VNQ830-E QUAD CHANNEL HIGH SIDE DRIVER Table 1. General Features Type VNQ830-E Figure 1. Package RDS(on) Iout VCC 60m (*) 6A (*) 36V ) s t( (*) Per each channel c u d CMOS COMPATIBLE INPUTS OPEN DRAIN STATUS OUTPUTS ON STATE OPEN LOAD DETECTION OFF STATE OPEN LOAD DETECTION SHORTED LOAD PROTECTION UNDERVOLTAGE AND OVERVOLTAGE SHUTDOWN LOSS OF GROUND PROTECTION VERY LOW STAND-BY CURRENT REVERSE BATTERY PROTECTION (**) IN COMPLIANCE WITH THE 2002/95/EC EUROPEAN DIRECTIVE e t le o s b o r P SO-28 (DOUBLE ISLAND) O ) s ( t c DESCRIPTION The VNQ830-E is a quad HSD formed by assembling two VND830-E chips in the same SO28 package. The VNQ830-E is a monolithic device made by using| STMicroelectronics VIPower M0-3 Technology. The VNQ830-E is intended for driving any type of multiple loads with one side connected to ground. Active V CC pin voltage clamp protects the device against low energy spikes (see ISO7637 transient compatibility table). u d o e t e ol Pr Active current limitation combined with thermal shutdown and automatic restart protects the device against overload. The device detects open load condition both in on and off state. Output shorted to V CC is detected in the off state. Device automatically turns off in case of ground pin disconnection. s b O Table 2. Order Codes Package SO-28 Tube VNQ830-E Tape and Reel VNQ830TR-E Note: (**) See application schematic at page 10 Rev. 2 November 2004 1/21 VNQ830-E Figure 2. Block Diagram VCC1,2 Vcc OVERVOLTAGE CLAMP UNDERVOLTAGE GND1,2 ) s t( CLAMP 1 INPUT1 c u d DRIVER 1 OUTPUT1 o r P CLAMP 2 STATUS1 e t le CURRENT LIMITER 1 DRIVER 2 LOGIC OVERTEMP. 1 OPENLOAD ON 1 INPUT2 b O - OPENLOAD OFF 1 STATUS2 ) s ( ct OVERTEMP. 2 u d o r P e Vcc CLAMP t e l o GND3,4 CURRENT LIMITER 2 OPENLOAD ON 2 OPENLOAD OFF 2 VCC3,4 OVERVOLTAGE UNDERVOLTAGE CLAMP 3 bs OUTPUT3 INPUT3 O so OUTPUT2 DRIVER 3 CLAMP 4 STATUS3 CURRENT LIMITER 3 OVERTEMP. 3 LOGIC DRIVER 4 OUTPUT4 OPENLOAD ON 3 CURRENT LIMITER 4 INPUT4 OPENLOAD OFF 3 OPENLOAD ON 4 STATUS4 OPENLOAD OFF 4 OVERTEMP. 4 2/21 VNQ830-E Table 3. Absolute Maximum Ratings Symbol VCC Parameter Value Unit 41 V DC Supply Voltage - VCC Reverse DC Supply Voltage - 0.3 V - IGND DC Reverse Ground Pin Current - 200 mA Internally Limited A -6 A DC Input Current +/- 10 mA DC Status Current +/- 10 mA IOUT - IOUT IIN ISTAT DC Output Current Reverse DC Output Current Electrostatic Discharge (Human R=1.5K; C=100pF) VESD Body 4000 - INPUT od 5000 r P e 5000 - VCC Maximum Switching Energy Ptot (L=2.5mH; RL=0; Vbat=13.5V; Tjstart=150C; IL=9A) Tstg Storage Temperature ) (s let so Power dissipation (per island) at Tlead=25C Junction Operating Temperature Tj uc 4000 - STATUS - OUTPUT EMAX ) s t( Model: Ob V V V V 140 mJ 6.25 W Internally Limited C - 55 to 150 C Figure 3. Configuration Diagram (Top View) & Suggested Connections for Unused and N.C. Pins t c u od VCC1,2 Ob so e t e l Pr 1 28 VCC1,2 GND 1,2 OUTPUT1 INPUT1 OUTPUT1 STATUS1 OUTPUT1 STATUS2 OUTPUT2 INPUT2 OUTPUT2 VCC1,2 OUTPUT2 VCC3,4 OUTPUT3 GND 3,4 OUTPUT3 INPUT3 OUTPUT3 STATUS3 OUTPUT4 STATUS4 OUTPUT4 INPUT4 OUTPUT4 VCC3,4 Connection / Pin Status Floating X To Ground 14 N.C. X X 15 Output X VCC3,4 Input X Through 10K resistor 3/21 VNQ830-E Figure 4. Current and Voltage Conventions IS3,4 IS1,2 VCC3,4 VCC3,4 VCC1,2 VF1 (*) VCC1,2 IIN1 INPUT1 ISTAT1 VIN1 IIN2 VSTAT1 OUTPUT3 IOUT4 INPUT4 VIN4 ISTAT4 OUTPUT4 STATUS4 GND3,4 VSTAT4 e t le o r P O ) s ( t c Parameter u d o Rthj-lead Thermal Resistance Junction-lead per chip Rthj-amb Thermal Resistance Junction-ambient (one chip ON) Rthj-amb IGND1,2 Pr Thermal Resistance Junction-ambient (two chips ON) e t e ol c u d VOUT3 o s b (*) VFn = VCCn - VOUTn during reverse battery condition Symbol VOUT4 GND1,2 IGND3,4 Table 4. Thermal Data (Per island) ) s t( VOUT2 IOUT3 STATUS3 IIN4 VSTAT3 OUTPUT2 INPUT3 ISTAT3 VIN3 VOUT1 IOUT2 STATUS2 IIN3 VSTAT2 OUTPUT1 INPUT2 ISTAT2 VIN2 IOUT1 STATUS1 60 (1) 1 46 ( ) Value Unit 20 C/W 44 (2) C/W 31 (2) C/W Note: 1. When mounted on a standard single-sided FR-4 board with 0.5cm 2 of Cu (at least 35m thick) connected to all V CC pins. Horizontal mounting and no artificial air flow Note: 2. When mounted on a standard single-sided FR-4 board with 6cm 2 of Cu (at least 35m thick) connected to all VCC pins. Horizontal mounting and no artificial air flow s b O 4/21 VNQ830-E ELECTRICAL CHARACTERISTICS (8V8V 130 m 12 40 A 12 IS (**) 25 A 5 7 mA 50 A 0 A 5 A 3 A Off State; VCC=13V; VIN=VOUT=0V; Tj =25C Supply Current On State; VCC=13V; VIN=5V; IOUT=0A Off State Output Current VIN=VOUT=0V IL(off2) Off State Output Current VIN=0V; VOUT =3.5V IL(off3) Off State Output Current VIN=VOUT=0V; VCC=13V; Tj =125C IL(off4) Off State Output Current VIN=VOUT=0V; VCC=13V; Tj =25C Note: (**) Per island ) (s d o r P e et IL(off1) 0 l o s ) s ( t c u Off State; VCC=13V; VIN=VOUT=0V -75 Ob m Table 6. Protection (Per each channel) (See note 1) Symbol Parameter TTSD Shut-down Temperature u d o TR Reset Temperature Thyst Thermal Hysteresis tSDL Status Delay in Overload Conditions ete ol Ilim s b O Vdemag ct Pr Current limitation Turn-off Output Clamp Voltage Test Conditions Min. Typ. Max. Unit 150 175 200 C 135 7 C 15 Tj>TTSD 6 9 5.5V TTSD) L Overtemperature L H L L H L Undervoltage L H L L X X Overvoltage L H L L H H Output Voltage > VOL L H H H Output Current < IOL L H L H ) s t( c u d e t le Figure 5. OPEN LOAD STATUS TIMING (with external pull-up) VOUT > VOL O ) u d o VSTATn e t e ol Pr tDOL(off) H L OVER TEMP STATUS TIMING IOUT < IOL s ( t c VINn o s b o r P L H Tj > TTSD VINn VSTATn tSDL tSDL tDOL(on) s b O 7/21 VNQ830-E Figure 6. Switching time Waveforms VOUTn 90% 80% dVOUT/dt(off) dVOUT/dt(on) ) s t( 10% t VINn td(on) td(off) e t le c u d o r P so ) s ( ct b O - t Table 13. Electrical Transient Requirements On V CC Pin ISO T/R 7637/1 Test Pulse 1 2 3a 3b 4 5 e t e ol s b O ISO T/R 7637/1 Test Pulse 1 2 3a 3b 4 5 CLASS C E 8/21 du I o r P -25 V +25 V -25 V +25 V -4 V +26.5 V I C C C C C C II TEST LEVELS III IV -50 V +50 V -50 V +50 V -5 V +46.5 V -75 V +75 V -100 V +75 V -6 V +66.5 V -100 V +100 V -150 V +100 V -7 V +86.5 V TEST LEVELS RESULTS II III C C C C C C C C C C E E Delays and Impedance 2 ms 10 0.2 ms 10 0.1 s 50 0.1 s 50 100 ms, 0.01 400 ms, 2 IV C C C C C E CONTENTS All functions of the device are performed as designed after exposure to disturbance. One or more functions of the device is not performed as designed after exposure and cannot be returned to proper operation without replacing the device. VNQ830-E Figure 7. Waveforms NORMAL OPERATION INPUTn LOAD VOLTAGEn STATUSn ) s t( UNDERVOLTAGE VUSDhyst VCC c u d VUSD INPUTn LOAD VOLTAGEn STATUS undefined e t le OVERVOLTAGE o s b VCCVOV VCC O ) INPUTn LOAD VOLTAGEn STATUSn INPUTn s ( t c u d o Pr LOAD VOLTAGEn STATUSn e t e ol O bs o r P OPEN LOAD with external pull-up VOUT>VOL VOL OPEN LOAD without external pull-up INPUTn LOAD VOLTAGEn STATUSn Tj TTSD TR OVERTEMPERATURE INPUTn LOAD CURRENTn STATUSn 9/21 VNQ830-E Figure 8. Application Schematic +5V +5V +5V VCC1,2 VCC3,4 Rprot STATUS1 Rprot INPUT1 ) s ( Dld Rprot STATUS2 Rprot INPUT2 C Rprot INPUT3 Rprot ) s ( ct STATUS4 Rprot du e t e ol d o r P e et l o s STATUS3 Rprot t c u OUTPUT1 b O - OUTPUT2 OUTPUT3 OUTPUT4 INPUT4 o r P GND1,2 GND3,4 RGND VGND +5V +5V DGND s b O Note: Channels 3 & 4 have the same internal circuit as channel 1 & 2. GND PROTECTION REVERSE BATTERY NETWORK AGAINST Solution 1: Resistor in the ground line (RGND only). This can be used with any type of load. The following is an indication on how to dimension the RGND resistor. 1) RGND 600mV / 2(IS(on)max). 2) RGND (-VCC) / (-IGND) where -IGND is the DC reverse ground pin current and can be found in the absolute maximum rating section of the device's datasheet. Power Dissipation in RGND (when VCC<0: during reverse battery situations) is: 10/21 PD= (-VCC)2/RGND This resistor can be shared amongst several different HSD. Please note that the value of this resistor should be calculated with formula (1) where IS(on)max becomes the sum of the maximum on-state currents of the different devices. Please note that if the microprocessor ground is not common with the device ground then the RGND will produce a shift (IS(on)max * RGND) in the input thresholds and the status output values. This shift will vary depending on how many devices are ON in the case of several high side drivers sharing the same RGND. If the calculated power dissipation leads to a large resistor or several devices have to share the same resistor then the ST suggests to utilize Solution 2. VNQ830-E For VCCpeak= - 100V and Ilatchup 20mA; VOHC 4.5V 5k Rprot 65k. Recommended Rprot value is 10k. Solution 2: A diode (DGND) in the ground line. A resistor (RGND=1k) should be inserted in parallel to DGND if the device will be driving an inductive load. This small signal diode can be safely shared amongst several different HSD. Also in this case, the presence of the ground network will produce a shift (j600mV) in the input threshold and the status output values if the microprocessor ground is not common with the device ground. This shift will not vary if more than one HSD shares the same diode/resistor network. Series resistor in INPUT and STATUS lines are also required to prevent that, during battery voltage transient, the current exceeds the Absolute Maximum Rating. Safest configuration for unused INPUT and STATUS pin is to leave them unconnected. OPEN LOAD DETECTION IN OFF STATE Off state open load detection requires an external pull-up resistor (RPU) connected between OUTPUT pin and a positive supply voltage (VPU) like the +5V line used to supply the microprocessor. The external resistor has to be selected according to the following requirements: 1) no false open load indication when load is connected: in this case we have to avoid VOUT to be higher than VOlmin; this results in the following condition VOUT=(VPU/(RL+RPU))RL