©2001 Fairch ild Semicond uctor C orpo ration HUF76145P3, HUF76145S3S Rev. B
HUF76145P3, HUF76145S3S
75A, 30V, 0.0045 Ohm, N-Channel, Logic
Level UltraFET Power MOSFETs
These N-Channel power MOSFETs
are manufactured using the
innovative UltraFET™ process.
This advanced pr oces s t echnology
achieves the lowest possible on-resistance per silicon area,
resulting in outstandi ng p erformance. T his device is c apable
of withstanding high ene rgy in the avalan che mode an d the
diode exhibits very low reverse recovery time and stored
charge. It was designed for use in applications where power
efficiency is important, such as switching regulators,
switching converters, motor drivers, relay drivers,
low -voltage b us switches, and power managem ent in
portable and battery-operated products.
Formerly developmental type TA76145.
Symbol
Features
Logic Level G ate Drive
75A, 30V
Ult ra Low On-Resistance, rDS(ON) = 0.0045
Temperature Com pensating PSPICE® Model
Temperature Compensating SABER Model
Thermal Im ped anc e SP ICE Mo de l
Thermal Im ped anc e SA BER Mo del
Peak Current vs Pulse Width C urve
UIS Rating Curve
Related Literature
- TB334, “G uid eli ne s for Solde ring Surface Mount
Components to PC Boards”
Packaging JEDEC TO-220AB
JEDEC TO-263AB
Ordering Information
PART NUMBER PACKAGE BRAND
HUF76145P3 TO-220AB 76145P
HUF76145S3S TO-263AB 76145S
NOTE: When ordering, use the entire part number . Add the suffix T to
obtain the TO-263AB variant in tape and reel, e.g., HUF76145S3ST.
D
G
S
DRAIN
SOURCE
GATE
DRAIN
(FLANGE)
GATE
SOURCE
DRAIN
(FLANGE)
Data Sheet December 2001
©2001 Fairch ild Semicond uctor C orpo ration HUF76145P3, HUF76145S3S Rev. B
Absolute Maximum Ratings TC = 25oC, Unless Otherwise Specified UNITS
Drain to Source Vo ltage (Note 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS 30 V
Drain to Gate Voltage (RGS = 20k) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR 30 V
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS ±16 V
Drain Current
Continuous (TC = 25oC, VGS = 10V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID
Continuous (TC = 100oC, VGS = 5V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID
Continuous (TC = 100oC, VGS = 4.5V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID
Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDM
75
75
75
Figure 4
A
A
A
Pulsed Avalanche Rating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EAS Figure 6
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD
Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
2.17 W
W/oC
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG -40 to 150 oC
Maximum Temperature for Soldering
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TL
Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg 300
260
oC
oC
CAUTION: Str esses above those l isted in “A bsolute Maximu m Rating s” may cause per manent d amage to t he device. This is a str ess on ly rating and operation o f the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1. TJ = 25oC to 150oC.
Electrical Specifications TA = 25oC, Unless Otherwise Specified
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
OFF STATE SPECIFICATIONS
Drain to Source B reakdown Voltage BVDSS ID = 250µA, VGS = 0V (Figure 12) 30 - - V
Zero Gate Vo ltage Drain C urrent IDSS VDS = 25V, VGS = 0V - - 1 µA
VDS = 25V, VGS = 0V, TC = 150oC - - 250 µA
Gate to Source Leakage Current IGSS VGS = ±16V - - ±100 nA
ON STATE SPECIFICATIONS
Gate to Source Threshold Voltage VGS(TH) VGS = VDS, ID = 250µA (Figure 11) 1 - 3 V
Drain to Source On Resist ance rDS(ON) ID = 75A, VGS = 10V (Figures 9, 10) - 0.0035 0.0045
ID = 75A, VGS = 5V (Figure 9) - 0.0043 0.0058
ID = 75A, VGS = 4.5V (Figure 9) - 0.0046 0.0065
THERMAL SPECIFICATIONS
Thermal Resistance Junction to Case RθJC (Figure 3) - - 0.46 oC/W
Thermal Resistance Junction to Ambient RθJA TO-220 and TO-263 - - 62 oC/W
SWITCHING SPECIFICATIONS (VGS = 4.5V)
Turn-On Time tON VDD = 15V, ID 75A,
RL = 0.20, VGS = 4.5V,
RGS = 2.5
(Figure 15)
- - 255 ns
Turn-On De lay Time td(ON) -26-ns
Rise Time tr- 145 - ns
Turn-Off De lay Time td(OFF) -35-ns
Fall Tim e tf-39-ns
Turn-Off T ime tOFF - - 110 ns
HUF76145P3, HUF76145S3S
©2001 Fairch ild Semicond uctor C orpo ration HUF76145P3, HUF76145S3S Rev. B
SWITCHING SPECIFICATIONS (VGS = 10V)
Turn-On Time tON VDD = 15V, ID 75A,
RL = 0.20, VGS = 10V,
RGS = 2.2
(Figure 16)
- - 110 ns
Turn-On De lay Time td(ON) -16-ns
Rise Time tr-57-ns
Turn-Off De lay Time td(OFF) -53-ns
Fall Tim e tf- 38 - ns
Turn-Off T ime tOFF - - 135 ns
GATE CHARGE SPECIFICATIONS
Total Gate Charge Qg(TOT) VGS = 0V to 10V VDD = 15V,
ID 75A,
RL = 0.20
Ig(REF) = 1.0mA
(Figure 14)
- 130 156 nC
Gate Charge at 5V Qg(5) VGS = 0V to 5 V - 73 88 nC
Threshold Gate Charge Qg(TH) VGS = 0V to 1V - 4.65 5.6 nC
Gate to Source Gate C harge Qgs - 12.30 - nC
Gate to Drain “Miller” Charge Qgd - 40.00 - nC
CAPACITANCE SPECIFICATIONS
Input Capacitance CISS VDS = 25V, VGS = 0V,
f = 1MHz
(Figure 13)
- 4900 - pF
Output Capacitance COSS - 2520 - pF
Reverse Transfer Capacitance CRSS - 560 - pF
Electrical Specifications TA = 25oC, Unless Otherwise Specified (Continued)
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Source to Drain Diode Specifications
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Source to D rain Diode Volt age VSD ISD = 75A - - 1.25 V
Reverse Recovery Time trr ISD = 75A, dISD/dt = 100A/µs - - 115 ns
Reverse Recovered Charge QRR ISD = 75A, dISD/dt = 100A/µs - - 255 nC
Typical Performance Curves
FIGURE 1. NORMALIZED PO WER DISSIPATION vs CASE
TEMPERATURE FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs
CASE TEMPERATURE
TA, AMBIENT TEMPERATURE (oC)
POWER DISSIPATION MULTIPLIER
00255075100 15
0
0.2
0.4
0.6
0.8
1.0
1.2
125 0
20
40
60
80
25 50 75 100 125 150 175
ID, DRAIN CURRENT (A)
TC, CASE TEMPERATURE (oC)
VGS = 10V
VGS = 4.5V
HUF76145P3, HUF76145S3S
©2001 Fairch ild Semicond uctor C orpo ration HUF76145P3, HUF76145S3S Rev. B
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
FIGURE 4. PEAK CURRENT CAPABILITY
FIGURE 5. FORWARD BIAS SAFE OPERATING AREA NOTE: Refer to Fairchild Application Notes AN9321 and AN9322.
FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING
CAPABILITY
Typical Performance Curves (Continued)
0.1
1
10-5 10-4 10-3 10-2 10-1 100101
0.01
2
t, RECTANGULAR PULSE DURATION (s)
ZθJC, NORMALIZED
SINGLE PULSE NOTES:
DUTY FACTOR: D = t1/t2
PEAK TJ = PDM x ZθJC x RθJC + TC
PDM
t1t2
DUTY CYCLE - DESCENDING ORDER
0.5
0.2
0.1
0.05
0.01
0.02
THERMAL IMPEDANCE
100
1000
10-5 10-4 10-3 10-2 10-1 100101
5000
50
IDM, PEAK CURRENT ( A)
t, PULSE WIDTH (s)
TRANSCONDUCTANCE
MAY LIMIT CURRENT
IN THIS REGION
TC = 25oC
I = I25 175 - TC
150
FOR TEMPERATURES
ABOVE 25oC DERATE PEAK
CURRENT AS FOLLOWS:
VGS = 10V
VGS = 5V
10
100
1000
110100
100µs
10ms
1ms
VDS, DRAIN TO SOURCE VOLTAGE (V)
ID, DRAIN CURRENT (A)
LIMITED BY rDS(ON)
AREA MAY BE
OPERATION IN THIS
TJ = MAX RATED TC = 25oC
SINGLE PULSE
11010
0
100
0.1
1000
10
IAS, AVALANCHE CURRENT (A)
tAV, TIME IN AVALANCHE (m s)
tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD)
If R = 0
If R 0
tAV = (L/R)ln[(IAS*R)/(1.3*RATED B VDSS - VDD) +1]
STARTING TJ = 25oC
STARTING TJ = 150oC
0.01
HUF76145P3, HUF76145S3S
©2001 Fairch ild Semicond uctor C orpo ration HUF76145P3, HUF76145S3S Rev. B
FIGURE 7. TRANSFE R CHARACTERISTICS FIGURE 8. SATURATION CHARACTERISTICS
FIGURE 9. DRAIN TO SOURCE ON RESISTANCE vs GATE
VOLTAGE AND DRAIN CURRENT FIGURE 10. NORMALIZED DRAIN TO S OURCE ON
RESISTANCE vs JUNCTION TEMPERATURE
FIGURE 11. NORMALIZED GATE THRESHOLD V OLTA GE vs
JUNCTION TEMPERATURE FIGURE 12. NORMALIZED DRAIN T O SOURCE BREAKDOW N
VOLTAGE vs JUNCTION TEMPERATURE
Typical Performance Curves (Continued)
0 23451
0
60
120
ID, DRAIN CURRENT (A)
VGS, GATE TO SOURCE VOLTAGE (V)
150oC-40oC
25oC
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
VDD = 1 5V
150
90
30
0
30
60
0234
90
ID, DRAIN CURRENT (A)
VDS, DRAIN TO SOURCE VOLTAGE (V)
VGS = 3.5V
VGS = 3V
150
1
120
VGS = 4V
VGS = 4.5V
VGS = 5V
VGS = 10V
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
TC = 25oC
10
20
04
VGS, GATE TO SOURCE VOLTAGE (V)
26108
ID = 75A
ID = 50A
ID = 25A
rDS(ON), DRAIN TO SOURCE
ON RESISTANCE (m)
5
15
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
0.6
1.2
1.5
1.8
-60 0 60 120
NORMALIZED DRAIN TO SOURCE
TJ, JUNCTION TEMPERATURE (oC)
ON RESISTANCE
180
0.9
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
VGS = 10V, ID = 75A
-60 0 60 120
0.4
0.6
1.0
1.4
NORMALIZED GATE
TJ, JUNCTION TEMPERATURE (oC)
THRESHOLD VOLTAGE
VGS = VDS, ID = 250µA
180
0.8
1.2
1.2
1.1
1.0
0.9
-60 0 60 120
TJ, JUNCTION TEMPERATURE (oC)
NORMALIZED DRAIN TO SOURCE
BREAKDOWN VOLTAG E
ID = 250µA
180
HUF76145P3, HUF76145S3S
©2001 Fairch ild Semicond uctor C orpo ration HUF76145P3, HUF76145S3S Rev. B
FIGURE 13. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE NOTE: Refer to Fairchild Application Notes AN7254 and AN7260.
FIGURE 14. GATE CHARGE W AVEFO RMS FOR CONSTANT
GATE CURRENT
FIGURE 15. SWITCHING TIME vs GATE RESISTANCE FIGURE 16. SWITCHING TIME vs GATE RESISTANCE
Typical Performance Curves (Continued)
COSS
8000
4000
005 15 25
C, CAPACITANCE (pF)
6000
VDS, DRAIN TO SOURCE VOLTAGE (V)
2000
30
CISS
CRSS
10 20
VGS = 0V, f = 1MHz
CISS = CGS + CGD
CRSS = CGD
COSS CDS + CGD
10
8
6
4
0
VGS, GATE TO SOURCE VOLTAGE (V)
VDD = 15V
2
120 1600
Qg, GATE CHARGE (nC)
40
ID = 75A
ID = 50A
ID = 25A
WAVEFORMS IN
DESCENDING ORDER:
80
200
20 30 40 500
1200
800
400
010
SWITCHING TIME (ns)
RGS, GATE TO SOURCE RESISTANCE ()
VGS = 4.5V, VDD = 15V, ID = 75A, RL= 0.20
1000
600
td(OFF)
td(ON)
tr
tf
400
20 30 40 500
1000
800
600
010
SWITCHING TIME (ns)
RGS, GATE TO SOURCE RESISTANCE ()
VGS = 10V, VDD = 15V, ID = 75A, RL= 0.20
200 td(ON)
td(OFF)
tf
tr
Test Circuits and Waveforms
FIGURE 17. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 18. UNCLAMPED ENERGY WAVEFORMS
tP
VGS
0.01
L
IAS
+
-
VDS
VDD
RG
DUT
VARY tP TO OBTAIN
REQUIRED PEAK IAS
0V
VDD
VDS
BVDSS
tP
IAS
tAV
0
HUF76145P3, HUF76145S3S
©2001 Fairch ild Semicond uctor C orpo ration HUF76145P3, HUF76145S3S Rev. B
FIGURE 19. GATE CHARGE TEST CIRCUIT FIGURE 20. GATE CHARGE WAVEFORMS
FIGURE 21. SWITCHING TIME TEST CIRCUIT FIGURE 22. SWITCHIN G TIME WAVEFORM
Test Circuits and Waveforms (Continued)
RL
VGS +
-
VDS
VDD
DUT
IG(REF)
VDD
Qg(TH)
VGS = 1V
Qg(5)
VGS = 5V
Qg(TOT)
VGS = 10
VDS
VGS
IG(REF)
0
0
VGS
RL
RGS DUT
+
-VDD
VDS
VGS
tON
td(ON)
tr
90%
10%
VDS 90%
10%
tf
td(OFF)
tOFF
90%
50%
50%
10% PULSE WIDTH
VGS
0
0
HUF76145P3, HUF76145S3S
©2001 Fairch ild Semicond uctor C orpo ration HUF76145P3, HUF76145S3S Rev. B
PSPICE Ele ctrical Model
SUBCKT HUF761 45 2 1 3 ; rev 6 Apr98
CA 12 8 7.75e-9
CB 15 14 7.45e-9
CIN 6 8 4.47e-9
DBODY 7 5 DBODYMOD
DBRE AK 5 11 D B REAK MOD
DPLCAP 10 5 DPLCAPMOD
EBREAK 11 7 17 18 33.5
EDS 14 8 5 8 1
EGS 13 8 6 8 1
ESG 6 10 6 8 1
EVTH R ES 6 21 19 8 1
EVTEMP 20 6 18 22 1
IT 8 17 1
LDRA IN 2 5 1.00 e- 9
LGATE 1 9 2.60e-9
LSOURCE 3 7 1.10e-9
KGATE LSOURCE LGATE 0.0085
MMED 16 6 8 8 MMEDMOD
MSTRO 16 6 8 8 MSTROMOD
MWEAK 16 21 8 8 MWEAKMOD
RBREAK 17 18 RBREAKMOD 1
RDRAIN 50 16 RDRAINMOD 0.59e-3
RGATE 9 20 0.898
RLDRAIN 2 5 10
RLGATE 1 9 26
RLSOURCE 3 7 11
RSLC1 5 51 RSLCMOD 1e-6
RSLC2 5 50 1e3
RSOURCE 8 7 RSOURCEMOD 2.20e-3
RVTHRES 22 8 RVTHRESMOD 1
RVTE M P 18 19 RVTE MPMOD 1
S1A 6 12 13 8 S1AMOD
S1B 13 12 13 8 S1BMO D
S2A 6 15 14 13 S2AMOD
S2B 13 15 14 13 S2BMO D
VBAT 22 1 9 DC 1
ESL C 51 50 VAL UE={( V(5,51 )/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*750),3))}
.MODEL DBOD YMOD D (IS = 6.01e-12 IKF = 20 RS = 1. 72e- 3 TRS1 = 1.01e-3 TRS2 = 1.21e -6 CJO = 8.41e-9 TT = 4.84e-8 M = 0.45 )
.MODEL DBREAKMOD D (RS = 6.80e- 2TRS1 = 1.12e- 3TRS2 = 1.25e-6 )
.MODEL DPLCAPMOD D (CJO = 4.25e- 9IS = 1e-3 0N = 10 M = 0.61)
.MODEL MMEDMOD NMOS (VTO = 1.74 KP = 5.00 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 0.898)
.MODE L MST R OMOD NMO S (VTO = 2.10 KP = 245 IS = 1e-3 0 N = 1 0 T OX = 1 L = 1 u W = 1u)
.MODEL MWEAKMOD NMOS (VTO = 1.48 KP = 0.10 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 8.98 RS= 0.1)
.MODEL RBREAK MOD RES (TC1 = 1.01e- 3TC2 = 1.07e-7)
.MODEL RDRAINMOD RES (TC1 = 1.58e-2 TC2 = 3.76e-5)
.MODEL RSLCMOD RES (TC1 = 1.02e-4 TC2 = -1.13e-4)
.MODEL RSOURCEMOD RES (TC1 = 0 TC2 = 0)
.MODEL RVTHRESMOD RES (TC1 = -2.73e-3 TC2 = -1.01e-5)
.MODEL RVTEMPMO D RE S (TC1 = -1.50e- 3TC2 = 1.25e-6)
.MODEL S1AMOD VS WITCH (RON = 1e-5 ROFF = 0.1 VON = -6.00 VOFF= -1.50)
.MODEL S1BMOD VS WITCH (RON = 1e-5 ROFF = 0.1 VON = -1.50 VOFF= -6.00)
.MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 0.00 VOFF= 0.45)
.MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 0.45 VOFF= 0.00)
.ENDS
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power M OSFET F e a turi ng Glo bal
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.
18
22
+-
6
8
+
-
5
51
+
-
19
8
+-
17
18
6
8
+
-
5
8+
-
RBREAK
RVTEMP
VBAT
RVTHRES
IT
17 18
19
22
12
13
15
S1A
S1B
S2A
S2B
CA CB
EGS EDS
14
8
13
814
13
MWEAK
EBREAK DBODY
RSOURCE
SOURCE
11
73
LSOURCE
RLSOURCE
CIN
RDRAIN
EVTHRES 16
21
8
MMED
MSTRO
DRAIN
2
LDRAIN
RLDRAIN
DBREAK
DPLCAP
ESLC
RSLC1
10
5
51
50
RSLC2
1
GATE RGATE EVTEMP
9
ESG
LGATE
RLGATE 20
+
-
+
-
+
-
6
HUF76145P3, HUF76145S3S
©2001 Fairch ild Semicond uctor C orpo ration HUF76145P3, HUF76145S3S Rev. B
SABER Electrical Model
REV 6 Apr 1998
template huf76145 n2, n1, n3
electrical n2, n1, n3
{
var i iscl
d..model dbodymod = (is = 6.01e-12, cjo = 8.41e -9, tt = 4.84e-8, m = 0.4 5)
d..model dbreakmod = ()
d..model dplcapmod = (cjo = 4.25e-9, is = 1e-30, n = 10, m = 0.61)
m..model mmedmod = ( type=_n, vto = 1.74, kp = 5.00, is = 1e-30, tox = 1)
m..model mstrongmod = (type=_n, vto = 2.10, kp = 245, is = 1e-30, tox = 1)
m..model mweakmod = (type=_n, vto = 1.48, kp = 0.10, is = 1e-30, tox = 1)
sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -6.0, voff = -1.5)
sw_vcsp..model s1bmod = (ron = 1e-5, roff = 0.1, von = -1.5, voff = -6.0)
sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = 0.0, voff = 0.45)
sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0.45, voff = 0.0)
c.ca n12 n8 = 7.75e-9
c.cb n15 n14 = 7.45e-9
c.cin n6 n8 = 4.47e-9
d.dbody n7 n71 = model=dbodymod
d.dbreak n72 n11 = model=dbreakmod
d.dplcap n10 n5 = model=dplcapmod
i.it n8 n17 = 1
l.ldrain n2 n5 = 1.00e-9
l.lgate n1 n9 = 2.60e-9
l.lsourc e n3 n7 = 1.10e-9
k.k1 i(l.lgate) i(l.lsource) = l(l.lgate), l(l.lsource), 0.0085
m.mmed n16 n6 n8 n8 = model=mmedmod, l = 1u, w = 1u
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l = 1u, w = 1u
m.mweak n16 n21 n8 n8 = model=mweakmod, l = 1u, w = 1u
res.rbreak n17 n18 = 1, tc1 = 1.01e-3, tc2 = 1.07e-7
res.rdbody n71 n5 = 1.72e-3, tc1 = 1.01e-3, tc2 = 1.21e-6
res.rdbreak n72 n5 = 6.80e-2, tc1 = 1.12e-3, tc2 = 1.25e-6
res.rdrain n50 n16 = 0.59e-3, tc1 = 1.58e-2, tc2 = 3.76e- 5
res. rgate n9 n20 = 0.898
res.r ldrain n2 n5 = 10
res. rl g ate n1 n9 = 26
res.rlsource n3 n7 = 11
res.rslc1 n5 n51 = 1e-6, tc1 = 1.02e-4, tc2 = -1.13e-4
res.r slc2 n5 n50 = 1e3
res.rsource n8 n7 = 2.20e-3, tc1 = 0, tc2 = 0
res.rvtemp n18 n19 = 1, tc1 = -1.50e-3, tc2 = 1.25e-6
res.rvthres n22 n8 = 1, tc1 = -2.73e-3, tc2 = -1.01e-5
spe.ebreak n11 n7 n17 n18 = 33.50
spe.e ds n14 n8 n5 n8 = 1
spe.e gs n13 n8 n6 n8 = 1
spe.esg n6 n10 n6 n8 = 1
spe.evtemp n20 n6 n18 n22 = 1
spe.evthres n6 n21 n19 n8 = 1
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod
v.vbat n22 n19 = dc = 1
equations {
i (n51->n50) + = iscl
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+ab s(v(n5,n 51))))*((abs(v(n5,n51)*1e6/750))** 3))
}
}
18
22
+-
6
8
+
-
19
8
+-
17
18
6
8
+
-
5
8+
-
RBREAK
RVTEMP
VBAT
RVTHRES
IT
17 18
19
22
12
13
15
S1A
S1B
S2A
S2B
CA CB
EGS EDS
14
8
13
814
13
MWEAK
EBREAK DBODY
RSOURCE
SOURCE
11
73
LSOURCE
RLSOURCE
CIN
RDRAIN
EVTHRES 16
21
8
MMED
MSTRO
DRAIN
2
LDRAIN
RLDRAIN
DBREAK
DPLCAP
ISCL
RSLC1
10
5
51
50
RSLC2
1
GATE RGATE EVTEMP
9
ESG
LGATE
RLGATE 20
+
-
+
-
+
-
6
RDBODY
RDBREAK
72
71
HUF76145P3, HUF76145S3S
©2001 Fairch ild Semicond uctor C orpo ration HUF76145P3, HUF76145S3S Rev. B
SPICE Thermal Model
REV Aug 2000
HUF76145T
CTHERM1 th 6 6.3e-3
CTHERM2 6 5 1 .5e-2
CTHERM3 5 4 2 .0e-2
CTHERM4 4 3 3 .0e-2
CTHERM5 3 2 8 .0e-2
CTHERM6 2 tl 1.5e-1
RTHERM1 th 6 5.0e-3
RTHERM2 6 5 1 .8e-2
RTHERM3 5 4 5 .0e-2
RTHERM4 4 3 8 .5e-2
RTHERM5 3 2 1 .0e-1
RTHERM6 2 tl 1.1e-1
SABER Thermal Model
SABER thermal model HUF76145T
template thermal_model th tl
thermal_c th, tl
{
ctherm.ctherm 1 t h 6 = 6.3e-3
ctherm.ctherm 2 6 5 = 1.5e- 2
ctherm.ctherm 3 5 4 = 2.0e- 2
ctherm.ctherm 4 4 3 = 3.0e- 2
ctherm.ctherm 5 3 2 = 8.0e- 2
ctherm.ctherm6 2 tl = 1.5e-1
rtherm.rtherm1 th 6 = 5.0e-3
rtherm.rtherm2 6 5 = 1.8e-2
rtherm.rtherm3 5 4 = 5.0e-2
rtherm.rtherm4 4 3 = 8.5e-2
rtherm.rtherm5 3 2 = 1.0e-1
rtherm.rtherm6 2 t l = 1.1e- 1
}
RTHERM4
RTHERM6
RTHERM5
RTHERM3
RTHERM2
RTHERM1
CTHERM4
CTHERM6
CTHERM5
CTHERM3
CTHERM2
CTHERM1
tl
2
3
4
5
6
th JUNCTION
CASE
HUF76145P3, HUF76145S3S
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER
NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD
DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT
OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT
RIGHTS, NOR THE RIGHTS OF OTHERS.
TRADEMARKS
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is
not intended to be an exhaustive list of all such trademarks.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.
As used herein:
1. Life support devices or systems are devices or
systems which, (a) are intended for surgical implant into
the body, or (b) support or sustain life, or (c) whose
failure to perform when properly used in accordance
with instructions for use provided in the labeling, can be
reasonably expected to result in significant injury to the
user.
2. A critical component is any component of a life
support device or system whose failure to perform can
be reasonably expected to cause the failure of the life
support device or system, or to affect its safety or
effectiveness.
PRODUCT STATUS DEFINITIONS
Definition of Terms
Datasheet Identification Product Status Definition
Advance Information
Preliminary
No Identification Needed
Obsolete
This datasheet contains the design specifications for
product development. Specifications may change in
any manner without notice.
This datasheet contains preliminary data, and
supplementary data will be published at a later date.
Fairchild Semiconductor reserves the right to make
changes at any time without notice in order to improve
design.
This datasheet contains final specifications. Fairchild
Semiconductor reserves the right to make changes at
any time without notice in order to improve design.
This datasheet contains specifications on a product
that has been discontinued by Fairchild semiconductor.
The datasheet is printed for reference information only.
Formative or
In Design
First Production
Full Production
Not In Production
OPTOLOGIC™
OPTOPLANAR™
PACMAN™
POP™
Power247™
PowerTrench
QFET™
QS™
QT Optoelectronics™
Quiet Series™
SILENT SWITCHER
FAST
FASTr™
FRFET™
GlobalOptoisolator™
GTO™
HiSeC™
ISOPLANAR™
LittleFET™
MicroFET™
MicroPak™
MICROWIRE™
Rev. H4
ACEx™
Bottomless™
CoolFET™
CROSSVOLT
DenseTrench™
DOME™
EcoSPARK™
E2CMOSTM
EnSignaTM
FACT™
FACT Quiet Series™
SMART START™
STAR*POWER™
Stealth™
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SyncFET™
TinyLogic™
TruTranslation™
UHC™
UltraFET
STAR*POWER is used under license
VCX™