3, C2, and C1) in the shift
register. These are the 3 LSBs, DB2, DB1, and DB0, as shown in
Figure 2. The truth table for these bits is shown in Table 5.
Figure 23 shows a summary of how the latches are programmed.
Table 5. C3, C2, and C1 Truth Table
Control Bits
Register
C3 C2 C1
0 0 0 Register 0 (R0)
0 0 1 Register 1 (R1)
0 1 0 Register 2 (R2)
0 1 1 Register 3 (R3)
1 0 0 Register 4 (R4)
1 0 1 Register 5 (R5)
PROGRAM MODES
Table 5 and Figure 23 through Figure 29 show how the program
modes are to be set up in the ADF4350.
A number of settings in the ADF4350 are double buffered.
These include the modulus value, phase value, R counter value,
reference doubler, reference divide-by-2, and current setting.
This means that two events have to occur before the device uses
a new value of any of the double buffered settings. First, the
new value is latched into the device by writing to the appropriate
register. Second, a new write must be performed on Register R0.
For example, any time the modulus value is updated, Register 0
(R0) must be written to, to ensure the modulus value is loaded
correctly. Divider select in Register 4 (R4) is also double buf-
fered, but only if DB13 of Register 2 (R2) is high.
VCO
The VCO core in the ADF4350 consists of three separate VCOs
each of which uses 16 overlapping bands, as shown in Figure 20,
to allow a wide frequency range to be covered without a large
VCO sensitivity (KV) and resultant poor phase noise and spu-
rious performance.
The correct VCO and band are chosen automatically by the
VCO and band select logic at power-up or whenever Register 0
(R0) is updated.
VCO and band selection take 10 PFD cycles × band select clock
divider value. The VCO VTUNE is disconnected from the output
of the loop filter and is connected to an internal reference voltage.
2.8
2.4
2.0
1.6
0.8
1.2
0.4
0
1800
2000
2200
2400
2600
2800
3000
3200
3400
3600
3800
4000
4200
4400
4600
07325-009
FREQUE NCY (MHz )
V
TUNE
(V)
Figure 20. VTUNE vs. Frequency
The use the R counter output as the clock for the band select
logic. A programmable divider is provided at the R counter
output to allow division by 1 to 255 and is controlled by
Bits [BS8:BS1] in Register 4 (R4). When the required PFD
frequency is higher than 125 kHz, the divide ratio must be
set to allow enough time for correct band selection.
After band select, normal PLL action resumes. The nominal
value of KV is 33 MHz/V when the N-divider is driven from the
VCO output or this value divided by D. D is the output divider
value if the N-divider is driven from the RF divider output
(chosen by programming Bits [D12:D10] in Register 4 (R4).
The ADF4350 contains linearization circuitry to minimize
any variation of the product of ICP and KV to keep the loop
bandwidth constant.
Data Sheet ADF4350
Rev. B | Page 13 of 34
The VCO shows variation of KV as the VTUNE varies within the
band and from band-to-band. It has been shown for wideband
applications covering a wide frequency range (and changing
output dividers) that a value of 33 MHz/V provides the most
accurate KV as this is closest to an average value. Figure 21
shows how KV varies with fundamental VCO frequency along
with an average value for the frequency band. Users may prefer
this figure when using narrowband designs.
80
70
60
50
40
30
20
10
0
2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6
07325-133
VCO SENSITIVIT Y (MHz/V)
FREQUENCY ( GHz)
Figure 21. KV vs. Frequency
In fixed frequency applications, the ADF4350 VTUNE may
vary with ambient temperature switching from hot to cold.
In extreme cases, the drift causes VTUNE to drop to a very low
level (<0.25 V) and can cause loss of lock. This becomes an
issue only at fundamental VCO frequencies less than 2.95 GHz
and at ambient temperatures below 0°C.
In cases such as these, if the ambient temperature decreases
below C, the frequency needs to be reprogrammed (R0 updated)
to avoid VTUNE dropping to a level close to 0 V. Reprogramming
the device chooses a more suitable VCO band, and thus avoids
the low VTUNE issue. Any further temperature drops of more
than 20°C (below 0°C) also require further reprogramming.
Any increases in the ambient temperature do not require repro-
gramming.
OUTPUT STAGE
The RFOUTA+ and RFOUTApins of the ADF4350 are connected
to the collectors of an NPN differential pair driven by buffered
outputs of the VCO, as shown in Figure 22. To allow the user to
optimize the power dissipation vs. the output power requirements,
the tail current of the differential pair is programmable by
Bits [D2:D1] in Register 4 (R4). Four current levels may be set.
These levels give output power levels of −4 dBm, −1 dBm, +2
dBm, and +5 dBm, respectively, using a 50 Ω resistor to AVDD
and ac coupling into a 50 Ω load. Alternatively, both outputs
can be combined in a 1 + 1:1 transformer or a 180° microstrip
coupler (see the Output Matching section). If using the outputs
individually, the optimum output stage consists of a shunt
inductor to VVCO. The unused complementary output must
be terminated with a similar circuit to the used output.
An auxiliary output stage exists on Pins RFOUTB+ and RFOUTB−
providing a second set of differential outputs which can drive
another circuit, or which can be powered down if unused. The
auxiliary output must be used in conjunction with the main RF
output. It cannot be used with the main output powered down.
Another feature of the ADF4350 is that the supply current to
the RF output stage can be shut down until the device achieves
lock as measured by the digital lock detect circuitry. This is
enabled by the mute till lock detect (MTLD) bit in Register 4 (R4).
VCO
RF
OUT
A+ RF
OUT
A–
BUFFER/
DIVIDE-BY-
1/2/4/8/16
07325-010
Figure 22. Output Stage
ADF4350 Data Sheet
Rev. B | Page 14 of 34
REGISTER MAPS
07325-011
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
0N16 N15 N14 N13 N12 N11 N10 N9
RESERVED
16- BIT INTEGER VAL UE (I NT ) 12- BIT FRACT IO NAL VALUE ( F RAC) CONTROL
BITS
N8 N7 N6 N5 N4 N3 N2 N1 F12 F11 F10 F9 F8 F7 F6 F5 F4 F3 F2 F1 C3(0) C2(0) C1(0)
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
0 0 0 0 PR1 P12 P11 P10 P9
12- BI T PHASE VALUE (PHASE) 12- BIT M ODUL US VALUE ( MOD) CONTROL
BITS
P8 P7 P6 P5 P4 P3
P2 P1 M12 M11 M10 M9 M8 M7 M6 M5 M4 M3 M2 M1 C3(0) C2(0) C1(1)
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
0L2 L1 M3 M2 M1 RD2 RD1 R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 D1 CP4 CP3 CP2 CP1 U6 U5 U4 U3 U2 U1 C3(0) C2(1) C1(0)
CSR
RDIV2
REFERENCE
DOUBLER
CHARGE
PUMP
CURRENT
SETTING
10- BIT R COUNTER CONTROL
BITS
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
00 0 0 0 0 0 0 0 0 0 0 0 F1 0C2 C1 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 C3(0) C2(1) C1(1)
CONTROL
BITS
12- BIT CLOCK DIVIDER VALUE
LDP
PD
POLARITY
PD
CP THREE-
STATE
COUNTER
RESET
OUTPUT
POW ER
CLK
DIV
MODE
DBR 1
1DBR = DOUBLE BUFF E RE D RE GI S TER— BUFF E RE D BY THE WRI TE T O REGI S TER 0.
2DBB = DOUBLE BUFF E RE D BIT S BUFF E RE D BY THE WRI TE TO RE GI S TER 0, I F AND O NLY IF DB13 OF RE GIS TER 2 IS HIG H.
RESERVED
LDF
RESERVED
RESERVED
REGISTER 4
VCO POWER
DOWN
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
0 0 0 0 0 0 0 0
D13 D12 D11 D10 BS8 BS7 BS6 BS5 BS4 BS3 BS2 BS1 D9 D8 D7 D6 D5 D4 D3 D2 D1 C3(1) C2(0) C1(0)
CONTROL
BITS
8- BIT BAND SEL ECT CLOCK DIVIDER VALUE
RF O UTPUT
ENABLE
LD PI N
MODE
AUX OUT PUT
ENABLE
AUX OUT PUT
SELECT
MTLD
DIVIDER
SELECT
FEEDBACK
SELECT
REGISTER 0
REGISTER 1
REGISTER 2
REGISTER 3
REGISTER 5
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
0 0 0 0 0 0 0 0 D15 D14 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 C3(1) C2(0) C1(1)
CONTROL
BITS
RESERVED
RESERVED
DBB 2
DOUBL E BUFF
RESERVED
RESERVED
DBR
1
DBR
1
DBR
1
DBR
1
DBR
1
AUX
OUTPUT
POW ER
RESERVED
RESERVED
RESERVED
PRESCALER
LOW
NOISE AND
LOW SPUR
MODES MUXOUT
Figure 23. Register Summary
Data Sheet ADF4350
Rev. B | Page 15 of 34
07325-012
N16 N15 ... N5 N4 N3 N2 N1 INTEGER VALUE (INT)
00...00000 NOT ALLOWED
00...00001 NOT ALLOWED
00...00010 NOT ALLOWED
.......... ...
00...10110 NOT ALLOWED
00...10111 23
00...11000 24
.......... ...
11...11101 65533
11...11110 65534
11...11111 65535
F12 F11 .......... F2 F1 FRACTIONAL VALUE (FRAC)
0 0 .......... 0 0 0
0 0 .......... 0 1 1
0 0 .......... 1 0 2
0 0 .......... 1 1 3
. . .......... . . .
. . .......... . . .
. . .......... . . .
1 1 .......... 0 0 4092
1 1 .......... 0 1 4093
1 1 .......... 1 0 4094
1 1 ......... 1 1 4095
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
0N16 N15 N14 N13 N12 N11 N10 N9
RESERVED
16-BIT INTEGER VALUE (INT) 12-BIT FRACTIONAL VALUE (FRAC)
CONTROL
BITS
N8 N7 N6 N5 N4 N3 N2 N1 F12 F11 F10 F9 F8 F7 F6 F5 F4 F3 F2 F1 C3(0) C2(0) C1(0)
INTmin = 75 with prescaler = 8/9
Figure 24. Register 0 (R0)
0
7325-013
P12 P11 .......... P2 P1 PHASE VALUE (PHASE)
0 0 .......... 0 0 0
0 0 .......... 0 1 1 (RECOMMENDED)
0 0 .......... 1 0 2
0 0 .......... 1 1 3
. . .......... . . .
. . .......... . . .
. . .......... . . .
1 1 .......... 0 0 4092
1 1 .......... 0 1 4093
1 1 .......... 1 0 4094
1 1 .......... 1 1 4095
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
0 0 0 0 PR1 P12 P11 P10 P9
12-BIT PHASE VALUE (PHASE) 12-BIT MODULUS VALUE (MOD)
CONTROL
BITS
P8 P7 P6 P5 P4 P3 P2 P1 M12 M11 M10 M9 M8 M7 M6 M5 M4 M3 M2 M1 C3(0) C2(0) C1(1)
RESERVED
M12 M11 ..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
M2 M1 INTERPOLATOR MODULUS (MOD)
00 102
00 113
.. ...
.. ...
.. ...
1 1 0 0 4092
1 1 0 1 4093
1 1 1 0 4094
1 1 1 1 4095
PRESCALER
P1 PRESCALER
04/5
18/9
DBR DBR
Figure 25. Register 1 (R1)
ADF4350 Data Sheet
Rev. B | Page 16 of 34
07325-014
RD2 REFERENCE
DOUBLER
0DISABLED
1 ENABLED
RD1 REFERENCE DIVIDE BY 2
0DISABLED
1ENABLED
CP4CP3CP2CP1
ICP (mA)
5.1k
00000.31
00010.63
00100.94
00111.25
01001.56
01011.88
01102.19
01112.50
10002.81
10013.13
10103.44
10113.75
11004.06
11014.38
11104.69
11115.00
R10 R9 ..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
R2 R1 R DIVIDER (R)
00 011
00 102
.. ...
.. ...
.. ...
11 001020
11 011021
11 101022
11 111023
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
0 L2 L1 M3 M2 M1 RD2 RD1 R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 D1 CP4 CP3 CP2 CP1 U6 U5 U4 U3 U2 U1 C3(0) C2(1) C1(0)
RDIV2 DBR
REFERENCE
DOUBLER DBR
CHARGE
PUMP
CURRENT
SETTING
10-BIT R COUNTER DBR
CONTROL
BITS
LDP
PD
POLARITY
POWER-DOWN
CP THREE-
STATE
COUNTER
RESET
LDF
MUXOUT
DOUBLE BUFF
U5 LDP
0 10ns
16ns
U4 PD POLARITY
0NEGATIVE
1 POSITIVE
U3 POWER DOWN
0DISABLED
1 ENABLED
U2 CP
THREE-STATE
0DISABLED
1ENABLED
U1 COUNTER
RESET
0DISABLED
1 ENABLED
D1 DOUBLEBUFFER
R4 DB22-20
0DISABLED
1 ENABLED
U6 LDF
0FRAC-N
1INT-N
RESERVED
M3 M2 M1 OUTPUT
0 0 0 THREE-STATE OUTPUT
00 1DV
DD
01 0DGND
0 1 1 R DIVIDER OUTPUT
1 0 0 N DIVIDER OUTPUT
1 0 1 ANALOG LOCK DETECT
1 1 0 DIGITAL LOCK DETECT
1 1 1 RESERVED
L1 L2 NOISE MODE
00LOWNOISEMODE
0 1 RESERVED
1 0 RESERVED
11LOWSPURMODE
LOW
NOISE AND
LOW SPUR
MODES
Figure 26. Register 2 (R2)
07325-015
C2 C1 CLOCK DIVIDER MODE
0 0 CLOCK DIVIDER OFF
0 1 FAST-LOCK ENABLE
1 0 RESYNC ENABLE
1 1 RESERVED
D12 D11 .......... D2 D1 CLOCK DIVIDER VALUE
0 0 .......... 0 0 0
0 0 .......... 0 1 1
0 0 .......... 1 0 2
0 0 .......... 1 1 3
. . .......... . . .
. . .......... . . .
. . .......... . . .
1 1 .......... 0 0 4092
1 1 .......... 0 1 4093
1 1 .......... 1 0 4094
1 1 .......... 1 1 4095
CSR
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
0 0 0 0 0 0 0 0 0 0 0 F1 0 C2 C1 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 C3(0) C2(1) C1(1)
CONTROL
BITS12-BIT CLOCK DIVIDER VALUE
CLK
DIV
MODE
RESERVED
F1 CYCLE SLIP
REDUCTION
0DISABLED
1 ENABLED
RESERVED
00
RESERVED
Figure 27. Register 3 (R3)
Data Sheet ADF4350
Rev. B | Page 17 of 34
07325-016
BS8 BS7 ..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
BS2 BS1 BAND SELECT CLOCK DIVIDER (R)
00 011
00 102
.. ...
.. ...
.. ...
11 00252
11 01253
11 10254
11 11255
D3 RF OUT
0DISABLED
1 ENABLED
OUTPUT
POWER
VCO POWER-
DOWN
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
0 0 0 0 0 0 0 0 D13 D12 D11 D10 BS8 BS7 BS6 BS5 BS4 BS3 BS2 BS1 D9 D8 D7 D6 D5 D4 D3 D2 D1 C3(1) C2(0) C1(0)
CONTROL
BITS
8-BIT BAND SELECT CLOCK DIVIDER VALUE
RF OUTPUT
ENABLE
AUX
OUTPUT
POWER
AUX OUTPUT
ENABLE
AUX OUTPUT
SELECT
MTLD
DIVIDER
SELECT
FEEDBACK
SELECT
RESERVED
D2 D1 OUTPUT POWER
00-4
01-1
10+2
11+5
D5 D4 AUX OUTPUT POWER
00-4
01-1
10+2
11+5
D6 AUX OUT
0DISABLED
1 ENABLED
D7
AUX OUTPUT
SELECT
0
FUNDAMENTAL
1
DIVIDED OUTPUT
D8 MUTE TILL
LOCK DETECT
0 MUTE DISABLED
1 MUTE ENABLED
D9 VCO
POWER-DOWN
0VCO POWERED UP
1 VCO POWERED DOWN
D12 D11 RF DIVIDER SELECT
00 ÷1
00 ÷2
01 ÷4
01 ÷8
D10
0
1
0
1
10 ÷160
D13 FEEDBACK
SELECT
0
FUNDAMENTAL
1
DIVIDED
DBB
Figure 28. Register 4 (R4)
07325-017
LD PIN
MODE
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
0 0 0 0 0 0 0 0 D15 D14 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 C3(1) C2(0) C1(1)
CONTROL
BITSRESERVED
RESERVED
RESERVED
D1 5 D1 4 LOCK DETECT PIN OPERATION
00LOW
0 1 DIGITAL LOCK DETECT
10LOW
11HIGH
RESERVED
Figure 29. Register 5 (R5)
ADF4350 Data Sheet
Rev. B | Page 18 of 34
REGISTER 0
Control Bits
With Bits [C3:C1] set to 0, 0, 0, Register 0 is programmed.
Figure 24 shows the input data format for programming this
register.
16-Bit INT Value
These sixteen bits set the INT value, which determines the
integer device of the feedback division factor. It is used in
Equation 1 (see the INT, FRAC, MOD, and R Counter
Relationship section). All integer values from 23 to 65,535
are allowed for 4/5 prescaler. For 8/9 prescaler, the minimum
integer value is 75.
12-Bit FRAC Value
The 12 FRAC bits set the numerator of the fraction that is input
to the Σ-Δ modulator. This, along with INT, specifies the new
frequency channel that the synthesizer locks to, as shown in the
RF SynthesizerA Worked Example section. FRAC values from
0 to MOD − 1 cover channels over a frequency range equal to
the PFD reference frequency.
REGISTER 1
Control Bits
With Bits [C3:C1] set to 0, 0, 1, Register 1 is programmed.
Figure 25 shows the input data format for programming
this register.
Prescaler Value
The dual modulus prescaler (P/P + 1), along with the INT,
FRAC, and MOD counters, determines the overall division
ratio from the VCO output to the PFD input.
Operating at CML levels, the prescaler takes the clock from the
VCO output and divides it down for the counters. It is based on
a synchronous 4/5 core. When set to 4/5, the maximum RF
frequency allowed is 3 GHz. Therefore, when operating the
ADF4350 above 3 GHz, this must be set to 8/9. The prescaler
limits the INT value, where P is 4/5, NMIN is 23 and P is 8/9,
NMIN is 75.
In the ADF4350, PR1 in Register 1 sets the prescaler values.
12-Bit Phase Value
These bits control what is loaded as the phase word. The word
must be less than the MOD value programmed in Register 1.
The word programs the RF output phase from 0° to 360° with a
resolution of 360°/MOD. See the Phase Resync section for more
information. In most applications, the phase relationship between
the RF signal and the reference is not important. In such
applications, the phase value can optimize the fractional and
subfractional spur levels. See the Spur Consistency and Fractional
Spur Optimization section for more information.
If neither the phase resync nor the spurious optimization
functions are being used, it is recommended the PHASE
word be set to 1.
12-Bit Interpolator MOD Value
This programmable register sets the fractional modulus. This
is the ratio of the PFD frequency to the channel step resolution
on the RF output. See the RF SynthesizerA Worked Example
section for more information.
REGISTER 2
Control Bits
With Bits [C3:C1] set to 0, 1, 0, Register 2 is programmed.
Figure 26 shows the input data format for programming this
register.
Low Noise and Low Spur Modes
The noise modes on the ADF4350 are controlled by DB30 and
DB29 in Register 2 (see Figure 26). The noise modes allow the
user to optimize a design either for improved spurious perfor-
mance or for improved phase noise performance.
When the lowest spur setting is chosen, dither is enabled. This
randomizes the fractional quantization noise so it resembles
white noise rather than spurious noise. As a result, the device is
optimized for improved spurious performance. This operation
is normally used when the PLL closed-loop bandwidth is wide,
for fast-locking applications. Wide loop bandwidth is seen as a
loop bandwidth greater than 1/10 of the RFOUT channel step
resolution (fRES). A wide loop filter does not attenuate the spurs
to the same level as a narrow loop bandwidth.
For best noise performance, use the lowest noise setting option.
As well as disabling the dither, this setting also ensures that the
charge pump is operating in an optimum region for noise
performance. This setting is extremely useful where a narrow
loop filter bandwidth is available. The synthesizer ensures
extremely low noise and the filter attenuates the spurs. The
typical performance characteristics give the user an idea of
the trade-off in a typical W-CDMA setup for the different
noise and spur settings.
MUXOUT
The on-chip multiplexer is controlled by Bits [DB28:DB26] (see
Figure 26).
Reference Doubler
Setting DB25 to 0 feeds the REFIN signal directly to the 10bit
R counter, disabling the doubler. Setting this bit to 1 multiplies
the REFIN frequency by a factor of 2 before feeding into the
10-bit R counter. When the doubler is disabled, the REFIN
falling edge is the active edge at the PFD input to the fractional
synthesizer. When the doubler is enabled, both the rising and
falling edges of REFIN become active edges at the PFD input.
Data Sheet ADF4350
Rev. B | Page 19 of 34
When the doubler is enabled and the lowest spur mode is
chosen, the in-band phase noise performance is sensitive to
the REFIN duty cycle. The phase noise degradation can be as
much as 5 dB for the REFIN duty cycles outside a 45% to 55%
range. The phase noise is insensitive to the REFIN duty cycle
in the lowest noise mode and when the doubler is disabled.
The maximum allowable REFIN frequency when the doubler
is enabled is 30 MHz.
RDIV2
Setting the DB24 bit to 1 inserts a divide-by-2 toggle flip-flop
between the R counter and PFD, which extends the maximum
REFIN input rate. This function allows a 50% duty cycle signal
to appear at the PFD input, which is necessary for cycle slip
reduction.
10Bit R Counter
The 10bit R counter allows the input reference frequency
(REFIN) to be divided down to produce the reference clock
to the PFD. Division ratios from 1 to 1023 are allowed.
Double Buffer
DB13 enables or disables double buffering of Bits [DB22:DB20]
in Register 4. The Divider Select section explains how double
buffering works.
Charge Pump Current Setting
Bits [DB12:DB09] set the charge pump current setting. This
must be set to the charge pump current that the loop filter
is designed with (see Figure 26).
LDF
Setting DB8 to 1 enables integerN digital lock detect,
when the FRAC part of the divider is 0; setting DB8 to 0 enables
fractionalN digital lock detect.
Lock Detect Precision (LDP)
When DB7 is set to 0, 40 consecutive PFD cycles of 10 ns must
occur before digital lock detect is set. When this bit is programmed
to 1, 40 consecutive reference cycles of 6 ns must occur before
digital lock detect is set. This refers to fractional-N digital lock
detect (set DB8 to 0). With integerN digital lock detect activated
(set DB8 to 1), and DB7 set to 0, then five consecutive cycles of
6 ns need to occur before digital lock detect is set. When DB7 is
set to 1, five consecutive cycles of 10 ns must occur.
Phase Detector Polarity
DB6 sets the phase detector polarity. When using a passive loop
filter or noninverting active loop filter, this must be set to 1. If
using an active filter with an inverting characteristic, it must be
set to 0.
Power-Down
DB5 provides the programmable power-down mode. Setting this
bit to 1 performs a power-down. Setting this bit to 0 returns the
synthesizer to normal operation. When in software power-down
mode, the device retains all information in the registers. Only if the
supply voltages are removed are the register contents lost.
When a power-down is activated, the following events occur:
The synthesizer counters are forced to their load state
conditions.
The VCO is powered down.
The charge pump is forced into three-state mode.
The digital lock detect circuitry is reset.
The RFOUT buffers are disabled.
The input register remains active and capable of loading
and latching data.
Charge Pump Three-State
DB4 puts the charge pump into three-state mode when
programmed to 1. It must be set to 0 for normal operation.
Counter Reset
DB3 is the R counter and N counter reset bit for the ADF4350.
When this is 1, the RF synthesizer N counter and R counter are
held in reset. For normal operation, this bit must be set to 0.
ADF4350 Data Sheet
Rev. B | Page 20 of 34
REGISTER 3
Control Bits
With Bits [C3:C1] set to 0, 1, 1, Register 3 is programmed.
Figure 27 shows the input data format for programming this
register.
CSR Enable
Setting DB18 to 1 enables cycle slip reduction. This is a method
for improving lock times. Note that the signal at the phase fre-
quency detector (PFD) must have a 50% duty cycle for cycle slip
reduction to work. The charge pump current setting must also
be set to a minimum. See the Cycle Slip Reduction for Faster
Lock Times section for more information.
Clock Divider Mode
Bits [DB16:DB15] must be set to 1, 0 to activate PHASE resync
or 0, 1 to activate fast lock. Setting Bits [DB16:DB15] to 0, 0
disables the clock divider. See Figure 27.
12-Bit Clock Divider Value
The 12-bit clock divider value sets the timeout counter for
activation of PHASE resync. See the Phase Resync section for
more information. It also sets the timeout counter for fast lock.
See the Fast-Lock Timer and Register Sequences section for
more information.
REGISTER 4
Control Bits
With Bits [C3:C1] set to 1, 0, 0, Register 4 is programmed.
Figure 28 shows the input data format for programming this
register.
Feedback Select
DB23 selects the feedback from the VCO output to the
N counter. When set to 1, the signal is taken from the VCO
directly. When set to 0, it is taken from the output of the output
dividers. The dividers enable covering of the wide frequency band
(137.5 MHz to 4.4 GHz). When the divider is enabled and the
feedback signal is taken from the output, the RF output signals
of two separately configured PLLs are in phase. This is useful in
some applications where the positive interference of signals is
required to increase the power.
Divider Select
Bits [DB22:DB20] select the value of the output divider (see
Figure 28).
Band Select Clock Divider Value
Bits [DB19:DB12] set a divider for the band select logic
clock input. The output of the R counter, is by default, the
value used to clock the band select logic, but, if this value is
too high (>125 kHz), a divider can be switched on to divide
the R counter output to a smaller value (see Figure 28).
VCO Power-Down
DB11 powers the VCO down or up depending on the chosen value.
Mute Till Lock Detect
If DB10 is set to 1, the supply current to the RF output stage is shut
down until the device achieves lock as measured by the digital lock
detect circuitry.
AUX Output Select
DB9 sets the auxiliary RF output. The selection can be either
the output of the RF dividers or fundamental VCO frequency.
AUX Output Enable
DB8 enables or disables auxiliary RF output, depending on the
chosen value.
AUX Output Power
Bits [DB7:DB6] set the value of the auxiliary RF output power
level (see Figure 28).
RF Output Enable
DB5 enables or disables primary RF output, depending on the
chosen value.
Output Power
Bits [DB4:DB3] set the value of the primary RF output power
level (see Figure 28).
REGISTER 5
Control Bits
With Bits [C3:C1] set to 1, 0, 1, Register 5 is programmed.
Figure 29 shows the input data form for programming this
register.
Lock Detect Pin Operation
Bits [DB23:DB22] set the operation of the lock detect pin (see
Figure 29).
Data Sheet ADF4350
Rev. B | Page 21 of 34
INITIALIZATION SEQUENCE
The following sequence of registers is the correct sequence for
initial power-up of the ADF4350 after the correct application of
voltages to the supply pins:
Register 5
Register 4
Register 3
Register 2
Register 1
Register 0
RF SYNTHESIZERA WORKED EXAMPLE
The following is an example how to program the ADF4350
synthesizer:
RFOUT = [INT + (FRAC/MOD)] × [fPFD]/RF divider (3)
where:
RFOUT is the RF frequency output.
INT is the integer division factor.
FRAC is the fractionality.
MOD is the modulus.
RF divider is the output divider that divides down the VCO
frequency.
fPFD = REFIN × [(1 + D)/(R × (1+T))] (4)
where:
REFIN is the reference frequency input.
D is the RF REFIN doubler bit.
T is the reference divide-by-2 bit (0 or 1).
R is the RF reference division factor.
For example, in a UMTS system, where 2112.6 MHz RF
frequency output (RFOUT) is required, a 10 MHz reference
frequency input (REFIN) is available, and a 200 kHz channel
resolution (fRESOUT) is required on the RF output. Note that
the ADF4350 operates in the frequency range of 2.2 GHz to
4.4 GHz. Therefore, the RF divider of 2 must be used (VCO
frequency = 4225.2 MHz, RFOUT = VCO frequency/RF divider =
4225.2 MHz/2 = 2112.6 MHz).
It is also important where the loop is closed. In this example,
the loop is closed (see Figure 30).
f
PFD
PFD VCO
N
DIVIDER
÷2
07325-027
RFOUT
Figure 30. Loop Closed Before Output Divider
Channel resolution (fRESOUT) or 200 kHz is required at the output
of the RF divider. Therefore, channel resolution at the output of
the VCO (fRES) is to be twice the fRESOUT, that is 400 kHz.
MOD = REFIN/fRES
MOD = 10 MHz/400 kHz = 25
From Equation 4,
fPFD = [10 MHz × (1 + 0)/1] = 10 MHz (5)
2112.6 MHz = 10 MHz × (INT + FRAC/25)/2 (6)
where:
INT = 422
FRAC = 13
MODULUS
The choice of modulus (MOD) depends on the reference signal
(REFIN) available and the channel resolution (fRES) required at
the RF output. For example, a GSM system with 13 MHz REFIN
sets the modulus to 65. This means the RF output resolution (fRES)
is the 200 kHz (13 MHz/65) necessary for GSM. With dither off,
the fractional spur interval depends on the modulus values chosen
(see Table 6).
REFERENCE DOUBLER AND REFERENCE DIVIDER
The reference doubler on-chip allows the input reference signal
to be doubled. This is useful for increasing the PFD comparison
frequency. Making the PFD frequency higher improves the
noise performance of the system. Doubling the PFD frequency
usually improves noise performance by 3 dB. It is important to
note that the PFD cannot operate above 32 MHz due to a limi-
tation in the speed of the Σ-Δ circuit of the N-divider.
The reference divide-by-2 divides the reference signal by 2,
resulting in a 50% duty cycle PFD frequency. This is necessary
for the correct operation of the cycle slip reduction (CSR)
function. See the Cycle Slip Reduction for Faster Lock Times
section for more information.
12-BIT PROGRAMMABLE MODULUS
Unlike most other fractional-N PLLs, the ADF4350 allows the
user to program the modulus over a 12bit range. This means
the user can set up the device in many different configurations for
the application, when combined with the reference doubler and
the 10-bit R counter.
For example, consider an application that requires 1.75 GHz RF
and 200 kHz channel step resolution. The system has a 13 MHz
reference signal.
One possible setup is feeding the 13 MHz directly to the PFD
and programming the modulus to divide by 65. This results in
the required 200 kHz resolution.
Another possible setup is using the reference doubler to create
26 MHz from the 13 MHz input signal. This 26 MHz is then fed
into the PFD programming the modulus to divide by 130. This
also results in 200 kHz resolution and offers superior phase
noise performance over the previous setup.
ADF4350 Data Sheet
Rev. B | Page 22 of 34
The programmable modulus is also very useful for multi-
standard applications. If a dual-mode phone requires PDC
and GSM 1800 standards, the programmable modulus is a
great benefit. PDC requires 25 kHz channel step resolution,
whereas GSM 1800 requires 200 kHz channel step resolution.
A 13 MHz reference signal can be fed directly to the PFD, and
the modulus can be programmed to 520 when in PDC mode
(13 MHz/520 = 25 kHz).
The modulus needs to be reprogrammed to 65 for GSM 1800
operation (13 MHz/65 = 200 kHz).
It is important that the PFD frequency remain constant (13 MHz).
This allows the user to design one loop filter for both setups
without running into stability issues. It is important to remem-
ber that the ratio of the RF frequency to the PFD frequency
principally affects the loop filter design, not the actual channel
spacing.
CYCLE SLIP REDUCTION FOR FASTER LOCK TIMES
As outlined in the Low Noise and Low Spur Mode section, the
ADF4350 contains a number of features that allow optimization
for noise performance. However, in fast locking applications,
the loop bandwidth generally needs to be wide, and therefore,
the filter does not provide much attenuation of the spurs. If
the cycle slip reduction feature is enabled, the narrow loop
bandwidth is maintained for spur attenuation but faster lock
times are still possible.
Cycle Slips
Cycle slips occur in integer-N/fractional-N synthesizers when
the loop bandwidth is narrow compared to the PFD frequency.
The phase error at the PFD inputs accumulates too fast for the
PLL to correct, and the charge pump temporarily pumps in the
wrong direction. This slows down the lock time dramatically.
The ADF4350 contains a cycle slip reduction feature that extends
the linear range of the PFD, allowing faster lock times without
modifications to the loop filter circuitry.
When the circuitry detects that a cycle slip is about to occur,
it turns on an extra charge pump current cell. This outputs a
constant current to the loop filter, or removes a constant
current from the loop filter (depending on whether the VCO
tuning voltage needs to increase or decrease to acquire the new
frequency). The effect is that the linear range of the PFD is
increased. Loop stability is maintained because the current
is constant and is not a pulsed current.
If the phase error increases again to a point where another cycle
slip is likely, the ADF4350 turns on another charge pump cell.
This continues until the ADF4350 detects the VCO frequency
has gone past the desired frequency. The extra charge pump
cells are turned off one by one until all the extra charge pump
cells have been disabled and the frequency is settled with the
original loop filter bandwidth.
Up to seven extra charge pump cells can be turned on. In most
applications, it is enough to eliminate cycle slips altogether,
giving much faster lock times.
Setting Bit DB18 in the Register 3 to 1 enables cycle slip
reduction. Note that the PFD requires a 45% to 55% duty cycle
for CSR to operate correctly. If the REFIN frequency does not
have a suitable duty cycle, the RDIV2 mode ensures that the
input to the PFD has a 50% duty cycle.
SPURIOUS OPTIMIZATION AND FAST LOCK
Narrow loop bandwidths can filter unwanted spurious signals,
but these usually have a long lock time. A wider loop bandwidth
will achieve faster lock times, but a wider loop bandwidth may
lead to increased spurious signals inside the loop bandwidth.
The fast lock feature can achieve the same fast lock time as the
wider bandwidth, but with the advantage of a narrow final loop
bandwidth to keep spurs low.
FAST-LOCK TIMER AND REGISTER SEQUENCES
If using the fast-lock mode, a timer value must be loaded into
the PLL to determine the duration of the wide bandwidth mode.
When Bits [DB16:DB15] in Register 3 are set to 0, 1 (fast-lock
enable), the timer value is loaded by the 12bit clock divider
value. The following sequence must be programmed to use
fast lock:
1. Initialization sequence (see the Initialization Sequence
section) occurs only once after powering up the device.
2. Load Register 3 by setting Bits [DB16:DB15] to 0, 1 and
the chosen fast-lock timer value [DB14:DB3]. Note that
the duration the PLL remains in wide bandwidth is equal
to the fast-lock timer/fPFD.
FAST LOCKAN EXAMPLE
If a PLL has reference frequencies of 13 MHz and fPFD = 13 MHz
and a required lock time of 50 µs, the PLL is set to wide bandwidth
for 40 µs. This example assumes a modulus of 65 for channel
spacing of 200 kHz. This example does not account for the time
required for VCO band select.
If the time period set for the wide bandwidth is 40 µs, then
Fast-Lock Timer Value = Time in Wide Bandwidth × fPFD/MOD
Fast-Lock Timer Value = 40 µs × 13 MHz/65 = 8
Therefore, a value of 8 must be loaded into the clock divider
value in Register 3 in Step 1 of the sequence described in the
Fast-Lock Timer and Register Sequences section.
Data Sheet ADF4350
Rev. B | Page 23 of 34
FAST LOCK—LOOP FILTER TOPOLOGY
To use fast-lock mode, the damping resistor in the loop filter
is reduced to ¼ of the value while in wide bandwidth mode. To
achieve the wider loop filter bandwidth, the charge pump
current increases by a factor of 16 and to maintain loop sta-
bility the damping resistor must be reduced a factor of ¼.
To enable fast lock, the SW pin is shorted to the GND pin by
settings Bits [DB16:DB15] in Register 3 to 0, 1. The following
two topologies are available:
The damping resistor (R1) is divided into two values (R1
and R1A) that have a ratio of 1:3 (see Figure 31).
An extra resistor (R1A) is connected directly from SW, as
shown in Figure 32. The extra resistor is calculated such
that the parallel combination of an extra resistor and the
damping resistor (R1) is reduced to ¼ of the original value
of R1 (see Figure 32).
ADF4350
CP
SW
C1 C2
R2
R1
R1A
C3
VCO
07325-018
Figure 31. Fast-Lock Loop Filter Topology—Topology 1
ADF4350
CP
SW
C1 C2
R2
R1R1A
C3
VCO
07325-019
Figure 32. Fast-Lock Loop Filter Topology—Topology 2
SPUR MECHANISMS
This section describes the three different spur mechanisms that
arise with a fractional-N synthesizer and how to minimize them
in the ADF4350.
Fractional Spurs
The fractional interpolator in the ADF4350 is a third-order
Σ-Δ modulator (SDM) with a modulus (MOD) that is program-
mable to any integer value from 2 to 4095. In low spur mode
(dither enabled) the minimum allowable value of MOD is 50.
The SDM is clocked at the PFD reference rate (fPFD) that allows
PLL output frequencies to be synthesized at a channel step
resolution of fPFD/MOD.
In low noise mode (dither disabled) the quantization noise from
the Σ-Δ modulator appears as fractional spurs. The interval
between spurs is fPFD/L, where L is the repeat length of the code
sequence in the digital Σ-Δ modulator. For the third-order
modulator used in the ADF4350, the repeat length depends on
the value of MOD, as listed in Table 6.
Table 6. Fractional Spurs with Dither Disabled
Condition (Dither Disabled)
Repeat
Length Spur Interval
If MOD is divisible by 2, but not 3 2 × MOD Channel step/2
If MOD is divisible by 3, but not 2 3 × MOD Channel step/3
If MOD is divisible by 6 6 × MOD Channel step/6
Otherwise MOD Channel step
In low spur mode (dither enabled), the repeat length is extend-
ed to 221 cycles, regardless of the value of MOD, which makes
the quantization error spectrum look like broadband noise.
This may degrade the in-band phase noise at the PLL output
by as much as 10 dB. For lowest noise, dither disabled is a better
choice, particularly when the final loop bandwidth is low
enough to attenuate even the lowest frequency fractional spur.
Integer Boundary Spurs
Another mechanism for fractional spur creation is the inter-
actions between the RF VCO frequency and the reference
frequency. When these frequencies are not integer related (the
point of a fractional-N synthesizer) spur sidebands appear on
the VCO output spectrum at an offset frequency that corres-
ponds to the beat note or difference frequency between an
integer multiple of the reference and the VCO frequency. These
spurs are attenuated by the loop filter and are more noticeable
on channels close to integer multiples of the reference where the
difference frequency can be inside the loop bandwidth, there-
fore, the name integer boundary spurs.
Reference Spurs
Reference spurs are generally not a problem in fractional-N
synthesizers because the reference offset is far outside the loop
bandwidth. However, any reference feed-through mechanism
that bypasses the loop may cause a problem. Feed through of
low levels of on-chip reference switching noise, through the
RFIN pin back to the VCO, can result in reference spur levels as
high as –90 dBc. PCB layout needs to ensure adequate isolation
between VCO traces and the input reference to avoid a possible
feed through path on the board.
ADF4350 Data Sheet
Rev. B | Page 24 of 34
SPUR CONSISTENCY AND FRACTIONAL SPUR
OPTIMIZATION
With dither off, the fractional spur pattern due to the quantiza-
tion noise of the SDM also depends on the particular phase
word with which the modulator is seeded.
The phase word can be varied to optimize the fractional and
subfractional spur levels on any particular frequency. Thus, a
look-up table of phase values corresponding to each frequency
can be constructed for use when programming the ADF4350.
If a look-up table is not used, keep the phase word at a constant
value to ensure consistent spur levels on any particular frequency.
PHASE RESYNC
The output of a fractional-N PLL can settle to any one of the
MOD phase offsets with respect to the input reference, where
MOD is the fractional modulus. The phase resync feature in the
ADF4350 produces a consistent output phase offset with respect
to the input reference. This is necessary in applications where the
output phase and frequency are important, such as digital beam
forming. See the Phase Programmability section to program a
specific RF output phase when using phase resync.
Phase resync is enabled by setting Bits [DB16:DB15] in
Register 3 to 1, 0. When phase resync is enabled, an internal
timer generates sync signals at intervals of tSYNC given by the
following formula:
tSYNC = CLK_DIV_VALUE × MOD × tPFD
where:
tPFD is the PFD reference period.
CLK_DIV_VALUE is the decimal value programmed in
Bits [DB14:DB3] of Register 3 and can be any integer in the
range of 1 to 4095.
MOD is the modulus value programmed in Bits [DB14:DB3] of
Register 1 (R1).
When a new frequency is programmed, the second sync pulse
after the LE rising edge resynchronizes the output phase to the
reference. The tSYNC time is to be programmed to a value that is
as least as long as the worst-case lock time. This guarantees the
phase resync occurs after the last cycle slip in the PLL settling
transient.
In the example shown in Figure 33, the PFD reference is 25 MHz
and MOD = 125 for a 200 kHz channel spacing. tSYNC is set to
400 μs by programming CLK_DIV_VALUE = 80.
LE
PHASE
FREQUENCY
SYNC
(INTERNAL)
–100 0 100 200 1000
300 400 500 600 700 800 900
07325-020
TIME (µs)
PLL SETTLES TO
CORRECT PHASE
AFTER RESYNC
t
SYNC
LAST CYCLE SLIP
PLL SETTLES TO
INCORRECT PHASE
Figure 33. Phase Resync Example
Phase Programmability
The phase word in Register 1 controls the RF output phase. As
this word is swept from 0 to MOD, the RF output phase sweeps
over a 360° range in steps of 360°/MOD.
Data Sheet ADF4350
Rev. B | Page 25 of 34
APPLICATIONS INFORMATION
DIRECT CONVERSION MODULATOR
Direct conversion architectures are increasingly used to implement
base station transmitters. Figure 34 shows how Analog Devices,
Inc., devices can implement such a system.
The circuit block diagram shows the AD9761 TxDAC® being
used with the ADL5375. The use of dual integrated DACs, such
as the AD9788 with the specified ±0.02 dB and ±0.001 dB gain
and offset matching characteristics, ensures minimum error
contribution (over temperature) from this portion of the
signal chain.
The local oscillator (LO) is implemented using the ADF4350.
The low-pass filter was designed using ADIsimPLL™ for a channel
spacing of 200 kHz and a closed-loop bandwidth of 35 kHz.
The LO ports of the ADL5375 can be driven differentially from
the complementary RFOUTA and RFOUTB outputs of the ADF4350.
This gives better performance than a single-ended LO driver
and eliminates the use of a balun to convert from a single-ended
LO input to the more desirable differential LO input for the
ADL5375. At LO frequencies below 3 GHz some harmonic
filtering may be necessary to ensure best single sideband
performance.
The ADL5375 accepts LO drive levels from −6 dBm to +7 dBm.
The optimum LO power can be software programmed on the
ADF4350, which allows levels from −4 dBm to +5 dBm from
each output. For more details on this circuit, consult CN-0134.
The RF output is designed to drive a 50 Ω load, but must be
ac-coupled, as shown in Figure 34. If the I and Q inputs are
driven in quadrature by 2 V p-p signals, the resulting output
power from the modulator is approximately 2 dBm.
07325-021
2700pF 1200pF
39nF
680
360
SPI-COMPATIBLE SERIAL BUS
ADF4350
V
VCO
V
VCO
CP
GND
AGND DGND
RF
OUT
B–
RF
OUT
B+
CP
OUT
1nF1nF
4.7k
R
SET
LE
DATA
CLK
REF
IN
FREF
IN
V
TUNE
DV
DD
AV
DD
CE MUXOUT
10
28
16
29
1
2
3
22
831 911 18 21 27
V
DD
LOCK
DETECT
51
A
GNDV CO
V
COM
14
15
19 23 24
25
30
LD
17
20
7
PDB
RF
26
SD
GND
TEMP V
REF
632
SDV
DD
V
P
5
SW
10pF 0.1µF 10pF 0.1µF 10pF 0.1µF
4
AD9761
TxDAC
REFIO
FSADJ
MODULATED
DIGITAL
DATA
QOUTB
IOUTA
IOUTB
QOUTA
2k
LOW-PASS
FILTER
LOW-PASS
FILTER
IBBP
IBBN
QBBP
QBBN
LOIP
LOIN
5151
5151
ADL5375
RFO
QUADRATURE
PHASE
SPLITTER
DSOP
RF
OUT
A–
RF
OUT
A+
13
12
V
VCO
3.9nH 3.9nH
1nF
1nF
LPF
LPF
Figure 34. Direct Conversion Modulator
ADF4350 Data Sheet
Rev. B | Page 26 of 34
INTERFACING
The ADF4350 has a simple SPI-compatible serial interface for
writing to the device. CLK, DATA, and LE control the data
transfer. When LE goes high, the 32 bits that have been clocked
into the appropriate register on each rising edge of CLK are
transferred to the appropriate latch. See Figure 2 for the timing
diagram and Table 5 for the register address table.
ADuC7019 to ADuC7022 and ADuC7024 to ADuC7029
Family Interface
Figure 35 shows the interface between the ADF4350 and the
ADuC7019/ADuC7020/ADuC7021/ADuC7022/ADuC7024/
ADuC7025/ADuC7026/ADuC7027/ADuC7028/ADuC7029
family of analog microcontrollers. The ADuC7019 to ADuC7022
and ADuC7024 to ADuC7029 family is based on an AMR7 core,
although the same interface can be used with any 8051-based
microcontroller. The microcontroller is set up for SPI master
mode with CPHA = 0. To initiate the operation, the input/output
port driving LE is brought low. Each latch of the ADF4350 needs
a 32-bit word. This is accomplished by writing four 8-bit bytes
from the microcontroller to the device. When the last byte is
written, the LE input must be brought high to complete
the transfer.
On first applying power to the ADF4350, it needs six writes
(one each to R5, R4, R3, R2, R1, R0) for the output to become
active.
Input/output port lines on the microcontroller are also used to
control power-down (CE input) and to detect lock (MUXOUT
configured as lock detect and polled by the port input).
When operating in the mode described, the maximum SPI
transfer rate of the ADuC7023 is 20 Mbps. This means that
the maximum rate at which the output frequency can be
changed is 833 kHz. If using a faster SPI clock just make sure
the SPI timing requirements listed in Table 2 are adhered to.
07325-022
ADuC7019
ADF4350
CLK
DATA
LE
CE
MUXOUT
(L OCK DET E CT)
SCLOCK
MOSI
I/O PORTS
Figure 35. ADuC7019 to ADF4350 Interface
ADSP-BF527 Interface
Figure 36 shows the interface between the ADF4350 and the
Blackfin® ADSP-BF527 digital signal processor (DSP). The
ADF4350 needs a 32-bit serial word for each latch write. The
easiest way to accomplish this using the Blackfin family is to use
the autobuffered transmit mode of operation with alternate
framing. This provides a means for transmitting an entire block
of serial data before an interrupt is generated. Set up the word
length for 8 bits and use three memory locations for each 32-bit
word. To program each 32-bit latch, store the four 8-bit bytes,
enable the autobuffered mode, and write to the transmit register
of the DSP. This last operation initiates the autobuffer transfer.
Make sure the clock speeds are within the maximum limits
outlined in Table 2.
07325-023
ADSP-BF527 ADF4350
CLK
DATA
LE
CE
MUXOUT
(L OCK DET E CT)
SCK
MOSI
GPIO
I/O FLAGS
Figure 36. ADSP-BF527 to ADF4350 Interface
PCB DESIGN GUIDELINES FOR A CHIP SCALE
PACKAGE
The lands on the chip scale package (CP-32-2) are rectangular.
The PCB pad for these is to be 0.1 mm longer than the package
land length and 0.05 mm wider than the package land width.
The land is to be centered on the pad. This ensures the solder
joint size is maximized. The bottom of the chip scale package
has a central thermal pad.
The thermal pad on the PCB is to be at least as large as the
exposed pad. On the PCB, there is to be a minimum clearance
of 0.25 mm between the thermal pad and the inner edges of the
pad pattern. This ensures that shorting is avoided.
Thermal vias can be used on the PCB thermal pad to improve
the thermal performance of the package. If vias are used, they
are to be incorporated in the thermal pad at 1.2 mm pitch grid.
The via diameter is to be between 0.3 mm and 0.33 mm, and the
via barrel is to be plated with 1 oz. of copper to plug the via.
Data Sheet ADF4350
Rev. B | Page 27 of 34
OUTPUT MATCHING
There are a number of ways to match the output of the ADF4350
for optimum operation; the most basic is to use a 50 resistor to
VVCO. A dc bypass capacitor of 100 pF is connected in series as
shown in Figure 37. Because the resistor is not frequency
dependent, this provides a good broadband match. Placing
the output power in this circuit into a 50 Ω load typically
gives values chosen by Bit D2 and Bit D1 in Register 4 (R4).
100pF
07325-021
RF
OUT
V
VCO
50Ω
50Ω
Figure 37. Simple ADF4350 Output Stage
A better solution is to use a shunt inductor (acting as an RF
choke) to VVCO. This gives a better match and, therefore, more
output power.
Experiments have shown the circuit shown in Figure 38
provides an excellent match to 50 Ω for the W-CDMA UMTS
Band 1 (2110 MHz to 2170 MHz). The maximum output power
in that case is about 5 dBm. Both single-ended architectures can
be examined using the E VA L -ADF4350EB1Z evaluation board.
Table 7 provides a suggested range of values for the capacitor
and choke inductor for different frequency ranges.
L
C
07325-025
RF
OUT
V
VCO
50Ω
Figure 38.Optimum ADF4350 Output Stage
S11 parameters are provided in Table 9.
ADF4350 Data Sheet
Rev. B | Page 28 of 34
Table 7. Matching Components
Frequency Range (MHz) L (nH) C (nF)
137.5 to 500 100 1
500 to 1000 47 1
1000 to 2000 7.5 1
2000 to 4400 3.9 1
If differential outputs are not required, the unused output can
be terminated or both outputs can be combined using a balun.
Unused terminated outputs must have the same shunt and
series components and a load resistor to GND. If the auxiliary
output is unused (disabled in software), then the RFOUT pins
can be left open circuit.
L1
L1
C1
C1
50Ω
RF
OUT
A+
RF
OUT
A–
V
VCO
C2
L2
07325-132
Figure 39. ADF4350 LC Balun
A balun using discrete inductors and capacitors may be
implemented with the architecture in Figure 39.
Component L1 and Component C1 comprise the LC balun, L2
provides a dc path for RFOUTA−, and Capacitor C2 is used for dc
blocking. better solution is to use a shunt inductor (acting as an
RF choke) to VVCO. This gives a better match and, therefore,
more output power.
Experiments have shown the circuit shown in Figure 38
provides an excellent match to 50 Ω for the W-CDMA UMTS
Band 1 (2110 MHz to 2170 MHz). The maximum output power
in that case is about 5 dBm. Both single-ended architectures can
be examined using the E VA L -ADF4350EB1Z evaluation board.
Table 8. LC Balun Components
Frequency
Range (MHz) Inductor L1 (nH) Capacitor C1 (pF)
RF Choke
Inductor (nH)
DC Blocking
Capacitor (pF)
Measured Output
Power (dBm)
137 to 300 100 10 390 1000 9
300 to 460 51 5.6 180 120 10
400 to 600 30 5.6 120 120 10
600 to 900 18 4 68 120 10
860 to 1240 12 2.2 39 10 9
1200 to 1600 5.6 1.2 15 10 9
1600 to 3600 3.3 0.7 10 10 8
2800 to 3800 2.2 0.5 10 10 8
Data Sheet ADF4350
Rev. B | Page 29 of 34
Table 9. RFOUTA+ S-Parameters (S11)
# GHz S MA R 50
FREQ MAG ANG
0.10 0.96 3.65
0.15 0.94 4.41
0.20 0.93 4.52
0.25 0.92 4.41
0.30 0.92 4.82
0.35 0.92 5.25
0.40 0.91 5.74
0.45 0.91 6.3
0.50 0.91 7.32
0.55 0.9 −8.22
0.60 0.9 −9.4
0.65 0.89 10.61
0.70 0.89 10.96
0.75 0.89 11.68
0.80 0.89 12.3
0.85 0.89 12.84
0.90
0.88
−13.55
0.95 0.88 14.13
1.00 0.87 14.84
1.05 0.86 15.76
1.10 0.86 16.63
1.15 0.86 17.51
1.20 0.85 18.43
1.25 0.85 19.38
1.30 0.85 20.4
1.35 0.84 21.61
1.40 0.83 22.63
1.45 0.82 22.92
1.50 0.81 23.82
1.55 0.81 24.82
1.60 0.8 −25.58
1.65 0.8 −26.71
1.70 0.79 28.05
1.75 0.78 29.63
1.80 0.75 30.12
1.85 0.74 29.82
1.90 0.74 30.3
1.95
0.74
−31.36
2.00 0.74 32.63
2.05 0.73 33.78
2.10 0.72 35.08
2.15 0.71 36.83
2.20 0.69 37.98
2.25 0.67 38.42
2.30 0.65 38.78
2.35 0.64 39.43
2.40 0.63 40.44
2.45
0.62
−41.55
2.50 0.61 42.55
2.55 0.6 −43.8
2.60 0.59 44.97
ADF4350 Data Sheet
Rev. B | Page 30 of 34
# GHz S MA R 50
FREQ MAG ANG
2.65 0.58 45.93
2.70 0.57 46.5
2.75 0.57 47.11
2.80 0.55 47.7
2.85 0.54 48.54
2.90 0.52 49.63
2.95 0.51 50.71
3.00 0.49 51.89
3.05 0.48 53.42
3.10 0.47 54.56
3.15 0.46 55.71
3.20
0.45
−56.38
3.25 0.44 56.99
3.30 0.43 57.9
3.35 0.42 58.92
3.40 0.41 60.17
3.45 0.4 −61.49
3.50 0.38 63.02
3.55 0.37 64.37
3.60 0.36 65.52
3.65 0.35 66.53
3.70 0.34 67.53
3.75 0.33 69.16
3.80 0.32 70.75
3.85 0.31 72.04
3.90 0.3 −73.73
3.95 0.28 75.85
4.00 0.27 78.25
4.05 0.26 81.03
4.10 0.26 83.45
4.15 0.25 85.67
4.20 0.25 87.63
4.25
0.24
−89.61
4.30 0.23 91.6
4.35 0.22 93.91
4.40 0.21 97.18
Data Sheet ADF4350
Rev. B | Page 31 of 34
OUTLINE DIMENSIONS
COM P LIANT T O JEDE C S TANDARDS M O-220- WHHD.
112408-A
1
0.50
BSC
BOTTOM VIEWTOP VIEW
PIN 1
INDICATOR
32
9
16
17
24
25
8
EXPOSED
PAD
PIN 1
INDICATOR
3.25
3.10 SQ
2.95
SEATING
PLANE
0.05 M AX
0.02 NO M
0.20 REF
COPLANARITY
0.08
0.30
0.25
0.18
5.10
5.00 SQ
4.90
0.80
0.75
0.70
FOR PRO P E R CONNECTI ON O F
THE EXPOSED PAD, REFER TO
THE PIN CO NFI GURAT IO N AND
FUNCTION DES CRIPTI ONS
SECTION OF THIS DATA SHEET.
0.50
0.40
0.30
0.25 M IN
Figure 40. 32-Lead Lead Frame Chip Scale Package [LFCSP]
5 mm × 5 mm Body and 0.75 mm Package Height
(CP-32-7)
Dimensions shown in millimeters
ORDERING GUIDE
Model1 Temperature Range Package Description Package Option
ADF4350BCPZ −40°C to +85°C 32-Lead Lead Frame Chip Scale Package [LFCSP] CP-32-7
ADF4350BCPZ-RL 40°C to +85°C 32-Lead Lead Frame Chip Scale Package [LFCSP] CP-32-7
ADF4350BCPZ-RL7
40°C to +85°C
32-Lead Lead Frame Chip Scale Package [LFCSP]
CP-32-7
EVAL-ADF4350EB1Z Evaluation Board, Primary RF Output Available
EVAL-ADF4350EB2Z Evaluation Board, Primary and Auxiliary RF Outputs Available
1 Z = RoHS Compliant Part.
ADF4350 Data Sheet
Rev. B | Page 32 of 34
NOTES
Data Sheet ADF4350
Rev. B | Page 33 of 34
NOTES
ADF4350 Data Sheet
Rev. B | Page 34 of 34
NOTES
©2008–2016 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D07325-0-5/16(B)