74HC574-Q100; 74HCT574-Q100

Octal D-type flip-flop; positive edge-trigger; 3-state

Rev. 1 — 2 August 2012

Production

Product data sheet

1. **General description**

The 74HC574-Q100; 74HCT574-Q100 is a high-speed Si-gate CMOS device and is pin compatible with Low-power Schottky TTL. It is specified in compliance with JEDEC standard no. 7A.

The 74HC574-Q100; 74HCT574-Q100 are octal D-type flip-flops featuring separate D-type inputs for each flip-flop and 3-state outputs for bus-oriented applications. A clock (CP) and an output enable (OE) input are common to all flip-flops. The 8 flip-flops store the state of their individual D-inputs that meet the set-up and hold times requirements on the LOW-to-HIGH CP transition. When OE is LOW the contents of the 8 flip-flops are available at the outputs. When $\overline{\text{OE}}$ is HIGH, the outputs go to the high-impedance OFF-state. Operation of the OE input does not affect the state of the flip-flops.

This product has been qualified to the Automotive Electronics Council (AEC) standard Q100 (Grade 1) and is suitable for use in automotive applications.

2. **Features and benefits**

- Automotive product qualification in accordance with AEC-Q100 (Grade 1)
 - ◆ Specified from -40 °C to +85 °C and from -40 °C to +125 °C
- 3-state non-inverting outputs for bus-oriented applications
- 8-bit positive, edge-triggered register
- Common 3-state output enable input
- ESD protection:
 - MIL-STD-883, method 3015 exceeds 2000 V
 - HBM JESD22-A114F exceeds 2000 V
 - ♦ MM JESD22-A115-A exceeds 200 V (C = 200 pF, R = 0 Ω)
- Multiple package options

3. Ordering information

Table 1. Ordering information

Type number	Package								
	Temperature range	Name	Description	Version					
74HC574D-Q100	–40 °C to +125 °C	SO20	plastic small outline package; 20 leads;	SOT163-1					
74HCT574D-Q100			body width 7.5 mm						
74HC574PW-Q100	–40 °C to +125 °C	TSSOP20	plastic thin shrink small outline package; 20 leads;	SOT360-1					
74HCT574PW-Q100			body width 4.4 mm						

4. Functional diagram

5. Pinning information

5.1 Pinning

5.2 Pin description

Table 2. Pin description

Symbol	Pin	Description
OE	1	3-state output enable input (active LOW)
D[0:7]	2, 3, 4, 5, 6, 7, 8, 9	data input
GND	10	ground (0 V)
СР	11	clock input (LOW-to-HIGH, edge triggered)
Q[0:7]	19, 18, 17, 16, 15, 14, 13, 12	3-state flip-flop output
V _{CC}	20	supply voltage

6. Functional description

Table 3. Function table[1]

Operating mode	Input			Internal	Output
	OE	СР	Dn	flip-flop	Qn
Load and read register	L	↑	I	L	L
	L	↑	h	Н	Н
Load register and disable output	Н	↑	I	L	Z
	Н	↑	h	Н	Z

^[1] H = HIGH voltage level;

h = HIGH voltage level one setup time prior to the HIGH-to-LOW CP transition;

7. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage		-0.5	+7	V
I _{IK}	input clamping current	$V_I < -0.5 \text{ V or } V_I > V_{CC} + 0.5 \text{ V}$	-	±20	mA
I _{OK}	output clamping current	$V_O < -0.5 \text{ V or } V_O > V_{CC} + 0.5 \text{ V}$	-	±20	mA
I _O	output current	$V_{O} = -0.5 \text{ V to } (V_{CC} + 0.5 \text{ V})$	-	±35	mA
I _{CC}	supply current		-	+70	mA
I _{GND}	ground current		-	-70	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation		[1] -	500	mW

^[1] For SO20 packages: P_{tot} derates linearly with 8 mW/K above 70 °C.
For TSSOP20 packages: P_{tot} derates linearly with 5.5 mW/K above 60 °C.

L = LOW voltage level;

I = LOW voltage level one setup time prior to the HIGH-to-LOW CP transition;

Z = high-impedance OFF-state;

 $[\]uparrow$ = LOW-to-HIGH clock transition.

8. Recommended operating conditions

Table 5. Recommended operating conditions

Voltages are referenced to GND (ground = 0 V)

Symbol	Parameter	Conditions	74HC574-Q100			74HCT	574-Q10	0	Unit
			Min	Тур	Max	Min	Тур	Max	
V_{CC}	supply voltage		2.0	5.0	6.0	4.5	5.0	5.5	V
VI	input voltage		0	-	V_{CC}	0	-	V_{CC}	V
Vo	output voltage		0	-	V_{CC}	0	-	V_{CC}	V
T _{amb}	ambient temperature		-40	+25	+125	-40	+25	+125	°C
Δt/ΔV	input transition rise and fall rate	$V_{CC} = 2.0 \text{ V}$	-	-	625	-	-	-	ns/V
		V _{CC} = 4.5 V	-	1.67	139	-	1.67	139	ns/V
		$V_{CC} = 6.0 \text{ V}$	-	-	83	-	-	-	ns/V

9. Static characteristics

Table 6. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	25 °C			–40 °C t	o +85 °C	-40 °C to +125 °C		Unit	
			Min	Тур	Max	Min	Max	Min	Max		
74HC574	4-Q100					'		ı		1	
V _{IH}	HIGH-level	V _{CC} = 2.0 V	1.5	1.2	-	1.5	-	1.5	-	V	
	input voltage	V _{CC} = 4.5 V	3.15	2.4	-	3.15	-	3.15	-	V	
		$V_{CC} = 6.0 \text{ V}$	4.2	3.2	-	4.2	-	4.2	-	V	
V _{IL}	LOW-level	$V_{CC} = 2.0 \text{ V}$	-	8.0	0.5	-	0.5	-	0.5	V	
	input voltage	V _{CC} = 4.5 V	-	2.1	1.35	-	1.35	-	1.35	V	
		$V_{CC} = 6.0 \text{ V}$	-	2.8	1.8	-	1.8	-	1.8	V	
V_{OH}	HIGH-level	$V_I = V_{IH}$ or V_{IL}									
	output voltage	$I_{O} = -20 \mu A; V_{CC} = 2.0 V$	1.9	2.0	-	1.9	-	1.9	-	V	
		$I_{O} = -20 \mu A; V_{CC} = 4.5 V$	4.4	4.5	-	4.4	-	4.4	-	V	
		$I_O = -20 \mu A; V_{CC} = 6.0 V$	5.9	6.0	-	5.9	-	5.9	-	V	
		$I_{O} = -6.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.98	4.32	-	3.84	-	3.7	-	V	
		$I_{O} = -7.8 \text{ mA}; V_{CC} = 6.0 \text{ V}$	5.48	5.81	-	5.34	-	5.2	-	V	
V_{OL}	LOW-level	$V_I = V_{IH}$ or V_{IL}									
	output voltage	$I_O = 20 \mu A; V_{CC} = 2.0 V$	-	0	0.1	-	0.1	-	0.1	V	
		$I_O = 20 \mu A; V_{CC} = 4.5 V$	-	0	0.1	-	0.1	-	0.1	V	
		$I_O = 20 \mu A; V_{CC} = 6.0 V$	-	0	0.1	-	0.1	-	0.1	V	
		$I_O = 6.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	0.15	0.26	-	0.33	-	0.4	V	
		$I_O = 7.8 \text{ mA}; V_{CC} = 6.0 \text{ V}$	-	0.16	0.26	-	0.33	-	0.4	V	
l _l	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 6.0 \text{ V}$	-	-	±0.1	-	±1.0	-	±1.0	μΑ	
l _{OZ}	OFF-state output current	$V_I = V_{IH}$ or V_{IL} ; $V_O = V_{CC}$ or GND; $V_{CC} = 6.0 \text{ V}$	-	-	±0.5	-	±5.0	-	±10.0	μА	

74HC_HCT574_Q100

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2012. All rights reserved.

 Table 6.
 Static characteristics ...continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		25 °C		-40 °C t	o +85 °C	-40 °C to	+125 °C	Unit
			Min	Тур	Max	Min	Max	Min	Max	
I _{CC}	supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 6.0 \text{ V}$	-	-	8.0	-	80	-	160	μΑ
C _I	input capacitance		-	3.5	-					pF
74HCT5	74-Q100									
V_{IH}	HIGH-level input voltage	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	2.0	1.6	-	2.0	-	2.0	-	V
V_{IL}	LOW-level input voltage	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	-	1.2	8.0	-	0.8	-	0.8	V
V_{OH}	HIGH-level	$V_I = V_{IH}$ or V_{IL} ; $V_{CC} = 4.5 \text{ V}$								
	output voltage	$I_{O} = -20 \mu A$	4.4	4.5	-	4.4	-	4.4	-	V
		$I_O = -6 \text{ mA}$	3.98	4.32	-	3.84	-	3.7	-	V
V _{OL}	LOW-level	$V_I = V_{IH}$ or V_{IL} ; $V_{CC} = 4.5 \text{ V}$								
	output voltage	I _O = 20 μA	-	0	0.1	-	0.1	-	0.1	V
		$I_{O} = 6.0 \text{ mA}$	-	0.16	0.26	-	0.33	-	0.4	V
I _I	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 5.5 \text{ V}$	-	-	±0.1	-	±1.0	-	±1.0	μΑ
l _{OZ}	OFF-state output current	$V_I = V_{IH}$ or V_{IL} ; $V_{CC} = 5.5$ V; $V_O = V_{CC}$ or GND per input pin; other inputs at V_{CC} or GND; $I_O = 0$ A	-	-	±0.5	-	±5.0	-	±10	μΑ
I _{CC}	supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 5.5$ V	-	-	8.0	-	80	-	160	μΑ
Δl _{CC}	additional supply current	$V_I = V_{CC} - 2.1 \text{ V};$ other inputs at V_{CC} or GND; $V_{CC} = 4.5 \text{ V}$ to 5.5 V; $I_O = 0 \text{ A}$								
		per input pin; Dn inputs	-	50	180	-	225	-	245	μΑ
		per input pin; OE input	-	125	450	-	563	-	613	μΑ
		per input pin; CP input	-	150	540	-	675	-	735	μΑ
C _I	input capacitance		-	3.5	-					pF

10. Dynamic characteristics

Table 7. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V); $C_L = 50 \ pF$ unless otherwise specified; for test circuit see <u>Figure 10</u>.

For type 74HC574-Q100 ***Type 74HC574-Q100	Symbol	Parameter	Conditions			25 °C		-40 °C	to +85 °C	-40 °C 1	to +125 °C	Unit
the delay					Min	Тур	Max	Min	Max	Min	Max	
delay V _{CC} = 2.0 V - 47 150 - 190 - 225 V _{CC} = 4.5 V - 17 30 - 35 - 45 V _{CC} = 5 V; C _L = 15 pF - 14 -<	or type	74HC574-Q1	00									
Variable	pd		CP to Qn; see Figure 7	<u>[1]</u>								
$ \frac{V_{CC} = 5 \ V; \ C_L = 15 \ pF}{V_{CC} = 6.0 \ V} \qquad 0. \qquad 14 \qquad 0. \qquad 0$		delay	$V_{CC} = 2.0 \text{ V}$		-	47	150	-	190	-	225	ns
$t_{tan} = t_{tan} = t_{t$			$V_{CC} = 4.5 \text{ V}$		-	17	30	-	35	-	45	ns
Part			$V_{CC} = 5 \text{ V}; C_L = 15 \text{ pF}$		-	14	-	-	-	-	-	ns
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			$V_{CC} = 6.0 \text{ V}$		-	14	26	-	33	-	38	ns
$ \begin{array}{c} V_{CC} = 4.5 \ V & - & 16 & 28 & - & 35 & - & 42 \\ V_{CC} = 6.0 \ V & - & 13 & 24 & - & 30 & - & 36 \\ \hline V_{CC} = 6.0 \ V & - & 13 & 24 & - & 30 & - & 36 \\ \hline V_{CC} = 2.0 \ V & - & 39 & 125 & - & 155 & - & 190 \\ \hline V_{CC} = 4.5 \ V & - & 14 & 25 & - & 31 & - & 38 \\ \hline V_{CC} = 6.0 \ V & - & 11 & 21 & - & 26 & - & 32 \\ \hline V_{CC} = 6.0 \ V & - & 11 & 21 & - & 26 & - & 32 \\ \hline V_{CC} = 2.0 \ V & - & 14 & 60 & - & 75 & - & 90 \\ \hline V_{CC} = 4.5 \ V & - & 14 & 60 & - & 75 & - & 90 \\ \hline V_{CC} = 4.5 \ V & - & 5 & 12 & - & 15 & - & 18 \\ \hline V_{CC} = 6.0 \ V & - & 4 & 10 & - & 13 & - & 15 \\ \hline V_{CC} = 6.0 \ V & - & 4 & 10 & - & 13 & - & 15 \\ \hline V_{CC} = 2.0 \ V & 80 & 14 & - & 100 & - & 120 & - \\ \hline V_{CC} = 4.5 \ V & 16 & 5 & - & 20 & - & 24 & - \\ \hline V_{CC} = 4.5 \ V & 16 & 5 & - & 20 & - & 24 & - \\ \hline V_{CC} = 4.5 \ V & 16 & 5 & - & 20 & - & 24 & - \\ \hline V_{CC} = 2.0 \ V & 14 & 4 & - & 17 & - & 20 & - \\ \hline V_{CC} = 4.5 \ V & 12 & 2 & - & 15 & - & 18 & - \\ \hline V_{CC} = 4.5 \ V & 12 & 2 & - & 15 & - & 18 & - \\ \hline V_{CC} = 4.5 \ V & 12 & 2 & - & 15 & - & 18 & - \\ \hline V_{CC} = 6.0 \ V & 5 & 0 & - & 5 & - & 5 & - & 5 \\ \hline V_{CC} = 4.5 \ V & 5 & 0 & - & 5 & - & 5 & - & 5 \\ \hline V_{CC} = 4.5 \ V & 5 & 0 & - & 5 & - & 5 & - & 5 \\ \hline V_{CC} = 4.5 \ V & 5 & 0 & - & 5 & - & 5 & - & 5 \\ \hline V_{CC} = 4.5 \ V & 5 & 0 & - & 5 & - & 5 & - & 5 \\ \hline V_{CC} = 4.5 \ V & 5 & 0 & - & 5 & - & 5 & - & 5 \\ \hline V_{CC} = 4.5 \ V & 5 & 0 & - & 5 & - & 5 & - & 5 \\ \hline V_{CC} = 4.5 \ V & 5 & 0 & - & 5 & - & 5 & - & 5 \\ \hline V_{CC} = 4.5 \ V & 5 & 0 & - & 5 & - & 5 & - & 5 \\ \hline V_{CC} = 4.5 \ V & 5 & 0 & - & 5 & - & 5 & - & 5 \\ \hline V_{CC} = 4.5 \ V & 5 & 0 & - & 5 & - & 5 & - & 5 \\ \hline V_{CC} = 4.5 \ V & 5 & 0 & - & 5 & - & 5 & - & 5 \\ \hline V_{CC} = 4.5 \ V & 5 & 0 & - & 5 & - & 5 & - & 5 \\ \hline V_{CC} = 4.5 \ V & 5 & 0 & - & 5 & - & 5 & - & 5 \\ \hline V_{CC} = 4.5 \ V & 5 & 0 & - & 5 & - & 5 & - & 5 \\ \hline V_{CC} = 5.0 \ V & 6.0 & 37 & - & 4.8 & - & 4.0 & - \\ \hline V_{CC} = 4.5 \ V & 5 & 0 & 112 & - & 24 & - & 20 & - \\ \hline V_{CC} = 4.5 \ V & 5 & 0 & 112 & - & 24 & - & 20 & - \\ \hline V_{CC} = 4.5 \ V & 5$	en	enable time	OE to Qn; see Figure 9	[2]								
V _{CC} = 6.0 V - 13 24 - 30 - 36 t _{clis} disable time OE to Qn; see Figure 9 I3 V _{CC} = 2.0 V - 39 125 - 155 - 190 V _{CC} = 4.5 V - 14 25 - 31 - 38 V _{CC} = 6.0 V - 11 21 - 26 - 32 Image: Set Figure 7 Id V _{CC} = 2.0 V - 14 60 - 75 - 90 V _{CC} = 4.5 V - 5 12 - 15 - 18 V _{CC} = 6.0 V - 4 10 - 13 - 15 V _{CC} = 2.0 V 80 14 - 100 - 120 - V _{CC} = 4.5 V 16 5 - 20 - 24 - V _{CC} = 4.5 V 16 5 - 20 - 24 - V _{CC} = 6.0 V 14 4 - 17 - 20 - V _{CC} = 4.5 V 12 2 - 15 - 18 - V _{CC} = 6.0 V 5			$V_{CC} = 2.0 \text{ V}$		-	44	140	-	175	-	210	ns
$ \begin{array}{c} \text{disable time} \\ \text{disable time} \\ & \begin{array}{c} \hline{\text{OE to On; see Figure 9}} \\ \hline{\text{V}_{\text{CC}}} = 2.0 \text{V} \\ \hline{\text{V}_{\text{CC}}} = 4.5 \text{V} \\ \hline{\text{V}_{\text{CC}}} = 6.0 \text{V} \\ \hline{\text{V}_{\text{CC}}} = 6.0 \text{V} \\ \hline{\text{V}_{\text{CC}}} = 6.0 \text{V} \\ \hline{\text{V}_{\text{CC}}} = 2.0 \text{V} \\ \hline{\text{V}_{\text{CC}}} = 6.0 \text{V} \\ \hline{\text{V}_{\text{CC}}} = 2.0 \text{V} \\ \hline{\text{V}_{\text{CC}}} = 4.5 \text{V} \\ \hline{\text{V}_{\text{CC}}} = 6.0 \text{V} \\ \hline{\text{V}_{\text{CC}}} = 2.0 \text{V} \\ \hline{\text{V}_{\text{CC}}} = 4.5 \text{V} \\ \hline{\text{V}_{\text{CC}}} = 2.0 \text{V} \\ \hline{\text{V}_{\text{CC}}} = 4.5 \text{V} \\ \hline{\text{V}_{\text{CC}}} = 2.0 \text{V} \\ \hline{\text{V}_{\text{CC}}} = 2.0 \text{V} \\ \hline{\text{V}_{\text{CC}}} = 4.5 \text{V} \\ \hline{\text{V}_{\text{CC}}} = 2.0 \text{V} \\ \hline{\text{V}_{\text{CC}}} = 4.5 \text{V} \\ \hline{\text{V}_{\text{CC}}} = 2.0 \text{V} \\ \hline{\text{V}_{\text{CC}}} = 4.5 \text{V} \\ \hline{\text{V}_{\text{CC}}} = 2.0 \text{V} \\ \hline{\text{V}_{\text{CC}}} = 6.0 \text{V} \\ \hline{\text{V}_{\text{CC}}} = 2.0 \text{V} \\ \hline{\text{V}_{C$			$V_{CC} = 4.5 \text{ V}$		-	16	28	-	35	-	42	ns
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			$V_{CC} = 6.0 \text{ V}$		-	13	24	-	30	-	36	ns
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	dis	disable time	OE to Qn; see Figure 9	[3]								
$V_{CC} = 6.0 \ V \qquad - 11 21 - 26 - 32$ $V_{CC} = 6.0 \ V \qquad - 11 21 - 26 - 32$ $V_{CC} = 2.0 \ V \qquad - 14 60 \qquad - 75 \qquad - 90$ $V_{CC} = 4.5 \ V \qquad - 5 12 \qquad - 15 \qquad - 18$ $V_{CC} = 6.0 \ V \qquad - 4 10 \qquad - 13 \qquad - 15$ $V_{CC} = 6.0 \ V \qquad - 4 10 \qquad - 13 \qquad - 15$ $V_{CC} = 2.0 \ V \qquad 80 \qquad 14 \qquad - 100 \qquad - 120 \qquad - $			$V_{CC} = 2.0 \text{ V}$		-	39	125	-	155	-	190	ns
$ \begin{array}{c} \begin{array}{c} \text{transition} \\ \text{time} \end{array} \end{array} \begin{array}{c} \text{Qn; see} \ \frac{\text{Figure} \ 7}{\text{V}_{\text{CC}} = 2.0 \ V} & - & 14 & 60 & - & 75 & - & 90 \\ \hline V_{\text{CC}} = 4.5 \ V & - & 5 & 12 & - & 15 & - & 18 \\ \hline V_{\text{CC}} = 6.0 \ V & - & 4 & 10 & - & 13 & - & 15 \\ \hline \text{Transition} \\ \text{Transition} \end{array} \end{array} \begin{array}{c} \text{Dulse width} \\ \text{Dulse width} \end{array} \begin{array}{c} \begin{array}{c} \text{CP HIGH or LOW;} \\ \text{See Figure 8} \end{array} \\ \hline V_{\text{CC}} = 2.0 \ V & 80 & 14 & - & 100 & - & 120 & - \\ \hline V_{\text{CC}} = 4.5 \ V & 16 & 5 & - & 20 & - & 24 & - \\ \hline V_{\text{CC}} = 4.5 \ V & 16 & 5 & - & 20 & - & 24 & - \\ \hline V_{\text{CC}} = 6.0 \ V & 14 & 4 & - & 17 & - & 20 & - \\ \hline V_{\text{CC}} = 2.0 \ V & 60 & 6 & - & 75 & - & 90 & - \\ \hline V_{\text{CC}} = 4.5 \ V & 12 & 2 & - & 15 & - & 18 & - \\ \hline V_{\text{CC}} = 6.0 \ V & 10 & 2 & - & 13 & - & 15 & - \\ \hline V_{\text{CC}} = 6.0 \ V & 5 & 0 & - & 5 & - & 5 & - \\ \hline V_{\text{CC}} = 2.0 \ V & 5 & 0 & - & 5 & - & 5 & - \\ \hline V_{\text{CC}} = 4.5 \ V & 5 & 0 & - & 5 & - & 5 & - \\ \hline V_{\text{CC}} = 6.0 \ V & 5 & 0 & - & 5 & - & 5 & - \\ \hline V_{\text{CC}} = 6.0 \ V & 5 & 0 & - & 5 & - & 5 & - \\ \hline V_{\text{CC}} = 6.0 \ V & 5 & 0 & - & 5 & - & 5 & - \\ \hline V_{\text{CC}} = 6.0 \ V & 5 & 0 & - & 5 & - & 5 & - \\ \hline V_{\text{CC}} = 2.0 \ V & 5 & 0 & - & 5 & - & 5 & - \\ \hline V_{\text{CC}} = 2.0 \ V & 5 & 0 & - & 5 & - & 5 & - \\ \hline V_{\text{CC}} = 2.0 \ V & 5 & 0 & - & 5 & - & 5 & - \\ \hline V_{\text{CC}} = 2.0 \ V & 5 & 0 & - & 5 & - & 5 & - \\ \hline V_{\text{CC}} = 4.5 \ V & 5 & 0 & - & 5 & - & 5 & - \\ \hline V_{\text{CC}} = 4.5 \ V & 5 & 0 & - & 5 & - & 5 & - \\ \hline V_{\text{CC}} = 2.0 \ V & 5 & 0 & - & 5 & - & 5 & - \\ \hline V_{\text{CC}} = 2.0 \ V & 5 & 0 & - & 5 & - & 5 & - \\ \hline V_{\text{CC}} = 4.5 \ V & 5 & 0 & - & 5 & - & 5 & - \\ \hline V_{\text{CC}} = 2.0 \ V & 5 & 0 & - & 5 & - & 5 & - \\ \hline V_{\text{CC}} = 2.0 \ V & 5 & 0 & - & 5 & - & 5 & - \\ \hline V_{\text{CC}} = 2.0 \ V & 5 & 0 & - & 5 & - & 5 & - \\ \hline V_{\text{CC}} = 2.0 \ V & 5 & 0 & - & 5 & - & 5 & - \\ \hline V_{\text{CC}} = 2.0 \ V & 5 & 0 & - & 5 & - & 5 & - \\ \hline V_{\text{CC}} = 2.0 \ V & 5 & 0 & - & 5 & - & 5 & - \\ \hline V_{\text{CC}} = 2.0 \ V & 5 & 0 & - & 5 & - & 5 & - \\ \hline V_{\text{CC}} = 2.0 \ V & 5 & 0 & - & 5 & - & 4.8 & - & 4.0 & - \\ \hline V_{\text{CC}} = 2.0 \ V & 5 & $			V _{CC} = 4.5 V		-	14	25	-	31	-	38	ns
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			$V_{CC} = 6.0 \text{ V}$		-	11	21	-	26	-	32	ns
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	t	transition	Qn; see Figure 7	[4]								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		time	$V_{CC} = 2.0 \text{ V}$		-	14	60	-	75	-	90	ns
$ \begin{array}{c} \text{Pulse width} \\ \text{Figure 8} \\ \text{V}_{CC} = 2.0 \text{V} \\ \text{V}_{CC} = 4.5 \text{V} \\ \text{V}_{CC} = 6.0 \text{V} \\ \text{V}_{CC} = 6.0 \text{V} \\ \text{V}_{CC} = 6.0 \text{V} \\ \text{V}_{CC} = 2.0 \text{V} \\ \text{V}_{CC} = 6.0 \text{V} \\ \text{V}_{CC} = 6.0 \text{V} \\ \text{V}_{CC} = 2.0 \text{V} \\ \text{V}_{CC} = 2.0 \text{V} \\ \text{V}_{CC} = 2.0 \text{V} \\ \text{V}_{CC} = 4.5 \text{V} \\ \text{V}_{CC} = 4.5 \text{V} \\ \text{V}_{CC} = 6.0 \text{V} \\ \text{V}_{CC} = 6.0 \text{V} \\ \text{V}_{CC} = 6.0 \text{V} \\ \text{V}_{CC} = 2.0 \text{V} \\ \text{V}_{C$			V _{CC} = 4.5 V		-	5	12	-	15	-	18	ns
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			V _{CC} = 6.0 V		-	4	10	-	13	-	15	ns
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	W	pulse width										
$V_{CC} = 6.0 \text{ V} \qquad 14 4 - 17 - 20 - 15 V_{CC} = 6.0 \text{ V} \qquad 60 6 - 75 - 90 - 18 - 15 V_{CC} = 4.5 \text{ V} \qquad 12 2 - 15 - 18 - 15 - 18 - 15 -$			V _{CC} = 2.0 V		80	14	-	100	-	120	-	ns
			V _{CC} = 4.5 V		16	5	-	20	-	24	-	ns
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			$V_{CC} = 6.0 \text{ V}$		14	4	-	17	-	20	-	ns
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	su	set-up time	Dn to CP; see Figure 8									
$V_{CC} = 6.0 \text{ V} \qquad 10 2 - 13 - 15 $			V _{CC} = 2.0 V		60	6	-	75	-	90	-	ns
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			V _{CC} = 4.5 V		12	2	-	15	-	18	-	ns
$V_{CC} = 2.0 \text{ V} \qquad \qquad 5 \qquad 0 \qquad - \qquad 5 \qquad - \qquad 5 \qquad - \qquad 5 \qquad - \qquad V_{CC} = 4.5 \text{ V} \qquad \qquad 5 \qquad 0 \qquad - \qquad 5 \qquad - \qquad 5 \qquad - \qquad 5 \qquad - \qquad V_{CC} = 6.0 \text{ V} \qquad \qquad 5 \qquad 0 \qquad - \qquad 5 \qquad$			$V_{CC} = 6.0 \text{ V}$		10	2	-	13	-	15	-	ns
$ \frac{V_{CC} = 4.5 \text{ V}}{V_{CC} = 6.0 \text{ V}} \qquad \qquad 5 \qquad 0 \qquad - \qquad 5 \qquad - \qquad 5$	h	hold time	Dn to CP; see Figure 8									
			V _{CC} = 2.0 V		5	0	-	5	-	5	-	ns
			V _{CC} = 4.5 V		5	0	-	5	-	5	-	ns
frequency $V_{CC} = 2.0 \text{ V}$ $6.0 37 - 4.8 - 4.0 - V_{CC} = 4.5 \text{ V}$ $30 112 - 24 - 20 - V_{CC} = 5 \text{ V}; C_L = 15 \text{ pF}$ $- 123 - - - - - - - - - $			V _{CC} = 6.0 V		5	0	-	5	-	5	-	ns
frequency $V_{CC} = 2.0 \text{ V}$ $6.0 37 - 4.8 - 4.0 - V_{CC} = 4.5 \text{ V}$ $30 112 - 24 - 20 - V_{CC} = 5 \text{ V}; C_L = 15 \text{ pF}$ $- 123 - - - - - - - - - $	max	maximum	CP; see Figure 7									
$V_{CC} = 4.5 \text{ V}$ 30 112 - 24 - 20 - $V_{CC} = 5 \text{ V}$; $C_L = 15 \text{ pF}$ - 123			V _{CC} = 2.0 V		6.0	37	-	4.8	-	4.0	-	МН
$V_{CC} = 5 \text{ V}; C_L = 15 \text{ pF}$ - 123					30	112	-	24	-	20	-	МН
<u> </u>							-		-		-	МН
					35		-	28	-	24	-	МН

74HC_HCT574_Q100

 Table 7.
 Dynamic characteristics ...continued

Voltages are referenced to GND (ground = 0 V); $C_L = 50 \text{ pF}$ unless otherwise specified; for test circuit see Figure 10.

Symbol	Parameter	Conditions			25 °C		-40 °C	to +85 °C	-40 °C t	o +125 °C	Unit
				Min	Тур	Max	Min	Max	Min	Max	
C_{PD}	power dissipation capacitance	$C_L = 50 \text{ pF}; f = 1 \text{ MHz};$ $V_I = \text{GND to } V_{CC}$	<u>[5]</u>	-	22	-	-	-	-	-	pF
For type	74HCT574-Q	1100									
t _{pd}	propagation	CP to Qn; see Figure 7	[1]								
	delay	$V_{CC} = 4.5 \text{ V}$		-	18	33	-	41	-	50	ns
		$V_{CC} = 5 \text{ V}; C_L = 15 \text{ pF}$		-	15	-	-	-	-	-	ns
t _{en}	enable time	OE to Qn; see Figure 9	[2]								
		$V_{CC} = 4.5 \text{ V}$		-	19	33	-	41	-	50	ns
t _{dis}	disable time	OE to Qn; see Figure 9	[3]								
		V _{CC} = 4.5 V		-	16	28	-	35	-	42	ns
t _t transition		Qn; see Figure 7	[4]								
	time	V _{CC} = 4.5 V		-	5	12	-	15	-	18	ns
t _W	pulse width	CP HIGH or LOW; see Figure 8									
		V _{CC} = 4.5 V		16	7	-	20	-	24	-	ns
t _{su}	set-up time	Dn to CP; see Figure 8									
		V _{CC} = 4.5 V		12	3	-	15	-	18	-	ns
t _h	hold time	Dn to CP; see Figure 8									
		V _{CC} = 4.5 V		5	-1	-	5	-	5	-	ns
f _{max}	maximum	CP; see Figure 7									
	frequency	V _{CC} = 4.5 V		30	69	-	24	-	20	-	MHz
		$V_{CC} = 5 \text{ V}; C_L = 15 \text{ pF}$		-	76	-	-	-	-	-	MHz
C_{PD}	power dissipation capacitance	$C_L = 50 \text{ pF}; f = 1 \text{ MHz};$ $V_I = \text{GND to } V_{CC}$	<u>[5]</u>	-	25	-	-	-	-	-	pF

^[1] t_{pd} is the same as t_{PLH} and t_{PHL} .

 $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \sum (C_L \times V_{CC}^2 \times f_o)$ where:

f_i = input frequency in MHz;

f_o = output frequency in MHz;

 C_L = output load capacitance in pF;

 V_{CC} = supply voltage in V;

N = number of inputs switching;

 $\sum (C_L \times V_{CC}^2 \times f_o)$ = sum of outputs.

^[2] t_{en} is the same as t_{PZH} and t_{PZL} .

^[3] t_{dis} is the same as t_{PLZ} and t_{PHZ} .

^[4] t_t is the same as t_{THL} and t_{TLH} .

^[5] C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

11. Waveforms

Measurement points are given in Table 8.

 V_{OL} and V_{OH} are typical voltage output levels that occur with the output load.

Propagation delay input (CP) to output (Qn), output transition time, clock input (CP) pulse width and the Fig 7. maximum frequency (CP)

The data input (D) to clock input (CP) set-up times and clock input (CP) to data input (D) hold times Fig 8.

Table 8. Measurement points

Туре	Input	Output		
	V _M	V _M	V _X	V _Y
74HC574-Q100	0.5V _{CC}	0.5V _{CC}	0.1V _{CC}	0.9V _{CC}
74HCT574-Q100	1.3 V	1.3 V	0.1V _{CC}	0.9V _{CC}

10 of 17

Test data is given in Table 9.

Definitions test circuit:

 R_T = Termination resistance should be equal to output impedance Z_o of the pulse generator.

 C_L = Load capacitance including jig and probe capacitance.

 R_1 = Load resistance.

S1 = Test selection switch.

Fig 10. Test circuit for measuring switching times

Table 9. Test data

Туре	Input		Load		S1 position		
	VI	t _r , t _f	CL	R_L	t _{PHL} , t _{PLH}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ}
74HC574-Q100	V_{CC}	6 ns	15 pF, 50 pF	1 kΩ	open	GND	V _{CC}
74HCT574-Q100	3 V	6 ns	15 pF, 50 pF	1 kΩ	open	GND	V _{CC}

12. Package outline

SO20: plastic small outline package; 20 leads; body width 7.5 mm

SOT163-1

Note

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC		PROJECTION	ISSUE DATE	
SOT163-1	075E04	MS-013				99-12-27 03-02-19

Fig 11. Package outline SOT163-1 (SO20)

74HC_HCT574_Q100

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2012. All rights reserved.

TSSOP20: plastic thin shrink small outline package; 20 leads; body width 4.4 mm

SOT360-1

Ξ							-,												
	UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽²⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
	mm	1.1	0.15 0.05	0.95 0.80	0.25	0.30 0.19	0.2 0.1	6.6 6.4	4.5 4.3	0.65	6.6 6.2	1	0.75 0.50	0.4 0.3	0.2	0.13	0.1	0.5 0.2	8° 0°

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE			
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE	
SOT360-1		MO-153				99-12-27 03-02-19	
					1	03-02-19	

Fig 12. Package outline SOT360-1 (TSSOP20)

74HC_HCT574_Q100

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2012. All rights reserved.

13. Abbreviations

Table 10. Abbreviations

Acronym	Description
CMOS	Complementary Metal Oxide Semiconductor
ESD	ElectroStatic Discharge
HBM	Human Body Model
MM	Machine Model
TTL	Transistor-Transistor Logic
MIL	Military

14. Revision history

Table 11. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
74HC_HCT574_Q100 v.1	20120802	Product data sheet	-	-

15. Legal information

15.1 Data sheet status

Document status[1][2]	Product status[3]	Definition				
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.				
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.				
Product [short] data sheet	Production	This document contains the product specification.				

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

15.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

15.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use in automotive applications — This NXP Semiconductors product has been qualified for use in automotive applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

74HC_HCT574_Q100

74HC574-Q100; 74HCT574-Q100

Octal D-type flip-flop; positive edge-trigger; 3-state

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

15.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

16. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

74HC574-Q100; 74HCT574-Q100

NXP Semiconductors

Octal D-type flip-flop; positive edge-trigger; 3-state

17. Contents

1	General description
2	Features and benefits
3	Ordering information 2
4	Functional diagram 2
5	Pinning information 3
5.1	Pinning
5.2	Pin description 4
6	Functional description 4
7	Limiting values 4
8	Recommended operating conditions 5
9	Static characteristics 5
10	Dynamic characteristics 7
11	Waveforms
12	Package outline
13	Abbreviations14
14	Revision history 14
15	Legal information
15.1	Data sheet status
15.2	Definitions
15.3	Disclaimers
15.4	Trademarks16
16	Contact information 16
17	Contents 17

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.