Rev 1.1
512Kx36 & 1Mx18 SRAM
- 1 - Jan. 2005
K7D161874B
K7D163674B
Document Title
16M DDR SYNCHRONOUS SRAM
Revision History
The attached data sheets are prepared and approved by SAMSUNG Electronics. SAMSUNG Electronics CO., LTD. reserve the
right to change the specifications. SAMSUNG Electronics will evaluate and reply to your requests and questions on the parameters
of this device. If you have any questions, please contact the SAMSUNG branch office near your office, call or cortact Headquarters.
Rev No.
Rev. 0.0
Rev. 0.1
Rev. 0.2
Rev. 0.3
Rev. 1.0
Rev. 1.1
Remark
Advance
Preliminary
Preliminary
Preliminary
Final
Final
History
Initial document.
Change JTAG DC OPERATING CONDITONS/AC TEST CONDITIONS
-to support 1.8~2.5V VDD, change some items.
Change DC CHARACTERISTICS (Stop Clock Standby Current)
-ISB1 : 100 -> 150
Change JTAG Instruction Cording
- For Reserved
Change DC CHARACTERISTICS (Increase Operating Current)
- x36 : add 40mA, x18 : add 60mA
Add DC CHARACTERISTICS
- VIN-CLK, VDIF-CLK, VCM-CLK
Add AC INPUT CHARACTERISTICS
Add INPUT DEFINITION
Draft Data
Oct. 2003
Nov. 2003
Feb. 2004
Feb. 2004
Mar. 2004
Jan. 2004
Rev 1.1
512Kx36 & 1Mx18 SRAM
- 2 - Jan. 2005
K7D161874B
K7D163674B
ORDERING INFORMATION
Part Number Organization Maximum
Frequency
K7D163674B-HC37
512Kx36
375MHz
K7D163674B-HC33 333MHz
K7D163674B-HC30 300MHz
K7D163674B-HC27 275MHz
K7D161874B-HC37
1Mx18
375MHz
K7D161874B-HC33 333MHz
K7D161874B-HC30 300MHz
K7D161874B-HC27 275MHz
GENERAL DESCRIPTION
The K7D163674B and K7D161874B are 18,874,368 bit Synchronous Pipeline Burst Mode SRAM devices. They are organized as
524,288 words by 36 bits for K7D163674B and 1,048,576 words by 18 bits for K7D161874B, fabricated using Samsung's advanced
CMOS technology.
Single differential HSTL level clock, K and K are used to initiate the read/write operation and all internal operations are self-timed. At
the rising edge of K clock, all addresses and burst control inputs are registered internally. Data inputs are registered one cycle after
write addresses are asserted(Late Write), at the rising edge of K clock for single data rate (SDR) write operations and at rising and
falling edge of K clock for a double data rate (DDR) write operations.
Data outputs are updated from output registers off the rising edges of K clock for SDR read operations and off the rising and falling
edges of K clock for DDR read operations. Free running echo clocks are supported which are representive of data output access
time for all SDR and DDR operations.
The chip is operated with a single +2.5V power supply and is compatible with Extended HSTL input and output. The package is
9x17(153) Ball Grid Array balls on a 1.27mm pitch.
FEATURES
• 512Kx36 or 1Mx18 Organizations.
• 1.8~2.5V VDD/1.5V VDDQ.(1.9V max VDDQ)
• HSTL Input and Outputs.
• Single Differential HSTL Clock.
• Synchronous Pipeline Mode of Operation with Self-Timed
Late Write.
• Free Running Active High and Active Low Echo Clock Output
Pin.
• Asynchronous Output Enable.
• Registered Addresses, Burst Control and Data Inputs.
• Registered Outputs.
• Double and Single Data Rate Burst Read and Write.
• Burst Count Controllable With Max Burst Length of 4
• Interleved and Linear Burst mode support
• Bypass Operation Support
• Programmable Impedance Output Drivers.
• JTAG Boundary Scan (subset of IEEE std. 1149.1)
• 153(9x17) Pin Ball Grid Array Package(14mmx22mm)
Rev 1.1
512Kx36 & 1Mx18 SRAM
- 3 - Jan. 2005
K7D161874B
K7D163674B
FUNCTIONAL BLOCK DIAGRAM
K,K
B
1
B
3
B
2
G
Register
CE
Memory Array
512Kx36
Data Out Data In
Advance
Control
SD/DD
Co
Clock
Synchronous
Buffer
Internal
Clock
Generator
CE
R/W
LD Data Output Strobe
Data Output Enable
State Machine
Strobe_out
S/A Array
2 : 1 MUX
Data In
Register
Write Buffer
W/D
Array
Echo Clock
Output
36(or 18)x2
36(or 18)x2
36(or18)x2
36(or18)x2
XDIN
CQ,CQ
DQ
36(or 18)
Select
&
R/W control
Output
Buffer
Write
CE
Burst
Counter
Register
Address
Address
Comparator
2:1
MUX Dec.
19(or 20) 17(or 18)
17(or 18)19(or 20)
(Burst Write
SA[0:18]( or SA[0:19])
or
(1Mx18)
(2 stage)
(2 stage)
(Burst Address)
Address)
PIN DESCRIPTION
Pin Name Pin Description Pin Name Pin Description
K, K Differential Clocks ZQ Output Driver Impedance Control Input
SA Synchronous Address Input TCK JTAG Test Clock
SA0, SA1 Synchronous Burst Address Input (SA0 = LSB) TMS JTAG Test Mode Select
DQ Synchronous Data I/O TDI JTAG Test Data Input
CQ, CQ Differential Output Echo Clocks TDO JTAG Test Data Output
B1 Load External Address VREF HSTL Input Reference Voltage
B2 Burst R/W Enable VDD Power Supply
B3 Single/Double Data Selection VDDQ Output Power Supply
G Asynchronous Output Enable VSS GND
LBO Linear Burst Order NC No Connection
Rev 1.1
512Kx36 & 1Mx18 SRAM
- 4 - Jan. 2005
K7D161874B
K7D163674B
PACKAGE PIN CONFIGURATIONS(TOP VIEW)
K7D163674B(512Kx36)
* Mode Pin(6L) is a internally NC.
123456789
AVSS VDDQ SA SA ZQ SA SA VDDQ VSS
BDQ DQ SA VSS B1VSS SA DQ DQ
CVSS VDDQ SA SA G SA SA VDDQ VSS
DDQ DQ SA VSS VDD VSS SA DQ DQ
EVSS VDDQ VSS VDD VREF VDD VSS VDDQ VSS
FDQ CQ1DQ VDD VDD VDD DQ CQ2DQ
GVSS VDDQ VSS VSS KVSS VSS VDDQ VSS
HDQ DQ DQ VDD K VDD DQ DQ DQ
JVSS VDDQ VSS VDD VDD VDD VSS VDDQ VSS
KDQ DQ DQ VSS B2VSS DQ DQ DQ
LVSS VDDQ VSS LBO B3MODE VSS VDDQ VSS
MDQ CQ1DQ VDD VDD VDD DQ CQ2DQ
NVSS VDDQ VSS VDD VREF VDD VSS VDDQ VSS
PDQ DQ NC VSS VDD VSS SA DQ DQ
RVSS VDDQ VDD SA SA1SA VDD VDDQ VSS
TDQ DQ SA VSS SA0VSS SA DQ DQ
UVSS VDDQ TMS TDI TCK TDO NC VDDQ VSS
K7D161874B(1Mx18)
* Mode Pin(6L)is a internally NC.
123456789
AVSS VDDQ SA SA ZQ SA SA VDDQ VSS
BNC DQ SA VSS B1VSS SA NC DQ
CVSS VDDQ SA SA G SA SA VDDQ VSS
DDQ NC SA VSS VDD VSS SA DQ NC
EVSS VDDQ VSS VDD VREF VDD VSS VDDQ VSS
FNC CQ1NC VDD VDD VDD DQ NC DQ
GVSS VDDQ VSS VSS KVSS VSS VDDQ VSS
HDQ NC DQ VDD K VDD NC DQ NC
JVSS VDDQ VSS VDD VDD VDD VSS VDDQ VSS
KNC DQ NC VSS B2VSS DQ NC DQ
LVSS VDDQ VSS LBO B3MODE VSS VDDQ VSS
MDQ NC DQ VDD VDD VDD NC CQ1NC
NVSS VDDQ VSS VDD VREF VDD VSS VDDQ VSS
PNC DQ SA VSS VDD VSS SA NC DQ
RVSS VDDQ VDD SA SA1SA VDD VDDQ VSS
TDQ NC SA VSS SA0VSS SA DQ NC
UVSS VDDQ TMS TDI TCK TDO NC VDDQ VSS
Rev 1.1
512Kx36 & 1Mx18 SRAM
- 5 - Jan. 2005
K7D161874B
K7D163674B
Read Operation(Single and Double)
During SDR read operations, addresses and controls are registered at the first rising edge of K clock and then the internal array is
read between first and second rising edges of K clock. Data outputs are updated from output registers off the second rising edge of
K clock. During DDR read operations, addresses and controls are registered at the first rising edge of K clock, and then the internal
array is read twice between first and second rising edges of K clock. Data outputs are updated from output registers sequentially by
burst order off the second rising and falling edge of K clock.
Interleave and linear burst operation is controlled by LBO pin and the burst count is controllable with the maximum burst length of 4.
To avoid data contention,at least one NOP operations are required between the last read and the first write operation.
Write Operation(Late Write)
During SDR write operations, addresses and controls are registered at the first rising edge of K clock and data inputs are registered
at the following rising edge of K clock. During DDR write operations, addresses and controls are registered at the first rising edge of
K clock and data inputs are registered twice at the following rising and falling edge of K clock. Write addresses and data inputs are
stored in the data in registers until the next write operation, and only at the next write opeation are data inputs fully written into SRAM
array.
Echo clock operation
Free running type of Echo clocks are generated from K clock regardless of read, write and NOP operations. They will stop operation
only when K clock is in the stop mode.
Echo clocks are designed to represent data output access time and this allows the echo clocks to be used as reference to capture
data outputs outputs.
Bypass Read Operation
Bypass read operation occurs when the last write operation is followed by a read operation where write and read addresses are
identical. For this case, data outputs are from the data in registers instead of SRAM array.
Programmable Impedance Output Driver
The data output and echo clock driver impedance are adjusted by an external resistor, RQ, connected between ZQ pin and VSS, and
are equal to RQ/5. For example, 250 resistor will give an output impedance of 50. Output driver impedance tolerance is 15% by
test(10% by design) and is periodically readjusted to reflect the changes in supply voltage and temperature. Impedance updates
occur early in cycles that do not activate the outputs, such as deselect cycles. They may also occur in cycles initiated with G high. In
all cases impedance updates are transparent to the user and do not produce access time "push-outs" or other anomalous behavior
in the SRAM. Impedance updates occur no more often than every 32 clock cycles. Clock cycles are counted whether the SRAM is
selected or not and proceed regardless of the type of cycle being executed. Therefore, the user can be assured that after 33 contin-
uous read cycles have occurred, an impedance update will occur the next time G are high at a rising edge of the K clock. There are
no power up requirements for the SRAM. However, to guarantee optimum output driver impedance after power up, the SRAM needs
1024 non-read cycles.
Power-Up/Power-Down Supply Voltage Sequencing
The following power-up supply voltage application is recommended: VSS, VDD, VDDQ, VREF, then VIN. VDD and VDDQ can be applied
simultaneously, as long as VDDQ does not exceed VDD by more than 0.5V during power-up. The following power-down supply voltage
removal sequence is recommended: VIN, VREF, VDDQ, VDD, VSS. VDD and VDDQ can be removed simultaneously, as long as VDDQ
does not exceed VDD by more than 0.5V during power-down.
Rev 1.1
512Kx36 & 1Mx18 SRAM
- 6 - Jan. 2005
K7D161874B
K7D163674B
TRUTH TABLE
NOTE : - B(Both) is DIN in write cycle and DOUT in read cycle. Byte write function is not supported. X means "Don't Care".
- K & K are complementary.
K G B1 B2 B3 DQ Operation
LXXXXHi-Z Clock Stop
X H L X Hi-Z No Operation, Pipeline High-Z
L L H H DOUT Load Address, Single Read
L L H L DOUT Load Address, Double Read
X L L H DIN Load Address, Single Write
X L L L DIN Load Address, Double Write
X H H X B Increment Address, Continue
4 Burst Operation for Interleaved Burst (LBO = VDDQ)
NOTE : - For Interleave Burst LBO = VDDQ is recommended. If LBO = VDD, it must not exceed 2.63V.
Interleaved Burst Case 1 Case 2 Case 3 Case 4
A1A0A1A0A1A0A1A0
First Address
Fourth Address
0
0
1
1
0
1
0
1
0
0
1
1
1
0
1
0
1
1
0
0
0
1
0
1
1
1
0
0
1
0
1
0
BURST SEQUENCE TABLE
4 Burst Operation for Linear Burst (LBO = VSS)
Linear Burst Mode Case 1 Case 2 Case 3 Case 4
A1A0A1A0A1A0A1A0
First Address
Fourth Address
0
0
1
1
0
1
0
1
0
1
1
0
1
0
1
0
1
1
0
0
0
1
0
1
1
0
0
1
1
0
1
0
Rev 1.1
512Kx36 & 1Mx18 SRAM
- 7 - Jan. 2005
K7D161874B
K7D163674B
NOTE :
1. State transitions ; B1 =(Load Address), B1=(Increment Address, Continue)
B2 =(Read), B2 =(Write)
B3 =(Single Data Rate), B3 =(Double Data Rate)
BUS CYCLE STATE DIAGRAM
LOAD
NEW ADDRESS
INCREMENT
ADDRESS
INCREMENT
ADDRESS
INCREMENT
ADDRESS
INCREMENT
ADDRESS
READ
SDR
WRITE
SDR
READ
DDR
WRITE
DDR
B
2
, B
3
B1, B2
B1, B2
B1, B2
B1, B2
B1, B2
B1, B2
B1, B2
B1, B2
NO OP
POWER
UP
B
2
, B
3
B
1
B
2
, B
3
B
1
B
2
, B
3
B
1
B
1
B1, B2
B1, B2
B1, B2
B1, B2
B1, B2
B1, B2
B1, B2
B1, B2
Rev 1.1
512Kx36 & 1Mx18 SRAM
- 8 - Jan. 2005
K7D161874B
K7D163674B
RECOMMENDED DC OPERATING CONDITIONS
NOTE :1. These are DC test criteria. DC design criteria is VREF±50mV. The AC VIH/VIL levels are defined separately for measuring
timing parameters.
2. VIH (Max)DC=VDDQ+0.3, VIH (Max)AC=2.6V (2.1V for DQs) (pulse width 20% of cycle time).
3. VIL (Min)DC=-0.3V, VIL (Min)AC=-1.0V (-0.5V for DQs) (pulse width 20% of cycle time).
4. VIN-CLK specifies the maximum allowable DC level for the differential clock. i.e VIL-CLK and VIH-CLK.
5. VDIF-CLK specifies the minimum Clock differential voltage required for switching. i.e DC voltage difference between VIL-CLK and VIH-CLK.
6. VCM-CLK specifies the Clock crossing point for the differential clock or the allowable common clock level for a single ended clock.
Parameter Symbol Min Typ Max Unit Note
Core Power Supply Voltage VDD 1.7 2.5 2.63 V
Output Power Supply Voltage VDDQ 1.4 1.5 1.9 V
Input High Level Voltage VIH VREF+0.1 - VDDQ+0.3 V 1, 2
Input Low Level Voltage VIL -0.3 - VREF-0.1 V 1, 3
Input Reference Voltage VREF 0.68 0.75 0.95 V
Clock Input Signal Voltage VIN-CLK -0.3 - VDDQ+0.3 V 1, 4
Clock Input Differential Voltage VDIF-CLK 0.1 - VDDQ+0.6 V 1, 5
Clock Input Common Mode Voltage VCM-CLK 0.68 0.75 0.9 V 1, 6
ABSOLUTE MAXIMUM RATINGS
NOTE : Power Dissipation Capability will be dependent upon package characteristics and use environment. See enclosed thermal impedance data.
Stresses greater than those listed under " Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only
and functional operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not
implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
Parameter Symbol Value Unit
Core Supply Voltage Relative to VSS VDD -0.5 to 3.13 V
Output Supply Voltage Relative to VSS VDDQ -0.5 to 2.3 V
Voltage on any pin Relative to VSS VIN -0.5 to VDDQ+0.5 (2.3V MAX)V
Output Short-Circuit Current(per I/O) IOUT 25 mA
Storage Temperature TSTR -55 to 125 °C
DC CHARACTERISTICS
NOTE :1. Minimum cycle. IOUT=0mA.
2. 50% read cycles.
3. |IOH|=(VDDQ/2)/(RQ/5)±15% @VOH=VDDQ/2 for 175 RQ 350.
4. |IOL|=(VDDQ/2)/(RQ/5)±15% @VOL=VDDQ/2 for 175 RQ 350.
5. Minimum Impedance Mode when ZQ pin is connected to VSS.
Parameter Symbol Min Max Unit Note
Average Power Supply Operating Current(x36)
(Cycle time = tKHKH min)
IDD37
IDD33
IDD30
IDD27
-
540
490
440
420
mA 1,2
Average Power Supply Operating Current(x18)
(Cycle time = tKHKH min)
IDD37
IDD33
IDD30
IDD27
-
510
460
410
390
mA 1,2
Stop Clock Standby Current
(VIN=VDD-0.2V or 0.2V fixed, K=Low, K=High) ISB1 - 150 mA 1
Input Leakage Current
(VIN=VSS or VDDQ)ILI -1 1 µA
Output Leakage Current
(VOUT=VSS or VDDQ)ILO -1 1 µA
Output High Voltage(Programmable Impedance Mode) VOH1 VDDQ/2 VDDQ V3
Output Low Voltage(Programmable Impedance Mode) VOL1 VSS VDDQ/2 V 4
Output High Voltage(IOH=-0.1mA) VOH2 VDDQ-0.2 VDDQ V5
Output Low Voltage(IOL=0.1mA) VOL2 VSS 0.2 V 5
Rev 1.1
512Kx36 & 1Mx18 SRAM
- 9 - Jan. 2005
K7D161874B
K7D163674B
PIN CAPACITANCE
NOTE : Periodically sampled and not 100% tested.(TA=25°C, f=1MHz)
Parameter Symbol Test Condition TYP Max Unit
Input Capacitance CIN VIN=0V - 4 pF
Data Output Capacitance COUT VOUT=0V - 5 pF
AC TEST CONDITIONS(TA=0 to 70°C, VDD=1.7 -2.63V, VDDQ=1.5V)
Parameter Symbol Value Unit Note
Input High/Low Level VIH/VIL 1.25/0.25 V -
Input Reference Level VREF 0.75 V -
Input Rise/Fall Time TR/TF0.5/0.5 ns -
Output Timing Reference Level 0.75 V -
Clock Input Timing Reference Level Cross Point V -
Output Load See Below -
AC INPUT CHARACTERISTICS
Parameter Symbol Min Max Unit Note
AC Input Logic High VIH (AC) VREF + 0.4 V -
AC Input Logic Low VIL (AC) VREF - 0.4 V -
Clock Input Differential Voltage VDIF (AC) 0.8 V -
VREF Peak-to-Peak AC Voltage VREF (AC) 5% VREF (DC) V -
CK
CK
VIH(AC)
VREF
VIL(AC)
AC INPUT DEFINITION
Setup
Time
Hold
Time
V
DIF
(AC)
Rev 1.1
512Kx36 & 1Mx18 SRAM
- 10 Jan. 2005
K7D161874B
K7D163674B
AC TIMING CHARACTERISTICS
Notes: 1. The maximum cycle time must be limited to guarantee AC timing specification.
2. This parameter is guaranteed by design, and may not be tested at values shown in the table.
3. This parameter refers to CQ and CQ rising and falling edges.
4. This parameter is only for 16Mb density
5. K and K Clocks must be used differencitally to meet AC timing specifications.
PARAMETER SYMBOL -37 -33 -30 -27 UNITS NOTES
Min Max Min Max Min Max Min Max
Clock
Clock Cycle Time tKHKH 2.66 - 3.0 - 3.3 - 3.63 - ns 1
Clock High Pulse Width tKHKL 1.3 - 1.3 - 1.5 - 1.7 - ns
Clock Low Pulse Width tKLKH 1.3 - 1.3 - 1.5 - 1.7 - ns
Setup Times
Address Setup Time tAVKH 0.4 - 0.4 - 0.4 - 0.5 - ns
Control(B1,B2,B3) Setup Time tBVKH 0.4 - 0.4 - 0.4 - 0.5 - ns
Data Setup Time tDVKX 0.25 - 0.3 - 0.3 - 0.4 - ns 2
Hold Times
Address Hold Time tKHAX 0.4 - 0.4 - 0.4 - 0.5 - ns
Control(B1,B2,B3) Hold Time tKHBX 0.4 - 0.4 - 0.4 - 0.5 - ns
Data Hold Time tKXDX 0.25 - 0.3 - 0.3 - 0.4 - ns 2
Output Times
Echo Clock High Pulse Width tCHCL tKHKL-0.1 tKHKL+0.1 tKHKL-0.1 tKHKL+0.1 tKHKL-0.1 tKHKL+0.1 tKHKL-0.1 tKHKL+0.1 ns 2
Echo Clock Low Pulse Width tCLCH tKLKH-0.1 tKLKH+0.1 tKLKH-0.1 tKLKH+0.1 tKLKH-0.1 tKLKH+0.1 tKLKH-0.1 tKLKH+0.1 ns 2
Clock Crossing to Echo Clock tCXCH 0.5 2.3 0.5 2.3 0.5 2.3 0.5 2.3 ns 3
Clock Crossing to Echo Clock tCXCL 0.5 2.3 0.5 2.3 0.5 2.3 0.5 2.3 ns 3
Echo Clock High to Output Vaild tCHQV -0.20 0.20 -0.20 0.20 -0.20 0.20 -0.20 0.20 ns
Echo Clock Low to Output Valid tCLQV -0.20 0.20 -0.20 0.20 -0.20 0.20 -0.20 0.20 ns
Echo Clock High to Output Hold tCHQX -0.20 -0.20 -0.20 -0.20 ns
Echo Clock Low to Output Hold tCLQX -0.20 -0.20 -0.20 -0.20 ns
Echo Clock High to Output High-Z tCHQZ 0.20 0.20 0.20 0.20 ns
Echo Clock High to Output Low-Z tCHLZ -0.20 -0.20 -0.20 -0.20 ns
G Low to Output Valid tGLQV - 1.7 - 1.7 - 1.9 - 2.0 ns 4
G High to Output Low-Z tGHQX 0.5 0.5 0.5 0.5 ns 4
G High to Output High-Z tGHQZ - 1.7 - 1.7 - 1.9 - 2.0 ns 4
50
50
AC TEST OUTPUT LOAD
255pF
DQ
0.75V
5pF
0.75V
50
50
0.75V
Rev 1.1
512Kx36 & 1Mx18 SRAM
- 11 Jan. 2005
K7D161874B
K7D163674B
NOP CONTINUE
K
K
B1
G
SA
t
AVKH
t
KHAX
CQ
NOP
12 3456781012
11
B2
B3
CQ
DQ
READ
(burst of 4)
READ
(burst of 2)
READ
(burst of 4)
NOP WRITE
CONTINUE
WRITE
(burst of 4)
READ
9
CONTINUE
READ
READ
(burst of 4)
CONTINUE
READ
A
0
A
1
A
2
A
3
Q
X2
Q
01
Q
02
Q
03
Q
04
Q
51
Q
52
Q
53
Q
54
Q
11
Q
12
D
21
D
23
D
24
D
22
Q
31
t
BVKH
t
KHBX
t
CHQZ
t
KXCV
t
GHQZ
t
DVKH
t
KHDX
t
GLQX
t
GLQV
t
KHKH
t
GHQX
UNDEFINED
DON’T CARE
A
5
NOTE
1. Q01 refers to output from address A. Q02 refers to output from the next internal burst address following A, etc.
2. Outputs are disabled(High-Z) one clock cycle after NOP detected or after no pending data requests are present.
3. Doing more than one Read Continue or Write Continue will cause the address to wrap around.
TIMING WAVEFORMS FOR DOUBLE DATA RATE CYCLES
(Burst Length=4, 2)
t
KHKL
t
KLKH
t
CHCL
t
CLCH
t
CHLZ
t
CHQV
t
CHQX
t
CLQV
t
KXCL
Rev 1.1
512Kx36 & 1Mx18 SRAM
- 12 Jan. 2005
K7D161874B
K7D163674B
TIMING WAVEFORMS FOR SINGLE DATA RATE CYCLES
NOTE :
1. Q01 refers to output from address A0. Q02 refers to output from the next internal burst address following A0, etc.
2. Outputs are disabled(High-Z) one clock cycle after NOP detected or after no pending data requests are present.
3. This devices supports cycle lengths of 1, 2, 4. Continue(B1=HIGH, B2=HIGH, B3=X) up to three times following a B1 operation. Any further
Continue assertions constitute invalid operations.
4. This device will have an address wraparound if further Continues are applied.
NOP CONTINUE
t
KHKH
t
AVKH
t
KHAX
NOP
1 2 3 4 5 6 7 8 10 1211
READ
(burst of 2)
READ
READ
(burst of 4)
NOP WRITE
CONTINUE
WRITE
(burst of 2)
READ
9
CONTINUE
READ
CONTINUE
READ
CONTINUE
READ
A
0
A
1
A
2
A
3
Q
X1
D
22
D
21
t
BVKH
t
KHBX
t
CHQZ
t
KXCV
t
GHQZ
t
GHQX
t
DVKH
t
KHDX
t
GLQX
t
GLQV
t
KLKH
Q
31
Q
01
Q
02
Q
03
Q
04
Q
11
UNDEFINED
DON’T CARE
t
KHKL
K
K
B1
G
SA
B2
B3
DQ
CQ
CQ
(Burst Length=4, 2, 1)
(burst of 1)
t
CHCL
t
CLCH
t
KXCL
t
CHLZ
t
CHQV
t
CHQX
Rev 1.1
512Kx36 & 1Mx18 SRAM
- 13 Jan. 2005
K7D161874B
K7D163674B
IEEE 1149.1 TEST ACCESS PORT AND BOUNDARY SCAN-JTAG
TAP Controller State Diagram
JTAG Block Diagram
SRAM
CORE
BYPASS Reg.
Identification Reg.
Instruction Reg.
Control Signals
TAP Controller
TDO
SA
SA
TDI
TMS
TCK
Test Logic Reset
Run Test Idle
0
11
1
1
0
0
0
1
0
1
1
0
0
0
1
0
1
1
1
0
0
0
0
0
0
0
Select DR
Capture DR
Shift DR
Exit1 DR
Pause DR
Exit2 DR
Update DR
Select IR
Capture IR
Shift IR
Exit1 IR
Pause IR
Exit2 IR
Update IR
1
1
1
1
1
The SRAM provides a limited set of IEEE standard 1149.1 JTAG functions. This is to test the connectivity during manufacturing
between SRAM, printed circuit board and other components. Internal data is not driven out of SRAM under JTAG control. In conform-
ance with IEEE 1149.1, the SRAM contains a TAP controller, Instruction Register, Bypass Register and ID register. The TAP control-
ler has a standard 16-state machine that resets internally upon power-up, therefore, TRST signal is not required. It is possible to use
this device without utilizing the TAP. To disable the TAP controller without interfacing with normal operation of the SRAM, TCK must
be tied to VSS to preclude mid level input. TMS and TDI are designed so an undriven input will produce a response identical to the
application of a logic 1, and therefore can be left unconnected. But they may also be tied to VDD through a resistor. TDO should be left
unconnected.
JTAG Instruction Coding
NOTE :
1. Places DQs in Hi-Z in order to sample all input data regardless of other
SRAM inputs. This instruction is not IEEE 1149.1 compliant.
2. Places DQs in Hi-Z in order to sample all input data regardless of other
SRAM inputs.
3. TDI is sampled as an input to the first ID register to allow for the serial shift
of the external TDI data.
4. Bypass register is initiated to VSS when BYPASS instruction is invoked. The
Bypass Register also holds serially loaded TDI when exiting the Shift DR
states.
5. SAMPLE instruction dose not places DQs in Hi-Z.
6. This instruction is reserved for future use.
IR2 IR1 IR0 Instruction TDO Output Notes
0 0 0 EXTEST Boundary Scan Register 1
0 0 1 IDCODE Identification Register 3
0 1 0 SAMPLE-Z Boundary Scan Register 2
0 1 1 RESERVED Do Not Use 6
1 0 0 SAMPLE Boundary Scan Register 5
1 0 1 RESERVED Do Not Use 6
1 1 0 RESERVED Do Not Use 6
1 1 1 BYPASS Bypass Register 4
Rev 1.1
512Kx36 & 1Mx18 SRAM
- 14 Jan. 2005
K7D161874B
K7D163674B
BOUNDARY SCAN EXIT ORDER(x36)
* Reserved for Mode Pin
36 4A SA SA 6A 35
37 4C SA SA 6C 34
38 3A SA SA 7A 33
39 3B SA SA 7B 32
40 3C SA SA 7C 31
41 3D SA SA 7D 30
42 2B DQ DQ 8B 29
43 1B DQ DQ 9B 28
44 2D DQ DQ 8D 27
45 3F DQ DQ 7F 26
46 1D DQ DQ 9D 25
47 2F CQ CQ 8F 24
48 1F DQ DQ 9F 23
49 3H DQ DQ 7H 22
50 2H DQ DQ 8H 21
51 1H DQ DQ 9H 20
52 5A ZQ G5C 19
53 5B B1K5G18
54 5K B2K5H 17
55 5L B3MODE 6L 16
56 4L LBO DQ 9K 15
57 1K DQ DQ 8K 14
58 2K DQ DQ 7K 13
59 3K DQ DQ 9M 12
60 1M DQ CQ 8M 11
61 2M CQ DQ 9P 10
62 1P DQ DQ 7M 9
63 3M DQ DQ 8P 8
64 2P DQ DQ 9T 7
65 1T DQ DQ 8T 6
66 2T DQ SA 7P 5
67 3T SA SA 7T 4
68 4R SA SA 6R 3
SA 5T 2
SA 5R 1
BOUNDARY SCAN EXIT ORDER(x18)
* Reserved for Mode Pin
26 4A SA SA 6A 25
27 4C SA SA 6C 24
28 3A SA SA 7A 23
29 3B SA SA 7B 22
30 3C SA SA 7C 21
31 3D SA SA 7D 20
32 2B DQ
DQ 9B 19
DQ 8D 18
DQ 7F 17
33 1D DQ
34 2F CQ
DQ 9F 16
35 3H DQ
DQ 8H 15
36 1H DQ
37 5A ZQ G5C 14
38 5B B1K5G13
39 5K B2K5H 12
40 5L B3MODE 6L 11
41 4L LBO DQ 9K 10
42 2K DQ DQ 7K 9
43 1M DQ CQ 8M 8
DQ 9P 7
44 3M DQ
45 2P DQ
46 1T DQ DQ 8T 6
SA 7P 5
47 3P SA SA 7T 4
48 3T SA SA 6R 3
49 4R SA SA 5T 2
SA 5R 1
ID REGISTER DEFINITION
Part Revision Number
(31:28)
Part Configuration
(27:18)
Vendor Definition
(17:12)
Samsung JEDEC Code
(11: 1)
Start Bit
(0)
512Kx36 0000 00111 00100 XXXXXX 00001001110 1
1M x 18 0000 01000 00011 XXXXXX 00001001110 1
SCAN REGISTER DEFINITION
Part Instruction Register Bypass Register ID Register Boundary Scan
512Kx36 3 bits 1 bits 32 bits 68 bits
1M x 18 3 bits 1 bits 32 bits 49 bits
Rev 1.1
512Kx36 & 1Mx18 SRAM
- 15 Jan. 2005
K7D161874B
K7D163674B
JTAG DC OPERATING CONDITIONS
NOTE : 1. The input level of SRAM pin is to follow the SRAM DC specification.
Parameter Symbol Min Typ Max Unit Note
Power Supply Voltage VDD 1.7 2.5 2.6 V
Input High Level VIH 0.7*VDD -VDD+0.3 V
Input Low Level VIL -0.3 - 0.3*VDD V
Output High Voltage(IOH=-2mA) VOH 0.75*VDD -VDD V
Output Low Voltage(IOL=2mA) VOL VSS - 0.25*VDD V
JTAG AC Characteristics
Parameter Symbol Min Max Unit Note
TCK Cycle Time tCHCH 50 - ns
TCK High Pulse Width tCHCL 20 - ns
TCK Low Pulse Width tCLCH 20 - ns
TMS Input Setup Time tMVCH 5-ns
TMS Input Hold Time tCHMX 5-ns
TDI Input Setup Time tDVCH 5-ns
TDI Input Hold Time tCHDX 5-ns
Clock Low to Output Valid tCLQV 010ns
JTAG AC TEST CONDITIONS
NOTE : 1. See SRAM AC test output load on page 5.
Parameter Symbol Min Unit Note
Input High/Low Level VIH/VIL VDD/0.0 V
Input Rise/Fall Time TR/TF 1.0/1.0 ns
Input and Output Timing Reference Level VDD/2 V 1
JTAG TIMING DIAGRAM
TCK
TMS
TDI
TDO
tCHCH tCHCL tCLCH
tMVCH tCHMX
tDVCH tCHDX
tCLQV
Rev 1.1
512Kx36 & 1Mx18 SRAM
- 16 Jan. 2005
K7D161874B
K7D163674B
153 BGA PACKAGE THERMAL CHARACTERISTICS
NOTE : 1. Junction temperature can be calculated by : TJ = TA + PD x Theta_JA.
Parameter Symbol Thermal Resistance Unit Note
Junction to Ambient(at still air) Theta_JA TBD °C/W
Junction to Case Theta_JC TBD °C/W
Junction to Board Theta_JB TBD °C/W
NOTE :
1. All Dimensions are in Millimeters.
2. Solder Ball to PCS Offset : 0.10 MAX.
3. PCB to Cavity Offset : 0.10 MAX.
153 BGA PACKAGE DIMENSIONS
1.27
7654321
0.050
BCDEFGHJKLMNPRTUA
1.27
0.050
BOTTOM VIEW
0.3/0.012MAX 153-0.030 ±0.006
14.00 ±0.10
0.551 ±0.004
22.00 ±0.10
0.866 ±0.004
12.50 ±0.10
0.492 ±0.004
0.60 ±0.10
0.024 ±0.004
20.50 ±0.10
0.807 ±0.004
0.56 ±0.04
0.022 ±0.002
0.90 ±0.10
0.035 ±0.004
2.21
0.087
TOP VIEW
0.006
0.15 MAX
0.75 ±0.15
MAX
98