www.irf.com 1
01/28/11
Fig 1. Typical On-Resistance vs. Gate Voltage Fig 2. Typical Total Gate Charge vs Gate-to-Source Voltage
Click on this section to link to the appropriate technical paper.
Click on this section to link to the DirectFET Website.
Surface mounted on 1 in. square Cu board, steady state.
TC measured with thermocouple mounted to top (Drain) of part.
Repetitive rating; pulse width limited by max. junction temperature.
Starting TJ = 25°C, L = 0.28mH, RG = 50, IAS = 15A.
Notes:
IRF6811SPbF
IRF6811STRPbF
DirectFET®plus Power MOSFET
Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details)
Typical values (unless otherwise specified)
SQ SX ST MQ MX MT MP
Description
The IRF6811STRPbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFET® packaging to achieve
improved performance in a package that has the footprint of a MICRO-8 and only 0.7 mm profile. The DirectFET® package is compatible with
existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering tech-
niques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET® package allows
dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%.
The IRF6811STRPbF has low gate resistance and low charge along with ultra low package inductance providing significant reduction in
switching losses. The reduced losses make this product ideal for high efficiency DC-DC converters that power the latest generation of
processors operating at higher frequencies. The IRF6811STRPbF has been optimized for the control FET socket of synchronous buck
operating from 12 volt bus converters.
l RoHS Compliant and Halogen Free
l Low Profile (<0.7 mm)
l Dual Sided Cooling Compatible
l Ultra Low Package Inductance
l Optimized for High Frequency Switching
l Ideal for CPU Core DC-DC Converters
l Optimized for Control FET Application
l Compatible with existing Surface Mount Techniques
l 100% Rg tested
l Footprint compatible to DirectFET
ISOMETRIC
SQ
0 5 10 15 20 25 30
QG Total Gate Charge (nC)
0.0
2.0
4.0
6.0
8.0
10.0
12.0
14.0
VGS, Gate-to-Source Voltage (V)
VDS= 20V
VDS= 13V
VDS= 5.0V
ID= 15A
V
DSS
V
GS
R
DS(on)
R
DS(on)
25V max ±16V max 2.8m @ 10V 4.1m@ 4.5V
Qg tot Qgd Qgs2 Qrr Qoss Vgs(th)
11nC 4.2nC 1.4nC 23nC 11nC 1.6V
Absolute Maximum Ratin
g
s
Parameter Units
V
DS
Drain-to-Source Voltage
V
GS
Gate-to-Source Voltage
I
D
@ T
A
= 25°C Continuous Drain Current, V
GS
@ 10V
e
I
D
@ T
A
= 70°C Continuous Drain Current, V
GS
@ 10V
e
I
D
@ T
C
= 25°C Continuous Drain Current, V
GS
@ 10V
f
I
DM
Pulsed Drain Current
g
E
AS
Single Pulse Avalanche Energy
h
mJ
I
AR
Avalanche Current
g
A
Max.
15
74
150
±16
25
19
32
15
V
A
012345678910 11 12 13 14 15 16
VGS, Gate -to -Source Voltage (V)
0
2
4
6
8
10
12
Typical RDS(on) (m)
ID = 19A
TJ = 25°C
TJ = 125°C
PD-97634
D
G
DS
IRF6811SPbF
2www.irf.com
Repetitive rating; pulse width limited by max. junction temperature.
Pulse width 400µs; duty cycle 2%.
Notes:
Static @ T
J
= 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units
BV
DSS
Drain-to-Source Breakdown Voltage 25 ––– ––– V
∆ΒV
DSS
/T
J
Breakdown Voltage Temp. Coefficient ––– 22 ––– mV/°C
R
DS(on)
Static Drain-to-Source On-Resistance ––– 2.8 3.7
––– 4.1 5.4
V
GS(th)
Gate Threshold Voltage 1.1 1.6 2.1 V V
DS
= V
GS
, I
D
= 35µA
V
GS
(
th
)
/T
J
Gate Threshold Voltage Coefficient ––– -6.2 ––– mV/°C V
DS
= V
GS
, I
D
= 25µA
I
DSS
Drain-to-Source Leakage Current ––– ––– 1.0 µA
––– ––– 150
I
GSS
Gate-to-Source Forward Leakage ––– ––– 100 nA
Gate-to-Source Reverse Leakage ––– ––– -100
gfs Forward Transconductance 180 ––– ––– S
Q
g
Total Gate Charge ––– 11 17
Q
gs1
Pre-Vth Gate-to-Source Charge ––– 2.2 –––
Q
gs2
Post-Vth Gate-to-Source Charge ––– 1.4 –––
Q
gd
Gate-to-Drain Charge ––– 4.2 –––
Q
godr
Gate Charge Overdrive ––– 3.2 ––– See Fig. 2 & 15
Q
sw
Switch Charge (Q
gs2
+ Q
gd
)––– 5.6 –––
Q
oss
Output Charge ––– 11 ––– nC
R
G
Gate Resistance ––– 0.4 –––
t
d(on)
Turn-On Delay Time ––– 8.7 –––
t
r
Rise Time ––– 19 –––
t
d(off)
Turn-Off Delay Time ––– 11 –––
t
f
Fall Time ––– 5.5 –––
C
iss
Input Capacitance ––– 1590 –––
C
oss
Output Capacitance ––– 460 ––– pF
C
rss
Reverse Transfer Capacitance ––– 110 –––
Diode Characteristics
Parameter Min. Typ. Max. Units
I
S
Continuous Source Current
(Body Diode)
I
SM
Pulsed Source Current
(Body Diode)
g
V
SD
Diode Forward Voltage ––– ––– 1.0 V
t
rr
Reverse Recovery Time ––– 18 27 ns
Q
rr
Reverse Recovery Charge ––– 23 35 nC
A
ns
–––
–––
–––
–––
40
150
m
nC
V
GS
= 4.5V, I
D
= 15A
i
V
GS
= 4.5V
I
D
= 15A
V
GS
= 16V
V
GS
= -16V
V
DS
= 20V, V
GS
= 0V
V
DS
= 13V
V
DS
= 13V
I
D
= 15A
V
DD
= 13V, V
GS
= 4.5V
i
di/dt = 300A/µs
i
T
J
= 25°C, I
S
= 15A, V
GS
= 0V
i
showing the
integral reverse
p-n junction diode.
T
J
= 25°C, I
F
= 15A
Conditions
V
GS
= 0V, I
D
= 250µA
Reference to 25°C, I
D
= 1mA
V
GS
= 10V, I
D
= 19A
i
V
DS
= 20V, V
GS
= 0V, T
J
= 125°C
MOSFET symbol
R
G
= 1.5
V
DS
= 13V, I
D
= 15A
Conditions
See Fig. 17
ƒ = 1.0MHz
V
DS
= 16V, V
GS
= 0V
V
GS
= 0V
IRF6811SPbF
www.irf.com 3
Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
Used double sided cooling, mounting pad with large heatsink.
Mounted on minimum footprint full size board with metalized
back and with small clip heatsink.
Notes:
Rθ is measured at TJ of approximately 90°C.
Surface mounted on 1 in. square Cu
(still air).
Mounted to a PCB with
small clip heatsink (still air)
Mounted on minimum
footprint full size board with
metalized back and with small
clip heatsink (still air)
1E-006 1E-005 0.0001 0.001 0.01 0.1 110 100
t1 , Rectangular Pulse Duration (sec)
0.001
0.01
0.1
1
10
100
Thermal Response ( Z thJA )
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthja + Tc
Ri (°C/W) τi (sec)
21.298 2.002815
24.844 0.296144
3.3632 0.000886
10.411 0.027621
τJ
τJ
τ1
τ1
τ2
τ2τ3
τ3
R1
R1R2
R2R3
R3
Ci= τi/Ri
Ci= τi/Ri
τA
τA
τ4
τ4
R4
R4
Absolute Maximum Ratin
g
s
Parameter Units
P
D
@T
A
= 25°C Power Dissipation
e
P
D
@T
A
= 70°C Power Dissipation
e
P
D
@T
C
= 25°C Power Dissipation
f
T
P
Peak Soldering Temperature
T
J
Operating Junction and
T
STG
Storage Temperature Range
Thermal Resistance
Parameter Typ. Max. Units
R
θJA
Junction-to-Ambient
el
––– 60
R
θJA
Junction-to-Ambient
jl
12.5 ––
R
θJA
Junction-to-Ambient
kl
20 ––– °C/W
R
θJC
Junction-to-Case
fl
––– 3.9
R
θJ-PCB
Junction-to-PCB Mounted 1.0 ––
Linear Derating Factor
e
W/°C
W
°C
0.017
270
-40 to + 150
Max.
32
2.1
1.3
IRF6811SPbF
4www.irf.com
Fig 5. Typical Output Characteristics
Fig 4. Typical Output Characteristics
Fig 6. Typical Transfer Characteristics Fig 7. Normalized On-Resistance vs. Temperature
Fig 8. Typical Capacitance vs.Drain-to-Source Voltage Fig 9. Typical On-Resistance vs.
Drain Current and Gate Voltage
0.1 110 100 1000
VDS, Drain-to-Source Voltage (V)
0.1
1
10
100
1000
ID, Drain-to-Source Current (A)
VGS
TOP 10V
5.0V
4.5V
3.5V
3.3V
3.0V
2.8V
BOTTOM 2.5V
60µs PULSE WIDTH
Tj = 25°C
2.5V
0.1 110 100 1000
VDS, Drain-to-Source Voltage (V)
1
10
100
1000
ID, Drain-to-Source Current (A)
2.5V
60µs PULSE WIDTH
Tj = 150°C
VGS
TOP 10V
5.0V
4.5V
3.5V
3.3V
3.0V
2.8V
BOTTOM 2.5V
1234
VGS, Gate-to-Source Voltage (V)
0.1
1
10
100
1000
ID, Drain-to-Source Current (A)
TJ = 150°C
TJ = 25°C
TJ = -40°C
VDS = 15V
60µs PULSE WIDTH
-60 -40 -20 020 40 60 80 100 120 140 160
TJ , Junction Temperature (°C)
0.5
1.0
1.5
2.0
Typical RDS(on) (Normalized)
ID = 19A
VGS = 10V
VGS = 4.5V
110 100
VDS, Drain-to-Source Voltage (V)
10
100
1000
10000
100000
C, Capacitance(pF)
VGS = 0V, f = 1 MHZ
Ciss = C gs + Cgd, C ds SHORTED
Crss = Cgd
Coss = Cds + Cgd
Coss
Crss
Ciss
020 40 60 80 100 120 140 160
ID, Drain Current (A)
0
5
10
15
20
25
30
35
40
45
Typical RDS(on) (m)
TJ = 25°C
Vgs = 3.5V
Vgs = 4.0V
Vgs = 4.5V
Vgs = 5.0V
Vgs = 10V
IRF6811SPbF
www.irf.com 5
Fig 13. Typical Threshold Voltage vs. Junction
Temperature
Fig 12. Maximum Drain Current vs. Case Temperature
Fig 10. Typical Source-Drain Diode Forward Voltage Fig11. Maximum Safe Operating Area
Fig 14. Maximum Avalanche Energy vs. Drain Current
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
VSD, Source-to-Drain Voltage (V)
0
1
10
100
1000
ISD, Reverse Drain Current (A)
TJ = 150°C
TJ = 25°C
TJ = -40°C
VGS = 0V
25 50 75 100 125 150
TC , Case Temperature (°C)
0
10
20
30
40
50
60
70
80
ID, Drain Current (A)
-75 -50 -25 025 50 75 100 125 150
TJ , Temperature ( °C )
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
Typical VGS(th) Gate threshold Voltage (V)
ID = 25µA
ID = 250µA
ID = 1.0mA
ID = 1.0A
25 50 75 100 125 150
Starting TJ , Junction Temperature (°C)
0
20
40
60
80
100
120
140
EAS , Single Pulse Avalanche Energy (mJ)
ID
TOP 1.4A
2.2A
BOTTOM 15A
0.01 0.10 1.00 10.00 100.00
VDS, Drain-to-Source Voltage (V)
0.01
0.1
1
10
100
1000
ID, Drain-to-Source Current (A)
OPERATION IN THIS AREA
LIMITED BY R DS(on)
TA = 25°C
TJ = 150°C
Single Pulse
100µsec
1msec
10msec
DC
IRF6811SPbF
6www.irf.com
Fig 15a. Gate Charge Test Circuit Fig 15b. Gate Charge Waveform
Vds
Vgs
Id
Vgs(th)
Qgs1 Qgs2 Qgd Qgodr
Fig 16b. Unclamped Inductive Waveforms
tp
V
(BR)DSS
I
AS
Fig 16a. Unclamped Inductive Test Circuit
Fig 17b. Switching Time Waveforms
VGS
VDS
90%
10%
td(on) td(off)
trtf
Fig 17a. Switching Time Test Circuit
R
G
I
AS
0.01
t
p
D.U.T
L
VDS
+
-V
DD
DRIVER
A
15V
20V
VGS
1K
VCC
DUT
0
L
VDS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
RD
VGS
RG
D.U.T.
10V
+
-
VDD
VGS
IRF6811SPbF
www.irf.com 7
Fig 18. Diode Reverse Recovery Test Circuit for N-Channel
HEXFET® Power MOSFETs
P.W. Period
di/dt
Diode Recovery
dv/dt
Ripple 5%
Body Diode Forward Drop
Re-Applied
Voltage
Reverse
Recovery
Current
Body Diode Forward
Current
V
GS
=10V
V
DD
I
SD
Driver Gate Drive
D.U.T. I
SD
Waveform
D.U.T. V
DS
Waveform
Inductor Curent
D = P. W .
Period
* VGS = 5V for Logic Level Devices
*
Inductor Current
Circuit Layout Considerations
Low Stray Inductance
Ground Plane
Low Leakage Inductance
Current Transformer
di/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
+
-
+
+
+
-
-
-
RGVDD
D.U.T
DirectFET®plus Board Footprint, SQ Outline
(Small Size Can, Q-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.
This includes all recommendations for stencil and substrate designs.
D
D
D
D
G=GATE
D=DRAIN
S=SOURCE
GS
IRF6811SPbF
8www.irf.com
DirectFET®plus Part Marking
Note: For the most current drawing please refer to IR website at http://www.irf.com/package
DirectFET®plus Outline Dimension, SQ Outline
(Small Size Can, Q-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes
all recommendations for stencil and substrate designs.
GATE MARKING
PART NUMBER
LOGO
BATCH NUMBER
DATE CODE
Line above the last character of
the date code indicates "Lead-Free"
CODE
A
B
C
D
E
F
G
H
J
K
L
M
R
P
IMPERIAL
MIN
4.75
3.70
2.75
0.35
0.48
0.78
0.88
0.78
N/A
0.93
2.00
0.535
0.020
0.08
MAX
4.85
3.95
2.85
0.45
0.52
0.82
0.92
0.82
N/A
0.97
2.10
0.595
0.080
0.17
MIN
0.187
0.146
0.108
0.014
0.019
0.031
0.035
0.031
N/A
0.037
0.079
0.021
0.0008
0.003
METRIC
DIMENSIONS
MAX
0.191
0.156
0.112
0.018
0.020
0.032
0.036
0.032
N/A
0.038
0.083
0.023
0.0031
0.007
IRF6811SPbF
www.irf.com 9
Data and specifications subject to change without notice.
This product has been designed and qualified for the Consumer market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.01/2011
DirectFET®plus Tape & Reel Dimension (Showing component orientation).
Note: For the most current drawing please refer to IR website at http://www.irf.com/package
REEL DIMENSIONS
NOTE: Controlling dimensions in mm
Std reel quantity is 4800 parts. (ordered as IRF6811STRPBF). For 1000 parts on 7"
reel, order IRF6811STR1PBF
B
C
MAX
N.C
N.C
0.520
N.C
N.C
0.724
0.567
0.606
IMPERIAL
H
MIN
330.0
20.2
12.8
1.5
100.0
N.C
12.4
11.9
STANDARD OPTION (QTY 4800)
CODE
A
B
C
D
E
F
G
H
MAX
N.C
N.C
13.2
N.C
N.C
18.4
14.4
15.4
MIN
12.992
0.795
0.504
0.059
3.937
N.C
0.488
0.469
METRIC
G
E
F
MIN
6.9
0.75
0.53
0.059
2.31
N.C
0.47
0.47
TR1 OPTION (QTY 1000)
MAX
N.C
N.C
12.8
N.C
N.C
13.50
12.01
12.01
MIN
177.77
19.06
13.5
1.5
58.72
N.C
11.9
11.9
METRIC
MAX
N.C
N.C
0.50
N.C
N.C
0.53
N.C
N.C
IMPERIAL
A
D
LOADED TAPE FEED DIRECTION
A
E
NOTE: CONTROLLING
DIMENSIONS IN MM CODE
A
B
C
D
E
F
G
H
F
B
C
IMPERIAL
MIN
0.311
0.154
0.469
0.215
0.158
0.197
0.059
0.059
MAX
8.10
4.10
12.30
5.55
4.20
5.20
N.C
1.60
MIN
7.90
3.90
11.90
5.45
4.00
5.00
1.50
1.50
METRIC
DIMENSIONS
MAX
0.319
0.161
0.484
0.219
0.165
0.205
N.C
0.063
D
H
G