OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
OMAP-L138 C6-IntegraDSP+ARM®Processor
Check for Samples: OMAP-L138
1 OMAP-L138 C6-IntegraDSP+ARM®Processor
1.1 Features
12
Normalization, Saturation, Bit-Counting
Highlights Compact 16-Bit Instructions
Dual Core SoC C674x Two Level Cache Memory Architecture
375/456-MHz ARM926EJ-SRISC MPU 32K-Byte L1P Program RAM/Cache
375/456-MHz C674x Fixed/Floating-Point
VLIW DSP 32K-Byte L1D Data RAM/Cache
Enhanced Direct-Memory-Access Controller 256K-Byte L2 Unified Mapped RAM/Cache
(EDMA3) Flexible RAM/Cache Partition (L1 and L2)
Serial ATA (SATA) Controller Enhanced Direct-Memory-Access Controller 3
DDR2/Mobile DDR Memory Controller (EDMA3):
Two Multimedia Card (MMC)/Secure Digital 2 Channel Controllers
(SD) Card Interface 3 Transfer Controllers
LCD Controller 64 Independent DMA Channels
Video Port Interface (VPIF) 16 Quick DMA Channels
10/100 Mb/s Ethernet MAC (EMAC) Programmable Transfer Burst Size
Programmable Real-Time Unit Subsystem TMS320C674x Floating-Point VLIW DSP Core
Three Configurable UART Modules Load-Store Architecture With Non-Aligned
USB 1.1 OHCI (Host) With Integrated PHY Support
USB 2.0 OTG Port With Integrated PHY 64 General-Purpose Registers (32 Bit)
One Multichannel Audio Serial Port Six ALU (32-/40-Bit) Functional Units
Two Multichannel Buffered Serial Ports Supports 32-Bit Integer, SP (IEEE Single
Precision/32-Bit) and DP (IEEE Double
Dual Core SoC Precision/64-Bit) Floating Point
375/456-MHz ARM926EJ-SRISC MPU Supports up to Four SP Additions Per
375/456-MHz C674x Fixed/Floating-Point Clock, Four DP Additions Every 2 Clocks
VLIW DSP Supports up to Two Floating Point (SP or
ARM926EJ-S Core DP) Reciprocal Approximation (RCPxP)
32-Bit and 16-Bit (Thumb®) Instructions and Square-Root Reciprocal
DSP Instruction Extensions Approximation (RSQRxP) Operations Per
Single Cycle MAC Cycle
ARM®Jazelle®Technology Two Multiply Functional Units
EmbeddedICE-RTfor Real-Time Debug Mixed-Precision IEEE Floating Point
ARM9 Memory Architecture Multiply Supported up to:
16K-Byte Instruction Cache 2SPxSPSP Per Clock
16K-Byte Data Cache 2SPxSPDP Every Two Clocks
8K-Byte RAM (Vector Table) 2 SP x DP DP Every Three Clocks
64K-Byte ROM 2DPxDPDP Every Four Clocks
C674xInstruction Set Features Fixed Point Multiply Supports Two 32 x
32-Bit Multiplies, Four 16 x 16-Bit
Superset of the C67x+and C64x+ISAs Multiplies, or Eight 8 x 8-Bit Multiplies per
Up to 3648/2746 C674x MIPS/MFLOPS Clock Cycle, and Complex Multiples
Byte-Addressable (8-/16-/32-/64-Bit Data) Instruction Packing Reduces Code Size
8-Bit Overflow Protection All Instructions Conditional
Bit-Field Extract, Set, Clear Hardware Support for Modulo Loop
1Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
2All trademarks are the property of their respective owners.
PRODUCTION DATA information is current as of publication date. Copyright © 2009–2011, Texas Instruments Incorporated
Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
Operation USB 1.1 OHCI (Host) With Integrated PHY
(USB1)
Protected Mode Operation USB 2.0 OTG Port With Integrated PHY (USB0)
Exceptions Support for Error Detection and
Program Redirection USB 2.0 High-/Full-Speed Client
Software Support USB 2.0 High-/Full-/Low-Speed Host
TI DSP/BIOS End Point 0 (Control)
Chip Support Library and DSP Library End Points 1,2,3,4 (Control, Bulk, Interrupt or
ISOC) Rx and Tx
128K-Byte RAM Shared Memory One Multichannel Audio Serial Port:
1.8V or 3.3V LVCMOS IOs (except for USB and
DDR2 interfaces) Two Clock Zones and 16 Serial Data Pins
Two External Memory Interfaces: Supports TDM, I2S, and Similar Formats
EMIFA DIT-Capable
NOR (8-/16-Bit-Wide Data) FIFO buffers for Transmit and Receive
NAND (8-/16-Bit-Wide Data) Two Multichannel Buffered Serial Ports:
16-Bit SDRAM With 128 MB Address Supports TDM, I2S, and Similar Formats
Space AC97 Audio Codec Interface
DDR2/Mobile DDR Memory Controller Telecom Interfaces (ST-Bus, H100)
16-Bit DDR2 SDRAM With 512 MB 128-channel TDM
Address Space or FIFO buffers for Transmit and Receive
16-Bit mDDR SDRAM With 256 MB 10/100 Mb/s Ethernet MAC (EMAC):
Address Space IEEE 802.3 Compliant
Three Configurable 16550 type UART Modules: MII Media Independent Interface
With Modem Control Signals RMII Reduced Media Independent Interface
16-byte FIFO Management Data I/O (MDIO) Module
16x or 13x Oversampling Option Video Port Interface (VPIF):
LCD Controller Two 8-bit SD (BT.656), Single 16-bit or Single
Two Serial Peripheral Interfaces (SPI) Each Raw (8-/10-/12-bit) Video Capture Channels
With Multiple Chip-Selects Two 8-bit SD (BT.656), Single 16-bit Video
Two Multimedia Card (MMC)/Secure Digital (SD) Display Channels
Card Interface with Secure Data I/O (SDIO) Universal Parallel Port (uPP):
Interfaces High-Speed Parallel Interface to FPGAs and
Two Master/Slave Inter-Integrated Circuit (I2CData Converters
Bus)Data Width on Each of Two Channels is 8- to
One Host-Port Interface (HPI) With 16-Bit-Wide 16-bit Inclusive
Muxed Address/Data Bus For High Bandwidth Single Data Rate or Dual Data Rate Transfers
Programmable Real-Time Unit Subsystem Supports Multiple Interfaces with START,
(PRUSS) ENABLE and WAIT Controls
Two Independent Programmable Realtime Serial ATA (SATA) Controller:
Unit (PRU) Cores Supports SATA I (1.5 Gbps) and SATA II (3.0
32-Bit Load/Store RISC architecture Gbps)
4K Byte instruction RAM per core Supports all SATA Power Management
512 Bytes data RAM per core Features
PRU Subsystem (PRUSS) can be disabled Hardware-Assisted Native Command
via software to save power Queueing (NCQ) for up to 32 Entries
Register 30 of each PRU is exported from Supports Port Multiplier and
the subsystem in addition to the normal Command-Based Switching
R31 output of the PRU cores. Real-Time Clock With 32 KHz Oscillator and
Standard power management mechanism Separate Power Rail
Clock gating Three 64-Bit General-Purpose Timers (Each
Entire subsystem under a single PSC Configurable as Two 32-Bit Timers)
clock gating domain One 64-bit General-Purpose/Watchdog Timer
Dedicated interrupt controller (Configurable as Two 32-bit General-Purpose
Dedicated switched central resource Timers)
2OMAP-L138 C6-IntegraDSP+ARM®Processor Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
Two Enhanced Pulse Width Modulators Configurable as 3 Capture Inputs or 3
(eHRPWM): Auxiliary Pulse Width Modulator (APWM)
outputs
Dedicated 16-Bit Time-Base Counter With
Period And Frequency Control Single Shot Capture of up to Four Event
Time-Stamps
6 Single Edge, 6 Dual Edge Symmetric or 3
Dual Edge Asymmetric Outputs 361-Ball Pb-Free Plastic Ball Grid Array (PBGA)
[ZCE Suffix], 0.65-mm Ball Pitch
Dead-Band Generation 361-Ball Pb-Free Plastic Ball Grid Array (PBGA)
PWM Chopping by High-Frequency Carrier [ZWT Suffix], 0.80-mm Ball Pitch
Trip Zone Input Commercial, Extended or Industrial
Three 32-Bit Enhanced Capture Modules Temperature
(eCAP):
1.2 Description
The OMAP-L138 C6-IntegraDSP+ARM®processor is a low-power applications processor based on an
ARM926EJ-Sand a C674x DSP core. It provides significantly lower power than other members of the
TMS320C6000platform of DSPs.
The device enables OEMs and ODMs to quickly bring to market devices featuring robust operating
systems support, rich user interfaces, and high processing performance life through the maximum
flexibility of a fully integrated mixed processor solution.
The dual-core architecture of the device provides benefits of both DSP and Reduced Instruction Set
Computer (RISC) technologies, incorporating a high-performance TMS320C674x DSP core and an
ARM926EJ-S core.
The ARM926EJ-S is a 32-bit RISC processor core that performs 32-bit or 16-bit instructions and
processes 32-bit, 16-bit, or 8-bit data. The core uses pipelining so that all parts of the processor and
memory system can operate continuously.
The ARM core has a coprocessor 15 (CP15), protection module, and Data and program Memory
Management Units (MMUs) with table look-aside buffers. It has separate 16K-byte instruction and
16K-byte data caches. Both are four-way associative with virtual index virtual tag (VIVT). The ARM core
also has a 8KB RAM (Vector Table) and 64KB ROM.
The device DSP core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a
32KB direct mapped cache and the Level 1 data cache (L1D) is a 32KB 2-way set-associative cache. The
Level 2 program cache (L2P) consists of a 256KB memory space that is shared between program and
data space. L2 memory can be configured as mapped memory, cache, or combinations of the two.
Although the DSP L2 is accessible by ARM and other hosts in the system, an additional 128KB RAM
shared memory is available for use by other hosts without affecting DSP performance.
The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC) with a Management Data Input/Output
(MDIO) module; one USB2.0 OTG interface; one USB1.1 OHCI interface; two inter-integrated circuit (I2C)
Bus interfaces; one multichannel audio serial port (McASP) with 16 serializers and FIFO buffers; two
multichannel buffered serial ports (McBSP) with FIFO buffers; two SPI interfaces with multiple chip
selects; four 64-bit general-purpose timers each configurable (one configurable as watchdog); a
configurable 16-bit host port interface (HPI) ; up to 9 banks of 16 pins of general-purpose input/output
(GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; three
UART interfaces (each with RTS and CTS); two enhanced high-resolution pulse width modulator
(eHRPWM) peripherals; 3 32-bit enhanced capture (eCAP) module peripherals which can be configured
as 3 capture inputs or 3 auxiliary pulse width modulator (APWM) outputs; and 2 external memory
interfaces: an asynchronous and SDRAM external memory interface (EMIFA) for slower memories or
peripherals, and a higher speed DDR2/Mobile DDR controller.
Copyright ©20092011, Texas Instruments Incorporated OMAP-L138 C6-IntegraDSP+ARM®Processor 3
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
The Ethernet Media Access Controller (EMAC) provides an efficient interface between the device and a
network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps
in either half- or full-duplex mode. Additionally an Management Data Input/Output (MDIO) interface is
available for PHY configuration. The EMAC supports both MII and RMII interfaces.
The SATA controller provides a high-speed interface to mass data storage devices. The SATA controller
supports both SATA I (1.5 Gbps) and SATA II (3.0 Gbps).
The Universal Parallel Port (uPP) provides a high-speed interface to many types of data converters,
FPGAs or other parallel devices. The UPP supports programmable data widths between 8- to 16-bits on
each of two channels. Single-data rate and double-data rate transfers are supported as well as START,
ENABLE and WAIT signals to provide control for a variety of data converters.
A Video Port Interface (VPIF) is included providing a flexible video input/output port.
The rich peripheral set provides the ability to control external peripheral devices and communicate with
external processors. For details on each of the peripherals, see the related sections later in this document
and the associated peripheral reference guides.
The device has a complete set of development tools for the ARM and DSP. These include C compilers, a
DSP assembly optimizer to simplify programming and scheduling, and a Windowsdebugger interface
for visibility into source code execution.
4OMAP-L138 C6-IntegraDSP+ARM®Processor Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
Switched Central Resource (SCR)
BOOT ROM
256KB L2 RAM
32KB
L1 RAM
32KB
L1 Pgm
16KB
I-Cache
16KB
D-Cache
AET
4KB ETB
C674x™
DSP CPU
ARM926EJ-S CPU
With MMU
DSP Subsystem
ARM Subsystem
JTAG Interface
System Control
Input
Clock(s)
64KB ROM
8KB RAM
(Vector Table)
Power/Sleep
Controller
Pin
Multiplexing
PLL/Clock
Generator
w/OSC
General-
Purpose
Timer (x4)
Serial Interfaces
Audio Ports
McASP
w/FIFO
DMA
Peripherals
Display Internal Memory
LCD
Ctlr
128KB
RAM
External Memory InterfacesConnectivity
EDMA3
(x2)
Control Timers
ePWM
(x2)
eCAP
(x3)
EMIFA(8b/16B)
NAND/Flash
16b SDRAM
DDR2/MDDR
Controller
RTC/
32-kHz
OSC
I C
(x2)
2SPI
(x2)
UART
(x3)
McBSP
(x2)
Video
VPIF
Parallel Port
uPP
EMAC
10/100
(MII/RMII)
MDIO
USB1.1
OHCI Ctlr
PHY
USB2.0
OTG Ctlr
PHY
HPI
MMC/SD
(8b)
(x2)
SATA
Customizable Interface
PRU Subsystem
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
1.3 Functional Block Diagram
(1) Note: Not all peripherals are available at the same time due to multiplexing.
Figure 1-1. Functional Block Diagram
Copyright ©20092011, Texas Instruments Incorporated OMAP-L138 C6-IntegraDSP+ARM®Processor 5
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
1 OMAP-L138 C6-IntegraDSP+ARM®Processor 5.7 Interrupts ............................................ 94
............................................................... 15.8 Power and Sleep Controller (PSC) ................ 104
1.1 Features .............................................. 15.9 EDMA ............................................. 109
5.10 External Memory Interface A (EMIFA) ............ 115
1.2 Description ........................................... 35.11 DDR2/mDDR Controller ........................... 127
1.3 Functional Block Diagram ............................ 55.12 Memory Protection Units .......................... 140
Revision History .............................................. 75.13 MMC / SD / SDIO (MMCSD0, MMCSD1) ......... 143
2 Device Overview ........................................ 95.14 Serial ATA Controller (SATA) ..................... 146
2.1 Device Characteristics ............................... 95.15 Multichannel Audio Serial Port (McASP) .......... 151
2.2 Device Compatibility ................................ 10 5.16 Multichannel Buffered Serial Port (McBSP) ....... 160
2.3 ARM Subsystem .................................... 10 5.17 Serial Peripheral Interface Ports (SPI0, SPI1) .... 169
2.4 DSP Subsystem .................................... 13 5.18 Inter-Integrated Circuit Serial Ports (I2C) ......... 191
2.5 Memory Map Summary ............................. 24 5.19 Universal Asynchronous Receiver/Transmitter
(UART) ............................................ 195
2.6 Pin Assignments .................................... 27 5.20 Universal Serial Bus OTG Controller (USB0)
2.7 Pin Multiplexing Control ............................ 30 [USB2.0 OTG] ..................................... 197
2.8 Terminal Functions ................................. 31 5.21 Universal Serial Bus Host Controller (USB1)
2.9 Unused Pin Configurations ......................... 72 [USB1.1 OHCI] .................................... 204
3 Device Configuration ................................. 74 5.22 Ethernet Media Access Controller (EMAC) ....... 205
3.1 Boot Modes ......................................... 74 5.23 Management Data Input/Output (MDIO) .......... 213
5.24 LCD Controller (LCDC) ............................ 215
3.2 SYSCFG Module ................................... 74 5.25 Host-Port Interface (UHPI) ........................ 230
3.3 Pullup/Pulldown Resistors .......................... 77 5.26 Universal Parallel Port (uPP) ...................... 238
4 Device Operating Conditions ....................... 78 5.27 Video Port Interface (VPIF) ....................... 243
4.1 Absolute Maximum Ratings Over Operating
Junction Temperature Range 5.28 Enhanced Capture (eCAP) Peripheral ............ 249
(Unless Otherwise Noted) ................................. 78 5.29 Enhanced High-Resolution Pulse-Width Modulator
(eHRPWM) ........................................ 252
4.2 Recommended Operating Conditions .............. 79 5.30 Timers ............................................. 257
4.3 Notes on Recommended Power-On Hours (POH) 5.31 Real Time Clock (RTC) ........................... 259
...................................................... 81
4.4 Electrical Characteristics Over Recommended 5.32 General-Purpose Input/Output (GPIO) ............ 262
Ranges of Supply Voltage and Operating Junction 5.33 Programmable Real-Time Unit Subsystem (PRUSS)
Temperature (Unless Otherwise Noted) ............ 82 ..................................................... 266
5 Peripheral Information and Electrical 5.34 Emulation Logic ................................... 269
Specifications .......................................... 83 6 Device and Documentation Support ............. 278
5.1 Parameter Information .............................. 83 6.1 Device Support .................................... 278
5.2 Recommended Clock and Control Signal Transition 6.2 Documentation Support ........................... 279
Behavior ............................................ 84 6.3 Community Resources ............................ 280
5.3 Power Supplies ..................................... 84 7 Mechanical Packaging and Orderable
5.4 Reset ............................................... 85 Information ............................................ 281
5.5 Crystal Oscillator or External Clock Input .......... 88 7.1 Thermal Data for ZCE Package ................... 281
5.6 Clock PLLs ......................................... 89 7.2 Thermal Data for ZWT Package .................. 282
6Contents Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
This data manual revision history highlights the changes made to the SPRS586B device-specific data
manual to make it an SPRS586C revision.
Revision History
See ADDITIONS/MODIFICATIONS/DELETIONS
Moved Documentation Support to Section 6, Device and Documentation Support.
Section 2 Table 2-1, Characteristics of OMAP-L138:
Device Overview Corrected DDR2 max to 156 MHz and mDDR max to 150 MHz.
Table 2-11, Serial Peripheral Interface (SPI) Terminal Functions:
Changed signal type to I/O for signal C16, C18, G17, and H17.
Table 2-14, Enhanced Pulse Width Modulator (eHRPWM) Terminal Functions:
Section 2.8
Terminal Functions Changed signal type to Input for signal A4, C16, and D2.
Table 2-22, Ethernet Media Access Controller (EMAC) Terminal Functions:
Changed signal type to I/O for signal W18.
Table 2-32, Unused USB0 and USB1 Signal Configurations:
Section 2.9
Unused Pin Configurations Updated USB1_DM and USB1_DP.
Section 4.1, Absolute Maximum Ratings Over Operating Junction Temperature Range:
Updated ESD Stress Voltage MAX values.
Section 4
Device Operating Conditions Section 4.2, Recommended Operating Conditions:
Added DVDD18 under Supply Voltage.
Section 5.3.1, Power-On Sequence:
Section 5.3 Changed step 1 regarding RTC (RTC_CVDD).
Power Supplies Changed VDDA_12_PLL0 to PLL0_VDDA, and VDDA_12_PLL1 to PLL1_VDDA in step 2b.
Section 5.6.1, PLL Device-Specific Information
Updated PLLn to PLL0 or PLL1, as appropriate in Figure 5-8.
Added paragraph below figure.
Section 5.6
Clock PLLs Updated PLLREF in Table 5-4.
Section 5.6.3, Dynamic Voltage and Frequency Scaling (DVFS):
Updated Maximum internal clock frequency specifications in Table 5-5.
Table 5-23, Timing Requirements for EMIFA Asynchronous Memory Interface:
Updated parameter E.
Table 5-24, Switching Characteristics for EMIFA Asynchronous Memory Interface:
Updated parameter 1.
Section 5.10.6
EMIFA Electrical Data/Timing Figure 5-14, Asynchronous Memory Read Timing for EMIFA:
Removed unused parameters 29 and 30.
Figure 5-15, Asynchronous Memory Write Timing for EMIFA:
Removed unused parameters 31 and 32.
Section 5.23.2 Table 5-107, Timing Requirements for (MDIO) Input:
Management Data Input/Output Updated parameters 4 and 5.
(MDIO) Electrical Data/Timing: Table 5-111, Switching Characteristics Over Recommended Operating Conditions for LCD LIDD
Section 5.24.1 Mode :
LCD Interface Display Driver
(LIDD Mode) Updated description for parameters 12 and 13 for LCD_PCLK.
Section 5.29 Table 5-127, eHRPWM Module Control and Status Registers Grouped by Submodule
Enhanced High-Resolution
Pulse-Width Modulator Updated offset addresses for HRCNFG.
(eHRPWM) Table 5-131, High Resolution PWM Characteristics at SYSCLKOUT = (60 - 100 MHz):
Section 5.29.2
Trip-Zone Input Timing Updated note regarding MEM step size.
Figure 5-85, Clock Source:
Section 5.31.1
Clock Source Replaced Real Time Clock with RTC Power Source.
Copyright ©20092011, Texas Instruments Incorporated Contents 7
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
Revision History (continued)
See ADDITIONS/MODIFICATIONS/DELETIONS
Section 6.1.2, Device Nomenclature:
Section 6.1
DeviceSupport Added note referring to Silicon B in Figure 6-1.
8Contents Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
2 Device Overview
2.1 Device Characteristics
Table 2-1 provides an overview of the device. The table shows significant features of the device, including
the capacity of on-chip RAM, peripherals, and the package type with pin count.
Table 2-1. Characteristics of OMAP-L138
HARDWARE FEATURES OMAP-L138
DDR2, 16-bit bus width, up to 156 MHz
DDR2/mDDR Controller Mobile DDR, 16-bit bus width, up to 150 MHz
Asynchronous (8/16-bit bus width) RAM, Flash,
EMIFA 16-bit SDRAM, NOR, NAND
Flash Card Interface 2 MMC and SD cards supported
64 independent channels, 16 QDMA channels,
EDMA3 2 channel controllers, 3 transfer controllers
4 64-Bit General Purpose (each configurable as 2 separate
Timers 32-bit timers, one configurable as Watch Dog)
UART 3 (each with RTS and CTS flow control)
SPI 2 (Each with one hardware chip select)
I2C 2 (both Master/Slave)
Peripherals Multichannel Audio Serial Port [McASP] 1 (each with transmit/receive, FIFO buffer, 16 serializers)
Not all peripherals pins Multichannel Buffered Serial Port [McBSP] 2 (each with transmit/receive, FIFO buffer, 16)
are available at the
same time (for more 10/100 Ethernet MAC with Management Data I/O 1 (MII or RMII Interface)
detail, see the Device 4 Single Edge, 4 Dual Edge Symmetric, or
Configurations section). eHRPWM 2 Dual Edge Asymmetric Outputs
eCAP 3 32-bit capture inputs or 3 32-bit auxiliary PWM outputs
UHPI 1 (16-bit multiplexed address/data)
USB 2.0 (USB0) High-Speed OTG Controller with on-chip OTG PHY
USB 1.1 (USB1) Full-Speed OHCI (as host) with on-chip PHY
General-Purpose Input/Output Port 9 banks of 16-bit
LCD Controller 1
SATA Controller 1 (Supports both SATA I and SATAII)
Universal Parallel Port (uPP) 1
Video Port Interface (VPIF) 1 (video in and video out)
PRU Subsystem (PRUSS) 2 Programmable PRU Cores
Size (Bytes) 488KB RAM
DSP
32KB L1 Program (L1P)/Cache (up to 32KB)
32KB L1 Data (L1D)/Cache (up to 32KB)
256KB Unified Mapped RAM/Cache (L2)
DSP Memories can be made accessible to ARM, EDMA3,
and other peripherals.
On-Chip Memory Organization ARM
16KB I-Cache
16KB D-Cache
8KB RAM (Vector Table)
64KB ROM
ADDITIONAL SHARED MEMORY
128KB RAM
C674x CPU ID + CPU Control Status Register (CSR.[31:16]) 0x1400
Rev ID
C674x Megamodule Revision ID Register (MM_REVID[15:0]) 0x0000
Revision
JTAG BSDL_ID DEVIDR0 Register 0x0B7D_102F
Copyright ©20092011, Texas Instruments Incorporated Device Overview 9
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
Table 2-1. Characteristics of OMAP-L138 (continued)
HARDWARE FEATURES OMAP-L138
674x DSP 375 MHz (1.2V) or 456 MHz (1.3V)
CPU Frequency MHz ARM926 375 MHz (1.2V) or 456 MHz (1.3V)
Variable (1.2V-1.0V) for 375 MHz version
Core (V) Variable (1.3V-1.0V) for 456 MHz version
Voltage I/O (V) 1.8V or 3.3 V
13 mm x 13 mm, 361-Ball 0.65 mm pitch, PBGA (ZCE)
Packages 16 mm x 16 mm, 361-Ball 0.80 mm pitch, PBGA (ZWT)
Product Preview (PP), 375 MHz versions - PD
Product Status(1) Advance Information (AI), 456 MHz versions - PD
or Production Data (PD)
(1) ADVANCE INFORMATION concerns new products in the sampling or preproduction phase of development. Characteristic data and
other specifications are subject to change without notice. PRODUCTION DATA information is current as of publication date. Products
conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include
testing of all parameters.
2.2 Device Compatibility
The ARM926EJ-S RISC CPU is compatible with other ARM9 CPUs from ARM Holdings plc.
The C674x DSP core is code-compatible with the C6000DSP platform and supports features of both
the C64x+ and C67x+ DSP families.
2.3 ARM Subsystem
The ARM Subsystem includes the following features:
ARM926EJ-S RISC processor
ARMv5TEJ (32/16-bit) instruction set
Little endian
System Control Co-Processor 15 (CP15)
MMU
16KB Instruction cache
16KB Data cache
Write Buffer
Embedded Trace Module and Embedded Trace Buffer (ETM/ETB)
ARM Interrupt controller
2.3.1 ARM926EJ-S RISC CPU
The ARM Subsystem integrates the ARM926EJ-S processor. The ARM926EJ-S processor is a member of
ARM9 family of general-purpose microprocessors. This processor is targeted at multi-tasking applications
where full memory management, high performance, low die size, and low power are all important. The
ARM926EJ-S processor supports the 32-bit ARM and 16 bit THUMB instruction sets, enabling the user to
trade off between high performance and high code density. Specifically, the ARM926EJ-S processor
supports the ARMv5TEJ instruction set, which includes features for efficient execution of Java byte codes,
providing Java performance similar to Just in Time (JIT) Java interpreter, but without associated code
overhead.
The ARM926EJ-S processor supports the ARM debug architecture and includes logic to assist in both
hardware and software debug. The ARM926EJ-S processor has a Harvard architecture and provides a
complete high performance subsystem, including:
ARM926EJ -S integer core
CP15 system control coprocessor
Memory Management Unit (MMU)
10 Device Overview Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
Separate instruction and data caches
Write buffer
Separate instruction and data (internal RAM) interfaces
Separate instruction and data AHB bus interfaces
Embedded Trace Module and Embedded Trace Buffer (ETM/ETB)
For more complete details on the ARM9, refer to the ARM926EJ-S Technical Reference Manual, available
at http://www.arm.com
2.3.2 CP15
The ARM926EJ-S system control coprocessor (CP15) is used to configure and control instruction and
data caches, Memory Management Unit (MMU), and other ARM subsystem functions. The CP15 registers
are programmed using the MRC and MCR ARM instructions, when the ARM in a privileged mode such as
supervisor or system mode.
2.3.3 MMU
A single set of two level page tables stored in main memory is used to control the address translation,
permission checks and memory region attributes for both data and instruction accesses. The MMU uses a
single unified Translation Lookaside Buffer (TLB) to cache the information held in the page tables. The
MMU features are:
Standard ARM architecture v4 and v5 MMU mapping sizes, domains and access protection scheme.
Mapping sizes are:
1MB (sections)
64KB (large pages)
4KB (small pages)
1KB (tiny pages)
Access permissions for large pages and small pages can be specified separately for each quarter of
the page (subpage permissions)
Hardware page table walks
Invalidate entire TLB, using CP15 register 8
Invalidate TLB entry, selected by MVA, using CP15 register 8
Lockdown of TLB entries, using CP15 register 10
2.3.4 Caches and Write Buffer
The size of the Instruction cache is 16KB, Data cache is 16KB. Additionally, the caches have the following
features:
Virtual index, virtual tag, and addressed using the Modified Virtual Address (MVA)
Four-way set associative, with a cache line length of eight words per line (32-bytes per line) and with
two dirty bits in the Dcache
Dcache supports write-through and write-back (or copy back) cache operation, selected by memory
region using the C and B bits in the MMU translation tables
Critical-word first cache refilling
Cache lockdown registers enable control over which cache ways are used for allocation on a line fill,
providing a mechanism for both lockdown, and controlling cache corruption
Dcache stores the Physical Address TAG (PA TAG) corresponding to each Dcache entry in the TAG
RAM for use during the cache line write-backs, in addition to the Virtual Address TAG stored in the
TAG RAM. This means that the MMU is not involved in Dcache write-back operations, removing the
possibility of TLB misses related to the write-back address.
Cache maintenance operations provide efficient invalidation of, the entire Dcache or Icache, regions of
the Dcache or Icache, and regions of virtual memory.
Copyright ©20092011, Texas Instruments Incorporated Device Overview 11
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
The write buffer is used for all writes to a noncachable bufferable region, write-through region and write
misses to a write-back region. A separate buffer is incorporated in the Dcache for holding write-back for
cache line evictions or cleaning of dirty cache lines. The main write buffer has 16-word data buffer and a
four-address buffer. The Dcache write-back has eight data word entries and a single address entry.
2.3.5 Advanced High-Performance Bus (AHB)
The ARM Subsystem uses the AHB port of the ARM926EJ-S to connect the ARM to the Config bus and
the external memories. Arbiters are employed to arbitrate access to the separate D-AHB and I-AHB by the
Config Bus and the external memories bus.
2.3.6 Embedded Trace Macrocell (ETM) and Embedded Trace Buffer (ETB)
To support real-time trace, the ARM926EJ-S processor provides an interface to enable connection of an
Embedded Trace Macrocell (ETM). The ARM926ES-J Subsystem in the device also includes the
Embedded Trace Buffer (ETB). The ETM consists of two parts:
Trace Port provides real-time trace capability for the ARM9.
Triggering facilities provide trigger resources, which include address and data comparators, counter,
and sequencers.
The device trace port is not pinned out and is instead only connected to the Embedded Trace Buffer. The
ETB has a 4KB buffer memory. ETB enabled debug tools are required to read/interpret the captured trace
data.
2.3.7 ARM Memory Mapping
By default the ARM has access to most on and off chip memory areas, including the DSP Internal
memories, EMIFA, DDR2, and the additional 128K byte on chip shared SRAM. Likewise almost all of the
on chip peripherals are accessible to the ARM by default.
See Table 2-4 for a detailed top level device memory map that includes the ARM memory space.
12 Device Overview Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
Instruction Fetch
C674x
Fixed/Floating Point CPU
Register
File A
Register
File B
Cache Control
Memory Protect
Bandwidth Mgmt
L1P
256
Cache Control
Memory Protect
Bandwidth Mgmt
L1D
64 64
8 x 32
32K Bytes
L1D RAM/
Cache
32K Bytes
L1P RAM/
Cache
256
Cache Control
Memory Protect
Bandwidth Mgmt
L2
256K Bytes
L2 RAM
256
BOOT
ROM
256
CFG
MDMA SDMA
EMC
Power Down
Interrupt
Controller
IDMA
256
256
256
256
256
64
High
Performance
Switch Fabric
64 64 64
Configuration
Peripherals
Bus
32
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
2.4 DSP Subsystem
The DSP Subsystem includes the following features:
C674x DSP CPU
32KB L1 Program (L1P)/Cache (up to 32KB)
32KB L1 Data (L1D)/Cache (up to 32KB)
256KB Unified Mapped RAM/Cache (L2)
Boot ROM (cannot be used for application code)
Little endian
Figure 2-1. C674x Megamodule Block Diagram
Copyright ©20092011, Texas Instruments Incorporated Device Overview 13
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
2.4.1 C674x DSP CPU Description
The C674x Central Processing Unit (CPU) consists of eight functional units, two register files, and two
data paths as shown in Figure 2-2. The two general-purpose register files (A and B) each contain
32 32-bit registers for a total of 64 registers. The general-purpose registers can be used for data or can be
data address pointers. The data types supported include packed 8-bit data, packed 16-bit data, 32-bit
data, 40-bit data, and 64-bit data. Values larger than 32 bits, such as 40-bit-long or 64-bit-long values are
stored in register pairs, with the 32 LSBs of data placed in an even register and the remaining 8 or
32 MSBs in the next upper register (which is always an odd-numbered register).
The eight functional units (.M1, .L1, .D1, .S1, .M2, .L2, .D2, and .S2) are each capable of executing one
instruction every clock cycle. The .M functional units perform all multiply operations. The .S and .L units
perform a general set of arithmetic, logical, and branch functions. The .D units primarily load data from
memory to the register file and store results from the register file into memory.
The C674x CPU combines the performance of the C64x+ core with the floating-point capabilities of the
C67x+ core.
Each C674x .M unit can perform one of the following each clock cycle: one 32 x 32 bit multiply, one 16 x
32 bit multiply, two 16 x 16 bit multiplies, two 16 x 32 bit multiplies, two 16 x 16 bit multiplies with
add/subtract capabilities, four 8 x 8 bit multiplies, four 8 x 8 bit multiplies with add operations, and four
16 x 16 multiplies with add/subtract capabilities (including a complex multiply). There is also support for
Galois field multiplication for 8-bit and 32-bit data. Many communications algorithms such as FFTs and
modems require complex multiplication. The complex multiply (CMPY) instruction takes for 16-bit inputs
and produces a 32-bit real and a 32-bit imaginary output. There are also complex multiplies with rounding
capability that produces one 32-bit packed output that contain 16-bit real and 16-bit imaginary values. The
32 x 32 bit multiply instructions provide the extended precision necessary for high-precision algorithms on
a variety of signed and unsigned 32-bit data types.
The .L or (Arithmetic Logic Unit) now incorporates the ability to do parallel add/subtract operations on a
pair of common inputs. Versions of this instruction exist to work on 32-bit data or on pairs of 16-bit data
performing dual 16-bit add and subtracts in parallel. There are also saturated forms of these instructions.
The C674x core enhances the .S unit in several ways. On the previous cores, dual 16-bit MIN2 and MAX2
comparisons were only available on the .L units. On the C674x core they are also available on the .S unit
which increases the performance of algorithms that do searching and sorting. Finally, to increase data
packing and unpacking throughput, the .S unit allows sustained high performance for the quad 8-bit/16-bit
and dual 16-bit instructions. Unpack instructions prepare 8-bit data for parallel 16-bit operations. Pack
instructions return parallel results to output precision including saturation support.
Other new features include:
SPLOOP - A small instruction buffer in the CPU that aids in creation of software pipelining loops where
multiple iterations of a loop are executed in parallel. The SPLOOP buffer reduces the code size
associated with software pipelining. Furthermore, loops in the SPLOOP buffer are fully interruptible.
Compact Instructions - The native instruction size for the C6000 devices is 32 bits. Many common
instructions such as MPY, AND, OR, ADD, and SUB can be expressed as 16 bits if the C674x
compiler can restrict the code to use certain registers in the register file. This compression is
performed by the code generation tools.
Instruction Set Enhancement - As noted above, there are new instructions such as 32-bit
multiplications, complex multiplications, packing, sorting, bit manipulation, and 32-bit Galois field
multiplication.
Exceptions Handling - Intended to aid the programmer in isolating bugs. The C674x CPU is able to
detect and respond to exceptions, both from internally detected sources (such as illegal op-codes) and
from system events (such as a watchdog time expiration).
Privilege - Defines user and supervisor modes of operation, allowing the operating system to give a
basic level of protection to sensitive resources. Local memory is divided into multiple pages, each with
read, write, and execute permissions.
14 Device Overview Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
Time-Stamp Counter - Primarily targeted for Real-Time Operating System (RTOS) robustness, a
free-running time-stamp counter is implemented in the CPU which is not sensitive to system stalls.
For more details on the C674x CPU and its enhancements over the C64x architecture, see the following
documents:
TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRUFE8)
TMS320C64x Technical Overview (literature number SPRU395)
Copyright ©20092011, Texas Instruments Incorporated Device Overview 15
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
src2
src2
Á
Á
Á
Á
Á
Á
Á
.D1
.M1
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
.S1
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
.L1
long src
odd dst
src2
src1
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
src1
src1
src1
even dst
even dst
odd dst
dst1
dst
src2
src2
src2
long src
DA1
ST1b
LD1b
LD1a
ST1a
Data path A
Odd
register
file A
(A1, A3,
A5...A31)
Á
Á
Á
Odd
register
file B
(B1, B3,
B5...B31)
Á
Á
Á
.D2
Á
Á
Á
Á
src1
dst
src2
DA2
LD2a
LD2b
src2
.M2 src1
Á
Á
Á
dst1
Á
Á
Á
.S2 src1
Á
Á
Á
Á
even dst
long src
odd dst
ST2a
ST2b
long src
.L2
Á
Á
Á
Á
even dst
odd dst
Á
Á
Á
src1
Data path B
Control Register
32 MSB
32 LSB
dst2 (A)
32 MSB
32 LSB
2x
1x
32 LSB
32 MSB
32 LSB
32 MSB
dst2
(B)
(B)
(A)
8
8
8
8
32
32
32
32
(C)
(C)
Even
register
file A
(A0, A2,
A4...A30)
Even
register
file B
(B0, B2,
B4...B30)
(D)
(D)
(D)
(D)
A. On .M unit, dst2 is 32 MSB.
B. On .M unit, dst1 is 32 LSB.
C. On C64x CPU .M unit, src2 is 32 bits; on C64x+ CPU .M unit, src2 is 64 bits.
D. On .L and .S units, odd dst connects to odd register files and even dst connects to even register files.
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
Figure 2-2. TMS320C674x CPU (DSP Core) Data Paths
16 Device Overview Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
2.4.2 DSP Memory Mapping
The DSP memory map is shown in Section 2.5.
By default the DSP also has access to most on and off chip memory areas, with the exception of the ARM
RAM, ROM, and AINTC interrupt controller.
Additionally, the DSP megamodule includes the capability to limit access to its internal memories through
its SDMA port; without needing an external MPU unit.
2.4.2.1 ARM Internal Memories
The DSP does not have access to the ARM internal memory.
2.4.2.2 External Memories
The DSP has access to the following External memories:
Asynchronous EMIF / SDRAM / NAND / NOR Flash (EMIFA)
SDRAM (DDR2)
2.4.2.3 DSP Internal Memories
The DSP has access to the following DSP memories:
L2 RAM
L1P RAM
L1D RAM
2.4.2.4 C674x CPU
The C674x core uses a two-level cache-based architecture. The Level 1 Program cache (L1P) is 32 KB
direct mapped cache and the Level 1 Data cache (L1D) is 32 KB 2-way set associated cache. The Level 2
memory/cache (L2) consists of a 256 KB memory space that is shared between program and data space.
L2 memory can be configured as mapped memory, cache, or a combination of both.
Table 2-2 shows a memory map of the C674x CPU cache registers for the device.
Table 2-2. C674x Cache Registers
Byte Address Register Name Register Description
0x0184 0000 L2CFG L2 Cache configuration register
0x0184 0020 L1PCFG L1P Size Cache configuration register
0x0184 0024 L1PCC L1P Freeze Mode Cache configuration register
0x0184 0040 L1DCFG L1D Size Cache configuration register
0x0184 0044 L1DCC L1D Freeze Mode Cache configuration register
0x0184 0048 - 0x0184 0FFC - Reserved
0x0184 1000 EDMAWEIGHT L2 EDMA access control register
0x0184 1004 - 0x0184 1FFC - Reserved
0x0184 2000 L2ALLOC0 L2 allocation register 0
0x0184 2004 L2ALLOC1 L2 allocation register 1
0x0184 2008 L2ALLOC2 L2 allocation register 2
0x0184 200C L2ALLOC3 L2 allocation register 3
0x0184 2010 - 0x0184 3FFF - Reserved
0x0184 4000 L2WBAR L2 writeback base address register
0x0184 4004 L2WWC L2 writeback word count register
0x0184 4010 L2WIBAR L2 writeback invalidate base address register
0x0184 4014 L2WIWC L2 writeback invalidate word count register
0x0184 4018 L2IBAR L2 invalidate base address register
Copyright ©20092011, Texas Instruments Incorporated Device Overview 17
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
Table 2-2. C674x Cache Registers (continued)
Byte Address Register Name Register Description
0x0184 401C L2IWC L2 invalidate word count register
0x0184 4020 L1PIBAR L1P invalidate base address register
0x0184 4024 L1PIWC L1P invalidate word count register
0x0184 4030 L1DWIBAR L1D writeback invalidate base address register
0x0184 4034 L1DWIWC L1D writeback invalidate word count register
0x0184 4038 - Reserved
0x0184 4040 L1DWBAR L1D Block Writeback
0x0184 4044 L1DWWC L1D Block Writeback
0x0184 4048 L1DIBAR L1D invalidate base address register
0x0184 404C L1DIWC L1D invalidate word count register
0x0184 4050 - 0x0184 4FFF - Reserved
0x0184 5000 L2WB L2 writeback all register
0x0184 5004 L2WBINV L2 writeback invalidate all register
0x0184 5008 L2INV L2 Global Invalidate without writeback
0x0184 500C - 0x0184 5027 - Reserved
0x0184 5028 L1PINV L1P Global Invalidate
0x0184 502C - 0x0184 5039 - Reserved
0x0184 5040 L1DWB L1D Global Writeback
0x0184 5044 L1DWBINV L1D Global Writeback with Invalidate
0x0184 5048 L1DINV L1D Global Invalidate without writeback
0x0184 8000 0x0184 80FF MAR0 - MAR63 Reserved 0x0000 0000 0x3FFF FFFF
Memory Attribute Registers for EMIFA SDRAM Data (CS0)
0x0184 8100 0x0184 817F MAR64 MAR95 External memory addresses 0x4000 0000 0x5FFF FFFF
Memory Attribute Registers for EMIFA Async Data (CS2)
0x0184 8180 0x0184 8187 MAR96 - MAR97 External memory addresses 0x6000 0000 0x61FF FFFF
Memory Attribute Registers for EMIFA Async Data (CS3)
0x0184 8188 0x0184 818F MAR98 MAR99 External memory addresses 0x6200 0000 0x63FF FFFF
Memory Attribute Registers for EMIFA Async Data (CS4)
0x0184 8190 0x0184 8197 MAR100 MAR101 External memory addresses 0x6400 0000 0x65FF FFFF
Memory Attribute Registers for EMIFA Async Data (CS5)
0x0184 8198 0x0184 819F MAR102 MAR103 External memory addresses 0x6600 0000 0x67FF FFFF
0x0184 81A0 0x0184 81FF MAR104 MAR127 Reserved 0x6800 0000 0x7FFF FFFF
Memory Attribute Register for Shared RAM
External memory addresses 0x8000 0000 0x8001 FFFF
0x0184 8200 MAR128 Reserved 0x8002 0000 0x81FF FFFF
0x0184 8204 0x0184 82FF MAR129 MAR191 Reserved 0x8200 0000 0xBFFF FFFF
Memory Attribute Registers for DDR2 Data (CS2)
0x0184 8300 0x0184 837F MAR192 MAR223 External memory addresses 0xC000 0000 0xDFFF FFFF
0x0184 8380 0x0184 83FF MAR224 MAR255 Reserved 0xE000 0000 0xFFFF FFFF
Table 2-3. C674x L1/L2 Memory Protection Registers
HEX ADDRESS RANGE REGISTER ACRONYM DESCRIPTION
0x0184 A000 L2MPFAR L2 memory protection fault address register
0x0184 A004 L2MPFSR L2 memory protection fault status register
0x0184 A008 L2MPFCR L2 memory protection fault command register
0x0184 A00C - 0x0184 A0FF - Reserved
0x0184 A100 L2MPLK0 L2 memory protection lock key bits [31:0]
0x0184 A104 L2MPLK1 L2 memory protection lock key bits [63:32]
0x0184 A108 L2MPLK2 L2 memory protection lock key bits [95:64]
18 Device Overview Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
Table 2-3. C674x L1/L2 Memory Protection Registers (continued)
HEX ADDRESS RANGE REGISTER ACRONYM DESCRIPTION
0x0184 A10C L2MPLK3 L2 memory protection lock key bits [127:96]
0x0184 A110 L2MPLKCMD L2 memory protection lock key command register
0x0184 A114 L2MPLKSTAT L2 memory protection lock key status register
0x0184 A118 - 0x0184 A1FF - Reserved
L2 memory protection page attribute register 0 (controls memory address
0x0184 A200 L2MPPA0 0x0080 0000 - 0x0080 1FFF)
L2 memory protection page attribute register 1 (controls memory address
0x0184 A204 L2MPPA1 0x0080 2000 - 0x0080 3FFF)
L2 memory protection page attribute register 2 (controls memory address
0x0184 A208 L2MPPA2 0x0080 4000 - 0x0080 5FFF)
L2 memory protection page attribute register 3 (controls memory address
0x0184 A20C L2MPPA3 0x0080 6000 - 0x0080 7FFF)
L2 memory protection page attribute register 4 (controls memory address
0x0184 A210 L2MPPA4 0x0080 8000 - 0x0080 9FFF)
L2 memory protection page attribute register 5 (controls memory address
0x0184 A214 L2MPPA5 0x0080 A000 - 0x0080 BFFF)
L2 memory protection page attribute register 6 (controls memory address
0x0184 A218 L2MPPA6 0x0080 C000 - 0x0080 DFFF)
L2 memory protection page attribute register 7 (controls memory address
0x0184 A21C L2MPPA7 0x0080 E000 - 0x0080 FFFF)
L2 memory protection page attribute register 8 (controls memory address
0x0184 A220 L2MPPA8 0x0081 0000 - 0x0081 1FFF)
L2 memory protection page attribute register 9 (controls memory address
0x0184 A224 L2MPPA9 0x0081 2000 - 0x0081 3FFF)
L2 memory protection page attribute register 10 (controls memory address
0x0184 A228 L2MPPA10 0x0081 4000 - 0x0081 5FFF)
L2 memory protection page attribute register 11 (controls memory address
0x0184 A22C L2MPPA11 0x0081 6000 - 0x0081 7FFF)
L2 memory protection page attribute register 12 (controls memory address
0x0184 A230 L2MPPA12 0x0081 8000 - 0x0081 9FFF)
L2 memory protection page attribute register 13 (controls memory address
0x0184 A234 L2MPPA13 0x0081 A000 - 0x0081 BFFF)
L2 memory protection page attribute register 14 (controls memory address
0x0184 A238 L2MPPA14 0x0081 C000 - 0x0081 DFFF)
L2 memory protection page attribute register 15 (controls memory address
0x0184 A23C L2MPPA15 0x0081 E000 - 0x0081 FFFF)
L2 memory protection page attribute register 16 (controls memory address
0x0184 A240 L2MPPA16 0x0082 0000 - 0x0082 1FFF)
L2 memory protection page attribute register 17 (controls memory address
0x0184 A244 L2MPPA17 0x0082 2000 - 0x0082 3FFF)
L2 memory protection page attribute register 18 (controls memory address
0x0184 A248 L2MPPA18 0x0082 4000 - 0x0082 5FFF)
L2 memory protection page attribute register 19 (controls memory address
0x0184 A24C L2MPPA19 0x0082 6000 - 0x0082 7FFF)
L2 memory protection page attribute register 20 (controls memory address
0x0184 A250 L2MPPA20 0x0082 8000 - 0x0082 9FFF)
L2 memory protection page attribute register 21 (controls memory address
0x0184 A254 L2MPPA21 0x0082 A000 - 0x0082 BFFF)
L2 memory protection page attribute register 22 (controls memory address
0x0184 A258 L2MPPA22 0x0082 C000 - 0x0082 DFFF)
L2 memory protection page attribute register 23 (controls memory address
0x0184 A25C L2MPPA23 0x0082 E000 - 0x0082 FFFF)
L2 memory protection page attribute register 24 (controls memory address
0x0184 A260 L2MPPA24 0x0083 0000 - 0x0083 1FFF)
Copyright ©20092011, Texas Instruments Incorporated Device Overview 19
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
Table 2-3. C674x L1/L2 Memory Protection Registers (continued)
HEX ADDRESS RANGE REGISTER ACRONYM DESCRIPTION
L2 memory protection page attribute register 25 (controls memory address
0x0184 A264 L2MPPA25 0x0083 2000 - 0x0083 3FFF)
L2 memory protection page attribute register 26 (controls memory address
0x0184 A268 L2MPPA26 0x0083 4000 - 0x0083 5FFF)
L2 memory protection page attribute register 27 (controls memory address
0x0184 A26C L2MPPA27 0x0083 6000 - 0x0083 7FFF)
L2 memory protection page attribute register 28 (controls memory address
0x0184 A270 L2MPPA28 0x0083 8000 - 0x0083 9FFF)
L2 memory protection page attribute register 29 (controls memory address
0x0184 A274 L2MPPA29 0x0083 A000 - 0x0083 BFFF)
L2 memory protection page attribute register 30 (controls memory address
0x0184 A278 L2MPPA30 0x0083 C000 - 0x0083 DFFF)
L2 memory protection page attribute register 31 (controls memory address
0x0184 A27C L2MPPA31 0x0083 E000 - 0x0083 FFFF)
L2 memory protection page attribute register 32 (controls memory address
0x0184 A280 L2MPPA32 0x0070 0000 - 0x0070 7FFF)
L2 memory protection page attribute register 33 (controls memory address
0x0184 A284 L2MPPA33 0x0070 8000 - 0x0070 FFFF)
L2 memory protection page attribute register 34 (controls memory address
0x0184 A288 L2MPPA34 0x0071 0000 - 0x0071 7FFF)
L2 memory protection page attribute register 35 (controls memory address
0x0184 A28C L2MPPA35 0x0071 8000 - 0x0071 FFFF)
L2 memory protection page attribute register 36 (controls memory address
0x0184 A290 L2MPPA36 0x0072 0000 - 0x0072 7FFF)
L2 memory protection page attribute register 37 (controls memory address
0x0184 A294 L2MPPA37 0x0072 8000 - 0x0072 FFFF)
L2 memory protection page attribute register 38 (controls memory address
0x0184 A298 L2MPPA38 0x0073 0000 - 0x0073 7FFF)
L2 memory protection page attribute register 39 (controls memory address
0x0184 A29C L2MPPA39 0x0073 8000 - 0x0073 FFFF)
L2 memory protection page attribute register 40 (controls memory address
0x0184 A2A0 L2MPPA40 0x0074 0000 - 0x0074 7FFF)
L2 memory protection page attribute register 41 (controls memory address
0x0184 A2A4 L2MPPA41 0x0074 8000 - 0x0074 FFFF)
L2 memory protection page attribute register 42 (controls memory address
0x0184 A2A8 L2MPPA42 0x0075 0000 - 0x0075 7FFF)
L2 memory protection page attribute register 43 (controls memory address
0x0184 A2AC L2MPPA43 0x0075 8000 - 0x0075 FFFF)
L2 memory protection page attribute register 44 (controls memory address
0x0184 A2B0 L2MPPA44 0x0076 0000 - 0x0076 7FFF)
L2 memory protection page attribute register 45 (controls memory address
0x0184 A2B4 L2MPPA45 0x0076 8000 - 0x0076 FFFF)
L2 memory protection page attribute register 46 (controls memory address
0x0184 A2B8 L2MPPA46 0x0077 0000 - 0x0077 7FFF)
L2 memory protection page attribute register 47 (controls memory address
0x0184 A2BC L2MPPA47 0x0077 8000 - 0x0077 FFFF)
L2 memory protection page attribute register 48 (controls memory address
0x0184 A2C0 L2MPPA48 0x0078 0000 - 0x0078 7FFF)
L2 memory protection page attribute register 49 (controls memory address
0x0184 A2C4 L2MPPA49 0x0078 8000 - 0x0078 FFFF)
L2 memory protection page attribute register 50 (controls memory address
0x0184 A2C8 L2MPPA50 0x0079 0000 - 0x0079 7FFF)
L2 memory protection page attribute register 51 (controls memory address
0x0184 A2CC L2MPPA51 0x0079 8000 - 0x0079 FFFF)
L2 memory protection page attribute register 52 (controls memory address
0x0184 A2D0 L2MPPA52 0x007A 0000 - 0x007A 7FFF)
20 Device Overview Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
Table 2-3. C674x L1/L2 Memory Protection Registers (continued)
HEX ADDRESS RANGE REGISTER ACRONYM DESCRIPTION
L2 memory protection page attribute register 53 (controls memory address
0x0184 A2D4 L2MPPA53 0x007A 8000 - 0x007A FFFF)
L2 memory protection page attribute register 54 (controls memory address
0x0184 A2D8 L2MPPA54 0x007B 0000 - 0x007B 7FFF)
L2 memory protection page attribute register 55 (controls memory address
0x0184 A2DC L2MPPA55 0x007B 8000 - 0x007B FFFF)
L2 memory protection page attribute register 56 (controls memory address
0x0184 A2E0 L2MPPA56 0x007C 0000 - 0x007C 7FFF)
L2 memory protection page attribute register 57 (controls memory address
0x0184 A2E4 L2MPPA57 0x007C 8000 - 0x007C FFFF)
L2 memory protection page attribute register 58 (controls memory address
0x0184 A2E8 L2MPPA58 0x007D 0000 - 0x007D 7FFF)
L2 memory protection page attribute register 59 (controls memory address
0x0184 A2EC L2MPPA59 0x007D 8000 - 0x007D FFFF)
L2 memory protection page attribute register 60 (controls memory address
0x0184 A2F0 L2MPPA60 0x007E 0000 - 0x007E 7FFF)
L2 memory protection page attribute register 61 (controls memory address
0x0184 A2F4 L2MPPA61 0x007E 8000 - 0x007E FFFF)
L2 memory protection page attribute register 62 (controls memory address
0x0184 A2F8 L2MPPA62 0x007F 0000 - 0x007F 7FFF)
L2 memory protection page attribute register 63 (controls memory address
0x0184 A2FC L2MPPA63 0x007F 8000 - 0x007F FFFF)
0x0184 A300 - 0x0184 A3FF - Reserved
0x0184 A400 L1PMPFAR L1P memory protection fault address register
0x0184 A404 L1PMPFSR L1P memory protection fault status register
0x0184 A408 L1PMPFCR L1P memory protection fault command register
0x0184 A40C - 0x0184 A4FF - Reserved
0x0184 A500 L1PMPLK0 L1P memory protection lock key bits [31:0]
0x0184 A504 L1PMPLK1 L1P memory protection lock key bits [63:32]
0x0184 A508 L1PMPLK2 L1P memory protection lock key bits [95:64]
0x0184 A50C L1PMPLK3 L1P memory protection lock key bits [127:96]
0x0184 A510 L1PMPLKCMD L1P memory protection lock key command register
0x0184 A514 L1PMPLKSTAT L1P memory protection lock key status register
0x0184 A518 - 0x0184 A5FF - Reserved
0x0184 A600 - 0x0184 A63F - Reserved (1)
L1P memory protection page attribute register 16 (controls memory address
0x0184 A640 L1PMPPA16 0x00E0 0000 - 0x00E0 07FF)
L1P memory protection page attribute register 17 (controls memory address
0x0184 A644 L1PMPPA17 0x00E0 0800 - 0x00E0 0FFF)
L1P memory protection page attribute register 18 (controls memory address
0x0184 A648 L1PMPPA18 0x00E0 1000 - 0x00E0 17FF)
L1P memory protection page attribute register 19 (controls memory address
0x0184 A64C L1PMPPA19 0x00E0 1800 - 0x00E0 1FFF)
L1P memory protection page attribute register 20 (controls memory address
0x0184 A650 L1PMPPA20 0x00E0 2000 - 0x00E0 27FF)
L1P memory protection page attribute register 21 (controls memory address
0x0184 A654 L1PMPPA21 0x00E0 2800 - 0x00E0 2FFF)
L1P memory protection page attribute register 22 (controls memory address
0x0184 A658 L1PMPPA22 0x00E0 3000 - 0x00E0 37FF)
L1P memory protection page attribute register 23 (controls memory address
0x0184 A65C L1PMPPA23 0x00E0 3800 - 0x00E0 3FFF)
(1) These addresses correspond to the L1P memory protection page attribute registers 0-15 (L1PMPPA0-L1PMPPA15) of the C674x
megamaodule. These registers are not supported for this device.
Copyright ©20092011, Texas Instruments Incorporated Device Overview 21
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
Table 2-3. C674x L1/L2 Memory Protection Registers (continued)
HEX ADDRESS RANGE REGISTER ACRONYM DESCRIPTION
L1P memory protection page attribute register 24 (controls memory address
0x0184 A660 L1PMPPA24 0x00E0 4000 - 0x00E0 47FF)
L1P memory protection page attribute register 25 (controls memory address
0x0184 A664 L1PMPPA25 0x00E0 4800 - 0x00E0 4FFF)
L1P memory protection page attribute register 26 (controls memory address
0x0184 A668 L1PMPPA26 0x00E0 5000 - 0x00E0 57FF)
L1P memory protection page attribute register 27 (controls memory address
0x0184 A66C L1PMPPA27 0x00E0 5800 - 0x00E0 5FFF)
L1P memory protection page attribute register 28 (controls memory address
0x0184 A670 L1PMPPA28 0x00E0 6000 - 0x00E0 67FF)
L1P memory protection page attribute register 29 (controls memory address
0x0184 A674 L1PMPPA29 0x00E0 6800 - 0x00E0 6FFF)
L1P memory protection page attribute register 30 (controls memory address
0x0184 A678 L1PMPPA30 0x00E0 7000 - 0x00E0 77FF)
L1P memory protection page attribute register 31 (controls memory address
0x0184 A67C L1PMPPA31 0x00E0 7800 - 0x00E0 7FFF)
0x0184 A67F 0x0184 ABFF - Reserved
0x0184 AC00 L1DMPFAR L1D memory protection fault address register
0x0184 AC04 L1DMPFSR L1D memory protection fault status register
0x0184 AC08 L1DMPFCR L1D memory protection fault command register
0x0184 AC0C - 0x0184 ACFF - Reserved
0x0184 AD00 L1DMPLK0 L1D memory protection lock key bits [31:0]
0x0184 AD04 L1DMPLK1 L1D memory protection lock key bits [63:32]
0x0184 AD08 L1DMPLK2 L1D memory protection lock key bits [95:64]
0x0184 AD0C L1DMPLK3 L1D memory protection lock key bits [127:96]
0x0184 AD10 L1DMPLKCMD L1D memory protection lock key command register
0x0184 AD14 L1DMPLKSTAT L1D memory protection lock key status register
0x0184 AD18 - 0x0184 ADFF - Reserved
0x0184 AE00 - 0x0184 AE3F - Reserved (2)
L1D memory protection page attribute register 16 (controls memory address
0x0184 AE40 L1DMPPA16 0x00F0 0000 - 0x00F0 07FF)
L1D memory protection page attribute register 17 (controls memory address
0x0184 AE44 L1DMPPA17 0x00F0 0800 - 0x00F0 0FFF)
L1D memory protection page attribute register 18 (controls memory address
0x0184 AE48 L1DMPPA18 0x00F0 1000 - 0x00F0 17FF)
L1D memory protection page attribute register 19 (controls memory address
0x0184 AE4C L1DMPPA19 0x00F0 1800 - 0x00F0 1FFF)
L1D memory protection page attribute register 20 (controls memory address
0x0184 AE50 L1DMPPA20 0x00F0 2000 - 0x00F0 27FF)
L1D memory protection page attribute register 21 (controls memory address
0x0184 AE54 L1DMPPA21 0x00F0 2800 - 0x00F0 2FFF)
L1D memory protection page attribute register 22 (controls memory address
0x0184 AE58 L1DMPPA22 0x00F0 3000 - 0x00F0 37FF)
L1D memory protection page attribute register 23 (controls memory address
0x0184 AE5C L1DMPPA23 0x00F0 3800 - 0x00F0 3FFF)
L1D memory protection page attribute register 24 (controls memory address
0x0184 AE60 L1DMPPA24 0x00F0 4000 - 0x00F0 47FF)
L1D memory protection page attribute register 25 (controls memory address
0x0184 AE64 L1DMPPA25 0x00F0 4800 - 0x00F0 4FFF)
L1D memory protection page attribute register 26 (controls memory address
0x0184 AE68 L1DMPPA26 0x00F0 5000 - 0x00F0 57FF)
(2) These addresses correspond to the L1D memory protection page attribute registers 0-15 (L1DMPPA0-L1DMPPA15) of the C674x
megamaodule. These registers are not supported for this device.
22 Device Overview Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
Table 2-3. C674x L1/L2 Memory Protection Registers (continued)
HEX ADDRESS RANGE REGISTER ACRONYM DESCRIPTION
L1D memory protection page attribute register 27 (controls memory address
0x0184 AE6C L1DMPPA27 0x00F0 5800 - 0x00F0 5FFF)
L1D memory protection page attribute register 28 (controls memory address
0x0184 AE70 L1DMPPA28 0x00F0 6000 - 0x00F0 67FF)
L1D memory protection page attribute register 29 (controls memory address
0x0184 AE74 L1DMPPA29 0x00F0 6800 - 0x00F0 6FFF)
L1D memory protection page attribute register 30 (controls memory address
0x0184 AE78 L1DMPPA30 0x00F0 7000 - 0x00F0 77FF)
L1D memory protection page attribute register 31 (controls memory address
0x0184 AE7C L1DMPPA31 0x00F0 7800 - 0x00F0 7FFF)
0x0184 AE80 0x0185 FFFF - Reserved
Copyright ©20092011, Texas Instruments Incorporated Device Overview 23
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
2.5 Memory Map Summary
Table 2-4. Top Level Memory Map
Start Address End Address Size ARM Mem DSP Mem Map EDMA Mem PRUSS Mem Master LCDC
Map Map Map Peripheral Mem
Mem Map Map
0x0000 0000 0x0000 0FFF 4K PRUSS Local
Address Space
0x0000 1000 0x006F FFFF
0x0070 0000 0x007F FFFF 1024K DSP L2 ROM (1)
0x0080 0000 0x0083 FFFF 256K DSP L2 RAM
0x0084 0000 0x00DF FFFF
0x00E0 0000 0x00E0 7FFF 32K DSP L1P RAM
0x00E0 8000 0x00EF FFFF
0x00F0 0000 0x00F0 7FFF 32K DSP L1D RAM
0x00F0 8000 0x017F FFFF
0x0180 0000 0x0180 FFFF 64K DSP Interrupt
Controller
0x0181 0000 0x0181 0FFF 4K DSP Powerdown
Controller
0x0181 1000 0x0181 1FFF 4K DSP Security ID
0x0181 2000 0x0181 2FFF 4K DSP Revision ID
0x0181 3000 0x0181 FFFF 52K -
0x0182 0000 0x0182 FFFF 64K DSP EMC
0x0183 0000 0x0183 FFFF 64K DSP Internal
Reserved
0x0184 0000 0x0184 FFFF 64K DSP Memory
System
0x0185 0000 0x01BB FFFF
0x01BC 0000 0x01BC 0FFF 4K ARM ETB
memory
0x01BC 1000 0x01BC 17FF 2K ARM ETB reg
0x01BC 1800 0x01BC 18FF 256 ARM Ice
Crusher
0x01BC 1900 0x01BF FFFF
0x01C0 0000 0x01C0 7FFF 32K EDMA3 CC
0x01C0 8000 0x01C0 83FF 1K EDMA3 TC0
0x01C0 8400 0x01C0 87FF 1K EDMA3 TC1
0x01C0 8800 0x01C0 FFFF
0x01C1 0000 0x01C1 0FFF 4K PSC 0
0x01C1 1000 0x01C1 1FFF 4K PLL Controller 0
0x01C1 2000 0x01C1 3FFF
0x01C1 4000 0x01C1 4FFF 4K SYSCFG0
0x01C1 5000 0x01C1 FFFF
0x01C2 0000 0x01C2 0FFF 4K Timer0
0x01C2 1000 0x01C2 1FFF 4K Timer1
0x01C2 2000 0x01C2 2FFF 4K I2C 0
0x01C2 3000 0x01C2 3FFF 4K RTC
0x01C2 4000 0x01C3 FFFF
0x01C4 0000 0x01C4 0FFF 4K MMC/SD 0
0x01C4 1000 0x01C4 1FFF 4K SPI 0
0x01C4 2000 0x01C4 2FFF 4K UART 0
(1) The DSP L2 ROM is used for boot purposes and cannot be programmed with application code
24 Device Overview Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
Table 2-4. Top Level Memory Map (continued)
Start Address End Address Size ARM Mem DSP Mem Map EDMA Mem PRUSS Mem Master LCDC
Map Map Map Peripheral Mem
Mem Map Map
0x01C4 3000 0x01CF FFFF
0x01D0 0000 0x01D0 0FFF 4K McASP 0 Control
0x01D0 1000 0x01D0 1FFF 4K McASP 0 AFIFO Ctrl
0x01D0 2000 0x01D0 2FFF 4K McASP 0 Data
0x01D0 3000 0x01D0 BFFF
0x01D0 C000 0x01D0 CFFF 4K UART 1
0x01D0 D000 0x01D0 DFFF 4K UART 2
0x01D0 E000 0x01D0 FFFF
0x01D1 0000 0x01D1 07FF 2K McBSP0
0x01D1 0800 0x01D1 0FFF 2K McBSP0 FIFO Ctrl
0x01D1 1000 0x01D1 17FF 2K McBSP1
0x01D1 1800 0x01D1 1FFF 2K McBSP1 FIFO Ctrl
0x01D1 2000 0x01DF FFFF
0x01E0 0000 0x01E0 FFFF 64K USB0
0x01E1 0000 0x01E1 0FFF 4K UHPI
0x01E1 1000 0x01E1 2FFF
0x01E1 3000 0x01E1 3FFF 4K LCD Controller
0x01E1 4000 0x01E1 4FFF 4K Memory Protection Unit 1 (MPU 1)
0x01E1 5000 0x01E1 5FFF 4K Memory Protection Unit 2 (MPU 2)
0x01E1 6000 0x01E1 6FFF 4K UPP
0x01E1 7000 0x01E1 7FFF 4K VPIF
0x01E1 8000 0x01E1 9FFF 8K SATA
0x01E1 A000 0x01E1 AFFF 4K PLL Controller 1
0x01E1 B000 0x01E1 BFFF 4K MMCSD1
0x01E1 C000 0x01E1 FFFF
0x01E2 0000 0x01E2 1FFF 8K EMAC Control Module RAM
0x01E2 2000 0x01E2 2FFF 4K EMAC Control Module Registers
0x01E2 3000 0x01E2 3FFF 4K EMAC Control Registers
0x01E2 4000 0x01E2 4FFF 4K EMAC MDIO port
0x01E2 5000 0x01E2 5FFF 4K USB1
0x01E2 6000 0x01E2 6FFF 4K GPIO
0x01E2 7000 0x01E2 7FFF 4K PSC 1
0x01E2 8000 0x01E2 8FFF 4K I2C 1
0x01E2 9000 0x01E2 BFFF
0x01E2 C000 0x01E2 CFFF 4K SYSCFG1
0x01E2 D000 0x01E2 FFFF
0x01E3 0000 0x01E3 7FFF 32K EDMA3 CC1
0x01E3 8000 0x01E3 83FF 1K EDMA3 TC2
0x01E3 8400 0x01EF FFFF
0x01F0 0000 0x01F0 0FFF 4K eHRPWM 0
0x01F0 1000 0x01F0 1FFF 4K HRPWM 0
0x01F0 2000 0x01F0 2FFF 4K eHRPWM 1
0x01F0 3000 0x01F0 3FFF 4K HRPWM 1
0x01F0 4000 0x01F0 5FFF
0x01F0 6000 0x01F0 6FFF 4K ECAP 0
0x01F0 7000 0x01F0 7FFF 4K ECAP 1
Copyright ©20092011, Texas Instruments Incorporated Device Overview 25
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
Table 2-4. Top Level Memory Map (continued)
Start Address End Address Size ARM Mem DSP Mem Map EDMA Mem PRUSS Mem Master LCDC
Map Map Map Peripheral Mem
Mem Map Map
0x01F0 8000 0x01F0 8FFF 4K ECAP 2
0x01F0 9000 0x01F0 BFFF
0x01F0 C000 0x01F0 CFFF 4K Timer2
0x01F0 D000 0x01F0 DFFF 4K Timer3
0x01F0 E000 0x01F0 EFFF 4K SPI1
0x01F0 F000 0x01F0 FFFF
0x01F1 0000 0x01F1 0FFF 4K McBSP0 FIFO Data
0x01F1 1000 0x01F1 1FFF 4K McBSP1 FIFO Data
0x01F1 2000 0x116F FFFF
0x1170 0000 0x117F FFFF 1024K DSP L2 ROM(2)
0x1180 0000 0x1183 FFFF 256K DSP L2 RAM
0x1184 0000 0x11DF FFFF
0x11E0 0000 0x11E0 7FFF 32K DSP L1P RAM
0x11E0 8000 0x11EF FFFF
0x11F0 0000 0x11F0 7FFF 32K DSP L1D RAM
0x11F0 8000 0x3FFF FFFF
0x4000 0000 0x5FFF FFFF 512M EMIFA SDRAM data (CS0)
0x6000 0000 0x61FF FFFF 32M EMIFA async data (CS2)
0x6200 0000 0x63FF FFFF 32M EMIFA async data (CS3)
0x6400 0000 0x65FF FFFF 32M EMIFA async data (CS4)
0x6600 0000 0x67FF FFFF 32M EMIFA async data (CS5)
0x6800 0000 0x6800 7FFF 32K EMIFA Control Regs
0x6800 8000 0x7FFF FFFF
0x8000 0000 0x8001 FFFF 128K Shared RAM
0x8002 0000 0xAFFF FFFF
0xB000 0000 0xB000 7FFF 32K DDR2 Control Regs
0xB000 8000 0xBFFF FFFF
0xC000 0000 0xDFFF FFFF 512M DDR2 Data
0xE000 0000 0xFFFC FFFF
0xFFFD 0000 0xFFFD FFFF 64K ARM local
ROM
0xFFFE 0000 0xFFFE DFFF
0xFFFE E000 0xFFFE FFFF 8K ARM Interrupt
Controller
0xFFFF 0000 0xFFFF 1FFF 8K ARM local ARM Local
RAM RAM (PRU0
only)
0xFFFF 2000 0xFFFF FFFF
(2) The DSP L2 ROM is used for boot purposes and cannot be programmed with application code
26 Device Overview Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
W
V
U
T
R
P
N
M
L
K
10987654321
10987654321
DVDD3318_C
VP_CLKOUT3/
PRU1_R30[0]/
GP6[1]/
PRU1_R31[1]
SATA_VSS
SATA_RXP
VP_CLKOUT2/
MMCSD1_DAT[2]/
PRU1_R30[2]/
GP6[3]/
PRU1_R31[3]
SATA_RXN
SATA_VDD
SATA_REFCLKN SATA_REGSATA_REFCLKP SATA_VDD
SATA_VDD SATA_VDDRSATA_VDD
DVDD3318_C
DDR_A[11]
VP_DOUT[15]/
LCD_D[15]/
UPP_XD[7]/
GP7[7]/
BOOT[7]
DVDD3318_C
DVDD18
DDR_DVDD18 DDR_DVDD18
DDR_D[15]
DDR_RAS
DDR_CLKP
DDR_CLKN
DDR_A[2]DDR_A[10]
VSS
LCD_AC_ENB_CS/
GP6[0]/
PRU1_R31[28]
DDR_A[13]
DDR_CAS
DDR_A[5] DDR_CKE DDR_BA[0]
VSS
CVDD
RVDD
DDR_A[9] DDR_A[1] DDR_WE DDR_D[10]
DDR_A[7] DDR_A[0] DDR_D[12]
DDR_A[12] DDR_A[3] DDR_CS
DDR_A[6]
DDR_DQM[1]
SATA_VSS CVDD
SATA_VSS
DDR_DVDD18
VP_DOUT[12]/
LCD_D[12]/
UPP_XD[4]/
GP7[4]/
BOOT[4]
DDR_VREF
DDR_BA[1]
DDR_A[8] DDR_A[4] DDR_BA[2]
SATA_VSS
W
V
U
T
R
P
N
M
L
K
DDR_D[13]
VSS VSS VSS
VSS DVDD18 VSS VSS VSS VSS
NC VSS VSS VSS VSS CVDD CVDD VSS
DDR_DVDD18DDR_DVDD18DDR_DVDD18DDR_DVDD18
DVDD3318_C
VP_DOUT[13]/
LCD_D[13]/
UPP_XD[5]/
GP7[5]/
BOOT[5]
VP_DOUT[14]/
LCD_D[14]/
UPP_XD[6]/
GP7[6]/
BOOT[6]
DDR_DVDD18 DDR_DVDD18 DDR_DVDD18
VP_DOUT[9]/
LCD_D[9]/
UPP_XD[1]/
GP7[1]/
BOOT[1]
VP_DOUT[10]/
LCD_D[10]/
UPP_XD[2]/
GP7[2]/
BOOT[2]
VP_DOUT[11]/
LCD_D[11]/
UPP_XD[3]/
GP7[3]/
BOOT[3]
VP_DOUT[6]/
LCD_D[6]/
UPP_XD[14]/
GP7[14]/
PRU1_R31[14]
VP_DOUT[7]/
LCD_D[7]/
UPP_XD[15]/
GP7[15]/
PRU1_R31[15]
VP_DOUT[8]/
LCD_D[8]/
UPP_XD[0]/
GP7[0]/
BOOT[0]
VP_DOUT[3]/
LCD_D[3]/
UPP_XD[11]/
GP7[11]/
PRU1_R31[11]
VP_DOUT[4]/
LCD_D[4]/
UPP_XD[12]/
GP7[12]/
PRU1_R31[12]
VP_DOUT[5]/
LCD_D[5]/
UPP_XD[13]/
GP7[13]/
PRU1_R31[13]
VP_DOUT[0]/
LCD_D[0]/
UPP_XD[8]/
GP7[8]/
PRU1_R31[8]
VP_DOUT[1]/
LCD_D[1]/
UPP_XD[9]/
GP7[9]/
PRU1_R31[9]
VP_DOUT[2]/
LCD_D[2]/
UPP_XD[10]/
GP7[10]/
PRU1_R31[10]
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
2.6 Pin Assignments
Extensive use of pin multiplexing is used to accommodate the largest number of peripheral functions in
the smallest possible package. Pin multiplexing is controlled using a combination of hardware
configuration at device reset and software programmable register settings.
2.6.1 Pin Map (Bottom View)
The following graphics show the bottom view of the ZCE and ZWT packages pin assignments in four
quadrants (A, B, C, and D). The pin assignments for both packages are identical.
Figure 2-3. Pin Map (Quad A)
Copyright ©20092011, Texas Instruments Incorporated Device Overview 27
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
W
V
U
T
R
P
N
M
L
K
191817161514131211
191817161514131211
USB1_VDD33
DVDD3318_C
CVDD
USB_CVDD
DVDD3318_C
DDR_DQGATE0 DVDD18
DDR_DQGATE1
DDR_D[9] DDR_D[8]DDR_D[11]
DVDD18
RTC_CVDD
RESET
USB0_DM USB0_DP
VP_DIN[11]/
UHPI_HD[3]/
UPP_D[3]/
PRU0_R30[11]/
PRU0_R31[11]
USB0_VDDA33 USB0_VBUS
USB1_DM
VP_DIN[0]/
UHPI_HD[8]/
UPP_D[8]/
RMII_CRS_DV/
PRU1_R31[29]
VP_DIN[1]/
UHPI_HD[9]/
UPP_D[9]/
RMII_MHZ_50
_CLK /
PRU0_R31[23]
VP_DIN[2]/
UHPI_HD[10]/
UPP_D[10]/
RMII_RXER /
PRU0_R31[24]
VP_DIN[4]/
UHPI_HD[12]/
UPP_D[12]/
RMII_RXD[1]/
PRU0_R31[26]
PRU0_R30[28]/
UHPI_HCNTL1/
UPP_CHA_START/
GP6[10]
USB1_DP
PLL0_VDDA
PRU0_R30[30] /
/
PRU1_R30[11]/
GP6[12]
UHPI_HINT
USB0_VDDA18
VP_DIN[5]/
UHPI_HD[13]/
UPP_D[13]/
RMII_TXEN/
PRU0_R31[27]
DDR_D[1]
VP_DIN[7]/
UHPI_HD[15]/
UPP_D[15]/
RMII_TXD[1]/
PRU0_R31[29]
OSCVSS
DDR_D[2]
VP_DIN[6]/
UHPI_HD[14]/
UPP_D[14]/
RMII_TXD[0]/
PRU0_R31[28]
VP_DIN[3]/
UHPI_HD[11]/
UPP_D[11]/
RMII_RXD[0]/
PRU0_R31[25]
VP_DIN[14]_
HSYNC/
UHPI_HD[6]/
UPP_D[6]/
PRU0_R30[14]/
PRU0_R31[14]
EMU1
VP_DIN[8]/
UHPI_HD[0]/
UPP_D[0]/
GP6[5]/
PRU1_R31[0]
USB0_VDDA12
TDI
NC
PRU0_R30[26]/
UHPI_HR /
UPP_CHA_WAIT/
GP6[8]/
PRU1_R31[17]
W
VP_DIN[12]/
UHPI_HD[4]/
UPP_D[4]/
PRU0_R30[12]/
PRU0_R31[12]
RESETOUT
UHPI_HAS
/
/
PRU1_R30[14]/
GP6[15]
RSV2
RTCK/
GP8[0] OSCOUT
DDR_D[0]
PRU0_R30[27]/
UHPI_HHWIL/
UPP_CHA
_ENABLE/
GP6[9]
VP_DIN[13]_
FIELD/
UHPI_HD[5]/
UPP_D[5]/
PRU0_R30[13]/
PRU0_R31[13]
TRST OSCIN
VP_CLKIN1/
/
PRU1_R30[9]/
GP6[6]/
PRU1_R31[16]
UHPI_HDS1
VP_DIN[15]_
VSYNC/
UHPI_HD[7]/
UPP_D[7]/
PRU0_R30[15]/
PRU0_R31[15]
VP_CLKIN0/
/
PRU1_R30[10]/
GP6[7]/
UPP_2xTXCLK
UHPI_HCS
VP_DIN[10]/
UHPI_HD[2]/
UPP_D[2]/
PRU0_R30[10]/
PRU0_R31[10]
VSS DVDD3318_B
PLL0_VSSA
TMS
PRU0_R30[31]/
/
PRU1_R30[12]
GP6[13]
UHPI_HRDY
NC PLL1_VSSA
PLL1_VDDA
USB1_VDD18 USB0_ID
VP_DIN[9]/
UHPI_HD[1]/
UPP_D[1]/
PRU0_R30[9]/
PRU0_R31[9]
CLKOUT/
/
PRU1_R30[13]/
GP6[14]
UHPI_HDS2
USB0_DRVVBUS
DDR_DQS[0]
PRU0_R30[29]/
UHPI_HCNTL0/
UPP_CHA_CLOCK/
GP6[11]
W
V
U
T
R
P
N
M
L
K
DDR_DQM[0]
DDR_D[3]
DDR_D[4]
DDR_D[6]
DDR_ZP
DDR_D[5]
DDR_D[7]
DDR_D[14]
DDR_DQS[1]
VSS
VSS
VSS
VSS
VSS
CVDD DVDD3318_C
DVDD3318_C
DVDD3318_C
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
Figure 2-4. Pin Map (Quad B)
28 Device Overview Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
H
G
F
E
D
C
B
A
191817161514131211
191817161514131211
CVDD
EMA_A[8]/
PRU1_R30[16]/
GP5[8]
EMA_A[14]/
MMCSD0_DAT[7]/
PRU1_R30[22]/
GP5[14]/
PRU1_R31[22]
EMA_A[15]/
MMCSD0_DAT[6]/
PRU1_R30[23]/
GP5[15]/
PRU1_R31[23]
EMA_A[10]/
PRU1_R30[18]/
GP5[10]/
PRU1_R31[18]
EMA_A[9]/
PRU1_R30[17]/
GP5[9]
EMA_A[13]/
PRU0_R30[21]/
PRU1_R30[21] /
GP5[13]/
PRU1_R31[21]
EMA_A[12]/
PRU1_R30[20]/
GP5[12]/
PRU1_R31[20]
EMA_A[16]/
MMCSD0_DAT[5]/
PRU1_R30[24]/
GP4[0]
EMA_A[18]/
MMCSD0_DAT[3]/
PRU1_R30[26]/
GP4[2]
DVDD3318_B
DVDD18
EMA_A[6]/
GP5[6]
EMA_A[5]/
GP5[5]
EMA_A[2]/
GP5[2]
EMA_A7/
PRU1_R30[15]/
GP5[7]
EMA_A[4]/
GP5[4]
SPI0_SIMO/
EPWMSYNCO/
GP8[5]/
MII_CRS
SPI0_SCS[5]/
UART0_RXD/
GP8[4]/
MII_RXD[3]
SPI1_SCS[1]/
EPWM1A/
PRU0_R30[8]/
GP2[15]/
TM64P2_IN12
SPI0_SCS[4]/
UART0_TXD/
GP8[3]/
MII_RXD[2]
SPI0_CLK/
EPWM0A/
GP1[8]/
MII_RXCLK
SPI1_SCS[3]/
UART1_RXD/
SATA_LED/
GP1[1]
SPI1_SCS[0]/
EPWM1B/
PRU0_R30[7]/
GP2[14]/
TM64P3_IN12
EMA_OE/
GP3[10]
SPI1_SCS[4]/
UART2_TXD/
I2C1_SDA/
GP1[2]
EMA_A[3]/
GP5[3]
DVDD18
RTC_VSS
EMA_WAIT[0]/
PRU0_R30[0]/
GP3[8]/
PRU0_R31[0]
EMA_RAS/
PRU0_R30[3]/
GP2[5]/
PRU0_R31[3]
SPI0_SCS[3]
UART0_CTS
/
/
GP8[2]/
MII_RXD[1]/
SATA_MP_SWITCH
SPI0_SCS[0]/
TM64P1_OUT12/
GP1[6]/
MDIO_D/
TM64P1_IN12
SPI0_SOMI/
EPWMSYNCI/
GP8[6]/
MII_RXER
SPI0_SCS[2]
UART0_RTS
/
/
GP8[1]/
MII_RXD[0]/
SATA_CP_DET
SPI1_SCS[7]/
I2C0_SCL/
TM64P2_OUT12/
GP1[5]
SPI1_SIMO/
GP2[10]
SPI1_CLK/
GP2[13]
EMA_CS[3]/
GP3[14] VSS
VSS SPI1_ENA/
GP2[12] RTC_XO
EMA_CS[2]/
GP3[15]
EMA_WAIT[1]/
PRU0_R30[1]/
GP2[1]/
PRU0_R31[1]
EMA_A[20]/
MMCSD0_DAT[1]/
PRU1_R30[28]/
GP4[4]
EMA_BA[1]/
GP2[9]
SPI0_ENA/
EPWM0B/
PRU0_R30[6]/
MII_RXDV
EMA_CS[5]/
GP3[12]
SPI1_SCS[5]/
UART2_RXD/
I2C1_SCL/
GP1[3]
EMA_A[0]/
GP5[0]
EMA_BA[0]/
GP2[8]
EMA_A[1]/
GP5[1]
DVDD3318_B
SPI0_SCS[1]/
TM64P0_OUT12/
GP1[7]/
MDIO_CLK/
TM64P0_IN12
DVDD3318_A
SPI1_SCS[6]/
I2C0_SDA/
TM64P3_OUT12/
GP1[4]
EMA_CS[0]/
GP2[0]
CVDD SPI1_SOMI/
GP2[11] H
G
F
E
D
C
B
A
JTDO
TCK EMU0 RTC_XI
NMI J
SPI1_SCS[2]/
UART1_TXD/
SATA_CP_POD/
GP1[0]
EMA_A[11]/
PRU1_R30[19]/
GP5[11]/
PRU1_R31[19]
EMA_A[17]/
MMCSD0_DAT[4]/
PRU1_R30[25]
GP4[1]
DVDD3318_B
DVDD3318_B
DVDD18 CVDD DVDD3318_A DVDD3318_A
RVDD
CVDD
CVDD
VSS CVDD DVDD18 DVDD3318_B
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
Figure 2-5. Pin Map (Quad C)
Copyright ©20092011, Texas Instruments Incorporated Device Overview 29
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
Figure 2-6. Pin Map (Quad D)
2.7 Pin Multiplexing Control
Device level pin multiplexing is controlled by registers PINMUX0 - PINMUX19 in the SYSCFG module.
For the device family, pin multiplexing can be controlled on a pin-by-pin basis. Each pin that is multiplexed
with several different functions has a corresponding 4-bit field in one of the PINMUX registers.
Pin multiplexing selects which of several peripheral pin functions controls the pin's IO buffer output data
and output enable values only. The default pin multiplexing control for almost every pin is to select 'none'
of the peripheral functions in which case the pin's IO buffer is held tri-stated.
Note that the input from each pin is always routed to all of the peripherals that share the pin; the PINMUX
registers have no effect on input from a pin.
30 Device Overview Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
2.8 Terminal Functions
Table 2-5 to Table 2-31 identify the external signal names, the associated pin/ball numbers along with the
mechanical package designator, the pin type (I, O, IO, OZ, or PWR), whether the pin/ball has any internal
pullup/pulldown resistors, whether the pin/ball is configurable as an IO in GPIO mode, and a functional pin
description.
2.8.1 Device Reset, NMI and JTAG
Table 2-5. Reset, NMI and JTAG Terminal Functions
SIGNAL POWER
TYPE(1) PULL(2) DESCRIPTION
GROUP(3)
NAME NO.
RESET
RESET K14 I IPU B Device reset input
NMI J17 I IPU B Non-Maskable Interrupt
RESETOUT / UHPI_HAS / PRU1_R30[14] / T17 O(4) CP[21] C Reset output
GP6[15]
JTAG
TMS L16 I IPU B JTAG test mode select
TDI M16 I IPU B JTAG test data input
TDO J18 O IPU B JTAG test data output
TCK J15 I IPU B JTAG test clock
TRST L17 I IPD B JTAG test reset
EMU0 J16 I/O IPU B Emulation pin
EMU1 K16 I/O IPU B Emulation pin
RTCK/ GP8[0](5) K17 I/O IPD B General-purpose input/output
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for
that particular peripheral.
(2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor. CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module.
(3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
(4) Open drain mode for RESETOUT function.
(5) GP8[0] is initially configured as a reserved function after reset and will not be in a predictable state. This signal will only be stable after
the GPIO configuration for this pin has been completed. Users should carefully consider the system implications of this pin being in an
unknown state after reset.
Copyright ©20092011, Texas Instruments Incorporated Device Overview 31
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
2.8.2 High-Frequency Oscillator and PLL
Table 2-6. High-Frequency Oscillator and PLL Terminal Functions
SIGNAL POWER
TYPE(1) PULL(2) DESCRIPTION
GROUP(3)
NAME NO.
CLKOUT / UHPI_HDS2 / T18 O CP[22] C PLL Observation Clock
PRU1_R30[13] / GP6[14]
1.2-V OSCILLATOR
OSCIN L19 I Oscillator input
OSCOUT K19 O Oscillator output
OSCVSS L18 GND Oscillator ground
1.2-V PLL0
PLL0_VDDA L15 PWR PLL analog VDD (1.2-V filtered supply)
PLL0_VSSA M17 GND PLL analog VSS (for filter)
1.2-V PLL1
PLL1_VDDA N15 PWR PLL analog VDD (1.2-V filtered supply)
PLL1_VSSA M15 GND PLL analog VSS (for filter)
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for
that particular peripheral.
(2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where nis the pin group) using
the PUPDENA and PUPDSEL registers in the System Module.
(3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
32 Device Overview Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
2.8.3 Real-Time Clock and 32-kHz Oscillator
Table 2-7. Real-Time Clock (RTC) and 1.2-V, 32-kHz Oscillator Terminal Functions
SIGNAL POWER
TYPE(1) PULL(2) DESCRIPTION
GROUP(3)
NAME NO.
RTC_XI J19 I RTC 32-kHz oscillator input
RTC_XO H19 O RTC 32-kHz oscillator output
RTC_ALARM / UART2_CTS / GP0[8] / DEEPSLEEP F4 O CP[0] A RTC Alarm
RTC module core power
RTC_CVDD L14 PWR (isolated from chip CVDD)
RTC_Vss H18 GND Oscillator ground
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for
that particular peripheral.
(2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where nis the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up,
an external pull-up can be used. For electrical specifications on the pull-up and and internal pull-down circuits, see the Device Operating
Conditions section.
(3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
2.8.4 DEEPSLEEP Power Control
Table 2-8. DEEPSLEEP Power Control Terminal Functions
SIGNAL POWER
TYPE(1) PULL(2) DESCRIPTION
GROUP(3)
NAME NO.
RTC_ALARM / UART2_CTS / GP0[8] / DEEPSLEEP F4 I CP[0] A DEEPSLEEP power control output
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for
that particular peripheral.
(2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where nis the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up,
an external pull-up can be used. For electrical specifications on the pull-up and and internal pull-down circuits, see the Device Operating
Conditions section.
(3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
Copyright ©20092011, Texas Instruments Incorporated Device Overview 33
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
2.8.5 External Memory Interface A (EMIFA)
Table 2-9. External Memory Interface A (EMIFA) Terminal Functions
SIGNAL POWER
TYPE(1) PULL(2) DESCRIPTION
GROUP(3)
NAME NO.
EMA_D[15] / GP3[7] E6 I/O CP[17] B
EMA_D[14] / GP3[6] C7 I/O CP[17] B
EMA_D[13] / GP3[5] B6 I/O CP[17] B
EMA_D[12] / GP3[4] A6 I/O CP[17] B
EMA_D[11] / GP3[3] D6 I/O CP[17] B
EMA_D[10] / GP3[2] A7 I/O CP[17] B
EMA_D[9] / GP3[1] D9 I/O CP[17] B
EMA_D[8] / GP3[0] E10 I/O CP[17] B EMIFA data bus
EMA_D[7] / GP4[15] D7 I/O CP[17] B
EMA_D[6] / GP4[14] C6 I/O CP[17] B
EMA_D[5] / GP4[13] E7 I/O CP[17] B
EMA_D[4] / GP4[12] B5 I/O CP[17] B
EMA_D[3] / GP4[11] E8 I/O CP[17] B
EMA_D[2] / GP4[10] B8 I/O CP[17] B
EMA_D[1] / GP4[9] A8 I/O CP[17] B
EMA_D[0] / GP4[8] C9 I/O CP[17] B
EMA_A[22] / MMCSD0_CMD / A10 O CP[18] B
PRU1_R30[30] / GP4[6]
EMA_A[21] / MMCSD0_DAT[0] / B10 O CP[18] B
PRU1_R30[29] / GP4[5]
EMA_A[20] / MMCSD0_DAT[1] / A11 O CP[18] B
PRU1_R30[28] / GP4[4]
EMA_A[19] / MMCSD0_DAT[2] / C10 O CP[18] B
PRU1_R30[27] / GP4[3]
EMA_A[18] / MMCSD0_DAT[3] / E11 O CP[18] B
PRU1_R30[26] / GP4[2]
EMA_A[17] / MMCSD0_DAT[4] / B11 O CP[18] B EMIFA address bus
PRU1_R30[25] / GP4[1]
EMA_A[16] / MMCSD0_DAT[5] / E12 O CP[18] B
PRU1_R30[24] / GP4[0]
EMA_A[15] / MMCSD0_DAT[6] / C11 O CP[19] B
PRU1_R30[23] / GP5[15] / PRU1_R31[23]
EMA_A[14] / MMCSD0_DAT[7] / A12 O CP[19] B
PRU1_R30[22] / GP5[14] / PRU1_R31[22]
EMA_A[13] / PRU0_R30[21] / PRU1_R30[21] D11 O CP[19] B
/ GP5[13] / PRU1_R31[21]
EMA_A[12] / PRU1_R30[20] / GP5[12] / D13 O CP[19] B
PRU1_R31[20]
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where nis the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up,
an external pull-up can be used. For electrical specifications on the pull-up and and internal pull-down circuits, see the Device Operating
Conditions section.
(3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
34 Device Overview Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
Table 2-9. External Memory Interface A (EMIFA) Terminal Functions (continued)
SIGNAL POWER
TYPE(1) PULL(2) DESCRIPTION
GROUP(3)
NAME NO.
EMA_A[11] / PRU1_R30[19] / GP5[11] / B12 O CP[19] B
PRU1_R31[19]
EMA_A[10] / PRU1_R30[18] / GP5[10] / C12 O CP[19] B
PRU1_R31[18]
EMA_A[9] / PRU1_R30[17] / GP5[9] D12 O CP[19] B
EMA_A[8] / PRU1_R30[16] / GP5[8] A13 O CP[19] B
EMA_A[7] / PRU1_R30[15] / GP5[7] B13 O CP[20] B EMIFA address bus
EMA_A[6] / GP5[6] E13 O CP[20] B
EMA_A[5] / GP5[5] C13 O CP[20] B
EMA_A[4] / GP5[4] A14 O CP[20] B
EMA_A[3] / GP5[3] D14 O CP[20] B
EMA_A[2] / GP5[2] B14 O CP[20] B
EMA_A[1] / GP5[1] D15 O CP[20] B
EMA_A[0] / GP5[0] C14 O CP[20] B
EMA_BA[0] / GP2[8] C15 O CP[16] B EMIFA bank address
EMA_BA[1] / GP2[9] A15 O CP[16] B
EMA_CLK / PRU0_R30[5] / GP2[7] / B7 O CP[16] B EMIFA clock
PRU0_R31[5]
EMA_SDCKE / PRU0_R30[4] / GP2[6] / D8 O CP[16] B EMIFA SDRAM clock enable
PRU0_R31[4]
EMA_RAS / PRU0_R30[3] / GP2[5] / A16 O CP[16] B EMIFA SDRAM row address strobe
PRU0_R31[3]
EMA_CAS / PRU0_R30[2] / GP2[4] / A9 O CP[16] B EMIFA SDRAM column address strobe
PRU0_R31[2]
EMA_CS[0] / GP2[0] A18 O CP[16] B EMIFA SDRAM Chip Select
EMA_CS[2] / GP3[15] B17 O CP[16] B
EMA_CS[3] / GP3[14] A17 O CP[16] B EMIFA Async chip select
EMA_CS[4] / GP3[13] F9 O CP[16] B
EMA_CS[5] / GP3[12] B16 O CP[16] B
EMA_A_RW / GP3[9] D10 O CP[16] B EMIFA Async Read/Write control
EMA_WE / GP3[11] B9 O CP[16] B EMIFA SDRAM write enable
EMIFA write enable/data mask for
EMA_WEN_DQM[1] / GP2[2] A5 O CP[16] B EMA_D[15:8]
EMA_WEN_DQM[0] / GP2[3] C8 O CP[16] B EMIFA write enable/data mask for EMA_D[7:0]
EMA_OE / GP3[10] B15 O CP[16] B EMIFA output enable
EMA_WAIT[0] / PRU0_R30[0] / GP3[8] / B18 I CP[16] B
PRU0_R31[0] EMIFA wait input/interrupt
EMA_WAIT[1] / PRU0_R30[1] / GP2[1] / B19 I CP[16] B
PRU0_R31[1]
Copyright ©20092011, Texas Instruments Incorporated Device Overview 35
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
2.8.6 DDR2 Controller (DDR2)
Table 2-10. DDR2 Controller (DDR2) Terminal Functions
SIGNAL TYPE(1) PULL(2) DESCRIPTION
NAME NO.
DDR_D[15] W10 I/O IPD
DDR_D[14] U11 I/O IPD
DDR_D[13] V10 I/O IPD
DDR_D[12] U10 I/O IPD
DDR_D[11] T12 I/O IPD
DDR_D[10] T10 I/O IPD
DDR_D[9] T11 I/O IPD
DDR_D[8] T13 I/O IPD DDR2 SDRAM data bus
DDR_D[7] W11 I/O IPD
DDR_D[6] W12 I/O IPD
DDR_D[5] V12 I/O IPD
DDR_D[4] V13 I/O IPD
DDR_D[3] U13 I/O IPD
DDR_D[2] V14 I/O IPD
DDR_D[1] U14 I/O IPD
DDR_D[0] U15 I/O IPD
DDR_A[13] T5 O IPD
DDR_A[12] V4 O IPD
DDR_A[11] T4 O IPD
DDR_A[10] W4 O IPD
DDR_A[9] T6 O IPD
DDR_A[8] U4 O IPD
DDR_A[7] U6 O IPD DDR2 row/column address
DDR_A[6] W5 O IPD
DDR_A[5] V5 O IPD
DDR_A[4] U5 O IPD
DDR_A[3] V6 O IPD
DDR_A[2] W6 O IPD
DDR_A[1] T7 O IPD
DDR_A[0] U7 O IPD
DDR_CLKP W8 O IPD DDR2 clock (positive)
DDR_CLKN W7 O IPD DDR2 clock (negative)
DDR_CKE V7 O IPD DDR2 clock enable
DDR_WE T8 O IPD DDR2 write enable
DDR_RAS W9 O IPD DDR2 row address strobe
DDR_CAS U9 O IPD DDR2 column address strobe
DDR_CS V9 O IPD DDR2 chip select
DDR_DQM[0] W13 O IPD DDR2 data mask outputs
DDR_DQM[1] R10 O IPD
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where nis the pin group) using
the PUPDENA and PUPDSEL registers in the System Module.
36 Device Overview Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
Table 2-10. DDR2 Controller (DDR2) Terminal Functions (continued)
SIGNAL TYPE(1) PULL(2) DESCRIPTION
NAME NO.
DDR_DQS[0] T14 I/O IPD DDR2 data strobe inputs/outputs
DDR_DQS[1] V11 I/O IPD
DDR_BA[2] U8 O IPD
DDR_BA[1] T9 O IPD DDR2 SDRAM bank address
DDR_BA[0] V8 O IPD DDR2 loopback signal for external DQS gating.
DDR_DQGATE0 R11 O IPD Route to DDR and back to DDR_DQGATE1 with
same constraints as used for DDR clock and data.
DDR2 loopback signal for external DQS gating.
DDR_DQGATE1 R12 I IPD Route to DDR and back to DDR_DQGATE0 with
same constraints as used for DDR clock and data.
DDR2 reference output for drive strength calibration
DDR_ZP U12 O of N and P channel outputs. Tie to ground via 50
ohm resistor @ 5% tolerance.
DDR voltage input for the DDR2/mDDR I/O buffers.
DDR_VREF R6 I Note even in the case of mDDR an external resistor
divider connected to this pin is necessary.
N6, N9, N10,
P7, P8, P9,
DDR_DVDD18 PWR DDR PHY 1.8V power supply pins
P10, R7, R8,
R9
Copyright ©20092011, Texas Instruments Incorporated Device Overview 37
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
2.8.7 Serial Peripheral Interface Modules (SPI)
Table 2-11. Serial Peripheral Interface (SPI) Terminal Functions
SIGNAL POWER
TYPE(1) PULL(2) DESCRIPTION
GROUP(3)
NAME NO.
SPI0
SPI0_CLK / EPWM0A / GP1[8] / MII_RXCLK D19 I/O CP[7] A SPI0 clock
SPI0_ENA / EPWM0B / PRU0_R30[6] / MII_RXDV C17 I/O CP[7] A SPI0 enable
SPI0_SCS[0] / TM64P1_OUT12 / GP1[6] / MDIO_D / TM64P1_IN12 D17 I/O CP[10] A
SPI0_SCS[1] / TM64P0_OUT12 / GP1[7] / MDIO_CLK / E16 I/O CP[10] A
TM64P0_IN12
SPI0_SCS[2] / UART0_RTS / GP8[1] / MII_RXD[0] /SATA_CP_DET D16 I/O CP[9] A SPI0 chip selects
SPI0_SCS[3] / UART0_CTS / GP8[2] / MII_RXD[1] / E17 I/O CP[9] A
SATA_MP_SWITCH
SPI0_SCS[4] / UART0_TXD / GP8[3] / MII_RXD[2] D18 I/O CP[8] A
SPI0_SCS[5] / UART0_RXD / GP8[4] / MII_RXD[3] C19 I/O CP[8] A SPI0 data
SPI0_SIMO / EPWMSYNCO / GP8[5] / MII_CRS C18 I/O CP[7] A slave-in-master-out
SPI0 data
SPI0_SOMI / EPWMSYNCI / GP8[6] / MII_RXER C16 I/O CP[7] A slave-out-master-in
SPI1
SPI1_CLK / GP2[13] G19 I/O CP[15] A SPI1 clock
SPI1_ENA / GP2[12] H16 I/O CP[15] A SPI1 enable
SPI1_SCS[0] / EPWM1B / PRU0_R30[7] / GP2[14] / TM64P3_IN12 E19 I/O CP[14] A
SPI1_SCS[1] / EPWM1A / PRU0_R30[8] / GP2[15] / TM64P2_IN12 F18 I/O CP[14] A
SPI1_SCS[2] / UART1_TXD / SATA_CP_POD / GP1[0] F19 I/O CP[13] A
SPI1_SCS[3] / UART1_RXD / SATA_LED / GP1[1] E18 I/O CP[13] A SPI1 chip selects
SPI1_SCS[4] / UART2_TXD / I2C1_SDA / GP1[2] F16 I/O CP[12] A
SPI1_SCS[5] / UART2_RXD / I2C1_SCL / GP1[3] F17 I/O CP[12] A
SPI1_SCS[6] / I2C0_SDA / TM64P3_OUT12 / GP1[4] G18 I/O CP[11] A
SPI1_SCS[7] / I2C0_SCL / TM64P2_OUT12 / GP1[5] G16 I/O CP[11] A SPI1 data
SPI1_SIMO / GP2[10] G17 I/O CP[15] A slave-in-master-out
SPI1 data
SPI1_SOMI / GP2[11] H17 I/O CP[15] A slave-out-master-in
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where nis the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up,
an external pull-up can be used. For electrical specifications on the pull-up and and internal pull-down circuits, see the Device Operating
Conditions section.
(3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
38 Device Overview Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
2.8.8 Programmable Real-Time Unit (PRU)
Table 2-12. Programmable Real-Time Unit (PRU) Terminal Functions
SIGNAL POWER
TYPE(1) PULL(2) DESCRIPTION
GROUP(3)
NAME NO.
PRU0_R30[31] / UHPI_HRDY / PRU1_R30[12] / GP6[13] R17 O CP[23] C
PRU0_R30[30] / UHPI_HINT / PRU1_R30[11] / GP6[12] R16 O CP[23] C
PRU0_R30[29]/ UHPI_HCNTL0 / UPP_CHA_CLOCK / GP6[11] U17 O CP[24] C
PRU0_R30[28] / UHPI_HCNTL1 / UPP_CHA_START / GP6[10] W15 O CP[24] C
PRU0_R30[27] / UHPI_HHWIL / UPP_CHA_ENABLE / GP6[9] U16 O CP[24] C
PRU0_R30[26] / UHPI_HRW / UPP_CHA_WAIT / GP6[8] / T15 O CP[24] C
PRU1_R31[17]
PRU0_R30[25] / MMCSD1_DAT[0] / UPP_CHB_CLOCK / GP8[15] / G1 O CP30] C
PRU1_R31[27]
PRU0_R30[24] / MMCSD1_CLK / UPP_CHB_START / GP8[14] / G2 O CP[30] C
PRU1_R31[26] PRU0 Output Signals
PRU0_R30[23] / MMCSD1_CMD / UPP_CHB_ENABLE / GP8[13] / J4 O CP[30] C
PRU1_R31[25]
PRU0_R30[22] / PRU1_R30[8] / UPP_CHB_WAIT / GP8[12] / G3 O CP[30] C
PRU1_R31[24]
EMA_A[13] / PRU0_R30[21] / PRU1_R30[21] / GP5[13] / D11 O CP[19] B
PRU1_R31[21]
ACLKR / PRU0_R30[20] / GP0[15] / PRU0_R31[22] A1 O CP[0] A
ACLKX / PRU0_R30[19] / GP0[14] / PRU0_R31[21] B1 O CP[0] A
AHCLKR / PRU0_R30[18] / UART1_RTS / GP0[11] / PRU0_R31[18] A2 O CP[0] A
AXR7 / EPWM1TZ[0] / PRU0_R30[17] / GP1[15] / PRU0_R31[7] D2 O CP[4] A
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where nis the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up,
an external pull-up can be used. For electrical specifications on the pull-up and and internal pull-down circuits, see the Device Operating
Conditions section.
(3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
Copyright ©20092011, Texas Instruments Incorporated Device Overview 39
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
Table 2-12. Programmable Real-Time Unit (PRU) Terminal Functions (continued)
SIGNAL POWER
TYPE(1) PULL(2) DESCRIPTION
GROUP(3)
NAME NO.
AMUTE / PRU0_R30[16] / UART2_RTS / GP0[9] / PRU0_R31[16] D5 O CP[0] A
VP_DIN[15]_VSYNC / UHPI_HD[7] / UPP_D[7] / PRU0_R30[15] /V18 O CP[27] C
PRU0_R31[15]
VP_DIN[14]_HSYNC / UHPI_HD[6] / UPP_D[6] / PRU0_R30[14] /V19 O CP[27] C
PRU0_R31[14]
VP_DIN[13]_FIELD / UHPI_HD[5] / UPP_D[5] / PRU0_R30[13] /U19 O CP[27] C
PRU0_R31[13]
VP_DIN[12] / UHPI_HD[4] / UPP_D[4] / PRU0_R30[12] /T16 O CP[27] C
PRU0_R31[12]
VP_DIN[11] / UHPI_HD[3] / UPP_D[3] / PRU0_R30[11] /R18 O CP[27] C
PRU0_R31[11]
VP_DIN[10] / UHPI_HD[2] / UPP_D[2] / PRU0_R30[10] /R19 O CP[27] C PRU0 Output Signals
PRU0_R31[10]
VP_DIN[9] / UHPI_HD[1] / UPP_D[1] / PRU0_R30[9] / PRU0_R31[9] R15 O CP[27] C
SPI1_SCS[1] / EPWM1A / PRU0_R30[8] / GP2[15] / TM64P2_IN12 F18 O CP[14] A
SPI1_SCS[0] / EPWM1B / PRU0_R30[7] / GP2[14] / TM64P3_IN12 E19 O CP[14] A
SPI0_ENA / EPWM0B / PRU0_R30[6] / MII_RXDV C17 O CP[7] A
EMA_CLK / PRU0_R30[5] / GP2[7] / PRU0_R31[5] B7 O CP[16] B
EMA_SDCKE / PRU0_R30[4] / GP2[6] / PRU0_R31[4] D8 O CP[16] B
EMA_RAS / PRU0_R30[3] / GP2[5] / PRU0_R31[3] A16 O CP[16] B
EMA_CAS / PRU0_R30[2] / GP2[4] / PRU0_R31[2] A9 O CP[16] B
EMA_WAIT[1] / PRU0_R30[1] / GP2[1] / PRU0_R31[1] B19 O CP[16] B
EMA_WAIT[0] / PRU0_R30[0] / GP3[8] / PRU0_R31[0] B18 O CP[16] B
40 Device Overview Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
Table 2-12. Programmable Real-Time Unit (PRU) Terminal Functions (continued)
SIGNAL POWER
TYPE(1) PULL(2) DESCRIPTION
GROUP(3)
NAME NO.
VP_DIN[7] / UHPI_HD[15] / UPP_D[15] / RMII_TXD[1] / U18 I CP[26] C
PRU0_R31[29]
VP_DIN[6] / UHPI_HD[14] / UPP_D[14] / RMII_TXD[0] / V16 I CP[26] C
PRU0_R31[28]
VP_DIN[5] / UHPI_HD[13] / UPP_D[13] / RMII_TXEN / R14 I CP[26] C
PRU0_R31[27]
VP_DIN[4] / UHPI_HD[11] / UPP_D[12] / RMII_RXD[1] / W16 I CP[26] C
PRU0_R31[26]
VP_DIN[3] / UHPI_HD[11] / UPP_D[11] / RMII_RXD[0] / V17 I CP[26] C
PRU0_R31[25]
VP_DIN[2] / UHPI_HD[10] / UPP_D[10] / RMII_RXER / W17 I CP[26] C
PRU0_R31[24]
VP_DIN[1] / UHPI_HD[9] / UPP_D[9] / RMII_MHZ_50_CLK / W18 I CP[26] C
PRU0_R31[23]
ACLKR / PRU0_R30[20] / GP0[15] / PRU0_R31[22] A1 I CP[0] A
ACLKX / PRU0_R30[19] / GP0[14] / PRU0_R31[21] B1 I CP[0] A
AFSR / GP0[13] / PRU0_R31[20] C2 I CP[0] A
AFSX / GP0[12] / PRU0_R31[19] B2 I CP[0] A
AHCLKR / PRU0_R30[18] / UART1_RTS / GP0[11] / PRU0_R31[18] A2 I CP[0] A
AHCLKX / USB_REFCLKIN / UART1_CTS / GP0[10] / A3 I CP[0] A
PRU0_R31[17]
AMUTE / PRU0_R30[16] / UART2_RTS / GP0[9] / PRU0_R31[16] D5 I CP[0] A PRU0 Input Signals
VP_DIN[15]_VSYNC / UHPI_HD[7] / UPP_D[7] / PRU0_R30[15] / V18 I CP[27] C
PRU0_R31[15]
VP_DIN[14]_HSYNC / UHPI_HD[6] / UPP_D[6] / PRU0_R30[14] / V19 I CP[27] C
PRU0_R31[14]
VP_DIN[13]_FIELD / UHPI_HD[5] / UPP_D[5] / PRU0_R30[13] / U19 I CP[27] C
PRU0_R31[13]
VP_DIN[12] / UHPI_HD[4] / UPP_D[4] / PRU0_R30[12] / T16 I CP[27] C
PRU0_R31[12]
VP_DIN[11] / UHPI_HD[3] / UPP_D[3] / PRU0_R30[11] / R18 I CP[27] C
PRU0_R31[11]
VP_DIN[10] / UHPI_HD[4] / UPP_D[4] / PRU0_R30[10] / R19 I CP[27] C
PRU0_R31[10]
VP_DIN[9] / UHPI_HD[1] / UPP_D[1] / PRU0_R30[9] / PRU0_R31[9] R15 I CP[27] C
AXR8 / CLKS1 / ECAP1_APWM1 / GP0[0] / PRU0_R31[8] E4 I CP[3] A
AXR7 / EPWM1TZ[0] / PRU0_R30[17] / GP1[15] / PRU0_R31[7] D2 I CP[4] A
AXR6 / CLKR0 / GP1[14] / MII_TXEN / PRU0_R31[6] C1 I CP[5] A
EMA_CLK / PRU0_R30[5] / GP2[7] / PRU0_R31[5] B7 I CP[16] B
EMA_SDCKE / PRU0_R30[4] / GP2[6] / PRU0_R31[4] D8 I CP[16] B
EMA_RAS / PRU0_R30[3] / GP2[5] / PRU0_R31[3] A16 I CP[16] B
EMA_CAS / PRU0_R30[2] / GP2[4] / PRU0_R31[2] A9 I CP[16] B
EMA_WAIT[1] / PRU0_R30[1] / GP2[1] / PRU0_R31[1] B19 I CP[16] B
EMA_WAIT[0] / PRU0_R30[0] / GP3[8] / PRU0_R31[0] B18 I CP[16] B
Copyright ©20092011, Texas Instruments Incorporated Device Overview 41
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
Table 2-12. Programmable Real-Time Unit (PRU) Terminal Functions (continued)
SIGNAL POWER
TYPE(1) PULL(2) DESCRIPTION
GROUP(3)
NAME NO.
MMCSD0_CLK / PRU1_R30[31] /GP4[7] E9 O CP[18] B
EMA_A[22] / MMCSD0_CMD / PRU1_R30[30] / GP4[6] A10 O CP[18] B
EMA_A[21] / MMCSD0_DAT[0] / PRU1_R30[29] / GP4[5] B10 O CP[18] B
EMA_A[20] / MMCSD0_DAT[1] / PRU1_R30[28] / GP4[4] A11 O CP[18] B
EMA_A[19] / MMCSD0_DAT[2] / PRU1_R30[27] / GP4[3] C10 O CP[18] B
EMA_A[18] / MMCSD0_DAT[3] / PRU1_R30[26] / GP4[2] E11 O CP[18] B
EMA_A[17] / MMCSD0_DAT[4] / PRU1_R30[25] / GP4[1] B11 O CP[18] B
EMA_A[16] / MMCSD0_DAT[5] / PRU1_R30[24] / GP4[0] E12 O CP[18] B
EMA_A[15] / MMCSD0_DAT[6] / PRU1_R30[23] / GP5[15] / C11 O CP[19] B
PRU1_R31[23]
EMA_A[14] / MMCSD0_DAT[7] / PRU1_R30[22] / GP5[14] / A12 O CP[19] B
PRU1_R31[22]
EMA_A[13] / PRU0_R30[21] / PRU1_R30[21] / GP5[13] / D11 O CP[19] B
PRU1_R31[21]
EMA_A[12] / PRU1_R30[20] / GP5[12] / PRU1_R31[20] D13 O CP[19] B
EMA_A[11] / PRU1_R30[19] / GP5[11] / PRU1_R31[19] B12 O CP[19] B
EMA_A[10] / PRU1_R30[18] / GP5[10] / PRU1_R31[18] C12 O CP[19] B
EMA_A[9] / PRU1_R30[17] / GP5[9] D12 O CP[19] B
EMA_A[8] / PRU1_R30[16] / GP5[8] A13 O CP[19] B
EMA_A[7] / PRU1_R30[15] / GP5[7] B13 O CP[20] B
RESETOUT / UHPI_HAS / PRU1_R30[14] / GP6[15] T17 O CP[21] C PRU1 Output Signals
CLKOUT / UHPI_HDS2 / PRU1_R30[13] / GP6[14] T18 O CP[22] C
PRU0_R30[31] / UHPI_HRDY / PRU1_R30[12] / GP6[13] R17 O CP[23] C
PRU0_R30[30] / UHPI_HINT / PRU1_R30[11] / GP6[12] R16 O CP[23] C
VP_CLKIN0 / UHPI_HCS / PRU1_R30[10] / GP6[7] / W14 O CP[25] C
UPP_2xTXCLK
VP_CLKIN1 / UHPI_HDS1 / PRU1_R30[9] / GP6[6] / PRU1_R31[16] V15 O CP[25] C
PRU0_R30[22] / PRU1_R30[8] / UPP_CHB_WAIT / GP8[12] / G3 O CP[30] C
PRU1_R31[24]
MMCSD1_DAT[7] / LCD_PCLK / PRU1_R30[7] / GP8[11] F1 O CP[31] C
MMCSD1_DAT[6] / LCD_MCLK / PRU1_R30[6] / GP8[10] / F2 O CP[31] C
PRU1_R31[7]
MMCSD1_DAT[5] / LCD_HSYNC / PRU1_R30[5] / GP8[9] / H4 O CP[31] C
PRU1_R31[6]
MMCSD1_DAT[4] / LCD_VSYNC / PRU1_R30[4] / GP8[8] / G4 O CP[31] C
PRU1_R31[5]
VP_CLKIN2 / MMCSD1_DAT[3] / PRU1_R30[3] / GP6[4] / H3 O CP[30] C
PRU1_R31[4]
VP_CLKOUT2 / MMCSD1_DAT[2] / PRU1_R30[2] / GP6[3] / K3 O CP[30] C
PRU1_R31[3]
VP_CLKIN3 / MMCSD1_DAT[1] / PRU1_R30[1] / GP6[2] / J3 O CP[30] C
PRU1_R31[2]
VP_CLKOUT3 / PRU1_R30[0] / GP6[1] / PRU1_R31[1] K4 O CP[30] C
42 Device Overview Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
Table 2-12. Programmable Real-Time Unit (PRU) Terminal Functions (continued)
SIGNAL POWER
TYPE(1) PULL(2) DESCRIPTION
GROUP(3)
NAME NO.
VP_DIN[0] / UHPI_HD[8] / UPP_D[8] / RMII_CRS_DV / W19 I CP[26] C
PRU1_R31[29]
LCD_AC_ENB_CS / GP6[0] / PRU1_R31[28] R5 I CP[31] C
PRU0_R30[25] / MMCSD1_DAT[0] / UPP_CHB_CLOCK / GP8[15] / G1 I CP[30] C
PRU1_R31[27]
PRU0_R30[24] / MMCSD1_CLK / UPP_CHB_START / GP8[14] / G2 I CP[30] C
PRU1_R31[26]
PRU0_R30[23] / MMCSD1_CMD / UPP_CHB_ENABLE / GP8[13] / J4 I CP[30] C
PRU1_R31[25]
PRU0_R30[22] / PRU1_R30[8] / UPP_CHB_WAIT / GP8[12] / G3 I CP[30] C
PRU1_R31[24]
MMCSD0_CLK / PRU1_R30[31] /GP4[7] E9 I CP[18] B
EMA_A[22] / MMCSD0_CMD / PRU1_R30[30] / GP4[6] A10 I CP[18] B
EMA_A[21] / MMCSD0_DAT[0] / PRU1_R30[29] / GP4[5] B10 I CP[18] B
EMA_A[20] / MMCSD0_DAT[1] / PRU1_R30[28] / GP4[4] A11 I CP[18] B
EMA_A[19] / MMCSD0_DAT[2] / PRU1_R30[27] / GP4[3] C10 I CP[18] B
EMA_A[18] / MMCSD0_DAT[3] / PRU1_R30[26] / GP4[2] E11 I CP[18] B
PRU0_R30[26] / UHPI_HRW / UPP_CHA_WAIT / GP6[8] / T15 I CP[24] C
PRU1_R31[17]
VP_CLKIN1 / UHPI_HDS1 / PRU1_R30[9] / GP6[6] / PRU1_R31[16] V15 I CP[25] C
VP_DOUT[7] / LCD_D[7] / UPP_XD[15] / GP7[15] / PRU1_R31[15] U2 I CP[28] C PRU1 Input Signals
VP_DOUT[6] / LCD_D[6] / UPP_XD[14] / GP7[14] / PRU1_R31[14] U1 I CP[28] C
VP_DOUT[5] / LCD_D[5] / UPP_XD[13] / GP7[13] / PRU1_R31[13] V3 I CP[28] C
VP_DOUT[4] / LCD_D[4] / UPP_XD[12] / GP7[12] / PRU1_R31[12] V2 I CP[28] C
VP_DOUT[3] / LCD_D[3] / UPP_XD[11] / GP7[11] / PRU1_R31[11] V1 I CP[28] C
VP_DOUT[2] / LCD_D[2] / UPP_XD[10] / GP7[10] / PRU1_R31[10] W3 I CP[28] C
VP_DOUT[1] / LCD_D[1] / UPP_XD[9] / GP7[9] / PRU1_R31[9] W2 I CP[28] C
VP_DOUT[0] / LCD_D[0] / UPP_XD[8] / GP7[8] / PRU1_R31[8] W1 I CP[28] C
MMCSD1_DAT[6] / LCD_MCLK / PRU1_R30[6] / GP8[10] / F2 I CP[31] C
PRU1_R31[7]
MMCSD1_DAT[5] / LCD_HSYNC / PRU1_R30[5] / GP8[9] / H4 I CP[31] C
PRU1_R31[6]
MMCSD1_DAT[4] / LCD_VSYNC / PRU1_R30[4] / GP8[8] / G4 I CP[31] C
PRU1_R31[5]
VP_CLKIN2 / MMCSD1_DAT[3] / PRU1_R30[3] / GP6[4] / H3 I CP[30] C
PRU1_R31[4]
VP_CLKOUT2 / MMCSD1_DAT[2] / PRU1_R30[2] / GP6[3] / K3 I CP[30] C
PRU1_R31[3]
VP_CLKIN3 / MMCSD1_DAT[1] / PRU1_R30[1] / GP6[2] / J3 I CP[30] C
PRU1_R31[2]
VP_CLKOUT3 / PRU1_R30[0] / GP6[1] / PRU1_R31[1] K4 I CP[30] C
VP_DIN[8] / UHPI_HD[0] / UPP_D[0] / GP6[5] / PRU1_R31[0] P17 I CP[27] C
Copyright ©20092011, Texas Instruments Incorporated Device Overview 43
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
2.8.9 Enhanced Capture/Auxiliary PWM Modules (eCAP0)
The eCAP Module pins function as either input captures or auxiliary PWM 32-bit outputs, depending upon
how the eCAP module is programmed.
Table 2-13. Enhanced Capture Module (eCAP) Terminal Functions
SIGNAL POWER
TYPE(1) PULL(2) DESCRIPTION
GROUP(3)
NAME NO.
eCAP0
enhanced capture 0 input or
AXR0 / ECAP0_APWM0 / GP8[7] / MII_TXD[0] / CLKS0 F3 I/O CP[6] A auxiliary PWM 0 output
eCAP1
enhanced capture 1 input or
AXR8 / CLKS1 / ECAP1_APWM1 / GP0[0] / PRU0_R31[8] E4 I/O CP[3] A auxiliary PWM 1 output
eCAP2
enhanced capture 2 input or
AXR15 / EPWM0TZ[0] / ECAP2_APWM2 / GP0[7] A4 I/O CP[1] A auxiliary PWM 2 output
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where nis the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up,
an external pull-up can be used. For electrical specifications on the pull-up and and internal pull-down circuits, see the Device Operating
Conditions section.
(3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
44 Device Overview Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
2.8.10 Enhanced Pulse Width Modulators (eHRPWM)
Table 2-14. Enhanced Pulse Width Modulator (eHRPWM) Terminal Functions
SIGNAL POWER
TYPE(1) PULL(2) DESCRIPTION
GROUP(3)
NAME NO.
eHRPWM0
eHRPWM0 A output
SPI0_CLK / EPWM0A / GP1[8] / MII_RXCLK D19 I/O CP[7] A (with high-resolution)
SPI0_ENA / EPWM0B / PRU0_R30[6] / MII_RXDV C17 I/O CP[7] A eHRPWM0 B output
AXR15 / EPWM0TZ[0] / ECAP2_APWM2 / GP0[7] A4 I CP[1] A eHRPWM0 trip zone input
SPI0_SOMI / EPWMSYNCI / GP8[6] / MII_RXER C16 I CP[7] A eHRPWM0 sync input
SPI0_SIMO / EPWMSYNCO / GP8[5] / MII_CRS C18 I/O CP[7] A eHRPWM0 sync output
eHRPWM1
SPI1_SCS[1] / EPWM1A / PRU0_R30[8] / GP2[15] / eHRPWM1 A output
F18 I/O CP[14] A
TM64P2_IN12 (with high-resolution)
SPI1_SCS[0] / EPWM1B / PRU0_R30[7] / GP2[14] / E19 I/O CP[14] A eHRPWM1 B output
TM64P3_IN12
AXR7 / EPWM1TZ[0] / PRU0_R30[17] / GP1[15] / D2 I CP[4] A eHRPWM1 trip zone input
PRU0_R31[7]
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where nis the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are weakly pulled down. If the application requires a
pull-up, an external pull-up can be used. For electrical specifications on the pull-up and and internal pull-down circuits, see the Device
Operating Conditions section.
(3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
Copyright ©20092011, Texas Instruments Incorporated Device Overview 45
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
2.8.11 Boot
Table 2-15. Boot Mode Selection Terminal Functions(1)
SIGNAL POWER
TYPE(2) PULL(3) DESCRIPTION
GROUP(4)
NAME NO.
VP_DOUT[15] / LCD_D[15] / UPP_XD[7] / GP7[7] / BOOT[7] P4 I CP[29] C
VP_DOUT[14] / LCD_D[14] / UPP_XD[6] / GP7[6] / BOOT[6] R3 I CP[29] C
VP_DOUT[13] / LCD_D[13] / UPP_XD[5] / GP7[5] / BOOT[5] R2 I CP[29] C
VP_DOUT[12] / LCD_D[12] / UPP_XD[4] / GP7[4] / BOOT[4] R1 I CP[29] C Boot Mode Selection Pins
VP_DOUT[11] / LCD_D[11] / UPP_XD[3] / GP7[3] / BOOT[3] T3 I CP[29] C
VP_DOUT[10] / LCD_D[10] / UPP_XD[2] / GP7[2] / BOOT[2] T2 I CP[29] C
VP_DOUT[9] / LCD_D[9] / UPP_XD[1] / GP7[1] / BOOT[1] T1 I CP[29] C
VP_DOUT[8] / LCD_D[8] / UPP_XD[0] / GP7[0] / BOOT[0] U3 I CP[29] C
(1) Boot decoding is defined in the bootloader application report.
(2) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(3) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where nis the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up,
an external pull-up can be used. For electrical specifications on the pull-up and and internal pull-down circuits, see the Device Operating
Conditions section.
(4) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
46 Device Overview Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
2.8.12 Universal Asynchronous Receiver/Transmitters (UART0, UART1, UART2)
Table 2-16. Universal Asynchronous Receiver/Transmitter (UART) Terminal Functions
SIGNAL POWER
TYPE(1) PULL(2) DESCRIPTION
GROUP(3)
NAME NO.
UART0
SPI0_SCS[5] / UART0_RXD / GP8[4] / MII_RXD[3] C19 I CP[8] A UART0 receive data
SPI0_SCS[4] / UART0_TXD / GP8[3] / MII_RXD[2] D18 O CP[8] A UART0 transmit data
SPI0_SCS[2] / UART0_RTS / GP8[1] / MII_RXD[3] / D16 O CP[9] A UART0 ready-to-send output
SATA_CP_DET
SPI0_SCS[3] / UART0_CTS / GP8[2] / MII_RXD[1] / E17 I CP[9] A UART0 clear-to-send input
SATA_MP_SWITCH
UART1
SPI1_SCS[3] / UART1_RXD / SATA_LED / GP1[1] E18 I CP[13] A UART1 receive data
SPI1_SCS[2] / UART1_TXD / SATA_CP_POD / GP1[0] F19 O CP[13] A UART1 transmit data
AHCLKR / PRU0_R30[18] / UART1_RTS /GP0[11] / A2 O CP[0] A UART1 ready-to-send output
PRU0_R31[18]
AHCLKX / USB_REFCLKIN / UART1_CTS / GP0[10] / A3 I CP[0] A UART1 clear-to-send input
PRU0_R31[17]
UART2
SPI1_SCS[5] / UART2_RXD / I2C1_SCL /GP1[3] F17 I CP[12] A UART2 receive data
SPI1_SCS[4] / UART2_TXD / I2C1_SDA /GP1[2] F16 O CP[12] A UART2 transmit data
AMUTE / PRU0_R30[16] / UART2_RTS / GP0[9] / D5 O CP[0] A UART2 ready-to-send output
PRU0_R31[16]
RTC_ALARM / UART2_CTS / GP0[8] / DEEPSLEEP F4 I CP[0] A UART2 clear-to-send input
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where nis the pin group) using
the PUPDENA and PUPDSEL registers in the System Module.The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are weakly pulled down. If the application requires a
pull-up, an external pull-up can be used. For electrical specifications on the pull-up and and internal pull-down circuits, see the Device
Operating Conditions section.
(3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
Copyright ©20092011, Texas Instruments Incorporated Device Overview 47
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
2.8.13 Inter-Integrated Circuit Modules(I2C0, I2C1)
Table 2-17. Inter-Integrated Circuit (I2C) Terminal Functions
SIGNAL POWER
TYPE(1) PULL(2) DESCRIPTION
GROUP(3)
NAME NO.
I2C0
SPI1_SCS[6] / I2C0_SDA / TM64P3_OUT12 / GP1[4] G18 I/O CP[11] A I2C0 serial data
SPI1_SCS[7] / I2C0_SCL / TM64P2_OUT12 / GP1[5] G16 I/O CP[11] A I2C0 serial clock
I2C1
SPI1_SCS[4] / UART2_TXD / I2C1_SDA / GP1[2] F16 I/O CP[12] A I2C1 serial data
SPI1_SCS[5] / UART2_RXD / I2C1_SCL / GP1[3] F17 I/O CP[12] A I2C1 serial clock
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where nis the pin group) using
the PUPDENA and PUPDSEL registers in the System Module.The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are weakly pulled down. If the application requires a
pull-up, an external pull-up can be used. For electrical specifications on the pull-up and and internal pull-down circuits, see the Device
Operating Conditions section.
(3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
48 Device Overview Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
2.8.14 Timers
Table 2-18. Timers Terminal Functions
SIGNAL POWER
TYPE(1) PULL(2) DESCRIPTION
GROUP(3)
NAME NO.
TIMER0
SPI0_SCS[1] / TM64P0_OUT12 / GP1[7] / MDIO_CLK /TM64P0_IN12 E16 I CP[10] A Timer0 lower input
Timer0 lower
SPI0_SCS[1] / TM64P0_OUT12 / GP1[7] / MDIO_CLK / TM64P0_IN12 E16 O CP[10] A output
TIMER1 (Watchdog)
SPI0_SCS[0] / TM64P1_OUT12 / GP1[6] / MDIO_D / TM64P1_IN12 D17 I CP[10] A Timer1 lower input
Timer1 lower
SPI0_SCS[0] / TM64P1_OUT12 / GP1[6] / MDIO_D / TM64P1_IN12 D17 O CP[10] A output
TIMER2
SPI1_SCS[1] / EPWM1A / PRU0_R30[8] / GP2[15] / TM64P2_IN12 F18 I CP[14] A Timer2 lower input
Timer2 lower
SPI1_SCS[7] / I2C0_SCL / TM64P2_OUT12 / GP1[5] G16 O CP[11] A output
TIMER3
SPI1_SCS[0] / EPWM1B / PRU0_R30[7] / GP2[14] / TM64P3_IN12 E19 I CP[14] A Timer3 lower input
Timer3 lower
SPI1_SCS[6] / I2C0_SDA / TM64P3_OUT12 / GP1[4] G18 O CP[11] A output
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where nis the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up,
an external pull-up can be used. For electrical specifications on the pull-up and and internal pull-down circuits, see the Device Operating
Conditions section.
(3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
Copyright ©20092011, Texas Instruments Incorporated Device Overview 49
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
2.8.15 Multichannel Audio Serial Ports (McASP)
Table 2-19. Multichannel Audio Serial Ports Terminal Functions
SIGNAL POWER
TYPE(1) PULL(2) DESCRIPTION
GROUP(3)
NAME NO.
McASP0
AXR15 / EPWM0TZ[0] / ECAP2_APWM2 / GP0[7] A4 I/O CP[1] A
AXR14 / CLKR1 / GP0[6] B4 I/O CP[2] A
AXR13 / CLKX1 / GP0[5] B3 I/O CP[2] A
AXR12 / FSR1 / GP0[4] C4 I/O CP[2] A
AXR11 / FSX1 / GP0[3] C5 I/O CP[2] A
AXR10 / DR1 / GP0[2] D4 I/O CP[2] A
AXR9 / DX1 / GP0[1] C3 I/O CP[2] A
AXR8 / CLKS1 / ECAP1_APWM1 / GP0[0] / PRU0_R31[8] E4 I/O CP[3] A McASP0 serial data
AXR7 / EPWM1TZ[0] / PRU0_R30[17] / GP1[15] / D2 I/O CP[4] A
PRU0_R31[7]
AXR6 / CLKR0 / GP1[14] / MII_TXEN / PRU0_R31[6] C1 I/O CP[5] A
AXR5 / CLKX0 / GP1[13] / MII_TXCLK D3 I/O CP[5] A
AXR4 / FSR0 / GP1[12] / MII_COL D1 I/O CP[5] A
AXR3 / FSX0 / GP1[11] / MII_TXD[3] E3 I/O CP[5] A
AXR2 / DR0 / GP1[10] / MII_TXD[2] E2 I/O CP[5] A
AXR1 / DX0 / GP1[9] / MII_TXD[1] E1 I/O CP[5] A
AXR0 / ECAP0_APWM0 / GP8[7]/ MII_TXD[0] / CLKS0 F3 I/O CP[6] A
AHCLKX / USB_REFCLKIN / UART1_CTS / GP0[10] / A3 I/O CP[0] A McASP0 transmit master clock
PRU0_R31[17]
ACLKX / PRU0_R30[19] / GP0[14] / PRU0_R31[21] B1 I/O CP[0] A McASP0 transmit bit clock
AFSX / GP0[12] / PRU0_R31[19] B2 I/O CP[0] A McASP0 transmit frame sync
AHCLKR / PRU0_R30[18] / UART1_RTS / GP0[11] / A2 I/O CP[0] A McASP0 receive master clock
PRU0_R31[18]
ACLKR / PRU0_R30[20] / GP0[15] / PRU0_R31[22] A1 I/O CP[0] A McASP0 receive bit clock
AFSR / GP0[13] / PRU0_R31[20] C2 I/O CP[0] A McASP0 receive frame sync
AMUTE / PRU0_R30[16] / UART2_RTS / GP0[9] / D5 I/O CP[0] A McASP0 mute output
PRU0_R31[16]
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where nis the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up,
an external pull-up can be used. For electrical specifications on the pull-up and and internal pull-down circuits, see the Device Operating
Conditions section.
(3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
50 Device Overview Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
2.8.16 Multichannel Buffered Serial Ports (McBSP)
Table 2-20. Multichannel Buffered Serial Ports (McBSPs) Terminal Functions
SIGNAL POWER
TYPE(1) PULL(2) DESCRIPTION
GROUP(3)
NAME NO.
McBSP0
AXR0 / ECAP0_APWM0 / GP8[7] / MII_TXD[0] F3 I CP[6] A McBSP0 sample rate generator clock input
/CLKS0
AXR6 / CLKR0 / GP1[14] / MII_TXEN / C1 I/O CP[5] A McBSP0 receive clock
PRU0_R31[6]
AXR4 / FSR0 / GP1[12] / MII_COL D1 I/O CP[5] A McBSP0 receive frame sync
AXR2 / DR0 / GP1[10] / MII_TXD[2] E2 I CP[5] A McBSP0 receive data
AXR5 / CLKX0 / GP1[13] / MII_TXCLK D3 I/O CP[5] A McBSP0 transmit clock
AXR3 / FSX0 / GP1[11] / MII_TXD[3] E3 I/O CP[5] A McBSP0 transmit frame sync
AXR1 / DX0 / GP1[9] / MII_TXD[1] E1 O CP[5] A McBSP0 transmit data
McBSP1
AXR8 / CLKS1 / ECAP1_APWM1 / GP0[0] / E4 I CP[3] A McBSP1 sample rate generator clock input
PRU0_R31[8]
AXR14 / CLKR1 / GP0[6] B4 I/O CP[2] A McBSP1 receive clock
AXR12 / FSR1 / GP0[4] C4 I/O CP[2] A McBSP1 receive frame sync
AXR10 / DR1 / GP0[2] D4 I CP[2] A McBSP1 receive data
AXR13 / CLKX1 / GP0[5] B3 I/O CP[2] A McBSP1 transmit clock
AXR11 / FSX1 / GP0[3] C5 I/O CP[2] A McBSP1 transmit frame sync
AXR9 / DX1 / GP0[1] C3 O CP[2] A McBSP1 transmit data
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where nis the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up,
an external pull-up can be used. For electrical specifications on the pull-up and and internal pull-down circuits, see the Device Operating
Conditions section.
(3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
Copyright ©20092011, Texas Instruments Incorporated Device Overview 51
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
2.8.17 Universal Serial Bus Modules (USB0, USB1)
Table 2-21. Universal Serial Bus (USB) Terminal Functions
SIGNAL POWER
TYPE(1) PULL(2) DESCRIPTION
GROUP(3)
NAME NO.
USB0 2.0 OTG (USB0)
USB0_DM M18 A IPD USB0 PHY data minus
USB0_DP M19 A IPD USB0 PHY data plus
USB0_VDDA33 N18 PWR USB0 PHY 3.3-V supply
USB0 PHY identification
USB0_ID P16 A (mini-A or mini-B plug)
USB0_VBUS N19 A USB0 bus voltage
USB0_DRVVBUS K18 0 IPD B USB0 controller VBUS control output.
AHCLKX / USB_REFCLKIN / UART1_CTS / A3 I CP[0] A USB_REFCLKIN. Optional clock input
GP0[10] / PRU0_R31[17]
USB0_VDDA18 N14 PWR USB0 PHY 1.8-V supply input
USB0_VDDA12 N17 A USB0 PHY 1.2-V LDO output for bypass cap
USB0 and USB1 core logic 1.2-V supply
USB_CVDD M12 PWR input
USB1 1.1 OHCI (USB1)
USB1_DM l P18 A USB1 PHY data minus
USB1_DP P19 A USB1 PHY data plus
AHCLKX / USB_REFCLKIN / UART1_CTS / A3 I CP[0] A USB_REFCLKIN. Optional clock input
GP0[10] / PRU0_R31[17]
USB1_VDDA33 P15 PWR USB1 PHY 3.3-V supply
USB1_VDDA18 P14 PWR USB1 PHY 1.8-V supply
USB0 and USB1 core logic 1.2-V supply
USB_CVDD M12 PWR input
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where nis the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up,
an external pull-up can be used. For electrical specifications on the pull-up and and internal pull-down circuits, see the Device Operating
Conditions section.
(3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
52 Device Overview Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
2.8.18 Ethernet Media Access Controller (EMAC)
Table 2-22. Ethernet Media Access Controller (EMAC) Terminal Functions
SIGNAL POWER
TYPE(1) PULL(2) DESCRIPTION
GROUP(3)
NAME NO.
MII
AXR6 / CLKR0 / GP1[14] / MII_TXEN / PRU0_R31[6] C1 O CP[5] A EMAC MII Transmit enable output
AXR5 / CLKX0 / GP1[13] / MII_TXCLK D3 I CP[5] A EMAC MII Transmit clock input
AXR4 / FSR0 / GP1[12] / MII_COL D1 I CP[5] A EMAC MII Collision detect input
AXR3 / FSX0 / GP1[11] / MII_TXD[3] E3 O CP[5] A
AXR2 / DR0 / GP1[10] / MII_TXD[2] E2 O CP[5] A EMAC MII transmit data
AXR1 / DX0 / GP1[9] / MII_TXD[1] E1 O CP[5] A
AXR0 / ECAP0_APWM0 / GP8[7] / MII_TXD[0] /F3 O CP[6] A
CLKS0
SPI0_SOMI / EPWMSYNCI / GP8[6] / MII_RXER C16 I CP[7] A EMAC MII receive error input
SPI0_SIMO /EPWMSYNCO / GP8[5] / MII_CRS C18 I CP[7] A EMAC MII carrier sense input
SPI0_CLK / EPWM0A / GP1[8] / MII_RXCLK D19 I CP[7] A EMAC MII receive clock input
SPI0_ENA / EPWM0B / PRU0_R30[6] / MII_RXDV C17 I CP[7] A EMAC MII receive data valid input
SPI0_SCS[5] /UART0_RXD / GP8[4] / MII_RXD[3] C19 I CP[8] A
SPI0_SCS[4] /UART0_TXD / GP8[3] / MII_RXD[2] D18 I CP[8] A
SPI0_SCS[3] / UART0_CTS / GP8[2] / MII_RXD[1] /EMAC MII receive data
E17 I CP[9] A
SATA_MP_SWITCH
SPI0_SCS[2] / UART0_RTS / GP8[1] / MII_RXD[0] /D16 I CP[9] A
SATA_CP_DET
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where nis the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up,
an external pull-up can be used. For electrical specifications on the pull-up and and internal pull-down circuits, see the Device Operating
Conditions section.
(3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
Copyright ©20092011, Texas Instruments Incorporated Device Overview 53
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
Table 2-22. Ethernet Media Access Controller (EMAC) Terminal Functions (continued)
SIGNAL POWER
TYPE(1) PULL(2) DESCRIPTION
GROUP(3)
NAME NO.
RMII
VP_DIN[1] / UHPI_HD[9] / UPP_D[9] / W18 I/O CP[26] C EMAC 50-MHz clock input or output
RMII_MHZ_50_CLK / PRU0_R31[23]
VP_DIN[2] / UHPI_HD[10] / UPP_D[10] / RMII_RXER /W17 I CP[26] C EMAC RMII receiver error
PRU0_R31[24]
VP_DIN[3] / UHPI_HD[11] / UPP_D[11] / RMII_RXD[0] V17 I CP[26] C
/ PRU0_R31[25] EMAC RMII receive data
VP_DIN[4] / UHPI_HD[12] / UPP_D[12] / RMII_RXD[1] W16 I CP[26] C
/PRU0_R31[26]
VP_DIN[0] / UHPI_HD[8] / UPP_D[8] / RMII_CRS_DV W19 I CP[26] C EMAC RMII carrier sense data valid
/ PRU1_R31[29]
VP_DIN[5] / UHPI_HD[13] / UPP_D[13] / RMII_TXEN /R14 O CP[26] C EMAC RMII transmit enable
PRU0_R31[27]
VP_DIN[6] / UHPI_HD[14] / UPP_D[14] / RMII_TXD[0] V16 O CP[26] C
/ PRU0_R31[28] EMAC RMII transmit data
VP_DIN[7] / UHPI_HD[15] / UPP_D[15] / RMII_TXD[1] U18 O CP[26] C
/ PRU0_R31[29]
MDIO
SPI0_SCS[0] /TM64P1_OUT12 / GP1[6] / MDIO_D /D17 I/O CP[10] A MDIO serial data
TM64P1_IN12
SPI0_SCS[1] /TM64P0_OUT12 / GP1[7] / MDIO_CLK E16 O CP[10] A MDIO clock
/ TM64P0_IN12
54 Device Overview Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
2.8.19 Multimedia Card/Secure Digital (MMC/SD)
Table 2-23. Multimedia Card/Secure Digital (MMC/SD) Terminal Functions
SIGNAL POWER
TYPE(1) PULL(2) DESCRIPTION
GROUP(3)
NAME NO.
MMCSD0
MMCSD0_CLK / PRU1_R30[31] /GP4[7] E9 O CP[18] B MMCSD0 Clock
EMA_A[22] / MMCSD0_CMD / PRU1_R30[30] / GP4[6] A10 I/O CP[18] B MMCSD0 Command
EMA_A[14] / MMCSD0_DAT[7] / PRU1_R30[22] / GP5[14] / A12 I/O CP[19] B
PRU1_R31[22]
EMA_A[15] / MMCSD0_DAT[6] / PRU1_R30[23] / GP5[15] / C11 I/O CP[19] B
PRU1_R31[23]
EMA_A[16] / MMCSD0_DAT[5] / PRU1_R30[24] / GP4[0] E12 I/O CP[18] B MMC/SD0 data
EMA_A[17] / MMCSD0_DAT[4] / PRU1_R30[25] / GP4[1] B11 I/O CP[18] B
EMA_A[18] / MMCSD0_DAT[3] / PRU1_R30[26] / GP4[2] E11 I/O CP[18] B
EMA_A[19] / MMCSD0_DAT[2] / PRU1_R30[27] / GP4[3] C10 I/O CP[18] B
EMA_A[20] / MMCSD0_DAT[1] / PRU1_R30[28] / GP4[4] A11 I/O CP[18] B
EMA_A[21] / MMCSD0_DAT[0] / PRU1_R30[29] / GP4[5] B10 I/O CP[18] B
MMCSD1
PRU0_R30[24] / MMCSD1_CLK / UPP_CHB_START / GP8[14] / G2 O CP[30] C MMCSD1 Clock
PRU1_R31[26]/
PRU0_R30[23] / MMCSD1_CMD / UPP_CHB_ENABLE / GP8[13] / J4 I/O CP[30] C MMCSD1 Command
PRU1_R31[25]
MMCSD1_DAT[7] / LCD_PCLK / PRU1_R30[7] / GP8[11] F1 I/O CP[31] C
MMCSD1_DAT[6] / LCD_MCLK / PRU1_R30[6] / GP8[10] / F2 I/O CP[31] C
PRU1_R31[7]
MMCSD1_DAT[5] / LCD_HSYNC / PRU1_R30[5] / GP8[9] / H4 I/O CP[31] C
PRU1_R31[6]
MMCSD1_DAT[4] / LCD_VSYNC / PRU1_R30[4] / GP8[8] / G4 I/O CP[31] C
PRU1_R31[5] MMC/SD1 data
VP_CLKIN2 / MMCSD1_DAT[3] / PRU1_R30[3] / GP6[4] / H3 I/O CP[30] C
PRU1_R31[4]
VP_CLKOUT2 / MMCSD1_DAT[2] / PRU1_R30[2] / GP6[3] / K3 I/O CP[30] C
PRU1_R31[3]
VP_CLKIN3 / MMCSD1_DAT[1]/ PRU1_R30[1] / GP6[2] / J3 I/O CP[30] C
PRU1_R31[2]
PRU0_R30[25] / MMCSD1_DAT[0] / UPP_CHB_CLOCK / GP8[15]/ G1 I/O CP[30] C
PRU1_R31[27]
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where nis the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up,
an external pull-up can be used. For electrical specifications on the pull-up and and internal pull-down circuits, see the Device Operating
Conditions section.
(3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
Copyright ©20092011, Texas Instruments Incorporated Device Overview 55
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
2.8.20 Liquid Crystal Display Controller(LCD)
Table 2-24. Liquid Crystal Display Controller (LCD) Terminal Functions
SIGNAL POWER
TYPE(1) PULL(2) DESCRIPTION
GROUP(3)
NAME NO.
VP_DOUT[15] / LCD_D[15] / UPP_XD[7] / GP7[7] / BOOT[7] P4 I/O CP[29] C
VP_DOUT[14] / LCD_D[14] / UPP_XD[6] / GP7[6] / BOOT[6] R3 I/O CP[29] C
VP_DOUT[13] / LCD_D[13] / UPP_XD[5] / GP7[5] / BOOT[5] R2 I/O CP[29] C
VP_DOUT[12] / LCD_D[12] / UPP_XD[4] / GP7[4] / BOOT[4] R1 I/O CP[29] C
VP_DOUT[11] / LCD_D[11] / UPP_XD[3] / GP7[3] / BOOT[3] T3 I/O CP[29] C
VP_DOUT[10] / LCD_D[10] / UPP_XD[2] / GP7[2] / BOOT[2] T2 I/O CP[29] C
VP_DOUT[9] / LCD_D[9] / UPP_XD[1] / GP7[1] / BOOT[1] T1 I/O CP[29] C
VP_DOUT[8] / LCD_D[8] / UPP_XD[0] / GP7[0] / BOOT[0] U3 I/O CP[29] C
VP_DOUT[7] / LCD_D[7] / UPP_XD[15] / GP7[15] / U2 I/O CP[28] C
PRU1_R31[15] LCD data bus
VP_DOUT[6] / LCD_D[6] / UPP_XD[14] / GP7[14] / U1 I/O CP[28] C
PRU1_R31[14]
VP_DOUT[5] / LCD_D[5] / UPP_XD[13] / GP7[13] / V3 I/O CP[28] C
PRU1_R31[13]
VP_DOUT[4] / LCD_D[4] / UPP_XD[12] / GP7[12] / V2 I/O CP[28] C
PRU1_R31[12]
VP_DOUT[3] / LCD_D[3] / UPP_XD[11] / GP7[11] / V1 I/O CP[28] C
PRU1_R31[11]
VP_DOUT[2] / LCD_D[2] / UPP_XD[10] / GP7[10] / W3 I/O CP[28] C
PRU1_R31[10]
VP_DOUT[1] / LCD_D[1] / UPP_XD[9] / GP7[9] / PRU1_R31[9] W2 I/O CP[28] C
VP_DOUT[0] / LCD_D[0] / UPP_XD[8] / GP7[8] / PRU1_R31[8] W1 I/O CP[28] C
MMCSD1_DAT[7] / LCD_PCLK / PRU1_R30[7] / GP8[11] F1 O CP[31] C LCD pixel clock
MMCSD1_DAT[5] / LCD_HSYNC / PRU1_R30[5] / GP8[9] / H4 O CP[31] C LCD horizontal sync
PRU1_R31[6]
MMCSD1_DAT[4] / LCD_VSYNC / PRU1_R30[4] / GP8[8] / G4 O CP[31] C LCD vertical sync
PRU1_R31[5] LCD AC bias enable chip
LCD_AC_ENB_CS / GP6[0]/ / PRU1_R31[28] R5 O CP[31] C select
MMCSD1_DAT[6] / LCD_MCLK / PRU1_R30[6] / GP8[10] / F2 O CP[31] C LCD memory clock
PRU1_R31[7]
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where nis the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up,
an external pull-up can be used. For electrical specifications on the pull-up and and internal pull-down circuits, see the Device Operating
Conditions section.
(3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
56 Device Overview Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
2.8.21 Serial ATA Controller (SATA)
Table 2-25. Serial ATA Controller (SATA) Terminal Functions
SIGNAL POWER
TYPE(1) PULL(2) DESCRIPTION
GROUP(3)
NAME NO.
SATA_RXP L1 I SATA receive data (positive)
SATA_RXN L2 I SATA receive data (negative)
SATA_TXP J1 O SATA transmit data (positive)
SATA_TXN J2 O SATA transmit data (negative)
SATA_REFCLKP N2 I SATA PHY reference clock (positive)
SATA_REFCLKN N1 I SATA PHY reference clock (negative)
SPI0_SCS[3] / UART0_CTS / GP8[2] / E17 I CP[9] A SATA mechanical presence switch input
MII_RXD[1] / SATA_MP_SWITCH
SPI0_SCS[2] / UART0_RTS / GP8[1] / D16 I CP[9] A SATA cold presence detect input
MII_RXD[0] / SATA_CP_DET
SPI1_SCS[2] / UART1_TXD / F19 O CP[13] A SATA cold presence power-on output
SATA_CP_POD / GP1[0]
SPI1_SCS[3] / UART1_RXD / SATA_LED /E18 O CP[13] A SATA LED control output
GP1[1] SATA PHY PLL regulator output. Requires an
SATA_REG N3 A external 0.1uF filter capacitor.
SATA_VDDR P3 PWR SATA PHY 1.8V internal regulator supply
M2,
P1,
SATA_VDD PWR SATA PHY 1.2V logic supply
P2,
N4
H1,
H2,
K1,
SATA_VSS GND SATA PHY ground reference
K2,
L3,
M1
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where nis the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up,
an external pull-up can be used. For electrical specifications on the pull-up and and internal pull-down circuits, see the Device Operating
Conditions section.
(3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
Copyright ©20092011, Texas Instruments Incorporated Device Overview 57
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
2.8.22 Universal Host-Port Interface (UHPI)
Table 2-26. Universal Host-Port Interface (UHPI) Terminal Functions
SIGNAL POWER
TYPE(1) PULL(2) DESCRIPTION
GROUP(3)
NAME NO.
VP_DIN[7] / UHPI_HD[15] / UPP_D[15] / RMII_TXD[1] / U18 I/O CP[26] C
PRU0_R31[29]
VP_DIN[6] / UHPI_HD[14] / UPP_D[14] / RMII_TXD[0] / V16 I/O CP[26] C
PRU0_R31[28]
VP_DIN[5] / UHPI_HD[13] / UPP_D[13] / RMII_TXEN / R14 I/O CP[26] C
PRU0_R31[27]
VP_DIN[4] / UHPI_HD[12] / UPP_D[12] / RMII_RXD[1] / W16 I/O CP[26] C
PRU0_R31[26]
VP_DIN[3] / UHPI_HD[11] / UPP_D[11] / RMII_RXD[0] / V17 I/O CP[26] C
PRU0_R31[25]
VP_DIN[2] / UHPI_HD[10] / UPP_D[10] / RMII_RXER / W17 I/O CP[26] C
PRU0_R31[24]
VP_DIN[1] / UHPI_HD[9] / UPP_D[9] / RMII_MHZ_50_CLK / W18 I/O CP[26] C
PRU0_R31[23]
VP_DIN[0] / UHPI_HD[8] / UPP_D[8] / RMII_CRS_DV / W19 I/O CP[26] C UHPI data bus
PRU1_R31[29]
VP_DIN[15]_VSYNC / UHPI_HD[7] / UPP_D[7] / PRU0_R30[15] / V18 I/O CP[27] C
PRU0_R31[15]
VP_DIN[14]_HSYNC / UHPI_HD[6] / UPP_D[6] / PRU0_R30[14] / V19 I/O CP[27] C
PRU0_R31[14]
VP_DIN[13]_FIELD / UHPI_HD[5] / UPP_D[5] / PRU0_R30[13] / U19 I/O CP[27] C
PRU0_R31[13]
VP_DIN[12] / UHPI_HD[4] / UPP_D[4] / PRU0_R30[12] / T16 I/O CP[27] C
PRU0_R31[12]
VP_DIN[11] / UHPI_HD[3] / UPP_D[3] / PRU0_R30[11] / R18 I/O CP[27] C
PRU0_R31[11]
VP_DIN[10] / UHPI_HD[2] / UPP_D[2] / PRU0_R30[10] / R19 I/O CP[27] C
PRU0_R31[10]
VP_DIN[9] / UHPI_HD[1] / UPP_D[1] / PRU0_R30[9] / PRU0_R31[9] R15 I/O CP[27] C
VP_DIN[8] / UHPI_HD[0] / UPP_D[0] / GP6[5] / PRU1_R31[0] P17 I/O CP[27] C
PRU0_R30[29] / UHPI_HCNTL0 / UPP_CHA_CLOCK / GP6[11] U17 I CP[24] C UHPI access control
PRU0_R30[28] / UHPI_HCNTL1 / UPP_CHA_START / GP6[10] W15 I CP[24] C UHPI half-word
PRU0_R30[27] / UHPI_HHWIL / UPP_CHA_ENABLE / GP6[9] U16 I CP[24] C identification control
PRU0_R30[26] / UHPI_HRW / UPP_CHA_WAIT / T15 I CP[24] C UHPI read/write
GP6[8]/PRU1_R31[17]
VP_CLKIN0 / UHPI_HCS / PRU1_R30[10] / GP6[7] / UPP_2xTXCLK W14 I CP[25] C UHPI chip select
VP_CLKIN1 / UHPI_HDS1 / PRU1_R30[9] / GP6[6] / PRU1_R31[16] V15 I CP[25] C UHPI data strobe
CLKOUT / UHPI_HDS2 / PRU1_R30[13] / GP6[14] T18 I CP[22] C
PRU0_R30[30] / UHPI_HINT / PRU1_R30[11] / GP6[12] R16 O CP[23] C UHPI host interrupt
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where nis the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are weakly pulled down. If the application requires a
pull-up, an external pull-up can be used. For electrical specifications on the pull-up and and internal pull-down circuits, see the Device
Operating Conditions section.
(3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
58 Device Overview Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
Table 2-26. Universal Host-Port Interface (UHPI) Terminal Functions (continued)
SIGNAL POWER
TYPE(1) PULL(2) DESCRIPTION
GROUP(3)
NAME NO.
PRU0_R30[31] / UHPI_HRDY / PRU1_R30[12] /GP6[13] R17 O CP[23] C UHPI ready
RESETOUT / UHPI_HAS / PRU1_R30[14] / GP6[15] T17 I CP[21] C UHPI address strobe
Copyright ©20092011, Texas Instruments Incorporated Device Overview 59
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
2.8.23 Universal Parallel Port (uPP)
Table 2-27. Universal Parallel Port (uPP) Terminal Functions
SIGNAL POWER
TYPE(1) PULL(2) DESCRIPTION
GROUP(3)
NAME NO.
VP_CLKIN0 / UHPI_HCS /PRU1_R30[10] / GP6[7] / uPP 2x transmit clock
W14 I CP[25] C
UPP_2xTXCLK input
PRU0_R30[25] /MMCSD1_DAT[0] / UPP_CHB_CLOCK /G1 I/O CP[30] C uPP channel B clock
GP8[15]/PRU1_R31[27]
PRU0_R30[24]/ MMCSD1_CLK / UPP_CHB_START / GP8[14] / G2 I/O CP[30] C uPP channel B start
PRU1_R31[26]
PRU0_R30[23] / MMCSD1_CMD / UPP_CHB_ENABLE /J4 I/O CP[30] C uPP channel B enable
GP8[13]/PRU1_R31[25]
PRU0_R30[22] / PRU1_R30[8] / UPP_CHB_WAIT / GP8[12]/ G3 I/O CP[30] C uPP channel B wait
PRU1_R31[24]
PRU0_R30[29] /UHPI_HCNTL0 / UPP_CHA_CLOCK / GP6[11] U17 I/O CP[24] C uPP channel A clock
PRU0_R30[28] / UHPI_HCNTL1 / UPP_CHA_START / GP6[10] W15 I/O CP[24] C uPP channel A start
PRU0_R30[27] / UHPI_HHWIL / UPP_CHA_ENABLE / GP6[9] U16 I/O CP[24] C uPP channel A enable
PRU0_R30[26] /UHPI_HRW / UPP_CHA_WAIT / GP6[8] / T15 I/O CP[24] C uPP channel A wait
PRU1_R31[17]
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where nis the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up,
an external pull-up can be used. For electrical specifications on the pull-up and and internal pull-down circuits, see the Device Operating
Conditions section.
(3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
60 Device Overview Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
Table 2-27. Universal Parallel Port (uPP) Terminal Functions (continued)
SIGNAL POWER
TYPE(1) PULL(2) DESCRIPTION
GROUP(3)
NAME NO.
VP_DOUT[7] / LCD_D[7] / UPP_XD[15] / GP7[15] / U2 I/O CP[28] C
PRU1_R31[15]
VP_DOUT[6] / LCD_D[6] / UPP_XD[14] / GP7[14] / U1 I/O CP[28] C
PRU1_R31[14]
VP_DOUT[5] / LCD_D[5] / UPP_XD[13] / GP7[13] / V3 I/O CP[28] C
PRU1_R31[13]
VP_DOUT[4] / LCD_D[4] / UPP_XD[12] / GP7[12] / V2 I/O CP[28] C
PRU1_R31[12]
VP_DOUT[3] / LCD_D[3] / UPP_XD[11] / GP7[11] / V1 I/O CP[28] C
PRU1_R31[11]
VP_DOUT[2] / LCD_D[2] / UPP_XD[10] / GP7[10] / W3 I/O CP[28] C
PRU1_R31[10]
VP_DOUT[1] / LCD_D[1] / UPP_XD[9] / GP7[9] / PRU1_R31[9] W2 I/O CP[28] C
VP_DOUT[0] / LCD_D[0] / UPP_XD[8] / GP7[8] / PRU1_R31[8] W1 I/O CP[28] C
VP_DOUT[15] / LCD_D[15] / UPP_XD[7] / GP7[7] / BOOT[7] P4 I/O CP[29] C
VP_DOUT[14] / LCD_D[14] / UPP_XD[6] / GP7[6] / BOOT[6] R3 I/O CP[29] C
VP_DOUT[13] / LCD_D[13] / UPP_XD[5] / GP7[5] / BOOT[5] R2 I/O CP[29] C
VP_DOUT[12] / LCD_D[12] / UPP_XD[4] / GP7[4] / BOOT[4] R1 I/O CP[29] C
VP_DOUT[11] / LCD_D[11] / UPP_XD[3] / GP7[3] / BOOT[3] T3 I/O CP[29] C
VP_DOUT[10] / LCD_D[10] / UPP_XD[2] / GP7[2] / BOOT[2] T2 I/O CP[29] C
VP_DOUT[9] / LCD_D[9] / UPP_XD[1] / GP7[1] / BOOT[1] T1 I/O CP[29] C
VP_DOUT[8] / LCD_D[8] / UPP_XD[0] / GP7[0] / BOOT[0] U3 I/O CP[29] C
VP_DIN[7] / UHPI_HD[15] / UPP_D[15] / RMII_TXD[1] / U18 I/O CP[26] C
PRU0_R31[29]
VP_DIN[6] / UHPI_HD[14] / UPP_D[14] / RMII_TXD[0] / V16 I/O CP[26] C uPP data bus
PRU0_R31[28]
VP_DIN[5] / UHPI_HD[13] / UPP_D[13] / RMII_TXEN / R14 I/O CP[26] C
PRU0_R31[27]
VP_DIN[4] / UHPI_HD[12] / UPP_D[12] / RMII_RXD[1] / W16 I/O CP[26] C
PRU0_R31[26]
VP_DIN[3] / UHPI_HD[11] / UPP_D[11] / RMII_RXD[0] / V17 I/O CP[26] C
PRU0_R31[25]
VP_DIN[2] / UHPI_HD[10] / UPP_D[10] / RMII_RXER / W17 I/O CP[26] C
PRU0_R31[24]
VP_DIN[1] / UHPI_HD[9] / UPP_D[9] / RMII_MHZ_50_CLK / W18 I/O CP[26] C
PRU0_R31[23]
VP_DIN[0] / UHPI_HD[8] / UPP_D[8] / RMII_CRS_DV / W19 I/O CP[26] C
PRU1_R31[29]
VP_DIN[15]_VSYNC / UHPI_HD[7] / UPP_D[7]/PRU0_R30[15] / V18 I/O CP[27] C
PRU0_R31[15]
VP_DIN[14]_HSYNC / UHPI_HD[6] / UPP_D[6]/ PRU0_R30[14] / V19 I/O CP[27] C
PRU0_R31[14]
VP_DIN[13]_FIELD / UHPI_HD[5] / UPP_D[5] /PRU0_R30[13] / U19 I/O CP[27] C
PRU0_R31[13]
VP_DIN[12] / UHPI_HD[4] / UPP_D[4]/ PRU0_R30[12] / T16 I/O CP[27] C
PRU0_R31[12]
VP_DIN[11] / UHPI_HD[3] / UPP_D[3]/ PRU0_R30[11] / R18 I/O CP[27] C
PRU0_R31[11]
VP_DIN[10] / UHPI_HD[2] / UPP_D[2]/ PRU0_R30[10] / R19 I/O CP[27] C
PRU0_R31[10]
VP_DIN[9] / UHPI_HD[1] / UPP_D[1]/ PRU0_R30[9] / R15 I/O CP[27] C
PRU0_R31[9]
VP_DIN[8] / UHPI_HD[0] / UPP_D[0] / GP6[5] / PRU1_R31[0] P17 I/O CP[27] C
Copyright ©20092011, Texas Instruments Incorporated Device Overview 61
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
2.8.24 Video Port Interface (VPIF)
Table 2-28. Video Port Interface (VPIF) Terminal Functions
SIGNAL POWER
TYPE(1) PULL(2) DESCRIPTION
GROUP(3)
NAME NO.
VIDEO INPUT
VP_CLKIN0 / UHPI_HCS / PRU1_R30[10] / GP6[7] / VPIF capture channel 0
W14 I CP[25] C
UPP_2xTXCLK input clock
VPIF capture channel 1
VP_CLKIN1 / UHPI_HDS1/PRU1_R30[9] / GP6[6] / PRU1_R31[16] V15 I CP[25] C input clock
VP_DIN[15]_VSYNC / UHPI_HD[7] / UPP_D[7] / PRU0_R30[15] / V18 I CP[27] C
PRU0_R31[15]
VP_DIN[14]_HSYNC / UHPI_HD[6] / UPP_D[6] / RU0_R30[14] / V19 I CP[27] C
PRU0_R31[14]
VP_DIN[13]_FIELD / UHPI_HD[5] / UPP_D[5] / PRU0_R30[13] / U19 I CP[27] C
PRU0_R31[13]
VP_DIN[12] / UHPI_HD[4] / UPP_D[4] / PRU0_R30[12] / T16 I CP[27] C
PRU0_R31[12]
VP_DIN[11] / UHPI_HD[3] / UPP_D[3] / PRU0_R30[11] / R18 I CP[27] C
PRU0_R31[11]
VP_DIN[10] / UHPI_HD[2] / UPP_D[2] / PRU0_R30[10] / R19 I CP[27] C
PRU0_R31[10]
VP_DIN[9] / UHPI_HD[1] / UPP_D[1] / PRU0_R30[9] / R15 I CP[27] C
PRU0_R31[9]
VP_DIN[8] / UHPI_HD[0] / UPP_D[0] / GP6[5] / PRU1_R31[0] P17 I CP[27] C VPIF capture data bus
VP_DIN[7] / UHPI_HD[15] / UPP_D[15] / RMII_TXD[1] / U18 I CP[26] C
PRU0_R31[29]
VP_DIN[6] / UHPI_HD[14] / UPP_D[14] / RMII_TXD[0] / V16 I CP[26] C
PRU0_R31[28]
VP_DIN[5] / UHPI_HD[13] / UPP_D[13] / RMII_TXEN / R14 I CP[26] C
PRU0_R31[27]
VP_DIN[4] / UHPI_HD[12] / UPP_D[12] / RMII_RXD[1] / W16 I CP[26] C
PRU0_R31[26]
VP_DIN[3] / UHPI_HD[11] / UPP_D[11] / MII_RXD[0] / V17 I CP[26] C
PRU0_R31[25]
VP_DIN[2] / UHPI_HD[10] / UPP_D[10] / RMII_RXER / W17 I CP[26] C
PRU0_R31[24]
VP_DIN[1] / UHPI_HD[9] / UPP_D[9] / RMII_MHZ_50_CLK / W18 I CP[26] C
PRU0_R31[23]
VP_DIN[0] / UHPI_HD[8] / UPP_D[8] / RMII_CRS_DV / W19 I CP[26] C
PRU1_R31[29]
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where nis the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up,
an external pull-up can be used. For electrical specifications on the pull-up and and internal pull-down circuits, see the Device Operating
Conditions section.
(3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
62 Device Overview Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
Table 2-28. Video Port Interface (VPIF) Terminal Functions (continued)
SIGNAL POWER
TYPE(1) PULL(2) DESCRIPTION
GROUP(3)
NAME NO.
VIDEO OUTPUT
VP_CLKIN2 / MMCSD1_DAT[3] / PRU1_R30[3] / GP6[4] / VPIF display channel 2
H3 I CP[30] C
PRU1_R31[4] input clock
VP_CLKOUT2 / MMCSD1_DAT[2] / PRU1_R30[2] / GP6[3] / VPIF display channel 2
K3 O CP[30] C
PRU1_R31[3] output clock
VP_CLKIN3 / MMCSD1_DAT[1] / PRU1_R30[1] / GP6[2] / VPIF display channel 3
J3 I CP[30] C
PRU1_R31[2] input clock
VPIF display channel 3
VP_CLKOUT3 / PRU1_R30[0] / GP6[1] / PRU1_R31[1] K4 O CP[30] C output clock
VP_DOUT[15] / LCD_D[15] / UPP_XD[7] / GP7[7] / BOOT[7] P4 O CP[29] C
VP_DOUT[14] / LCD_D[14] / UPP_XD[6] / GP7[6] / BOOT[6] R3 O CP[29] C
VP_DOUT[13] / LCD_D[13] / UPP_XD[5] / GP7[5] / BOOT[5] R2 O CP[29] C
VP_DOUT[12] / LCD_D[12] / UPP_XD[4] / GP7[4] / BOOT[4] R1 O CP[29] C
VP_DOUT[11] / LCD_D[11] / UPP_XD[3] / GP7[3] / BOOT[3] T3 O CP[29] C
VP_DOUT[10] / LCD_D[10] / UPP_XD[2] / GP7[2] / BOOT[2] T2 O CP[29] C
VP_DOUT[9] / LCD_D[9] / UPP_XD[1] / GP7[1] / BOOT[1] T1 O CP[29] C
VP_DOUT[8] / LCD_D[8] / UPP_XD[0] / GP7[0] / BOOT[0] U3 O CP[29] C VPIF display data bus
VP_DOUT[7] / LCD_D[7] / UPP_XD[15] / GP7[15] / PRU1_R31[15] U2 O CP[28] C
VP_DOUT[6] / LCD_D[6] / UPP_XD[14] / GP7[14] / PRU1_R31[14] U1 O CP[28] C
VP_DOUT[5] / LCD_D[5] / UPP_XD[13] / GP7[13] / PRU1_R31[13] V3 O CP[28] C
VP_DOUT[4] / LCD_D[4] / UPP_XD[12] / GP7[12] / PRU1_R31[12] V2 O CP[28] C
VP_DOUT[3] / LCD_D[3] / UPP_XD[11] / GP7[11] / PRU1_R31[11] V1 O CP[28] C
VP_DOUT[2] / LCD_D[2] / UPP_XD[10] / GP7[10] / PRU1_R31[10] W3 O CP[28] C
VP_DOUT[1] / LCD_D[1] / UPP_XD[9] / GP7[9] / PRU1_R31[9] W2 O CP[28] C
VP_DOUT[0] / LCD_D[0] / UPP_XD[8] / GP7[8] / PRU1_R31[8] W1 O CP[28] C
Copyright ©20092011, Texas Instruments Incorporated Device Overview 63
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
2.8.25 General Purpose Input Output
Table 2-29. General Purpose Input Output Terminal Functions
SIGNAL POWER
TYPE(1) PULL(2) DESCRIPTION
GROUP(3)
NAME NO.
GP0
ACLKR / PRU0_R30[20] / GP0[15] / PRU0_R31[22] A1 I/O CP[0] A
ACLKX / PRU0_R30[19] / GP0[14] / PRU0_R31[21] B1 I/O CP[0] A
AFSR / GP0[13] / PRU0_R31[20] C2 I/O CP[0] A
AFSX / GP0[12] / PRU0_R31[19] B2 I/O CP[0] A
AHCLKR / PRU0_R30[18] / UART1_RTS / GP0[11] /A2 I/O CP[0] A
PRU0_R31[18]
AHCLKX / USB_REFCLKIN / UART1_CTS / GP0[10] /A3 I/O CP[0] A
PRU0_R31[17]
AMUTE / PRU0_R30[16] / UART2_RTS / GP0[9] / PRU0_R31[16] D5 I/O CP[0] A GPIO Bank 0
RTC_ALARM / UART2_CTS / GP0[8] / DEEPSLEEP F4 I/O CP[0] A
AXR15 / EPWM0TZ[0] / ECAP2_APWM2 / GP0[7] A4 I/O CP[1] A
AXR14 / CLKR1 / GP0[6] B4 I/O CP[2] A
AXR13 / CLKX1 / GP0[5] B3 I/O CP[2] A
AXR12 / FSR1 / GP0[4] C4 I/O CP[2] A
AXR11 / FSX1 / GP0[3] C5 I/O CP[2] A
AXR10 / DR1 / GP0[2] D4 I/O CP[2] A
AXR9 / DX1 / GP0[1] C3 I/O CP[2] A
AXR8 / CLKS1 / ECAP1_APWM1 /GP0[0] / PRU0_R31[8] E4 I/O CP[3] A
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where nis the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up,
an external pull-up can be used. For electrical specifications on the pull-up and and internal pull-down circuits, see the Device Operating
Conditions section.
(3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
64 Device Overview Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
Table 2-29. General Purpose Input Output Terminal Functions (continued)
SIGNAL POWER
TYPE(1) PULL(2) DESCRIPTION
GROUP(3)
NAME NO.
GP1
AXR7 / EPWM1TZ[0] / PRU0_R30[17] / GP1[15] / PRU0_R31[7] D2 I/O CP[4] A
AXR6 / CLKR0 / GP1[14] / MII_TXEN / PRU0_R31[6] C1 I/O CP[5] A
AXR5 / CLKR0 / GP1[13] / MII_TXCLK D3 I/O CP[5] A
AXR4 / FSR0 / GP1[12] / MII_COL D1 I/O CP[5] A
AXR3 / FSX0 / GP1[11] / MII_TXD[3] E3 I/O CP[5] A
AXR2 / DR0 / GP1[10] / MII_TXD[2] E2 I/O CP[5] A
AXR1 / DX0 / GP1[9] / MII_TXD[1] E1 I/O CP[5] A
SPI0_CLK / EPWM0A / GP1[8] / MII_RXCLK D19 I/O CP[7] A
SPI0_SCS[1] / TM64P0_OUT12 / GP1[7] / MDIO_CLK / GPIO Bank 1
E16 I/O CP[10] A
TM64P0_IN12
SPI0_SCS[0] / TM64P1_OUT12 / GP1[6] / MDIO_D / D17 I/O CP[10] A
TM64P1_IN12
SPI1_SCS[7] / I2C0_SCL / TM64P2_OUT12 / GP1[5] G16 I/O CP[11] A
SPI1_SCS[6] / I2C0_SDA / TM64P3_OUT12 / GP1[4] G18 I/O CP[11] A
SPI1_SCS[5] / UART2_RXD / I2C1_SCL / GP1[3] F17 I/O CP[12] A
SPI1_SCS[4] / UART2_TXD / I2C1_SDA / GP1[2] F16 I/O CP[12] A
SPI1_SCS[3] / UART1_RXD / SATA_LED / GP1[1] E18 I/O CP[13] A
SPI1_SCS[2] / UART1_TXD / SATA_CP_POD / GP1[0] F19 I/O CP[13] A
Copyright ©20092011, Texas Instruments Incorporated Device Overview 65
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
Table 2-29. General Purpose Input Output Terminal Functions (continued)
SIGNAL POWER
TYPE(1) PULL(2) DESCRIPTION
GROUP(3)
NAME NO.
GP2
SPI1_SCS[1] / EPWM1A / PRU0_R30[8] / GP2[15] / TM64P2_IN12 F18 I/O CP[14] A
SPI1_SCS[0] / EPWM1B / PRU0_R30[7] / GP2[14] / TM64P3_IN12 E19 I/O CP[14] A
SPI1_CLK / GP2[13] G19 I/O CP[15] A
SPI1_ENA / GP2[12] H16 I/O CP[15] A
SPI1_SOMI / GP2[11] H17 I/O CP[15] A
SPI1_SIMO / GP2[10] G17 I/O CP[15] A
EMA_BA[1] / GP2[9] A15 I/O CP[16] B
EMA_BA[0] / GP2[8] C15 I/O CP[16] B GPIO Bank 2
EMA_CLK / PRU0_R30[5] / GP2[7] / PRU0_R31[5] B7 I/O CP[16] B
EMA_SDCKE / PRU0_R30[4] / GP2[6] / PRU0_R31[4] D8 I/O CP[16] B
EMA_RAS / PRU0_R30[3] / GP2[5] / PRU0_R31[3] A16 I/O CP[16] B
EMA_CAS / PRU0_R30[2] / GP2[4] / PRU0_R31[2] A9 I/O CP[16] B
EMA_WEN_DQM[0] / GP2[3] C8 I/O CP[16] B
EMA_WEN_DQM[1] / GP2[2] A5 I/O CP[16] B
EMA_WAIT[1] / PRU0_R30[1] / GP2[1] / PRU0_R31[1] B19 I/O CP[16] B
EMA_CS[0] / GP2[0] A18 I/O CP[16] B
GP3
EMA_CS[2] / GP3[15] B17 I/O CP[16] B
EMA_CS[3] / GP3[14] A17 I/O CP[16] B
EMA_CS[4] / GP3[13] F9 I/O CP[16] B
EMA_CS[5] / GP3[12] B16 I/O CP[16] B
EMA_WE / GP3[11] B9 I/O CP[16] B
EMA_OE / GP3[10] B15 I/O CP[16] B
EMA_A_RW / GP3[9] D10 I/O CP[16] B
EMA_WAIT[0] / PRU0_R30[0] / GP3[8] / PRU0_R31[0] B18 I/O CP[16] B GPIO Bank 3
EMA_D[15] / GP3[7] E6 I/O CP[17] B
EMA_D[14] / GP3[6] C7 I/O CP[17] B
EMA_D[13] / GP3[5] B6 I/O CP[17] B
EMA_D[12] / GP3[4] A6 I/O CP[17] B
EMA_D[11] / GP3[3] D6 I/O CP[17] B
EMA_D[10] / GP3[2] A7 I/O CP[17] B
EMA_D[9] / GP3[1] D9 I/O CP[17] B
EMA_D[8] / GP3[0] E10 I/O CP[17] B
66 Device Overview Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
Table 2-29. General Purpose Input Output Terminal Functions (continued)
SIGNAL POWER
TYPE(1) PULL(2) DESCRIPTION
GROUP(3)
NAME NO.
GP4
EMA_D[7] / GP4[15] D7 I/O CP[17] B
EMA_D[6] / GP4[14] C6 I/O CP[17] B
EMA_D[5] / GP4[13] E7 I/O CP[17] B
EMA_D[4] / GP4[12] B5 I/O CP[17] B
EMA_D[3] / GP4[11] E8 I/O CP[17] B
EMA_D[2] / GP4[10] B8 I/O CP[17] B
EMA_D[1] / GP4[9] A8 I/O CP[17] B
EMA_D[0] / GP4[8] C9 I/O CP[17] B GPIO Bank 4
MMCSD0_CLK / PRU1_R30[31] / GP4[7] E9 I/O CP[18] B
EMA_A[22] / MMCSD0_CMD / PRU1_R30[30] / GP4[6] A10 I/O CP[18] B
EMA_A[21] / MMCSD0_DAT[0] / PRU1_R30[29] / GP4[5] B10 I/O CP[18] B
EMA_A[20] / MMCSD0_DAT[1] / PRU1_R30[28] / GP4[4] A11 I/O CP[18] B
EMA_A[19] / MMCSD0_DAT[2] / PRU1_R30[27] / GP4[3] C10 I/O CP[18] B
EMA_A[18] / MMCSD0_DAT[3] / PRU1_R30[26] / GP4[2] E11 I/O CP[18] B
EMA_A[17] / MMCSD0_DAT[4] / PRU1_R30[25] / GP4[1] B11 I/O CP[18] B
EMA_A[16] / MMCSD0_DAT[5] / PRU1_R30[24] / GP4[0] E12 I/O CP[18] B
GP5
EMA_A[15] / MMCSD0_DAT[6] / PRU1_R30[23] / GP5[15] /C11 I/O CP[19] B
PRU1_R31[23]
EMA_A[14] / MMCSD0_DAT[7] / PRU1_R30[22] / GP5[14] /A12 I/O CP[19] B
PRU1_R31[22]
EMA_A[13] / PRU0_R30[21] / PRU1_R30[21] / GP5[13] /D11 I/O CP[19] B
PRU1_R31[21]
EMA_A[12] / PRU1_R30[20] / GP5[12] / PRU1_R31[20] D13 I/O CP[19] B
EMA_A[11] / PRU1_R30[19] / GP5[11] / PRU1_R31[19] B12 I/O CP[19] B
EMA_A[10] / PRU1_R30[18] / GP5[10] / PRU1_R31[18] C12 I/O CP[19] B
EMA_A[9] / PRU1_R30[17] / GP5[9] D12 I/O CP[19] B GPIO Bank 5
EMA_A[8] / PRU1_R30[16] / GP5[8] A13 I/O CP[19] B
EMA_A[7] / PRU1_R30[15] / GP5[7] B13 I/O CP[20] B
EMA_A[6] / GP5[6] E13 I/O CP[20] B
EMA_A[5] / GP5[5] C13 I/O CP[20] B
EMA_A[4] / GP5[4] A14 I/O CP[20] B
EMA_A[3] / GP5[3] D14 I/O CP[20] B
EMA_A[2] / GP5[2] B14 I/O CP[20] B
EMA_A[1] / GP5[1] D15 I/O CP[20] B
EMA_A[0] / GP5[0] C14 I/O CP[20] B
Copyright ©20092011, Texas Instruments Incorporated Device Overview 67
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
Table 2-29. General Purpose Input Output Terminal Functions (continued)
SIGNAL POWER
TYPE(1) PULL(2) DESCRIPTION
GROUP(3)
NAME NO.
GP6
RESETOUT / UHPI_HAS / PRU1_R30[14] / GP6[15] T17 I/O CP[21] C
CLKOUT / UHPI_HDS2 / PRU1_R30[13] / GP6[14] T18 I/O CP[22] C
PRU0_R30[31] / UHPI_HRDY / PRU1_R30[12] / GP6[13] R17 I/O CP[23] C
PRU0_R30[30] / UHPI_HINT / PRU1_R30[11] / GP6[12] R16 I/O CP[23] C
PRU0_R30[29] / UHPI_HCNTL0 / UPP_CHA_CLOCK / GP6[11] U17 I/O CP[24] C
PRU0_R30[28] / UHPI_HCNTL1 / UPP_CHA_START / GP6[10] W15 I/O CP[24] C
/PRU0_R30[27] / UHPI_HHWIL / UPP_CHA_ENABLE / GP6[9] U16 I/O CP[24] C
PRU0_R30[26] / UHPI_HRW / UPP_CHA_WAITGP6[8] /T15 I/O CP[24] C
PRU1_R31[17]
VP_CLKIN0 / UHPI_HCS / PRU1_R30[10] GP6[7] /W14 I/O CP[25] C
UPP_2xTXCLK GPIO Bank 6
VP_CLKIN1 / UHPI_HDS1 / PRU1_R30[9] / GP6[6] /V15 I/O CP[25] C
PRU1_R31[16]
VP_DIN[8] / UHPI_HD[0] / UPP_D[0] / GP6[5] / PRU1_R31[0] P17 I/O CP[27] C
VP_CLKIN2 / MMCSD1_DAT[3] / PRU1_R30[3] / GP6[4] /H3 I/O CP[30] C
PRU1_R31[4]
VP_CLKOUT2 / MMCSD1_DAT[2] / PRU1_R30[2] / GP6[3] /K3 I/O CP[30] C
PRU1_R31[3]
VP_CLKIN3 / MMCSD1_DAT[1] / PRU1_R30[1] / GP6[2] /J3 I/O CP[30] C
PRU1_R31[2]
VP_CLKOUT3 / PRU1_R30[0] / GP6[1] / PRU1_R31[1] K4 I/O CP[30] C
LCD_AC_ENB_CS / GP6[0] / PRU1_R31[28] R5 I/O CP[31] C
GP7
VP_DOUT[7] / LCD_D[7] / UPP_XD[15] / GP7[15] / PRU1_R31[15] U2 I/O CP[28] C
VP_DOUT[6] / LCD_D[6] / UPP_XD[14] / GP7[14] / PRU1_R31[14] U1 I/O CP[28] C
VP_DOUT[5] / LCD_D[5] / UPP_XD[13] / GP7[13] / PRU1_R31[13] V3 I/O CP[28] C
VP_DOUT[4] / LCD_D[4] / UPP_XD[12] / GP7[12] / PRU1_R31[12] V2 I/O CP[28] C
VP_DOUT[3] / LCD_D[3] / UPP_XD[11] / GP7[11] / PRU1_R31[11] V1 I/O CP[28] C
VP_DOUT[2] / LCD_D[2] / UPP_XD[10] / GP7[10] / PRU1_R31[10] W3 I/O CP[28] C
VP_DOUT[1] / LCD_D[1] / UPP_XD[9] / GP7[9] / PRU1_R31[9] W2 I/O CP[28] C
VP_DOUT[0] / LCD_D[0] / UPP_XD[8] / GP7[8] / PRU1_R31[8] W1 I/O CP[28] C GPIO Bank 7
VP_DOUT[15] / LCD_D[15] / UPP_XD[7] / GP7[7] / BOOT[7] P4 I/O CP[29] C
VP_DOUT[14] / LCD_D[14] / UPP_XD[6] / GP7[6] / BOOT[6] R3 I/O CP[29] C
VP_DOUT[13] / LCD_D[13] / UPP_XD[5] / GP7[5]/ BOOT[5] R2 I/O CP[29] C
VP_DOUT[12] / LCD_D[12] / UPP_XD[4] / GP7[4] / BOOT[4] R1 I/O CP[29] C
VP_DOUT[11] / LCD_D[11] / UPP_XD[3] / GP7[3] / BOOT[3] T3 I/O CP[29] C
VP_DOUT[10] / LCD_D[10] / UPP_XD[2] / GP7[2] / BOOT[2] T2 I/O CP[29] C
VP_DOUT[9] / LCD_D[9] / UPP_XD[1] / GP7[1] / BOOT[1] T1 I/O CP[29] C
VP_DOUT[8] / LCD_D[8] / UPP_XD[0] / GP7[0] / BOOT[0] U3 I/O CP[29] C
68 Device Overview Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
Table 2-29. General Purpose Input Output Terminal Functions (continued)
SIGNAL POWER
TYPE(1) PULL(2) DESCRIPTION
GROUP(3)
NAME NO.
GP8
PRU0_R30[25] / MMCSD1_DAT[0] / UPP_CHB_CLOCK / GP8[15] G1 I/O CP30] C
/ PRU1_R31[27]
PRU0_R30[24] / MMCSD1_CLK / UPP_CHB_START / GP8[14] /G2 I/O CP[30] C
PRU1_R31[26]
PRU0_R30[23] / MMCSD1_CMD / UPP_CHB_ENABLE / GP8[13] /J4 I/O CP[30] C
PRU1_R31[25]
PRU0_R30[22] / PRU1_R30[8] / UPP_CHB_WAIT / GP8[12] /G3 I/O CP[30] C
PRU1_R31[24]
MMCSD1_DAT[7] / LCD_PCLK / PRU1_R30[7] / GP8[11] F1 I/O CP[31] C
MMCSD1_DAT[6] / LCD_MCLK / PRU1_R30[6] / GP8[10] /F2 I/O CP[31] C
PRU1_R31[7]
MMCSD1_DAT[5] / LCD_HSYNC / PRU1_R30[5] / GP8[9] /H4 I/O CP[31] C
PRU1_R31[6] GPIO Bank 8
MMCSD1_DAT[4] / LCD_VSYNC / PRU1_R30[4] / GP8[8] /G4 I/O CP[31] C
PRU1_R31[5]
AXR0 / ECAP0_APWM0 / GP8[7] / MII_TXD[0] / CLKS0 F3 I/O CP[6] A
SPI0_SOMI / EPWMSYNCI / GP8[6] / MII_RXER C16 I/O CP[7] A
SPI0_SIMO / EPWMSYNCO / GP8[5] / MII_CRS C18 I/O CP[7] A
SPI0_SCS[5] / UART0_RXD / GP8[4] / MII_RXD[3] C19 I/O CP[8] A
SPI0_SCS[4] / UART0_TXD / GP8[3] / MII_RXD[2] D18 I/O CP[8] A
SPI0_SCS[3] / UART0_CTS / GP8[2] / MII_RXD[1] / E17 I/O CP[9] A
SATA_MP_SWITCH
SPI0_SCS[2] / UART0_RTS / GP8[1] / MII_RXD[0] / D16 I/O CP[9] A
SATA_CP_DET
RTCK / GP8[0](1) K17 I/O IPD B
(1) GP8[0] is initially configured as a reserved function after reset and will not be in a predictable state. This signal will only be stable after
the GPIO configuration for this pin has been completed. Users should carefully consider the system implications of this pin being in an
unknown state after reset.
Copyright ©20092011, Texas Instruments Incorporated Device Overview 69
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
2.8.26 Reserved and No Connect
Table 2-30. Reserved and No Connect Terminal Functions
SIGNAL TYPE(1) DESCRIPTION
NAME NO.
Reserved. For proper device operation, this pin must be tied either directly to
RSV2 T19 PWR CVDD or left unconnected (do not connect to ground).
Pin M3 should be left unconnected (do not connect to power or ground)
NC M3, M14, N16 Pins M14 and N16 may be left unconnected or connected to ground (VSS)
(1) PWR = Supply voltage.
70 Device Overview Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
2.8.27 Supply and Ground
Table 2-31. Supply and Ground Terminal Functions
SIGNAL TYPE(1) DESCRIPTION
NAME NO.
E15, G7, G8,
G13, H6, H7,
H10, H11,
CVDD (Core supply) H12, H13, J6, PWR Variable (1.3V - 1.0V) core supply voltage pins
J12, K6, K12,
L12, M8, M9,
N8 1.3V internal ram supply voltage pins (for 456 MHz versions)
RVDD (Internal RAM supply) E5, H14, N7 PWR 1.2V internal ram supply voltage pins (for 375 MHz versions)
F14, G6, G10,
G11, G12, 1.8V I/O supply voltage pins. DVDD18 must be powered even if all of
DVDD18 (I/O supply) PWR
J13, K5, L6, the DVDD3318_x supplies are operated at 3.3V.
P13, R13
F5, F15, G5,
DVDD3318_A (I/O supply) PWR 1.8V or 3.3-V dual-voltage LVCMOS I/O supply voltage pins, Group A
G14, G15, H5
E14, F6, F7,
F8, F10, F11,
DVDD3318_B (I/O supply) PWR 1.8V or 3.3-V dual-voltage LVCMOS I/O supply voltage pins, Group B
F12, F13, G9,
J14, K15
J5, K13, L4,
L13, M13,
DVDD3318_C (I/O supply) PWR 1.8V or 3.3-V dual-voltage LVCMOS I/O supply voltage pins, Group C
N13, P5, P6,
P12, R4
A19, H8, H9,
H15, J7, J8,
J9, J10, J11,
K7, K8, K9,
K10, K11, L5,
VSS (Ground) GND Ground pins.
L7, L8, L9,
L10, L11, M4,
M5, M6, M7,
M10, M11, N5,
N11, N12, P11
USB0_VDDA33 N18 PWR USB0 PHY 3.3-V supply
USB0_VDDA18 N14 PWR USB0 PHY 1.8-V supply input
USB0_VDDA12 N17 A USB0 PHY 1.2-V LDO output for bypass cap
USB_CVDD M12 PWR USB0 core logic 1.2-V supply input
USB1_VDDA33 P15 PWR USB1 PHY 3.3-V supply
USB1_VDDA18 P14 PWR USB1 PHY 1.8-V supply
M2, N4, P1,
SATA_VDD PWR SATA PHY 1.2V logic supply
P2
H1, H2, K1,
SATA_VSS GND SATA PHY ground reference
K2, L3, M1
N6, N9, N10,
P7, P8, P9,
DDR_DVDD18 PWR DDR PHY 1.8V power supply pins
P10, R7, R8,
R9
(1) PWR = Supply voltage, GND - Ground.
Copyright ©20092011, Texas Instruments Incorporated Device Overview 71
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
2.9 Unused Pin Configurations
All signals multiplexed with multiple functions may be used as an alternate function if a given peripheral is
not used. Unused non-multiplexed signals and some other specific signals should be handled as specified
in the tables below.
If NMI is unused, it should be pulled-high externally through a 10k-ohm resistor to supply DVDD3318_B.
Table 2-32. Unused USB0 and USB1 Signal Configurations
Configuration (When USB0 and USB1 are not
SIGNAL NAME Configuration (When only USB1 is not used)
used)
USB0_DM No Connect Use as USB0 function
USB0_DP No Connect Use as USB0 function
USB0_ID No Connect Use as USB0 function
USB0_VBUS No Connect Use as USB0 function
USB0_DRVVBUS No Connect Use as USB0 function
USB0_VDDA33 No Connect 3.3V
USB0_VDDA18 No Connect 1.8V
Internal USB PHY output connected to an external
USB0_VDDA12 No Connect filter capacitor
USB1_DM No Connect VSS or No Connect
USB1_DP No Connect VSS or No Connect
USB1_VDDA33 No Connect No Connect
USB1_VDDA18 No Connect No Connect
USB_REFCLKIN No Connect or other peripheral function Use for USB0 or other peripheral function
USB_CVDD 1.2V 1.2V
Table 2-33. Unused SATA Signal Configuration
SIGNAL NAME Configuration
SATA_RXP No Connect
SATA_RXN No Connect
SATA_TXP No Connect
SATA_TXN No Connect
SATA_REFCLKP No Connect
SATA_REFCLKN No Connect
SATA_MP_SWITCH May be used as GPIO or other peripheral function
SATA_CP_DET May be used as GPIO or other peripheral function
SATA_CP_POD May be used as GPIO or other peripheral function
SATA_LED May be used as GPIO or other peripheral function
SATA_REG No Connect
SATA_VDDR No Connect
Prior to silicon revision 2.0, this supply must be connected to a static 1.2V nominal supply.
SATA_VDD For silicon revision 2.0 and later, this supply may be left unconnected for additional power
conservation.
SATA_VSS VSS
Table 2-34. Unused RTC Signal Configuration
SIGNAL NAME Configuration
RTC_XI May be held high (CVDD) or low
RTC_XO No Connect
RTC_ALARM May be used as GPIO or other peripheral function
72 Device Overview Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
Table 2-34. Unused RTC Signal Configuration (continued)
SIGNAL NAME Configuration
RTC_CVDD Connect to CVDD
RTC_VSS VSS
Table 2-35. Unused DDR2/mDDR Controller Signal Configuration
SIGNAL NAME Configuration (1)
DDR_D[15:0] No Connect
DDR_A[13:0] No Connect
DDR_CLKP No Connect
DDR_CLKN No Connect
DDR_CKE No Connect
DDR_WE No Connect
DDR_RAS No Connect
DDR_CAS No Connect
DDS_CS No Connect
DDR_DQM[1:0] No Connect
DDR_DQS[1:0] No Connect
DDR_BA[2:0] No Connect
DDR_DQGATE0 No Connect
DDR_DQGATE1 No Connect
DDR_ZP No Connect
DDR_VREF No Connect
DDR_DVDD18 No Connect
(1) To minimize power consumption, the DDR2/mDDR controller input receivers should be placed in power-down mode by setting
VTPIO[14]=1.
Copyright ©20092011, Texas Instruments Incorporated Device Overview 73
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
3 Device Configuration
3.1 Boot Modes
This device supports a variety of boot modes through an internal ARM ROM bootloader. This device does
not support dedicated hardware boot modes; therefore, all boot modes utilize the internal ARM ROM. The
input states of the BOOT pins are sampled and latched into the BOOTCFG register, which is part of the
system configuration (SYSCFG) module, when device reset is deasserted. Boot mode selection is
determined by the values of the BOOT pins.
See Using the OMAP-L1x8 Bootloader Application Report (SPRAB41) for more details on the ROM Boot
Loader.
The following boot modes are supported:
NAND Flash boot
8-bit NAND
16-bit NAND (supported on ROM revisions after d800k002 -- see the bootloader documents
mentioned above to determine the ROM revision)
NOR Flash boot
NOR Direct boot (8-bit or 16-bit)
NOR Legacy boot (8-bit or 16-bit)
NOR AIS boot (8-bit or 16-bit)
HPI Boot
I2C0/I2C1 Boot
EEPROM (Master Mode)
External Host (Slave Mode)
SPI0/SPI1 Boot
Serial Flash (Master Mode)
SERIAL EEPROM (Master Mode)
External Host (Slave Mode)
UART0/UART1/UART2 Boot
External Host
3.2 SYSCFG Module
The following system level features of the chip are controlled by the SYSCFG peripheral:
Readable Device, Die, and Chip Revision ID
Control of Pin Multiplexing
Priority of bus accesses different bus masters in the system
Capture at power on reset the chip BOOT pin values and make them available to software
Control of the DeepSleep power management function
Enable and selection of the programmable pin pullups and pulldowns
74 Device Configuration Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
Special case settings for peripherals:
Locking of PLL controller settings
Default burst sizes for EDMA3 transfer controllers
Selection of the source for the eCAP module input capture (including on chip sources)
McASP AMUTEIN selection and clearing of AMUTE status for the McASP
Control of the reference clock source and other side-band signals for both of the integrated USB
PHYs
Clock source selection for EMIFA
DDR2 Controller PHY settings
SATA PHY power management controls
Selects the source of emulation suspend signal (from either ARM or DSP) of peripherals supporting
this function.
Control of on-chip inter-processor interrupts for signaling between ARM and DSP
Many registers are accessible only by a host (ARM or DSP) when it is operating in its privileged mode.
(ex. from the kernel, but not from user space code).
Table 3-1. System Configuration (SYSCFG) Module Register Access
BYTE ADDRESS ACRONYM REGISTER DESCRIPTION REGISTER ACCESS
0x01C1 4000 REVID Revision Identification Register
0x01C1 4008 DIEIDR0 Device Identification Register 0
0x01C1 400C DIEIDR1 Device Identification Register 1
0x01C1 4010 DIEIDR2 Device Identification Register 2
0x01C1 4014 DIEIDR3 Device Identification Register 3
0x01C1 4020 BOOTCFG Boot Configuration Register Privileged mode
0x01C1 4038 KICK0R Kick 0 Register Privileged mode
0x01C1 403C KICK1R Kick 1 Register Privileged mode
0x01C1 4040 HOST0CFG Host 0 Configuration Register
0x01C1 4044 HOST1CFG Host 1 Configuration Register
0x01C1 40E0 IRAWSTAT Interrupt Raw Status/Set Register Privileged mode
0x01C1 40E4 IENSTAT Interrupt Enable Status/Clear Register Privileged mode
0x01C1 40E8 IENSET Interrupt Enable Register Privileged mode
0x01C1 40EC IENCLR Interrupt Enable Clear Register Privileged mode
0x01C1 40F0 EOI End of Interrupt Register Privileged mode
0x01C1 40F4 FLTADDRR Fault Address Register Privileged mode
0x01C1 40F8 FLTSTAT Fault Status Register
0x01C1 4110 MSTPRI0 Master Priority 0 Registers Privileged mode
0x01C1 4114 MSTPRI1 Master Priority 1 Registers Privileged mode
0x01C1 4118 MSTPRI2 Master Priority 2 Registers Privileged mode
0x01C1 4120 PINMUX0 Pin Multiplexing Control 0 Register Privileged mode
0x01C1 4124 PINMUX1 Pin Multiplexing Control 1 Register Privileged mode
0x01C1 4128 PINMUX2 Pin Multiplexing Control 2 Register Privileged mode
0x01C1 412C PINMUX3 Pin Multiplexing Control 3 Register Privileged mode
0x01C1 4130 PINMUX4 Pin Multiplexing Control 4 Register Privileged mode
0x01C1 4134 PINMUX5 Pin Multiplexing Control 5 Register Privileged mode
0x01C1 4138 PINMUX6 Pin Multiplexing Control 6 Register Privileged mode
0x01C1 413C PINMUX7 Pin Multiplexing Control 7 Register Privileged mode
0x01C1 4140 PINMUX8 Pin Multiplexing Control 8 Register Privileged mode
0x01C1 4144 PINMUX9 Pin Multiplexing Control 9 Register Privileged mode
0x01C1 4148 PINMUX10 Pin Multiplexing Control 10 Register Privileged mode
Copyright ©20092011, Texas Instruments Incorporated Device Configuration 75
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
Table 3-1. System Configuration (SYSCFG) Module Register Access (continued)
BYTE ADDRESS ACRONYM REGISTER DESCRIPTION REGISTER ACCESS
0x01C1 414C PINMUX11 Pin Multiplexing Control 11 Register Privileged mode
0x01C1 4150 PINMUX12 Pin Multiplexing Control 12 Register Privileged mode
0x01C1 4154 PINMUX13 Pin Multiplexing Control 13 Register Privileged mode
0x01C1 4158 PINMUX14 Pin Multiplexing Control 14 Register Privileged mode
0x01C1 415C PINMUX15 Pin Multiplexing Control 15 Register Privileged mode
0x01C1 4160 PINMUX16 Pin Multiplexing Control 16 Register Privileged mode
0x01C1 4164 PINMUX17 Pin Multiplexing Control 17 Register Privileged mode
0x01C1 4168 PINMUX18 Pin Multiplexing Control 18 Register Privileged mode
0x01C1 416C PINMUX19 Pin Multiplexing Control 19 Register Privileged mode
0x01C1 4170 SUSPSRC Suspend Source Register Privileged mode
0x01C1 4174 CHIPSIG Chip Signal Register
0x01C1 4178 CHIPSIG_CLR Chip Signal Clear Register
0x01C1 417C CFGCHIP0 Chip Configuration 0 Register Privileged mode
0x01C1 4180 CFGCHIP1 Chip Configuration 1 Register Privileged mode
0x01C1 4184 CFGCHIP2 Chip Configuration 2 Register Privileged mode
0x01C1 4188 CFGCHIP3 Chip Configuration 3 Register Privileged mode
0x01C1 418C CFGCHIP4 Chip Configuration 4 Register Privileged mode
0x01E2 C000 VTPIO_CTL VTPIO COntrol Register Privileged mode
0x01E2 C004 DDR_SLEW DDR Slew Register Privileged mode
0x01E2 C008 DeepSleep DeepSleep Register Privileged mode
0x01E2 C00C PUPD_ENA Pullup / Pulldown Enable Register Privileged mode
0x01E2 C010 PUPD_SEL Pullup / Pulldown Selection Register Privileged mode
0x01E2 C014 RXACTIVE RXACTIVE Control Register Privileged mode
0x01E2 C018 PWRDN PWRDN Control Register Privileged mode
76 Device Configuration Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
3.3 Pullup/Pulldown Resistors
Proper board design should ensure that input pins to the device always be at a valid logic level and not
floating. This may be achieved via pullup/pulldown resistors. The device features internal pullup (IPU) and
internal pulldown (IPD) resistors on most pins to eliminate the need, unless otherwise noted, for external
pullup/pulldown resistors.
An external pullup/pulldown resistor needs to be used in the following situations:
Boot and Configuration Pins: If the pin is both routed out and 3-stated (not driven), an external
pullup/pulldown resistor is strongly recommended, even if the IPU/IPD matches the desired value/state.
Other Input Pins: If the IPU/IPD does not match the desired value/state, use an external
pullup/pulldown resistor to pull the signal to the opposite rail.
For the boot and configuration pins, if they are both routed out and 3-stated (not driven), it is strongly
recommended that an external pullup/pulldown resistor be implemented. Although, internal
pullup/pulldown resistors exist on these pins and they may match the desired configuration value,
providing external connectivity can help ensure that valid logic levels are latched on these device boot and
configuration pins. In addition, applying external pullup/pulldown resistors on the boot and configuration
pins adds convenience to the user in debugging and flexibility in switching operating modes.
Tips for choosing an external pullup/pulldown resistor:
Consider the total amount of current that may pass through the pullup or pulldown resistor. Make sure
to include the leakage currents of all the devices connected to the net, as well as any internal pullup or
pulldown resistors.
Decide a target value for the net. For a pulldown resistor, this should be below the lowest VIL level of
all inputs connected to the net. For a pullup resistor, this should be above the highest VIH level of all
inputs on the net. A reasonable choice would be to target the VOL or VOH levels for the logic family of
the limiting device; which, by definition, have margin to the VIL and VIH levels.
Select a pullup/pulldown resistor with the largest possible value; but, which can still ensure that the net
will reach the target pulled value when maximum current from all devices on the net is flowing through
the resistor. The current to be considered includes leakage current plus, any other internal and
external pullup/pulldown resistors on the net.
For bidirectional nets, there is an additional consideration which sets a lower limit on the resistance
value of the external resistor. Verify that the resistance is small enough that the weakest output buffer
can drive the net to the opposite logic level (including margin).
Remember to include tolerances when selecting the resistor value.
For pullup resistors, also remember to include tolerances on the IO supply rail.
For most systems, a 1-kresistor can be used to oppose the IPU/IPD while meeting the above
criteria. Users should confirm this resistor value is correct for their specific application.
For most systems, a 20-kresistor can be used to compliment the IPU/IPD on the boot and
configuration pins while meeting the above criteria. Users should confirm this resistor value is correct
for their specific application.
For more detailed information on input current (II), and the low-/high-level input voltages (VIL and VIH)
for the device, see Section 4.2, Recommended Operating Conditions.
For the internal pullup/pulldown resistors for all device pins, see the peripheral/system-specific terminal
functions table.
Copyright ©20092011, Texas Instruments Incorporated Device Configuration 77
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
4 Device Operating Conditions
4.1 Absolute Maximum Ratings Over Operating Junction Temperature Range
(Unless Otherwise Noted) (1)
Core Logic, Variable and Fixed -0.5 V to 1.4 V
(CVDD, RVDD, RTC_CVDD, PLL0_VDDA , PLL1_VDDA ,
SATA_VDD, USB_CVDD )(2)
I/O, 1.8V -0.5 V to 2 V
Supply voltage ranges (USB0_VDDA18, USB1_VDDA18, SATA_VDDR, DDR_DVDD18)(2)
I/O, 3.3V -0.5 V to 3.8V
(DVDD3318_A, DVDD3318_B, DVDD3318_C, USB0_VDDA33,
USB1_VDDA33)(2)
Oscillator inputs (OSCIN, RTC_XI), 1.2V -0.3 V to CVDD + 0.3V
Dual-voltage LVCMOS inputs, 3.3V or 1.8V (Steady State) -0.3V to DVDD + 0.3V
Dual-voltage LVCMOS inputs, operated at 3.3V(Transient) DVDD + 20%
up to 20% of Signal
Period
Input voltage (VI) ranges Dual-voltage LVCMOS inputs, operated at 1.8V(Transient) DVDD + 30%
up to 30% of Signal
Period
USB 5V Tolerant IOs: 5.25V(3)
(USB0_DM, USB0_DP, USB0_ID, USB1_DM, USB1_DP)
USB0 VBUS Pin 5.50V(3)
Dual-voltage LVCMOS outputs, 3.3V or 1.8V -0.5 V to DVDD + 0.3V
(Steady State)
Dual-voltage LVCMOS outputs, operated at 3.3V(Transient) DVDD + 20%
(Transient) up to 20% of Signal
Output voltage (VO) ranges Period
Dual-voltage LVCMOS outputs, operated at 1.8V(Transient) DVDD + 30%
(Transient) up to 30% of Signal
Period
Input or Output Voltages 0.3V above or below their respective power ±20mA
Clamp Current rails. Limit clamp current that flows through the I/O's internal diode
protection cells.
Commercial (default) 0°C to 90°C
Operating Junction Temperature ranges, Industrial (D suffix) -40°C to 90°C
TJExtended (A suffix) -40°C to 105°C
Storage temperature range, Tstg (default) -55°C to 150°C
Human Body Model (HBM) (5) >1000 V
ESD Stress Voltage, VESD (4) Charged Device Model (CDM) (6) >500 V
(1) Stresses beyond those listed under "absolute maximum ratings"may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating
conditions"is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All voltage values are with respect to VSS, USB0_VSSA33, USB0_VSSA, PLL0_VSSA, OSCVSS, RTC_VSS
(3) Up to a maximum of 24 hours.
(4) Electrostatic discharge (ESD) to measure device sensitivity/immunity to damage caused by electrostatic discharges into the device.
(5) Level listed above is the passing level per ANSI/ESDA/JEDEC JS-001-2010. JEDEC document JEP 155 states that 500V HBM allows
safe manufacturing with a standard ESD control process, and manufacturing with less than 500V HBM is possible if necessary
precautions are taken. Pins listed as 1000V may actually have higher performance.
(6) Level listed above is the passing level per EIA-JEDEC JESD22-C101E. JEDEC document JEP 157 states that 250V CDM allows safe
manufacturing with a standard ESD control process. Pins listed as 250V may actually have higher performance.
78 Device Operating Conditions Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
4.2 Recommended Operating Conditions
NAME DESCRIPTION CONDITION MIN NOM MAX UNIT
1.3V operating point 1.25 1.3 1.35
1.2V operating point 1.14 1.2 1.32
CVDD Core Logic Supply Voltage (variable) V
1.1V operating point 1.05 1.1 1.16
1.0V operating point 0.95 1.0 1.05
456 MHz versions 1.25 1.3 1.35
RVDD Internal RAM Supply Voltage V
375 MHz versions 1.14 1.2 1.32
RTC_CVDD (1) RTC Core Logic Supply Voltage 0.9 1.2 1.32 V
PLL0_VDDA PLL0 Supply Voltage 1.14 1.2 1.32 V
PLL1_VDDA PLL1 Supply Voltage 1.14 1.2 1.32 V
SATA_VDD SATA Core Logic Supply Voltage 1.14 1.2 1.32 V
USB_CVDD USB0, USB1 Core Logic Supply Voltage 1.14 1.2 1.32 V
USB0_VDDA18 USB0 PHY Supply Voltage 1.71 1.8 1.89 V
USB0_VDDA33 USB0 PHY Supply Voltage 3.15 3.3 3.45 V
USB1_VDDA18 USB1 PHY Supply Voltage 1.71 1.8 1.89 V
Supply
Voltage USB1_VDDA33 USB1 PHY Supply Voltage 3.15 3.3 3.45 V
DVDD18(2) 1.8V Logic Supply 1.71 1.8 1.89 V
SATA_VDDR SATA PHY Internal Regulator Supply Voltage 1.71 1.8 1.89 V
DDR_DVDD18(DDR2 PHY Supply Voltage 1.71 1.8 1.89 V
2)
0.49* 0.5* 0.51*
DDR_VREF DDR2/mDDR reference voltage V
DDR_DVDD18 DDR_DVDD18 DDR_DVDD18
DDR2/mDDR impedance control,
DDR_ZP Vss V
connected via 50resistor to Vss
1.8V operating point 1.71 1.8 1.89 V
Power Group A Dual-voltage IO
DVDD3318_A Supply Voltage 3.3V operating point 3.15 3.3 3.45 V
1.8V operating point 1.71 1.8 1.89 V
Power Group B Dual-voltage IO
DVDD3318_B Supply Voltage 3.3V operating point 3.15 3.3 3.45 V
1.8V operating point 1.71 1.8 1.89 V
Power Group C Dual-voltage IO
DVDD3318_C Supply Voltage 3.3V operating point 3.15 3.3 3.45 V
VSS Core Logic Digital Ground
PLL0_VSSA PLL0 Ground
PLL1_VSSA PLL1 Ground
SATA_VSS SATA PHY Ground
Supply 0 0 0 V
Ground OSCVSS(3) Oscillator Ground
RTC_VSS(3) RTC Oscillator Ground
USB0_VSSA USB0 PHY Ground
USB0_VSSA33 USB0 PHY Ground
High-level input voltage, Dual-voltage I/O, 3.3V(4) 2 V
High-level input voltage, Dual-voltage I/O, 1.8V (4) 0.65*DVDD V
Voltage VIH
Input High High-level input voltage, RTC_XI 0.8*RTC_CVDD V
High-level input voltage, OSCIN 0.8*CVDD V
Low-level input voltage, Dual-voltage I/O, 3.3V(4) 0.8 V
Low-level input voltage, Dual-voltage I/O, 1.8V (4) 0.35*DVDD V
Voltage VIL
Input Low Low-level input voltage, RTC_XI 0.2*RTC_CVDD V
Low-level input voltage, OSCIN 0.2*CVDD V
(1) The RTC provides an option for isolating the RTC_CVDD from the CVDD to reduce current leakage when the RTC is powered
independently. If these power supplies are not isolated (CTRL.SPLITPOWER=0), RTC_CVDD must be equal to or greater than CVDD.
If these power supplies are isolated (CTRL.SPLITPOWER=1), RTC_CVDD may be lower than CVDD.
(2) DVDD18 must be powered even if all of the DVDD3318_x supplies are operated at 3.3V.
(3) When an external crystal is used oscillator (OSC_VSS, RTC_VSS) ground must be kept separate from other grounds and connected
directly to the crystal load capacitor ground. These pins are shorted to VSS on the device itself and should not be connected to VSS on
the circuit board. If a crystal is not used and the clock input is driven directly, then the oscillator VSS may be connected to board ground.
(4) These IO specifications apply to the dual-voltage IOs only and do not apply to DDR2/mDDR or SATA interfaces. DDR2/mDDR IOs are
1.8V IOs and adhere to the JESD79-2A standard.
Copyright ©20092011, Texas Instruments Incorporated Device Operating Conditions 79
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
Recommended Operating Conditions (continued)
NAME DESCRIPTION CONDITION MIN NOM MAX UNIT
USB USB0_VBUS USB external charge pump input 0 5.25 V
Differential Differential input voltage, SATA_REFCLKP and
Clock Input 250 2000 mV
SATA_REFCLKN
Voltage
Transition Transition time, 10%-90%, All Inputs (unless otherwise
tt0.25P or 10 (5) ns
Time specified in the electrical data sections)
CVDD = 1.3V 0 456(6)
operating point
CVDD = 1.2V 0 375(7)
operating point
Commercial temperature grade MHz
(default) CVDD = 1.1V 0 200(6)
operating point
CVDD = 1.0V 0 100(6)
operating point
CVDD = 1.3V 0 456(6)
operating point
Operating CVDD = 1.2V
FPLL0_SYSCLK1,6 0 375(7)
Frequency operating point
Industrial temperature grade MHz
(D suffix) CVDD = 1.1V 0 200(6)
operating point
CVDD = 1.0V 0 100(6)
operating point
CVDD = 1.2V 0 375(7)
operating point
Extended temperature grade CVDD = 1.1V 0 200(6) MHz
(A suffix) operating point
CVDD = 1.0V 0 100(6)
operating point
(5) Whichever is smaller. P = the period of the applied signal. Maintaining transition times as fast as possible is recommended to improve
noise immunity on input signals.
(6) This operating point is not supported on revision 1.x silicon.
(7) This operating point is 300 MHz on revision 1.x silicon.
80 Device Operating Conditions Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
4.3 Notes on Recommended Power-On Hours (POH)
The information in the section below is provided solely for your convenience and does not extend or
modify the warranty provided under TIs standard terms and conditions for TI semiconductor products.
To avoid significant degradation, the device power-on hours (POH) must be limited to the following:
Table 4-1. Recommended Power-On Hours
Silicon Operating Junction Power-On Hours [POH]
Speed Grade Nominal CVDD Voltage (V)
Revision Temperature (Tj) (hours)
A 300 MHZ 0 to 90 °C 1.2V 100,000
B 300 MHz 0 to 90 °C 1.2V 100,000
B 375 MHz 0 to 90 °C 1.2V 100,000
B 375 MHz -40 to 105 °C 1.2V 75,000 (1)
B 456 MHz 0 to 90 °C 1.3V 100,000
B 456 MHz -40 to 90 °C 1.3V 100,000
(1) 100,000 POH can be achieved at this temperature condition if the device operation is limited to 345 MHz
Note: Logic functions and parameter values are not assured out of the range specified in the recommended
operating conditions.
The above notations cannot be deemed a warranty or deemed to extend or modify the warranty under
TIs standard terms and conditions for TI semiconductor products.
Copyright ©20092011, Texas Instruments Incorporated Device Operating Conditions 81
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
4.4 Electrical Characteristics Over Recommended Ranges of Supply Voltage and
Operating Junction Temperature (Unless Otherwise Noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
DVDD= 3.15V, IOH = -4 mA 2.4 V
High-level output voltage
(dual-voltage LVCMOS IOs at 3.3V)(1) DVDD= 3.15V, IOH = -100 μA 2.95 V
VOH High-level output voltage DVDD= 1.71V, IOH = -2 mA DVDD-0.45 V
(dual-voltage LVCMOS IOs at 1.8V)(1)
DVDD= 3.15V, IOL = 4mA 0.4 V
Low-level output voltage
(dual-voltage LVCMOS I/Os at 3.3V) DVDD= 3.15V, IOL = 100 μA 0.2 V
VOL Low-level output voltage DVDD= 1.71V, IOL = 2mA 0.45 V
(dual-voltage LVCMOS I/Os at 1.8V)
VI= VSS to DVDD without ±9μA
opposing internal resistor
VI= VSS to DVDD with
Input current(1) opposing internal pullup 70 310 μA
(dual-voltage LVCMOS I/Os) resistor (3)
II(2) VI= VSS to DVDD with
opposing internal pulldown -75 -270 μA
resistor (3)
VI= VSS to DVDD with
Input current (DDR2/mDDR I/Os) opposing internal pulldown -77 -286 μA
resistor (3)
High-level output current(1)
IOH -6 mA
(dual-voltage LVCMOS I/Os)
Low-level output current(1)
IOL 6 mA
(dual-voltage LVCMOS I/Os)
Input capacitance (dual-voltage LVCMOS) 3 pF
Capacitance Output capacitance (dual-voltage LVCMOS) 3 pF
(1) These IO specifications apply to the dual-voltage IOs only and do not apply to DDR2/mDDR or SATA interfaces. DDR2/mDDR IOs are
1.8V IOs and adhere to the JESD79-2A standard. USB0 I/Os adhere to the USB2.0 standard. USB1 I/Os adhere to the USB1.1
standard. SATA I/Os adhere to the SATA-I and SATA-II standards.
(2) IIapplies to input-only pins and bi-directional pins. For input-only pins, IIindicates the input leakage current. For bi-directional pins, II
indicates the input leakage current and off-state (Hi-Z) output leakage current.
(3) Applies only to pins with an internal pullup (IPU) or pulldown (IPD) resistor. The pull-up and pull-down strengths shown represent the
minimum and maximum strength across process variation.
82 Device Operating Conditions Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
TransmissionLine
4.0pF 1.85pF
Z0=50
(seenote)
Tester PinElectronics Data SheetTimingReferencePoint
Output
Under
Test
42 3.5nH
DevicePin
(seenote)
Vref
Vref =VIL MAX(orVOL MAX)
Vref =VIH MIN(orVOH MIN)
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
5 Peripheral Information and Electrical Specifications
5.1 Parameter Information
5.1.1 Parameter Information Device-Specific Information
A. The data sheet provides timing at the device pin. For output timing analysis, the tester pin electronics and its
transmission line effects must be taken into account. A transmission line with a delay of 2 ns or longer can be used to
produce the desired transmission line effect. The transmission line is intended as a load only. It is not necessary to
add or subtract the transmission line delay (2 ns or longer) from the data sheet timings.
Input requirements in this data sheet are tested with an input slew rate of <4 Volts per nanosecond (4 V/ns) at the
device pin and the input signals are driven between 0V and the appropriate IO supply rail for the signal.
Figure 5-1. Test Load Circuit for AC Timing Measurements
The load capacitance value stated is only for characterization and measurement of AC timing signals. This
load capacitance value does not indicate the maximum load the device is capable of driving.
5.1.1.1 Signal Transition Levels
All input and output timing parameters are referenced to Vref for both "0" and "1" logic levels.
For 3.3 V I/O, Vref = 1.65 V.
For 1.8 V I/O, Vref = 0.9 V.
For 1.2 V I/O, Vref = 0.6 V.
Figure 5-2. Input and Output Voltage Reference Levels for AC Timing Measurements
All rise and fall transition timing parameters are referenced to VIL MAX and VIH MIN for input clocks,
VOLMAX and VOH MIN for output clocks
Figure 5-3. Rise and Fall Transition Time Voltage Reference Levels
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 83
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
5.2 Recommended Clock and Control Signal Transition Behavior
All clocks and control signals must transition between VIH and VIL (or between VIL and VIH) in a monotonic
manner.
5.3 Power Supplies
5.3.1 Power-On Sequence
The device should be powered-on in the following order:
1. RTC (RTC_CVDD) may be powered from an external device (such as a battery) prior to all other
supplies being applied or powered-up at the same time as CVDD. If the RTC is not used, RTC_CVDD
should be connected to CVDD. RTC_CVDD should not be left unpowered while CVDD is powered.
2. Core logic supplies:
(a) All variable 1.3V - 1.0V core logic supplies (CVDD)
(b) All static core logic supplies (RVDD, PLL0_VDDA, PLL1_VDDA, USB_CVDD, SATA_VDD). If
voltage scaling is not used on the device, groups 2a) and 2b) can be controlled from the same
power supply and powered up together.
3. All static 1.8V IO supplies (DVDD18, DDR_DVDD18, USB0_VDDA18, USB1_VDDA18 and
SATA_VDDR) and any of the LVCMOS IO supply groups used at 1.8V nominal (DVDD3318_A,
DVDD3318_B, or DVDD3318_C).
4. All analog 3.3V PHY supplies (USB0_VDDA33 and USB1_VDDA33; these are not required if both
USB0 and USB1 are not used) and any of the LVCMOS IO supply groups used at 3.3V nominal
(DVDD3318_A, DVDD3318_B, or DVDD3318_C).
There is no specific required voltage ramp rate for any of the supplies as long as the LVCMOS supplies
operated at 3.3V (DVDD3318_A, DVDD3318_B, or DVDD3318_C) never exceed the STATIC 1.8V
supplies by more than 2 volts.
RESET must be maintained active until all power supplies have reached their nominal values.
5.3.2 Power-Off Sequence
The power supplies can be powered-off in any order as long as LVCMOS supplies operated at 3.3V
(DVDD3318_A, DVDD3318_B, or DVDD3318_C) never exceed static 1.8V supplies by more than 2 volts.
There is no specific required voltage ramp down rate for any of the supplies (except as required to meet
the above mentioned voltage condition).
84 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
5.4 Reset
5.4.1 Power-On Reset (POR)
A power-on reset (POR) is required to place the device in a known good state after power-up. Power-On
Reset is initiated by bringing RESET and TRST low at the same time. POR sets all of the device internal
logic to its default state. All pins are tri-stated with the exception of RESETOUT which remains active
through the reset sequence. RESETOUT is an output for use by other controllers in the system that
indicates the device is currently in reset.
RTCK is maintained active through a POR.
A summary of the effects of Power-On Reset is given below:
All internal logic (including emulation logic and the PLL logic) is reset to its default state
Internal memory is not maintained through a POR
RESETOUT goes active
All device pins go to a high-impedance state
The RTC peripheral is not reset during a POR. A software sequence is required to reset the RTC
A watchdog reset triggers a POR.
5.4.2 Warm Reset
A warm reset provides a limited reset to the device. Warm Reset is initiated by bringing only RESET low
(TRST is maintained high through a warm reset). Warm reset sets certain portions of the device to their
default state while leaving others unaltered. All pins are tri-stated with the exception of RESETOUT which
remains active through the reset sequence. RESETOUT is an output for use by other controllers in the
system that indicates the device is currently in reset.
RTCK is maintained active through a POR.
A summary of the effects of Warm Reset is given below:
All internal logic (except for the emulation logic and the PLL logic) is reset to its default state
Internal memory is maintained through a warm reset
RESETOUT goes active
All device pins go to a high-impedance state
The RTC peripheral is not reset during a warm reset. A software sequence is required to reset the
RTC
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 85
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OSCIN
RESET
RESETOUT
Boot Pins Config
Power
Supplies
Ramping Power Supplies Stable
Clock Source Stable
1
23
4
TRST
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
5.4.3 Reset Electrical Data Timings
Table 5-1 assumes testing over the recommended operating conditions.
Table 5-1. Reset Timing Requirements ((1),(2))
1.3V, 1.2V 1.1V 1.0V
NO. PARAMETER UNIT
MIN MAX MIN MAX MIN MAX
1 tw(RSTL) Pulse width, RESET/TRST low 100 100 100 ns
2 tsu(BPV-RSTH) Setup time, boot pins valid before RESET/TRST high 20 20 20 ns
3 th(RSTH-BPV) Hold time, boot pins valid after RESET/TRST high 20 20 20 ns
td(RSTH-RESETOUTH) RESET high to RESETOUT high; Warm reset 14 16 20 cycles(3)
4RESET high to RESETOUT high; Power-on Reset 14 16 20
5 td(RSTL-RESETOUTL) Delay time, RESET/TRST low to RESETOUT low 14 16 20 ns
(1) RESETOUT is multiplexed with other pin functions. See the Terminal Functions table, Table 2-5 for details.
(2) For power-on reset (POR), the reset timings in this table refer to RESET and TRST together. For warm reset, the reset timings in this
table refer to RESET only (TRST is held high).
(3) OSCIN cycles.
Figure 5-4. Power-On Reset (RESET and TRST active) Timing
86 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OSCIN
TRST
RESET
RESETOUT
BootPins Config
PowerSuppliesStable
1
23
4
DrivenorHi-Z
5
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
Figure 5-5. Warm Reset (RESET active, TRST high) Timing
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 87
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
C2
C1
X1
OSCOUT
OSCIN
OSCVSS
ClockInput
toPLL
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
5.5 Crystal Oscillator or External Clock Input
The device includes two choices to provide an external clock input, which is fed to the on-chip PLLs to
generate high-frequency system clocks. These options are illustrated in Figure 5-6 and Figure 5-7. For
input clock frequencies between 12 and 20 MHz, a crystal with 80 ohm max ESR is recommended. For
input clock frequencies between 20 and 30 MHz, a crystal with 60 ohm max ESR is recommended.
Typical load capacitance values are 10-20 pF, where the load capacitance is the series combination of C1
and C2.
Figure 5-6 illustrates the option that uses on-chip 1.2V oscillator with external crystal circuit. Figure 5-7
illustrates the option that uses an external 1.2V clock input.
Figure 5-6. On-Chip Oscillator
Table 5-2. Oscillator Timing Requirements
PARAMETER MIN MAX UNIT
fosc Oscillator frequency range (OSCIN/OSCOUT) 12 30 MHz
88 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OSCOUT
OSCIN
OSCVSS
Clock
Input
toPLL
NC
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
Figure 5-7. External 1.2V Clock Source
Table 5-3. OSCIN Timing Requirements for an Externally Driven Clock
PARAMETER MIN MAX UNIT
fOSCIN OSCIN frequency range 12 50 MHz
tc(OSCIN) Cycle time, external clock driven on OSCIN 20 ns
tw(OSCINH) Pulse width high, external clock on OSCIN 0.4 tc(OSCIN) ns
tw(OSCINL) Pulse width low, external clock on OSCIN 0.4 tc(OSCIN) ns
tt(OSCIN) Transition time, OSCIN 0.25P or 10 (1) ns
tj(OSCIN) Period jitter, OSCIN 0.02P ns
(1) Whichever is smaller. P = the period of the applied signal. Maintaining transition times as fast as possible is recommended to improve
noise immunity on input signals.
5.6 Clock PLLs
The device has two PLL controllers that provide clocks to different parts of the system. PLL0 provides
clocks (though various dividers) to most of the components of the device. PLL1 provides clocks to the
mDDR/DDR2 Controller and provides an alternate clock source for the ASYNC3 clock domain. This allows
the peripherals on the ASYNC3 clock domain to be immune to frequency scaling operation on PLL0.
The PLL controller provides the following:
Glitch-Free Transitions (on changing clock settings)
Domain Clocks Alignment
Clock Gating
PLL power down
The various clock outputs given by the controller are as follows:
Domain Clocks: SYSCLK [1:n]
Auxiliary Clock from reference clock source: AUXCLK
Various dividers that can be used are as follows:
Post-PLL Divider: POSTDIV
SYSCLK Divider: D1, ¼, Dn
Various other controls supported are as follows:
PLL Multiplier Control: PLLM
Software programmable PLL Bypass: PLLEN
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 89
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
0.1
µF
0.01
µF
50R
1.14V - 1.32V
50RVSS
PLL1_VDDA
PLL1_VSSA
Ferrite Bead: Murata BLM31PG500SN1L or Equivalent
0.1
µF
0.01
µF
50R
1.14V - 1.32V
50RVSS
PLL0_VDDA
PLL0_VSSA
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
5.6.1 PLL Device-Specific Information
The device DSP generates the high-frequency internal clocks it requires through an on-chip PLL.
The PLL requires some external filtering components to reduce power supply noise as shown in
Figure 5-8.
Figure 5-8. PLL External Filtering Components
The external filtering components shown above provide noise immunity for the PLLs. PLL0_VDDA and
PLL1_VDDA should not be connected together to provide noise immunity between the two PLLs.
Likewise, PLL0_VSSA and PLL1_VSSA should not be connected together.
The input to the PLL is either from the on-chip oscillator or from an external clock on the OSCIN pin. PLL0
outputs seven clocks that have programmable divider options. PLL1 outputs three clocks that have
programmable divider options. Figure 5-9 illustrates the high-level view of the PLL Topology.
The PLLs are disabled by default after a device reset. They must be configured by software according to
the allowable operating conditions listed in Table 5-4 before enabling the device to run from the PLL by
setting PLLEN = 1.
90 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
PLLDIV1 (/1) SYSCLK1
PLLDIV2 (/2) SYSCLK2
PLLDIV4 (/4) SYSCLK4
PLLDIV5 (/3) SYSCLK5
PLLDIV6 (/1) SYSCLK6
PLLDIV7 (/6) SYSCLK7
DIV4.5 1
0EMIFA
Internal
Clock
Source
CFGCHIP3[EMA_CLKSRC]
1
0
PREDIV
PLLM
1
0
Square
Wave
Crystal
PLL1_SYSCLK3
PLLCTL[EXTCLKSRC]
AUXCLK
PLL
PLLDIV3 (/3) SYSCLK3
DDR2/mDDR
Internal
Clock
Source
PLLDIV2 (/2)
PLLDIV3 (/3)
PLLDIV1 (/1)
0
1
PLLCTL[PLLEN]
POSTDIV
PLLM
PLL
0
1
PLLCTL[PLLEN]
PLLCTL[CLKMODE]
POSTDIV
PLLC0 OBSCLK
(CLKOUT Pin)
DIV4.5
OSCDIV
PLL Controller 0
PLL Controller 1
SYSCLK2
SYSCLK3
SYSCLK1
OSCIN
14h
17h
18h
19h
1Ah
1Bh
1Ch
1Dh
1Eh
SYSCLK1
SYSCLK2
SYSCLK3
SYSCLK4
SYSCLK5
SYSCLK6
SYSCLK7
PLLC1 OBSCLK
OCSEL[OCSRC]
14h
17h
18h
19h
SYSCLK1
SYSCLK2
SYSCLK3
OCSEL[OCSRC]
OSCDIV PLLC1 OBSCLK
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
Figure 5-9. PLL Topology
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 91
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
2000 N
Max PLL Lock Time = m
where N = Pre-Divider Ratio
M = PLL Multiplier
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
Table 5-4. Allowed PLL Operating Conditions (PLL0 and PLL1)
Default
NO. PARAMETER MIN MAX UNIT
Value
1PLLRST: Assertion time during initialization N/A 1000 N/A ns
Lock time: The time that the application has to wait for OSCIN
2 the PLL to acquire lock before setting PLLEN, after N/A N/A cycles
changing PREDIV, PLLM, or OSCIN (1)
3PREDIV: Pre-divider value /1 /1 /32 -
30 (if internal oscillator is used)
4PLLREF: PLL input frequency 12 MHz
50 (if external clock is used)
5PLLM: PLL multiplier values x20 x4 x32
6PLLOUT: PLL output frequency N/A 300 600 MHz
7POSTDIV: Post-divider value /1 /1 /32 -
(1) The multiplier values must be chosen such that the PLL output frequency (at PLLOUT) is between 300 and 600 MHz, but the frequency
going into the SYSCLK dividers (after the post divider) cannot exceed the maximum clock frequency defined for the device at a given
voltage operating point.
5.6.2 Device Clock Generation
PLL0 is controlled by PLL Controller 0 and PLL1 is controlled by PLL Controller 1. PLLC0 and PLLC1
manage the clock ratios, alignment, and gating for the system clocks to the chip. The PLLCs are
responsible for controlling all modes of the PLL through software, in terms of pre-division of the clock
inputs (PLLC0 only), multiply factors within the PLLs, and post-division for each of the chip-level clocks
from the PLLs outputs. PLLC0 also controls reset propagation through the chip, clock alignment, and test
points.
PLLC0 provides clocks for the majority of the system but PLLC1 provides clocks to the mDDR/DDR2
Controller and the ASYNC3 clock domain to provide frequency scaling immunity to a defined set or
peripherals. The ASYNC3 clock domain can either derive its clock from PLL1_SYSCLK2 (for frequency
scaling immunity from PLL0) or from PLL0_SYSCLK2 (for synchronous timing with PLL0) depending on
the application requirements. In addition, some peripherals have specific clock options independent of the
ASYNC clock domain.
5.6.3 Dynamic Voltage and Frequency Scaling (DVFS)
The processor supports multiple operating points by scaling voltage and frequency to minimize power
consumption for a given level of processor performance.
Frequency scaling is achieved by modifying the setting of the PLL controllersmultipliers, post-dividers
(POSTDIV), and system clock dividers (SYSCLKn). Modification of the POSTDIV and SYSCLK values
does not require relocking the PLL and provides lower latency to switch between operating points, but at
the expense of the frequencies being limited by the integer divide values (only the divide values are
altered the PLL multiplier is left unmodified). Non integer divide frequency values can be achieved by
changing both the multiplier and the divide values, but when the PLL multiplier is changed the PLL must
relock, incurring additional latency to change between operating points. Detailed information on modifying
the PLL Controller settings can be found in the OMAP-L138 Applications Processor System Reference
Guide - SPRUGM7 .
92 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
Voltage scaling is enabled from outside the device by controlling an external voltage regulator. The
processor may communicate with the regulator using GPIOs, I2C or some other interface. When switching
between voltage-frequency operating points, the voltage must always support the desired frequency.
When moving from a high-performance operating point to a lower performance operating point, the
frequency should be lowered first followed by the voltage. When moving from a low-performance operating
point to a higher performance operating point, the voltage should be raised first followed by the frequency.
Voltage operating points refer to the CVdd voltage at that point. Other static supplies must be maintained
at their nominal voltages at all operating points.
The maximum voltage slew rate for CVdd supply changes is 1 mV/us.
For additional information on power management solutions from TI for this processor, follow the Power
Management link in the Product Folder on www.ti.com for this processor.
The processor supports multiple clock domains some of which have clock ratio requirements to each
other. SYSCLK1:SYSCLK2:SYSCLK4:SYSCLK6 are synchronous to each other and the SYSCLKn
dividers must always be configured such that the ratio between these domains is 1:2:4:1. The ASYNC and
ASYNC3 clock domains are asynchronous to the other clock domains and have no specific ratio
requirement.
Table 5-5 summarizes the maximum internal clock frequencies at each of the voltage operating points.
Table 5-5. Maximum Internal Clock Frequencies at Each Voltage Operating Point
CLOCK CLOCK DOMAIN 1.3V NOM 1.2V NOM 1.1V NOM 1.0V NOM
SOURCE
PLL0_SYSCLK1 DSP subsystem 456 MHz 375 MHz 200 MHz 100 MHz
SYSCLK2 clock domain peripherals and optional clock
PLL0_SYSCLK2 228 MHz 187.5 MHz 100 MHz 50 MHz
source for ASYNC3 clock domain peripherals
Optional clock for ASYNC1 clock domain
PLL0_SYSCLK3 (See ASYNC1 row)
PLL0_SYSCLK4 SYSCLK4 domain peripherals 114 MHz 93.75 MHz 50 MHz 25 MHz
PLL0_SYSCLK5 Not used on this processor - - - -
PLL0_SYSCLK6 ARM subsystem 456 MHz 375 MHz 200 MHz 100 MHz
PLL0_SYSCLK7 Optional 50 MHz clock source for EMAC RMII interface 50 MHz 50 MHz - -
DDR2/mDDR Interface clock source
PLL1_SYSCLK1 312 MHz 312 MHz 300 MHz 266 MHz
(memory interface clock is one-half of the value shown)
Optional clock source for ASYNC3 clock domain
PLL1_SYSCLK2 152 MHz 150 MHz 100 MHz 75 MHz
peripherals
PLL1_SYSCLK3 Alternate clock source input to PLL Controller 0 50 MHz 50 MHz 50 MHz 50 MHz
McASP AUXCLK Bypass clock source for the McASP 50 MHz 50 MHz 50 MHz 50 MHz
PLL0_AUXCLK Bypass clock source for the USB0 and USB1 48 MHz 48 MHz 48 MHz 48 MHz
Async Mode 148 MHz 148 MHz 66.6 MHz 50 MHz
ASYNC1 ASYNC Clock Domain (EMIFA) SDRAM Mode 100 MHz 100 MHz 66.6 MHz 50 MHz
ASYNC2 ASYNC2 Clock Domain (multiple peripherals) 50 MHz 50 MHz 50 MHz 50 MHz
ASYNC3 ASYNC3 Clock Domain (multiple peripherals) 152 MHz 150 MHz 100 MHz 75 MHz
Some interfaces have specific limitations on supported modes/speeds at each operating point. See the
corresponding peripheral sections of this document for more information.
TI provides software components (called the Power Manager) to perform DVFS and abstract the task from
the user. The Power Manager controls changing operating points (both frequency and voltage) and
handles the related tasks involved such as informing/controlling peripherals to provide graceful transitions
between operating points. The Power Manager is bundled as a component of DSP/BIOS.
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 93
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
5.7 Interrupts
The device has a large number of interrupts to service the needs of its many peripherals and subsystems.
Both the ARM and C674x CPUs are capable of servicing these interrupts equally. The interrupts can be
selectively enabled or disabled in either of the controllers. Also, the ARM and DSP can communicate with
each other through interrupts controlled by registers in the SYSCFG module.
5.7.1 ARM CPU Interrupts
The ARM9 CPU core supports 2 direct interrupts: FIQ and IRQ. The ARM Interrupt Controller (AINTC)
extends the number of interrupts to 100, and provides features like programmable masking, priority,
hardware nesting support, and interrupt vector generation.
5.7.1.1 ARM Interrupt Controller (AINTC) Interrupt Signal Hierarchy
The ARM Interrupt controller organizes interrupts into the following hierarchy:
Peripheral Interrupt Requests
Individual Interrupt Sources from Peripherals
101 System Interrupts
One or more Peripheral Interrupt Requests are combined (fixed configuration) to generate a
System Interrupt.
After prioritization, the AINTC will provide an interrupt vector based unique to each System Interrupt
32 Interrupt Channels
Each System Interrupt is mapped to one of the 32 Interrupt Channels
Channel Number determines the first level of prioritization, Channel 0 is highest priority and 31
lowest.
If more than one system interrupt is mapped to a channel, priority within the channel is determined
by system interrupt number (0 highest priority)
Host Interrupts (FIQ and IRQ)
Interrupt Channels 0 and 1 generate the ARM FIQ interrupt
Interrupt Channels 2 through 31 Generate the ARM IRQ interrupt
Debug Interrupts
Two Debug Interrupts are supported and can be used to trigger events in the debug subsystem
Sources can be selected from any of the System Interrupts or Host Interrupts
5.7.1.2 AINTC Hardware Vector Generation
The AINTC also generates an interrupt vector in hardware for both IRQ and FIQ host interrupts. This may
be used to accelerate interrupt dispatch. A unique vector is generated for each of the 100 system
interrupts. The vector is computed in hardware as:
VECTOR = BASE + (SYSTEM INTERRUPT NUMBER ×SIZE)
Where BASE and SIZE are programmable. The computed vector is a 32-bit address which may
dispatched to using a single instruction of type LDR PC, [PC, #-<offset_12>] at the FIQ and IRQ vector
locations (0xFFFF0018 and 0xFFFF001C respectively).
5.7.1.3 AINTC Hardware Interrupt Nesting Support
Interrupt nesting occurs when an interrupt service routine re-enables interrupts, to allow the CPU to
interrupt the ISR if a higher priority event occurs. The AINTC provides hardware support to facilitate
interrupt nesting. It supports both global and per host interrupt (FIQ and IRQ in this case) automatic
94 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
nesting. If enabled, the AINTC will automatically update an internal nesting register that temporarily masks
interrupts at and below the priority of the current interrupt channel. Then if the ISR re-enables interrupts;
only higher priority channels will be able to interrupt it. The nesting level is restored by the ISR by writing
to the nesting level register on completion. Support for nesting can be enabled/disabled by software, with
the option of automatic nesting on a global or per host interrupt basis; or manual nesting.
5.7.1.4 AINTC System Interrupt Assignments
Table 5-6. AINTC System Interrupt Assignments
System Interrupt Interrupt Name Source
0 COMMTX ARM
1 COMMRX ARM
2 NINT ARM
3 PRU_EVTOUT0 PRUSS Interrupt
4 PRU_EVTOUT1 PRUSS Interrupt
5 PRU_EVTOUT2 PRUSS Interrupt
6 PRU_EVTOUT3 PRUSS Interrupt
7 PRU_EVTOUT4 PRUSS Interrupt
8 PRU_EVTOUT5 PRUSS Interrupt
9 PRU_EVTOUT6 PRUSS Interrupt
10 PRU_EVTOUT7 PRUSS Interrupt
11 EDMA3_0_CC0_INT0 EDMA3_0 Channel Controller 0 Shadow Region 0 Transfer
Completion Interrupt
12 EDMA3_0_CC0_ERRINT EDMA3_0 Channel Controller 0 Error Interrupt
13 EDMA3_0_TC0_ERRINT EDMA3_0 Transfer Controller 0 Error Interrupt
14 EMIFA_INT EMIFA
15 IIC0_INT I2C0
16 MMCSD0_INT0 MMCSD0 MMC/SD Interrupt
17 MMCSD0_INT1 MMCSD0 SDIO Interrupt
18 PSC0_ALLINT PSC0
19 RTC_IRQS[1:0] RTC
20 SPI0_INT SPI0
21 T64P0_TINT12 Timer64P0 Interrupt 12
22 T64P0_TINT34 Timer64P0 Interrupt 34
23 T64P1_TINT12 Timer64P1 Interrupt 12
24 T64P1_TINT34 Timer64P1 Interrupt 34
25 UART0_INT UART0
26 - Reserved
27 PROTERR SYSCFG Protection Shared Interrupt
28 SYSCFG_CHIPINT0 SYSCFG CHIPSIG Register
29 SYSCFG_CHIPINT1 SYSCFG CHIPSIG Register
30 SYSCFG_CHIPINT2 SYSCFG CHIPSIG Register
31 SYSCFG_CHIPINT3 SYSCFG CHIPSIG Register
32 EDMA3_0_TC1_ERRINT EDMA3_0 Transfer Controller 1 Error Interrupt
33 EMAC_C0RXTHRESH EMAC - Core 0 Receive Threshold Interrupt
34 EMAC_C0RX EMAC - Core 0 Receive Interrupt
35 EMAC_C0TX EMAC - Core 0 Transmit Interrupt
36 EMAC_C0MISC EMAC - Core 0 Miscellaneous Interrupt
37 EMAC_C1RXTHRESH EMAC - Core 1 Receive Threshold Interrupt
38 EMAC_C1RX EMAC - Core 1 Receive Interrupt
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 95
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
Table 5-6. AINTC System Interrupt Assignments (continued)
System Interrupt Interrupt Name Source
39 EMAC_C1TX EMAC - Core 1 Transmit Interrupt
40 EMAC_C1MISC EMAC - Core 1 Miscellaneous Interrupt
41 DDR2_MEMERR DDR2 Controller
42 GPIO_B0INT GPIO Bank 0 Interrupt
43 GPIO_B1INT GPIO Bank 1 Interrupt
44 GPIO_B2INT GPIO Bank 2 Interrupt
45 GPIO_B3INT GPIO Bank 3 Interrupt
46 GPIO_B4INT GPIO Bank 4 Interrupt
47 GPIO_B5INT GPIO Bank 5 Interrupt
48 GPIO_B6INT GPIO Bank 6 Interrupt
49 GPIO_B7INT GPIO Bank 7 Interrupt
50 GPIO_B8INT GPIO Bank 8 Interrupt
51 IIC1_INT I2C1
52 LCDC_INT LCD Controller
53 UART_INT1 UART1
54 MCASP_INT McASP0 Combined RX / TX Interrupts
55 PSC1_ALLINT PSC1
56 SPI1_INT SPI1
57 UHPI_ARMINT UHPI ARM Interrupt
58 USB0_INT USB0 Interrupt
59 USB1_HCINT USB1 OHCI Host Controller Interrupt
60 USB1_RWAKEUP USB1 Remote Wakeup Interrupt
61 UART2_INT UART2
62 - Reserved
63 EHRPWM0 HiResTimer / PWM0 Interrupt
64 EHRPWM0TZ HiResTimer / PWM0 Trip Zone Interrupt
65 EHRPWM1 HiResTimer / PWM1 Interrupt
66 EHRPWM1TZ HiResTimer / PWM1 Trip Zone Interrupt
67 SATA_INT SATA Controller
68 T64P2_ALL Timer64P2 - Combined TINT12 and TINT34
69 ECAP0 ECAP0
70 ECAP1 ECAP1
71 ECAP2 ECAP2
72 MMCSD1_INT0 MMCSD1 MMC/SD Interrupt
73 MMCSD1_INT1 MMCSD1 SDIO Interrupt
74 T64P2_CMPINT0 Timer64P2 - Compare 0
75 T64P2_CMPINT1 Timer64P2 - Compare 1
76 T64P2_CMPINT2 Timer64P2 - Compare 2
77 T64P2_CMPINT3 Timer64P2 - Compare 3
78 T64P2_CMPINT4 Timer64P2 - Compare 4
79 T64P2_CMPINT5 Timer64P2 - Compare 5
80 T64P2_CMPINT6 Timer64P2 - Compare 6
81 T64P2_CMPINT7 Timer64P2 - Compare 7
82 T64P3_CMPINT0 Timer64P3 - Compare 0
83 T64P3_CMPINT1 Timer64P3 - Compare 1
84 T64P3_CMPINT2 Timer64P3 - Compare 2
85 T64P3_CMPINT3 Timer64P3 - Compare 3
96 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
Table 5-6. AINTC System Interrupt Assignments (continued)
System Interrupt Interrupt Name Source
86 T64P3_CMPINT4 Timer64P3 - Compare 4
87 T64P3_CMPINT5 Timer64P3 - Compare 5
88 T64P3_CMPINT6 Timer64P3 - Compare 6
89 T64P3_CMPINT7 Timer64P3 - Compare 7
90 ARMCLKSTOPREQ PSC0
91 uPP_ALLINT uPP Combined Interrupt
Channel I End-of-Line Interrupt
Channel I End-of-Window Interrupt
Channel I DMA Access Interrupt
Channel I Overflow-Underrun Interrupt
Channel I DMA Programming Error Interrupt
Channel Q End-of-Line Interrupt
Channel Q End-of-Window Interrupt
Channel Q DMA Access Interrupt
Channel Q Overflow-Underrun Interrupt
Channel Q DMA Programming Error Interrupt
92 VPIF_ALLINT VPIF Combined Interrupt
Channel 0 Frame Interrupt
Channel 1 Frame Interrupt
Channel 2 Frame Interrupt
Channel 3 Frame Interrupt
Error Interrupt
93 EDMA3_1_CC0_INT0 EDMA3_1 Channel Controller 0 Shadow Region 0 Transfer
Completion Interrupt
94 EDMA3_1_CC0_ERRINT EDMA3_1Channel Controller 0 Error Interrupt
95 EDMA3_1_TC0_ERRINT EDMA3_1 Transfer Controller 0 Error Interrupt
96 T64P3_ALL Timer64P 3 - Combined TINT12 and TINT34
97 MCBSP0_RINT McBSP0 Receive Interrupt
98 MCBSP0_XINT McBSP0 Transmit Interrupt
99 MCBSP1_RINT McBSP1 Receive Interrupt
100 MCBSP1_XINT McBSP1 Transmit Interrupt
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 97
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
5.7.1.5 AINTC Memory Map
Table 5-7. AINTC Memory Map
BYTE ADDRESS ACRONYM DESCRIPTION
0xFFFE E000 REV Revision Register
0xFFFE E004 CR Control Register
0xFFFE E008 - 0xFFFE E00F - Reserved
0xFFFE E010 GER Global Enable Register
0xFFFE E014 - 0xFFFE E01B - Reserved
0xFFFE E01C GNLR Global Nesting Level Register
0xFFFE E020 SISR System Interrupt Status Indexed Set Register
0xFFFE E024 SICR System Interrupt Status Indexed Clear Register
0xFFFE E028 EISR System Interrupt Enable Indexed Set Register
0xFFFE E02C EICR System Interrupt Enable Indexed Clear Register
0xFFFE E030 - Reserved
0xFFFE E034 HIEISR Host Interrupt Enable Indexed Set Register
0xFFFE E038 HIEICR Host Interrupt Enable Indexed Clear Register
0xFFFE E03C - 0xFFFE E04F - Reserved
0xFFFE E050 VBR Vector Base Register
0xFFFE E054 VSR Vector Size Register
0xFFFE E058 VNR Vector Null Register
0xFFFE E05C - 0xFFFE E07F - Reserved
0xFFFE E080 GPIR Global Prioritized Index Register
0xFFFE E084 GPVR Global Prioritized Vector Register
0xFFFE E088 - 0xFFFE E1FF - Reserved
0xFFFE E200 SRSR[1] System Interrupt Status Raw / Set Registers
0xFFFE E204 SRSR[2]
0xFFFE E208 SRSR[3]
0xFFFE E20C SRSR[4]
0xFFFE E210- 0xFFFE E27F - Reserved
0xFFFE E280 SECR[1] System Interrupt Status Enabled / Clear Registers
0xFFFE E284 SECR[2]
0xFFFE E288 SECR[3]
0xFFFE E28C SECR[4]
0xFFFE E290 - 0xFFFE E2FF - Reserved
0xFFFE E300 ESR[1] System Interrupt Enable Set Registers
0xFFFE E304 ESR[2]
0xFFFE E308 ESR[3]
0xFFFE E30C ESR[4]
0xFFFE E310 - 0xFFFE E37F - Reserved
0xFFFE E380 ECR[1] System Interrupt Enable Clear Registers
0xFFFE E384 ECR[2]
0xFFFE E388 ECR[3]
0xFFFE E38C ECR[4]
0xFFFE E390 - 0xFFFE E3FF - Reserved
98 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
Table 5-7. AINTC Memory Map (continued)
BYTE ADDRESS ACRONYM DESCRIPTION
0xFFFE E400 - 0xFFFE E45B CMR[0] Channel Map Registers
0xFFFE E404 CMR[1]
0xFFFE E408 CMR[2]
0xFFFE E40C CMR[3]
0xFFFE E410 CMR[4]
0xFFFE E414 CMR[5]
0xFFFE E418 CMR[6]
0xFFFE E41C CMR[7]
0xFFFE E420 CMR[8]
0xFFFE E424 CMR[9]
0xFFFE E428 CMR[10]
0xFFFE E42C CMR[11]
0xFFFE E430 CMR[12]
0xFFFE E434 CMR[13]
0xFFFE E438 CMR[14]
0xFFFE E43C CMR[15]
0xFFFE E440 CMR[16]
0xFFFE E444 CMR[17]
0xFFFE E448 CMR[18]
0xFFFE E44C CMR[19]
0xFFFE E450 CMR[20]
0xFFFE E454 CMR[21]
0xFFFE E458 CMR[22]
0xFFFE E45C CMR[23]
0xFFFE E460 CMR[24]
0xFFFE E464 CMR[25]
0xFFFE E468 - 0xFFFE E8FF - Reserved
0xFFFE E900 HIPIR[1] Host Interrupt Prioritized Index Registers
0xFFFE E904 HIPIR[2]
0xFFFE E908 - 0xFFFE F0FF - Reserved
0xFFFE F100 HINLR[1] Host Interrupt Nesting Level Registers
0xFFFE F104 HINLR[2]
0xFFFE F108 - 0xFFFE F4FF - Reserved
0xFFFE F500 HIER Host Interrupt Enable Register
0xFFFE F504 - 0xFFFE F5FF - Reserved
0xFFFE F600 HIPVR[1] Host Interrupt Prioritized Vector Registers
0xFFFE F604 HIPVR[2]
0xFFFE F608 - 0xFFFE FFFF - Reserved
5.7.2 DSP Interrupts
The C674x DSP interrupt controller combines device events into 12 prioritized interrupts. The source for
each of the 12 CPU interrupts is user programmable and is listed in Table 5-8. Also, the interrupt
controller controls the generation of the CPU exceptions, NMI, and emulation interrupts. Table 5-9
summarizes the C674x interrupt controller registers and memory locations.
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 99
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
Table 5-8. OMAP-L138OMAP-L132 DSP Interrupts
EVT# Interrupt Name Source
0 EVT0 C674x Int Ctl 0
1 EVT1 C674x Int Ctl 1
2 EVT2 C674x Int Ctl 2
3 EVT3 C674x Int Ctl 3
4 T64P0_TINT12 Timer64P0 - TINT12
5 SYSCFG_CHIPINT2 SYSCFG CHIPSIG Register
6 PRU_EVTOUT0 PRUSS Interrupt
7 EHRPWM0 HiResTimer/PWM0 Interrupt
8 EDMA3_0_CC0_INT1 EDMA3_0 Channel Controller 0 Shadow Region 1 Transfer
Completion Interrupt
9 EMU_DTDMA C674x-ECM
10 EHRPWM0TZ HiResTimer/PWM0 Trip Zone Interrupt
11 EMU_RTDXRX C674x-RTDX
12 EMU_RTDXTX C674x-RTDX
13 IDMAINT0 C674x-EMC
14 IDMAINT1 C674x-EMC
15 MMCSD0_INT0 MMCSD0 MMC/SD Interrupt
16 MMCSD0_INT1 MMCSD0 SDIO Interrupt
17 PRU_EVTOUT1 PRUSS Interrupt
18 EHRPWM1 HiResTimer/PWM1 Interrupt
19 USB0_INT USB0 Interrupt
20 USB1_HCINT USB1 OHCI Host Controller Interrupt
21 USB1_RWAKEUP USB1 Remote Wakeup Interrupt
22 PRU_EVTOUT2 PRUSS Interrupt
23 EHRPWM1TZ HiResTimer/PWM1 Trip Zone Interrupt
24 SATA_INT SATA Controller
25 T64P2_TINTALL Timer64P2 Combined TINT12 and TINT 34 Interrupt
26 EMAC_C0RXTHRESH EMAC - Core 0 Receive Threshold Interrupt
27 EMAC_C0RX EMAC - Core 0 Receive Interrupt
28 EMAC_C0TX EMAC - Core 0 Transmit Interrupt
29 EMAC_C0MISC EMAC - Core 0 Miscellaneous Interrupt
30 EMAC_C1RXTHRESH EMAC - Core 1 Receive Threshold Interrupt
31 EMAC_C1RX EMAC - Core 1 Receive Interrupt
32 EMAC_C1TX EMAC - Core 1 Transmit Interrupt
33 EMAC_C1MISC EMAC - Core 1 Miscellaneous Interrupt
34 UHPI_DSPINT UHPI DSP Interrupt
35 PRU_EVTOUT3 PRUSS Interrupt
36 IIC0_INT I2C0
37 SP0_INT SPI0
38 UART0_INT UART0
39 PRU_EVTOUT5 PRUSS Interrupt
40 T64P1_TINT12 Timer64P1 Interrupt 12
41 GPIO_B1INT GPIO Bank 1 Interrupt
42 IIC1_INT I2C1
43 SPI1_INT SPI1
44 PRU_EVTOUT6 PRUSS Interrupt
45 ECAP0 ECAP0
100 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
Table 5-8. OMAP-L138OMAP-L132 DSP Interrupts (continued)
EVT# Interrupt Name Source
46 UART_INT1 UART1
47 ECAP1 ECAP1
48 T64P1_TINT34 Timer64P1 Interrupt 34
49 GPIO_B2INT GPIO Bank 2 Interrupt
50 PRU_EVTOUT7 PRUSS Interrupt
51 ECAP2 ECAP2
52 GPIO_B3INT GPIO Bank 3 Interrupt
53 MMCSD1_INT1 MMCSD1 SDIO Interrupt
54 GPIO_B4INT GPIO Bank 4 Interrupt
55 EMIFA_INT EMIFA
56 EDMA3_0_CC0_ERRINT EDMA3_0 Channel Controller 0 Error Interrupt
57 EDMA3_0_TC0_ERRINT EDMA3_0 Transfer Controller 0 Error Interrupt
58 EDMA3_0_TC1_ERRINT EDMA3_0 Transfer Controller 1 Error Interrupt
59 GPIO_B5INT GPIO Bank 5 Interrupt
60 DDR2_MEMERR DDR2 Memory Error Interrupt
61 MCASP0_INT McASP0 Combined RX/TX Interrupts
62 GPIO_B6INT GPIO Bank 6 Interrupt
63 RTC_IRQS RTC Combined
64 T64P0_TINT34 Timer64P0 Interrupt 34
65 GPIO_B0INT GPIO Bank 0 Interrupt
66 PRU_EVTOUT4 PRUSS Interrupt
67 SYSCFG_CHIPINT3 SYSCFG_CHIPSIG Register
68 MMCSD1_INT0 MMCSD1 MMC/SD Interrupt
69 UART2_INT UART2
70 PSC0_ALLINT PSC0
71 PSC1_ALLINT PSC1
72 GPIO_B7INT GPIO Bank 7 Interrupt
73 LCDC_INT LDC Controller
74 PROTERR SYSCFG Protection Shared Interrupt
75 GPIO_B8INT GPIO Bank 8 Interrupt
76 - 77 - Reserved
78 T64P2_CMPINT0 Timer64P2 - Compare Interrupt 0
79 T64P2_CMPINT1 Timer64P2 - Compare Interrupt 1
80 T64P2_CMPINT2 Timer64P2 - Compare Interrupt 2
81 T64P2_CMPINT3 Timer64P2 - Compare Interrupt 3
82 T64P2_CMPINT4 Timer64P2 - Compare Interrupt 4
83 T64P2_CMPINT5 Timer64P2 - Compare Interrupt 5
84 T64P2_CMPINT6 Timer64P2 - Compare Interrupt 6
85 T64P2_CMPINT7 Timer64P2 - Compare Interrupt 7
86 T64P3_TINTALL Timer64P3 Combined TINT12 and TINT 34 Interrupt
87 MCBSP0_RINT McBSP0 Receive Interrupt
88 MCBSP0_XINT McBSP0 Transmit Interrupt
89 MCBSP1_RINT McBSP1 Receive Interrupt
90 MCBSP1_XINT McBSP1 Transmit Interrupt
91 EDMA3_1_CC0_INT1 EDMA3_1 Channel Controller 0 Shadow Region 1 Transfer
Completion Interrupt
92 EDMA3_1_CC0_ERRINT EDMA3_1 Channel Controller 0 Error Interrupt
93 EDMA3_1_TC0_ERRINT EDMA3_1 Transfer Controller 0 Error Interrupt
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 101
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
Table 5-8. OMAP-L138OMAP-L132 DSP Interrupts (continued)
EVT# Interrupt Name Source
94 UPP_INT uPP Combined Interrupt
95 VPIF_INT VPIF Combined Interrupt
96 INTERR C674x-Int Ctl
97 EMC_IDMAERR C674x-EMC
98 - 112 - Reserved
113 PMC_ED C674x-PMC
114 - 115 - Reserved
116 UMC_ED1 C674x-UMC
117 UMC_ED2 C674x-UMC
118 PDC_INT C674x-PDC
119 SYS_CMPA C674x-SYS
120 PMC_CMPA C674x-PMC
121 PMC_CMPA C674x-PMC
122 DMC_CMPA C674x-DMC
123 DMC_CMPA C674x-DMC
124 UMC_CMPA C674x-UMC
125 UMC_CMPA C674x-UMC
126 EMC_CMPA C674x-EMC
127 EMC_BUSERR C674x-EMC
102 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
Table 5-9. C674x DSP Interrupt Controller Registers
BYTE ADDRESS ACRONYM DESCRIPTION
0x0180 0000 EVTFLAG0 Event flag register 0
0x0180 0004 EVTFLAG1 Event flag register 1
0x0180 0008 EVTFLAG2 Event flag register 2
0x0180 000C EVTFLAG3 Event flag register 3
0x0180 0020 EVTSET0 Event set register 0
0x0180 0024 EVTSET1 Event set register 1
0x0180 0028 EVTSET2 Event set register 2
0x0180 002C EVTSET3 Event set register 3
0x0180 0040 EVTCLR0 Event clear register 0
0x0180 0044 EVTCLR1 Event clear register 1
0x0180 0048 EVTCLR2 Event clear register 2
0x0180 004C EVTCLR3 Event clear register 3
0x0180 0080 EVTMASK0 Event mask register 0
0x0180 0084 EVTMASK1 Event mask register 1
0x0180 0088 EVTMASK2 Event mask register 2
0x0180 008C EVTMASK3 Event mask register 3
0x0180 00A0 MEVTFLAG0 Masked event flag register 0
0x0180 00A4 MEVTFLAG1 Masked event flag register 1
0x0180 00A8 MEVTFLAG2 Masked event flag register 2
0x0180 00AC MEVTFLAG3 Masked event flag register 3
0x0180 00C0 EXPMASK0 Exception mask register 0
0x0180 00C4 EXPMASK1 Exception mask register 1
0x0180 00C8 EXPMASK2 Exception mask register 2
0x0180 00CC EXPMASK3 Exception mask register 3
0x0180 00E0 MEXPFLAG0 Masked exception flag register 0
0x0180 00E4 MEXPFLAG1 Masked exception flag register 1
0x0180 00E8 MEXPFLAG2 Masked exception flag register 2
0x0180 00EC MEXPFLAG3 Masked exception flag register 3
0x0180 0104 INTMUX1 Interrupt mux register 1
0x0180 0108 INTMUX2 Interrupt mux register 2
0x0180 010C INTMUX3 Interrupt mux register 3
0x0180 0140 - 0x0180 0144 - Reserved
0x0180 0180 INTXSTAT Interrupt exception status
0x0180 0184 INTXCLR Interrupt exception clear
0x0180 0188 INTDMASK Dropped interrupt mask register
0x0180 01C0 EVTASRT Event assert register
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 103
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
5.8 Power and Sleep Controller (PSC)
The Power and Sleep Controllers (PSC) are responsible for managing transitions of system power on/off,
clock on/off, resets (device level and module level). It is used primarily to provide granular power control
for on chip modules (peripherals and CPU). A PSC module consists of a Global PSC (GPSC) and a set of
Local PSCs (LPSCs). The GPSC contains memory mapped registers, PSC interrupts, a state machine for
each peripheral/module it controls. An LPSC is associated with every module that is controlled by the PSC
and provides clock and reset control.
The PSC includes the following features:
Provides a software interface to:
Control module clock enable/disable
Control module reset
Control CPU local reset
Supports IcePick emulation features: power, clock and reset
PSC0 controls 16 local PSCs.
PSC1 controls 32 local PSCs.
Table 5-10. Power and Sleep Controller (PSC) Registers
PSC0 BYTE PSC1 BYTE ACRONYM REGISTER DESCRIPTION
ADDRESS ADDRESS
0x01C1 0000 0x01E2 7000 REVID Peripheral Revision and Class Information Register
0x01C1 0018 0x01E2 7018 INTEVAL Interrupt Evaluation Register
0x01C1 0040 0x01E2 7040 MERRPR0 Module Error Pending Register 0 (module 0-15) (PSC0)
Module Error Pending Register 0 (module 0-31) (PSC1)
0x01C1 0050 0x01E2 7050 MERRCR0 Module Error Clear Register 0 (module 0-15) (PSC0)
Module Error Clear Register 0 (module 0-31) (PSC1)
0x01C1 0060 0x01E2 7060 PERRPR Power Error Pending Register
0x01C1 0068 0x01E2 7068 PERRCR Power Error Clear Register
0x01C1 0120 0x01E2 7120 PTCMD Power Domain Transition Command Register
0x01C1 0128 0x01E2 7128 PTSTAT Power Domain Transition Status Register
0x01C1 0200 0x01E2 7200 PDSTAT0 Power Domain 0 Status Register
0x01C1 0204 0x01E2 7204 PDSTAT1 Power Domain 1 Status Register
0x01C1 0300 0x01E2 7300 PDCTL0 Power Domain 0 Control Register
0x01C1 0304 0x01E2 7304 PDCTL1 Power Domain 1 Control Register
0x01C1 0400 0x01E2 7400 PDCFG0 Power Domain 0 Configuration Register
0x01C1 0404 0x01E2 7404 PDCFG1 Power Domain 1 Configuration Register
0x01C1 0800 0x01E2 7800 MDSTAT0 Module 0 Status Register
0x01C1 0804 0x01E2 7804 MDSTAT1 Module 1 Status Register
0x01C1 0808 0x01E2 7808 MDSTAT2 Module 2 Status Register
0x01C1 080C 0x01E2 780C MDSTAT3 Module 3 Status Register
0x01C1 0810 0x01E2 7810 MDSTAT4 Module 4 Status Register
0x01C1 0814 0x01E2 7814 MDSTAT5 Module 5 Status Register
0x01C1 0818 0x01E2 7818 MDSTAT6 Module 6 Status Register
0x01C1 081C 0x01E2 781C MDSTAT7 Module 7 Status Register
0x01C1 0820 0x01E2 7820 MDSTAT8 Module 8 Status Register
0x01C1 0824 0x01E2 7824 MDSTAT9 Module 9 Status Register
0x01C1 0828 0x01E2 7828 MDSTAT10 Module 10 Status Register
0x01C1 082C 0x01E2 782C MDSTAT11 Module 11 Status Register
0x01C1 0830 0x01E2 7830 MDSTAT12 Module 12 Status Register
0x01C1 0834 0x01E2 7834 MDSTAT13 Module 13 Status Register
104 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
Table 5-10. Power and Sleep Controller (PSC) Registers (continued)
PSC0 BYTE PSC1 BYTE ACRONYM REGISTER DESCRIPTION
ADDRESS ADDRESS
0x01C1 0838 0x01E2 7838 MDSTAT14 Module 14 Status Register
0x01C1 083C 0x01E2 783C MDSTAT15 Module 15 Status Register
- 0x01E2 7840 MDSTAT16 Module 16 Status Register
- 0x01E2 7844 MDSTAT17 Module 17 Status Register
- 0x01E2 7848 MDSTAT18 Module 18 Status Register
- 0x01E2 784C MDSTAT19 Module 19 Status Register
- 0x01E2 7850 MDSTAT20 Module 20 Status Register
- 0x01E2 7854 MDSTAT21 Module 21 Status Register
- 0x01E2 7858 MDSTAT22 Module 22 Status Register
- 0x01E2 785C MDSTAT23 Module 23 Status Register
- 0x01E2 7860 MDSTAT24 Module 24 Status Register
- 0x01E2 7864 MDSTAT25 Module 25 Status Register
- 0x01E2 7868 MDSTAT26 Module 26 Status Register
- 0x01E2 786C MDSTAT27 Module 27 Status Register
- 0x01E2 7870 MDSTAT28 Module 28 Status Register
- 0x01E2 7874 MDSTAT29 Module 29 Status Register
- 0x01E2 7878 MDSTAT30 Module 30 Status Register
- 0x01E2 787C MDSTAT31 Module 31 Status Register
0x01C1 0A00 0x01E2 7A00 MDCTL0 Module 0 Control Register
0x01C1 0A04 0x01E2 7A04 MDCTL1 Module 1 Control Register
0x01C1 0A08 0x01E2 7A08 MDCTL2 Module 2 Control Register
0x01C1 0A0C 0x01E2 7A0C MDCTL3 Module 3 Control Register
0x01C1 0A10 0x01E2 7A10 MDCTL4 Module 4 Control Register
0x01C1 0A14 0x01E2 7A14 MDCTL5 Module 5 Control Register
0x01C1 0A18 0x01E2 7A18 MDCTL6 Module 6 Control Register
0x01C1 0A1C 0x01E2 7A1C MDCTL7 Module 7 Control Register
0x01C1 0A20 0x01E2 7A20 MDCTL8 Module 8 Control Register
0x01C1 0A24 0x01E2 7A24 MDCTL9 Module 9 Control Register
0x01C1 0A28 0x01E2 7A28 MDCTL10 Module 10 Control Register
0x01C1 0A2C 0x01E2 7A2C MDCTL11 Module 11 Control Register
0x01C1 0A30 0x01E2 7A30 MDCTL12 Module 12 Control Register
0x01C1 0A34 0x01E2 7A34 MDCTL13 Module 13 Control Register
0x01C1 0A38 0x01E2 7A38 MDCTL14 Module 14 Control Register
0x01C1 0A3C 0x01E2 7A3C MDCTL15 Module 15 Control Register
- 0x01E2 7A40 MDCTL16 Module 16 Control Register
- 0x01E2 7A44 MDCTL17 Module 17 Control Register
- 0x01E2 7A48 MDCTL18 Module 18 Control Register
- 0x01E2 7A4C MDCTL19 Module 19 Control Register
- 0x01E2 7A50 MDCTL20 Module 20 Control Register
- 0x01E2 7A54 MDCTL21 Module 21 Control Register
- 0x01E2 7A58 MDCTL22 Module 22 Control Register
- 0x01E2 7A5C MDCTL23 Module 23 Control Register
- 0x01E2 7A60 MDCTL24 Module 24 Control Register
- 0x01E2 7A64 MDCTL25 Module 25 Control Register
- 0x01E2 7A68 MDCTL26 Module 26 Control Register
- 0x01E2 7A6C MDCTL27 Module 27 Control Register
- 0x01E2 7A70 MDCTL28 Module 28 Control Register
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 105
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
Table 5-10. Power and Sleep Controller (PSC) Registers (continued)
PSC0 BYTE PSC1 BYTE ACRONYM REGISTER DESCRIPTION
ADDRESS ADDRESS
- 0x01E2 7A74 MDCTL29 Module 29 Control Register
- 0x01E2 7A78 MDCTL30 Module 30 Control Register
- 0x01E2 7A7C MDCTL31 Module 31 Control Register
5.8.1 Power Domain and Module Topology
The device includes two PSC modules.
Each PSC module controls clock states for several of the on chip modules, controllers and interconnect
components. Table 5-11 and Table 5-12 lists the set of peripherals/modules that are controlled by the
PSC, the power domain they are associated with, the LPSC assignment and the default (power-on reset)
module states. The module states and terminology are defined in Section 5.8.1.2.
Table 5-11. PSC0 Default Module Configuration
LPSC Module Name Power Domain Default Module State Auto Sleep/Wake Only
Number
0 EDMA3 Channel Controller 0 AlwaysON (PD0) SwRstDisable
1 EDMA3 Transfer Controller 0 AlwaysON (PD0) SwRstDisable
2 EDMA3 Transfer Controller 1 AlwaysON (PD0) SwRstDisable
3 EMIFA (Br7) AlwaysON (PD0) SwRstDisable
4 SPI 0 AlwaysON (PD0) SwRstDisable
5 MMC/SD 0 AlwaysON (PD0) SwRstDisable
6 ARM Interrupt Controller AlwaysON (PD0) SwRstDisable
7 ARM RAM/ROM AlwaysON (PD0) Enable Yes
8
9 UART 0 AlwaysON (PD0) SwRstDisable
10 SCR0 (Br 0, Br 1, Br 2, Br 8) AlwaysON (PD0) Enable Yes
11 SCR1 (Br 4) AlwaysON (PD0) Enable Yes
12 SCR2 (Br 3, Br 5, Br 6) AlwaysON (PD0) Enable Yes
13 PRUSS AlwaysON (PD0) SwRstDisable
14 ARM AlwaysON (PD0) SwRstDisable
15 DSP PD_DSP (PD1) Enable
106 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
Table 5-12. PSC1 Default Module Configuration
LPSC Module Name Power Domain Default Module State Auto Sleep/Wake Only
Number
0 EDMA3 Channel Controller 1 AlwaysON (PD0) SwRstDisable
1 USB0 (USB2.0) AlwaysON (PD0) SwRstDisable
2 USB1 (USB1.1) AlwaysON (PD0) SwRstDisable
3 GPIO AlwaysON (PD0) SwRstDisable
4 UHPI AlwaysON (PD0) SwRstDisable
5 EMAC AlwaysON (PD0) SwRstDisable
6 DDR2 (and SCR_F3) AlwaysON (PD0) SwRstDisable
7 McASP0 ( + McASP0 FIFO) AlwaysON (PD0) SwRstDisable
8 SATA AlwaysON (PD0) SwRstDisable
9 VPIF AlwaysON (PD0) SwRstDisable
10 SPI 1 AlwaysON (PD0) SwRstDisable
11 I2C 1 AlwaysON (PD0) SwRstDisable
12 UART 1 AlwaysON (PD0) SwRstDisable
13 UART 2 AlwaysON (PD0) SwRstDisable
14 McBSP0 ( + McBSP0 FIFO) AlwaysON (PD0) SwRstDisable
15 McBSP1 ( + McBSP1 FIFO) AlwaysON (PD0) SwRstDisable
16 LCDC AlwaysON (PD0) SwRstDisable
17 eHRPWM0/1 AlwaysON (PD0) SwRstDisable
18 MMCSD1 AlwaysON (PD0) SwRstDisable
19 uPP AlwaysON (PD0) SwRstDisable
20 ECAP0/1/2 AlwaysON (PD0) SwRstDisable
21 EDMA3 Transfer Controller 2 AlwaysON (PD0) SwRstDisable
22
23
24 SCR_F0 (and bridge F0) AlwaysON (PD0) Enable Yes
25 SCR_F1 (and bridge F1) AlwaysON (PD0) Enable Yes
26 SCR_F2 (and bridge F2) AlwaysON (PD0) Enable Yes
27 SCR_F6 (and bridge F3) AlwaysON (PD0) Enable Yes
28 SCR_F7 (and bridge F4) AlwaysON (PD0) Enable Yes
29 SCR_F8 (and bridge F5) AlwaysON (PD0) Enable Yes
30 Bridge F7 (DDR Controller path) AlwaysON (PD0) Enable Yes
31 Shared RAM (including SCR_F4 PD_SHRAM Enable
and bridge F6)
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 107
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
5.8.1.1 Power Domain States
A power domain can only be in one of the two states: ON or OFF, defined as follows:
ON: power to the domain is on
OFF: power to the domain is off
For both PSC0 and PSC1, the Always ON domain, or PD0 power domain, is always in the ON state when
the chip is powered-on. This domain is not programmable to OFF state.
On PSC0 PD1/PD_DSP Domain: Controls the sleep state for DSP L1 and L2 Memories
On PSC1 PD1/PD_SHRAM Domain: Controls the sleep state for the 128K Shared RAM
5.8.1.2 Module States
The PSC defines several possible states for a module. This states are essentially a combination of the
module reset asserted or de-asserted and module clock on/enabled or off/disabled. The module states are
defined in Table 5-13.
Table 5-13. Module States
Module State Module Reset Module Module State Definition
Clock
Enable De-asserted On A module in the enable state has its module reset de-asserted and it has its clock on.
This is the normal operational state for a given module
Disable De-asserted Off A module in the disabled state has its module reset de-asserted and it has its module
clock off. This state is typically used for disabling a module clock to save power. The
device is designed in full static CMOS, so when you stop a module clock, it retains the
modules state. When the clock is restarted, the module resumes operating from the
stopping point.
SyncReset Asserted On A module state in the SyncReset state has its module reset asserted and it has its
clock on. Generally, software is not expected to initiate this state
SwRstDisable Asserted Off A module in the SwResetDisable state has its module reset asserted and it has its
clock disabled. After initial power-on, several modules come up in the SwRstDisable
state. Generally, software is not expected to initiate this state
Auto Sleep De-asserted Off A module in the Auto Sleep state also has its module reset de-asserted and its module
clock disabled, similar to the Disable state. However this is a special state, once a
module is configured in this state by software, it can automaticallytransition to
Enablestate whenever there is an internal read/write request made to it, and after
servicing the request it will automaticallytransition into the sleep state (with module
reset re de-asserted and module clock disabled), without any software intervention.
The transition from sleep to enabled and back to sleep state has some cycle latency
associated with it. It is not envisioned to use this mode when peripherals are fully
operational and moving data.
Auto Wake De-asserted Off A module in the Auto Wake state also has its module reset de-asserted and its module
clock disabled, similar to the Disable state. However this is a special state, once a
module is configured in this state by software, it will automaticallytransition to
Enablestate whenever there is an internal read/write request made to it, and will
remain in the Enabledstate from then on (with module reset re de-asserted and
module clock on), without any software intervention. The transition from sleep to
enabled state has some cycle latency associated with it. It is not envisioned to use this
mode when peripherals are fully operational and moving data.
108 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
5.9 EDMA
The EDMA controller handles all data transfers between memories and the device slave peripherals on
the device. These data transfers include cache servicing, non-cacheable memory accesses,
user-programmed data transfers, and host accesses.
5.9.1 EDMA3 Channel Synchronization Events
Each EDMA channel controller supports up to 32 channels which service peripherals and memory.
Table 5-14 lists the source of the EDMA synchronization events associated with each of the
programmable EDMA channels.
Table 5-14. EDMA Synchronization Events
EDMA0 Channel Controller 0
Event Event Name / Source Event Event Name / Source
0 McASP0 Receive 16 MMCSD0 Receive
1 McASP0 Transmit 17 MMCSD0 Transmit
2 McBSP0 Receive 18 SPI1 Receive
3 McBSP0 Transmit 19 SPI1 Transmit
4 McBSP1 Receive 20 PRU_EVTOUT6
5 McBSP1 Transmit 21 PRU_EVTOUT7
6 GPIO Bank 0 Interrupt 22 GPIO Bank 2 Interrupt
7 GPIO Bank 1 Interrup 23 GPIO Bank 3 Interrupt
8 UART0 Receive 24 I2C0 Receive
9 UART0 Transmit 25 I2C0 Transmit
10 Timer64P0 Event Out 12 26 I2C1 Receive
11 Timer64P0 Event Out 34 27 I2C1 Transmit
12 UART1 Receive 28 GPIO Bank 4 Interrupt
13 UART1 Transmit 29 GPIO Bank 5 Interrupt
14 SPI0 Receive 30 UART2 Receive
15 SPI0 Transmit 31
EDMA1 Channel Controller 1
Event Event Name / Source Event Event Name / Source
0 Timer64P2 Compare Event 0 16 GPIO Bank 6 Interrupt
1 Timer64P2 Compare Event 1 17 GPIO Bank 7 Interrupt
2 Timer64P2 Compare Event 2 18 GPIO Bank 8 Interrupt
3 Timer64P2 Compare Event 3 19 Reserved
4 Timer64P2 Compare Event 4 20 Reserved
5 Timer64P2 Compare Event 5 21 Reserved
6 Timer64P2 Compare Event 6 22 Reserved
7 Timer64P2 Compare Event 7 23 Reserved
8 Timer64P3 Compare Event 0 24 Timer64P2 Event Out 12
9 Timer64P3 Compare Event 1 25 Timer64P2 Event Out 34
10 Timer64P3 Compare Event 2 26 Timer64P3 Event Out 12
11 Timer64P3 Compare Event 3 27 Timer64P3 Event Out 34
12 Timer64P3 Compare Event 4 28 MMCSD1 Receive
13 Timer64P3 Compare Event 5 29 MMCSD1 Transmit
14 Timer64P3 Compare Event 6 30 Reserved
15 Timer64P3 Compare Event 7 31 Reserved
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 109
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
5.9.2 EDMA Peripheral Register Descriptions
Table 5-15 is the list of EDMA3 Channel Controller Registers and Table 5-16 is the list of EDMA3 Transfer
Controller registers.
Table 5-15. EDMA3 Channel Controller (EDMA3CC) Registers
EDMA0 Channel Controller 0 EDMA1 Channel Controller 0 ACRONYM REGISTER DESCRIPTION
BYTE ADDRESS BYTE ADDRESS
0x01C0 0000 0x01E3 0000 PID Peripheral Identification Register
0x01C0 0004 0x01E3 0004 CCCFG EDMA3CC Configuration Register
Global Registers
0x01C0 0200 0x01E3 0200 QCHMAP0 QDMA Channel 0 Mapping Register
0x01C0 0204 0x01E3 0204 QCHMAP1 QDMA Channel 1 Mapping Register
0x01C0 0208 0x01E3 0208 QCHMAP2 QDMA Channel 2 Mapping Register
0x01C0 020C 0x01E3 020C QCHMAP3 QDMA Channel 3 Mapping Register
0x01C0 0210 0x01E3 0210 QCHMAP4 QDMA Channel 4 Mapping Register
0x01C0 0214 0x01E3 0214 QCHMAP5 QDMA Channel 5 Mapping Register
0x01C0 0218 0x01E3 0218 QCHMAP6 QDMA Channel 6 Mapping Register
0x01C0 021C 0x01E3 021C QCHMAP7 QDMA Channel 7 Mapping Register
0x01C0 0240 0x01E3 0240 DMAQNUM0 DMA Channel Queue Number Register 0
0x01C0 0244 0x01E3 0244 DMAQNUM1 DMA Channel Queue Number Register 1
0x01C0 0248 0x01E3 0248 DMAQNUM2 DMA Channel Queue Number Register 2
0x01C0 024C 0x01E3 024C DMAQNUM3 DMA Channel Queue Number Register 3
0x01C0 0260 0x01E3 0260 QDMAQNUM QDMA Channel Queue Number Register
0x01C0 0284 0x01E3 0284 QUEPRI Queue Priority Register(1)
0x01C0 0300 0x01E3 0300 EMR Event Missed Register
0x01C0 0308 0x01E3 0308 EMCR Event Missed Clear Register
0x01C0 0310 0x01E3 0310 QEMR QDMA Event Missed Register
0x01C0 0314 0x01E3 0314 QEMCR QDMA Event Missed Clear Register
0x01C0 0318 0x01E3 0318 CCERR EDMA3CC Error Register
0x01C0 031C 0x01E3 031C CCERRCLR EDMA3CC Error Clear Register
0x01C0 0320 0x01E3 0320 EEVAL Error Evaluate Register
0x01C0 0340 0x01E3 0340 DRAE0 DMA Region Access Enable Register for Region 0
0x01C0 0348 0x01E3 0348 DRAE1 DMA Region Access Enable Register for Region 1
0x01C0 0350 0x01E3 0350 DRAE2 DMA Region Access Enable Register for Region 2
0x01C0 0358 0x01E3 0358 DRAE3 DMA Region Access Enable Register for Region 3
0x01C0 0380 0x01E3 0380 QRAE0 QDMA Region Access Enable Register for Region 0
0x01C0 0384 0x01E3 0384 QRAE1 QDMA Region Access Enable Register for Region 1
0x01C0 0388 0x01E3 0388 QRAE2 QDMA Region Access Enable Register for Region 2
0x01C0 038C 0x01E3 038C QRAE3 QDMA Region Access Enable Register for Region 3
0x01C0 0400 - 0x01C0 043C 0x01E3 0400 - 0x01E3 043C Q0E0-Q0E15 Event Queue Entry Registers Q0E0-Q0E15
0x01C0 0440 - 0x01C0 047C 0x01E3 0440 - 0x01E3 047C Q1E0-Q1E15 Event Queue Entry Registers Q1E0-Q1E15
0x01C0 0600 0x01E3 0600 QSTAT0 Queue 0 Status Register
0x01C0 0604 0x01E3 0604 QSTAT1 Queue 1 Status Register
0x01C0 0620 0x01E3 0620 QWMTHRA Queue Watermark Threshold A Register
0x01C0 0640 0x01E3 0640 CCSTAT EDMA3CC Status Register
(1) On previous architectures, the EDMA3TC priority was controlled by the queue priority register (QUEPRI) in the EDMA3CC
memory-map. However for this device, the priority control for the transfer controllers is controlled by the chip-level registers in the
System Configuration Module. You should use the chip-level registers and not QUEPRI to configure the TC priority.
110 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
Table 5-15. EDMA3 Channel Controller (EDMA3CC) Registers (continued)
EDMA0 Channel Controller 0 EDMA1 Channel Controller 0 ACRONYM REGISTER DESCRIPTION
BYTE ADDRESS BYTE ADDRESS
Global Channel Registers
0x01C0 1000 0x01E3 1000 ER Event Register
0x01C0 1008 0x01E3 1008 ECR Event Clear Register
0x01C0 1010 0x01E3 1010 ESR Event Set Register
0x01C0 1018 0x01E3 1018 CER Chained Event Register
0x01C0 1020 0x01E3 1020 EER Event Enable Register
0x01C0 1028 0x01E3 1028 EECR Event Enable Clear Register
0x01C0 1030 0x01E3 1030 EESR Event Enable Set Register
0x01C0 1038 0x01E3 1038 SER Secondary Event Register
0x01C0 1040 0x01E3 1040 SECR Secondary Event Clear Register
0x01C0 1050 0x01E3 1050 IER Interrupt Enable Register
0x01C0 1058 0x01E3 1058 IECR Interrupt Enable Clear Register
0x01C0 1060 0x01E3 1060 IESR Interrupt Enable Set Register
0x01C0 1068 0x01E3 1068 IPR Interrupt Pending Register
0x01C0 1070 0x01E3 1070 ICR Interrupt Clear Register
0x01C0 1078 0x01E3 1078 IEVAL Interrupt Evaluate Register
0x01C0 1080 0x01E3 1080 QER QDMA Event Register
0x01C0 1084 0x01E3 1084 QEER QDMA Event Enable Register
0x01C0 1088 0x01E3 1088 QEECR QDMA Event Enable Clear Register
0x01C0 108C 0x01E3 108C QEESR QDMA Event Enable Set Register
0x01C0 1090 0x01E3 1090 QSER QDMA Secondary Event Register
0x01C0 1094 0x01E3 1094 QSECR QDMA Secondary Event Clear Register
Shadow Region 0 Channel Registers
0x01C0 2000 0x01E3 2000 ER Event Register
0x01C0 2008 0x01E3 2008 ECR Event Clear Register
0x01C0 2010 0x01E3 2010 ESR Event Set Register
0x01C0 2018 0x01E3 2018 CER Chained Event Register
0x01C0 2020 0x01E3 2020 EER Event Enable Register
0x01C0 2028 0x01E3 2028 EECR Event Enable Clear Register
0x01C0 2030 0x01E3 2030 EESR Event Enable Set Register
0x01C0 2038 0x01E3 2038 SER Secondary Event Register
0x01C0 2040 0x01E3 2040 SECR Secondary Event Clear Register
0x01C0 2050 0x01E3 2050 IER Interrupt Enable Register
0x01C0 2058 0x01E3 2058 IECR Interrupt Enable Clear Register
0x01C0 2060 0x01E3 2060 IESR Interrupt Enable Set Register
0x01C0 2068 0x01E3 2068 IPR Interrupt Pending Register
0x01C0 2070 0x01E3 2070 ICR Interrupt Clear Register
0x01C0 2078 0x01E3 2078 IEVAL Interrupt Evaluate Register
0x01C0 2080 0x01E3 2080 QER QDMA Event Register
0x01C0 2084 0x01E3 2084 QEER QDMA Event Enable Register
0x01C0 2088 0x01E3 2088 QEECR QDMA Event Enable Clear Register
0x01C0 208C 0x01E3 208C QEESR QDMA Event Enable Set Register
0x01C0 2090 0x01E3 2090 QSER QDMA Secondary Event Register
0x01C0 2094 0x01E3 2094 QSECR QDMA Secondary Event Clear Register
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 111
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
Table 5-15. EDMA3 Channel Controller (EDMA3CC) Registers (continued)
EDMA0 Channel Controller 0 EDMA1 Channel Controller 0 ACRONYM REGISTER DESCRIPTION
BYTE ADDRESS BYTE ADDRESS
Shadow Region 1 Channel Registers
0x01C0 2200 0x01E3 2200 ER Event Register
0x01C0 2208 0x01E3 2208 ECR Event Clear Register
0x01C0 2210 0x01E3 2210 ESR Event Set Register
0x01C0 2218 0x01E3 2218 CER Chained Event Register
0x01C0 2220 0x01E3 2220 EER Event Enable Register
0x01C0 2228 0x01E3 2228 EECR Event Enable Clear Register
0x01C0 2230 0x01E3 2230 EESR Event Enable Set Register
0x01C0 2238 0x01E3 2238 SER Secondary Event Register
0x01C0 2240 0x01E3 2240 SECR Secondary Event Clear Register
0x01C0 2250 0x01E3 2250 IER Interrupt Enable Register
0x01C0 2258 0x01E3 2258 IECR Interrupt Enable Clear Register
0x01C0 2260 0x01E3 2260 IESR Interrupt Enable Set Register
0x01C0 2268 0x01E3 2268 IPR Interrupt Pending Register
0x01C0 2270 0x01E3 2270 ICR Interrupt Clear Register
0x01C0 2278 0x01E3 2278 IEVAL Interrupt Evaluate Register
0x01C0 2280 0x01E3 2280 QER QDMA Event Register
0x01C0 2284 0x01E3 2284 QEER QDMA Event Enable Register
0x01C0 2288 0x01E3 2288 QEECR QDMA Event Enable Clear Register
0x01C0 228C 0x01E3 228C QEESR QDMA Event Enable Set Register
0x01C0 2290 0x01E3 2290 QSER QDMA Secondary Event Register
0x01C0 2294 0x01E3 2294 QSECR QDMA Secondary Event Clear Register
0x01C0 4000 - 0x01C0 4FFF 0x01E3 4000 - 0x01E3 4FFF Parameter RAM (PaRAM)
Table 5-16. EDMA3 Transfer Controller (EDMA3TC) Registers
EDMA0 EDMA0 EDMA1 ACRONYM REGISTER DESCRIPTION
Transfer Transfer Transfer
Controller 0 Controller 1 Controller 0
BYTE ADDRESS BYTE ADDRESS BYTE ADDRESS
0x01C0 8000 0x01C0 8400 0x01E3 8000 PID Peripheral Identification Register
0x01C0 8004 0x01C0 8404 0x01E3 8004 TCCFG EDMA3TC Configuration Register
0x01C0 8100 0x01C0 8500 0x01E3 8100 TCSTAT EDMA3TC Channel Status Register
0x01C0 8120 0x01C0 8520 0x01E3 8120 ERRSTAT Error Status Register
0x01C0 8124 0x01C0 8524 0x01E3 8124 ERREN Error Enable Register
0x01C0 8128 0x01C0 8528 0x01E3 8128 ERRCLR Error Clear Register
0x01C0 812C 0x01C0 852C 0x01E3 812C ERRDET Error Details Register
0x01C0 8130 0x01C0 8530 0x01E3 8130 ERRCMD Error Interrupt Command Register
0x01C0 8140 0x01C0 8540 0x01E3 8140 RDRATE Read Command Rate Register
0x01C0 8240 0x01C0 8640 0x01E3 8240 SAOPT Source Active Options Register
0x01C0 8244 0x01C0 8644 0x01E3 8244 SASRC Source Active Source Address Register
0x01C0 8248 0x01C0 8648 0x01E3 8248 SACNT Source Active Count Register
0x01C0 824C 0x01C0 864C 0x01E3 824C SADST Source Active Destination Address Register
0x01C0 8250 0x01C0 8650 0x01E3 8250 SABIDX Source Active B-Index Register
0x01C0 8254 0x01C0 8654 0x01E3 8254 SAMPPRXY Source Active Memory Protection Proxy Register
0x01C0 8258 0x01C0 8658 0x01E3 8258 SACNTRLD Source Active Count Reload Register
0x01C0 825C 0x01C0 865C 0x01E3 825C SASRCBREF Source Active Source Address B-Reference Register
0x01C0 8260 0x01C0 8660 0x01E3 8260 SADSTBREF Source Active Destination Address B-Reference Register
112 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
Table 5-16. EDMA3 Transfer Controller (EDMA3TC) Registers (continued)
EDMA0 EDMA0 EDMA1 ACRONYM REGISTER DESCRIPTION
Transfer Transfer Transfer
Controller 0 Controller 1 Controller 0
BYTE ADDRESS BYTE ADDRESS BYTE ADDRESS
0x01C0 8280 0x01C0 8680 0x01E3 8280 DFCNTRLD Destination FIFO Set Count Reload Register
0x01C0 8284 0x01C0 8684 0x01E3 8284 DFSRCBREF Destination FIFO Set Source Address B-Reference
Register
0x01C0 8288 0x01C0 8688 0x01E3 8288 DFDSTBREF Destination FIFO Set Destination Address B-Reference
Register
0x01C0 8300 0x01C0 8700 0x01E3 8300 DFOPT0 Destination FIFO Options Register 0
0x01C0 8304 0x01C0 8704 0x01E3 8304 DFSRC0 Destination FIFO Source Address Register 0
0x01C0 8308 0x01C0 8708 0x01E3 8308 DFCNT0 Destination FIFO Count Register 0
0x01C0 830C 0x01C0 870C 0x01E3 830C DFDST0 Destination FIFO Destination Address Register 0
0x01C0 8310 0x01C0 8710 0x01E3 8310 DFBIDX0 Destination FIFO B-Index Register 0
0x01C0 8314 0x01C0 8714 0x01E3 8314 DFMPPRXY0 Destination FIFO Memory Protection Proxy Register 0
0x01C0 8340 0x01C0 8740 0x01E3 8340 DFOPT1 Destination FIFO Options Register 1
0x01C0 8344 0x01C0 8744 0x01E3 8344 DFSRC1 Destination FIFO Source Address Register 1
0x01C0 8348 0x01C0 8748 0x01E3 8348 DFCNT1 Destination FIFO Count Register 1
0x01C0 834C 0x01C0 874C 0x01E3 834C DFDST1 Destination FIFO Destination Address Register 1
0x01C0 8350 0x01C0 8750 0x01E3 8350 DFBIDX1 Destination FIFO B-Index Register 1
0x01C0 8354 0x01C0 8754 0x01E3 8354 DFMPPRXY1 Destination FIFO Memory Protection Proxy Register 1
0x01C0 8380 0x01C0 8780 0x01E3 8380 DFOPT2 Destination FIFO Options Register 2
0x01C0 8384 0x01C0 8784 0x01E3 8384 DFSRC2 Destination FIFO Source Address Register 2
0x01C0 8388 0x01C0 8788 0x01E3 8388 DFCNT2 Destination FIFO Count Register 2
0x01C0 838C 0x01C0 878C 0x01E3 838C DFDST2 Destination FIFO Destination Address Register 2
0x01C0 8390 0x01C0 8790 0x01E3 8390 DFBIDX2 Destination FIFO B-Index Register 2
0x01C0 8394 0x01C0 8794 0x01E3 8394 DFMPPRXY2 Destination FIFO Memory Protection Proxy Register 2
0x01C0 83C0 0x01C0 87C0 0x01E3 83C0 DFOPT3 Destination FIFO Options Register 3
0x01C0 83C4 0x01C0 87C4 0x01E3 83C4 DFSRC3 Destination FIFO Source Address Register 3
0x01C0 83C8 0x01C0 87C8 0x01E3 83C8 DFCNT3 Destination FIFO Count Register 3
0x01C0 83CC 0x01C0 87CC 0x01E3 83CC DFDST3 Destination FIFO Destination Address Register 3
0x01C0 83D0 0x01C0 87D0 0x01E3 83D0 DFBIDX3 Destination FIFO B-Index Register 3
0x01C0 83D4 0x01C0 87D4 0x01E3 83D4 DFMPPRXY3 Destination FIFO Memory Protection Proxy Register 3
Table 5-17 shows an abbreviation of the set of registers which make up the parameter set for each of 128
EDMA events. Each of the parameter register sets consist of 8 32-bit word entries. Table 5-18 shows the
parameter set entry registers with relative memory address locations within each of the parameter sets.
Table 5-17. EDMA Parameter Set RAM
EDMA0 EDMA1
Channel Controller 0 Channel Controller 0 DESCRIPTION
BYTE ADDRESS RANGE BYTE ADDRESS RANGE
0x01C0 4000 - 0x01C0 401F 0x01E3 4000 - 0x01E3 401F Parameters Set 0 (8 32-bit words)
0x01C0 4020 - 0x01C0 403F 0x01E3 4020 - 0x01E3 403F Parameters Set 1 (8 32-bit words)
0x01C0 4040 - 0x01CC0 405F 0x01E3 4040 - 0x01CE3 405F Parameters Set 2 (8 32-bit words)
0x01C0 4060 - 0x01C0 407F 0x01E3 4060 - 0x01E3 407F Parameters Set 3 (8 32-bit words)
0x01C0 4080 - 0x01C0 409F 0x01E3 4080 - 0x01E3 409F Parameters Set 4 (8 32-bit words)
0x01C0 40A0 - 0x01C0 40BF 0x01E3 40A0 - 0x01E3 40BF Parameters Set 5 (8 32-bit words)
... ... ...
0x01C0 4FC0 - 0x01C0 4FDF 0x01E3 4FC0 - 0x01E3 4FDF Parameters Set 126 (8 32-bit words)
0x01C0 4FE0 - 0x01C0 4FFF 0x01E3 4FE0 - 0x01E3 4FFF Parameters Set 127 (8 32-bit words)
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 113
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
Table 5-18. Parameter Set Entries
OFFSET BYTE ADDRESS ACRONYM PARAMETER ENTRY
WITHIN THE PARAMETER SET
0x0000 OPT Option
0x0004 SRC Source Address
0x0008 A_B_CNT A Count, B Count
0x000C DST Destination Address
0x0010 SRC_DST_BIDX Source B Index, Destination B Index
0x0014 LINK_BCNTRLD Link Address, B Count Reload
0x0018 SRC_DST_CIDX Source C Index, Destination C Index
0x001C CCNT C Count
114 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
5.10 External Memory Interface A (EMIFA)
EMIFA is one of two external memory interfaces supported on the device. It is primarily intended to
support asynchronous memory types, such as NAND and NOR flash and Asynchronous SRAM. However
on this device, EMIFA also provides a secondary interface to SDRAM.
5.10.1 EMIFA Asynchronous Memory Support
EMIFA supports asynchronous:
SRAM memories
NAND Flash memories
NOR Flash memories
The EMIFA data bus width is up to 16-bits.The device supports up to 23 address lines and two external
wait/interrupt inputs. Up to four asynchronous chip selects are supported by EMIFA (EMA_CS[5:2]).
Each chip select has the following individually programmable attributes:
Data Bus Width
Read cycle timings: setup, hold, strobe
Write cycle timings: setup, hold, strobe
Bus turn around time
Extended Wait Option With Programmable Timeout
Select Strobe Option
NAND flash controller supports 1-bit and 4-bit ECC calculation on blocks of 512 bytes.
5.10.2 EMIFA Synchronous DRAM Memory Support
The device supports 16-bit SDRAM in addition to the asynchronous memories listed in Section 5.10.1. It
has a single SDRAM chip select (EMA_CS[0]). SDRAM configurations that are supported are:
One, Two, and Four Bank SDRAM devices
Devices with Eight, Nine, Ten, and Eleven Column Address
CAS Latency of two or three clock cycles
Sixteen Bit Data Bus Width
Additionally, the SDRAM interface of EMIFA supports placing the SDRAM in Self Refresh and Powerdown
Modes. Self Refresh mode allows the SDRAM to be put into a low power state while still retaining memory
contents; since the SDRAM will continue to refresh itself even without clocks from the device. Powerdown
mode achieves even lower power, except the device must periodically wake the SDRAM up and issue
refreshes if data retention is required.
Finally, note that the EMIFA does not support Mobile SDRAM devices.
Table 5-19 shows the supported SDRAM configurations for EMIFA.
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 115
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
Table 5-19. EMIFA Supported SDRAM Configurations(1)
SDRAM EMIFA Data Total Total Memory
Memory Number of Bus Size Rows Columns Banks Memory Memory Density
Data Bus Memories (bits) (Mbits) (Mbytes) (Mbits)
Width (bits)
1 16 16 8 1 256 32 256
1 16 16 8 2 512 64 512
1 16 16 8 4 1024 128 1024
1 16 16 9 1 512 64 512
1 16 16 9 2 1024 128 1024
16 1 16 16 9 4 2048 256 2048
1 16 16 10 1 1024 128 1024
1 16 16 10 2 2048 256 2048
1 16 16 10 4 4096 512 4096
1 16 16 11 1 2048 256 2048
1 16 16 11 2 4096 512 4096
1 16 15 11 4 4096 512 4096
2 16 16 8 1 256 32 128
2 16 16 8 2 512 64 256
2 16 16 8 4 1024 128 512
2 16 16 9 1 512 64 256
2 16 16 9 2 1024 128 512
8 2 16 16 9 4 2048 256 1024
2 16 16 10 1 1024 128 512
2 16 16 10 2 2048 256 1024
2 16 16 10 4 4096 512 2048
2 16 16 11 1 2048 256 1024
2 16 16 11 2 4096 512 2048
2 16 15 11 4 4096 512 2048
(1) The shaded cells indicate configurations that are possible on the EMIFA interface but as of this writing SDRAM memories capable of
supporting these densities are not available in the market.
5.10.3 EMIFA SDRAM Loading Limitations
EMIFA supports SDRAM up to 100 MHz with up to two SDRAM or asynchronous memory loads.
Additional loads will limit the SDRAM operation to lower speeds and the maximum speed should be
confirmed by board simulation using IBIS models.
5.10.4 EMIFA Connection Examples
Figure 5-10 illustrates an example of how SDRAM, NOR, and NAND flash devices might be connected to
EMIFA simultaneously. The SDRAM chip select must be EMA_CS[0]. Note that the NOR flash is
connected to EMA_CS[2] and the NAND flash is connected to EMA_CS[3] in this example. Note that any
type of asynchronous memory may be connected to EMA_CS[5:2].
The on-chip bootloader makes some assumptions on which chip select the contains the boot image, and
this depends on the boot mode. For NOR boot mode; the on-chip bootloader requires that the image be
stored in NOR flash on EMA_CS[2]. For NAND boot mode, the bootloader requires that the boot image is
stored in NAND flash on EMA_CS[3]. It is always possible to have the image span multiple chip selects,
but this must be supported by second stage boot code stored in the external flash.
116 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
EMA_CLK
EMA_BA[1:0]
EMA_CS[0]
EMA_CAS
EMA_RAS
EMA_WE
CLK
CE
WE
EMIFA
SDRAM
2Mx16x4
Bank
EMA_SDCKE
CAS
RAS
CKE
BA[1:0]
LDQM
UDQM
DQ[15:0]
A[11:0]EMA_A[12:0]
EMA_WE_DQM[0]
EMA_WE_DQM[1]
EMA_D[15:0]
EMA_CS[2]
EMA_CS[3]
EMA_WAIT
EMA_OE
GPIO
(6Pins)
RESET
A[0]
A[12:1]
DQ[15:0]
CE
WE
OE
RESET
A[18:13]
RY/ YB
NOR
FLASH
512Kx16
ALE
CLE
DQ[15:0]
CE
WE
RE
RB
NAND
FLASH
1Gbx16
EMA_BA[1]
EMA_A[1]
EMA_A[2]
...
DVDD
RESET
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
A likely use case with more than one EMIFA chip select used for NAND flash is illustrated in Figure 5-11.
This figure shows how two multiplane NAND flash devices with two chip selects each would connect to the
EMIFA. In this case if NAND is the boot memory, then the boot image needs to be stored in the NAND
area selected by EMA_CS[3]. Part of the application image could spill over into the NAND regions
selected by other EMIFA chip selects; but would rely on the code stored in the EMA_CS[3] area to
bootload it.
Figure 5-10. Connection Diagram: SDRAM, NOR, NAND
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 117
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
EMA_A[1]
EMA_A[2]
EMA_D[7:0]
EMA_CS[2]
EMA_CS[3]
EMA_WE
EMA_OE
ALE
CLE
DQ[7:0]
CE1
CE2
WE
RE
R/ 1B
R/ 2B
EMIFA
NAND
FLASH
x8,
MultiPlane
ALE
CLE
DQ[7:0]
CE1
CE2
WE
RE
R/ 1B
R/ 2B
NAND
FLASH
x8,
MultiPlane
DVDD
EMA_WAIT
EMA_CS[4]
EMA_CS[5]
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
Figure 5-11. EMIFA Connection Diagram: Multiple NAND Flash Planes
118 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
5.10.5 External Memory Interface Register Descriptions
Table 5-20. External Memory Interface (EMIFA) Registers
BYTE ADDRESS ACRONYM REGISTER DESCRIPTION
0x6800 0000 MIDR Module ID Register
0x6800 0004 AWCC Asynchronous Wait Cycle Configuration Register
0x6800 0008 SDCR SDRAM Configuration Register
0x6800 000C SDRCR SDRAM Refresh Control Register
0x6800 0010 CE2CFG Asynchronous 1 Configuration Register
0x6800 0014 CE3CFG Asynchronous 2 Configuration Register
0x6800 0018 CE4CFG Asynchronous 3 Configuration Register
0x6800 001C CE5CFG Asynchronous 4 Configuration Register
0x6800 0020 SDTIMR SDRAM Timing Register
0x6800 003C SDSRETR SDRAM Self Refresh Exit Timing Register
0x6800 0040 INTRAW EMIFA Interrupt Raw Register
0x6800 0044 INTMSK EMIFA Interrupt Mask Register
0x6800 0048 INTMSKSET EMIFA Interrupt Mask Set Register
0x6800 004C INTMSKCLR EMIFA Interrupt Mask Clear Register
0x6800 0060 NANDFCR NAND Flash Control Register
0x6800 0064 NANDFSR NAND Flash Status Register
0x6800 0070 NANDF1ECC NAND Flash 1 ECC Register (CS2 Space)
0x6800 0074 NANDF2ECC NAND Flash 2 ECC Register (CS3 Space)
0x6800 0078 NANDF3ECC NAND Flash 3 ECC Register (CS4 Space)
0x6800 007C NANDF4ECC NAND Flash 4 ECC Register (CS5 Space)
0x6800 00BC NAND4BITECCLOAD NAND Flash 4-Bit ECC Load Register
0x6800 00C0 NAND4BITECC1 NAND Flash 4-Bit ECC Register 1
0x6800 00C4 NAND4BITECC2 NAND Flash 4-Bit ECC Register 2
0x6800 00C8 NAND4BITECC3 NAND Flash 4-Bit ECC Register 3
0x6800 00CC NAND4BITECC4 NAND Flash 4-Bit ECC Register 4
0x6800 00D0 NANDERRADD1 NAND Flash 4-Bit ECC Error Address Register 1
0x6800 00D4 NANDERRADD2 NAND Flash 4-Bit ECC Error Address Register 2
0x6800 00D8 NANDERRVAL1 NAND Flash 4-Bit ECC Error Value Register 1
0x6800 00DC NANDERRVAL2 NAND Flash 4-Bit ECC Error Value Register 2
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 119
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
5.10.6 EMIFA Electrical Data/Timing
Table 5-21 through Table 5-24 assume testing over recommended operating conditions.
Table 5-21. Timing Requirements for EMIFA SDRAM Interface
1.3V, 1.2V 1.1V 1.0V
NO. PARAMETER UNIT
MIN MAX MIN MAX MIN MAX
Input setup time, read data valid on EMA_D[15:0] before
19 tsu(EMA_DV-EM_CLKH) 2 3 3 ns
EMA_CLK rising
Input hold time, read data valid on EMA_D[15:0] after
20 th(CLKH-DIV) 1.6 1.6 1.6 ns
EMA_CLK rising
Table 5-22. Switching Characteristics for EMIFA SDRAM Interface
1.3V, 1.2V 1.1V 1.0V
NO. PARAMETER UNIT
MIN MAX MIN MAX MIN MAX
1 tc(CLK) Cycle time, EMIF clock EMA_CLK 10 15 20 ns
2 tw(CLK) Pulse width, EMIF clock EMA_CLK high or low 3 5 8 ns
3 td(CLKH-CSV) Delay time, EMA_CLK rising to EMA_CS[0] valid 7 9.5 13 ns
4 toh(CLKH-CSIV) Output hold time, EMA_CLK rising to EMA_CS[0] invalid 1 1 1 ns
5 td(CLKH-DQMV) Delay time, EMA_CLK rising to EMA_WE_DQM[1:0] valid 7 9.5 13 ns
Output hold time, EMA_CLK rising to EMA_WE_DQM[1:0]
6 toh(CLKH-DQMIV) 1 1 1 ns
invalid
Delay time, EMA_CLK rising to EMA_A[12:0] and
7 td(CLKH-AV) 7 9.5 13 ns
EMA_BA[1:0] valid
Output hold time, EMA_CLK rising to EMA_A[12:0] and
8 toh(CLKH-AIV) 1 1 1 ns
EMA_BA[1:0] invalid
9 td(CLKH-DV) Delay time, EMA_CLK rising to EMA_D[15:0] valid 7 9.5 13 ns
10 toh(CLKH-DIV) Output hold time, EMA_CLK rising to EMA_D[15:0] invalid 1 1 1 ns
11 td(CLKH-RASV) Delay time, EMA_CLK rising to EMA_RAS valid 7 9.5 13 ns
12 toh(CLKH-RASIV) Output hold time, EMA_CLK rising to EMA_RAS invalid 1 1 1 ns
13 td(CLKH-CASV) Delay time, EMA_CLK rising to EMA_CAS valid 7 9.5 13 ns
14 toh(CLKH-CASIV) Output hold time, EMA_CLK rising to EMA_CAS invalid 1 1 1 ns
15 td(CLKH-WEV) Delay time, EMA_CLK rising to EMA_WE valid 7 9.5 13 ns
16 toh(CLKH-WEIV) Output hold time, EMA_CLK rising to EMA_WE invalid 1 1 1 ns
17 tdis(CLKH-DHZ) Delay time, EMA_CLK rising to EMA_D[15:0] tri-stated 7 9.5 13 ns
18 tena(CLKH-DLZ) Output hold time, EMA_CLK rising to EMA_D[15:0] driving 1 1 1 ns
120 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
EMA_CLK
EMA_BA[1:0]
EMA_A[12:0]
EMA_D[15:0]
1
2 2
4
6
8
8
12
10
16
3
5
7
7
11
13
15
9
BASIC SDRAM
WRITE OPERATION
EMA_CS[0]
EMA_WE_DQM[1:0]
EMA_RAS
EMA_CAS
EMA_WE
EMA_CLK
EMA_BA[1:0]
EMA_A[12:0]
EMA_D[15:0]
1
2 2
4
6
8
8
12
14
19
20
3
5
7
7
11
13
17 18
2 EM_CLK Delay
BASIC SDRAM
READ OPERATION
EMA_CS[0]
EMA_WE_DQM[1:0]
EMA_RAS
EMA_CAS
EMA_WE
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
Figure 5-12. EMIFA Basic SDRAM Write Operation
Figure 5-13. EMIFA Basic SDRAM Read Operation
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 121
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
Table 5-23. Timing Requirements for EMIFA Asynchronous Memory Interface (1)
1.3V, 1.2V 1.1V 1.0V
NO. PARAMETER UNIT
MIN MAX MIN MAX MIN MAX
READS and WRITES
E tc(CLK) Cycle time, EMIFA module clock 6.75 15 20 ns
2 tw(EM_WAIT) Pulse duration, EM_WAIT assertion and deassertion 2E 2E 2E ns
READS
12 tsu(EMDV-EMOEH) Setup time, EM_D[15:0] valid before EM_OE high 3 5 7 ns
13 th(EMOEH-EMDIV) Hold time, EM_D[15:0] valid after EM_OE high 0 0 0 ns
Setup Time, EM_WAIT asserted before end of Strobe
14 tsu (EMOEL-EMWAIT) 4E+3 4E+3 4E+3 ns
Phase(2)
WRITES
Setup Time, EM_WAIT asserted before end of Strobe
28 tsu (EMWEL-EMWAIT) 4E+3 4E+3 4E+3 ns
Phase(2)
(1) E = EMA_CLK period or in ns. EMA_CLK is selected either as SYSCLK3 or the PLL0 output clock divided by 4.5. As an example, when
SYSCLK3 is selected and set to 100MHz, E=10ns
(2) Setup before end of STROBE phase (if no extended wait states are inserted) by which EM_WAIT must be asserted to add extended
wait states. Figure 5-16 and Figure 5-17 describe EMIF transactions that include extended wait states inserted during the STROBE
phase. However, cycles inserted as part of this extended wait period should not be counted; the 4E requirement is to the start of where
the HOLD phase would begin if there were no extended wait cycles.
122 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
Table 5-24. Switching Characteristics for EMIFA Asynchronous Memory Interface (1) (2) (3)
1.3V, 1.2V, 1.1V, 1.0V
NO. PARAMETER UNIT
MIN Nom MAX
READS and WRITES
1 td(TURNAROUND) Turn around time (TA)*E - 3 (TA)*E (TA)*E + 3 ns
READS
EMIF read cycle time (EW = 0) (RS+RST+RH)*E - 3 (RS+RST+RH)*E (RS+RST+RH)*E + 3 ns
3 tc(EMRCYCLE) (RS+RST+RH+(EWC*16))*E (RS+RST+RH+(EWC*16))*E
EMIF read cycle time (EW = 1) (RS+RST+RH+(EWC*16))*E ns
- 3 + 3
Output setup time, EMA_CE[5:2] low to EMA_OE low (SS = 0) (RS)*E-3 (RS)*E (RS)*E+3 ns
4 tsu(EMCEL-EMOEL) Output setup time, EMA_CE[5:2] low to EMA_OE low (SS = 1) -3 0 +3 ns
Output hold time, EMA_OE high to EMA_CE[5:2] high (SS = 0) (RH)*E - 3 (RH)*E (RH)*E + 3 ns
5 th(EMOEH-EMCEH) Output hold time, EMA_OE high to EMA_CE[5:2] high (SS = 1) -3 0 +3 ns
6 tsu(EMBAV-EMOEL) Output setup time, EMA_BA[1:0] valid to EMA_OE low (RS)*E-3 (RS)*E (RS)*E+3 ns
7 th(EMOEH-EMBAIV) Output hold time, EMA_OE high to EMA_BA[1:0] invalid (RH)*E-3 (RH)*E (RH)*E+3 ns
8 tsu(EMBAV-EMOEL) Output setup time, EMA_A[13:0] valid to EMA_OE low (RS)*E-3 (RS)*E (RS)*E+3 ns
9 th(EMOEH-EMAIV) Output hold time, EMA_OE high to EMA_A[13:0] invalid (RH)*E-3 (RH)*E (RH)*E+3 ns
EMA_OE active low width (EW = 0) (RST)*E-3 (RST)*E (RST)*E+3 ns
10 tw(EMOEL) EMA_OE active low width (EW = 1) (RST+(EWC*16))*E-3 (RST+(EWC*16))*E (RST+(EWC*16))*E+3 ns
11 td(EMWAITH-EMOEH) Delay time from EMA_WAIT deasserted to EMA_OE high 3E-3 4E 4E+3 ns
WRITES
EMIF write cycle time (EW = 0) (WS+WST+WH)*E-3 (WS+WST+WH)*E (WS+WST+WH)*E+3 ns
15 tc(EMWCYCLE) (WS+WST+WH+(EWC*16))* (WS+WST+WH+(EWC*16))*
EMIF write cycle time (EW = 1) (WS+WST+WH+(EWC*16))*E ns
E - 3 E + 3
Output setup time, EMA_CE[5:2] low to EMA_WE low (SS = 0) (WS)*E - 3 (WS)*E (WS)*E + 3 ns
16 tsu(EMCEL-EMWEL) Output setup time, EMA_CE[5:2] low to EMA_WE low (SS = 1) -3 0 +3 ns
Output hold time, EMA_WE high to EMA_CE[5:2] high (SS = 0) (WH)*E-3 (WH)*E (WH)*E+3 ns
17 th(EMWEH-EMCEH) Output hold time, EMA_WE high to EMA_CE[5:2] high (SS = 1) -3 0 +3 ns
18 tsu(EMDQMV-EMWEL) Output setup time, EMA_BA[1:0] valid to EMA_WE low (WS)*E-3 (WS)*E (WS)*E+3 ns
19 th(EMWEH-EMDQMIV) Output hold time, EMA_WE high to EMA_BA[1:0] invalid (WH)*E-3 (WH)*E (WH)*E+3 ns
20 tsu(EMBAV-EMWEL) Output setup time, EMA_BA[1:0] valid to EMA_WE low (WS)*E-3 (WS)*E (WS)*E+3 ns
21 th(EMWEH-EMBAIV) Output hold time, EMA_WE high to EMA_BA[1:0] invalid (WH)*E-3 (WH)*E (WH)*E+3 ns
22 tsu(EMAV-EMWEL) Output setup time, EMA_A[13:0] valid to EMA_WE low (WS)*E-3 (WS)*E (WS)*E+3 ns
23 th(EMWEH-EMAIV) Output hold time, EMA_WE high to EMA_A[13:0] invalid (WH)*E-3 (WH)*E (WH)*E+3 ns
(1) TA = Turn around, RS = Read setup, RST = Read strobe, RH = Read hold, WS = Write setup, WST = Write strobe, WH = Write hold, MEWC = Maximum external wait cycles. These
parameters are programmed via the Asynchronous Bank and Asynchronous Wait Cycle Configuration Registers. These support the following range of values: TA[4-1], RS[16-1],
RST[64-1], RH[8-1], WS[16-1], WST[64-1], WH[8-1], and MEW[1-256].
(2) E = EMA_CLK period or in ns. EMA_CLK is selected either as SYSCLK3 or the PLL0 output clock divided by 4.5. As an example, when SYSCLK3 is selected and set to 100MHz, E=10ns.
(3) EWC = external wait cycles determined by EMA_WAIT input signal. EWC supports the following range of values EWC[256-1]. Note that the maximum wait time before timeout is specified
by bit field MEWC in the Asynchronous Wait Cycle Configuration Register.
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 123
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
EMA_CS[5:2]
EMA_BA[1:0]
13
12
EMA_A[22:0]
EMA_OE
EMA_D[15:0]
EMA_WE
10
5
9
7
4
8
6
31
EMA_ _DQM[1:0]WE
EMA_A_RW
1
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
Table 5-24. Switching Characteristics for EMIFA Asynchronous Memory Interface (1) (2) (3) (continued)
1.3V, 1.2V, 1.1V, 1.0V
NO. PARAMETER UNIT
MIN Nom MAX
EMA_WE active low width (EW = 0) (WST)*E-3 (WST)*E (WST)*E+3 ns
24 tw(EMWEL) EMA_WE active low width (EW = 1) (WST+(EWC*16))*E-3 (WST+(EWC*16))*E (WST+(EWC*16))*E+3 ns
25 td(EMWAITH-EMWEH) Delay time from EMA_WAIT deasserted to EMA_WE high 3E-3 4E 4E+3 ns
26 tsu(EMDV-EMWEL) Output setup time, EMA_D[15:0] valid to EMA_WE low (WS)*E-3 (WS)*E (WS)*E+3 ns
27 th(EMWEH-EMDIV) Output hold time, EMA_WE high to EMA_D[15:0] invalid (WH)*E-3 (WH)*E (WH)*E+3 ns
Figure 5-14. Asynchronous Memory Read Timing for EMIFA
124 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
EMA_CS[5:2]
EMA_BA[1:0]
EMA_A[22:0]
EMA_WE
EMA_D[15:0]
EMA_OE
15
1
16
18
20
22
24
17
19
21
23
26 27
EMA_ _DQM[1:0]WE
EMA_A_RW
1
EMA_CS[5:2]
11
Asserted Deasserted
2
2
EMA_BA[1:0]
EMA_A[22:0]
EMA_D[15:0]
EMA_OE
EMA_WAIT
SETUP STROBE Extended Due to EMA_WAIT STROBE HOLD
14
EMA_A_RW
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
Figure 5-15. Asynchronous Memory Write Timing for EMIFA
Figure 5-16. EMA_WAIT Read Timing Requirements
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 125
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
EMA_A[22:0]
EMA_CS[5:2]
EMA_BA[1:0]
EMA_D[15:0]
EMA_A_RW
EMA_WE
EMA_WAIT
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
Figure 5-17. EMA_WAIT Write Timing Requirements
126 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
5.11 DDR2/mDDR Controller
The DDR2/mDDR Memory Controller is a dedicated interface to DDR2/mDDR SDRAM. It supports
JESD79-2A standard compliant DDR2 SDRAM devices and compliant Mobile DDR SDRAM devices.
The DDR2/mDDR Memory Controller support the following features:
JESD79-2A standard compliant DDR2 SDRAM
Mobile DDR SDRAM
512 MByte memory space for DDR2
256 MByte memory space for mDDR
CAS latencies:
DDR2: 2, 3, 4 and 5
mDDR: 2 and 3
Internal banks:
DDR2: 1, 2, 4 and 8
mDDR:1, 2 and 4
Burst length: 8
Burst type: sequential
1 chip select (CS) signal
Page sizes: 256, 512, 1024 and 2048
SDRAM autoinitialization
Self-refresh mode
Partial array self-refresh (for mDDR)
Power down mode
Prioritized refresh
Programmable refresh rate and backlog counter
Programmable timing parameters
Little endian
5.11.1 DDR2/mDDR Memory Controller Electrical Data/Timing
Table 5-25. Switching Characteristics Over Recommended Operating Conditions for DDR2/mDDR
Memory Controller
No. PARAMETER 1.3V, 1.2V 1.1V 1.0V UNIT
MIN MAX MIN MAX MIN MAX
DDR2 125 156 125 150 (1) (1)
Cycle time,
1 tc(DDR_CLK) MHz
DDR_CLKP / DDR_CLKN mDDR 105 150 100 133 95 133
(1) DDR2 is not supported at this voltage operating point.
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 127
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
5.11.2 DDR2/mDDR Controller Register Description(s)
Table 5-26. DDR2/mDDR Controller Registers
BYTE ADDRESS ACRONYM REGISTER DESCRIPTION
0xB000 0000 REVID Revision ID Register
0xB000 0004 SDRSTAT SDRAM Status Register
0xB000 0008 SDCR SDRAM Configuration Register
0xB000 000C SDRCR SDRAM Refresh Control Register
0xB000 0010 SDTIMR1 SDRAM Timing Register 1
0xB000 0014 SDTIMR2 SDRAM Timing Register 2
0xB000 001C SDCR2 SDRAM Configuration Register 2
0xB000 0020 PBBPR Peripheral Bus Burst Priority Register
0xB000 0040 PC1 Performance Counter 1 Registers
0xB000 0044 PC2 Performance Counter 2 Register
0xB000 0048 PCC Performance Counter Configuration Register
0xB000 004C PCMRS Performance Counter Master Region Select Register
0xB000 0050 PCT Performance Counter Time Register
0xB000 00C0 IRR Interrupt Raw Register
0xB000 00C4 IMR Interrupt Mask Register
0xB000 00C8 IMSR Interrupt Mask Set Register
0xB000 00CC IMCR Interrupt Mask Clear Register
0xB000 00E4 DRPYC1R DDR PHY Control Register 1
0x01E2 C000 VTPIO_CTL VTP IO Control Register
5.11.3 DDR2/mDDR Interface
This section provides the timing specification for the DDR2/mDDR interface as a PCB design and
manufacturing specification. The design rules constrain PCB trace length, PCB trace skew, signal
integrity, cross-talk, and signal timing. These rules, when followed, result in a reliable DDR2/mDDR
memory system without the need for a complex timing closure process. For more information regarding
guidelines for using this DDR2/mDDR specification, Understanding TI's PCB Routing Rule-Based DDR2
Timing Specification (SPRAAV0).
5.11.3.1 DDR2/mDDR Interface Schematic
Figure 5-18 shows the DDR2/mDDR interface schematic for a single-memory DDR2/mDDR system. The
dual-memory system shown in Figure 5-19. Pin numbers for the device can be obtained from the pin
description section.
128 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
DDR2/mDDR Memory Controller
DDR_D[7]
DDR2/mDDR
DDR_DQM[0]
ODT
DQ0
DQ7
DDR_D[8]
DDR_D[15]
DQ8
DQ15
LDM
LDQS
LDQS
DDR_DQM[1]
DDR_DQS[1]
UDM
UDQS
UDQS
DDR_BA[0]
DDR_BA[2]
BA0
BA2
DDR_A[0]
DDR_A[13]
A0
DDR_CS
DDR_CAS
CS
CAS
DDR_RAS
DDR_WE
RAS
WE
DDR_CKE CKE
DDR_CLKP
DDR_CLKN
CK
CK
DDR_DQGATE0
DDR_DQGATE1
DDR_ZP
DDR_VREF
1 K Ω 1%
DDR_DVDD18
VREF
1 K Ω 1%
0.1 μF
0.1 μF
0.1 Fμ (2) 0.1 Fμ (2)
50 5Ω %
TTerminator, if desired. See terminator comments.
DQ7
A13
0.1 μF
0.1 μF
TTerminator, if desired. See terminator comments.
DDR_D[0]
NC
TTT
TTT
TTT
TTT
TTT
TTT
TTT
TTT
TTT
TTT
TTT
TTT
TTT
TTT
TTT
TTT
TTT
TTT
TTT
T
T
T
T
T
TVREF(3)
TTerminator, if desired. See terminator comments.
0.1 Fμ (2)
DDR_DQS[0]
NC
(1)
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
(1) See Figure 5-25 for DQGATE routing specifications.
(2) For DDR2, one of these capacitors can be eliminated if the divider and its capacitors are placed near a device VREF pin. For mDDR,
these capacitors can be eliminated completely.
(3) VREF applies in the case of DDR2 memories. For mDDR, the DDR_VREF pin still needs to be connected to the divider circuit.
Figure 5-18. DDR2/mDDR Single-Memory High Level Schematic
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 129
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
DDR2/mDDR Memory Controller
DDR_D[0:7]
Lower Byte
DDR2/mDDR
DDR_DQM[0]
DDR_DQS[0]
ODT
DQ0 - DQ7
BA0-BA2
CK
CK
DM
DQS
DQS
CS
CAS
RAS
DDR_BA[0:2]
CKE
BA0-BA2
DDR_A[0:13]
DDR_CLKP
A0-A13
DDR_CLKN
DDR_CS
CK
CS
DDR_CAS
DDR_RAS
CAS
RAS
DDR_WE WE
DDR_D[8:15]
DQS
DQ0 - DQ7
DDR_DQGATE0
DDR_DQGATE1
T
T
T
T
T
T
T
T
T
T
T
T
T
T
DDR_ZP
VREF(3)
DDR_VREF
1 K Ω 1%
DDR_DVDD18
VREF
1 K Ω 1%
0.1 μF
0.1 μF
0.1 μF(2) 0.1 μF(2) 0.1 μF(2)
50 5Ω %
TTerminator, if desired. See terminator comments.
ODT
A0-A13
WE
VREF
Upper Byte
DDR2/mDDR
CK
DDR_CKE CKE
T
DDR_DQM1 DM
T
DDR_DQS1 DQS
T
NC
NC
(1)
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
(1) See Figure 5-25 for DQGATE routing specifications.
(2) For DDR2, one of these capacitors can be eliminated if the divider and its capacitors are placed near a device VREF pin. For mDDR,
these capacitors can be eliminated completely.
(3) VREF applies in the case of DDR2 memories. For mDDR, the DDR_VREF pin still needs to be connected to the divider circuit.
Figure 5-19. DDR2/mDDR Dual-Memory High Level Schematic
130 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
5.11.3.2 Compatible JEDEC DDR2/mDDR Devices
Table 5-27 shows the parameters of the JEDEC DDR2/mDDR devices that are compatible with this
interface. Generally, the DDR2/mDDR interface is compatible with x16 DDR2/mDDR-400 speed grade
DDR2/mDDR devices.
The device also supports JEDEC DDR2/mDDR x8 devices in the dual chip configuration. In this case, one
chip supplies the upper byte and the second chip supplies the lower byte. Addresses and most control
signals are shared just like regular dual chip memory configurations.
Table 5-27. Compatible JEDEC DDR2/mDDR Devices
NO. PARAMETER MIN MAX UNIT
1 JEDEC DDR2/mDDR Device Speed Grade(1) DDR2/mDDR-400
2 JEDEC DDR2/mDDR Device Bit Width x8 x16 Bits
3 JEDEC DDR2/mDDR Device Count(2) 1 2 Devices
(1) Higher DDR2/mDDR speed grades are supported due to inherent JEDEC DDR2/mDDR backwards compatibility.
(2) Supported configurations are one 16-bit DDR2/mDDR memory or two 8-bit DDR2/mDDR memories
5.11.3.3 PCB Stackup
The minimum stackup required for routing the device is a six layer stack as shown in Table 5-28.
Additional layers may be added to the PCB stack up to accommodate other circuitry or to reduce the size
of the PCB footprint.Complete stack up specifications are provided in Table 5-29.
Table 5-28. Device Minimum PCB Stack Up
LAYER TYPE DESCRIPTION
1 Signal Top Routing Mostly Horizontal
2 Plane Ground
3 Plane Power
4 Signal Internal Routing
5 Plane Ground
6 Signal Bottom Routing Mostly Vertical
Table 5-29. PCB Stack Up Specifications
NO. PARAMETER MIN TYP MAX UNIT
1 PCB Routing/Plane Layers 6
2 Signal Routing Layers 3
3 Full ground layers under DDR2/mDDR routing region 2
4 Number of ground plane cuts allowed within DDR routing region 0
5 Number of ground reference planes required for each DDR2/mDDR routing layer 1
6 Number of layers between DDR2/mDDR routing layer and reference ground plane 0
7 PCB Routing Feature Size 4 Mils
8 PCB Trace Width w 4 Mils
8 PCB BGA escape via pad size 18 Mils
9 PCB BGA escape via hole size 8 Mils
10 Device BGA pad size(1)
11 DDR2/mDDR Device BGA pad size(2)
12 Single Ended Impedance, Zo 50 75
13 Impedance Control(3) Z-5 Z Z+5
(1) Please refer to the Flip Chip Ball Grid Array Package Reference Guide (SPRU811) for device BGA pad size.
(2) Please refer to the DDR2/mDDR device manufacturer documentation for the DDR2/mDDR device BGA pad size.
(3) Z is the nominal singled ended impedance selected for the PCB specified by item 12.
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 131
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
A1
A1
X
Y
OFFSET
RecommendedDDR2/mDDR
DeviceOrientation
Y
Y
OFFSET
DDR2/mDDR
Device
DDR2/mDDR
Controller
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
5.11.3.4 Placement
Figure 5-19 shows the required placement for the device as well as the DDR2/mDDR devices. The
dimensions for Figure 5-20 are defined in Table 5-30. The placement does not restrict the side of the PCB
that the devices are mounted on. The ultimate purpose of the placement is to limit the maximum trace
lengths and allow for proper routing space. For single-memory DDR2/mDDR systems, the second
DDR2/mDDR device is omitted from the placement.
Figure 5-20. OMAP-L138 and DDR2/mDDR Device Placement
Table 5-30. Placement Specifications(1)(2)
NO. PARAMETER MIN MAX UNIT
1 X 1750 Mils
2 Y 1280 Mils
3 Y Offset (3)650 Mils
4 Clearance from non-DDR2/mDDR signal to DDR2/mDDR Keepout Region(4) 4 w(5)
(1) See Figure 5-20 for dimension definitions.
(2) Measurements from center of device to center of DDR2/mDDR device.
(3) For single memory systems it is recommended that Y Offset be as small as possible.
(4) Non-DDR2/mDDR signals allowed within DDR2/mDDR keepout region provided they are separated from DDR2/mDDR routing layers by
a ground plane.
(5) w = PCB trace width as defined in Table 5-29.
132 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
A1
A1
DDR2/mDDR
Controller
DDR2/mDDR
Device
RegionshouldencompassallDDR2/mDDRcircuitryandvaries
dependingonplacement.Non-DDR2/mDDRsignalsshouldnotbe
routedontheDDRsignallayerswithintheDDR2/mDDRkeepout
region.Non-DDR2/mDDRsignalsmayberoutedintheregion
providedtheyareroutedonlayersseparatedfromDDR2/mDDR
signallayersbyagroundlayer.Nobreaksshouldbeallowedinthe
referencegroundlayersinthisregion.Inaddition,the1.8Vpower
planeshouldcovertheentirekeepoutregion.
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
5.11.3.5 DDR2/mDDR Keep Out Region
The region of the PCB used for the DDR2/mDDR circuitry must be isolated from other signals. The
DDR2/mDDR keep out region is defined for this purpose and is shown in Figure 5-21. The size of this
region varies with the placement and DDR routing. Additional clearances required for the keep out region
are shown in Table 5-30.
Figure 5-21. DDR2/mDDR Keepout Region
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 133
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
5.11.3.6 Bulk Bypass Capacitors
Bulk bypass capacitors are required for moderate speed bypassing of the DDR2/mDDR and other
circuitry. Table 5-31 contains the minimum numbers and capacitance required for the bulk bypass
capacitors. Note that this table only covers the bypass needs of the Soc and DDR2/mDDR interfaces.
Additional bulk bypass capacitance may be needed for other circuitry.
Table 5-31. Bulk Bypass Capacitors
NO. PARAMETER MIN MAX UNIT
1 DDR_DVDD18 Supply Bulk Bypass Capacitor Count(1) 3 Devices
2 DDR_DVDD18 Supply Bulk Bypass Total Capacitance 30 μF
3 DDR#1 Bulk Bypass Capacitor Count(1) 1 Devices
4 DDR#1 Bulk Bypass Total Capacitance 22 μF
5 DDR#2 Bulk Bypass Capacitor Count(1)(2) 1 Devices
6 DDR#2 Bulk Bypass Total Capacitance(2) 22 μF
(1) These devices should be placed near the device they are bypassing, but preference should be given to the placement of the high-speed
(HS) bypass caps.
(2) Only used on dual-memory systems.
5.11.3.7 High-Speed Bypass Capacitors
High-speed (HS) bypass capacitors are critical for proper DDR2/mDDR interface operation. It is
particularly important to minimize the parasitic series inductance of the HS bypass cap, Soc/DDR2/mDDR
power, and Soc/DDR2/mDDR ground connections. Table 5-32 contains the specification for the HS
bypass capacitors as well as for the power connections on the PCB.
Table 5-32. High-Speed Bypass Capacitors
NO. PARAMETER MIN MAX UNIT
1 HS Bypass Capacitor Package Size(1) 0402 10 Mils
2 Distance from HS bypass capacitor to device being bypassed 250 Mils
3 Number of connection vias for each HS bypass capacitor 2(2) Vias
4 Trace length from bypass capacitor contact to connection via 1 30 Mils
5 Number of connection vias for each DDR2/mDDR device power or ground balls 1 Vias
6 Trace length from DDR2/mDDR device power ball to connection via 35 Mils
7 DDR_DVDD18 Supply HS Bypass Capacitor Count(3) 10 Devices
8 DDR_DVDD18 Supply HS Bypass Capacitor Total Capacitance 0.6 μF
9 DDR#1 HS Bypass Capacitor Count(3) 8 Devices
10 DDR#1 HS Bypass Capacitor Total Capacitance 0.4 μF
11 DDR#2 HS Bypass Capacitor Count(3)(4) 8 Devices
12 DDR#2 HS Bypass Capacitor Total Capacitance(4) 0.4 μF
(1) LxW, 10 mil units, i.e., a 0402 is a 40x20 mil surface mount capacitor
(2) An additional HS bypass capacitor can share the connection vias only if it is mounted on the opposite side of the board.
(3) These devices should be placed as close as possible to the device being bypassed.
(4) Only used on dual-memory systems.
134 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
5.11.3.8 Net Classes
Table 5-33 lists the clock net classes for the DDR2/mDDR interface. Table 5-34 lists the signal net
classes, and associated clock net classes, for the signals in the DDR2/mDDR interface. These net classes
are used for the termination and routing rules that follow.
Table 5-33. Clock Net Class Definitions
CLOCK NET CLASS Soc PIN NAMES
CK DDR_CLKP / DDR_CLKN
DQS0 DDR_DQS[0]
DQS1 DDR_DQS[1]
Table 5-34. Signal Net Class Definitions
ASSOCIATED CLOCK
SIGNAL NET CLASS NET CLASS Soc PIN NAMES
ADDR_CTRL CK DDR_BA[2:0], DDR_A[13:0], DDR_CS, DDR_CAS, DDR_RAS, DDR_WE,
DDR_CKE
D0 DQS0 DDR_D[7:0], DDR_DQM0
D1 DQS1 DDR_D[15:8], DDR_DQM1
DQGATE CK, DQS0, DQS1 DDR_DQGATE0, DDR_DQGATE1
5.11.3.9 DDR2/mDDR Signal Termination
No terminations of any kind are required in order to meet signal integrity and overshoot requirements.
Serial terminators are permitted, if desired, to reduce EMI risk; however, serial terminations are the only
type permitted. Table 5-35 shows the specifications for the series terminators.
Table 5-35. DDR2/mDDR Signal Terminations(1)(2)(3)
NO. PARAMETER MIN TYP MAX UNIT
1 CK Net Class 0 10
2 ADDR_CTRL Net Class 0 22 Zo
3 Data Byte Net Classes (DQS[0], DQS[1], D0, D1)(4) 0 22 Zo
4 DQGATE Net Class (DQGATE) 0 10 Zo
(1) Only series termination is permitted, parallel or SST specifically disallowed.
(2) Terminator values larger than typical only recommended to address EMI issues.
(3) Termination value should be uniform across net class.
(4) When no termination is used on data lines (0 ), the DDR2/mDDR devices must be programmed to operate in 60% strength mode.
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 135
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
A1
A1
DDR2/mDDRDevice
VREFNominalMinimum
TraceWidthis20Mils
VREFBypassCapacitor
NeckdowntominimuminBGA escape
regionsisacceptable.Narrowingto
accomodateviacongestionforshort
distancesisalsoacceptable.Best
performanceisobtainedifthewidth
ofVREFismaximized.
DDR2/mDDR
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
5.11.3.10 VREF Routing
VREF is used as a reference by the input buffers of the DDR2/mDDR memories as well as the
OMAP-L138. VREF is intended to be half the DDR2/mDDR power supply voltage and should be created
using a resistive divider as shown in Figure 5-18. Other methods of creating VREF are not recommended.
Figure 5-22 shows the layout guidelines for VREF.
Figure 5-22. VREF Routing and Topology
136 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
A1
A1
C B
A
T
DDR2/mDDR
Controller
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
5.11.3.11 DDR2/mDDR CK and ADDR_CTRL Routing
Figure 5-23 shows the topology of the routing for the CK and ADDR_CTRL net classes. The route is a
balanced Tas it is intended that the length of segments B and C be equal. In addition, the length of A
should be maximized.
Figure 5-23. CK and ADDR_CTRL Routing and Topology
Table 5-36. CK and ADDR_CTRL Routing Specification
NO. PARAMETER MIN TYP MAX UNIT
1 Center to Center CK-CKN Spacing(1) 2w(2)
2 CK A to B/A to C Skew Length Mismatch(3) 25 Mils
3 CK B to C Skew Length Mismatch 25 Mils
4 Center to center CK to other DDR2/mDDR trace spacing(1) 4w(2)
5 CK/ADDR_CTRL nominal trace length(4) CACLM-50 CACLM CACLM+50 Mils
6 ADDR_CTRL to CK Skew Length Mismatch 100 Mils
7 ADDR_CTRL to ADDR_CTRL Skew Length Mismatch 100 Mils
8 Center to center ADDR_CTRL to other DDR2/mDDR trace spacing(1) 4w(2)
9 Center to center ADDR_CTRL to other ADDR_CTRL trace spacing(1) 3w (2)
10 ADDR_CTRL A to B/A to C Skew Length Mismatch(3) 100 Mils
11 ADDR_CTRL B to C Skew Length Mismatch 100 Mils
(1) Center to center spacing is allowed to fall to minimum (w) for up to 500 mils of routed length to accommodate BGA escape and routing
congestion.
(2) w = PCB trace width as defined in Table 5-29.
(3) Series terminator, if used, should be located closest to device.
(4) CACLM is the longest Manhattan distance of the CK and ADDR_CTRL net classes.
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 137
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
A1
A1
E0
T
E1
DDR2/mDDR
Controller
T
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
Figure 5-24 shows the topology and routing for the DQS and D net class; the routes are point to point.
Skew matching across bytes is not needed nor recommended.
Figure 5-24. DQS and D Routing and Topology
Table 5-37. DQS and D Routing Specification
NO. PARAMETER MIN TYP MAX UNIT
1 Center to center DQS to other DDR2/mDDR trace spacing(1) 4w(2)
2 DQS/D nominal trace length(3)(4) DQLM-50 DQLM DQLM+50 Mils
3 D to DQS Skew Length Mismatch(4) 100 Mils
4 D to D Skew Length Mismatch(4) 100 Mils
5 Center to center D to other DDR2/mDDR trace spacing(1)(5) 4w(2)
6 Center to Center D to other D trace spacing(1)(6) 3w(2)
(1) Center to center spacing is allowed to fall to minimum (w) for up to 500 mils of routed length to accommodate BGA escape and routing
congestion.
(2) w = PCB trace width as defined in Table 5-29.
(3) Series terminator, if used, should be located closest to DDR.
(4) There is no need and it is not recommended to skew match across data bytes, i.e., from DQS0 and data byte 0 to DQS1 and data byte
1.
(5) D's from other DQS domains are considered other DDR2/mDDR trace.
(6) DQLM is the longest Manhattan distance of each of the DQS and D net class.
138 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
A1
A1
T
T
DDR2/mDDR
Controller
F
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
Figure 5-25 shows the routing for the DQGATE net class. Table 5-38 contains the routing specification.
Figure 5-25. DQGATE Routing
Table 5-38. DQGATE Routing Specification
NO. PARAMETER MIN TYP MAX UNIT
1 DQGATE Length F CKB0B(1)
2 Center to center DQGATE to any other trace spacing 4w(2)
3 DQS/D nominal trace length DQLM-50 DQLM DQLM+50 Mils
4 DQGATE Skew(3) 100 Mils
(1) CKB0B1 is the sum of the length of the CK net plus the average length of the DQS0 and DQS1 nets.
(2) w = PCB trace width as defined in Table 5-29.
(3) Skew from CKB0B1
5.11.3.12 MDDR/DDR2 Boundary Scan Limitations
Due to DDR implementation and timing restrictions, it was not possible to place boundary scan cells
between core logic and the IO like boundary scan cells for other IO. Instead, the boundary scan cells are
tapped-off to the DDR PHY and there is the equivalent of a multiplexer inside the DDR PHY which selects
between functional and boundary scan paths.
The implication for boundary scan is that the DDR pins will not support the SAMPLE function of the output
enable cells on the DDR pins and this is a violation of IEEE 1149.1. Full EXTEST and PRELOAD
capability is still available.
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 139
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
5.12 Memory Protection Units
The MPU performs memory protection checking. It receives requests from a bus master in the system and
checks the address against the fixed and programmable regions to see if the access is allowed. If allowed,
the transfer is passed unmodified to its output bus (to the targeted address). If the transfer is illegal (fails
the protection check) then the MPU does not pass the transfer to the output bus but rather services the
transfer internally back to the input bus (to prevent a hang) returning the fault status to the requestor as
well as generating an interrupt about the fault. The following features are supported by the MPU:
Provides memory protection for fixed and programmable address ranges.
Supports multiple programmable address region.
Supports secure and debug access privileges.
Supports read, write, and execute access privileges.
Supports privid(8) associations with ranges.
Generates an interrupt when there is a protection violation, and saves violating transfer parameters.
MMR access is also protected.
Table 5-39. MPU1 Configuration Registers
MPU1 ACRONYM REGISTER DESCRIPTION
BYTE ADDRESS
0x01E1 4000 REVID Revision ID
0x01E1 4004 CONFIG Configuration
0x01E1 4010 IRAWSTAT Interrupt raw status/set
0x01E1 4014 IENSTAT Interrupt enable status/clear
0x01E1 4018 IENSET Interrupt enable
0x01E1 401C IENCLR Interrupt enable clear
0x01E1 4020 - 0x01E1 41FF - Reserved
0x01E1 4200 PROG1_MPSAR Programmable range 1, start address
0x01E1 4204 PROG1_MPEAR Programmable range 1, end address
0x01E1 4208 PROG1_MPPA Programmable range 1, memory page protection attributes
0x01E1 420C - 0x01E1 420F - Reserved
0x01E1 4210 PROG2_MPSAR Programmable range 2, start address
0x01E1 4214 PROG2_MPEAR Programmable range 2, end address
0x01E1 4218 PROG2_MPPA Programmable range 2, memory page protection attributes
0x01E1 421C - 0x01E1 421F - Reserved
0x01E1 4220 PROG3_MPSAR Programmable range 3, start address
0x01E1 4224 PROG3_MPEAR Programmable range 3, end address
0x01E1 4228 PROG3_MPPA Programmable range 3, memory page protection attributes
0x01E1 422C - 0x01E1 422F - Reserved
0x01E1 4230 PROG4_MPSAR Programmable range 4, start address
0x01E1 4234 PROG4_MPEAR Programmable range 4, end address
0x01E1 4238 PROG4_MPPA Programmable range 4, memory page protection attributes
0x01E1 423C - 0x01E1 423F - Reserved
0x01E1 4240 PROG5_MPSAR Programmable range 5, start address
0x01E1 4244 PROG5_MPEAR Programmable range 5, end address
0x01E1 4248 PROG5_MPPA Programmable range 5, memory page protection attributes
0x01E1 424C - 0x01E1 424F - Reserved
0x01E1 4250 PROG6_MPSAR Programmable range 6, start address
0x01E1 4254 PROG6_MPEAR Programmable range 6, end address
0x01E1 4258 PROG6_MPPA Programmable range 6, memory page protection attributes
0x01E1 425C - 0x01E1 42FF - Reserved
140 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
Table 5-39. MPU1 Configuration Registers (continued)
MPU1 ACRONYM REGISTER DESCRIPTION
BYTE ADDRESS
0x01E1 4300 FLTADDRR Fault address
0x01E1 4304 FLTSTAT Fault status
0x01E1 4308 FLTCLR Fault clear
0x01E1 430C - 0x01E1 4FFF - Reserved
Table 5-40. MPU2 Configuration Registers
MPU2 ACRONYM REGISTER DESCRIPTION
BYTE ADDRESS
0x01E1 5000 REVID Revision ID
0x01E1 5004 CONFIG Configuration
0x01E1 5010 IRAWSTAT Interrupt raw status/set
0x01E1 5014 IENSTAT Interrupt enable status/clear
0x01E1 5018 IENSET Interrupt enable
0x01E1 501C IENCLR Interrupt enable clear
0x01E1 5020 - 0x01E1 51FF - Reserved
0x01E1 5200 PROG1_MPSAR Programmable range 1, start address
0x01E1 5204 PROG1_MPEAR Programmable range 1, end address
0x01E1 5208 PROG1_MPPA Programmable range 1, memory page protection attributes
0x01E1 520C - 0x01E1 520F - Reserved
0x01E1 5210 PROG2_MPSAR Programmable range 2, start address
0x01E1 5214 PROG2_MPEAR Programmable range 2, end address
0x01E1 5218 PROG2_MPPA Programmable range 2, memory page protection attributes
0x01E1 521C - 0x01E1 521F - Reserved
0x01E1 5220 PROG3_MPSAR Programmable range 3, start address
0x01E1 5224 PROG3_MPEAR Programmable range 3, end address
0x01E1 5228 PROG3_MPPA Programmable range 3, memory page protection attributes
0x01E1 522C - 0x01E1 522F - Reserved
0x01E1 5230 PROG4_MPSAR Programmable range 4, start address
0x01E1 5234 PROG4_MPEAR Programmable range 4, end address
0x01E1 5238 PROG4_MPPA Programmable range 4, memory page protection attributes
0x01E1 523C - 0x01E1 523F - Reserved
0x01E1 5240 PROG5_MPSAR Programmable range 5, start address
0x01E1 5244 PROG5_MPEAR Programmable range 5, end address
0x01E1 5248 PROG5_MPPA Programmable range 5, memory page protection attributes
0x01E1 524C - 0x01E1 524F - Reserved
0x01E1 5250 PROG6_MPSAR Programmable range 6, start address
0x01E1 5254 PROG6_MPEAR Programmable range 6, end address
0x01E1 5258 PROG6_MPPA Programmable range 6, memory page protection attributes
0x01E1 525C - 0x01E1 525F - Reserved
0x01E1 5260 PROG7_MPSAR Programmable range 7, start address
0x01E1 5264 PROG7_MPEAR Programmable range 7, end address
0x01E1 5268 PROG7_MPPA Programmable range 7, memory page protection attributes
0x01E1 526C - 0x01E1 526F - Reserved
0x01E1 5270 PROG8_MPSAR Programmable range 8, start address
0x01E1 5274 PROG8_MPEAR Programmable range 8, end address
0x01E1 5278 PROG8_MPPA Programmable range 8, memory page protection attributes
0x01E1 527C - 0x01E1 527F - Reserved
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 141
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
Table 5-40. MPU2 Configuration Registers (continued)
MPU2 ACRONYM REGISTER DESCRIPTION
BYTE ADDRESS
0x01E1 5280 PROG9_MPSAR Programmable range 9, start address
0x01E1 5284 PROG9_MPEAR Programmable range 9, end address
0x01E1 5288 PROG9_MPPA Programmable range 9, memory page protection attributes
0x01E1 528C - 0x01E1 528F - Reserved
0x01E1 5290 PROG10_MPSAR Programmable range 10, start address
0x01E1 5294 PROG10_MPEAR Programmable range 10, end address
0x01E1 5298 PROG10_MPPA Programmable range 10, memory page protection attributes
0x01E1 529C - 0x01E1 529F - Reserved
0x01E1 52A0 PROG11_MPSAR Programmable range 11, start address
0x01E1 52A4 PROG11_MPEAR Programmable range 11, end address
0x01E1 52A8 PROG11_MPPA Programmable range 11, memory page protection attributes
0x01E1 52AC - 0x01E1 52AF - Reserved
0x01E1 52B0 PROG12_MPSAR Programmable range 12, start address
0x01E1 52B4 PROG12_MPEAR Programmable range 12, end address
0x01E1 52B8 PROG12_MPPA Programmable range 12, memory page protection attributes
0x01E1 52BC - 0x01E1 52FF - Reserved
0x01E1 5300 FLTADDRR Fault address
0x01E1 5304 FLTSTAT Fault status
0x01E1 5308 FLTCLR Fault clear
0x01E1 530C - 0x01E1 5FFF - Reserved
142 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
5.13 MMC / SD / SDIO (MMCSD0, MMCSD1)
5.13.1 MMCSD Peripheral Description
The device includes an two MMCSD controllers which are compliant with MMC V4.0, Secure Digital Part 1
Physical Layer Specification V1.1 and Secure Digital Input Output (SDIO) V2.0 specifications.
The MMC/SD Controller have following features:
MultiMediaCard (MMC).
Secure Digital (SD) Memory Card.
MMC/SD protocol support.
SDIO protocol support.
Programmable clock frequency.
512 bit Read/Write FIFO to lower system overhead.
Slave EDMA transfer capability.
The device MMC/SD Controller does not support SPI mode.
5.13.2 MMCSD Peripheral Register Description(s)
Table 5-41. Multimedia Card/Secure Digital (MMC/SD) Card Controller Registers
MMCSD0 MMCSD1 ACRONYM REGISTER DESCSRIPTION
BYTE ADDRESS BYTE ADDRESS
0x01C4 0000 0x01E1 B000 MMCCTL MMC Control Register
0x01C4 0004 0x01E1 B004 MMCCLK MMC Memory Clock Control Register
0x01C4 0008 0x01E1 B008 MMCST0 MMC Status Register 0
0x01C4 000C 0x01E1 B00C MMCST1 MMC Status Register 1
0x01C4 0010 0x01E1 B010 MMCIM MMC Interrupt Mask Register
0x01C4 0014 0x01E1 B014 MMCTOR MMC Response Time-Out Register
0x01C4 0018 0x01E1 B018 MMCTOD MMC Data Read Time-Out Register
0x01C4 001C 0x01E1 B01C MMCBLEN MMC Block Length Register
0x01C4 0020 0x01E1 B020 MMCNBLK MMC Number of Blocks Register
0x01C4 0024 0x01E1 B024 MMCNBLC MMC Number of Blocks Counter Register
0x01C4 0028 0x01E1 B028 MMCDRR MMC Data Receive Register
0x01C4 002C 0x01E1 B02C MMCDXR MMC Data Transmit Register
0x01C4 0030 0x01E1 B030 MMCCMD MMC Command Register
0x01C4 0034 0x01E1 B034 MMCARGHL MMC Argument Register
0x01C4 0038 0x01E1 B038 MMCRSP01 MMC Response Register 0 and 1
0x01C4 003C 0x01E1 B03C MMCRSP23 MMC Response Register 2 and 3
0x01C4 0040 0x01E1 B040 MMCRSP45 MMC Response Register 4 and 5
0x01C4 0044 0x01E1 B044 MMCRSP67 MMC Response Register 6 and 7
0x01C4 0048 0x01E1 B048 MMCDRSP MMC Data Response Register
0x01C4 0050 0x01E1 B050 MMCCIDX MMC Command Index Register
0x01C4 0064 0x01E1 B064 SDIOCTL SDIO Control Register
0x01C4 0068 0x01E1 B068 SDIOST0 SDIO Status Register 0
0x01C4 006C 0x01E1 B06C SDIOIEN SDIO Interrupt Enable Register
0x01C4 0070 0x01E1 B070 SDIOIST SDIO Interrupt Status Register
0x01C4 0074 0x01E1 B074 MMCFIFOCTL MMC FIFO Control Register
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 143
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
5.13.3 MMC/SD Electrical Data/Timing
Table 5-42 through Table 5-43 assume testing over recommended operating conditions.
Table 5-42. Timing Requirements for MMC/SD
(see Figure 5-27 and Figure 5-29)
1.3V, 1.2V 1.1V 1.0V
NO. PARAMETER UNIT
MIN MAX MIN MAX MIN MAX
tsu(CMDV-
1 Setup time, MMCSD_CMD valid before MMCSD_CLK high 4 4 6 ns
CLKH)
2 th(CLKH-CMDV) Hold time, MMCSD_CMD valid after MMCSD_CLK high 2.5 2.5 2.5 ns
3 tsu(DATV-CLKH) Setup time, MMCSD_DATx valid before MMCSD_CLK high 4.5 5 6 ns
4 th(CLKH-DATV) Hold time, MMCSD_DATx valid after MMCSD_CLK high 2.5 2.5 2.5 ns
Table 5-43. Switching Characteristics for MMC/SD (see Figure 5-26 through Figure 5-29)
1.3V, 1.2V 1.1V 1.0V
NO. PARAMETER UNIT
MIN MAX MIN MAX MIN MAX
7 f(CLK) Operating frequency, MMCSD_CLK 0 52 0 50 0 25 MHz
8 f(CLK_ID) Identification mode frequency, MMCSD_CLK 0 400 0 400 0 400 KHz
9 tW(CLKL) Pulse width, MMCSD_CLK low 6.5 6.5 10 ns
10 tW(CLKH) Pulse width, MMCSD_CLK high 6.5 6.5 10 ns
11 tr(CLK) Rise time, MMCSD_CLK 3 3 10 ns
12 tf(CLK) Fall time, MMCSD_CLK 3 3 10 ns
13 td(CLKL-CMD) Delay time, MMCSD_CLK low to MMCSD_CMD transition -4 2.5 -4 3 -4 4 ns
14 td(CLKL-DAT) Delay time, MMCSD_CLK low to MMCSD_DATx transition -4 3.3 -4 3.5 -4 4 ns
144 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
START XMIT Valid Valid Valid END
MMCSD_CLK
MMCSD_CMD
13
7
10
9
13 13 13
START XMIT Valid Valid Valid END
MMCSD_CLK
MMCSD_CMD
10
9
7
1
2
START D0 D1 Dx END
MMCSD_CLK
MMCSD_DATx
7
1414
10
9
14 14
Start D0 D1 Dx End
7
MMCSD_CLK
MMCSD_DATx
9
10
4
3 3
4
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
Figure 5-26. MMC/SD Host Command Timing
Figure 5-27. MMC/SD Card Response Timing
Figure 5-28. MMC/SD Host Write Timing
Figure 5-29. MMC/SD Host Read and Card CRC Status Timing
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 145
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
5.14 Serial ATA Controller (SATA)
The Serial ATA Controller (SATA) provides a single HBA port operating in AHCI mode and is used to
interface to data storage devices at both 1.5 Gbits/second and 3.0 Gbits/second line speeds. AHCI
describes a system memory structure that contains a generic area for control and status, and a table of
entries describing a command list where each command list entry contains information necessary to
program an SATA device, and a pointer to a descriptor table for transferring data between system memory
and the device.
The SATA Controller supports the following features:
Serial ATA 1.5 Gbps (Gen 1i) and 3 Gbps (Gen 2i) line speeds
Support for the AHCI controller spec 1.1
Integrated SERDES PHY
Integrated Rx and Tx data buffers
Supports all SATA power management features
Internal DMA engine per port
Hardware-assisted native command queuing (NCQ) for up to 32 entries
32-bit addressing
Supports port multiplier with command-based switching
Activity LED support
Mechanical presence switch
Cold presence detect
The SATA Controller support is dependent on the CPU voltage operating point:
At CVDD = 1.3V, SATA Gen 2i (3.0 Gbps) and SATA Gen 1i (1.5 Gbps) are supported.
At CVDD = 1.2V, SATA Gen 2i (3.0 Gbps) and SATA Gen 1i (1.5 Gbps) are supported.
At CVDD = 1.1V, SATA Gen 1i (1.5 Gbps) only is supported.
At CVDD = 1.0V, SATA is not supported.
146 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
5.14.1 SATA Register Descriptions
Table 5-44 is a list of the SATA Controller registers.
Table 5-44. SATA Controller Registers
BYTE ADDRESS ACRONYM REGISTER DESCRIPTION
0x01E1 8000 CAP HBA Capabilities Register
0x01E1 8004 GHC Global HBA Control Register
0x01E1 8008 IS Interrupt Status Register
0x01E1 800C PI Ports Implemented Register
0x01E1 8010 VS AHCI Version Register
0x01E1 8014 CCC_CTL Command Completion Coalescing Control Register
0x01E1 8018 CCC_PORTS Command Completion Coalescing Ports Register
0x01E1 80A0 BISTAFR BIST Active FIS Register
0x01E1 80A4 BISTCR BIST Control Register
0x01E1 80A8 BISTFCTR BIST FIS Count Register
0x01E1 80AC BISTSR BIST Status Register
0x01E1 80B0 BISTDECR BIST DWORD Error Count Register
0x01E1 80E0 TIMER1MS BIST DWORD Error Count Register
0x01E1 80E8 GPARAM1R Global Parameter 1 Register
0x01E1 80EC GPARAM2R Global Parameter 2 Register
0x01E1 80F0 PPARAMR Port Parameter Register
0x01E1 80F4 TESTR Test Register
0x01E1 80F8 VERSIONR Version Register
0x01E1 80FC IDR ID Register
0x01E1 8100 P0CLB Port Command List Base Address Register
0x01E1 8108 P0FB Port FIS Base Address Register
0x01E1 8110 P0IS Port Interrupt Status Register
0x01E1 8114 P0IE Port Interrupt Enable Register
0x01E1 8118 P0CMD Port Command Register
0x01E1 8120 P0TFD Port Task File Data Register
0x01E1 8124 P0SIG Port Signature Register
0x01E1 8128 P0SSTS Port Serial ATA Status Register
0x01E1 812C P0SCTL Port Serial ATA Control Register
0x01E1 8130 P0SERR Port Serial ATA Error Register
0x01E1 8134 P0SACT Port Serial ATA Active Register
0x01E1 8138 P0CI Port Command Issue Register
0x01E1 813C P0SNTF Port Serial ATA Notification Register
0x01E1 8170 P0DMACR Port DMA Control Register
0x01E1 8178 P0PHYCR Port PHY Control Register
0x01E1 817C P0PHYSR Port PHY Status Register
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 147
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
SATA Interface(Processor) SATA Connector
SATA_TXN
SATA_TXP
SATA_RXN
SATA_RXP
SATA_REFCLKN
SATA_REFCLKP
TX–
TX+
RX–
RX+
LVDS
Oscillator
CLK–
CLK+
SATA_REG 0.1uF
10nF
10nF
10nF
10nF
10nF
10nF
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
5.14.2 1. SATA Interface
This section provides the timing specification for the SATA interface as a PCB design and manufacturing
specification. The design rules constrain PCB trace length, PCB trace skew, signal integrity, cross-talk,
and signal timing. TI has performed the simulation and system design work to ensure the SATA interface
requirements are met.
5.14.2.1 SATA Interface Schematic
Figure 5-30 shows the SATA interface schematic.
Figure 5-30. SATA Interface High Level Schematic
5.14.2.2 Compatible SATA Components and Modes
Table 5-45 shows the compatible SATA components and supported modes. Note that the only supported
configuration is an internal cable from the processor host to the SATA device.
Table 5-45. SATA Supported Modes
PARAMETER MIN MAX UNIT SUPPORTED
Transfer Rates 1.5 3.0 Gbps
eSATA No
xSATA No
Backplane No
Internal Cable Yes
148 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
5.14.2.3 PCB Stackup Specifications
Table 5-46 shows the stackup and feature sizes required for SATA.
Table 5-46. SATA PCB Stackup Specifications
PARAMETER MIN TYP MAX UNIT
PCB Routing/Plane Layers 4 6 Layers
Signal Routing Layers 2 3 Layers
Number of ground plane cuts allowed within SATA routing region 0 Layers
Number of layers between SATA routing region and reference ground plane 0
PCB Routing Feature Size 4 Mils
PCB Trace Width w 4 Mils
PCB BGA escape via pad size 18 Mils
PCB BGA escape via hole size 8 Mils
Device BGA pad size (1)
(1) Please refer to the Flip Chip Ball Grid Array Package Reference Guide (SPRU811) for device BGA pad size.
5.14.2.4 Routing Specifications
The SATA data signal traces are edge-coupled and must be routed to achieve exactly 100 Ohms
differential impedance. This is impacted by trace width, trace spacing, distance between planes, and
dielectric material. Verify with a proper PCB manufacturing tool that the trace geometry for both data
signal pairs results in exactly 100 ohms differential impedance traces. Table 5-47 shows the routing
specifications for the data and REFCLK signals .
Table 5-47. SATA Routing Specifications
PARAMETER MIN TYP MAX UNIT
Device to SATA header trace length 7000 Mils
REFCLK trace length from oscillator to Device 2000 Mils
Number of stubs allowed on SATA traces 0 Stubs
TX/RX pair differential impedance 100 Ohms
Number of vias on each SATA trace 3 Vias (1)
SATA differential pair to any other trace spacing 2*DS (2)
(1) Vias must be used in pairs with their distance minimized.
(2) DS is the differential spacing of the SATA traces.
5.14.2.5 Coupling Capacitors
AC coupling capacitors are required on the receive data pair as well as the REFCLK pair. Table 5-48
shows the requirements for these capacitors.
Table 5-48. SATA Bypass and Coupling Capacitors Requirements
PARAMETER MIN TYP MAX UNIT
SATA AC coupling capacitor value 0.3 10 12 nF
SATA AC coupling capacitor package size 0603 10 Mils(1)(2)
(1) LxW, 10 mil units, i.e., a 0402 is a 40x20 mil surface mount capacitor.
(2) The physical size of the capacitor should be as small as possible.
5.14.2.6 SATA Interface Clock Source requirements
A high-quality, low-jitter differential clock source is required for the SATA PHY. The SATA interface
requires a LVDS differential clock source to be provided at signals SATA_REFCLKP and
SATA_REFCLKN. The clock source should be placed physically as close to the processor as possible.
Table 5-49 shows the requirements for the clock source.
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 149
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
Table 5-49. SATA Input Clock Source Requirements
PARAMETER MIN TYP MAX UNIT
Clock Frequency (1) 75 375 MHz
Jitter 50 ps pk-pk
Duty Cycle 40 60 %
Rise/Fall Time 700 ps
(1) Discrete clock frequency points are supported based on the PLL multiplier used in the SATA PHY.
5.14.3 SATA Unused Signal Configuration
If the SATA interface is not used, the SATA signals should be configured as shown below.
Table 5-50. Unused SATA Signal Configuration
SATA Signal Name Configuration if SATA peripheral is not used
SATA_RXP No Connect
SATA_RXN No Connect
SATA_TXP No Connect
SATA_TXN No Connect
SATA_REFCLKP No Connect
SATA_REFCLKN No Connect
SATA_MPSWITCH May be used as GPIO or other peripheral function
SATA_CP_DET May be used as GPIO or other peripheral function
SATA_CP_POD May be used as GPIO or other peripheral function
SATA_LED May be used as GPIO or other peripheral function
SATA_REG No Connect
SATA_VDDR No Connect
SATA_VDD Prior to silicon revision 2.0, this supply must be connected to a static 1.2V nominal supply. For silicon
revision 2.0 and later, this supply may be left unconnected for additional power conservation.
SATA_VSS Vss
150 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
ReceiveLogic
C lo c k /F ra m e G e n e ra to r
StateMachine
ClockCheckand
Serializer0
Serializer1
Serializery
GIO
Control
DITRAM
384C
384U
Optional
Tr a n sm it
F o rm a tte r
Receive
F o rm a tte r
Tr a n sm it L o g ic
C lo c k /F ra m e G e n e ra to r
StateMachine
McASP
Peripheral
Configuration
Bus
McASP
DMA Bus
(Dedicated)
AHCLKRx
ACLKRx
AFSRx
AMUTEINx
AMUTEx
AFSXx
ACLKXx
AHCLKXx
AXRx[0]
AXRx[1]
AXRx[y]
Pins Function
ReceiveMasterClock
ReceiveBitClock
R e c e iv e L e ft /R ig h t C lo ck o r F ra m e S y n c
Tr a n sm it M a s te r C lo c k
Tr a n sm it B it C lo c k
Tr a n sm it L e ft/ R ig h t C lo c k o r F ra m e S y n c
Tr a n sm it/R e c e iv e S e r ia l D a ta P in
Tr a n sm it/R e c e iv e S e r ia l D a ta P in
Tr a n sm it/R e c e iv e S e r ia l D a ta P in
ErrorDetection
TheMcASP DOESNOThavea
dedicated AMUTEINpin.
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
5.15 Multichannel Audio Serial Port (McASP)
The McASP serial port is specifically designed for multichannel audio applications. Its key features are:
Flexible clock and frame sync generation logic and on-chip dividers
Up to sixteen transmit or receive data pins and serializers
Large number of serial data format options, including:
TDM Frames with 2 to 32 time slots per frame (periodic) or 1 slot per frame (burst)
Time slots of 8,12,16, 20, 24, 28, and 32 bits
First bit delay 0, 1, or 2 clocks
MSB or LSB first bit order
Left- or right-aligned data words within time slots
DIT Mode with 384-bit Channel Status and 384-bit User Data registers
Extensive error checking and mute generation logic
All unused pins GPIO-capable
Transmit &Receive FIFO Buffers allow the McASP to operate at a higher sample rate by making it
more tolerant to DMA latency.
Dynamic Adjustment of Clock Dividers
Clock Divider Value may be changed without resetting the McASP
Figure 5-31. McASP Block Diagram
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 151
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
5.15.1 McASP Peripheral Registers Description(s)
Registers for the McASP are summarized in Table 5-51. The registers are accessed through the
peripheral configuration port. The receive buffer registers (RBUF) and transmit buffer registers (XBUF) can
also be accessed through the DMA port, as listed in Table 5-52
Registers for the McASP Audio FIFO (AFIFO) are summarized in Table 5-53. Note that the AFIFO Write
FIFO (WFIFO) and Read FIFO (RFIFO) have independent control and status registers. The AFIFO control
registers are accessed through the peripheral configuration port.
Table 5-51. McASP Registers Accessed Through Peripheral Configuration Port
BYTE ADDRESS ACRONYM REGISTER DESCRIPTION
0x01D0 0000 REV Revision identification register
0x01D0 0010 PFUNC Pin function register
0x01D0 0014 PDIR Pin direction register
0x01D0 0018 PDOUT Pin data output register
0x01D0 001C PDIN Read returns: Pin data input register
0x01D0 001C PDSET Writes affect: Pin data set register (alternate write address: PDOUT)
0x01D0 0020 PDCLR Pin data clear register (alternate write address: PDOUT)
0x01D0 0044 GBLCTL Global control register
0x01D0 0048 AMUTE Audio mute control register
0x01D0 004C DLBCTL Digital loopback control register
0x01D0 0050 DITCTL DIT mode control register
0x01D0 0060 Receiver global control register: Alias of GBLCTL, only receive bits are affected - allows
RGBLCTL receiver to be reset independently from transmitter
0x01D0 0064 RMASK Receive format unit bit mask register
0x01D0 0068 RFMT Receive bit stream format register
0x01D0 006C AFSRCTL Receive frame sync control register
0x01D0 0070 ACLKRCTL Receive clock control register
0x01D0 0074 AHCLKRCTL Receive high-frequency clock control register
0x01D0 0078 RTDM Receive TDM time slot 0-31 register
0x01D0 007C RINTCTL Receiver interrupt control register
0x01D0 0080 RSTAT Receiver status register
0x01D0 0084 RSLOT Current receive TDM time slot register
0x01D0 0088 RCLKCHK Receive clock check control register
0x01D0 008C REVTCTL Receiver DMA event control register
0x01D0 00A0 Transmitter global control register. Alias of GBLCTL, only transmit bits are affected - allows
XGBLCTL transmitter to be reset independently from receiver
0x01D0 00A4 XMASK Transmit format unit bit mask register
0x01D0 00A8 XFMT Transmit bit stream format register
0x01D0 00AC AFSXCTL Transmit frame sync control register
0x01D0 00B0 ACLKXCTL Transmit clock control register
0x01D0 00B4 AHCLKXCTL Transmit high-frequency clock control register
0x01D0 00B8 XTDM Transmit TDM time slot 0-31 register
0x01D0 00BC XINTCTL Transmitter interrupt control register
0x01D0 00C0 XSTAT Transmitter status register
0x01D0 00C4 XSLOT Current transmit TDM time slot register
0x01D0 00C8 XCLKCHK Transmit clock check control register
0x01D0 00CC XEVTCTL Transmitter DMA event control register
0x01D0 0100 DITCSRA0 Left (even TDM time slot) channel status register (DIT mode) 0
0x01D0 0104 DITCSRA1 Left (even TDM time slot) channel status register (DIT mode) 1
0x01D0 0108 DITCSRA2 Left (even TDM time slot) channel status register (DIT mode) 2
152 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
Table 5-51. McASP Registers Accessed Through Peripheral Configuration Port (continued)
BYTE ADDRESS ACRONYM REGISTER DESCRIPTION
0x01D0 010C DITCSRA3 Left (even TDM time slot) channel status register (DIT mode) 3
0x01D0 0110 DITCSRA4 Left (even TDM time slot) channel status register (DIT mode) 4
0x01D0 0114 DITCSRA5 Left (even TDM time slot) channel status register (DIT mode) 5
0x01D0 0118 DITCSRB0 Right (odd TDM time slot) channel status register (DIT mode) 0
0x01D0 011C DITCSRB1 Right (odd TDM time slot) channel status register (DIT mode) 1
0x01D0 0120 DITCSRB2 Right (odd TDM time slot) channel status register (DIT mode) 2
0x01D0 0124 DITCSRB3 Right (odd TDM time slot) channel status register (DIT mode) 3
0x01D0 0128 DITCSRB4 Right (odd TDM time slot) channel status register (DIT mode) 4
0x01D0 012C DITCSRB5 Right (odd TDM time slot) channel status register (DIT mode) 5
0x01D0 0130 DITUDRA0 Left (even TDM time slot) channel user data register (DIT mode) 0
0x01D0 0134 DITUDRA1 Left (even TDM time slot) channel user data register (DIT mode) 1
0x01D0 0138 DITUDRA2 Left (even TDM time slot) channel user data register (DIT mode) 2
0x01D0 013C DITUDRA3 Left (even TDM time slot) channel user data register (DIT mode) 3
0x01D0 0140 DITUDRA4 Left (even TDM time slot) channel user data register (DIT mode) 4
0x01D0 0144 DITUDRA5 Left (even TDM time slot) channel user data register (DIT mode) 5
0x01D0 0148 DITUDRB0 Right (odd TDM time slot) channel user data register (DIT mode) 0
0x01D0 014C DITUDRB1 Right (odd TDM time slot) channel user data register (DIT mode) 1
0x01D0 0150 DITUDRB2 Right (odd TDM time slot) channel user data register (DIT mode) 2
0x01D0 0154 DITUDRB3 Right (odd TDM time slot) channel user data register (DIT mode) 3
0x01D0 0158 DITUDRB4 Right (odd TDM time slot) channel user data register (DIT mode) 4
0x01D0 015C DITUDRB5 Right (odd TDM time slot) channel user data register (DIT mode) 5
0x01D0 0180 SRCTL0 Serializer control register 0
0x01D0 0184 SRCTL1 Serializer control register 1
0x01D0 0188 SRCTL2 Serializer control register 2
0x01D0 018C SRCTL3 Serializer control register 3
0x01D0 0190 SRCTL4 Serializer control register 4
0x01D0 0194 SRCTL5 Serializer control register 5
0x01D0 0198 SRCTL6 Serializer control register 6
0x01D0 019C SRCTL7 Serializer control register 7
0x01D0 01A0 SRCTL8 Serializer control register 8
0x01D0 01A4 SRCTL9 Serializer control register 9
0x01D0 01A8 SRCTL10 Serializer control register 10
0x01D0 01AC SRCTL11 Serializer control register 11
0x01D0 01B0 SRCTL12 Serializer control register 12
0x01D0 01B4 SRCTL13 Serializer control register 13
0x01D0 01B8 SRCTL14 Serializer control register 14
0x01D0 01BC SRCTL15 Serializer control register 15
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 153
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
Table 5-51. McASP Registers Accessed Through Peripheral Configuration Port (continued)
BYTE ADDRESS ACRONYM REGISTER DESCRIPTION
0x01D0 0200 XBUF0(1) Transmit buffer register for serializer 0
0x01D0 0204 XBUF1(1) Transmit buffer register for serializer 1
0x01D0 0208 XBUF2(1) Transmit buffer register for serializer 2
0x01D0 020C XBUF3(1) Transmit buffer register for serializer 3
0x01D0 0210 XBUF4(1) Transmit buffer register for serializer 4
0x01D0 0214 XBUF5(1) Transmit buffer register for serializer 5
0x01D0 0218 XBUF6(1) Transmit buffer register for serializer 6
0x01D0 021C XBUF7(1) Transmit buffer register for serializer 7
0x01D0 0220 XBUF8(1) Transmit buffer register for serializer 8
0x01D0 0224 XBUF9(1) Transmit buffer register for serializer 9
0x01D0 0228 XBUF10(1) Transmit buffer register for serializer 10
0x01D0 022C XBUF11(1) Transmit buffer register for serializer 11
0x01D0 0230 XBUF12(1) Transmit buffer register for serializer 12
0x01D0 0234 XBUF13(1) Transmit buffer register for serializer 13
0x01D0 0238 XBUF14(1) Transmit buffer register for serializer 14
0x01D0 023C XBUF15(1) Transmit buffer register for serializer 15
0x01D0 0280 RBUF0(2) Receive buffer register for serializer 0
0x01D0 0284 RBUF1(2) Receive buffer register for serializer 1
0x01D0 0288 RBUF2(2) Receive buffer register for serializer 2
0x01D0 028C RBUF3(2) Receive buffer register for serializer 3
0x01D0 0290 RBUF4(2) Receive buffer register for serializer 4
0x01D0 0294 RBUF5(2) Receive buffer register for serializer 5
0x01D0 0298 RBUF6(2) Receive buffer register for serializer 6
0x01D0 029C RBUF7(2) Receive buffer register for serializer 7
0x01D0 02A0 RBUF8(2) Receive buffer register for serializer 8
0x01D0 02A4 RBUF9(2) Receive buffer register for serializer 9
0x01D0 02A8 RBUF10(2) Receive buffer register for serializer 10
0x01D0 02AC RBUF11(2) Receive buffer register for serializer 11
0x01D0 02B0 RBUF12(2) Receive buffer register for serializer 12
0x01D0 02B4 RBUF13(2) Receive buffer register for serializer 13
0x01D0 02B8 RBUF14(2) Receive buffer register for serializer 14
0x01D0 02BC RBUF15(2) Receive buffer register for serializer 15
(1) Writes to XRBUF originate from peripheral configuration port only when XBUSEL = 1 in XFMT.
(2) Reads from XRBUF originate on peripheral configuration port only when RBUSEL = 1 in RFMT.
Table 5-52. McASP Registers Accessed Through DMA Port
ACCESS BYTE ACRONYM REGISTER DESCRIPTION
TYPE ADDRESS
Read 0x01D0 2000 RBUF Receive buffer DMA port address. Cycles through receive serializers, skipping over transmit
Accesses serializers and inactive serializers. Starts at the lowest serializer at the beginning of each
time slot. Reads from DMA port only if XBUSEL = 0 in XFMT.
Write 0x01D0 2000 XBUF Transmit buffer DMA port address. Cycles through transmit serializers, skipping over receive
Accesses and inactive serializers. Starts at the lowest serializer at the beginning of each time slot.
Writes to DMA port only if RBUSEL = 0 in RFMT.
154 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
Table 5-53. McASP AFIFO Registers Accessed Through Peripheral Configuration Port
BYTE ADDRESS ACRONYM REGISTER DESCRIPTION
0x01D0 1000 AFIFOREV AFIFO revision identification register
0x01D0 1010 WFIFOCTL Write FIFO control register
0x01D0 1014 WFIFOSTS Write FIFO status register
0x01D0 1018 RFIFOCTL Read FIFO control register
0x01D0 101C RFIFOSTS Read FIFO status register
5.15.2 McASP Electrical Data/Timing
5.15.2.1 Multichannel Audio Serial Port 0 (McASP0) Timing
Table 5-54 and Table 5-56 assume testing over recommended operating conditions (see Figure 5-32 and
Figure 5-33).
Table 5-54. Timing Requirements for McASP0 (1.3V, 1.2V, 1.1V)(1)(2)
1.3V, 1.2V 1.1V
NO. PARAMETER UNIT
MIN MAX MIN MAX
1 tc(AHCLKRX) Cycle time, AHCLKR/X 25 28 ns
2 tw(AHCLKRX) Pulse duration, AHCLKR/X high or low 12.5 14 ns
3 tc(ACLKRX) Cycle time, ACLKR/X AHCLKR/X ext 25(3) 28(3) ns
4 tw(ACLKRX) Pulse duration, ACLKR/W high or low AHCLKR/X ext 12.5 14 ns
AHCLKR/X int 11.5 12 ns
Setup time,
5 tsu(AFSRX-ACLKRX) AHCLKR/X ext input 4 5 ns
AFSR/X input to ACLKR/X(4) AHCLKR/X ext output 4 5 ns
AHCLKR/X int -1 -2 ns
Hold time,
6 th(ACLKRX-AFSRX) AHCLKR/X ext input 1 1 ns
AFSR/X input after ACLKR/X(4) AHCLKR/X ext output 1 1 ns
AHCLKR/X int 11.5 12 ns
Setup time,
7 tsu(AXR-ACLKRX) AXR0[n] input to ACLKR/X(4)(5) AHCLKR/X ext 4 5 ns
AHCLKR/X int -1 -2 ns
Hold time,
8 th(ACLKRX-AXR) AHCLKR/X ext input 3 4 ns
AXR0[n] input after ACLKR/X(4)(5) AHCLKR/X ext output 3 4 ns
(1) ACLKX0 internal McASP0 ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1
ACLKX0 external input McASP0 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0
ACLKX0 external output McASP0 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1
ACLKR0 internal McASP0 ACLKRCTL.CLKRM = 1, PDIR.ACLKR =1
ACLKR0 external input McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0
ACLKR0 external output McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1
(2) P = SYSCLK2 period
(3) This timing is limited by the timing shown or 2P, whichever is greater.
(4) McASP0 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR0
(5) McASP0 ACLKXCTL.ASYNC=0: Receiver is clocked by transmitter's ACLKX0
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 155
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
Table 5-55. Timing Requirements for McASP0 (1.0V)(1)(2)
1.0V
NO. PARAMETER UNIT
MIN MAX
1 tc(AHCLKRX) Cycle time, AHCLKR/X 35 ns
2 tw(AHCLKRX) Pulse duration, AHCLKR/X high or low 17.5 ns
3 tc(ACLKRX) Cycle time, ACLKR/X AHCLKR/X ext 35(3) ns
4 tw(ACLKRX) Pulse duration, ACLKR/W high or low AHCLKR/X ext 17.5 ns
AHCLKR/X int 16 ns
Setup time,
5 tsu(AFSRX-ACLKRX) AHCLKR/X ext input 5.5 ns
AFSR/X input to ACLKR/X(4) AHCLKR/X ext output 5.5 ns
AHCLKR/X int -2 ns
Hold time,
6 th(ACLKRX-AFSRX) AHCLKR/X ext input 1 ns
AFSR/X input after ACLKR/X(4) AHCLKR/X ext output 1 ns
AHCLKR/X int 16 ns
Setup time,
7 tsu(AXR-ACLKRX) AXR0[n] input to ACLKR/X(4)(5) AHCLKR/X ext 5.5 ns
AHCLKR/X int -2 ns
Hold time,
8 th(ACLKRX-AXR) AHCLKR/X ext input 5 ns
AXR0[n] input after ACLKR/X(4)(5) AHCLKR/X ext output 5 ns
(1) ACLKX0 internal McASP0 ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1
ACLKX0 external input McASP0 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0
ACLKX0 external output McASP0 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1
ACLKR0 internal McASP0 ACLKRCTL.CLKRM = 1, PDIR.ACLKR =1
ACLKR0 external input McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0
ACLKR0 external output McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1
(2) P = SYSCLK2 period
(3) This timing is limited by the timing shown or 2P, whichever is greater.
(4) McASP0 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR0
(5) McASP0 ACLKXCTL.ASYNC=0: Receiver is clocked by transmitter's ACLKX0
156 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
Table 5-56. Switching Characteristics for McASP0 (1.3V, 1.2V, 1.1V)(1)
1.3V, 1.2V 1.1V
NO. PARAMETER UNIT
MIN MAX MIN MAX
9 tc(AHCLKRX) Cycle time, AHCLKR/X 25 28 ns
10 tw(AHCLKRX) Pulse duration, AHCLKR/X high or low AH 2.5(2) AH 2.5(2) ns
11 tc(ACLKRX) Cycle time, ACLKR/X ACLKR/X int 25(3)(4) 28(3)(4) ns
12 tw(ACLKRX) Pulse duration, ACLKR/X high or low ACLKR/X int A 2.5(5) A2.5(5) ns
ACLKR/X int -1 6 -1 8 ns
Delay time, ACLKR/X transmit edge
13 td(ACLKRX-AFSRX) ACLKR/X ext input 2 13.5 2 14.5 ns
to AFSX/R output valid(6) ACLKR/X ext output 2 13.5 2 14.5 ns
ACLKR/X int -1 6 -1 8 ns
Delay time, ACLKX transmit edge to
14 td(ACLKX-AXRV) ACLKR/X ext input 2 13.5 2 15 ns
AXR output valid ACLKR/X ext output 2 13.5 2 15 ns
Disable time, ACLKR/X transmit ACLKR/X int 0 6 0 8 ns
15 tdis(ACLKX-AXRHZ) edge to AXR high impedance ACLKR/X ext 2 13.5 2 15 ns
following last data bit
(1) McASP0 ACLKX0 internal ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1
ACLKX0 external input McASP0 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0
ACLKX0 external output McASP0ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1
ACLKR0 internal McASP0 ACLKR0CTL.CLKRM = 1, PDIR.ACLKR =1
ACLKR0 external input McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0
ACLKR0 external output McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1
(2) AH = (AHCLKR/X period)/2 in ns. For example, when AHCLKR/X period is 25 ns, use AH = 12.5 ns.
(3) P = SYSCLK2 period
(4) This timing is limited by the timing shown or 2P, whichever is greater.
(5) A = (ACLKR/X period)/2 in ns. For example, when AHCLKR/X period is 25 ns, use AH = 12.5 ns.
(6) McASP0 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR0
Table 5-57. Switching Characteristics for McASP0 (1.0V)(1)
1.0V
NO. PARAMETER UNIT
MIN MAX
9 tc(AHCLKRX) Cycle time, AHCLKR/X 35 ns
10 tw(AHCLKRX) Pulse duration, AHCLKR/X high or low AH 2.5(2) ns
11 tc(ACLKRX) Cycle time, ACLKR/X ACLKR/X int 35(3)(4) ns
12 tw(ACLKRX) Pulse duration, ACLKR/X high or low ACLKR/X int A 2.5(5) ns
ACLKR/X int -0.5 10 ns
Delay time, ACLKR/X transmit edge to AFSX/R output
13 td(ACLKRX-AFSRX) ACLKR/X ext input 2 19 ns
valid(6) ACLKR/X ext output 2 19 ns
ACLKR/X int -0.5 10 ns
14 td(ACLKX-AXRV) Delay time, ACLKX transmit edge to AXR output valid ACLKR/X ext input 2 19 ns
ACLKR/X ext output 2 19 ns
ACLKR/X int 0 10 ns
Disable time, ACLKR/X transmit edge to AXR high
15 tdis(ACLKX-AXRHZ) impedance following last data bit ACLKR/X ext 2 19 ns
(1) McASP0 ACLKX0 internal ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1
ACLKX0 external input McASP0 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0
ACLKX0 external output McASP0ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1
ACLKR0 internal McASP0 ACLKR0CTL.CLKRM = 1, PDIR.ACLKR =1
ACLKR0 external input McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0
ACLKR0 external output McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1
(2) AH = (AHCLKR/X period)/2 in ns. For example, when AHCLKR/X period is 25 ns, use AH = 12.5 ns.
(3) P = SYSCLK2 period
(4) This timing is limited by the timing shown or 2P, whichever is greater.
(5) A = (ACLKR/X period)/2 in ns. For example, when AHCLKR/X period is 25 ns, use AH = 12.5 ns.
(6) McASP0 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR0
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 157
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
8
7
4
4
3
2
21
A0 A1 B0 B1A30 A31 B30 B31 C0 C1 C2 C3 C31
AHCLKR/X (Falling Edge Polarity)
AHCLKR/X (Rising Edge Polarity)
AFSR/X (Bit Width, 0 Bit Delay)
AFSR/X (Bit Width, 1 Bit Delay)
AFSR/X (Bit Width, 2 Bit Delay)
AFSR/X (Slot Width, 0 Bit Delay)
AFSR/X (Slot Width, 1 Bit Delay)
AFSR/X (Slot Width, 2 Bit Delay)
AXR[n] (Data In/Receive)
6
5
ACLKR/X (CLKRP = CLKXP = 0)(A)
ACLKR/X (CLKRP = CLKXP = 1)(B)
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
A. For CLKRP = CLKXP = 0, the McASP transmitter is configured for rising edge (to shift data out) and the McASP
receiver is configured for falling edge (to shift data in).
B. For CLKRP = CLKXP = 1, the McASP transmitter is configured for falling edge (to shift data out) and the McASP
receiver is configured for rising edge (to shift data in).
Figure 5-32. McASP Input Timings
158 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
15
14
13
13
13
13
13
13
13
12
12
11
10
10
9
A0 A1 B0 B1A30 A31 B30 B31 C0 C1 C2 C3 C31
AHCLKR/X (Falling Edge Polarity)
AHCLKR/X (Rising Edge Polarity)
AFSR/X (Bit Width, 0 Bit Delay)
AFSR/X (Bit Width, 1 Bit Delay)
AFSR/X (Bit Width, 2 Bit Delay)
AFSR/X (Slot Width, 0 Bit Delay)
AFSR/X (Slot Width, 1 Bit Delay)
AFSR/X (Slot Width, 2 Bit Delay)
AXR[n] (Data Out/Transmit)
ACLKR/X (CLKRP = CLKXP = 0)(B)
ACLKR/X (CLKRP = CLKXP = 1)(A)
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
A. For CLKRP = CLKXP = 1, the McASP transmitter is configured for falling edge (to shift data out) and the McASP
receiver is configured for rising edge (to shift data in).
B. For CLKRP = CLKXP = 0, the McASP transmitter is configured for rising edge (to shift data out) and the McASP
receiver is configured for falling edge (to shift data in).
Figure 5-33. McASP Output Timings
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 159
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
5.16 Multichannel Buffered Serial Port (McBSP)
The McBSP provides these functions:
Full-duplex communication
Double-buffered data registers, which allow a continuous data stream
Independent framing and clocking for receive and transmit
Direct interface to industry-standard codecs, analog interface chips (AICs), and other serially
connected analog-to-digital (A/D) and digital-to-analog (D/A) devices
External shift clock or an internal, programmable frequency shift clock for data transfer
Transmit &Receive FIFO Buffers allow the McBSP to operate at a higher sample rate by making it
more tolerant to DMA latency
If internal clock source is used, the CLKGDV field of the Sample Rate Generator Register (SRGR) must
always be set to a value of 1 or greater.
5.16.1 McBSP Peripheral Register Description(s)
Table 5-58. McBSP/FIFO Registers
McBSP0 McBSP1 ACRONYM REGISTER DESCRIPTION
BYTE ADDRESS BYTE ADDRESS
McBSP Registers
0x01D1 0000 0x01D1 1000 DRR McBSP Data Receive Register (read-only)
0x01D1 0004 0x01D1 1004 DXR McBSP Data Transmit Register
0x01D1 0008 0x01D1 1008 SPCR McBSP Serial Port Control Register
0x01D1 000C 0x01D1 100C RCR McBSP Receive Control Register
0x01D1 0010 0x01D1 1010 XCR McBSP Transmit Control Register
0x01D1 0014 0x01D1 1014 SRGR McBSP Sample Rate Generator register
0x01D1 0018 0x01D1 1018 MCR McBSP Multichannel Control Register
0x01D1 001C 0x01D1 101C RCERE0 McBSP Enhanced Receive Channel Enable Register 0 Partition A/B
0x01D1 0020 0x01D1 1020 XCERE0 McBSP Enhanced Transmit Channel Enable Register 0 Partition A/B
0x01D1 0024 0x01D1 1024 PCR McBSP Pin Control Register
0x01D1 0028 0x01D1 1028 RCERE1 McBSP Enhanced Receive Channel Enable Register 1 Partition C/D
0x01D1 002C 0x01D1 102C XCERE1 McBSP Enhanced Transmit Channel Enable Register 1 Partition C/D
0x01D1 0030 0x01D1 1030 RCERE2 McBSP Enhanced Receive Channel Enable Register 2 Partition E/F
0x01D1 0034 0x01D1 1034 XCERE2 McBSP Enhanced Transmit Channel Enable Register 2 Partition E/F
0x01D1 0038 0x01D1 1038 RCERE3 McBSP Enhanced Receive Channel Enable Register 3 Partition G/H
0x01D1 003C 0x01D1 103C XCERE3 McBSP Enhanced Transmit Channel Enable Register 3 Partition G/H
McBSP FIFO Control and Status Registers
0x01D1 0800 0x01D1 1800 BFIFOREV BFIFO Revision Identification Register
0x01D1 0810 0x01D1 1810 WFIFOCTL Write FIFO Control Register
0x01D1 0814 0x01D1 1814 WFIFOSTS Write FIFO Status Register
0x01D1 0818 0x01D1 1818 RFIFOCTL Read FIFO Control Register
0x01D1 081C 0x01D1 181C RFIFOSTS Read FIFO Status Register
McBSP FIFO Data Registers
0x01F1 0000 0x01F1 1000 RBUF McBSP FIFO Receive Buffer
0x01F1 0000 0x01F1 1000 XBUF McBSP FIFO Transmit Buffer
160 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
5.16.2 McBSP Electrical Data/Timing
The following assume testing over recommended operating conditions.
5.16.2.1 Multichannel Buffered Serial Port (McBSP) Timing
Table 5-59. Timing Requirements for McBSP0 [1.3V, 1.2V, 1.1V](1) (see Figure 5-34)
1.3V, 1.2V 1.1V
NO. PARAMETER UNIT
MIN MAX MIN MAX
2 tc(CKRX) Cycle time, CLKR/X CLKR/X ext 2P or 20(2)(3) 2P or 25(2)(3) ns
3 tw(CKRX) Pulse duration, CLKR/X high or CLKR/X low CLKR/X ext P - 1(4) P - 1(4) ns
CLKR int 14 15.5
Setup time, external FSR high before CLKR
5 tsu(FRH-CKRL) ns
low CLKR ext 4 5
CLKR int 6 6
6 th(CKRL-FRH) Hold time, external FSR high after CLKR low ns
CLKR ext 3 3
CLKR int 14 15.5
7 tsu(DRV-CKRL) Setup time, DR valid before CLKR low ns
CLKR ext 4 5
CLKR int 3 3
8 th(CKRL-DRV) Hold time, DR valid after CLKR low ns
CLKR ext 3 3
CLKX int 14 15.5
Setup time, external FSX high before CLKX
10 tsu(FXH-CKXL) ns
low CLKX ext 4 5
CLKX int 6 6
11 th(CKXL-FXH) Hold time, external FSX high after CLKX low ns
CLKX ext 3 3
(1) CLKRP = CLKXP = FSRP = FSXP = 0. If polarity of any of the signals is inverted, then the timing references of that signal are also
inverted.
(2) P = AYNC3 period in ns. For example, when the ASYNC clock domain is running at 100 MHz, use 10 ns.
(3) Use whichever value is greater. Minimum CLKR/X cycle times must be met, even when CLKR/X is generated by an internal clock
source. The minimum CLKR/X cycle times are based on internal logic speed; the maximum usable speed may be lower due to EDMA
limitations and AC timing requirements.
(4) This parameter applies to the maximum McBSP frequency. Operate serial clocks (CLKR/X) in the reasonable range of 40/60 duty cycle.
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 161
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
Table 5-60. Timing Requirements for McBSP0 [1.0V](1) (see Figure 5-34)
1.0V
NO. PARAMETER UNIT
MIN MAX
2 tc(CKRX) Cycle time, CLKR/X CLKR/X ext 2P or 26.6(2)(3) ns
3 tw(CKRX) Pulse duration, CLKR/X high or CLKR/X low CLKR/X ext P - 1(4) ns
CLKR int 20
5 tsu(FRH-CKRL) Setup time, external FSR high before CLKR low ns
CLKR ext 5
CLKR int 6
6 th(CKRL-FRH) Hold time, external FSR high after CLKR low ns
CLKR ext 3
CLKR int 20
7 tsu(DRV-CKRL) Setup time, DR valid before CLKR low ns
CLKR ext 5
CLKR int 3
8 th(CKRL-DRV) Hold time, DR valid after CLKR low ns
CLKR ext 3
CLKX int 20
10 tsu(FXH-CKXL) Setup time, external FSX high before CLKX low ns
CLKX ext 5
CLKX int 6
11 th(CKXL-FXH) Hold time, external FSX high after CLKX low ns
CLKX ext 3
(1) CLKRP = CLKXP = FSRP = FSXP = 0. If polarity of any of the signals is inverted, then the timing references of that signal are also
inverted.
(2) P = AYNC3 period in ns. For example, when the ASYNC clock domain is running at 100 MHz, use 10 ns.
(3) Use whichever value is greater. Minimum CLKR/X cycle times must be met, even when CLKR/X is generated by an internal clock
source. The minimum CLKR/X cycle times are based on internal logic speed; the maximum usable speed may be lower due to EDMA
limitations and AC timing requirements.
(4) This parameter applies to the maximum McBSP frequency. Operate serial clocks (CLKR/X) in the reasonable range of 40/60 duty cycle.
162 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
Table 5-61. Switching Characteristics for McBSP0 [1.3V, 1.2V, 1.1V](1)(2)
(see Figure 5-34)
1.3V, 1.2V 1.1V
NO. PARAMETER UNIT
MIN MAX MIN MAX
td(CKSH- Delay time, CLKS high to CLKR/X high for internal
1 2 14.5 2 16 ns
CKRXH) CLKR/X generated from CLKS input
2 tc(CKRX) Cycle time, CLKR/X CLKR/X int 2P or 20(3)(4)(5) 2P or 25(3)(4)(5) ns
Pulse duration, CLKR/X high or
3 tw(CKRX) CLKR/X int C - 2(6) C + 2(6) C - 2(6) C + 2(6) ns
CLKR/X low
CLKR int -4 5.5 -4 5.5
Delay time, CLKR high to internal FSR
4 td(CKRH-FRV) ns
valid CLKR ext 2 14.5 2 16
CLKX int -4 5.5 -4 5.5
Delay time, CLKX high to internal FSX
9 td(CKXH-FXV) ns
valid CLKX ext 2 14.5 2 16
CLKX int -4 7.5 -5.5 7.5
tdis(CKXH- Disable time, DX high impedance
12 ns
DXHZ) following last data bit from CLKX high CLKX ext -2 16 -22 16
CLKX int -4 + D1(7) 5.5 + D2(7) -4 + D1(7) 5.5 + D2(7)
13 td(CKXH-DXV) Delay time, CLKX high to DX valid ns
CLKX ext 2 + D1(7) 14.5 + D2(7) 2 + D1(7) 16 + D2(7)
Delay time, FSX high to DX valid FSX int -4(8) 5(8) -4(8) 5(8)
14 td(FXH-DXV) ns
ONLY applies when in data FSX ext -2(8) 14.5(8) -2(8) 16(8)
delay 0 (XDATDLY = 00b) mode
(1) CLKRP = CLKXP = FSRP = FSXP = 0. If polarity of any of the signals is inverted, then the timing references of that signal are also
inverted.
(2) Minimum delay times also represent minimum output hold times.
(3) Minimum CLKR/X cycle times must be met, even when CLKR/X is generated by an internal clock source. Minimum CLKR/X cycle times
are based on internal logic speed; the maximum usable speed may be lower due to EDMA limitations and AC timing requirements.
(4) P = AYNC3 period in ns. For example, when the ASYNC clock domain is running at 100 MHz, use 10 ns.
(5) Use whichever value is greater.
(6) C = H or L
S = sample rate generator input clock = P if CLKSM = 1 (P = ASYNC period)
S = sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period)
H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even
H = (CLKGDV + 1)/2 * S if CLKGDV is odd
L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even
L = (CLKGDV + 1)/2 * S if CLKGDV is odd
CLKGDV should be set appropriately to ensure the McBSP bit rate does not exceed the maximum limit (see (4) above).
(7) Extra delay from CLKX high to DX valid applies only to the first data bit of a device, if and only if DXENA = 1 in SPCR.
if DXENA = 0, then D1 = D2 = 0
if DXENA = 1, then D1 = 6P, D2 = 12P
(8) Extra delay from FSX high to DX valid applies only to the first data bit of a device, if and only if DXENA = 1 in SPCR.
if DXENA = 0, then D1 = D2 = 0
if DXENA = 1, then D1 = 6P, D2 = 12P
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 163
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
Table 5-62. Switching Characteristics for McBSP0 [1.0V](1) (2)
(see Figure 5-34)
1.0V
NO. PARAMETER UNIT
MIN MAX
Delay time, CLKS high to CLKR/X high for internal CLKR/X
1 td(CKSH-CKRXH) 3 21.5 ns
generated from CLKS input
2 tc(CKRX) Cycle time, CLKR/X CLKR/X int 2P or 26.6(3)(4)(5) ns
3 tw(CKRX) Pulse duration, CLKR/X high or CLKR/X low CLKR/X int C - 2(6) C + 2(6) ns
CLKR int -4 10
4 td(CKRH-FRV) Delay time, CLKR high to internal FSR valid ns
CLKR ext 2.5 21.5
CLKX int -4 10
9 td(CKXH-FXV) Delay time, CLKX high to internal FSX valid ns
CLKX ext 2.5 21.5
CLKX int -4 10
Disable time, DX high impedance following last data
12 tdis(CKXH-DXHZ) ns
bit from CLKX high CLKX ext -2 21.5
CLKX int -4 + D1(7) 10 + D2(7)
13 td(CKXH-DXV) Delay time, CLKX high to DX valid ns
CLKX ext 2.5 + D1(7) 21.5 + D2(7)
Delay time, FSX high to DX valid FSX int -4(8) 5(8)
14 td(FXH-DXV) ns
ONLY applies when in data FSX ext -2(8) 21.5(8)
delay 0 (XDATDLY = 00b) mode
(1) CLKRP = CLKXP = FSRP = FSXP = 0. If polarity of any of the signals is inverted, then the timing references of that signal are also
inverted.
(2) Minimum delay times also represent minimum output hold times.
(3) Minimum CLKR/X cycle times must be met, even when CLKR/X is generated by an internal clock source. Minimum CLKR/X cycle times
are based on internal logic speed; the maximum usable speed may be lower due to EDMA limitations and AC timing requirements.
(4) P = AYNC3 period in ns. For example, when the ASYNC clock domain is running at 100 MHz, use 10 ns.
(5) Use whichever value is greater.
(6) C = H or L
S = sample rate generator input clock = P if CLKSM = 1 (P = ASYNC period)
S = sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period)
H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even
H = (CLKGDV + 1)/2 * S if CLKGDV is odd
L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even
L = (CLKGDV + 1)/2 * S if CLKGDV is odd
CLKGDV should be set appropriately to ensure the McBSP bit rate does not exceed the maximum limit (see (4) above).
(7) Extra delay from CLKX high to DX valid applies only to the first data bit of a device, if and only if DXENA = 1 in SPCR.
if DXENA = 0, then D1 = D2 = 0
if DXENA = 1, then D1 = 6P, D2 = 12P
(8) Extra delay from FSX high to DX valid applies only to the first data bit of a device, if and only if DXENA = 1 in SPCR.
if DXENA = 0, then D1 = D2 = 0
if DXENA = 1, then D1 = 6P, D2 = 12P
164 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
Table 5-63. Timing Requirements for McBSP1 [1.3V, 1.2V, 1.1V](1) (see Figure 5-34)
1.3V, 1.2V 1.1V
NO. PARAMETER UNIT
MIN MAX MIN MAX
2 tc(CKRX) Cycle time, CLKR/X CLKR/X ext 2P or 20(2)(3) 2P or 25(2) (4) ns
Pulse duration, CLKR/X high or
3 tw(CKRX) CLKR/X ext P - 1(5) P - 1(6) ns
CLKR/X low CLKR int 15 18
Setup time, external FSR high before
5 tsu(FRH-CKRL) ns
CLKR low CLKR ext 5 5
CLKR int 6 6
Hold time, external FSR high after
6 th(CKRL-FRH) ns
CLKR low CLKR ext 3 3
CLKR int 15 18
7 tsu(DRV-CKRL) Setup time, DR valid before CLKR low ns
CLKR ext 5 5
CLKR int 3 3
8 th(CKRL-DRV) Hold time, DR valid after CLKR low ns
CLKR ext 3 3
CLKX int 15 18
Setup time, external FSX high before
10 tsu(FXH-CKXL) ns
CLKX low CLKX ext 5 5
CLKX int 6 6
Hold time, external FSX high after
11 th(CKXL-FXH) ns
CLKX low CLKX ext 3 3
(1) CLKRP = CLKXP = FSRP = FSXP = 0. If polarity of any of the signals is inverted, then the timing references of that signal are also
inverted.
(2) P = AYNC3 period in ns. For example, when the ASYNC clock domain is running at 100 MHz, use 10 ns.
(3) Use whichever value is greater. Minimum CLKR/X cycle times must be met, even when CLKR/X is generated by an internal clock
source. The minimum CLKR/X cycle times are based on internal logic speed; the maximum usable speed may be lower due to EDMA
limitations and AC timing requirements.
(4) Use whichever value is greater. Minimum CLKR/X cycle times must be met, even when CLKR/X is generated by an internal clock
source. The minimum CLKR/X cycle times are based on internal logic speed; the maximum usable speed may be lower due to EDMA
limitations and AC timing requirements.
(5) This parameter applies to the maximum McBSP frequency. Operate serial clocks (CLKR/X) in the reasonable range of 40/60 duty cycle.
(6) This parameter applies to the maximum McBSP frequency. Operate serial clocks (CLKR/X) in the reasonable range of 40/60 duty cycle.
Table 5-64. Timing Requirements for McBSP1 [1.0V](1) (see Figure 5-34)
1.0V
NO. PARAMETER UNIT
MIN MAX
2 tc(CKRX) Cycle time, CLKR/X CLKR/X ext 2P or 26.6(2)(3) ns
3 tw(CKRX) Pulse duration, CLKR/X high or CLKR/X low CLKR/X ext P - 1(4) ns
CLKR int 21
5 tsu(FRH-CKRL) Setup time, external FSR high before CLKR low ns
CLKR ext 10
CLKR int 6
6 th(CKRL-FRH) Hold time, external FSR high after CLKR low ns
CLKR ext 3
CLKR int 21
7 tsu(DRV-CKRL) Setup time, DR valid before CLKR low ns
CLKR ext 10
CLKR int 3
8 th(CKRL-DRV) Hold time, DR valid after CLKR low ns
CLKR ext 3
CLKX int 21
10 tsu(FXH-CKXL) Setup time, external FSX high before CLKX low ns
CLKX ext 10
CLKX int 6
11 th(CKXL-FXH) Hold time, external FSX high after CLKX low ns
CLKX ext 3
(1) CLKRP = CLKXP = FSRP = FSXP = 0. If polarity of any of the signals is inverted, then the timing references of that signal are also
inverted.
(2) P = AYNC3 period in ns. For example, when the ASYNC clock domain is running at 100 MHz, use 10 ns.
(3) Use whichever value is greater. Minimum CLKR/X cycle times must be met, even when CLKR/X is generated by an internal clock
source. The minimum CLKR/X cycle times are based on internal logic speed; the maximum usable speed may be lower due to EDMA
limitations and AC timing requirements.
(4) This parameter applies to the maximum McBSP frequency. Operate serial clocks (CLKR/X) in the reasonable range of 40/60 duty cycle.
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 165
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
Table 5-65. Switching Characteristics for McBSP1 [1.3V, 1.2V, 1.1V](1) (2)
(see Figure 5-34)
1.3V, 1.2V 1.1V
NO. PARAMETER UNIT
MIN MAX MIN MAX
Delay time, CLKS high to CLKR/X high for internal
1 td(CKSH-CKRXH) 0.5 16.5 1.5 18 ns
CLKR/X generated from CLKS input
2 tc(CKRX) Cycle time, CLKR/X CLKR/X int 2P or 20(3)(4)(5) 2P or 25(3)(4) (5) ns
Pulse duration, CLKR/X high or
3 tw(CKRX) CLKR/X int C - 2(6) C + 2(6) C - 2(6) C + 2(6) ns
CLKR/X low
CLKR int -4 6.5 -4 13
Delay time, CLKR high to internal
4 td(CKRH-FRV) ns
FSR valid CLKR ext 1 16.5 1 18
CLKX int -4 6.5 -4 13
Delay time, CLKX high to internal
9 td(CKXH-FXV) ns
FSX valid CLKX ext 1 16.5 1 18
Disable time, DX high impedance CLKX int -4 6.5 -4 13
12 tdis(CKXH-DXHZ) following last data bit from CLKX ns
CLKX ext -2 16.5 -2 18
high
CLKX int -4 + D1(7) 6.5 + D2(7) -4 + D1(7) 13 + D2(7)
13 td(CKXH-DXV) Delay time, CLKX high to DX valid ns
CLKX ext 1 + D1(7) 16.5 + D2(7) 1 + D1(7) 18 + D2(7)
Delay time, FSX high to DX valid FSX int -4(8) 6.5(8) -4(8) 13(8)
14 td(FXH-DXV) ns
ONLY applies when in data FSX ext -2(8) 16.5(8) -2(8) 18(9)
delay 0 (XDATDLY = 00b) mode
(1) CLKRP = CLKXP = FSRP = FSXP = 0. If polarity of any of the signals is inverted, then the timing references of that signal are also
inverted.
(2) Minimum delay times also represent minimum output hold times.
(3) Minimum CLKR/X cycle times must be met, even when CLKR/X is generated by an internal clock source. Minimum CLKR/X cycle times
are based on internal logic speed; the maximum usable speed may be lower due to EDMA limitations and AC timing requirements.
(4) P = AYNC3 period in ns. For example, when the ASYNC clock domain is running at 100 MHz, use 10 ns.
(5) Use whichever value is greater.
(6) C = H or L
S = sample rate generator input clock = P if CLKSM = 1 (P = ASYNC period)
S = sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period)
H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even
H = (CLKGDV + 1)/2 * S if CLKGDV is odd
L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even
L = (CLKGDV + 1)/2 * S if CLKGDV is odd
CLKGDV should be set appropriately to ensure the McBSP bit rate does not exceed the maximum limit (see (4) above).
(7) Extra delay from CLKX high to DX valid applies only to the first data bit of a device, if and only if DXENA = 1 in SPCR.
if DXENA = 0, then D1 = D2 = 0
if DXENA = 1, then D1 = 6P, D2 = 12P
(8) Extra delay from FSX high to DX valid applies only to the first data bit of a device, if and only if DXENA = 1 in SPCR.
if DXENA = 0, then D1 = D2 = 0
if DXENA = 1, then D1 = 6P, D2 = 12P
(9) Extra delay from FSX high to DX valid applies only to the first data bit of a device, if and only if DXENA = 1 in SPCR.
if DXENA = 0, then D1 = D2 = 0
if DXENA = 1, then D1 = 6P, D2 = 12P
166 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
Table 5-66. Switching Characteristics for McBSP1 [1.0V](1) (2)
(see Figure 5-34)
1.0V
NO. PARAMETER UNIT
MIN MAX
Delay time, CLKS high to CLKR/X high for internal CLKR/X
1 td(CKSH-CKRXH) 1.5 23 ns
generated from CLKS input
2 tc(CKRX) Cycle time, CLKR/X CLKR/X int 2P or 26.6(3)(4)(5) ns
3 tw(CKRX) Pulse duration, CLKR/X high or CLKR/X low CLKR/X int C - 2(6) C + 2(6) ns
CLKR int -4 13
4 td(CKRH-FRV) Delay time, CLKR high to internal FSR valid ns
CLKR ext 2.5 23
CLKX int -4 13
9 td(CKXH-FXV) Delay time, CLKX high to internal FSX valid ns
CLKX ext 1 23
CLKX int -4 13
Disable time, DX high impedance following last data
12 tdis(CKXH-DXHZ) ns
bit from CLKX high CLKX ext -2 23
CLKX int -4 + D1(7) 13 + D2(8)
13 td(CKXH-DXV) Delay time, CLKX high to DX valid ns
CLKX ext 1 + D1(8) 23 + D2(8)
Delay time, FSX high to DX valid FSX int -4(9) 13(9)
14 td(FXH-DXV) ns
ONLY applies when in data FSX ext -2(9) 23(9)
delay 0 (XDATDLY = 00b) mode
(1) CLKRP = CLKXP = FSRP = FSXP = 0. If polarity of any of the signals is inverted, then the timing references of that signal are also
inverted.
(2) Minimum delay times also represent minimum output hold times.
(3) Minimum CLKR/X cycle times must be met, even when CLKR/X is generated by an internal clock source. Minimum CLKR/X cycle times
are based on internal logic speed; the maximum usable speed may be lower due to EDMA limitations and AC timing requirements.
(4) P = AYNC3 period in ns. For example, when the ASYNC clock domain is running at 100 MHz, use 10 ns.
(5) Use whichever value is greater.
(6) C = H or L
S = sample rate generator input clock = P if CLKSM = 1 (P = ASYNC period)
S = sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period)
H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even
H = (CLKGDV + 1)/2 * S if CLKGDV is odd
L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even
L = (CLKGDV + 1)/2 * S if CLKGDV is odd
CLKGDV should be set appropriately to ensure the McBSP bit rate does not exceed the maximum limit (see (4) above).
(7) Extra delay from CLKX high to DX valid applies only to the first data bit of a device, if and only if DXENA = 1 in SPCR.
if DXENA = 0, then D1 = D2 = 0
if DXENA = 1, then D1 = 6P, D2 = 12P
(8) Extra delay from CLKX high to DX valid applies only to the first data bit of a device, if and only if DXENA = 1 in SPCR.
if DXENA = 0, then D1 = D2 = 0
if DXENA = 1, then D1 = 6P, D2 = 12P
(9) Extra delay from FSX high to DX valid applies only to the first data bit of a device, if and only if DXENA = 1 in SPCR.
if DXENA = 0, then D1 = D2 = 0
if DXENA = 1, then D1 = 6P, D2 = 12P
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 167
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
Bit(n1) (n2) (n3)
Bit0 Bit(n1) (n2) (n3)
14
12
11
10
9
33
2
8
7
6
5
44
3
1
3
2
CLKS
CLKR
FSR(int)
FSR(ext)
DR
CLKX
FSX(int)
FSX(ext)
FSX(XDATDLY=00b)
DX
13 (A)
13 (A)
2
1
CLKS
FSRexternal
CLKR/X(noneedtoresync)
CLKR/X(needsresync)
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
Figure 5-34. McBSP Timing(B)
Table 5-67. Timing Requirements for McBSP0 FSR When GSYNC = 1 (see Figure 5-35)
1.3V, 1.2V 1.1V 1.0V
NO. PARAMETER UNIT
MIN MAX MIN MAX MIN MAX
1 tsu(FRH-CKSH) Setup time, FSR high before CLKS high 4 4.5 5 ns
2 th(CKSH-FRH) Hold time, FSR high after CLKS high 4 4 4 ns
Table 5-68. Timing Requirements for McBSP1 FSR When GSYNC = 1 (see Figure 5-35)
1.3V, 1.2V 1.1V 1.0V
NO. PARAMETER UNIT
MIN MAX MIN MAX MIN MAX
1 tsu(FRH-CKSH) Setup time, FSR high before CLKS high 5 5 10 ns
2 th(CKSH-FRH) Hold time, FSR high after CLKS high 4 4 4 ns
Figure 5-35. FSR Timing When GSYNC = 1
168 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
Peripheral
Configuration Bus
Interrupt and
DMA Requests
16-Bit Shift Register
16-Bit Buffer
GPIO
Control
(all pins)
State
Machine
Clock
Control
SPIx_SIMO
SPIx_SOMI
SPIx_ENA
SPIx_SCS
SPIx_CLK
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
5.17 Serial Peripheral Interface Ports (SPI0, SPI1)
Figure 5-36 is a block diagram of the SPI module, which is a simple shift register and buffer plus control
logic. Data is written to the shift register before transmission occurs and is read from the buffer at the end
of transmission. The SPI can operate either as a master, in which case, it initiates a transfer and drives
the SPIx_CLK pin, or as a slave. Four clock phase and polarity options are supported as well as many
data formatting options.
Figure 5-36. Block Diagram of SPI Module
The SPI supports 3-, 4-, and 5-pin operation with three basic pins (SPIx_CLK, SPIx_SIMO, and
SPIx_SOMI) and two optional pins (SPIx_SCS, SPIx_ENA).
The optional SPIx_SCS (Slave Chip Select) pin is most useful to enable in slave mode when there are
other slave devices on the same SPI port. The device will only shift data and drive the SPIx_SOMI pin
when SPIx_SCS is held low.
In slave mode, SPIx_ENA is an optional output. The SPIx_ENA output provides the status of the internal
transmit buffer (SPIDAT0/1 registers). In four-pin mode with the enable option, SPIx_ENA is asserted only
when the transmit buffer is full, indicating that the slave is ready to begin another transfer. In five-pin
mode, the SPIx_ENA is additionally qualified by SPIx_SCS being asserted. This allows a single
handshake line to be shared by multiple slaves on the same SPI bus.
In master mode, the SPIx_ENA pin is an optional input and the master can be configured to delay the start
of the next transfer until the slave asserts SPIx_ENA. The addition of this handshake signal simplifies SPI
communications and, on average, increases SPI bus throughput since the master does not need to delay
each transfer long enough to allow for the worst-case latency of the slave device. Instead, each transfer
can begin as soon as both the master and slave have actually serviced the previous SPI transfer.
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 169
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
Optional − Slave Chip Select
Optional Enable (Ready)
SLAVE SPIMASTER SPI
SPIx_SIMOSPIx_SIMO
SPIx_SOMI SPIx_SOMI
SPIx_CLK SPIx_CLK
SPIx_ENA SPIx_ENA
SPIx_SCS SPIx_SCS
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
Figure 5-37. Illustration of SPI Master-to-SPI Slave Connection
170 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
5.17.1 SPI Peripheral Registers Description(s)
Table 5-69 is a list of the SPI registers.
Table 5-69. SPIx Configuration Registers
SPI0 SPI1 ACRONYM DESCRIPTION
BYTE ADDRESS BYTE ADDRESS
0x01C4 1000 0x01F0 E000 SPIGCR0 Global Control Register 0
0x01C4 1004 0x01F0 E004 SPIGCR1 Global Control Register 1
0x01C4 1008 0x01F0 E008 SPIINT0 Interrupt Register
0x01C4 100C 0x01F0 E00C SPILVL Interrupt Level Register
0x01C4 1010 0x01F0 E010 SPIFLG Flag Register
0x01C4 1014 0x01F0 E014 SPIPC0 Pin Control Register 0 (Pin Function)
0x01C4 1018 0x01F0 E018 SPIPC1 Pin Control Register 1 (Pin Direction)
0x01C4 101C 0x01F0 E01C SPIPC2 Pin Control Register 2 (Pin Data In)
0x01C4 1020 0x01F0 E020 SPIPC3 Pin Control Register 3 (Pin Data Out)
0x01C4 1024 0x01F0 E024 SPIPC4 Pin Control Register 4 (Pin Data Set)
0x01C4 1028 0x01F0 E028 SPIPC5 Pin Control Register 5 (Pin Data Clear)
0x01C4 102C 0x01F0 E02C Reserved Reserved - Do not write to this register
0x01C4 1030 0x01F0 E030 Reserved Reserved - Do not write to this register
0x01C4 1034 0x01F0 E034 Reserved Reserved - Do not write to this register
0x01C4 1038 0x01F0 E038 SPIDAT0 Shift Register 0 (without format select)
0x01C4 103C 0x01F0 E03C SPIDAT1 Shift Register 1 (with format select)
0x01C4 1040 0x01F0 E040 SPIBUF Buffer Register
0x01C4 1044 0x01F0 E044 SPIEMU Emulation Register
0x01C4 1048 0x01F0 E048 SPIDELAY Delay Register
0x01C4 104C 0x01F0 E04C SPIDEF Default Chip Select Register
0x01C4 1050 0x01F0 E050 SPIFMT0 Format Register 0
0x01C4 1054 0x01F0 E054 SPIFMT1 Format Register 1
0x01C4 1058 0x01F0 E058 SPIFMT2 Format Register 2
0x01C4 105C 0x01F0 E05C SPIFMT3 Format Register 3
0x01C4 1060 0x01F0 E060 INTVEC0 Interrupt Vector for SPI INT0
0x01C4 1064 0x01F0 E064 INTVEC1 Interrupt Vector for SPI INT1
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 171
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
5.17.2 SPI Electrical Data/Timing
5.17.2.1 Serial Peripheral Interface (SPI) Timing
Table 5-70 through Table 5-85 assume testing over recommended operating conditions (see Figure 5-38
through Figure 5-41).
Table 5-70. General Timing Requirements for SPI0 Master Modes(1)
1.3V, 1.2V 1.1V 1.0V
NO. PARAMETER UNIT
MIN MAX MIN MAX MIN MAX
1 tc(SPC)M Cycle Time, SPI0_CLK, All Master Modes 20(2) 256P 30(2) 256P 40(2) 256P ns
2 tw(SPCH)M Pulse Width High, SPI0_CLK, All Master Modes 0.5M-1 0.5M-1 0.5M-1 ns
3 tw(SPCL)M Pulse Width Low, SPI0_CLK, All Master Modes 0.5M-1 0.5M-1 0.5M-1 ns
Polarity = 0, Phase = 0, 556
to SPI0_CLK rising
Polarity = 0, Phase = 1, -0.5M+5 -0.5M+5 -0.5M+6
Delay, initial data bit valid on to SPI0_CLK rising
4 td(SIMO_SPC)M SPI0_SIMO after initial edge ns
Polarity = 1, Phase = 0,
on SPI0_CLK(3) 556
to SPI0_CLK falling
Polarity = 1, Phase = 1, -0.5M+5 -0.5M+5 -0.5M+6
to SPI0_CLK falling
Polarity = 0, Phase = 0, 556
from SPI0_CLK rising
Polarity = 0, Phase = 1, 556
Delay, subsequent bits valid from SPI0_CLK falling
5 td(SPC_SIMO)M on SPI0_SIMO after transmit ns
Polarity = 1, Phase = 0,
edge of SPI0_CLK 556
from SPI0_CLK falling
Polarity = 1, Phase = 1, 556
from SPI0_CLK rising
Polarity = 0, Phase = 0, 0.5M-3 0.5M-3 0.5M-3
from SPI0_CLK falling
Polarity = 0, Phase = 1, 0.5M-3 0.5M-3 0.5M-3
Output hold time, SPI0_SIMO from SPI0_CLK rising
6 toh(SPC_SIMO)M valid after receive edge of ns
Polarity = 1, Phase = 0,
SPI0_CLK 0.5M-3 0.5M-3 0.5M-3
from SPI0_CLK rising
Polarity = 1, Phase = 1, 0.5M-3 0.5M-3 0.5M-3
from SPI0_CLK falling
Polarity = 0, Phase = 0, 1.5 1.5 1.5
to SPI0_CLK falling
Polarity = 0, Phase = 1, 1.5 1.5 1.5
Input Setup Time, SPI0_SOMI to SPI0_CLK rising
7 tsu(SOMI_SPC)M valid before receive edge of ns
Polarity = 1, Phase = 0,
SPI0_CLK 1.5 1.5 1.5
to SPI0_CLK rising
Polarity = 1, Phase = 1, 1.5 1.5 1.5
to SPI0_CLK falling
Polarity = 0, Phase = 0, 445
from SPI0_CLK falling
Polarity = 0, Phase = 1, 445
Input Hold Time, SPI0_SOMI from SPI0_CLK rising
8 tih(SPC_SOMI)M valid after receive edge of ns
Polarity = 1, Phase = 0,
SPI0_CLK 445
from SPI0_CLK rising
Polarity = 1, Phase = 1, 445
from SPI0_CLK falling
(1) P = SYSCLK2 period; M = tc(SPC)M (SPI master bit clock period)
(2) This timing is limited by the timing shown or 3P, whichever is greater.
(3) First bit may be MSB or LSB depending upon SPI configuration. MO(0) refers to first bit and MO(n) refers to last bit output on
SPI0_SIMO. MI(0) refers to the first bit input and MI(n) refers to the last bit input on SPI0_SOMI.
172 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
Table 5-71. General Timing Requirements for SPI0 Slave Modes(1)
1.3V, 1.2V 1.1V 1.0V
NO. PARAMETER UNIT
MIN MAX MIN MAX MIN MAX
9 tc(SPC)S Cycle Time, SPI0_CLK, All Slave Modes 40(2) 50(2) 60(2) ns
10 tw(SPCH)S Pulse Width High, SPI0_CLK, All Slave Modes 18 22 27 ns
11 tw(SPCL)S Pulse Width Low, SPI0_CLK, All Slave Modes 18 22 27 ns
Polarity = 0, Phase = 0, 2P 2P 2P
to SPI0_CLK rising
Polarity = 0, Phase = 1,
Setup time, transmit data 2P 2P 2P
to SPI0_CLK rising
written to SPI before initial
12 tsu(SOMI_SPC)S ns
clock edge from Polarity = 1, Phase = 0, 2P 2P 2P
master.(3) (4) to SPI0_CLK falling
Polarity = 1, Phase = 1, 2P 2P 2P
to SPI0_CLK falling
Polarity = 0, Phase = 0, 17 20 27
from SPI0_CLK rising
Polarity = 0, Phase = 1, 17 20 27
Delay, subsequent bits valid from SPI0_CLK falling
13 td(SPC_SOMI)S on SPI0_SOMI after ns
Polarity = 1, Phase = 0,
transmit edge of SPI0_CLK 17 20 27
from SPI0_CLK falling
Polarity = 1, Phase = 1, 17 20 27
from SPI0_CLK rising
Polarity = 0, Phase = 0, 0.5S-6 0.5S-16 0.5S-20
from SPI0_CLK falling
Polarity = 0, Phase = 1, 0.5S-6 0.5S-16 0.5S-20
Output hold time, from SPI0_CLK rising
14 toh(SPC_SOMI)S SPI0_SOMI valid after ns
Polarity = 1, Phase = 0,
receive edge of SPI0_CLK 0.5S-6 0.5S-16 0.5S-20
from SPI0_CLK rising
Polarity = 1, Phase = 1, 0.5S-6 0.5S-16 0.5S-20
from SPI0_CLK falling
Polarity = 0, Phase = 0, 1.5 1.5 1.5
to SPI0_CLK falling
Polarity = 0, Phase = 1, 1.5 1.5 1.5
Input Setup Time, to SPI0_CLK rising
15 tsu(SIMO_SPC)S SPI0_SIMO valid before ns
Polarity = 1, Phase = 0,
receive edge of SPI0_CLK 1.5 1.5 1.5
to SPI0_CLK rising
Polarity = 1, Phase = 1, 1.5 1.5 1.5
to SPI0_CLK falling
Polarity = 0, Phase = 0, 445
from SPI0_CLK falling
Polarity = 0, Phase = 1, 445
Input Hold Time, from SPI0_CLK rising
16 tih(SPC_SIMO)S SPI0_SIMO valid after ns
Polarity = 1, Phase = 0,
receive edge of SPI0_CLK 445
from SPI0_CLK rising
Polarity = 1, Phase = 1, 445
from SPI0_CLK falling
(1) P = SYSCLK2 period; S = tc(SPC)S (SPI slave bit clock period)
(2) This timing is limited by the timing shown or 3P, whichever is greater.
(3) First bit may be MSB or LSB depending upon SPI configuration. SO(0) refers to first bit and SO(n) refers to last bit output on
SPI0_SOMI. SI(0) refers to the first bit input and SI(n) refers to the last bit input on SPI0_SIMO.
(4) Measured from the termination of the write of new data to the SPI module, In analyzing throughput requirements, additional internal bus
cycles must be accounted for to allow data to be written to the SPI module by the CPU.
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 173
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
Table 5-72. Additional SPI0 Master Timings, 4-Pin Enable Option (1)(2)(3)
1.3V, 1.2V 1.1V 1.0V
NO. PARAMETER UNIT
MIN MAX MIN MAX MIN MAX
Polarity = 0, Phase = 0, 3P+5 3P+5 3P+6
to SPI0_CLK rising
Polarity = 0, Phase = 1, 0.5M+3P+5 0.5M+3P+5 0.5M+3P+6
to SPI0_CLK rising
Delay from slave assertion of SPI0_ENA
17 td(ENA_SPC)M ns
active to first SPI0_CLK from master.(4) Polarity = 1, Phase = 0, 3P+5 3P+5 3P+6
to SPI0_CLK falling
Polarity = 1, Phase = 1, 0.5M+3P+5 0.5M+3P+5 0.5M+3P+6
to SPI0_CLK falling
Polarity = 0, Phase = 0, 0.5M+P+5 0.5M+P+5 0.5M+P+6
from SPI0_CLK falling
Polarity = 0, Phase = 1, P+5 P+5 P+6
Max delay for slave to deassert SPI0_ENA from SPI0_CLK falling
18 td(SPC_ENA)M after final SPI0_CLK edge to ensure ns
Polarity = 1, Phase = 0,
master does not begin the next transfer.(5) 0.5M+P+5 0.5M+P+5 0.5M+P+6
from SPI0_CLK rising
Polarity = 1, Phase = 1, P+5 P+5 P+6
from SPI0_CLK rising
(1) These parameters are in addition to the general timings for SPI master modes (Table 5-70).
(2) P = SYSCLK2 period; M = tc(SPC)M (SPI master bit clock period)
(3) Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes.
(4) In the case where the master SPI is ready with new data before SPI0_ENA assertion.
(5) In the case where the master SPI is ready with new data before SPI0_EN A deassertion.
Table 5-73. Additional SPI0 Master Timings, 4-Pin Chip Select Option (1)(2)(3)
1.3V, 1.2V 1.1V 1.0V
NO. PARAMETER UNIT
MIN MAX MIN MAX MIN MAX
Polarity = 0, Phase = 0, 2P-1 2P-2 2P-3
to SPI0_CLK rising
Polarity = 0, Phase = 1, 0.5M+2P-1 0.5M+2P-2 0.5M+2P-3
to SPI0_CLK rising
Delay from SPI0_SCS active to first
19 td(SCS_SPC)M ns
SPI0_CLK(4) (5) Polarity = 1, Phase = 0, 2P-1 2P-2 2P-3
to SPI0_CLK falling
Polarity = 1, Phase = 1, 0.5M+2P-1 0.5M+2P-2 0.5M+2P-3
to SPI0_CLK falling
(1) These parameters are in addition to the general timings for SPI master modes (Table 5-70).
(2) P = SYSCLK2 period; M = tc(SPC)M (SPI master bit clock period)
(3) Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes.
(4) In the case where the master SPI is ready with new data before SPI0_SCS assertion.
(5) This delay can be increased under software control by the register bit field SPIDELAY.C2TDELAY[4:0].
174 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
Table 5-73. Additional SPI0 Master Timings, 4-Pin Chip Select Option (1)(2)(3) (continued)
1.3V, 1.2V 1.1V 1.0V
NO. PARAMETER UNIT
MIN MAX MIN MAX MIN MAX
Polarity = 0, Phase = 0, 0.5M+P-1 0.5M+P-2 0.5M+P-3
from SPI0_CLK falling
Polarity = 0, Phase = 1, P-1 P-2 P-3
from SPI0_CLK falling
Delay from final SPI0_CLK edge to master
20 td(SPC_SCS)M ns
deasserting SPI0_SCS (6) (7) Polarity = 1, Phase = 0, 0.5M+P-1 0.5M+P-2 0.5M+P-3
from SPI0_CLK rising
Polarity = 1, Phase = 1, P-1 P-2 P-3
from SPI0_CLK rising
(6) Except for modes when SPIDAT1.CSHOLD is enabled and there is additional data to transmit. In this case, SPI0_SCS will remain asserted.
(7) This delay can be increased under software control by the register bit field SPIDELAY.T2CDELAY[4:0].
Table 5-74. Additional SPI0 Master Timings, 5-Pin Option (1)(2)(3)
1.3V, 1.2V 1.1V 1.0V
NO. PARAMETER UNIT
MIN MAX MIN MAX MIN MAX
Polarity = 0, Phase = 0, 0.5M+P+5 0.5M+P+5 0.5M+P+6
from SPI0_CLK falling
Polarity = 0, Phase = 1,
Max delay for slave to deassert P+5 P+5 P+6
from SPI0_CLK falling
SPI0_ENA after final SPI0_CLK
18 td(SPC_ENA)M ns
edge to ensure master does not Polarity = 1, Phase = 0, 0.5M+P+5 0.5M+P+5 0.5M+P+6
begin the next transfer.(4) from SPI0_CLK rising
Polarity = 1, Phase = 1, P+5 P+5 P+6
from SPI0_CLK rising
Polarity = 0, Phase = 0, 0.5M+P-2 0.5M+P-2 0.5M+P-3
from SPI0_CLK falling
Polarity = 0, Phase = 1, P-2 P-2 P-3
Delay from final SPI0_CLK edge to from SPI0_CLK falling
20 td(SPC_SCS)M master deasserting SPI0_SCS (5) ns
Polarity = 1, Phase = 0,
(6) 0.5M+P-2 0.5M+P-2 0.5M+P-3
from SPI0_CLK rising
Polarity = 1, Phase = 1, P-2 P-2 P-3
from SPI0_CLK rising
Max delay for slave SPI to drive SPI0_ENA valid after master
21 td(SCSL_ENAL)M asserts SPI0_SCS to delay the master from beginning the C2TDELAY+P C2TDELAY+P C2TDELAY+P ns
next transfer,
(1) These parameters are in addition to the general timings for SPI master modes (Table 5-71).
(2) P = SYSCLK2 period; M = tc(SPC)M (SPI master bit clock period)
(3) Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes.
(4) In the case where the master SPI is ready with new data before SPI0_ENA deassertion.
(5) Except for modes when SPIDAT1.CSHOLD is enabled and there is additional data to transmit. In this case, SPI0_SCS will remain asserted.
(6) This delay can be increased under software control by the register bit field SPIDELAY.T2CDELAY[4:0].
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 175
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
Table 5-74. Additional SPI0 Master Timings, 5-Pin Option (1)(2)(3) (continued)
1.3V, 1.2V 1.1V 1.0V
NO. PARAMETER UNIT
MIN MAX MIN MAX MIN MAX
Polarity = 0, Phase = 0, 2P-2 2P-2 2P-3
to SPI0_CLK rising
Polarity = 0, Phase = 1, 0.5M+2P-2 0.5M+2P-2 0.5M+2P-3
to SPI0_CLK rising
Delay from SPI0_SCS active to
22 td(SCS_SPC)M ns
first SPI0_CLK(7) (8) (9) Polarity = 1, Phase = 0, 2P-2 2P-2 2P-3
to SPI0_CLK falling
Polarity = 1, Phase = 1, 0.5M+2P-2 0.5M+2P-2 0.5M+2P-3
to SPI0_CLK falling
Polarity = 0, Phase = 0, 3P+5 3P+5 3P+6
to SPI0_CLK rising
Polarity = 0, Phase = 1, 0.5M+3P+5 0.5M+3P+5 0.5M+3P+6
to SPI0_CLK rising
Delay from assertion of SPI0_ENA
23 td(ENA_SPC)M ns
low to first SPI0_CLK edge.(10) Polarity = 1, Phase = 0, 3P+5 3P+5 3P+6
to SPI0_CLK falling
Polarity = 1, Phase = 1, 0.5M+3P+5 0.5M+3P+5 0.5M+3P+6
to SPI0_CLK falling
(7) If SPI0_ENA is asserted immediately such that the transmission is not delayed by SPI0_ENA.
(8) In the case where the master SPI is ready with new data before SPI0_SCS assertion.
(9) This delay can be increased under software control by the register bit field SPIDELAY.C2TDELAY[4:0].
(10) If SPI0_ENA was initially deasserted high and SPI0_CLK is delayed.
Table 5-75. Additional SPI0 Slave Timings, 4-Pin Enable Option (1)(2)(3)
1.3V, 1.2V 1.1V 1.0V
NO. PARAMETER UNIT
MIN MAX MIN MAX MIN MAX
Polarity = 0, Phase = 0, 1.5P-3 2.5P+17.5 1.5P-3 2.5P+20 1.5P-3 2.5P+27
from SPI0_CLK falling
Polarity = 0, Phase = 1, 0.5M+1.5P-3 0.5M+2.5P+17.5 0.5M+1.5P-3 0.5M+2.5P+20 0.5M+1.5P-3 0.5M+2.5P+27
from SPI0_CLK falling
Delay from final SPI0_CLK edge
24 td(SPC_ENAH)S ns
to slave deasserting SPI0_ENA. Polarity = 1, Phase = 0, 1.5P-3 2.5P+17.5 1.5P-3 2.5P+20 1.5P-3 2.5P+27
from SPI0_CLK rising
Polarity = 1, Phase = 1, 0.5M+1.5P-3 0.5+2.5P+17.5 0.5M+1.5P-3 0.5+2.5P+20 0.5M+1.5P-3 0.5+2.5P+27
from SPI0_CLK rising
(1) These parameters are in addition to the general timings for SPI slave modes (Table 5-71).
(2) P = SYSCLK2 period; M = tc(SPC)M (SPI master bit clock period)
(3) Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes.
176 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
Table 5-76. Additional SPI0 Slave Timings, 4-Pin Chip Select Option (1)(2)(3)
1.3V, 1.2V 1.1V 1.0V
NO. PARAMETER UNIT
MIN MAX MIN MAX MIN MAX
Required delay from SPI0_SCS asserted at slave to first SPI0_CLK edge
25 td(SCSL_SPC)S P + 1.5 P + 1.5 P + 1.5 ns
at slave. Polarity = 0, Phase = 0, 0.5M+P+4 0.5M+P+4 0.5M+P+5
from SPI0_CLK falling
Polarity = 0, Phase = 1, P+4 P+4 P+5
from SPI0_CLK falling
Required delay from final SPI0_CLK edge
26 td(SPC_SCSH)S ns
before SPI0_SCS is deasserted. Polarity = 1, Phase = 0, 0.5M+P+4 0.5M+P+4 0.5M+P+5
from SPI0_CLK rising
Polarity = 1, Phase = 1, P+4 P+4 P+5
from SPI0_CLK rising
27 tena(SCSL_SOMI)S Delay from master asserting SPI0_SCS to slave driving SPI0_SOMI valid P+17.5 P+20 P+27 ns
28 tdis(SCSH_SOMI)S Delay from master deasserting SPI0_SCS to slave 3-stating SPI0_SOMI P+17.5 P+20 P+27 ns
(1) These parameters are in addition to the general timings for SPI slave modes (Table 5-71).
(2) P = SYSCLK2 period; M = tc(SPC)M (SPI master bit clock period)
(3) Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes.
Table 5-77. Additional SPI0 Slave Timings, 5-Pin Option (1)(2)(3)
1.3V, 1.2V 1.1V 1.0V
NO. PARAMETER UNIT
MIN MAX MIN MAX MIN MAX
Required delay from SPI0_SCS asserted at slave to first
25 td(SCSL_SPC)S P + 1.5 P + 1.5 P + 1.5 ns
SPI0_CLK edge at slave. Polarity = 0, Phase = 0, 0.5M+P+4 0.5M+P+4 0.5M+P+5
from SPI0_CLK falling
Polarity = 0, Phase = 1, P+4 P+4 P+5
Required delay from final from SPI0_CLK falling
26 td(SPC_SCSH)S SPI0_CLK edge before SPI0_SCS ns
Polarity = 1, Phase = 0,
is deasserted. 0.5M+P+4 0.5M+P+4 0.5M+P+5
from SPI0_CLK rising
Polarity = 1, Phase = 1, P+4 P+4 P+5
from SPI0_CLK rising
Delay from master asserting SPI0_SCS to slave driving
27 tena(SCSL_SOMI)S P+17.5 P+20 P+27 ns
SPI0_SOMI valid
Delay from master deasserting SPI0_SCS to slave 3-stating
28 tdis(SCSH_SOMI)S P+17.5 P+20 P+27 ns
SPI0_SOMI
Delay from master deasserting SPI0_SCS to slave driving
29 tena(SCSL_ENA)S 17.5 20 27 ns
SPI0_ENA valid
(1) These parameters are in addition to the general timings for SPI slave modes (Table 5-71).
(2) P = SYSCLK2 period; M = tc(SPC)M (SPI master bit clock period)
(3) Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes.
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 177
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
Table 5-77. Additional SPI0 Slave Timings, 5-Pin Option (1)(2)(3) (continued)
1.3V, 1.2V 1.1V 1.0V
NO. PARAMETER UNIT
MIN MAX MIN MAX MIN MAX
Polarity = 0, Phase = 0, 2.5P+17.5 2.5P+20 2.5P+27
from SPI0_CLK falling
Polarity = 0, Phase = 1,
Delay from final clock receive 2.5P+17.5 2.5P+20 2.5P+27
from SPI0_CLK rising
edge on SPI0_CLK to slave
30 tdis(SPC_ENA)S ns
3-stating or driving high Polarity = 1, Phase = 0, 2.5P+17.5 2.5P+20 2.5P+27
SPI0_ENA.(4) from SPI0_CLK rising
Polarity = 1, Phase = 1, 2.5P+17.5 2.5P+20 2.5P+27
from SPI0_CLK falling
(4) SPI0_ENA is driven low after the transmission completes if the SPIINT0.ENABLE_HIGHZ bit is programmed to 0. Otherwise it is tri-stated. If tri-stated, an external pullup resistor should
be used to provide a valid level to the master. This option is useful when tying several SPI slave devices to a single master.
178 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
Table 5-78. General Timing Requirements for SPI1 Master Modes(1)
1.3V, 1.2V 1.1V 1.0V
NO. PARAMETER UNIT
MIN MAX MIN MAX MIN MAX
1 tc(SPC)M Cycle Time, SPI1_CLK, All Master Modes 20(2) 256P 30(2) 256P 40(2) 256P ns
2 tw(SPCH)M Pulse Width High, SPI1_CLK, All Master Modes 0.5M-1 0.5M-1 0.5M-1 ns
3 tw(SPCL)M Pulse Width Low, SPI1_CLK, All Master Modes 0.5M-1 0.5M-1 0.5M-1 ns
Polarity = 0, Phase = 0, 5 5 6
to SPI1_CLK rising
Polarity = 0, Phase = 1, -0.5M+5 -0.5M+5 -0.5M+6
Delay, initial data bit valid on to SPI1_CLK rising
4 td(SIMO_SPC)M SPI1_SIMO to initial edge on ns
Polarity = 1, Phase = 0,
SPI1_CLK(3) 5 5 6
to SPI1_CLK falling
Polarity = 1, Phase = 1, -0.5M+5 -0.5M+5 -0.5M+6
to SPI1_CLK falling
Polarity = 0, Phase = 0, 5 5 6
from SPI1_CLK rising
Polarity = 0, Phase = 1, 5 5 6
Delay, subsequent bits valid on from SPI1_CLK falling
5 td(SPC_SIMO)M SPI1_SIMO after transmit edge ns
Polarity = 1, Phase = 0,
of SPI1_CLK 5 5 6
from SPI1_CLK falling
Polarity = 1, Phase = 1, 5 5 6
from SPI1_CLK rising
Polarity = 0, Phase = 0, 0.5M-3 0.5M-3 0.5M-3
from SPI1_CLK falling
Polarity = 0, Phase = 1, 0.5M-3 0.5M-3 0.5M-3
Output hold time, SPI1_SIMO from SPI1_CLK rising
6 toh(SPC_SIMO)M valid after receive edge of ns
Polarity = 1, Phase = 0,
SPI1_CLK 0.5M-3 0.5M-3 0.5M-3
from SPI1_CLK rising
Polarity = 1, Phase = 1, 0.5M-3 0.5M-3 0.5M-3
from SPI1_CLK falling
Polarity = 0, Phase = 0, 1.5 1.5 1.5
to SPI1_CLK falling
Polarity = 0, Phase = 1, 1.5 1.5 1.5
Input Setup Time, SPI1_SOMI to SPI1_CLK rising
7 tsu(SOMI_SPC)M valid before receive edge of ns
Polarity = 1, Phase = 0,
SPI1_CLK 1.5 1.5 1.5
to SPI1_CLK rising
Polarity = 1, Phase = 1, 1.5 1.5 1.5
to SPI1_CLK falling
Polarity = 0, Phase = 0, 4 5 6
from SPI1_CLK falling
Polarity = 0, Phase = 1, 4 5 6
Input Hold Time, SPI1_SOMI from SPI1_CLK rising
8 tih(SPC_SOMI)M valid after receive edge of ns
Polarity = 1, Phase = 0,
SPI1_CLK 4 5 6
from SPI1_CLK rising
Polarity = 1, Phase = 1, 4 5 6
from SPI1_CLK falling
(1) P = SYSCLK2 period; M = tc(SPC)M (SPI master bit clock period)
(2) This timing is limited by the timing shown or 3P, whichever is greater.
(3) First bit may be MSB or LSB depending upon SPI configuration. MO(0) refers to first bit and MO(n) refers to last bit output on
SPI1_SIMO. MI(0) refers to the first bit input and MI(n) refers to the last bit input on SPI1_SOMI.
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 179
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
Table 5-79. General Timing Requirements for SPI1 Slave Modes(1)
1.3V, 1.2V 1.1V 1.0V
NO. PARAMETER UNIT
MIN MAX MIN MAX MIN MAX
9 tc(SPC)S Cycle Time, SPI1_CLK, All Slave Modes 40(2) 50(2) 60(2) ns
10 tw(SPCH)S Pulse Width High, SPI1_CLK, All Slave Modes 18 22 27 ns
11 tw(SPCL)S Pulse Width Low, SPI1_CLK, All Slave Modes 18 22 27 ns
Polarity = 0, Phase = 0, 2P 2P 2P
to SPI1_CLK rising
Polarity = 0, Phase = 1,
Setup time, transmit data 2P 2P 2P
to SPI1_CLK rising
written to SPI before initial
12 tsu(SOMI_SPC)S ns
clock edge from Polarity = 1, Phase = 0, 2P 2P 2P
master.(3)(4) to SPI1_CLK falling
Polarity = 1, Phase = 1, 2P 2P 2P
to SPI1_CLK falling
Polarity = 0, Phase = 0, 15 17 19
from SPI1_CLK rising
Polarity = 0, Phase = 1, 15 17 19
Delay, subsequent bits valid from SPI1_CLK falling
13 td(SPC_SOMI)S on SPI1_SOMI after transmit ns
Polarity = 1, Phase = 0,
edge of SPI1_CLK 15 17 19
from SPI1_CLK falling
Polarity = 1, Phase = 1, 15 17 19
from SPI1_CLK rising
Polarity = 0, Phase = 0, 0.5S-4 0.5S-10 0.5S-12
from SPI1_CLK falling
Polarity = 0, Phase = 1, 0.5S-4 0.5S-10 0.5S-12
Output hold time, SPI1_SOMI from SPI1_CLK rising
14 toh(SPC_SOMI)S valid after receive edge of ns
Polarity = 1, Phase = 0,
SPI1_CLK 0.5S-4 0.5S-10 0.5S-12
from SPI1_CLK rising
Polarity = 1, Phase = 1, 0.5S-4 0.5S-10 0.5S-12
from SPI1_CLK falling
Polarity = 0, Phase = 0, 1.5 1.5 1.5
to SPI1_CLK falling
Polarity = 0, Phase = 1, 1.5 1.5 1.5
Input Setup Time, SPI1_SIMO to SPI1_CLK rising
15 tsu(SIMO_SPC)S valid before receive edge of ns
Polarity = 1, Phase = 0,
SPI1_CLK 1.5 1.5 1.5
to SPI1_CLK rising
Polarity = 1, Phase = 1, 1.5 1.5 1.5
to SPI1_CLK falling
Polarity = 0, Phase = 0, 4 5 6
from SPI1_CLK falling
Polarity = 0, Phase = 1, 4 5 6
Input Hold Time, SPI1_SIMO from SPI1_CLK rising
16 tih(SPC_SIMO)S valid after receive edge of ns
Polarity = 1, Phase = 0,
SPI1_CLK 4 5 6
from SPI1_CLK rising
Polarity = 1, Phase = 1, 4 5 6
from SPI1_CLK falling
(1) P = SYSCLK2 period; S = tc(SPC)S (SPI slave bit clock period)
(2) This timing is limited by the timing shown or 3P, whichever is greater.
(3) First bit may be MSB or LSB depending upon SPI configuration. SO(0) refers to first bit and SO(n) refers to last bit output on
SPI1_SOMI. SI(0) refers to the first bit input and SI(n) refers to the last bit input on SPI1_SIMO.
(4) Measured from the termination of the write of new data to the SPI module, In analyzing throughput requirements, additional internal bus
cycles must be accounted for to allow data to be written to the SPI module by the CPU.
180 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
Table 5-80. Additional(1) SPI1 Master Timings, 4-Pin Enable Option(2)(3)
1.3V, 1.2V 1.1V 1.0V
NO. PARAMETER UNIT
MIN MAX MIN MAX MIN MAX
Polarity = 0, Phase = 0, 3P+5 3P+5 3P+6
to SPI1_CLK rising
Delay from slave Polarity = 0, Phase = 1, 0.5M+3P+5 0.5M+3P+5 0.5M+3P+6
assertion of to SPI1_CLK rising
17 td(EN A_SPC)M SPI1_ENA active to ns
Polarity = 1, Phase = 0,
first SPI1_CLK from 3P+5 3P+5 3P+6
to SPI1_CLK falling
master.(4)
Polarity = 1, Phase = 1, 0.5M+3P+5 0.5M+3P+5 0.5M+3P+6
to SPI1_CLK falling
Polarity = 0, Phase = 0, 0.5M+P+5 0.5M+P+5 0.5M+P+6
from SPI1_CLK falling
Max delay for slave to Polarity = 0, Phase = 1,
deassert SPI1_ENA P+5 P+5 P+6
from SPI1_CLK falling
after final SPI1_CLK
18 td(SPC_ENA)M ns
edge to ensure Polarity = 1, Phase = 0, 0.5M+P+5 0.5M+P+5 0.5M+P+6
master does not begin from SPI1_CLK rising
the next transfer.(5) Polarity = 1, Phase = 1, P+5 P+5 P+6
from SPI1_CLK rising
(1) These parameters are in addition to the general timings for SPI master modes (Table 5-78).
(2) P = SYSCLK2 period; M = tc(SPC)M (SPI master bit clock period)
(3) Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes.
(4) In the case where the master SPI is ready with new data before SPI1_ENA assertion.
(5) In the case where the master SPI is ready with new data before SPI1_ENA deassertion.
Table 5-81. Additional(1) SPI1 Master Timings, 4-Pin Chip Select Option(2) (3)
1.3V, 1.2V 1.1V 1.0V
NO. PARAMETER UNIT
MIN MAX MIN MAX MIN MAX
Polarity = 0, Phase = 0, 2P-1 2P-5 2P-6
to SPI1_CLK rising
Polarity = 0, Phase = 1,
Delay from 0.5M+2P-1 0.5M+2P-5 0.5M+2P-6
to SPI1_CLK rising
SPI1_SCS active
19 td(SCS_SPC)M ns
to first Polarity = 1, Phase = 0, 2P-1 2P-5 2P-6
SPI1_CLK(4) (5) to SPI1_CLK falling
Polarity = 1, Phase = 1, 0.5M+2P-1 0.5M+2P-5 0.5M+2P-6
to SPI1_CLK falling
Polarity = 0, Phase = 0, 0.5M+P-1 0.5M+P-5 0.5M+P-6
from SPI1_CLK falling
Delay from final Polarity = 0, Phase = 1, P-1 P-5 P-6
SPI1_CLK edge to from SPI1_CLK falling
20 td(SPC_SCS)M master ns
Polarity = 1, Phase = 0,
deasserting 0.5M+P-1 0.5M+P-5 0.5M+P-6
from SPI1_CLK rising
SPI1_SCS (6) (7)
Polarity = 1, Phase = 1, P-1 P-5 P-6
from SPI1_CLK rising
(1) These parameters are in addition to the general timings for SPI master modes (Table 5-78).
(2) P = SYSCLK2 period; M = tc(SPC)M (SPI master bit clock period)
(3) Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes.
(4) In the case where the master SPI is ready with new data before SPI1_SCS assertion.
(5) This delay can be increased under software control by the register bit field SPIDELAY.C2TDELAY[4:0].
(6) Except for modes when SPIDAT1.CSHOLD is enabled and there is additional data to transmit. In this case, SPI1_SCS will remain
asserted.
(7) This delay can be increased under software control by the register bit field SPIDELAY.T2CDELAY[4:0].
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 181
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
Table 5-82. Additional(1) SPI1 Master Timings, 5-Pin Option(2)(3)
1.3V, 1.2V 1.1V 1.0V
NO. PARAMETER UNIT
MIN MAX MIN MAX MIN MAX
Polarity = 0, Phase = 0, 0.5M+P+5 0.5M+P+5 0.5M+P+6
from SPI1_CLK falling
Polarity = 0, Phase = 1,
Max delay for slave to deassert P+5 P+5 P+6
from SPI1_CLK falling
SPI1_ENA after final SPI1_CLK
18 td(SPC_ENA)M ns
edge to ensure master does not Polarity = 1, Phase = 0, 0.5M+P+5 0.5M+P+5 0.5M+P+6
begin the next transfer.(4) from SPI1_CLK rising
Polarity = 1, Phase = 1, P+5 P+5 P+6
from SPI1_CLK rising
Polarity = 0, Phase = 0, 0.5M+P-1 0.5M+P-5 0.5M+P-6
from SPI1_CLK falling
Polarity = 0, Phase = 1, P-1 P-5 P-6
from SPI1_CLK falling
Delay from final SPI1_CLK edge to
20 td(SPC_SCS)M ns
master deasserting SPI1_SCS (5)(6) Polarity = 1, Phase = 0, 0.5M+P-1 0.5M+P-5 0.5M+P-6
from SPI1_CLK rising
Polarity = 1, Phase = 1, P-1 P-5 P-6
from SPI1_CLK rising
Max delay for slave SPI to drive SPI1_ENA valid after master
21 td(SCSL_ENAL)M asserts SPI1_SCS to delay the C2TDELAY+P C2TDELAY+P C2TDELAY+P ns
master from beginning the next transfer,
Polarity = 0, Phase = 0, 2P-1 2P-5 2P-6
to SPI1_CLK rising
Polarity = 0, Phase = 1, 0.5M+2P-1 0.5M+2P-5 0.5M+2P-6
to SPI1_CLK rising
Delay from SPI1_SCS active to first
22 td(SCS_SPC)M ns
SPI1_CLK(7)(8)(9) Polarity = 1, Phase = 0, 2P-1 2P-5 2P-6
to SPI1_CLK falling
Polarity = 1, Phase = 1, 0.5M+2P-1 0.5M+2P-5 0.5M+2P-6
to SPI1_CLK falling
(1) These parameters are in addition to the general timings for SPI master modes (Table 5-79).
(2) P = SYSCLK2 period; M = tc(SPC)M (SPI master bit clock period)
(3) Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes.
(4) In the case where the master SPI is ready with new data before SPI1_ENA deassertion.
(5) Except for modes when SPIDAT1.CSHOLD is enabled and there is additional data to transmit. In this case, SPI1_SCS will remain asserted.
(6) This delay can be increased under software control by the register bit field SPIDELAY.T2CDELAY[4:0].
(7) If SPI1_ENA is asserted immediately such that the transmission is not delayed by SPI1_ENA.
(8) In the case where the master SPI is ready with new data before SPI1_SCS assertion.
(9) This delay can be increased under software control by the register bit field SPIDELAY.C2TDELAY[4:0].
182 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
Table 5-82. Additional(1) SPI1 Master Timings, 5-Pin Option(2)(3) (continued)
1.3V, 1.2V 1.1V 1.0V
NO. PARAMETER UNIT
MIN MAX MIN MAX MIN MAX
Polarity = 0, Phase = 0, 3P+5 3P+5 3P+6
to SPI1_CLK rising
Polarity = 0, Phase = 1, 0.5M+3P+5 0.5M+3P+5 0.5M+3P+6
to SPI1_CLK rising
Delay from assertion of SPI1_ENA
23 td(ENA_SPC)M ns
low to first SPI1_CLK edge.(10) Polarity = 1, Phase = 0, 3P+5 3P+5 3P+6
to SPI1_CLK falling
Polarity = 1, Phase = 1, 0.5M+3P+5 0.5M+3P+5 0.5M+3P+6
to SPI1_CLK falling
(10) If SPI1_ENA was initially deasserted high and SPI1_CLK is delayed.
Table 5-83. Additional(1) SPI1 Slave Timings, 4-Pin Enable Option(2)(3)
1.3V, 1.2V 1.1V 1.0V
NO. PARAMETER UNIT
MIN MAX MIN MAX MIN MAX
Polarity = 0, Phase = 0, 1.5P-3 2.5P+15 1.5P-10 2.5P+17 1.5P-12 2.5P+19
from SPI1_CLK falling
Polarity = 0, Phase = 1, 0.5M+1.5P-3 0.5M+2.5P+15 0.5M+1.5P-10 0.5M+2.5P+17 0.5M+1.5P-12 0.5M+2.5P+19
from SPI1_CLK falling
Delay from final SPI1_CLK edge to
24 td(SPC_ENAH)S ns
slave deasserting SPI1_ENA. Polarity = 1, Phase = 0, 1.5P-3 2.5P+15 1.5P-10 2.5P+17 1.5P-12 2.5P+19
from SPI1_CLK rising
Polarity = 1, Phase = 1, 0.5M+1.5P-3 0.5M+2.5P+15 0.5M+1.5P-10 0.5M+2.5P+17 0.5M+1.5P-12 0.5M+2.5P+19
from SPI1_CLK rising
(1) These parameters are in addition to the general timings for SPI slave modes (Table 5-79).
(2) P = SYSCLK2 period; M = tc(SPC)M (SPI master bit clock period)
(3) Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes.
Table 5-84. Additional(1) SPI1 Slave Timings, 4-Pin Chip Select Option(2)(3)
1.3V, 1.2V 1.1V 1.0V
NO. PARAMETER UNIT
MIN MAX MIN MAX MIN MAX
Required delay from SPI1_SCS asserted at slave to first SPI1_CLK edge at
25 td(SCSL_SPC)S P+1.5 P+1.5 P+1.5 ns
slave.
(1) These parameters are in addition to the general timings for SPI slave modes (Table 5-79).
(2) P = SYSCLK2 period; M = tc(SPC)M (SPI master bit clock period)
(3) Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes.
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 183
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
Table 5-84. Additional(1) SPI1 Slave Timings, 4-Pin Chip Select Option(2)(3) (continued)
1.3V, 1.2V 1.1V 1.0V
NO. PARAMETER UNIT
MIN MAX MIN MAX MIN MAX
Polarity = 0, Phase = 0, 0.5M+P+4 0.5M+P+5 0.5M+P+6
from SPI1_CLK falling
Polarity = 0, Phase = 1, P+4 P+5 P+6
from SPI1_CLK falling
Required delay from final SPI1_CLK edge
26 td(SPC_SCSH)S ns
before SPI1_SCS is deasserted. Polarity = 1, Phase = 0, 0.5M+P+4 0.5M+P+5 0.5M+P+6
from SPI1_CLK rising
Polarity = 1, Phase = 1, P+4 P+5 P+6
from SPI1_CLK rising
27 tena(SCSL_SOMI)S Delay from master asserting SPI1_SCS to slave driving SPI1_SOMI valid P+15 P+17 P+19 ns
28 tdis(SCSH_SOMI)S Delay from master deasserting SPI1_SCS to slave 3-stating SPI1_SOMI P+15 P+17 P+19 ns
184 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 185
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
Table 5-85. Additional(1) SPI1 Slave Timings, 5-Pin Option(2)(3)
1.3V, 1.2V 1.1V 1.0V
NO. PARAMETER UNIT
MIN MAX MIN MAX MIN MAX
Required delay from SPI1_SCS asserted at slave to first
25 td(SCSL_SPC)S P+1.5 P+1.5 P+1.5 ns
SPI1_CLK edge at slave. Polarity = 0, Phase = 0, 0.5M+P+4 0.5M+P+5 0.5M+P+6
from SPI1_CLK falling
Polarity = 0, Phase = 1, P+4 P+5 P+6
Required delay from final from SPI1_CLK falling
26 td(SPC_SCSH)S SPI1_CLK edge before SPI1_SCS ns
Polarity = 1, Phase = 0,
is deasserted. 0.5M+P+4 0.5M+P+5 0.5M+P+6
from SPI1_CLK rising
Polarity = 1, Phase = 1, P+4 P+5 P+6
from SPI1_CLK rising
Delay from master asserting SPI1_SCS to slave driving
27 tena(SCSL_SOMI)S P+15 P+17 P+19 ns
SPI1_SOMI valid
Delay from master deasserting SPI1_SCS to slave 3-stating
28 tdis(SCSH_SOMI)S P+15 P+17 P+19 ns
SPI1_SOMI
Delay from master deasserting SPI1_SCS to slave driving
29 tena(SCSL_ENA)S 15 17 19 ns
SPI1_ENA valid Polarity = 0, Phase = 0, 2.5P+15 2.5P+17 2.5P+19
from SPI1_CLK falling
Polarity = 0, Phase = 1, 2.5P+15 2.5P+17 2.5P+19
Delay from final clock receive edge from SPI1_CLK rising
30 tdis(SPC_ENA)S on SPI1_CLK to slave 3-stating or ns
Polarity = 1, Phase = 0,
driving high SPI1_ENA.(4) 2.5P+15 2.5P+17 2.5P+19
from SPI1_CLK rising
Polarity = 1, Phase = 1, 2.5P+15 2.5P+17 2.5P+19
from SPI1_CLK falling
(1) These parameters are in addition to the general timings for SPI slave modes (Table 5-79).
(2) P = SYSCLK2 period; M = tc(SPC)M (SPI master bit clock period)
(3) Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes.
(4) SPI1_ENA is driven low after the transmission completes if the SPIINT0.ENABLE_HIGHZ bit is programmed to 0. Otherwise it is tri-stated. If tri-stated, an external pullup resistor should
be used to provide a valid level to the master. This option is useful when tying several SPI slave devices to a single master.
186 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
SPIx_CLK
SPIx_SIMO
SPIx_SOMI
SPIx_CLK
SPIx_SIMO
SPIx_SOMI
SPIx_CLK
SPIx_SIMO
SPIx_SOMI
SPIx_CLK
SPIx_SIMO
SPIx_SOMI
MO(0) MO(1) MO(n−1) MO(n)
MI(0) MI(1) MI(n−1) MI(n)
MO(0) MO(1) MO(n−1) MO(n)
MI(0) MI(1) MI(n−1) MI(n)
MO(0) MO(1) MO(n−1) MO(n)
MI(0) MI(1) MI(n−1) MI(n)
MO(0) MO(1) MO(n−1) MO(n)
MI(0) MI(1) MI(n−1) MI(n)
6
6
7
7
7
7
8
8
8
8
32
6
1
4
4
4
45
5
56
MASTER MODE
POLARITY = 0 PHASE = 0
MASTER MODE
POLARITY = 0 PHASE = 1
MASTER MODE
POLARITY = 1 PHASE = 0
MASTER MODE
POLARITY = 1 PHASE = 1
5
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
Figure 5-38. SPI TimingsMaster Mode
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 187
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
SPIx_CLK
SPIx_SIMO
SPIx_SOMI
SPIx_CLK
SPIx_SIMO
SPIx_SOMI
SPIx_CLK
SPIx_SIMO
SPIx_SOMI
SPIx_CLK
SPIx_SIMO
SPIx_SOMI
SI(0) SI(1) SI(n−1) SI(n)
SO(0) SO(1) SO(n−1) SO(n)
SI(0) SI(1) SI(n−1) SI(n)
SO(0) SO(1) SO(n−1) SO(n)
SI(0) SI(1) SI(n−1) SI(n)
SO(0) SO(1) SO(n−1) SO(n)
SI(0) SI(1) SI(n−1) SI(n)
SO(0) SO(1) SO(n−1) SO(n)
14
14
15
15
15
15
16
16
16
16
1110
14
9
12
12
12
12
13
13
13
13
14
SLAVE MODE
POLARITY = 0 PHASE = 0
SLAVE MODE
POLARITY = 0 PHASE = 1
SLAVE MODE
POLARITY = 1 PHASE = 0
SLAVE MODE
POLARITY = 1 PHASE = 1
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
Figure 5-39. SPI TimingsSlave Mode
188 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
MASTER MODE 4 PIN WITH CHIP SELECT
SPIx_CLK
SPIx_SIMO
SPIx_SOMI
SPIx_ENA
SPIx_CLK
SPIx_SIMO
SPIx_SOMI
SPIx_SCS
SPIx_CLK
SPIx_SIMO
SPIx_SOMI
SPIx_ENA
SPIx_SCS
MO(0) MO(1) MO(n−1) MO(n)
MI(0) MI(1) MI(n−1) MI(n)
MO(0) MO(1) MO(n−1) MO(n)
MI(0) MI(1) MI(n−1) MI(n)
MO(0)
MO(1)
MO(n−1) MO(n)
MI(0) MI(1) MI(n−1) MI(n)
17
19
21
22
23
20
18
20
18
MASTER MODE 4 PIN WITH ENABLE
MASTER MODE 5 PIN
A. DESELECTED IS PROGRAMMABLE EITHER HIGH OR
3−STATE (REQUIRES EXTERNAL PULLUP)
DESEL(A) DESEL(A)
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
Figure 5-40. SPI TimingsMaster Mode (4-Pin and 5-Pin)
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 189
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
27
SPIx_CLK
SPIx_SOMI
SPIx_SIMO
SPIx_ENA
SPIx_CLK
SPIx_SOMI
SPIx_SIMO
SPIx_SCS
SPIx_CLK
SPIx_SOMI
SPIx_SIMO
SPIx_ENA
SPIx_SCS
SO(0) SO(1) SO(n−1) SO(n)
SI(0) SI(1) SI(n−1) SI(n)
SO(0) SO(1)
SO(n−1)
SO(n)
SI(0) SI(1) SI(n−1) SI(n)
SO(0)
SO(1)
SO(n−1) SO(n)
SI(0) SI(1) SI(n−1) SI(n)
24
26
28
26
30
28
25
25
27
29
SLAVE MODE 4 PIN WITH ENABLE
SLAVE MODE 4 PIN WITH CHIP SELECT
SLAVE MODE 5 PIN
DESEL(A) DESEL(A)
A. DESELECTED IS PROGRAMMABLE EITHER HIGH OR
3−STATE (REQUIRES EXTERNAL PULLUP)
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
Figure 5-41. SPI TimingsSlave Mode (4-Pin and 5-Pin)
190 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
Peripheral
Configuration
Bus
Noise
Filter
Noise
Filter
Clock Prescaler
I2CPSCx Prescaler
Register
Bit Clock Generator
I2CCLKHx Clock Divide
High Register
I2CCLKLx Clock Divide
Low Register
Control
I2CCOARx Own Address
Register
I2CSARx Slave Address
Register
I2CCMDRx Mode Register
I2CEMDRx Extended Mode
Register
I2CCNTx Data Count
Register
I2CPID1 Peripheral ID
Register 1
I2CPID2 Peripheral ID
Register 2
Transmit
I2CXSRx Transmit Shift
Register
I2CDXRx Transmit Buffer
Receive
I2CDRRx Receive Buffer
I2CRSRx Receive Shift
Register
I2Cx_SCL
I2Cx_SDA
Control
Interrupt/DMA
I2CIERx Interrupt Enable
Register
I2CSTRx Interrupt Status
Register
I2CSRCx Interrupt Source
Register
Control
I2CPFUNC Pin Function
Register
I2CPDIR Pin Direction
Register
I2CPDIN Pin Data In
Register
I2CPDOUT Pin Data Out
Register
I2CPDSET Pin Data Set
Register
I2CPDCLR Pin Data Clear
Register
Interrupt DMA
Requests
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
5.18 Inter-Integrated Circuit Serial Ports (I2C)
5.18.1 I2C Device-Specific Information
Each I2C port supports:
Compatible with Philips®I2C Specification Revision 2.1 (January 2000)
Fast Mode up to 400 Kbps (no fail-safe I/O buffers)
Noise Filter to Remove Noise 50 ns or less
Seven- and Ten-Bit Device Addressing Modes
Master (Transmit/Receive) and Slave (Transmit/Receive) Functionality
Events: DMA, Interrupt, or Polling
General-Purpose I/O Capability if not used as I2C
Figure 5-42 is block diagram of the device I2C Module.
Figure 5-42. I2C Module Block Diagram
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 191
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
5.18.2 I2C Peripheral Registers Description(s)
Table 5-86 is the list of the I2C registers.
Table 5-86. Inter-Integrated Circuit (I2C) Registers
I2C0 I2C1 ACRONYM REGISTER DESCRIPTION
BYTE ADDRESS BYTE ADDRESS
0x01C2 2000 0x01E2 8000 ICOAR I2C Own Address Register
0x01C2 2004 0x01E2 8004 ICIMR I2C Interrupt Mask Register
0x01C2 2008 0x01E2 8008 ICSTR I2C Interrupt Status Register
0x01C2 200C 0x01E2 800C ICCLKL I2C Clock Low-Time Divider Register
0x01C2 2010 0x01E2 8010 ICCLKH I2C Clock High-Time Divider Register
0x01C2 2014 0x01E2 8014 ICCNT I2C Data Count Register
0x01C2 2018 0x01E2 8018 ICDRR I2C Data Receive Register
0x01C2 201C 0x01E2 801C ICSAR I2C Slave Address Register
0x01C2 2020 0x01E2 8020 ICDXR I2C Data Transmit Register
0x01C2 2024 0x01E2 8024 ICMDR I2C Mode Register
0x01C2 2028 0x01E2 8028 ICIVR I2C Interrupt Vector Register
0x01C2 202C 0x01E2 802C ICEMDR I2C Extended Mode Register
0x01C2 2030 0x01E2 8030 ICPSC I2C Prescaler Register
0x01C2 2034 0x01E2 8034 REVID1 I2C Revision Identification Register 1
0x01C2 2038 0x01E2 8038 REVID2 I2C Revision Identification Register 2
0x01C2 2048 0x01E2 8048 ICPFUNC I2C Pin Function Register
0x01C2 204C 0x01E2 804C ICPDIR I2C Pin Direction Register
0x01C2 2050 0x01E2 8050 ICPDIN I2C Pin Data In Register
0x01C2 2054 0x01E2 8054 ICPDOUT I2C Pin Data Out Register
0x01C2 2058 0x01E2 8058 ICPDSET I2C Pin Data Set Register
0x01C2 205C 0x01E2 805C ICPDCLR I2C Pin Data Clear Register
192 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
5.18.3 I2C Electrical Data/Timing
5.18.3.1 Inter-Integrated Circuit (I2C) Timing
Table 5-87 and Table 5-88 assume testing over recommended operating conditions (see Figure 5-43 and
Figure 5-44).
Table 5-87. Timing Requirements for I2C Input
1.3V, 1.2V, 1.1V, 1.0V
NO. PARAMETER Standard Mode Fast Mode UNIT
MIN MAX MIN MAX
1 tc(SCL) Cycle time, I2Cx_SCL 10 2.5 μs
2 tsu(SCLH-SDAL) Setup time, I2Cx_SCL high before I2Cx_SDA low 4.7 0.6 μs
3 th(SCLL-SDAL) Hold time, I2Cx_SCL low after I2Cx_SDA low 4 0.6 μs
4 tw(SCLL) Pulse duration, I2Cx_SCL low 4.7 1.3 μs
5 tw(SCLH) Pulse duration, I2Cx_SCL high 4 0.6 μs
6 tsu(SDA-SCLH) Setup time, I2Cx_SDA before I2Cx_SCL high 250 100 ns
7 th(SDA-SCLL) Hold time, I2Cx_SDA after I2Cx_SCL low 0 0 0.9 μs
8 tw(SDAH) Pulse duration, I2Cx_SDA high 4.7 1.3 μs
9 tr(SDA) Rise time, I2Cx_SDA 1000 20 + 0.1Cb300 ns
10 tr(SCL) Rise time, I2Cx_SCL 1000 20 + 0.1Cb300 ns
11 tf(SDA) Fall time, I2Cx_SDA 300 20 + 0.1Cb300 ns
12 tf(SCL) Fall time, I2Cx_SCL 300 20 + 0.1Cb300 ns
13 tsu(SCLH-SDAH) Setup time, I2Cx_SCL high before I2Cx_SDA high 4 0.6 μs
14 tw(SP) Pulse duration, spike (must be suppressed) N/A 0 50 ns
15 CbCapacitive load for each bus line 400 400 pF
Table 5-88. Switching Characteristics for I2C (1)
1.3V, 1.2V, 1.1V, 1.0V
NO. PARAMETER Standard Mode Fast Mode UNIT
MIN MAX MIN MAX
16 tc(SCL) Cycle time, I2Cx_SCL 10 2.5 μs
17 tsu(SCLH-SDAL) Setup time, I2Cx_SCL high before I2Cx_SDA low 4.7 0.6 μs
18 th(SDAL-SCLL) Hold time, I2Cx_SCL low after I2Cx_SDA low 4 0.6 μs
19 tw(SCLL) Pulse duration, I2Cx_SCL low 4.7 1.3 μs
20 tw(SCLH) Pulse duration, I2Cx_SCL high 4 0.6 μs
21 tsu(SDAV-SCLH) Setup time, I2Cx_SDA valid before I2Cx_SCL high 250 100 ns
22 th(SCLL-SDAV) Hold time, I2Cx_SDA valid after I2Cx_SCL low 0 0 0.9 μs
23 tw(SDAH) Pulse duration, I2Cx_SDA high 4.7 1.3 μs
28 tsu(SCLH-SDAH) Setup time, I2Cx_SCL high before I2Cx_SDA high 4 0.6 μs
(1) I2C must be configured correctly to meet the timings in Table 5-88.
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 193
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
10
84
3712
5
614
2
3
13
Stop Start Repeated
Start Stop
I2Cx_SDA
I2Cx_SCL
1
11 9
25
23 19
18 22 27
20
21
17
18
28
Stop Start Repeated
Start Stop
I2Cx_SDA
I2Cx_SCL
16
26 24
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
Figure 5-43. I2C Receive Timings
Figure 5-44. I2C Transmit Timings
194 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
5.19 Universal Asynchronous Receiver/Transmitter (UART)
Each UART has the following features:
16-byte storage space for both the transmitter and receiver FIFOs
1, 4, 8, or 14 byte selectable receiver FIFO trigger level for autoflow control and DMA
DMA signaling capability for both received and transmitted data
Programmable auto-rts and auto-cts for autoflow control
Programmable Baud Rate up to 12 MBaud
Programmable Oversampling Options of x13 and x16
Frequency pre-scale values from 1 to 65,535 to generate appropriate baud rates
Prioritized interrupts
Programmable serial data formats
5, 6, 7, or 8-bit characters
Even, odd, or no parity bit generation and detection
1, 1.5, or 2 stop bit generation
False start bit detection
Line break generation and detection
Internal diagnostic capabilities
Loopback controls for communications link fault isolation
Break, parity, overrun, and framing error simulation
Modem control functions (CTS, RTS)
The UART registers are listed in Section 5.19.1
5.19.1 UART Peripheral Registers Description(s)
Table 5-89 is the list of UART registers.
Table 5-89. UART Registers
UART0 UART1 UART2 ACRONYM REGISTER DESCRIPTION
BYTE ADDRESS BYTE ADDRESS BYTE ADDRESS
0x01C4 2000 0x01D0 C000 0x01D0 D000 RBR Receiver Buffer Register (read only)
0x01C4 2000 0x01D0 C000 0x01D0 D000 THR Transmitter Holding Register (write only)
0x01C4 2004 0x01D0 C004 0x01D0 D004 IER Interrupt Enable Register
0x01C4 2008 0x01D0 C008 0x01D0 D008 IIR Interrupt Identification Register (read only)
0x01C4 2008 0x01D0 C008 0x01D0 D008 FCR FIFO Control Register (write only)
0x01C4 200C 0x01D0 C00C 0x01D0 D00C LCR Line Control Register
0x01C4 2010 0x01D0 C010 0x01D0 D010 MCR Modem Control Register
0x01C4 2014 0x01D0 C014 0x01D0 D014 LSR Line Status Register
0x01C4 2018 0x01D0 C018 0x01D0 D018 MSR Modem Status Register
0x01C4 201C 0x01D0 C01C 0x01D0 D01C SCR Scratchpad Register
0x01C4 2020 0x01D0 C020 0x01D0 D020 DLL Divisor LSB Latch
0x01C4 2024 0x01D0 C024 0x01D0 D024 DLH Divisor MSB Latch
0x01C4 2028 0x01D0 C028 0x01D0 D028 REVID1 Revision Identification Register 1
0x01C4 2030 0x01D0 C030 0x01D0 D030 PWREMU_MGMT Power and Emulation Management Register
0x01C4 2034 0x01D0 C034 0x01D0 D034 MDR Mode Definition Register
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 195
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
3
2
Start
Bit
Data Bits
UART_TXDn
UART_RXDn
5
Data Bits
Bit
Start
4
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
5.19.2 UART Electrical Data/Timing
Table 5-90. Timing Requirements for UART Receive(1) (see Figure 5-45)
1.3V, 1.2V, 1.1V, 1.0V
NO. PARAMETER UNIT
MIN MAX
4 tw(URXDB) Pulse duration, receive data bit (RXDn) 0.96U 1.05U ns
5 tw(URXSB) Pulse duration, receive start bit 0.96U 1.05U ns
(1) U = UART baud time = 1/programmed baud rate.
Table 5-91. Switching Characteristics Over Recommended Operating Conditions for UARTx Transmit(1)
(see Figure 5-45)
1.3V, 1.2V, 1.1V, 1.0V
NO. PARAMETER UNIT
MIN MAX
1 f(baud) Maximum programmable baud rate D/E (2) (3) MBaud (4)
2 tw(UTXDB) Pulse duration, transmit data bit (TXDn) U - 2 U + 2 ns
3 tw(UTXSB) Pulse duration, transmit start bit U - 2 U + 2 ns
(1) U = UART baud time = 1/programmed baud rate.
(2) D = UART input clock in MHz.
For UART0, the UART input clock is SYSCLK2.
For UART1 or UART2, the UART input clock is ASYNC3 (either PLL0_SYCLK2 or PLL1_SYSCLK2).
(3) E = UART divisor x UART sampling rate. The UART divisor is set through the UART divisor latch registers (DLL and DLH). The UART
sampling rate is set through the over-sampling mode select bit (OSM_SEL) of the UART mode definition register (MDR).
(4) Baud rate is not indicative of data rate. Actual data rate will be limited by system factors such as EDMA loading, EMIF/DDR loading,
system frequency, etc.
Figure 5-45. UART Transmit/Receive Timing
196 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
5.20 Universal Serial Bus OTG Controller (USB0) [USB2.0 OTG]
The USB2.0 peripheral supports the following features:
USB 2.0 peripheral at speeds high speed (HS: 480 Mb/s) and full speed (FS: 12 Mb/s)
USB 2.0 host at speeds HS, FS, and low speed (LS: 1.5 Mb/s)
All transfer modes (control, bulk, interrupt, and isochronous)
4 Transmit (TX) and 4 Receive (RX) endpoints in addition to endpoint 0
FIFO RAM
4K endpoint
Programmable size
Integrated USB 2.0 High Speed PHY
Connects to a standard Charge Pump for VBUS 5 V generation
RNDIS mode for accelerating RNDIS type protocols using short packet termination over USB
Important Notice: The USB0 controller module clock (PLL0_SYSCLK2) must be greater than 30 MHz for
proper operation of the USB controller. A clock rate of 60 MHz or greater is recommended to avoid data
throughput reduction.
Table 5-92 is the list of USB OTG registers.
Table 5-92. Universal Serial Bus OTG (USB0) Registers
BYTE ADDRESS ACRONYM REGISTER DESCRIPTION
0x01E0 0000 REVID Revision Register
0x01E0 0004 CTRLR Control Register
0x01E0 0008 STATR Status Register
0x01E0 000C EMUR Emulation Register
0x01E0 0010 MODE Mode Register
0x01E0 0014 AUTOREQ Autorequest Register
0x01E0 0018 SRPFIXTIME SRP Fix Time Register
0x01E0 001C TEARDOWN Teardown Register
0x01E0 0020 INTSRCR USB Interrupt Source Register
0x01E0 0024 INTSETR USB Interrupt Source Set Register
0x01E0 0028 INTCLRR USB Interrupt Source Clear Register
0x01E0 002C INTMSKR USB Interrupt Mask Register
0x01E0 0030 INTMSKSETR USB Interrupt Mask Set Register
0x01E0 0034 INTMSKCLRR USB Interrupt Mask Clear Register
0x01E0 0038 INTMASKEDR USB Interrupt Source Masked Register
0x01E0 003C EOIR USB End of Interrupt Register
0x01E0 0040 - Reserved
0x01E0 0050 GENRNDISSZ1 Generic RNDIS Size EP1
0x01E0 0054 GENRNDISSZ2 Generic RNDIS Size EP2
0x01E0 0058 GENRNDISSZ3 Generic RNDIS Size EP3
0x01E0 005C GENRNDISSZ4 Generic RNDIS Size EP4
0x01E0 0400 FADDR Function Address Register
0x01E0 0401 POWER Power Management Register
0x01E0 0402 INTRTX Interrupt Register for Endpoint 0 plus Transmit Endpoints 1 to 4
0x01E0 0404 INTRRX Interrupt Register for Receive Endpoints 1 to 4
0x01E0 0406 INTRTXE Interrupt enable register for INTRTX
0x01E0 0408 INTRRXE Interrupt Enable Register for INTRRX
0x01E0 040A INTRUSB Interrupt Register for Common USB Interrupts
0x01E0 040B INTRUSBE Interrupt Enable Register for INTRUSB
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 197
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
Table 5-92. Universal Serial Bus OTG (USB0) Registers (continued)
BYTE ADDRESS ACRONYM REGISTER DESCRIPTION
0x01E0 040C FRAME Frame Number Register
0x01E0 040E INDEX Index Register for Selecting the Endpoint Status and Control Registers
0x01E0 040F TESTMODE Register to Enable the USB 2.0 Test Modes
Indexed Registers
These registers operate on the endpoint selected by the INDEX register
0x01E0 0410 TXMAXP Maximum Packet Size for Peripheral/Host Transmit Endpoint
(Index register set to select Endpoints 1-4 only)
0x01E0 0412 PERI_CSR0 Control Status Register for Endpoint 0 in Peripheral Mode.
(Index register set to select Endpoint 0)
HOST_CSR0 Control Status Register for Endpoint 0 in Host Mode.
(Index register set to select Endpoint 0)
PERI_TXCSR Control Status Register for Peripheral Transmit Endpoint.
(Index register set to select Endpoints 1-4)
HOST_TXCSR Control Status Register for Host Transmit Endpoint.
(Index register set to select Endpoints 1-4)
0x01E0 0414 RXMAXP Maximum Packet Size for Peripheral/Host Receive Endpoint
(Index register set to select Endpoints 1-4 only)
0x01E0 0416 PERI_RXCSR Control Status Register for Peripheral Receive Endpoint.
(Index register set to select Endpoints 1-4)
HOST_RXCSR Control Status Register for Host Receive Endpoint.
(Index register set to select Endpoints 1-4)
0x01E0 0418 COUNT0 Number of Received Bytes in Endpoint 0 FIFO.
(Index register set to select Endpoint 0)
RXCOUNT Number of Bytes in Host Receive Endpoint FIFO.
(Index register set to select Endpoints 1- 4)
0x01E0 041A HOST_TYPE0 Defines the speed of Endpoint 0
HOST_TXTYPE Sets the operating speed, transaction protocol and peripheral endpoint number for
the host Transmit endpoint. (Index register set to select Endpoints 1-4 only)
0x01E0 041B HOST_NAKLIMIT0 Sets the NAK response timeout on Endpoint 0.
(Index register set to select Endpoint 0)
HOST_TXINTERVAL Sets the polling interval for Interrupt/ISOC transactions or the NAK response
timeout on Bulk transactions for host Transmit endpoint. (Index register set to
select Endpoints 1-4 only)
0x01E0 041C HOST_RXTYPE Sets the operating speed, transaction protocol and peripheral endpoint number for
the host Receive endpoint. (Index register set to select Endpoints 1-4 only)
0x01E0 041D HOST_RXINTERVAL Sets the polling interval for Interrupt/ISOC transactions or the NAK response
timeout on Bulk transactions for host Receive endpoint. (Index register set to select
Endpoints 1-4 only)
0x01E0 041F CONFIGDATA Returns details of core configuration. (Index register set to select Endpoint 0)
FIFO
0x01E0 0420 FIFO0 Transmit and Receive FIFO Register for Endpoint 0
0x01E0 0424 FIFO1 Transmit and Receive FIFO Register for Endpoint 1
0x01E0 0428 FIFO2 Transmit and Receive FIFO Register for Endpoint 2
0x01E0 042C FIFO3 Transmit and Receive FIFO Register for Endpoint 3
0x01E0 0430 FIFO4 Transmit and Receive FIFO Register for Endpoint 4
OTG Device Control
0x01E0 0460 DEVCTL Device Control Register
Dynamic FIFO Control
0x01E0 0462 TXFIFOSZ Transmit Endpoint FIFO Size
(Index register set to select Endpoints 1-4 only)
0x01E0 0463 RXFIFOSZ Receive Endpoint FIFO Size
(Index register set to select Endpoints 1-4 only)
0x01E0 0464 TXFIFOADDR Transmit Endpoint FIFO Address
(Index register set to select Endpoints 1-4 only)
198 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
Table 5-92. Universal Serial Bus OTG (USB0) Registers (continued)
BYTE ADDRESS ACRONYM REGISTER DESCRIPTION
0x01E0 0466 RXFIFOADDR Receive Endpoint FIFO Address
(Index register set to select Endpoints 1-4 only)
0x01E0 046C HWVERS Hardware Version Register
Target Endpoint 0 Control Registers, Valid Only in Host Mode
0x01E0 0480 TXFUNCADDR Address of the target function that has to be accessed through the associated
Transmit Endpoint.
0x01E0 0482 TXHUBADDR Address of the hub that has to be accessed through the associated Transmit
Endpoint. This is used only when full speed or low speed device is connected via a
USB2.0 high-speed hub.
0x01E0 0483 TXHUBPORT Port of the hub that has to be accessed through the associated Transmit Endpoint.
This is used only when full speed or low speed device is connected via a USB2.0
high-speed hub.
0x01E0 0484 RXFUNCADDR Address of the target function that has to be accessed through the associated
Receive Endpoint.
0x01E0 0486 RXHUBADDR Address of the hub that has to be accessed through the associated Receive
Endpoint. This is used only when full speed or low speed device is connected via a
USB2.0 high-speed hub.
0x01E0 0487 RXHUBPORT Port of the hub that has to be accessed through the associated Receive Endpoint.
This is used only when full speed or low speed device is connected via a USB2.0
high-speed hub.
Target Endpoint 1 Control Registers, Valid Only in Host Mode
0x01E0 0488 TXFUNCADDR Address of the target function that has to be accessed through the associated
Transmit Endpoint.
0x01E0 048A TXHUBADDR Address of the hub that has to be accessed through the associated Transmit
Endpoint. This is used only when full speed or low speed device is connected via a
USB2.0 high-speed hub.
0x01E0 048B TXHUBPORT Port of the hub that has to be accessed through the associated Transmit Endpoint.
This is used only when full speed or low speed device is connected via a USB2.0
high-speed hub.
0x01E0 048C RXFUNCADDR Address of the target function that has to be accessed through the associated
Receive Endpoint.
0x01E0 048E RXHUBADDR Address of the hub that has to be accessed through the associated Receive
Endpoint. This is used only when full speed or low speed device is connected via a
USB2.0 high-speed hub.
0x01E0 048F RXHUBPORT Port of the hub that has to be accessed through the associated Receive Endpoint.
This is used only when full speed or low speed device is connected via a USB2.0
high-speed hub.
Target Endpoint 2 Control Registers, Valid Only in Host Mode
0x01E0 0490 TXFUNCADDR Address of the target function that has to be accessed through the associated
Transmit Endpoint.
0x01E0 0492 TXHUBADDR Address of the hub that has to be accessed through the associated Transmit
Endpoint. This is used only when full speed or low speed device is connected via a
USB2.0 high-speed hub.
0x01E0 0493 TXHUBPORT Port of the hub that has to be accessed through the associated Transmit Endpoint.
This is used only when full speed or low speed device is connected via a USB2.0
high-speed hub.
0x01E0 0494 RXFUNCADDR Address of the target function that has to be accessed through the associated
Receive Endpoint.
0x01E0 0496 RXHUBADDR Address of the hub that has to be accessed through the associated Receive
Endpoint. This is used only when full speed or low speed device is connected via a
USB2.0 high-speed hub.
0x01E0 0497 RXHUBPORT Port of the hub that has to be accessed through the associated Receive Endpoint.
This is used only when full speed or low speed device is connected via a USB2.0
high-speed hub.
Target Endpoint 3 Control Registers, Valid Only in Host Mode
0x01E0 0498 TXFUNCADDR Address of the target function that has to be accessed through the associated
Transmit Endpoint.
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 199
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
Table 5-92. Universal Serial Bus OTG (USB0) Registers (continued)
BYTE ADDRESS ACRONYM REGISTER DESCRIPTION
0x01E0 049A TXHUBADDR Address of the hub that has to be accessed through the associated Transmit
Endpoint. This is used only when full speed or low speed device is connected via a
USB2.0 high-speed hub.
0x01E0 049B TXHUBPORT Port of the hub that has to be accessed through the associated Transmit Endpoint.
This is used only when full speed or low speed device is connected via a USB2.0
high-speed hub.
0x01E0 049C RXFUNCADDR Address of the target function that has to be accessed through the associated
Receive Endpoint.
0x01E0 049E RXHUBADDR Address of the hub that has to be accessed through the associated Receive
Endpoint. This is used only when full speed or low speed device is connected via a
USB2.0 high-speed hub.
0x01E0 049F RXHUBPORT Port of the hub that has to be accessed through the associated Receive Endpoint.
This is used only when full speed or low speed device is connected via a USB2.0
high-speed hub.
Target Endpoint 4 Control Registers, Valid Only in Host Mode
0x01E0 04A0 TXFUNCADDR Address of the target function that has to be accessed through the associated
Transmit Endpoint.
0x01E0 04A2 TXHUBADDR Address of the hub that has to be accessed through the associated Transmit
Endpoint. This is used only when full speed or low speed device is connected via a
USB2.0 high-speed hub.
0x01E0 04A3 TXHUBPORT Port of the hub that has to be accessed through the associated Transmit Endpoint.
This is used only when full speed or low speed device is connected via a USB2.0
high-speed hub.
0x01E0 04A4 RXFUNCADDR Address of the target function that has to be accessed through the associated
Receive Endpoint.
0x01E0 04A6 RXHUBADDR Address of the hub that has to be accessed through the associated Receive
Endpoint. This is used only when full speed or low speed device is connected via a
USB2.0 high-speed hub.
0x01E0 04A7 RXHUBPORT Port of the hub that has to be accessed through the associated Receive Endpoint.
This is used only when full speed or low speed device is connected via a USB2.0
high-speed hub.
Control and Status Register for Endpoint 0
0x01E0 0502 PERI_CSR0 Control Status Register for Endpoint 0 in Peripheral Mode
HOST_CSR0 Control Status Register for Endpoint 0 in Host Mode
0x01E0 0508 COUNT0 Number of Received Bytes in Endpoint 0 FIFO
0x01E0 050A HOST_TYPE0 Defines the Speed of Endpoint 0
0x01E0 050B HOST_NAKLIMIT0 Sets the NAK Response Timeout on Endpoint 0
0x01E0 050F CONFIGDATA Returns details of core configuration.
Control and Status Register for Endpoint 1
0x01E0 0510 TXMAXP Maximum Packet Size for Peripheral/Host Transmit Endpoint
0x01E0 0512 PERI_TXCSR Control Status Register for Peripheral Transmit Endpoint (peripheral mode)
HOST_TXCSR Control Status Register for Host Transmit Endpoint (host mode)
0x01E0 0514 RXMAXP Maximum Packet Size for Peripheral/Host Receive Endpoint
0x01E0 0516 PERI_RXCSR Control Status Register for Peripheral Receive Endpoint (peripheral mode)
HOST_RXCSR Control Status Register for Host Receive Endpoint (host mode)
0x01E0 0518 RXCOUNT Number of Bytes in Host Receive endpoint FIFO
0x01E0 051A HOST_TXTYPE Sets the operating speed, transaction protocol and peripheral endpoint number for
the host Transmit endpoint.
0x01E0 051B HOST_TXINTERVAL Sets the polling interval for Interrupt/ISOC transactions or the NAK response
timeout on Bulk transactions for host Transmit endpoint.
0x01E0 051C HOST_RXTYPE Sets the operating speed, transaction protocol and peripheral endpoint number for
the host Receive endpoint.
0x01E0 051D HOST_RXINTERVAL Sets the polling interval for Interrupt/ISOC transactions or the NAK response
timeout on Bulk transactions for host Receive endpoint.
Control and Status Register for Endpoint 2
200 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
Table 5-92. Universal Serial Bus OTG (USB0) Registers (continued)
BYTE ADDRESS ACRONYM REGISTER DESCRIPTION
0x01E0 0520 TXMAXP Maximum Packet Size for Peripheral/Host Transmit Endpoint
0x01E0 0522 PERI_TXCSR Control Status Register for Peripheral Transmit Endpoint (peripheral mode)
HOST_TXCSR Control Status Register for Host Transmit Endpoint (host mode)
0x01E0 0524 RXMAXP Maximum Packet Size for Peripheral/Host Receive Endpoint
0x01E0 0526 PERI_RXCSR Control Status Register for Peripheral Receive Endpoint (peripheral mode)
HOST_RXCSR Control Status Register for Host Receive Endpoint (host mode)
0x01E0 0528 RXCOUNT Number of Bytes in Host Receive endpoint FIFO
0x01E0 052A HOST_TXTYPE Sets the operating speed, transaction protocol and peripheral endpoint number for
the host Transmit endpoint.
0x01E0 052B HOST_TXINTERVAL Sets the polling interval for Interrupt/ISOC transactions or the NAK response
timeout on Bulk transactions for host Transmit endpoint.
0x01E0 052C HOST_RXTYPE Sets the operating speed, transaction protocol and peripheral endpoint number for
the host Receive endpoint.
0x01E0 052D HOST_RXINTERVAL Sets the polling interval for Interrupt/ISOC transactions or the NAK response
timeout on Bulk transactions for host Receive endpoint.
Control and Status Register for Endpoint 3
0x01E0 0530 TXMAXP Maximum Packet Size for Peripheral/Host Transmit Endpoint
0x01E0 0532 PERI_TXCSR Control Status Register for Peripheral Transmit Endpoint (peripheral mode)
HOST_TXCSR Control Status Register for Host Transmit Endpoint (host mode)
0x01E0 0534 RXMAXP Maximum Packet Size for Peripheral/Host Receive Endpoint
0x01E0 0536 PERI_RXCSR Control Status Register for Peripheral Receive Endpoint (peripheral mode)
HOST_RXCSR Control Status Register for Host Receive Endpoint (host mode)
0x01E0 0538 RXCOUNT Number of Bytes in Host Receive endpoint FIFO
0x01E0 053A HOST_TXTYPE Sets the operating speed, transaction protocol and peripheral endpoint number for
the host Transmit endpoint.
0x01E0 053B HOST_TXINTERVAL Sets the polling interval for Interrupt/ISOC transactions or the NAK response
timeout on Bulk transactions for host Transmit endpoint.
0x01E0 053C HOST_RXTYPE Sets the operating speed, transaction protocol and peripheral endpoint number for
the host Receive endpoint.
0x01E0 053D HOST_RXINTERVAL Sets the polling interval for Interrupt/ISOC transactions or the NAK response
timeout on Bulk transactions for host Receive endpoint.
Control and Status Register for Endpoint 4
0x01E0 0540 TXMAXP Maximum Packet Size for Peripheral/Host Transmit Endpoint
0x01E0 0542 PERI_TXCSR Control Status Register for Peripheral Transmit Endpoint (peripheral mode)
HOST_TXCSR Control Status Register for Host Transmit Endpoint (host mode)
0x01E0 0544 RXMAXP Maximum Packet Size for Peripheral/Host Receive Endpoint
0x01E0 0546 PERI_RXCSR Control Status Register for Peripheral Receive Endpoint (peripheral mode)
HOST_RXCSR Control Status Register for Host Receive Endpoint (host mode)
0x01E0 0548 RXCOUNT Number of Bytes in Host Receive endpoint FIFO
0x01E0 054A HOST_TXTYPE Sets the operating speed, transaction protocol and peripheral endpoint number for
the host Transmit endpoint.
0x01E0 054B HOST_TXINTERVAL Sets the polling interval for Interrupt/ISOC transactions or the NAK response
timeout on Bulk transactions for host Transmit endpoint.
0x01E0 054C HOST_RXTYPE Sets the operating speed, transaction protocol and peripheral endpoint number for
the host Receive endpoint.
0x01E0 054D HOST_RXINTERVAL Sets the polling interval for Interrupt/ISOC transactions or the NAK response
timeout on Bulk transactions for host Receive endpoint.
DMA Registers
0x01E0 1000 DMAREVID DMA Revision Register
0x01E0 1004 TDFDQ DMA Teardown Free Descriptor Queue Control Register
0x01E0 1008 DMAEMU DMA Emulation Control Register
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 201
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
Table 5-92. Universal Serial Bus OTG (USB0) Registers (continued)
BYTE ADDRESS ACRONYM REGISTER DESCRIPTION
0x01E0 1800 TXGCR[0] Transmit Channel 0 Global Configuration Register
0x01E0 1808 RXGCR[0] Receive Channel 0 Global Configuration Register
0x01E0 180C RXHPCRA[0] Receive Channel 0 Host Packet Configuration Register A
0x01E0 1810 RXHPCRB[0] Receive Channel 0 Host Packet Configuration Register B
0x01E0 1820 TXGCR[1] Transmit Channel 1 Global Configuration Register
0x01E0 1828 RXGCR[1] Receive Channel 1 Global Configuration Register
0x01E0 182C RXHPCRA[1] Receive Channel 1 Host Packet Configuration Register A
0x01E0 1830 RXHPCRB[1] Receive Channel 1 Host Packet Configuration Register B
0x01E0 1840 TXGCR[2] Transmit Channel 2 Global Configuration Register
0x01E0 1848 RXGCR[2] Receive Channel 2 Global Configuration Register
0x01E0 184C RXHPCRA[2] Receive Channel 2 Host Packet Configuration Register A
0x01E0 1850 RXHPCRB[2] Receive Channel 2 Host Packet Configuration Register B
0x01E0 1860 TXGCR[3] Transmit Channel 3 Global Configuration Register
0x01E0 1868 RXGCR[3] Receive Channel 3 Global Configuration Register
0x01E0 186C RXHPCRA[3] Receive Channel 3 Host Packet Configuration Register A
0x01E0 1870 RXHPCRB[3] Receive Channel 3 Host Packet Configuration Register B
0x01E0 2000 DMA_SCHED_CTRL DMA Scheduler Control Register
0x01E0 2800 WORD[0] DMA Scheduler Table Word 0
0x01E0 2804 WORD[1] DMA Scheduler Table Word 1
... ... ...
0x01E0 28FC WORD[63] DMA Scheduler Table Word 63
Queue Manager Registers
0x01E0 4000 QMGRREVID Queue Manager Revision Register
0x01E0 4008 DIVERSION Queue Diversion Register
0x01E0 4020 FDBSC0 Free Descriptor/Buffer Starvation Count Register 0
0x01E0 4024 FDBSC1 Free Descriptor/Buffer Starvation Count Register 1
0x01E0 4028 FDBSC2 Free Descriptor/Buffer Starvation Count Register 2
0x01E0 402C FDBSC3 Free Descriptor/Buffer Starvation Count Register 3
0x01E0 4080 LRAM0BASE Linking RAM Region 0 Base Address Register
0x01E0 4084 LRAM0SIZE Linking RAM Region 0 Size Register
0x01E0 4088 LRAM1BASE Linking RAM Region 1 Base Address Register
0x01E0 4090 PEND0 Queue Pending Register 0
0x01E0 4094 PEND1 Queue Pending Register 1
0x01E0 5000 QMEMRBASE[0] Memory Region 0 Base Address Register
0x01E0 5004 QMEMRCTRL[0] Memory Region 0 Control Register
0x01E0 5010 QMEMRBASE[1] Memory Region 1 Base Address Register
0x01E0 5014 QMEMRCTRL[1] Memory Region 1 Control Register
... ... ...
0x01E0 50F0 QMEMRBASE[15] Memory Region 15 Base Address Register
0x01E0 50F4 QMEMRCTRL[15] Memory Region 15 Control Register
0x01E0 600C CTRLD[0] Queue Manager Queue 0 Control Register D
0x01E0 601C CTRLD[1] Queue Manager Queue 1 Control Register D
... ... ...
0x01E0 63FC CTRLD[63] Queue Manager Queue 63 Status Register D
0x01E0 6800 QSTATA[0] Queue Manager Queue 0 Status Register A
0x01E0 6804 QSTATB[0] Queue Manager Queue 0 Status Register B
0x01E0 6808 QSTATC[0] Queue Manager Queue 0 Status Register C
202 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
trtf
VCRS 90% VOH
10% VOL
USB_DM
USB_DP
tper tjr
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
Table 5-92. Universal Serial Bus OTG (USB0) Registers (continued)
BYTE ADDRESS ACRONYM REGISTER DESCRIPTION
0x01E0 6810 QSTATA[1] Queue Manager Queue 1 Status Register A
0x01E0 6814 QSTATB[1] Queue Manager Queue 1 Status Register B
0x01E0 6818 QSTATC[1] Queue Manager Queue 1 Status Register C
... ... ...
0x01E0 6BF0 QSTATA[63] Queue Manager Queue 63 Status Register A
0x01E0 6BF4 QSTATB[63] Queue Manager Queue 63 Status Register B
0x01E0 6BF8 QSTATC[63] Queue Manager Queue 63 Status Register C
5.20.1 USB0 [USB2.0] Electrical Data/Timing
The USB PHY PLL can support input clock of the following frequencies: 12.0 MHz, 13.0 MHz, 19.2 MHz,
20.0 MHz, 24.0 MHz, 26.0 MHz, 38.4 MHz, 40.0 MHz or 48.0 MHz. USB_REFCLKIN jitter tolerance is 50
ppm (maximum).
Table 5-93. Switching Characteristics Over Recommended Operating Conditions for USB0 [USB2.0] (see
Figure 5-46)
1.3V, 1.2V, 1.1V, 1.0V
LOW SPEED FULL SPEED HIGH SPEED
NO. PARAMETER UNIT
1.5 Mbps 12 Mbps 480 Mbps
MIN MAX MIN MAX MIN MAX
1 tr(D) Rise time, USB_DP and USB_DM signals(1) 75 300 4 20 0.5 ns
2 tf(D) Fall time, USB_DP and USB_DM signals(1) 75 300 4 20 0.5 ns
3 trfM Rise/Fall time, matching(2) 80 120 90 111 %
4 VCRS Output signal cross-over voltage(1) 1.3 2 1.3 2 V
5 tjr(source)NT Source (Host) Driver jitter, next transition 2 2 (3)ns
tjr(FUNC)NT Function Driver jitter, next transition 25 2 (3) ns
6 tjr(source)PT Source (Host) Driver jitter, paired transition(4) 1 1 (3) ns
tjr(FUNC)PT Function Driver jitter, paired transition 10 1 (3) ns
7 tw(EOPT) Pulse duration, EOP transmitter 1250 1500 160 175 ns
8 tw(EOPR) Pulse duration, EOP receiver 670 82 ns
9 t(DRATE) Data Rate 1.5 12 480 Mb/s
10 ZDRV Driver Output Resistance 40.5 49.5 40.5 49.5
11 ZINP Receiver Input Impedance 100k 100k - -
(1) Low Speed: CL= 200 pF, Full Speed: CL= 50 pF, High Speed: CL= 50 pF
(2) tRFM = (tr/tf) x 100. [Excluding the first transaction from the Idle state.]
(3) For more detailed information, see the Universal Serial Bus Specification Revision 2.0, Chapter 7. Electrical.
(4) tjr = tpx(1) - tpx(0)
Figure 5-46. USB2.0 Integrated Transceiver Interface Timing
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 203
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
5.21 Universal Serial Bus Host Controller (USB1) [USB1.1 OHCI]
All the USB interfaces for this device are compliant with Universal Serial Bus Specifications, Revision 1.1.
Table 5-94 is the list of USB Host Controller registers.
Table 5-94. USB Host Controller Registers
USB1 ACRONYM REGISTER DESCRIPTION
BYTE ADDRESS
0x01E2 5000 HCREVISION OHCI Revision Number Register
0x01E2 5004 HCCONTROL HC Operating Mode Register
0x01E2 5008 HCCOMMANDSTATUS HC Command and Status Register
0x01E2 500C HCINTERRUPTSTATUS HC Interrupt and Status Register
0x01E2 5010 HCINTERRUPTENABLE HC Interrupt Enable Register
0x01E2 5014 HCINTERRUPTDISABLE HC Interrupt Disable Register
0x01E2 5018 HCHCCA HC HCAA Address Register(1)
0x01E2 501C HCPERIODCURRENTED HC Current Periodic Register(1)
0x01E2 5020 HCCONTROLHEADED HC Head Control Register(1)
0x01E2 5024 HCCONTROLCURRENTED HC Current Control Register(1)
0x01E2 5028 HCBULKHEADED HC Head Bulk Register(1)
0x01E2 502C HCBULKCURRENTED HC Current Bulk Register(1)
0x01E2 5030 HCDONEHEAD HC Head Done Register(1)
0x01E2 5034 HCFMINTERVAL HC Frame Interval Register
0x01E2 5038 HCFMREMAINING HC Frame Remaining Register
0x01E2 503C HCFMNUMBER HC Frame Number Register
0x01E2 5040 HCPERIODICSTART HC Periodic Start Register
0x01E2 5044 HCLSTHRESHOLD HC Low-Speed Threshold Register
0x01E2 5048 HCRHDESCRIPTORA HC Root Hub A Register
0x01E2 504C HCRHDESCRIPTORB HC Root Hub B Register
0x01E2 5050 HCRHSTATUS HC Root Hub Status Register
0x01E2 5054 HCRHPORTSTATUS1 HC Port 1 Status and Control Register(2)
0x01E2 5058 HCRHPORTSTATUS2 HC Port 2 Status and Control Register(3)
(1) Restrictions apply to the physical addresses used in these registers.
(2) Connected to the integrated USB1.1 phy pins (USB1_DM, USB1_DP).
(3) Although the controller implements two ports, the second port cannot be used.
Table 5-95. Switching Characteristics Over Recommended Operating Conditions for USB1 [USB1.1]
1.3V, 1.2V, 1.1V, 1.0V
NO. PARAMETER LOW SPEED FULL SPEED UNIT
MIN MAX MAX MAX
U1 trRise time, USB.DP and USB.DM signals(1) 75(1) 300(1) 4(1) 20(1) ns
U2 tfFall time, USB.DP and USB.DM signals(1) 75(1) 300(1) 4(1) 20(1) ns
U3 tRFM Rise/Fall time matching(2) 80(2) 120(2) 90(2) 110(2) %
U4 VCRS Output signal cross-over voltage(1) 1.3(1) 2(1) 1.3(1) 2(1) V
U5 tjDifferential propagation jitter(3) -25(3) 25(3) -2(3) 2(3) ns
U6 fop Operating frequency(4) 1.5 12 MHz
(1) Low Speed: CL= 200 pF. High Speed: CL= 50pF
(2) tRFM =( tr/tf) x 100
(3) t jr = t px(1) - tpx(0)
(4) fop = 1/tper
204 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
5.22 Ethernet Media Access Controller (EMAC)
The Ethernet Media Access Controller (EMAC) provides an efficient interface between device and the
network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps
in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support.
The EMAC controls the flow of packet data from the device to the PHY. The MDIO module controls PHY
configuration and status monitoring.
Both the EMAC and the MDIO modules interface to the device through a custom interface that allows
efficient data transmission and reception. This custom interface is referred to as the EMAC control
module, and is considered integral to the EMAC/MDIO peripheral. The control module is also used to
multiplex and control interrupts.
5.22.1 EMAC Peripheral Register Description(s)
Table 5-96. Ethernet Media Access Controller (EMAC) Registers
BYTE ADDRESS ACRONYM REGISTER DESCRIPTION
0x01E2 3000 TXREV Transmit Revision Register
0x01E2 3004 TXCONTROL Transmit Control Register
0x01E2 3008 TXTEARDOWN Transmit Teardown Register
0x01E2 3010 RXREV Receive Revision Register
0x01E2 3014 RXCONTROL Receive Control Register
0x01E2 3018 RXTEARDOWN Receive Teardown Register
0x01E2 3080 TXINTSTATRAW Transmit Interrupt Status (Unmasked) Register
0x01E2 3084 TXINTSTATMASKED Transmit Interrupt Status (Masked) Register
0x01E2 3088 TXINTMASKSET Transmit Interrupt Mask Set Register
0x01E2 308C TXINTMASKCLEAR Transmit Interrupt Clear Register
0x01E2 3090 MACINVECTOR MAC Input Vector Register
0x01E2 3094 MACEOIVECTOR MAC End Of Interrupt Vector Register
0x01E2 30A0 RXINTSTATRAW Receive Interrupt Status (Unmasked) Register
0x01E2 30A4 RXINTSTATMASKED Receive Interrupt Status (Masked) Register
0x01E2 30A8 RXINTMASKSET Receive Interrupt Mask Set Register
0x01E2 30AC RXINTMASKCLEAR Receive Interrupt Mask Clear Register
0x01E2 30B0 MACINTSTATRAW MAC Interrupt Status (Unmasked) Register
0x01E2 30B4 MACINTSTATMASKED MAC Interrupt Status (Masked) Register
0x01E2 30B8 MACINTMASKSET MAC Interrupt Mask Set Register
0x01E2 30BC MACINTMASKCLEAR MAC Interrupt Mask Clear Register
0x01E2 3100 RXMBPENABLE Receive Multicast/Broadcast/Promiscuous Channel Enable Register
0x01E2 3104 RXUNICASTSET Receive Unicast Enable Set Register
0x01E2 3108 RXUNICASTCLEAR Receive Unicast Clear Register
0x01E2 310C RXMAXLEN Receive Maximum Length Register
0x01E2 3110 RXBUFFEROFFSET Receive Buffer Offset Register
0x01E2 3114 RXFILTERLOWTHRESH Receive Filter Low Priority Frame Threshold Register
0x01E2 3120 RX0FLOWTHRESH Receive Channel 0 Flow Control Threshold Register
0x01E2 3124 RX1FLOWTHRESH Receive Channel 1 Flow Control Threshold Register
0x01E2 3128 RX2FLOWTHRESH Receive Channel 2 Flow Control Threshold Register
0x01E2 312C RX3FLOWTHRESH Receive Channel 3 Flow Control Threshold Register
0x01E2 3130 RX4FLOWTHRESH Receive Channel 4 Flow Control Threshold Register
0x01E2 3134 RX5FLOWTHRESH Receive Channel 5 Flow Control Threshold Register
0x01E2 3138 RX6FLOWTHRESH Receive Channel 6 Flow Control Threshold Register
0x01E2 313C RX7FLOWTHRESH Receive Channel 7 Flow Control Threshold Register
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 205
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
Table 5-96. Ethernet Media Access Controller (EMAC) Registers (continued)
BYTE ADDRESS ACRONYM REGISTER DESCRIPTION
0x01E2 3140 RX0FREEBUFFER Receive Channel 0 Free Buffer Count Register
0x01E2 3144 RX1FREEBUFFER Receive Channel 1 Free Buffer Count Register
0x01E2 3148 RX2FREEBUFFER Receive Channel 2 Free Buffer Count Register
0x01E2 314C RX3FREEBUFFER Receive Channel 3 Free Buffer Count Register
0x01E2 3150 RX4FREEBUFFER Receive Channel 4 Free Buffer Count Register
0x01E2 3154 RX5FREEBUFFER Receive Channel 5 Free Buffer Count Register
0x01E2 3158 RX6FREEBUFFER Receive Channel 6 Free Buffer Count Register
0x01E2 315C RX7FREEBUFFER Receive Channel 7 Free Buffer Count Register
0x01E2 3160 MACCONTROL MAC Control Register
0x01E2 3164 MACSTATUS MAC Status Register
0x01E2 3168 EMCONTROL Emulation Control Register
0x01E2 316C FIFOCONTROL FIFO Control Register
0x01E2 3170 MACCONFIG MAC Configuration Register
0x01E2 3174 SOFTRESET Soft Reset Register
0x01E2 31D0 MACSRCADDRLO MAC Source Address Low Bytes Register
0x01E2 31D4 MACSRCADDRHI MAC Source Address High Bytes Register
0x01E2 31D8 MACHASH1 MAC Hash Address Register 1
0x01E2 31DC MACHASH2 MAC Hash Address Register 2
0x01E2 31E0 BOFFTEST Back Off Test Register
0x01E2 31E4 TPACETEST Transmit Pacing Algorithm Test Register
0x01E2 31E8 RXPAUSE Receive Pause Timer Register
0x01E2 31EC TXPAUSE Transmit Pause Timer Register
0x01E2 3200 - 0x01E2 32FC (see Table 5-97) EMAC Statistics Registers
0x01E2 3500 MACADDRLO MAC Address Low Bytes Register, Used in Receive Address Matching
0x01E2 3504 MACADDRHI MAC Address High Bytes Register, Used in Receive Address Matching
0x01E2 3508 MACINDEX MAC Index Register
0x01E2 3600 TX0HDP Transmit Channel 0 DMA Head Descriptor Pointer Register
0x01E2 3604 TX1HDP Transmit Channel 1 DMA Head Descriptor Pointer Register
0x01E2 3608 TX2HDP Transmit Channel 2 DMA Head Descriptor Pointer Register
0x01E2 360C TX3HDP Transmit Channel 3 DMA Head Descriptor Pointer Register
0x01E2 3610 TX4HDP Transmit Channel 4 DMA Head Descriptor Pointer Register
0x01E2 3614 TX5HDP Transmit Channel 5 DMA Head Descriptor Pointer Register
0x01E2 3618 TX6HDP Transmit Channel 6 DMA Head Descriptor Pointer Register
0x01E2 361C TX7HDP Transmit Channel 7 DMA Head Descriptor Pointer Register
0x01E2 3620 RX0HDP Receive Channel 0 DMA Head Descriptor Pointer Register
0x01E2 3624 RX1HDP Receive Channel 1 DMA Head Descriptor Pointer Register
0x01E2 3628 RX2HDP Receive Channel 2 DMA Head Descriptor Pointer Register
0x01E2 362C RX3HDP Receive Channel 3 DMA Head Descriptor Pointer Register
0x01E2 3630 RX4HDP Receive Channel 4 DMA Head Descriptor Pointer Register
0x01E2 3634 RX5HDP Receive Channel 5 DMA Head Descriptor Pointer Register
0x01E2 3638 RX6HDP Receive Channel 6 DMA Head Descriptor Pointer Register
0x01E2 363C RX7HDP Receive Channel 7 DMA Head Descriptor Pointer Register
0x01E2 3640 TX0CP Transmit Channel 0 Completion Pointer Register
0x01E2 3644 TX1CP Transmit Channel 1 Completion Pointer Register
0x01E2 3648 TX2CP Transmit Channel 2 Completion Pointer Register
0x01E2 364C TX3CP Transmit Channel 3 Completion Pointer Register
0x01E2 3650 TX4CP Transmit Channel 4 Completion Pointer Register
206 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
Table 5-96. Ethernet Media Access Controller (EMAC) Registers (continued)
BYTE ADDRESS ACRONYM REGISTER DESCRIPTION
0x01E2 3654 TX5CP Transmit Channel 5 Completion Pointer Register
0x01E2 3658 TX6CP Transmit Channel 6 Completion Pointer Register
0x01E2 365C TX7CP Transmit Channel 7 Completion Pointer Register
0x01E2 3660 RX0CP Receive Channel 0 Completion Pointer Register
0x01E2 3664 RX1CP Receive Channel 1 Completion Pointer Register
0x01E2 3668 RX2CP Receive Channel 2 Completion Pointer Register
0x01E2 366C RX3CP Receive Channel 3 Completion Pointer Register
0x01E2 3670 RX4CP Receive Channel 4 Completion Pointer Register
0x01E2 3674 RX5CP Receive Channel 5 Completion Pointer Register
0x01E2 3678 RX6CP Receive Channel 6 Completion Pointer Register
0x01E2 367C RX7CP Receive Channel 7 Completion Pointer Register
Table 5-97. EMAC Statistics Registers
BYTE ADDRESS ACRONYM REGISTER DESCRIPTION
0x01E2 3200 RXGOODFRAMES Good Receive Frames Register
Broadcast Receive Frames Register
0x01E2 3204 RXBCASTFRAMES (Total number of good broadcast frames received)
Multicast Receive Frames Register
0x01E2 3208 RXMCASTFRAMES (Total number of good multicast frames received)
0x01E2 320C RXPAUSEFRAMES Pause Receive Frames Register
Receive CRC Errors Register (Total number of frames received with
0x01E2 3210 RXCRCERRORS CRC errors)
Receive Alignment/Code Errors Register
0x01E2 3214 RXALIGNCODEERRORS (Total number of frames received with alignment/code errors)
Receive Oversized Frames Register
0x01E2 3218 RXOVERSIZED (Total number of oversized frames received)
Receive Jabber Frames Register
0x01E2 321C RXJABBER (Total number of jabber frames received)
Receive Undersized Frames Register
0x01E2 3220 RXUNDERSIZED (Total number of undersized frames received)
0x01E2 3224 RXFRAGMENTS Receive Frame Fragments Register
0x01E2 3228 RXFILTERED Filtered Receive Frames Register
0x01E2 322C RXQOSFILTERED Received QOS Filtered Frames Register
Receive Octet Frames Register
0x01E2 3230 RXOCTETS (Total number of received bytes in good frames)
Good Transmit Frames Register
0x01E2 3234 TXGOODFRAMES (Total number of good frames transmitted)
0x01E2 3238 TXBCASTFRAMES Broadcast Transmit Frames Register
0x01E2 323C TXMCASTFRAMES Multicast Transmit Frames Register
0x01E2 3240 TXPAUSEFRAMES Pause Transmit Frames Register
0x01E2 3244 TXDEFERRED Deferred Transmit Frames Register
0x01E2 3248 TXCOLLISION Transmit Collision Frames Register
0x01E2 324C TXSINGLECOLL Transmit Single Collision Frames Register
0x01E2 3250 TXMULTICOLL Transmit Multiple Collision Frames Register
0x01E2 3254 TXEXCESSIVECOLL Transmit Excessive Collision Frames Register
0x01E2 3258 TXLATECOLL Transmit Late Collision Frames Register
0x01E2 325C TXUNDERRUN Transmit Underrun Error Register
0x01E2 3260 TXCARRIERSENSE Transmit Carrier Sense Errors Register
0x01E2 3264 TXOCTETS Transmit Octet Frames Register
0x01E2 3268 FRAME64 Transmit and Receive 64 Octet Frames Register
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 207
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
Table 5-97. EMAC Statistics Registers (continued)
BYTE ADDRESS ACRONYM REGISTER DESCRIPTION
0x01E2 326C FRAME65T127 Transmit and Receive 65 to 127 Octet Frames Register
0x01E2 3270 FRAME128T255 Transmit and Receive 128 to 255 Octet Frames Register
0x01E2 3274 FRAME256T511 Transmit and Receive 256 to 511 Octet Frames Register
0x01E2 3278 FRAME512T1023 Transmit and Receive 512 to 1023 Octet Frames Register
0x01E2 327C FRAME1024TUP Transmit and Receive 1024 to 1518 Octet Frames Register
0x01E2 3280 NETOCTETS Network Octet Frames Register
0x01E2 3284 RXSOFOVERRUNS Receive FIFO or DMA Start of Frame Overruns Register
0x01E2 3288 RXMOFOVERRUNS Receive FIFO or DMA Middle of Frame Overruns Register
0x01E2 328C RXDMAOVERRUNS Receive DMA Start of Frame and Middle of Frame Overruns Register
Table 5-98. EMAC Control Module Registers
BYTE ADDRESS ACRONYM REGISTER DESCRIPTION
0x01E2 2000 REV EMAC Control Module Revision Register
0x01E2 2004 SOFTRESET EMAC Control Module Software Reset Register
0x01E2 200C INTCONTROL EMAC Control Module Interrupt Control Register
0x01E2 2010 C0RXTHRESHEN EMAC Control Module Interrupt Core 0 Receive Threshold Interrupt Enable Register
0x01E2 2014 C0RXEN EMAC Control Module Interrupt Core 0 Receive Interrupt Enable Register
0x01E2 2018 C0TXEN EMAC Control Module Interrupt Core 0 Transmit Interrupt Enable Register
0x01E2 201C C0MISCEN EMAC Control Module Interrupt Core 0 Miscellaneous Interrupt Enable Register
0x01E2 2020 C1RXTHRESHEN EMAC Control Module Interrupt Core 1 Receive Threshold Interrupt Enable Register
0x01E2 2024 C1RXEN EMAC Control Module Interrupt Core 1 Receive Interrupt Enable Register
0x01E2 2028 C1TXEN EMAC Control Module Interrupt Core 1 Transmit Interrupt Enable Register
0x01E2 202C C1MISCEN EMAC Control Module Interrupt Core 1 Miscellaneous Interrupt Enable Register
0x01E2 2030 C2RXTHRESHEN EMAC Control Module Interrupt Core 2 Receive Threshold Interrupt Enable Register
0x01E2 2034 C2RXEN EMAC Control Module Interrupt Core 2 Receive Interrupt Enable Register
0x01E2 2038 C2TXEN EMAC Control Module Interrupt Core 2 Transmit Interrupt Enable Register
0x01E2 203C C2MISCEN EMAC Control Module Interrupt Core 2 Miscellaneous Interrupt Enable Register
0x01E2 2040 C0RXTHRESHSTAT EMAC Control Module Interrupt Core 0 Receive Threshold Interrupt Status Register
0x01E2 2044 C0RXSTAT EMAC Control Module Interrupt Core 0 Receive Interrupt Status Register
0x01E2 2048 C0TXSTAT EMAC Control Module Interrupt Core 0 Transmit Interrupt Status Register
0x01E2 204C C0MISCSTAT EMAC Control Module Interrupt Core 0 Miscellaneous Interrupt Status Register
0x01E2 2050 C1RXTHRESHSTAT EMAC Control Module Interrupt Core 1 Receive Threshold Interrupt Status Register
0x01E2 2054 C1RXSTAT EMAC Control Module Interrupt Core 1 Receive Interrupt Status Register
0x01E2 2058 C1TXSTAT EMAC Control Module Interrupt Core 1 Transmit Interrupt Status Register
0x01E2 205C C1MISCSTAT EMAC Control Module Interrupt Core 1 Miscellaneous Interrupt Status Register
0x01E2 2060 C2RXTHRESHSTAT EMAC Control Module Interrupt Core 2 Receive Threshold Interrupt Status Register
0x01E2 2064 C2RXSTAT EMAC Control Module Interrupt Core 2 Receive Interrupt Status Register
0x01E2 2068 C2TXSTAT EMAC Control Module Interrupt Core 2 Transmit Interrupt Status Register
0x01E2 206C C2MISCSTAT EMAC Control Module Interrupt Core 2 Miscellaneous Interrupt Status Register
0x01E2 2070 C0RXIMAX EMAC Control Module Interrupt Core 0 Receive Interrupts Per Millisecond Register
0x01E2 2074 C0TXIMAX EMAC Control Module Interrupt Core 0 Transmit Interrupts Per Millisecond Register
0x01E2 2078 C1RXIMAX EMAC Control Module Interrupt Core 1 Receive Interrupts Per Millisecond Register
0x01E2 207C C1TXIMAX EMAC Control Module Interrupt Core 1 Transmit Interrupts Per Millisecond Register
0x01E2 2080 C2RXIMAX EMAC Control Module Interrupt Core 2 Receive Interrupts Per Millisecond Register
0x01E2 2084 C2TXIMAX EMAC Control Module Interrupt Core 2 Transmit Interrupts Per Millisecond Register
208 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
Table 5-99. EMAC Control Module RAM
BYTE ADDRESS DESCRIPTION
0x01E2 0000 - 0x01E2 1FFF EMAC Local Buffer Descriptor Memory
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 209
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
MII_RXCLK
23
1
MII_TXCLK
23
1
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
5.22.1.1 EMAC Electrical Data/Timing
Table 5-100. Timing Requirements for MII_RXCLK (see Figure 5-47)
1.3V, 1.2V, 1.1V 1.0V
NO. 10 Mbps 100 Mbps 10 Mbps UNIT
MIN MAX MIN MAX MIN MAX
1 tc(MII_RXCLK) Cycle time, MII_RXCLK 400 40 400 ns
2 tw(MII_RXCLKH) Pulse duration, MII_RXCLK high 140 14 140 ns
3 tw(MII_RXCLKL) Pulse duration, MII_RXCLK low 140 14 140 ns
Figure 5-47. MII_RXCLK Timing (EMAC - Receive)
Table 5-101. Timing Requirements for MII_TXCLK (see Figure 5-48)
1.3V, 1.2V, 1.1V 1.0V
NO. PARAMETER 10 Mbps 100 Mbps 10 Mbps UNIT
MIN MAX MIN MAX MIN MAX
1 tc(MII_TXCLK) Cycle time, MII_TXCLK 400 40 400 ns
2 tw(MII_TXCLKH) Pulse duration, MII_TXCLK high 140 14 140 ns
3 tw(MII_TXCLKL) Pulse duration, MII_TXCLK low 140 14 140 ns
Figure 5-48. MII_TXCLK Timing (EMAC - Transmit)
210 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
MII_RXCLK(Input)
1
2
MII_RXD[3]-MII_RXD[0],
MII_RXDV,MII_RXER(Inputs)
1
MII_TCLK(Input)
MII_TXD[3]-MII_TXD[0],
MII_TXEN(Outputs)
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
Table 5-102. Timing Requirements for EMAC MII Receive 10/100 Mbit/s(1) (see Figure 5-49)
1.3V, 1.2V, 1.1V, 1.0V
NO. PARAMETER UNIT
MIN MAX
1 tsu(MRXD-MII_RXCLKH) Setup time, receive selected signals valid before MII_RXCLK high 8 ns
2 th(MII_RXCLKH-MRXD) Hold time, receive selected signals valid after MII_RXCLK high 8 ns
(1) Receive selected signals include: MII_RXD[3]-MII_RXD[0], MII_RXDV, and MII_RXER.
Figure 5-49. EMAC Receive Interface Timing
Table 5-103. Switching Characteristics Over Recommended Operating Conditions for EMAC MII Transmit
10/100 Mbit/s(1) (see Figure 5-50)
1.3V, 1.2V, 1.0V
1.1V
NO. PARAMETER UNIT
MIN MAX MIN MAX
td(MII_TXCLKH-
1 Delay time, MII_TXCLK high to transmit selected signals valid 2 25 2 32 ns
MTXD)
(1) Transmit selected signals include: MTXD3-MTXD0, and MII_TXEN.
Figure 5-50. EMAC Transmit Interface Timing
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 211
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
RMII_MHz_50_CLK
RMII_TXEN
RMII_TXD[1:0]
RMII_RXD[1:0]
RMII_CRS_DV
RMII_RXER
1
2 3
5 5
4
6
7
8 9
10
11
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
Table 5-104. Timing Requirements for EMAC RMII
1.3V, 1.2V, 1.1V(1)
NO. PARAMETER UNIT
MIN TYP MAX
1 tc(REFCLK) Cycle Time, RMII_MHZ_50_CLK 20 ns
2 tw(REFCLKH) Pulse Width, RMII_MHZ_50_CLK High 7 13 ns
3 tw(REFCLKL) Pulse Width, RMII_MHZ_50_CLK Low 7 13 ns
6 tsu(RXD-REFCLK) Input Setup Time, RXD Valid before RMII_MHZ_50_CLK High 4 ns
7 th(REFCLK-RXD) Input Hold Time, RXD Valid after RMII_MHZ_50_CLK High 2 ns
8 tsu(CRSDV-REFCLK) Input Setup Time, CRSDV Valid before RMII_MHZ_50_CLK High 4 ns
9 th(REFCLK-CRSDV) Input Hold Time, CRSDV Valid after RMII_MHZ_50_CLK High 2 ns
10 tsu(RXER-REFCLK) Input Setup Time, RXER Valid before RMII_MHZ_50_CLK High 4 ns
11 th(REFCLKR-RXER) Input Hold Time, RXER Valid after RMII_MHZ_50_CLK High 2 ns
(1) RMII is not supported at operating points below 1.1V nominal
Note: Per the RMII industry specification, the RMII reference clock (RMII_MHZ_50_CLK) must have jitter
tolerance of 50 ppm or less.
Table 5-105. Switching Characteristics Over Recommended Operating Conditions for EMAC RMII
1.3V, 1.2V, 1.1V(1)
NO. PARAMETER UNIT
MIN TYP MAX
4 td(REFCLK-TXD) Output Delay Time, RMII_MHZ_50_CLK High to TXD Valid 2.5 13 ns
5 td(REFCLK-TXEN) Output Delay Time, RMII_MHZ_50_CLK High to TXEN Valid 2.5 13 ns
(1) RMII is not supported at operating points below 1.1V nominal.
Figure 5-51. RMII Timing Diagram
212 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
5.23 Management Data Input/Output (MDIO)
The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to
enumerate all PHY devices in the system.
The Management Data Input/Output (MDIO) module implements the 802.3 serial management interface to
interrogate and control Ethernet PHY(s) using a shared two-wire bus. Host software uses the MDIO
module to configure the auto-negotiation parameters of each PHY attached to the EMAC, retrieve the
negotiation results, and configure required parameters in the EMAC module for correct operation. The
module is designed to allow almost transparent operation of the MDIO interface, with very little
maintenance from the core processor. Only one PHY may be connected at any given time.
5.23.1 MDIO Register Description(s)
Table 5-106. MDIO Register Memory Map
BYTE ADDRESS ACRONYM REGISTER NAME
0x01E2 4000 REV Revision Identification Register
0x01E2 4004 CONTROL MDIO Control Register
0x01E2 4008 ALIVE MDIO PHY Alive Status Register
0x01E2 400C LINK MDIO PHY Link Status Register
0x01E2 4010 LINKINTRAW MDIO Link Status Change Interrupt (Unmasked) Register
0x01E2 4014 LINKINTMASKED MDIO Link Status Change Interrupt (Masked) Register
0x01E2 4018 Reserved
0x01E2 4020 USERINTRAW MDIO User Command Complete Interrupt (Unmasked) Register
0x01E2 4024 USERINTMASKED MDIO User Command Complete Interrupt (Masked) Register
0x01E2 4028 USERINTMASKSET MDIO User Command Complete Interrupt Mask Set Register
0x01E2 402C USERINTMASKCLEAR MDIO User Command Complete Interrupt Mask Clear Register
0x01E2 4030 - 0x01E2 407C Reserved
0x01E2 4080 USERACCESS0 MDIO User Access Register 0
0x01E2 4084 USERPHYSEL0 MDIO User PHY Select Register 0
0x01E2 4088 USERACCESS1 MDIO User Access Register 1
0x01E2 408C USERPHYSEL1 MDIO User PHY Select Register 1
0x01E2 4090 - 0x01E2 47FF Reserved
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 213
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
1
7
MDCLK
MDIO
(output)
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
5.23.2 Management Data Input/Output (MDIO) Electrical Data/Timing
Table 5-107. Timing Requirements for MDIO Input (see Figure 5-52 and Figure 5-53)
1.3V, 1.2V, 1.1V 1.0V
NO. PARAMETER UNIT
MIN MAX MIN MAX
1 tc(MDCLK) Cycle time, MDCLK 400 400 ns
2 tw(MDCLK) Pulse duration, MDCLK high/low 180 180 ns
3 tt(MDCLK) Transition time, MDCLK 5 5 ns
4 tsu(MDIO-MDCLKH) Setup time, MDIO data input valid before MDCLK high 16 21 ns
5 th(MDCLKH-MDIO) Hold time, MDIO data input valid after MDCLK high 0 0 ns
Figure 5-52. MDIO Input Timing
Table 5-108. Switching Characteristics Over Recommended Operating Conditions for MDIO Output
(see Figure 5-53)
1.3V, 1.2V, 1.1V,
1.0V
NO. PARAMETER UNIT
MIN MAX
7 td(MDCLKL-MDIO) Delay time, MDCLK low to MDIO data output valid 0 100 ns
Figure 5-53. MDIO Output Timing
214 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
5.24 LCD Controller (LCDC)
The LCD controller consists of two independent controllers, the Raster Controller and the LCD Interface
Display Driver (LIDD) controller. Each controller operates independently from the other and only one of
them is active at any given time.
The Raster Controller handles the synchronous LCD interface. It provides timing and data for constant
graphics refresh to a passive display. It supports a wide variety of monochrome and full-color display
types and sizes by use of programmable timing controls, a built-in palette, and a gray-scale/serializer.
Graphics data is processed and stored in frame buffers. A frame buffer is a contiguous memory block
in the system. A built-in DMA engine supplies the graphics data to the Raster engine which, in turn,
outputs to the external LCD device.
The LIDD Controller supports the asynchronous LCD interface. It provides full-timing programmability
of control signals (CS, WE, OE, ALE) and output data.
The maximum resolution for the LCD controller is 1024 x 1024 pixels. The maximum frame rate is
determined by the image size in combination with the pixel clock rate. For details, see SPRAB93.
Table 5-109 lists the LCD Controller registers.
Table 5-109. LCD Controller Registers
BYTE ADDRESS ACRONYM REGISTER DESCRIPTION
0x01E1 3000 REVID LCD Revision Identification Register
0x01E1 3004 LCD_CTRL LCD Control Register
0x01E1 3008 LCD_STAT LCD Status Register
0x01E1 300C LIDD_CTRL LCD LIDD Control Register
0x01E1 3010 LIDD_CS0_CONF LCD LIDD CS0 Configuration Register
0x01E1 3014 LIDD_CS0_ADDR LCD LIDD CS0 Address Read/Write Register
0x01E1 3018 LIDD_CS0_DATA LCD LIDD CS0 Data Read/Write Register
0x01E1 301C LIDD_CS1_CONF LCD LIDD CS1 Configuration Register
0x01E1 3020 LIDD_CS1_ADDR LCD LIDD CS1 Address Read/Write Register
0x01E1 3024 LIDD_CS1_DATA LCD LIDD CS1 Data Read/Write Register
0x01E1 3028 RASTER_CTRL LCD Raster Control Register
0x01E1 302C RASTER_TIMING_0 LCD Raster Timing 0 Register
0x01E1 3030 RASTER_TIMING_1 LCD Raster Timing 1 Register
0x01E1 3034 RASTER_TIMING_2 LCD Raster Timing 2 Register
0x01E1 3038 RASTER_SUBPANEL LCD Raster Subpanel Display Register
0x01E1 3040 LCDDMA_CTRL LCD DMA Control Register
0x01E1 3044 LCDDMA_FB0_BASE LCD DMA Frame Buffer 0 Base Address Register
0x01E1 3048 LCDDMA_FB0_CEILING LCD DMA Frame Buffer 0 Ceiling Address Register
0x01E1 304C LCDDMA_FB1_BASE LCD DMA Frame Buffer 1 Base Address Register
0x01E1 3050 LCDDMA_FB1_CEILING LCD DMA Frame Buffer 1 Ceiling Address Register
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 215
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
LCD_AC_ENB_CS
LCD_PCLK
23
1W_SU
(0 to 31) W_STROBE
(1 to 63) W_HOLD
(1 to 15)
CS_DELAY
(0 to 3) R_SU
(0 to 31) R_STROBE
(1 to 63)
R_HOLD
(1 to 15) CS_DELAY
(0 to 3)
LCD_CLK
(SYSCLK2) 4
Write Data
5 14 16 17 15
Data[7:0]
Not Used
8 9
10 11
12 13 12 13
RS
R/W
E0
E1
LCD_D[15:0]
LCD_VSYNC
LCD_HSYNC
Read Status
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
5.24.1 LCD Interface Display Driver (LIDD Mode)
Table 5-110. Timing Requirements for LCD LIDD Mode
1.3V, 1.2V, 1.0V
1.1V
NO. PARAMETER UNIT
MIN MAX MIN MAX
16 tsu(LCD_D) Setup time, LCD_D[15:0] valid before LCD_CLK (SYSCLK2) high 7 8 ns
17 th(LCD_D) Hold time, LCD_D[15:0] valid after LCD_CLK (SYSCLK2) high 0 0 ns
Table 5-111. Switching Characteristics Over Recommended Operating Conditions for LCD LIDD Mode
1.3V, 1.2V, 1.0V
1.1V
NO. PARAMETER UNIT
MIN MAX MIN MAX
4 td(LCD_D_V) Delay time, LCD_CLK (SYSCLK2) high to LCD_D[15:0] valid (write) 0 7 0 9 ns
5 td(LCD_D_I) Delay time, LCD_CLK (SYSCLK2) high to LCD_D[15:0] invalid (write) 0 7 0 9 ns
6 td(LCD_E_A) Delay time, LCD_CLK (SYSCLK2) high to LCD_AC_ENB_CS low 0 7 0 9 ns
7 td(LCD_E_I) Delay time, LCD_CLK (SYSCLK2) high to LCD_AC_ENB_CS high 0 7 0 9 ns
8 td(LCD_A_A) Delay time, LCD_CLK (SYSCLK2) high to LCD_VSYNC low 0 7 0 9 ns
9 td(LCD_A_I) Delay time, LCD_CLK (SYSCLK2) high to LCD_VSYNC high 0 7 0 9 ns
10 td(LCD_W_A) Delay time, LCD_CLK (SYSCLK2) high to LCD_HSYNC low 0 7 0 9 ns
11 td(LCD_W_I) Delay time, LCD_CLK (SYSCLK2) high to LCD_HSYNC high 0 7 0 9 ns
12 td(LCD_STRB_A) Delay time, LCD_CLK (SYSCLK2) high to LCD_PCLK active 0 7 0 9 ns
13 td(LCD_STRB_I) Delay time, LCD_CLK (SYSCLK2) high to LCD_PCLK inactive 0 7 0 9 ns
14 td(LCD_D_Z) Delay time, LCD_CLK (SYSCLK2) high to LCD_D[15:0] in 3-state 0 7 0 9 ns
15 td(Z_LCD_D) Delay time, LCD_CLK (SYSCLK2) high to LCD_D[15:0] (valid from 3-state) 0 7 0 9 ns
Figure 5-54. Character Display HD44780 Write
216 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
LCD_AC_ENB_CS
LCD_PCLK
LCD_VSYNC
LCD_HSYNC
R_SU
R_STROBE R_HOLD
(0–31)
(1–63) (1–5) CS_DELAY
(0−3)
Not
Used
RS
R/W
LCD_CLK
(SYSCLK2)
1
2 3
W_SU W_STROBE
W_HOLD
(0–31) (1–63)
(1–15)
CS_DELAY
(0 − 3)
89
12 13
10 11
Not
Used
LCD_D[7:0]
14 17
16
Read
Data
15 45
E0
E1
12 13
Data[7:0]
Write Instruction
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
Figure 5-55. Character Display HD44780 Read
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 217
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
LCD_D[15:0]
LCD_AC_ENB_CS
(async mode)
LCD_VSYNC
LCD_HSYNC
LCD_CLK
(SYSCLK2)
LCD_PCLK
4
W_SU W_STROBE
W_HOLD
(0−31) (1−63)
(1−15)
CS_DELAY
(0−3)
CS0
CS1
A0
R/W
E
Clock
1
23
W_SU W_STROBE
W_HOLD
(0−31) (1−63)
(1−15)
CS_DELAY
(0−3)
545
6767
89
12 13
Write Address Write Data
12 13
10 11 10 11
Data[15:0]
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
Figure 5-56. Micro-Interface Graphic Display 6800 Write
218 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
LCD_D[15:0]
LCD_AC_ENB_CS
(async mode)
LCD_VSYNC
LCD_HSYNC
LCD_CLK
(SYSCLK2)
LCD_PCLK
4
W_SU W_STROBE
W_HOLD
(0−31) (1−63)
(1−15)
CS_DELAY
(0−3)
CS0
CS1
A0
R/W
E
Clock
1
23
R_SU
R_STROBE R_HOLD
(0−31)
(1−63 (1−15)
CS_DELAY
(0−3)
514 15
6767
89
12 13
17
16
Write Address
Read
Data
10 11
1213
Data[15:0]
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
Figure 5-57. Micro-Interface Graphic Display 6800 Read
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 219
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
Read
Data
LCD_D[15:0]
LCD_AC_ENB_CS
(async mode)
LCD_VSYNC
LCD_HSYNC
LCD_CLK
(SYSCLK2)
LCD_PCLK
R_SU
R_STROBE R_HOLD
(0−31)
(1−63) (1−15)
CS_DELAY
(0−3)
CS0
CS1
A0
R/W
E
Clock
1
23
R_STROBE R_HOLD
(1−63) (1−15)
CS_DELAY
(0−3)
14 15
6767
89
12 13
17
16
14 17
16 15
12 13
Data[15:0]
R_SU
(0−31)
Read
Status
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
Figure 5-58. Micro-Interface Graphic Display 6800 Status
220 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
LCD_D[15:0]
LCD_AC_ENB_CS
(async mode)
LCD_VSYNC
LCD_HSYNC
LCD_CLK
(SYSCLK2)
LCD_PCLK
4
W_SU W_STROBE
W_HOLD
(0−31) (1−63)
(1−15)
CS_DELAY
(0−3)
DATA[15:0]
CS0
CS1
A0
WR
RD
Clock
1
23
W_SU W_STROBE
W_HOLD
(0−31) (1−63)
(1−15)
CS_DELAY
(0 − 3)
545
6767
89
10 11
Write Address Write Data
10 11
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
Figure 5-59. Micro-Interface Graphic Display 8080 Write
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 221
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
LCD_D[15:0]
LCD_AC_ENB_CS
(async mode)
LCD_VSYNC
LCD_HSYNC
LCD_CLK
(SYSCLK2)
LCD_PCLK
4
W_SU W_STROBE
W_HOLD
(0−31) (1−63)
(1−15)
CS_DELAY
(0−3)
CS0
CS1
A0
WR
RD
Clock
1
2 3
R_SU
R_STROBE R_HOLD
(0−31)
(1−63) (1−15)
CS_DELAY
(0−3)
514 15
6 7 6 7
89
12 13
1716
Read
Data
10 11
Data[15:0]
Write Address
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
Figure 5-60. Micro-Interface Graphic Display 8080 Read
222 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
LCD_D[15:0]
LCD_AC_ENB_CS
LCD_VSYNC
LCD_HSYNC
LCD_CLK
(SYSCLK2)
LCD_PCLK
R_SU
R_STROBE R_HOLD
(0−31)
(1−63) (1−15)
CS_DELAY
(0−3)
CS0
CS1
A0
WR
RD
Clock
1
23
R_STROBE R_HOLD
(1−63) (1−15)
CS_DELAY
(0−3)
14 15
676
8
12 13
1716
Read Status
14 17
16
Read Data
15
12 13
Data[15:0]
7
9
R_SU
(0−31)
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
Figure 5-61. Micro-Interface Graphic Display 8080 Status
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 223
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
5.24.2 LCD Raster Mode
Table 5-112. Switching Characteristics Over Recommended Operating Conditions for LCD Raster Mode
See Figure 5-62 through Figure 5-66 1.3V, 1.2V, 1.1V 1.0V
NO. PARAMETER UNIT
MIN MAX MIN MAX
1 tc(PIXEL_CLK) Cycle time, pixel clock 26.66 33.33 ns
2 tw(PIXEL_CLK_H) Pulse duration, pixel clock high 10 10 ns
3 tw(PIXEL_CLK_L) Pulse duration, pixel clock low 10 10 ns
4 td(LCD_D_V) Delay time, LCD_PCLK high to LCD_D[15:0] valid (write) 0 7 0 9 ns
Delay time, LCD_PCLK high to LCD_D[15:0] invalid
5 td(LCD_D_IV) 0 7 0 9 ns
(write)
6 td(LCD_AC_ENB_CS_A)Delay time, LCD_PCLK low to LCD_AC_ENB_CS high 0 7 0 9 ns
7 td(LCD_AC_ENB_CS_I) Delay time, LCD_PCLK low to LCD_AC_ENB_CS high 0 7 0 9 ns
8 td(LCD_VSYNC_A) Delay time, LCD_PCLK low to LCD_VSYNC high 0 7 0 9 ns
9 td(LCD_VSYNC_I) Delay time, LCD_PCLK low to LCD_VSYNC low 0 7 0 9 ns
10 td(LCD_HSYNC_A) Delay time, LCD_PCLK high to LCD_HSYNC high 0 7 0 9 ns
11 td(LCD_HSYNC_I) Delay time, LCD_PCLK high to LCD_HSYNC low 0 7 0 9 ns
Frame-to-frame timing is derived through the following parameters in the LCD (RASTER_TIMING_1)
register:
Vertical front porch (VFP)
Vertical sync pulse width (VSW)
Vertical back porch (VBP)
Lines per panel (LPP)
Line-to-line timing is derived through the following parameters in the LCD (RASTER_TIMING_0) register:
Horizontal front porch (HFP)
Horizontal sync pulse width (HSW)
Horizontal back porch (HBP)
Pixels per panel (PPL)
LCD_AC_ENB_CS timing is derived through the following parameter in the LCD (RASTER_TIMING_2)
register:
AC bias frequency (ACB)
The display format produced in raster mode is shown in Figure 5-62. An entire frame is delivered one line
at a time. The first line delivered starts at data pixel (1, 1) and ends at data pixel (P, 1). The last line
delivered starts at data pixel (1, L) and ends at data pixel (P, L). The beginning of each new frame is
denoted by the activation of I/O signal LCD_VSYNC. The beginning of each new line is denoted by the
activation of I/O signal LCD_HSYNC.
224 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
LCD
1, 1 2, 1 3, 1
1, 2 2, 2
1, 3
P, 1
P−1,
1
P−2,
P, 2
P−1,
2
P, 3
1, L
1,
L−1
1,
L−2
3, L2, L
2,
L−1
P, L
P−1,
L−1
P,
L−1
P−1,
L
P,
L−2
P−2,
L
Data Pixels (From 1 to P)
Data Lines (From 1 to L)
1
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
Figure 5-62. LCD Raster-Mode Display Format
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 225
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
LCD_HSYNC
Hsync
LCD_VSYNC
(1 to 64)
VSW
(1 to 64)
VSW
(0 to 255)
VFP
(1 to 1024)
Frame Time 70 Hz~
LPP
(0 to 255)
LCD_D[15:0]
1, 1
P, 1
1, 2
P, 2
1, L
P, L
1, L-1
P, L-1
Line
Time
Vsync
Data
Active TFT
LCD_AC_ENB_CS
VBP
CLK
LCD_HSYNC Hsync
10 11
LCD_PCLK
LCD_D[15:0] 1, 1 2, 2 P, 2
P, 1
2, 1 1, 2
PLL
16 × (1 to 1024)
HBP
(1 to 256)
Line 1
(1 to 256)
HFP
(1 to 64)
HSW PLL
16 × (1 to 1024)
Line 2
Data
LCD_AC_ENB_CS Enable
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
Figure 5-63. LCD Raster-Mode Active
226 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
Figure 5-64. LCD Raster-Mode Passive
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 227
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
LCD_HSYNC
LCD_PCLK
(active mode)
LCD_D[15:0]
(active mode) 1,L P,L
2,L
PPL
16 ×(1to1024)
HBP
(1to256
LineL
(1to256)
HFP
(1to64)
HSW PPL
16 ×(1to1024)
Line1(PassiveOnly)
LCD_VSYNC
LCD_PCLK
(passive mode)
LCD_AC_ENB_CS
LCD_D[7:0]
(passive mode) 1,L 2,1 P,1
P,L
2,L 1,1
10 11
8
6
4
4
5
5
1
2 3
1
2 3
VSW = 1
VFP =0
VBP =0
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
Figure 5-65. LCD Raster-Mode Control Signal Activation
228 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
LCD_HSYNC
LCD_PCLK
(active mode)
LCD_D[15:0]
(active mode)
PPL
16 ×(1to1024)
HBP
(1to256
Line1forpassive
(1to256)
HFP
(1to64)
HSW PPL
16 ×(1to1024)
Line1foractive
LCD_VSYNC
LCD_PCLK
(passive mode)
LCD_AC_ENB_CS
LCD_D[7:0]
(passive mode) 1,1 2,2 P,2P,1
2,1 1,2
10 11
9
7
45
1
2 3
VSW = 1
VFP =0
VBP =0
P,11,1 2,1
45
1
3
4
Line2forpassive
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
Figure 5-66. LCD Raster-Mode Control Signal Deactivation
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 229
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
5.25 Host-Port Interface (UHPI)
5.25.1 HPI Device-Specific Information
The device includes a user-configurable 16-bit Host-port interface (HPI16).
The host port interface (UHPI) provides a parallel port interface through which an external host processor
can directly access the processor's resources (configuration and program/data memories). The external
host device is asynchronous to the CPU clock and functions as a master to the HPI interface. The UHPI
enables a host device and the processor to exchange information via internal or external memory.
Dedicated address (HPIA) and data (HPID) registers within the UHPI provide the data path between the
external host interface and the processor resources. A UHPI control register (HPIC) is available to the
host and the CPU for various configuration and interrupt functions.
5.25.2 HPI Peripheral Register Description(s)
Table 5-113. HPI Control Registers
BYTE ADDRESS ACRONYM REGISTER DESCRIPTION COMMENTS
0x01E1 0000 PID Peripheral Identification Register The CPU has read/write access to
0x01E1 0004 PWREMU_MGMT HPI power and emulation management register the PWREMU_MGMT register.
0x01E1 0008 - Reserved
0x01E1 000C GPIO_EN General Purpose IO Enable Register
0x01E1 0010 GPIO_DIR1 General Purpose IO Direction Register 1
0x01E1 0014 GPIO_DAT1 General Purpose IO Data Register 1
0x01E1 0018 GPIO_DIR2 General Purpose IO Direction Register 2
0x01E1 001C GPIO_DAT2 General Purpose IO Data Register 2
0x01E1 0020 GPIO_DIR3 General Purpose IO Direction Register 3
0x01E1 0024 GPIO_DAT3 General Purpose IO Data Register 3
01E1 0028 - Reserved
01E1 002C - Reserved The Host and the CPU both have
01E1 0030 HPIC HPI control register read/write access to the HPIC
register.
HPIA The Host has read/write access to
01E1 0034 HPI address register (Write)
(HPIAW)(1) the HPIA registers. The CPU has
only read access to the HPIA
HPIA
01E1 0038 HPI address register (Read) registers.
(HPIAR)(1)
01E1 000C - 01E1 07FF - Reserved
(1) There are two 32-bit HPIA registers: HPIAR for read operations and HPIAW for write operations. The HPI can be configured such that
HPIAR and HPIAW act as a single 32-bit HPIA (single-HPIA mode) or as two separate 32-bit HPIAs (dual-HPIA mode) from the
perspective of the Host. The CPU can access HPIAW and HPIAR independently.
230 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
5.25.3 HPI Electrical Data/Timing
Table 5-114. Timing Requirements for Host-Port Interface [1.2V, 1.1V](1) (2)
1.3V, 1.2V, 1.1V, 1.0V
NO. UNIT
MIN MAX
1 tsu(SELV-HSTBL) Setup time, select signals(3) valid before UHPI_HSTROBE low 5 ns
2 th(HSTBL-SELV) Hold time, select signals(3) valid after UHPI_HSTROBE low 2 ns
3 tw(HSTBL) Pulse duration, UHPI_HSTROBE active low 15 ns
4 tw(HSTBH) Pulse duration, UHPI_HSTROBE inactive high between consecutive accesses 2M ns
9 tsu(SELV-HASL) Setup time, selects signals valid before UHPI_HAS low 5 ns
10 th(HASL-SELV) Hold time, select signals valid after UHPI_HAS low 2 ns
11 tsu(HDV-HSTBH) Setup time, host data valid before UHPI_HSTROBE high 5 ns
12 th(HSTBH-HDV) Hold time, host data valid after UHPI_HSTROBE high 2 ns
Hold time, UHPI_HSTROBE high after UHPI_HRDY low. UHPI_HSTROBE
13 th(HRDYL-HSTBH) should not be inactivated until UHPI_HRDY is active (low); otherwise, HPI writes 2 ns
will not complete properly.
16 tsu(HASL-HSTBL) Setup time, UHPI_HAS low before UHPI_HSTROBE low 5 ns
17 th(HSTBL-HASH) Hold time, UHPI_HAS low after UHPI_HSTROBE low 2 ns
(1) UHPI_HSTROBE refers to the following logical operation on UHPI_HCS, UHPI_HDS1, and UHPI_HDS2: [NOT(UHPI_HDS1 XOR
UHPI_HDS2)] OR UHPI_HCS.
(2) M=SYSCLK2 period in ns.
(3) Select signals include: HCNTL[1:0], HR/W and HHWIL.
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 231
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
Table 5-115. Switching Characteristics Over Recommended Operating Conditions for Host-Port Interface
[1.3V, 1.2V, 1.1V](1) (2) (3)
1.3V, 1.2V 1.1V
NO. PARAMETER UNIT
MIN MAX MIN MAX
For HPI Write, HRDY can go high (not
ready) for these HPI Write conditions;
otherwise, HRDY stays low (ready):
Case 1: Back-to-back HPIA writes (can
be either first or second half-word)
Case 2: HPIA write following a
PREFETCH command (can be either
first or second half-word)
Case 3: HPID write when FIFO is full or
flushing (can be either first or second
half-word)
Case 4: HPIA write and Write FIFO not
empty
For HPI Read, HRDY can go high (not
ready) for these HPI Read conditions:
Case 1: HPID read (with
Delay time, HSTROBE low to
5 td(HSTBL-HRDYV) 15 17 ns
auto-increment) and data not in Read
HRDY valid FIFO (can only happen to first half-word
of HPID access)
Case 2: First half-word access of HPID
Read without auto-increment
For HPI Read, HRDY stays low (ready)
for these HPI Read conditions:
Case 1: HPID read with auto-increment
and data is already in Read FIFO
(applies to either half-word of HPID
access)
Case 2: HPID read without
auto-increment and data is already in
Read FIFO (always applies to second
half-word of HPID access)
Case 3: HPIC or HPIA read (applies to
either half-word access)
5a td(HASL-HRDYV) Delay time, HAS low to HRDY valid 15 17 ns
6 ten(HSTBL-HDLZ) Enable time, HD driven from HSTROBE low 1.5 1.5 ns
7 td(HRDYL-HDV) Delay time, HRDY low to HD valid 0 0 ns
8 toh(HSTBH-HDV) Output hold time, HD valid after HSTROBE high 1.5 1.5 ns
14 tdis(HSTBH-HDHZ) Disable time, HD high-impedance from HSTROBE high 15 17 ns
For HPI Read. Applies to conditions
where data is already residing in
HPID/FIFO:
Case 1: HPIC or HPIA read
Delay time, HSTROBE low to
15 td(HSTBL-HDV) Case 2: First half-word of HPID read 15 17 ns
HD valid with auto-increment and data is already
in Read FIFO
Case 3: Second half-word of HPID read
with or without auto-increment
For HPI Write, HRDY can go high (not
ready) for these HPI Write conditions;
otherwise, HRDY stays low (ready):
Case 1: HPID write when Write FIFO is
Delay time, HSTROBE high to full (can happen to either half-word)
18 td(HSTBH-HRDYV) 15 17 ns
HRDY valid Case 2: HPIA write (can happen to
either half-word)
Case 3: HPID write without
auto-increment (only happens to
second half-word)
(1) M=SYSCLK2 period in ns.
(2) HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.
(3) By design, whenever HCS is driven inactive (high), HPI will drive HRDY active (low).
232 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
Table 5-116. Switching Characteristics Over Recommended Operating Conditions for Host-Port Interface
[1.0V](1) (2) (3)
1.0V
NO. PARAMETER UNIT
MIN MAX
For HPI Write, HRDY can go high (not ready) for
these HPI Write conditions; otherwise, HRDY
stays low (ready):
Case 1: Back-to-back HPIA writes (can be either
first or second half-word)
Case 2: HPIA write following a PREFETCH
command (can be either first or second
half-word)
Case 3: HPID write when FIFO is full or flushing
(can be either first or second half-word)
Case 4: HPIA write and Write FIFO not empty
For HPI Read, HRDY can go high (not ready) for
these HPI Read conditions:
Delay time, HSTROBE low to HRDY Case 1: HPID read (with auto-increment) and
5 td(HSTBL-HRDYV) 22 ns
valid data not in Read FIFO (can only happen to first
half-word of HPID access)
Case 2: First half-word access of HPID Read
without auto-increment
For HPI Read, HRDY stays low (ready) for these
HPI Read conditions:
Case 1: HPID read with auto-increment and data
is already in Read FIFO (applies to either
half-word of HPID access)
Case 2: HPID read without auto-increment and
data is already in Read FIFO (always applies to
second half-word of HPID access)
Case 3: HPIC or HPIA read (applies to either
half-word access)
5a td(HASL-HRDYV) Delay time, HAS low to HRDY valid 22 ns
6 ten(HSTBL-HDLZ) Enable time, HD driven from HSTROBE low 1.5 ns
7 td(HRDYL-HDV) Delay time, HRDY low to HD valid 0 ns
8 toh(HSTBH-HDV) Output hold time, HD valid after HSTROBE high 1.5 ns
14 tdis(HSTBH-HDHZ) Disable time, HD high-impedance from HSTROBE high 22 ns
For HPI Read. Applies to conditions where data
is already residing in HPID/FIFO:
Case 1: HPIC or HPIA read
Delay time, HSTROBE low to HD Case 2: First half-word of HPID read with
15 td(HSTBL-HDV) 22 ns
valid auto-increment and data is already in Read
FIFO
Case 3: Second half-word of HPID read with or
without auto-increment
For HPI Write, HRDY can go high (not ready) for
these HPI Write conditions; otherwise, HRDY
stays low (ready):
Case 1: HPID write when Write FIFO is full (can
Delay time, HSTROBE high to HRDY
18 td(HSTBH-HRDYV) happen to either half-word) 22 ns
valid Case 2: HPIA write (can happen to either
half-word)
Case 3: HPID write without auto-increment (only
happens to second half-word)
(1) M=SYSCLK2 period in ns.
(2) HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.
(3) By design, whenever HCS is driven inactive (high), HPI will drive HRDY active (low).
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 233
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
UHPI_HCS
UHPI_HAS(D)
UHPI_HCNTL[1:0]
UHPI_HR/W
UHPI_HHWIL
UHPI_HSTROBE(A)(C)
UHPI_HD[15:0]
(output)
UHPI_HRDY(B)
12
12
12
5
6
343
12
12
12
814 15 14 8
71st Half-Word 2nd Half-Word
6
13
15
A. UHPI_HSTROBE refers to the following logical operation on UHPI_HCS, UHPI_HDS1, and UHPI_HDS2: [NOT(HDS1
XOR HDS2)] OR UHPI_HCS.
B. Depending on the type of write or read operation (HPID without auto-incrementing; HPIA, HPIC, or HPID with
auto-incrementing) and the state of the FIFO, transitions on UHPI_HRDY may or may not occur.
C. UHPI_HCS reflects typical UHPI_HCS behavior when UHPI_HSTROBE assertion is caused by UHPI_HDS1 or
UHPI_HDS2. UHPI_HCS timing requirements are reflected by parameters for UHPI_HSTROBE.
DThe diagram above assumes UHPI_HAS has been pulled high.
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
Figure 5-67. UHPI Read Timing (HAS Not Used, Tied High)
234 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
UHPI_HAS(A)
UHPI_HCNTL[1:0]
UHPI_HR/W
UHPI_HHWIL
UHPI_HSTROBE(B)
UHPI_HCS
UHPI_HD[15:0]
(output)
UHPI_HRDY
1st half-word 2nd half-word
75a
14
815
14
86
4
3
10
9
10
9
10
9
10
9
10
910
917 17
16
16
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
A. For correct operation, strobe the UHPI_HAS signal only once per UHPI_HSTROBE active cycle.
B. UHPI_HSTROBE refers to the following logical operation on UHPI_HCS, UHPI_HDS1, and UHPI_HDS2:
[NOT(UHPI_HDS1 XOR UHPI_HDS2)] OR UHPI_HCS.
Figure 5-68. UHPI Read Timing (HAS Used)
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 235
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
UHPI_HAS(D)
UHPI_HCNTL[1:0]
UHPI_HR/W
UHPI_HHWIL
UHPI_HSTROBE(A)(C)
UHPI_HCS
UHPI_HD[15:0]
(input)
UHPI_HRDY(B)
212
1
12
2
1
2
1
12
343
11 12
18
13
5
185
11 12
13
2nd Half-Word1st Half-Word
A. UHPI_HSTROBE refers to the following logical operation on UHPI_HCS, UHPI_HDS1, and UHPI_HDS2: [NOT(HDS1 XOR HDS2)] OR
UHPI_HCS.
B. Depending on the type of write or read operation (HPID without auto-incrementing; HPIA, HPIC, or HPID with auto-incrementing) and the
state of the FIFO, transitions on UHPI_HRDY may or may not occur.
C. UHPI_HCS reflects typical UHPI_HCS behavior when UHPI_HSTROBE assertion is caused by UHPI_HDS1 or UHPI_HDS2. UHPI_HCS
timing requirements are reflected by parameters for UHPI_HSTROBE.
DThe diagram above assumes UHPI_HAS has been pulled high.
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
Figure 5-69. UHPI Write Timing (HAS Not Used, Tied High)
236 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
1st half-word 2nd half-word
12
11
12
11
4
13
3
10
9
10
9
10
9
10
9
10
9
10
9
UHPI_HAS
UHPI_HCNTL[1:0]
UHPI_HR/W
UHPI_HHWIL
UHPI_HSTROBE
UHPI_HCS
UHPI_HD[15:0]
(input)
UHPI_HRDY
1717
16 16
5a
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
A. For correct operation, strobe the UHPI_HAS signal only once per UHPI_HSTROBE active cycle.
B. UHPI_HSTROBE refers to the following logical operation on UHPI_HCS, UHPI_HDS1, and UHPI_HDS2:
[NOT(UHPI_HDS1 XOR UHPI_HDS2)] OR UHPI_HCS.
Figure 5-70. UHPI Write Timing (HAS Used)
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 237
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
5.26 Universal Parallel Port (uPP)
The Universal Parallel Port (uPP) peripheral is a multichannel, high-speed parallel interface with dedicated
data lines and minimal control signals. It is designed to interface cleanly with high-speed analog-to-digital
converters (ADCs) or digital-to-analog converters (DACs) with up to 16-bit data width (per channel). It may
also be interconnected with field-programmable gate arrays (FPGAs) or other uPP devices to achieve
high-speed digital data transfer. It can operate in receive mode, transmit mode, or duplex mode, in which
its individual channels operate in opposite directions.
The uPP peripheral includes an internal DMA controller to maximize throughput and minimize CPU
overhead during high-speed data transmission. All uPP transactions use the internal DMA to provide data
to or retrieve data from the I/O channels. The DMA controller includes two DMA channels, which typically
service separate I/O channels. The uPP peripheral also supports data interleave mode, in which all DMA
resources service a single I/O channel. In this mode, only one I/O channel may be used.
The features of the uPP include:
Programmable data width per channel (from 8 to 16 bits inclusive)
Programmable data justification
Right-justify with zero extend
Right-justify with sign extend
Left-justify with zero fill
Supports multiplexing of interleaved data during SDR transmit
Optional frame START signal with programmable polarity
Optional data ENABLE signal with programmable polarity
Optional synchronization WAIT signal with programmable polarity
Single Data Rate (SDR) or Double data Rate (DDR, interleaved) interface
Supports multiplexing of interleaved data during SDR transmit
Supports demultiplexing and multiplexing of interleaved data during DDR transfers
238 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
5.26.1 uPP Register Descriptions
Table 5-117. Universal Parallel Port (uPP) Registers
BYTE ADDRESS ACRONYM REGISTER DESCRIPTION
0x01E1 6000 UPPID uPP Peripheral Identification Register
0x01E1 6004 UPPCR uPP Peripheral Control Register
0x01E1 6008 UPDLB uPP Digital Loopback Register
0x01E1 6010 UPCTL uPP Channel Control Register
0x01E1 6014 UPICR uPP Interface Configuration Register
0x01E1 6018 UPIVR uPP Interface Idle Value Register
0x01E1 601C UPTCR uPP Threshold Configuration Register
0x01E1 6020 UPISR uPP Interrupt Raw Status Register
0x01E1 6024 UPIER uPP Interrupt Enabled Status Register
0x01E1 6028 UPIES uPP Interrupt Enable Set Register
0x01E1 602C UPIEC uPP Interrupt Enable Clear Register
0x01E1 6030 UPEOI uPP End-of-Interrupt Register
0x01E1 6040 UPID0 uPP DMA Channel I Descriptor 0 Register
0x01E1 6044 UPID1 uPP DMA Channel I Descriptor 1 Register
0x01E1 6048 UPID2 uPP DMA Channel I Descriptor 2 Register
0x01E1 6050 UPIS0 uPP DMA Channel I Status 0 Register
0x01E1 6054 UPIS1 uPP DMA Channel I Status 1 Register
0x01E1 6058 UPIS2 uPP DMA Channel I Status 2 Register
0x01E1 6060 UPQD0 uPP DMA Channel Q Descriptor 0 Register
0x01E1 6064 UPQD1 uPP DMA Channel Q Descriptor 1 Register
0x01E1 6068 UPQD2 uPP DMA Channel Q Descriptor 2 Register
0x01E1 6070 UPQS0 uPP DMA Channel Q Status 0 Register
0x01E1 6074 UPQS1 uPP DMA Channel Q Status 1 Register
0x01E1 6078 UPQS2 uPP DMA Channel Q Status 2 Register
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 239
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
5.26.2 uPP Electrical Data/Timing
Table 5-118. Timing Requirements for uPP (see Figure 5-71,Figure 5-72,Figure 5-73,Figure 5-74)
1.3V, 1.2V 1.1V 1.0V
NO. PARAMETER UNIT
MIN MAX MIN MAX MIN MAX
SDR mode 13.33 20 26.66
1 tc(INCLK) Cycle time, CHn_CLK ns
DDR mode 26.66 40 53.33
SDR mode 5 8 10
2 tw(INCLKH) Pulse width, CHn_CLK high ns
DDR mode 10 16 20
SDR mode 5 8 10
3 tw(INCLKL) Pulse width, CHn_CLK low ns
DDR mode 10 16 20
4 tsu(STV-INCLKH) Setup time, CHn_START valid before CHn_CLK high 4 5.5 6.5 ns
5 th(INCLKH-STV) Hold time, CHn_START valid after CHn_CLK high 0.8 0.8 0.8 ns
6 tsu(ENV-INCLKH) Setup time, CHn_ENABLE valid before CHn_CLK high 4 5.5 6.5 ns
7 th(INCLKH-ENV) Hold time, CHn_ENABLE valid after CHn_CLK high 0.8 0.8 0.8 ns
Setup time,
8 tsu(DV-INCLKH) 4 5.5 6.5 ns
CHn_DATA/XDATA valid before CHn_CLK high
9 th(INCLKH-DV) Hold time, CHn_DATA/XDATA valid after CHn_CLK high 0.8 0.8 0.8 ns
10 tsu(DV-INCLKL) Setup time, CHn_DATA/XDATA valid before CHn_CLK low 4 5.5 6.5 ns
11 th(INCLKL-DV) Hold time, CHn_DATA/XDATA valid after CHn_CLK low 0.8 0.8 0.8 ns
19 tsu(WTV-INCLKL) Setup time, CHn_WAIT valid before CHn_CLK high 10 12 14 ns
20 th(INCLKL-WTV) Hold time, CHn_WAIT valid after CHn_CLK high 0.8 0.8 0.8 ns
21 tc(2xTXCLK) Cycle time, 2xTXCLK input clock(1) 6.66 10 13.33 ns
(1) 2xTXCLK is an alternate transmit clock source that must be at least 2 times the required uPP transmit clock rate (as it is is divided down
by 2 inside the uPP). 2xTXCLK has no specified skew relationship to the CHn_CLOCK and therefore is not shown in the timing diagram.
Table 5-119. Switching Characteristics Over Recommended Operating Conditions for uPP
1.3V, 1.2V 1.1V 1.0V
NO. PARAMETER UNIT
MIN MAX MIN MAX MIN MAX
SDR mode 13.33 20 26.66
12 tc(OUTCLK) Cycle time, CHn_CLK ns
DDR mode 26.66 40 53.33
SDR mode 5 8 10
13 tw(OUTCLKH) Pulse width, CHn_CLK high ns
DDR mode 10 16 20
SDR mode 5 8 10
14 tw(OUTCLKL) Pulse width, CHn_CLK low ns
DDR mode 10 16 20
15 td(OUTCLKH-STV) Delay time, CHn_START valid after CHn_CLK high 2 11 2 15 2 21 ns
16 td(OUTCLKH-ENV) Delay time, CHn_ENABLE valid after CHn_CLK high 2 11 2 15 2 21 ns
17 td(OUTCLKH-DV) Delay time, CHn_DATA/XDATA valid after CHn_CLK high 2 11 2 15 2 21 ns
18 td(OUTCLKL-DV) Delay time, CHn_DATA/XDATA valid after CHn_CLK low 2 11 2 15 2 21 ns
240 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
CHx_CLK
CHx_START
CHx_ENABLE
CHx_DATA[n:0]
CHx_XDATA[n:0] Data2Data1 Data3 Data4
2
CHx_WAIT
Data5 Data6
1
Data7 Data8 Data9
3
5
4
7
6
9
8
I1
21 3
5
4
7
6
9
Q1 I2 I3 I4 I5 I6 I7 I8 I9Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9
8
CHx_CLK
CHx_START
CHx_ENABLE
CHx_DATA[n:0]
CHx_XDATA[n:0]
CHx_WAIT
11
10
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
Figure 5-71. uPP Single Data Rate (SDR) Receive Timing
Figure 5-72. uPP Double Data Rate (DDR) Receive Timing
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 241
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
Data2Data1 Data3 Data4
15
13
17
16
Data5 Data6
12
Data7 Data8 Data9
14
2019
CHx_CLK
CHx_START
CHx_ENABLE
CHx_DATA[n:0]
CHx_XDATA[n:0]
CHx_WAIT
I1
15
13
17
16
12 14
2019
Q1 I2 I3 I4 I5 I6 I7 I8 I9Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9
18
CHx_CLK
CHx_START
CHx_ENABLE
CHx_DATA[n:0]
CHx_XDATA[n:0]
CHx_WAIT
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
Figure 5-73. uPP Single Data Rate (SDR) Transmit Timing
Figure 5-74. uPP Double Data Rate (DDR) Transmit Timing
242 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
5.27 Video Port Interface (VPIF)
The Video Port Interface (VPIF) allows the capture and display of digital video streams. Features include:
Up to 2 Video Capture Channels (Channel 0 and Channel 1)
Two 8-bit Standard-Definition (SD) Video with embedded timing codes (BT.656)
Single 16-bit High-Definition (HD) Video with embedded timing codes (BT.1120)
Single Raw Video (8-/10-/12-bit)
Up to 2 Video Display Channels (Channel 2 and Channel 3)
Two 8-bit SD Video Display with embedded timing codes (BT.656)
Single 16-bit HD Video Display with embedded timing codes (BT.1120)
The VPIF capture channel input data format is selectable based on the settings of the specific Channel
Control Register (Channels 03). The VPIF Raw Video data-bus width is selectable based on the settings
of the Channel 0 Control Register.
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 243
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
5.27.1 VPIF Register Descriptions
Table 5-120 shows the VPIF registers.
Table 5-120. Video Port Interface (VPIF) Registers
BYTE ADDRESS ACRONYM REGISTER DESCRIPTION
0x01E1 7000 PID Peripheral identification register
0x01E1 7004 CH0_CTRL Channel 0 control register
0x01E1 7008 CH1_CTRL Channel 1 control register
0x01E1 700C CH2_CTRL Channel 2 control register
0x01E1 7010 CH3_CTRL Channel 3 control register
0x01E1 7014 - 0x01E1 701F - Reserved
0x01E1 7020 INTEN Interrupt enable
0x01E1 7024 INTENSET Interrupt enable set
0x01E1 7028 INTENCLR Interrupt enable clear
0x01E1 702C INTSTAT Interrupt status
0x01E1 7030 INTSTATCLR Interrupt status clear
0x01E1 7034 EMU_CTRL Emulation control
0x01E1 7038 DMA_SIZE DMA size control
0x01E1 703C - 0x01E1 703F - Reserved
CAPTURE CHANNEL 0 REGISTERS
0x01E1 7040 CH0_TY_STRTADR Channel 0 Top Field luma buffer start address
0x01E1 7044 CH0_BY_STRTADR Channel 0 Bottom Field luma buffer start address
0x01E1 7048 CH0_TC_STRTADR Channel 0 Top Field chroma buffer start address
0x01E1 704C CH0_BC_STRTADR Channel 0 Bottom Field chroma buffer start address
0x01E1 7050 CH0_THA_STRTADR Channel 0 Top Field horizontal ancillary data buffer start address
0x01E1 7054 CH0_BHA_STRTADR Channel 0 Bottom Field horizontal ancillary data buffer start address
0x01E1 7058 CH0_TVA_STRTADR Channel 0 Top Field vertical ancillary data buffer start address
0x01E1 705C CH0_BVA_STRTADR Channel 0 Bottom Field vertical ancillary data buffer start address
0x01E1 7060 CH0_SUBPIC_CFG Channel 0 sub-picture configuration
0x01E1 7064 CH0_IMG_ADD_OFST Channel 0 image data address offset
0x01E1 7068 CH0_HA_ADD_OFST Channel 0 horizontal ancillary data address offset
0x01E1 706C CH0_HSIZE_CFG Channel 0 horizontal data size configuration
0x01E1 7070 CH0_VSIZE_CFG0 Channel 0 vertical data size configuration (0)
0x01E1 7074 CH0_VSIZE_CFG1 Channel 0 vertical data size configuration (1)
0x01E1 7078 CH0_VSIZE_CFG2 Channel 0 vertical data size configuration (2)
0x01E1 707C CH0_VSIZE Channel 0 vertical image size
CAPTURE CHANNEL 1 REGISTERS
0x01E1 7080 CH1_TY_STRTADR Channel 1 Top Field luma buffer start address
0x01E1 7084 CH1_BY_STRTADR Channel 1 Bottom Field luma buffer start address
0x01E1 7088 CH1_TC_STRTADR Channel 1 Top Field chroma buffer start address
0x01E1 708C CH1_BC_STRTADR Channel 1 Bottom Field chroma buffer start address
0x01E1 7090 CH1_THA_STRTADR Channel 1 Top Field horizontal ancillary data buffer start address
0x01E1 7094 CH1_BHA_STRTADR Channel 1 Bottom Field horizontal ancillary data buffer start address
0x01E1 7098 CH1_TVA_STRTADR Channel 1 Top Field vertical ancillary data buffer start address
0x01E1 709C CH1_BVA_STRTADR Channel 1 Bottom Field vertical ancillary data buffer start address
0x01E1 70A0 CH1_SUBPIC_CFG Channel 1 sub-picture configuration
0x01E1 70A4 CH1_IMG_ADD_OFST Channel 1 image data address offset
0x01E1 70A8 CH1_HA_ADD_OFST Channel 1 horizontal ancillary data address offset
0x01E1 70AC CH1_HSIZE_CFG Channel 1 horizontal data size configuration
244 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
Table 5-120. Video Port Interface (VPIF) Registers (continued)
BYTE ADDRESS ACRONYM REGISTER DESCRIPTION
0x01E1 70B0 CH1_VSIZE_CFG0 Channel 1 vertical data size configuration (0)
0x01E1 70B4 CH1_VSIZE_CFG1 Channel 1 vertical data size configuration (1)
0x01E1 70B8 CH1_VSIZE_CFG2 Channel 1 vertical data size configuration (2)
0x01E1 70BC CH1_VSIZE Channel 1 vertical image size
DISPLAY CHANNEL 2 REGISTERS
0x01E1 70C0 CH2_TY_STRTADR Channel 2 Top Field luma buffer start address
0x01E1 70C4 CH2_BY_STRTADR Channel 2 Bottom Field luma buffer start address
0x01E1 70C8 CH2_TC_STRTADR Channel 2 Top Field chroma buffer start address
0x01E1 70CC CH2_BC_STRTADR Channel 2 Bottom Field chroma buffer start address
0x01E1 70D0 CH2_THA_STRTADR Channel 2 Top Field horizontal ancillary data buffer start address
0x01E1 70D4 CH2_BHA_STRTADR Channel 2 Bottom Field horizontal ancillary data buffer start address
0x01E1 70D8 CH2_TVA_STRTADR Channel 2 Top Field vertical ancillary data buffer start address
0x01E1 70DC CH2_BVA_STRTADR Channel 2 Bottom Field vertical ancillary data buffer start address
0x01E1 70E0 CH2_SUBPIC_CFG Channel 2 sub-picture configuration
0x01E1 70E4 CH2_IMG_ADD_OFST Channel 2 image data address offset
0x01E1 70E8 CH2_HA_ADD_OFST Channel 2 horizontal ancillary data address offset
0x01E1 70EC CH2_HSIZE_CFG Channel 2 horizontal data size configuration
0x01E1 70F0 CH2_VSIZE_CFG0 Channel 2 vertical data size configuration (0)
0x01E1 70F4 CH2_VSIZE_CFG1 Channel 2 vertical data size configuration (1)
0x01E1 70F8 CH2_VSIZE_CFG2 Channel 2 vertical data size configuration (2)
0x01E1 70FC CH2_VSIZE Channel 2 vertical image size
0x01E1 7100 CH2_THA_STRTPOS Channel 2 Top Field horizontal ancillary data insertion start position
0x01E1 7104 CH2_THA_SIZE Channel 2 Top Field horizontal ancillary data size
0x01E1 7108 CH2_BHA_STRTPOS Channel 2 Bottom Field horizontal ancillary data insertion start position
0x01E1 710C CH2_BHA_SIZE Channel 2 Bottom Field horizontal ancillary data size
0x01E1 7110 CH2_TVA_STRTPOS Channel 2 Top Field vertical ancillary data insertion start position
0x01E1 7114 CH2_TVA_SIZE Channel 2 Top Field vertical ancillary data size
0x01E1 7118 CH2_BVA_STRTPOS Channel 2 Bottom Field vertical ancillary data insertion start position
0x01E1 711C CH2_BVA_SIZE Channel 2 Bottom Field vertical ancillary data size
0x01E1 7120 - 0x01E1 713F - Reserved
DISPLAY CHANNEL 3 REGISTERS
0x01E1 7140 CH3_TY_STRTADR Channel 3 Field 0 luma buffer start address
0x01E1 7144 CH3_BY_STRTADR Channel 3 Field 1 luma buffer start address
0x01E1 7148 CH3_TC_STRTADR Channel 3 Field 0 chroma buffer start address
0x01E1 714C CH3_BC_STRTADR Channel 3 Field 1 chroma buffer start address
0x01E1 7150 CH3_THA_STRTADR Channel 3 Field 0 horizontal ancillary data buffer start address
0x01E1 7154 CH3_BHA_STRTADR Channel 3 Field 1 horizontal ancillary data buffer start address
0x01E1 7158 CH3_TVA_STRTADR Channel 3 Field 0 vertical ancillary data buffer start address
0x01E1 715C CH3_BVA_STRTADR Channel 3 Field 1 vertical ancillary data buffer start address
0x01E1 7160 CH3_SUBPIC_CFG Channel 3 sub-picture configuration
0x01E1 7164 CH3_IMG_ADD_OFST Channel 3 image data address offset
0x01E1 7168 CH3_HA_ADD_OFST Channel 3 horizontal ancillary data address offset
0x01E1 716C CH3_HSIZE_CFG Channel 3 horizontal data size configuration
0x01E1 7170 CH3_VSIZE_CFG0 Channel 3 vertical data size configuration (0)
0x01E1 7174 CH3_VSIZE_CFG1 Channel 3 vertical data size configuration (1)
0x01E1 7178 CH3_VSIZE_CFG2 Channel 3 vertical data size configuration (2)
0x01E1 717C CH3_VSIZE Channel 3 vertical image size
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 245
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
Table 5-120. Video Port Interface (VPIF) Registers (continued)
BYTE ADDRESS ACRONYM REGISTER DESCRIPTION
0x01E1 7180 CH3_THA_STRTPOS Channel 3 Top Field horizontal ancillary data insertion start position
0x01E1 7184 CH3_THA_SIZE Channel 3 Top Field horizontal ancillary data size
0x01E1 7188 CH3_BHA_STRTPOS Channel 3 Bottom Field horizontal ancillary data insertion start position
0x01E1 718C CH3_BHA_SIZE Channel 3 Bottom Field horizontal ancillary data size
0x01E1 7190 CH3_TVA_STRTPOS Channel 3 Top Field vertical ancillary data insertion start position
0x01E1 7194 CH3_TVA_SIZE Channel 3 Top Field vertical ancillary data size
0x01E1 7198 CH3_BVA_STRTPOS Channel 3 Bottom Field vertical ancillary data insertion start position
0x01E1 719C CH3_BVA_SIZE Channel 3 Bottom Field vertical ancillary data size
0x01E1 71A0 - 0x01E1 71FF - Reserved
246 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
VP_CLKINx
23
14
4
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
5.27.2 VPIF Electrical Data/Timing
Table 5-121. Timing Requirements for VPIF VP_CLKINx Inputs(1) (see Figure 5-75)
1.3V, 1.2V 1.1V 1.0V
NO. PARAMETER UNIT
MIN MAX MIN MAX MIN MAX
Cycle time, VP_CLKIN0 13.3 20 37 ns
1 tc(VKI) Cycle time, VP_CLKIN1/2/3 13.3 20 37 ns
2 tw(VKIH) Pulse duration, VP_CLKINx high 0.4C 0.4C 0.4C ns
3 tw(VKIL) Pulse duration, VP_CLKINx low 0.4C 0.4C 0.4C ns
4 tt(VKI) Transition time, VP_CLKINx 5 5 5 ns
(1) C = VP_CLKINx period in ns.
Figure 5-75. Video Port Capture VP_CLKINx Timing
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 247
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
VP_CLKIN0/1
VP_DINx/FIELD/
HSYNC/VSYNC
1
2
VP_CLKOUTx
(PositiveEdge
Clocking)
VP_CLKOUTx
(NegativeEdge
Clocking)
VP_DOUTx
1
2
11 12
44
3
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
Table 5-122. Timing Requirements for VPIF Channels 0/1 Video Capture Data and Control Inputs
(see Figure 5-76)
1.3V, 1.2V 1.1V 1.0V
NO. PARAMETER UNIT
MIN MAX MIN MAX MIN MAX
1 tsu(VDINV-VKIH) Setup time, VP_DINx valid before VP_OSCIN0/1 high 4 6 7 ns
2 th(VKIH-VDINV) Hold time, VP_DINx valid after VP_CLKIN0/1 high 0 0 0 ns
Figure 5-76. VPIF Channels 0/1 Video Capture Data and Control Input Timing
Table 5-123. Switching Characteristics Over Recommended Operating Conditions for Video Data Shown
With Respect to VP_CLKOUT2/3(1)
(see Figure 5-77)
1.3V, 1.2V 1.1V 1.0V
NO. PARAMETER UNIT
MIN MAX MIN MAX MIN MAX
1 tc(VKO) Cycle time, VP_CLKOUT2/3 13.3 20 37 ns
2 tw(VKOH) Pulse duration, VP_CLKOUT2/3 high 0.4C 0.4C 0.4C ns
3 tw(VKOL) Pulse duration, VP_CLKOUT2/3 low 0.4C 0.4C 0.4C ns
4 tt(VKO) Transition time, VP_CLKOUT2/3 5 5 5 ns
Delay time,
11 td(VKOH-VPDOUTV) 8.5 12 17 ns
VP_CLKOUT2/3 high to VP_DOUTx valid
Delay time,
12 td(VCLKOH-VPDOUTIV) 1.5 1.5 1.5 ns
VP_CLKOUT2/3 high to VP_DOUTx invalid
(1) C = VP_CLKO2/3 period in ns.
Figure 5-77. VPIF Channels 2/3 Video Display Data Output Timing With Respect to VP_CLKOUT2/3
248 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
5.28 Enhanced Capture (eCAP) Peripheral
The device contains up to three enhanced capture (eCAP) modules. Figure 5-78 shows a functional block
diagram of a module.
Uses for ECAP include:
Speed measurements of rotating machinery (e.g. toothed sprockets sensed via Hall sensors)
Elapsed time measurements between position sensor triggers
Period and duty cycle measurements of pulse train signals
Decoding current or voltage amplitude derived from duty cycle encoded current/voltage sensors
The ECAP module described in this specification includes the following features:
32 bit time base
4 event time-stamp registers (each 32 bits)
Edge polarity selection for up to 4 sequenced time-stamp capture events
Interrupt on either of the 4 events
Single shot capture of up to 4 event time-stamps
Continuous mode capture of time-stamps in a 4 deep circular buffer
Absolute time-stamp capture
Difference mode time-stamp capture
All the above resources are dedicated to a single input pin
The eCAP modules are clocked at the ASYNC3 clock domain rate.
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 249
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
TSCTR
(counter−32 bit) RST
CAP1
(APRD active) LD
CAP2
(ACMP active) LD
CAP3
(APRD shadow) LD
CAP4
(ACMP shadow) LD
Continuous /
Oneshot
Capture Control
LD1
LD2
LD3
LD4
32
32
PRD [0−31]
CMP [0−31]
CTR [0−31]
eCAPx
Interrupt
Trigger
and
Flag
control
to Interrupt
Controller
CTR=CMP
32
32
32
32
32
ACMP
shadow Event
Pre-scale
CTRPHS
(phase register−32 bit)
SYNCOut
SYNCIn
Event
qualifier
Polarity
select
Polarity
select
Polarity
select
Polarity
select
CTR=PRD
CTR_OVF
4
PWM
compare
logic
CTR [0−31]
PRD [0−31]
CMP [0−31]
CTR=CMP
CTR=PRD
CTR_OVF
OVF
APWM mode
Delta−mode
SYNC
4
Capture events
CEVT[1:4]
APRD
shadow
32
32
MODE SELECT
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
Figure 5-78. eCAP Functional Block Diagram
250 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
Table 5-124 is the list of the ECAP registers.
Table 5-124. ECAPx Configuration Registers
ECAP0 ECAP1 ECAP2 ACRONYM DESCRIPTION
BYTE ADDRESS BYTE ADDRESS BYTE ADDRESS
0x01F0 6000 0x01F0 7000 0x01F0 8000 TSCTR Time-Stamp Counter
0x01F0 6004 0x01F0 7004 0x01F0 8004 CTRPHS Counter Phase Offset Value Register
0x01F0 6008 0x01F0 7008 0x01F0 8008 CAP1 Capture 1 Register
0x01F0 600C 0x01F0 700C 0x01F0 800C CAP2 Capture 2 Register
0x01F0 6010 0x01F0 7010 0x01F0 8010 CAP3 Capture 3 Register
0x01F0 6014 0x01F0 7014 0x01F0 8014 CAP4 Capture 4 Register
0x01F0 6028 0x01F0 7028 0x01F0 8028 ECCTL1 Capture Control Register 1
0x01F0 602A 0x01F0 702A 0x01F0 802A ECCTL2 Capture Control Register 2
0x01F0 602C 0x01F0 702C 0x01F0 802C ECEINT Capture Interrupt Enable Register
0x01F0 602E 0x01F0 702E 0x01F0 802E ECFLG Capture Interrupt Flag Register
0x01F0 6030 0x01F0 7030 0x01F0 8030 ECCLR Capture Interrupt Clear Register
0x01F0 6032 0x01F0 7032 0x01F0 8032 ECFRC Capture Interrupt Force Register
0x01F0 605C 0x01F0 705C 0x01F0 805C REVID Revision ID
Table 5-125 shows the eCAP timing requirement and Table 5-126 shows the eCAP switching
characteristics.
Table 5-125. Timing Requirements for Enhanced Capture (eCAP)
1.3V, 1.2V, 1.1V, 1.0V
PARAMETER TEST CONDITIONS UNIT
MIN MAX
tw(CAP) Capture input pulse width Asynchronous cycle
2tc(SCO) s
Synchronous cycle
2tc(SCO) s
Table 5-126. Switching Characteristics Over Recommended Operating Conditions for eCAP
1.3V, 1.2V 1.1V 1.0V
PARAMETER UNIT
MIN MAX MIN MAX MIN MAX
tw(APWM) Pulse duration, APWMx 20 20 20 ns
output high/low
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 251
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
PeripheralBus
ePWM0 module
ePWM1 module
EPWM0SYNCI
EPWM1SYNCI
EPWM1SYNCO
GPIO
MUX
EPWMSYNCI
EPWM1A
EPWM1B
EPWM0A
EPWM0B
EPWM0INT
EPWM1INT
TZ
TZ
EPWM0SYNCO
Interrupt
Controllers
EPWMSYNCO
ToeCAP0
module
(syncin)
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
5.29 Enhanced High-Resolution Pulse-Width Modulator (eHRPWM)
The device contains two enhanced PWM Modules (eHRPWM). Figure 5-79 shows a block diagram of
multiple eHRPWM modules. Figure 5-79 shows the signal interconnections with the eHRPWM.
Figure 5-79. Multiple PWM Modules in a OMAP-L138 System
252 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
CTR=PRD
TBPRD shadow (16)
TBPRD active (16)
Counter
up/down
(16 bit)
TBCNT
active (16)
TBCTL[CNTLDE]
TBCTL[SWFSYNC]
(software forced sync)
EPWMSYNCI
CTR=ZERO
CTR_Dir
CTR=CMPB
Disabled
Sync
in/out
select
Mux
TBCTL[SYNCOSEL]
EPWMSYNCO
TBPHS active (24)
16 8TBPHSHR (8)
Phase
control
Time−base (TB)
CTR=CMPA
CMPA active (24)
16
CMPA shadow (24)
Action
qualifier
(AQ)
8
16
Counter compare (CC)
CMPB active (16)
CTR=CMPB
CMPB shadow (16)
CMPAHR (8)
EPWMA
EPWMB
Dead
band
(DB) (PC)
chopper
PWM zone
(TZ)
Trip
CTR = ZERO
EPWMxA
EPWMxB
EPWMxTZINT
TZ
HiRes PWM (HRPWM)
CTR = PRD
CTR = ZERO
CTR = CMPB
CTR = CMPA
CTR_Dir
Event
trigger
and
interrupt
(ET)
EPWMxINT
CTR=ZERO
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
Figure 5-80. eHRPWM Sub-Modules Showing Critical Internal Signal Interconnections
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 253
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
Table 5-127. eHRPWM Module Control and Status Registers Grouped by Submodule
eHRPWM0 eHRPWM1
BYTE ADDRESS BYTE ADDRESS ACRONYM SHADOW REGISTER DESCRIPTION
Time-Base Submodule Registers
0x01F0 0000 0x01F0 2000 TBCTL No Time-Base Control Register
0x01F0 0002 0x01F0 2002 TBSTS No Time-Base Status Register
0x01F0 0004 0x01F0 2004 TBPHSHR No Extension for HRPWM Phase Register(1)
0x01F0 0006 0x01F0 2006 TBPHS No Time-Base Phase Register
0x01F0 0008 0x01F0 2008 TBCNT No Time-Base Counter Register
0x01F0 000A 0x01F0 200A TBPRD Yes Time-Base Period Register
Counter-Compare Submodule Registers
0x01F0 000E 0x01F0 200E CMPCTL No Counter-Compare Control Register
0x01F0 0010 0x01F0 2010 CMPAHR No Extension for HRPWM Counter-Compare A Register(1)
0x01F0 0012 0x01F0 2012 CMPA Yes Counter-Compare A Register
0x01F0 0014 0x01F0 2014 CMPB Yes Counter-Compare B Register
Action-Qualifier Submodule Registers
0x01F0 0016 0x01F0 2016 AQCTLA No Action-Qualifier Control Register for Output A (eHRPWMxA)
0x01F0 0018 0x01F0 2018 AQCTLB No Action-Qualifier Control Register for Output B (eHRPWMxB)
0x01F0 001A 0x01F0 201A AQSFRC No Action-Qualifier Software Force Register
0x01F0 001C 0x01F0 201C AQCSFRC Yes Action-Qualifier Continuous S/W Force Register Set
Dead-Band Generator Submodule Registers
0x01F0 001E 0x01F0 201E DBCTL No Dead-Band Generator Control Register
0x01F0 0020 0x01F0 2020 DBRED No Dead-Band Generator Rising Edge Delay Count Register
0x01F0 0022 0x01F0 2022 DBFED No Dead-Band Generator Falling Edge Delay Count Register
PWM-Chopper Submodule Registers
0x01F0 003C 0x01F0 203C PCCTL No PWM-Chopper Control Register
Trip-Zone Submodule Registers
0x01F0 0024 0x01F0 2024 TZSEL No Trip-Zone Select Register
0x01F0 0028 0x01F0 2028 TZCTL No Trip-Zone Control Register
0x01F0 002A 0x01F0 202A TZEINT No Trip-Zone Enable Interrupt Register
0x01F0 002C 0x01F0 202C TZFLG No Trip-Zone Flag Register
0x01F0 002E 0x01F0 202E TZCLR No Trip-Zone Clear Register
0x01F0 0030 0x01F0 2030 TZFRC No Trip-Zone Force Register
Event-Trigger Submodule Registers
0x01F0 0032 0x01F0 2032 ETSEL No Event-Trigger Selection Register
0x01F0 0034 0x01F0 2034 ETPS No Event-Trigger Pre-Scale Register
0x01F0 0036 0x01F0 2036 ETFLG No Event-Trigger Flag Register
0x01F0 0038 0x01F0 2038 ETCLR No Event-Trigger Clear Register
0x01F0 003A 0x01F0 203A ETFRC No Event-Trigger Force Register
High-Resolution PWM (HRPWM) Submodule Registers
0x01F0 1040 0x01F0 3040 HRCNFG No HRPWM Configuration Register (1)
(1) These registers are only available on eHRPWM instances that include the high-resolution PWM (HRPWM) extension; otherwise, these
locations are reserved.
254 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
5.29.1 Enhanced Pulse Width Modulator (eHRPWM) Timing
PWM refers to PWM outputs on eHRPWM1-6. Table 5-128 shows the PWM timing requirements and
Table 5-129, switching characteristics.
Table 5-128. Timing Requirements for eHRPWM
PARAMETER TEST CONDITIONS 1.3V, 1.2V, 1.1V, 1.0V UNIT
MIN MAX
tw(SYNCIN) Sync input pulse width Asynchronous 2tc(SCO) cycles
Synchronous 2tc(SCO) cycles
Table 5-129. Switching Characteristics Over Recommended Operating Conditions for eHRPWM
PARAMETER TEST 1.3V, 1.2V 1.1V 1.0V UNIT
CONDITIONS MIN MAX MIN MAX MIN MAX
tw(PWM) Pulse duration, PWMx output ns
20 20 26.6
high/low
tw(SYNCOUT) Sync output pulse width 8tc(SCO) 8tc(SCO) 8tc(SCO) cycles
td(PWM)TZA Delay time, trip input active to no pin load; no ns
PWM forced high additional 25 25 25
Delay time, trip input active to programmable
PWM forced low delay
td(TZ-PWM)HZ Delay time, trip input active to no additional ns
PWM Hi-Z programmable 20 20 20
delay
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 255
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
PWM(A)
TZ
tw(TZ)
td(TZ-PWM)HZ
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
5.29.2 Trip-Zone Input Timing
A. PWM refers to all the PWM pins in the device. The state of the PWM pins after TZ is taken high depends on the PWM
recovery software.
Figure 5-81. PWM Hi-Z Characteristics
Table 5-130. Trip-Zone input Timing Requirements
PARAMETER TEST CONDITIONS 1.3V, 1.2V, 1.1V, 1.0V UNIT
MIN MAX
tw(TZ) Pulse duration, TZx input low Asynchronous 1tc(SCO) cycles
Synchronous 2tc(SCO) cycles
Table 5-131 shows the high-resolution PWM switching characteristics.
Table 5-131. High Resolution PWM Characteristics at SYSCLKOUT = (60 - 100 MHz)
PARAMETER 1.3V, 1.2V 1.1V 1.0V UNIT
MIN TYP MAX MIN TYP MAX MIN TYP MAX
Micro Edge Positioning (MEP) step size(1) 200 200 200 ps
(1) MEP step size will increase with low voltage and high temperature and decrease with high voltage and cold temperature.
256 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
5.30 Timers
The timers support the following features:
Configurable as single 64-bit timer or two 32-bit timers
Period timeouts generate interrupts, DMA events or external pin events
8 32-bit compare registers
Compare matches generate interrupt events
Capture capability
64-bit Watchdog capability (Timer64P1 only)
Table 5-132 lists the timer registers.
Table 5-132. Timer Registers
TIMER64P 0 TIMER64P 1 TIMER64P 2 TIMER64P 3 ACRONYM REGISTER DESCRIPTION
BYTE BYTE BYTE BYTE
ADDRESS ADDRESS ADDRESS ADDRESS
0x01C2 0000 0x01C2 1000 0x01F0 C000 0x01F0 D000 REV Revision Register
0x01C2 0004 0x01C2 1004 0x01F0 C004 0x01F0 D004 EMUMGT Emulation Management Register
0x01C2 0008 0x01C2 1008 0x01F0 C008 0x01F0 D008 GPINTGPEN GPIO Interrupt and GPIO Enable Register
0x01C2 000C 0x01C2 100C 0x01F0 C00C 0x01F0 D00C GPDATGPDIR GPIO Data and GPIO Direction Register
0x01C2 0010 0x01C2 1010 0x01F0 C010 0x01F0 D010 TIM12 Timer Counter Register 12
0x01C2 0014 0x01C2 1014 0x01F0 C014 0x01F0 D014 TIM34 Timer Counter Register 34
0x01C2 0018 0x01C2 1018 0x01F0 C018 0x01F0 D018 PRD12 Timer Period Register 12
0x01C2 001C 0x01C2 101C 0x01F0 C01C 0x01F0 D01C PRD34 Timer Period Register 34
0x01C2 0020 0x01C2 1020 0x01F0 C020 0x01F0 D020 TCR Timer Control Register
0x01C2 0024 0x01C2 1024 0x01F0 C024 0x01F0 D024 TGCR Timer Global Control Register
0x01C2 0028 0x01C2 1028 0x01F0 C028 0x01F0 D028 WDTCR Watchdog Timer Control Register
0x01C2 0034 0x01C2 1034 0x01F0 C034 0x01F0 D034 REL12 Timer Reload Register 12
0x01C2 0038 0x01C2 1038 0x01F0 C038 0x01F0 D038 REL34 Timer Reload Register 34
0x01C2 003C 0x01C2 103C 0x01F0 C03C 0x01F0 D03C CAP12 Timer Capture Register 12
0x01C2 0040 0x01C2 1040 0x01F0 C040 0x01F0 D040 CAP34 Timer Capture Register 34
0x01C2 0044 0x01C2 1044 0x01F0 C044 0x01F0 D044 INTCTLSTAT Timer Interrupt Control and Status Register
0x01C2 0060 0x01C2 1060 0x01F0 C060 0x01F0 D060 CMP0 Compare Register 0
0x01C2 0064 0x01C2 1064 0x01F0 C064 0x01F0 D064 CMP1 Compare Register 1
0x01C2 0068 0x01C2 1068 0x01F0 C068 0x01F0 D068 CMP2 Compare Register 2
0x01C2 006C 0x01C2 106C 0x01F0 C06C 0x01F0 D06C CMP3 Compare Register 3
0x01C2 0070 0x01C2 1070 0x01F0 C070 0x01F0 D070 CMP4 Compare Register 4
0x01C2 0074 0x01C2 1074 0x01F0 C074 0x01F0 D074 CMP5 Compare Register 5
0x01C2 0078 0x01C2 1078 0x01F0 C078 0x01F0 D078 CMP6 Compare Register 6
0x01C2 007C 0x01C2 107C 0x01F0 C07C 0x01F0 D07C CMP7 Compare Register 7
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 257
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
1
2
4
43
TM64P0_IN12
TM64P0_OUT12
56
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
5.30.1 Timer Electrical Data/Timing
Table 5-133. Timing Requirements for Timer Input(1) (2) (see Figure 5-82)
1.3V, 1.2V, 1.1V, 1.0V
NO. PARAMETER UNIT
MIN MAX
1 tc(TM64Px_IN12) Cycle time, TM64Px_IN12 4P ns
2 tw(TINPH) Pulse duration, TM64Px_IN12 high 0.45C 0.55C ns
3 tw(TINPL) Pulse duration, TM64Px_IN12 low 0.45C 0.55C ns
0.25P or 10
4 tt(TM64Px_IN12) Transition time, TM64Px_IN12 ns
(3)
(1) P = OSCIN cycle time in ns.
(2) C = TM64P0_IN12 cycle time in ns.
(3) Whichever is smaller. P = the period of the applied signal. Maintaining transition times as fast as possible is recommended to improve
noise immunity on input signals.
Figure 5-82. Timer Timing
Table 5-134. Switching Characteristics Over Recommended Operating Conditions for Timer Output (1)
1.3V, 1.2V, 1.1V, 1.0V
NO. PARAMETER UNIT
MIN MAX
5 tw(TOUTH) Pulse duration, TM64P0_OUT12 high 4P ns
6 tw(TOUTL) Pulse duration, TM64P0_OUT12 low 4P ns
(1) P = OSCIN cycle time in ns. For example, when OSCIN frequency is 27 MHz, use P = 37.037 ns.
Figure 5-83. Timer Timing
258 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
Seconds Minutes Hours Days Months Years
Alarm
Timer
Alarm
Interrupts
Periodic
Interrupts
Counter
32kHz
Oscillator
Compensation
Week
Days
Oscillator
RTC_XI
XTAL
RTC_XO
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
5.31 Real Time Clock (RTC)
The RTC provides a time reference to an application running on the device. The current date and time is
tracked in a set of counter registers that update once per second. The time can be represented in 12-hour
or 24-hour mode. The calendar and time registers are buffered during reads and writes so that updates do
not interfere with the accuracy of the time and date.
Alarms are available to interrupt the CPU at a particular time, or at periodic time intervals, such as once
per minute or once per day. In addition, the RTC can interrupt the CPU every time the calendar and time
registers are updated, or at programmable periodic intervals.
The real-time clock (RTC) provides the following features:
100-year calendar (xx00 to xx99)
Counts seconds, minutes, hours, day of the week, date, month, and year with leap year compensation
Binary-coded-decimal (BCD) representation of time, calendar, and alarm
12-hour clock mode (with AM and PM) or 24-hour clock mode
Alarm interrupt
Periodic interrupt
Single interrupt to the CPU
Supports external 32.768-kHz crystal or external clock source of the same frequency
Separate isolated power supply
Figure 5-84 shows a block diagram of the RTC.
Figure 5-84. Real-Time Clock Block Diagram
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 259
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
XTAL
32.768
kHz
C2
C1
RTC_XI
RTC_XO
RTC_VSS
32K
OSC
Real
Time
Clock
(RTC)
Module
Isolated RTC
Power Domain
CVDD
RTC_CVDD
RTC
Power
Source
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
5.31.1 Clock Source
The clock reference for the RTC is an external 32.768-kHz crystal or an external clock source of the same
frequency. The RTC also has a separate power supply that is isolated from the rest of the system. When
the CPU and other peripherals are without power, the RTC can remain powered to preserve the current
time and calendar information. Even if the RTC is not used, it must remain powered when the rest of the
device is powered.
The source for the RTC reference clock may be provided by a crystal or by an external clock source. The
RTC has an internal oscillator buffer to support direct operation with a crystal. The crystal is connected
between pins RTC_XI and RTC_XO. RTC_XI is the input to the on-chip oscillator and RTC_XO is the
output from the oscillator back to the crystal.
An external 32.768-kHz clock source may be used instead of a crystal. In such a case, the clock source is
connected to RTC_XI, and RTC_XO is left unconnected.
If the RTC is not used, the RTC_XI pin should be held either low or high, RTC_XO should be left
unconnected, RTC_CVDD should be connected to the device CVDD and RTC_VSS should remain
grounded.
Figure 5-85. Clock Source
260 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
5.31.2 Real-Time Clock Register Descriptions
Table 5-135. Real-Time Clock (RTC) Registers
BYTE ADDRESS ACRONYM REGISTER DESCRIPTION
0x01C2 3000 SECOND Seconds Register
0x01C2 3004 MINUTE Minutes Register
0x01C2 3008 HOUR Hours Register
0x01C2 300C DAY Day of the Month Register
0x01C2 3010 MONTH Month Register
0x01C2 3014 YEAR Year Register
0x01C2 3018 DOTW Day of the Week Register
0x01C2 3020 ALARMSECOND Alarm Seconds Register
0x01C2 3024 ALARMMINUTE Alarm Minutes Register
0x01C2 3028 ALARMHOUR Alarm Hours Register
0x01C2 302C ALARMDAY Alarm Days Register
0x01C2 3030 ALARMMONTH Alarm Months Register
0x01C2 3034 ALARMYEAR Alarm Years Register
0x01C2 3040 CTRL Control Register
0x01C2 3044 STATUS Status Register
0x01C2 3048 INTERRUPT Interrupt Enable Register
0x01C2 304C COMPLSB Compensation (LSB) Register
0x01C2 3050 COMPMSB Compensation (MSB) Register
0x01C2 3054 OSC Oscillator Register
0x01C2 3060 SCRATCH0 Scratch 0 (General-Purpose) Register
0x01C2 3064 SCRATCH1 Scratch 1 (General-Purpose) Register
0x01C2 3068 SCRATCH2 Scratch 2 (General-Purpose) Register
0x01C2 306C KICK0 Kick 0 (Write Protect) Register
0x01C2 3070 KICK1 Kick 1 (Write Protect) Register
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 261
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
5.32 General-Purpose Input/Output (GPIO)
The GPIO peripheral provides general-purpose pins that can be configured as either inputs or outputs.
When configured as an output, a write to an internal register can control the state driven on the output pin.
When configured as an input, the state of the input is detectable by reading the state of an internal
register. In addition, the GPIO peripheral can produce CPU interrupts and EDMA events in different
interrupt/event generation modes. The GPIO peripheral provides generic connections to external devices.
The GPIO pins are grouped into banks of 16 pins per bank (i.e., bank 0 consists of GPIO [0:15]).
The device GPIO peripheral supports the following:
Up to 144 Pins configurable as GPIO
External Interrupt and DMA request Capability
Every GPIO pin may be configured to generate an interrupt request on detection of rising and/or
falling edges on the pin.
The interrupt requests within each bank are combined (logical or) to create eight unique bank level
interrupt requests.
The bank level interrupt service routine may poll the INTSTATx register for its bank to determine
which pin(s) have triggered the interrupt.
GPIO Banks 0, 1, 2, 3, 4, 5, 6, 7, and 8 Interrupts assigned to ARM INTC Interrupt Requests 42,
43, 44, 45, 46, 47, 48, 49, and 50 respectively
GPIO Banks 0, 1, 2, 3, 4, 5, 6, 7, and 8 Interrupts assigned to DSP Events 65, 41, 49, 52, 54, 59,
62, 72, and 75 respectively
GPIO Banks 0, 1, 2, 3, 4, and 5 are assigned to EDMA events 6, 7, 22, 23, 28, 29, and 29
respectively on Channel Controller 0 and GPIO Banks 6, 7, and 8 are assigned to EDMA events
16, 17, and 18 respectively on Channel Controller 1.
Set/clear functionality: Firmware writes 1 to corresponding bit position(s) to set or to clear GPIO
signal(s). This allows multiple firmware processes to toggle GPIO output signals without critical section
protection (disable interrupts, program GPIO, re-enable interrupts, to prevent context switching to
anther process during GPIO programming).
Separate Input/Output registers
Output register in addition to set/clear so that, if preferred by firmware, some GPIO output signals can
be toggled by direct write to the output register(s).
Output register, when read, reflects output drive status. This, in addition to the input register reflecting
pin status and open-drain I/O cell, allows wired logic be implemented.
The memory map for the GPIO registers is shown in Table 5-136.
262 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
5.32.1 GPIO Register Description(s)
Table 5-136. GPIO Registers
BYTE ADDRESS ACRONYM REGISTER DESCRIPTION
0x01E2 6000 REV Peripheral Revision Register
0x01E2 6004 RESERVED Reserved
0x01E2 6008 BINTEN GPIO Interrupt Per-Bank Enable Register
GPIO Banks 0 and 1
0x01E2 6010 DIR01 GPIO Banks 0 and 1 Direction Register
0x01E2 6014 OUT_DATA01 GPIO Banks 0 and 1 Output Data Register
0x01E2 6018 SET_DATA01 GPIO Banks 0 and 1 Set Data Register
0x01E2 601C CLR_DATA01 GPIO Banks 0 and 1 Clear Data Register
0x01E2 6020 IN_DATA01 GPIO Banks 0 and 1 Input Data Register
0x01E2 6024 SET_RIS_TRIG01 GPIO Banks 0 and 1 Set Rising Edge Interrupt Register
0x01E2 6028 CLR_RIS_TRIG01 GPIO Banks 0 and 1 Clear Rising Edge Interrupt Register
0x01E2 602C SET_FAL_TRIG01 GPIO Banks 0 and 1 Set Falling Edge Interrupt Register
0x01E2 6030 CLR_FAL_TRIG01 GPIO Banks 0 and 1 Clear Falling Edge Interrupt Register
0x01E2 6034 INTSTAT01 GPIO Banks 0 and 1 Interrupt Status Register
GPIO Banks 2 and 3
0x01E2 6038 DIR23 GPIO Banks 2 and 3 Direction Register
0x01E2 603C OUT_DATA23 GPIO Banks 2 and 3 Output Data Register
0x01E2 6040 SET_DATA23 GPIO Banks 2 and 3 Set Data Register
0x01E2 6044 CLR_DATA23 GPIO Banks 2 and 3 Clear Data Register
0x01E2 6048 IN_DATA23 GPIO Banks 2 and 3 Input Data Register
0x01E2 604C SET_RIS_TRIG23 GPIO Banks 2 and 3 Set Rising Edge Interrupt Register
0x01E2 6050 CLR_RIS_TRIG23 GPIO Banks 2 and 3 Clear Rising Edge Interrupt Register
0x01E2 6054 SET_FAL_TRIG23 GPIO Banks 2 and 3 Set Falling Edge Interrupt Register
0x01E2 6058 CLR_FAL_TRIG23 GPIO Banks 2 and 3 Clear Falling Edge Interrupt Register
0x01E2 605C INTSTAT23 GPIO Banks 2 and 3 Interrupt Status Register
GPIO Banks 4 and 5
0x01E2 6060 DIR45 GPIO Banks 4 and 5 Direction Register
0x01E2 6064 OUT_DATA45 GPIO Banks 4 and 5 Output Data Register
0x01E2 6068 SET_DATA45 GPIO Banks 4 and 5 Set Data Register
0x01E2 606C CLR_DATA45 GPIO Banks 4 and 5 Clear Data Register
0x01E2 6070 IN_DATA45 GPIO Banks 4 and 5 Input Data Register
0x01E2 6074 SET_RIS_TRIG45 GPIO Banks 4 and 5 Set Rising Edge Interrupt Register
0x01E2 6078 CLR_RIS_TRIG45 GPIO Banks 4 and 5 Clear Rising Edge Interrupt Register
0x01E2 607C SET_FAL_TRIG45 GPIO Banks 4 and 5 Set Falling Edge Interrupt Register
0x01E2 6080 CLR_FAL_TRIG45 GPIO Banks 4 and 5 Clear Falling Edge Interrupt Register
0x01E2 6084 INTSTAT45 GPIO Banks 4 and 5 Interrupt Status Register
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 263
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
Table 5-136. GPIO Registers (continued)
BYTE ADDRESS ACRONYM REGISTER DESCRIPTION
GPIO Banks 6 and 7
0x01E2 6088 DIR67 GPIO Banks 6 and 7 Direction Register
0x01E2 608C OUT_DATA67 GPIO Banks 6 and 7 Output Data Register
0x01E2 6090 SET_DATA67 GPIO Banks 6 and 7 Set Data Register
0x01E2 6094 CLR_DATA67 GPIO Banks 6 and 7 Clear Data Register
0x01E2 6098 IN_DATA67 GPIO Banks 6 and 7 Input Data Register
0x01E2 609C SET_RIS_TRIG67 GPIO Banks 6 and 7 Set Rising Edge Interrupt Register
0x01E2 60A0 CLR_RIS_TRIG67 GPIO Banks 6 and 7 Clear Rising Edge Interrupt Register
0x01E2 60A4 SET_FAL_TRIG67 GPIO Banks 6 and 7 Set Falling Edge Interrupt Register
0x01E2 60A8 CLR_FAL_TRIG67 GPIO Banks 6 and 7 Clear Falling Edge Interrupt Register
0x01E2 60AC INTSTAT67 GPIO Banks 6 and 7 Interrupt Status Register
GPIO Bank 8
0x01E2 60B0 DIR8 GPIO Bank 8 Direction Register
0x01E2 60B4 OUT_DATA8 GPIO Bank 8 Output Data Register
0x01E2 60B8 SET_DATA8 GPIO Bank 8 Set Data Register
0x01E2 60BC CLR_DATA8 GPIO Bank 8 Clear Data Register
0x01E2 60C0 IN_DATA8 GPIO Bank 8 Input Data Register
0x01E2 60C4 SET_RIS_TRIG8 GPIO Bank 8 Set Rising Edge Interrupt Register
0x01E2 60C8 CLR_RIS_TRIG8 GPIO Bank 8 Clear Rising Edge Interrupt Register
0x01E2 60CC SET_FAL_TRIG8 GPIO Bank 8 Set Falling Edge Interrupt Register
0x01E2 60D0 CLR_FAL_TRIG8 GPIO Bank 8 Clear Falling Edge Interrupt Register
0x01E2 60D4 INTSTAT8 GPIO Bank 8 Interrupt Status Register
264 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
GP [ ]
asinput
n m
GPn m[ ]
asoutput
4
3
2
1
GP [ ]
asinput
n m
2
1
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
5.32.2 GPIO Peripheral Input/Output Electrical Data/Timing
Table 5-137. Timing Requirements for GPIO Inputs(1) (see Figure 5-86)
1.3V, 1.2V, 1.1V, 1.0V
NO. PARAMETER UNIT
MIN MAX
1 tw(GPIH) Pulse duration, GPn[m] as input high 2C(1) (2) ns
2 tw(GPIL) Pulse duration, GPn[m] as input low 2C(1) (2) ns
(1) The pulse width given is sufficient to generate a CPU interrupt or an EDMA event. However, if a user wants to have the device
recognize the GPIx changes through software polling of the GPIO register, the GPIx duration must be extended to allow the device
enough time to access the GPIO register through the internal bus.
(2) C=SYSCLK4 period in ns.
Table 5-138. Switching Characteristics Over Recommended Operating Conditions for GPIO Outputs
(see Figure 5-86)
1.3V, 1.2V, 1.1V, 1.0V
NO. PARAMETER UNIT
MIN MAX
3 tw(GPOH) Pulse duration, GPn[m] as output high 2C(1) (2) ns
4 tw(GPOL) Pulse duration, GPn[m] as output low 2C(1) (2) ns
(1) This parameter value should not be used as a maximum performance specification. Actual performance of back-to-back accesses of the
GPIO is dependent upon internal bus activity.
(2) C=SYSCLK4 period in ns.
Figure 5-86. GPIO Port Timing
5.32.3 GPIO Peripheral External Interrupts Electrical Data/Timing
Table 5-139. Timing Requirements for External Interrupts(1) (see Figure 5-87)
1.3V, 1.2V, 1.1V, 1.0V
NO. PARAMETER UNIT
MIN MAX
1 tw(ILOW) Width of the external interrupt pulse low 2C(1) (2) ns
2 tw(IHIGH) Width of the external interrupt pulse high 2C(1) (2) ns
(1) The pulse width given is sufficient to generate an interrupt or an EDMA event. However, if a user wants to have the device recognize the
GPIO changes through software polling of the GPIO register, the GPIO duration must be extended to allow the device enough time to
access the GPIO register through the internal bus.
(2) C=SYSCLK4 period in ns.
Figure 5-87. GPIO External Interrupt Timing
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 265
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
5.33 Programmable Real-Time Unit Subsystem (PRUSS)
The Programmable Real-Time Unit Subsystem (PRUSS) consists of
Two Programmable Real-Time Units (PRU0 and PRU1) and their associated memories
An Interrupt Controller (INTC) for handling system interrupt events. The INTC also supports posting
events back to the device level host CPU.
A Switched Central Resource (SCR) for connecting the various internal and external masters to the
resources inside the PRUSS.
The two PRUs can operate completely independently or in coordination with each other. The PRUs can
also work in coordination with the device level host CPU. This is determined by the nature of the program
which is loaded into the PRUs instruction memory. Several different signaling mechanisms are available
between the two PRUs and the device level host CPU.
The PRUs are optimized for performing embedded tasks that require manipulation of packed memory
mapped data structures, handling of system events that have tight realtime constraints and interfacing with
systems external to the device.
The PRUSS comprises various distinct addressable regions. Externally the subsystem presents a single
64Kbyte range of addresses. The internal interconnect bus (also called switched central resource, or SCR)
of the PRUSS decodes accesses for each of the individual regions. The PRUSS memory map is
documented in Table 5-140 and in Table 5-141. Note that these two memory maps are implemented
inside the PRUSS and are local to the components of the PRUSS.
Table 5-140. Programmable Real-Time Unit Subsystem (PRUSS) Local Instruction Space Memory Map
BYTE ADDRESS PRU0 PRU1
0x0000 0000 - 0x0000 0FFF PRU0 Instruction RAM PRU1 Instruction RAM
Table 5-141. Programmable Real-Time Unit Subsystem (PRUSS) Local Data Space Memory Map
BYTE ADDRESS PRU0 PRU1
0x0000 0000 - 0x0000 01FF Data RAM 0(1) Data RAM 1(1)
0x0000 0200 - 0x0000 1FFF Reserved Reserved
0x0000 2000 - 0x0000 21FF Data RAM 1(1) Data RAM 0(1)
0x0000 2200 - 0x0000 3FFF Reserved Reserved
0x0000 4000 - 0x0000 6FFF INTC Registers INTC Registers
0x0000 7000 - 0x0000 73FF PRU0 Control Registers PRU0 Control Registers
0x0000 7400 - 0x0000 77FF Reserved Reserved
0x0000 7800 - 0x0000 7BFF PRU1 Control Registers PRU1 Control Registers
0x0000 7C00 - 0xFFFF FFFF Reserved Reserved
(1) Note that PRU0 accesses Data RAM0at address 0x0000 0000, also PRU1 accesses Data RAM1at address 0x0000 0000. Data RAM0
is intended to be the primary data memory for PRU0 and Data RAM1 is intended to be the primary data memory for PRU1. However for
passing information between PRUs, each PRU can access the data ram of the otherPRU through address 0x0000 2000.
The global view of the PRUSS internal memories and control ports is documented in Table 5-142. The
offset addresses of each region are implemented inside the PRUSS but the global device memory
mapping places the PRUSS slave port in the address range 0x01C3 0000-0x01C3 FFFF. The PRU0 and
PRU1 can use either the local or global addresses to access their internal memories, but using the local
addresses will provide access time several cycles faster than using the global addresses. This is because
when accessing via the global address the access needs to be routed through the switch fabric outside
PRUSS and back in through the PRUSS slave port.
266 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
Table 5-142. Programmable Real-Time Unit Subsystem (PRUSS) Global Memory Map
BYTE ADDRESS REGION
0x01C3 0000 - 0x01C3 01FF Data RAM 0
0x01C3 0200 - 0x01C3 1FFF Reserved
0x01C3 2000 - 0x01C3 21FF Data RAM 1
0x01C3 2200 - 0x01C3 3FFF Reserved
0x01C3 4000 - 0x01C3 6FFF INTC Registers
0x01C3 7000 - 0x01C3 73FF PRU0 Control Registers
0x01C3 7400 - 0x01C3 77FF PRU0 Debug Registers
0x01C3 7800 - 0x01C3 7BFF PRU1 Control Registers
0x01C3 7C00 - 0x01C3 7FFF PRU1 Debug Registers
0x01C3 8000 - 0x01C3 8FFF PRU0 Instruction RAM
0x01C3 9000 - 0x01C3 BFFF Reserved
0x01C3 C000 - 0x01C3 CFFF PRU1 Instruction RAM
0x01C3 D000 - 0x01C3 FFFF Reserved
Each of the PRUs can access the rest of the device memory (including memory mapped peripheral and
configuration registers) using the global memory space addresses
5.33.1 PRUSS Register Descriptions
Table 5-143. Programmable Real-Time Unit Subsystem (PRUSS) Control / Status Registers
PRU0 BYTE ADDRESS PRU1 BYTE ADDRESS ACRONYM REGISTER DESCRIPTION
0x01C3 7000 0x01C3 7800 CONTROL PRU Control Register
0x01C3 7004 0x01C3 7804 STATUS PRU Status Register
0x01C3 7008 0x01C3 7808 WAKEUP PRU Wakeup Enable Register
0x01C3 700C 0x01C3 780C CYCLCNT PRU Cycle Count
0x01C3 7010 0x01C3 7810 STALLCNT PRU Stall Count
0x01C3 7020 0x01C3 7820 CONTABBLKIDX0 PRU Constant Table Block Index Register 0
0x01C3 7028 0x01C3 7828 CONTABPROPTR0 PRU Constant Table Programmable Pointer Register 0
0x01C3 702C 0x01C3 782C CONTABPROPTR1 PRU Constant Table Programmable Pointer Register 1
0x01C37400 - 0x01C3 7C00 - INTGPR0 INTGPR31 PRU Internal General Purpose Register 0 (for Debug)
0x01C3747C 0x01C3 7C7C
0x01C37480 - 0x01C3 7C80 - INTCTER0 INTCTER31 PRU Internal General Purpose Register 0 (for Debug)
0x01C374FC 0x01C3 7CFC
Table 5-144. Programmable Real-Time Unit Subsystem Interrupt Controller (PRUSS INTC) Registers
BYTE ADDRESS ACRONYM REGISTER DESCRIPTION
0x01C3 4000 REVID Revision ID Register
0x01C3 4004 CONTROL Control Register
0x01C3 4010 GLBLEN Global Enable Register
0x01C3 401C GLBLNSTLVL Global Nesting Level Register
0x01C3 4020 STATIDXSET System Interrupt Status Indexed Set Register
0x01C3 4024 STATIDXCLR System Interrupt Status Indexed Clear Register
0x01C3 4028 ENIDXSET System Interrupt Enable Indexed Set Register
0x01C3 402C ENIDXCLR System Interrupt Enable Indexed Clear Register
0x01C3 4034 HSTINTENIDXSET Host Interrupt Enable Indexed Set Register
0x01C3 4038 HSTINTENIDXCLR Host Interrupt Enable Indexed Clear Register
0x01C3 4080 GLBLPRIIDX Global Prioritized Index Register
0x01C3 4200 STATSETINT0 System Interrupt Status Raw/Set Register 0
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 267
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
Table 5-144. Programmable Real-Time Unit Subsystem Interrupt Controller (PRUSS INTC)
Registers (continued)
BYTE ADDRESS ACRONYM REGISTER DESCRIPTION
0x01C3 4204 STATSETINT1 System Interrupt Status Raw/Set Register 1
0x01C3 4280 STATCLRINT0 System Interrupt Status Enabled/Clear Register 0
0x01C3 4284 STATCLRINT1 System Interrupt Status Enabled/Clear Register 1
0x01C3 4300 ENABLESET0 System Interrupt Enable Set Register 0
0x01C3 4304 ENABLESET1 System Interrupt Enable Set Register 1
0x01C3 4380 ENABLECLR0 System Interrupt Enable Clear Register 0
0x01C3 4384 ENABLECLR1 System Interrupt Enable Clear Register 1
0x01C3 4400 - 0x01C3 4440 CHANMAP0 - CHANMAP15 Channel Map Registers 0-15
0x01C3 4800 - 0x01C3 4808 HOSTMAP0 - HOSTMAP2 Host Map Register 0-2
HOSTINTPRIIDX0 -
0x01C3 4900 - 0x01C3 4928 Host Interrupt Prioritized Index Registers 0-9
HOSTINTPRIIDX9
0x01C3 4D00 POLARITY0 System Interrupt Polarity Register 0
0x01C3 4D04 POLARITY1 System Interrupt Polarity Register 1
0x01C3 4D80 TYPE0 System Interrupt Type Register 0
0x01C3 4D84 TYPE1 System Interrupt Type Register 1
HOSTINTNSTLVL0-
0x01C3 5100 - 0x01C3 5128 Host Interrupt Nesting Level Registers 0-9
HOSTINTNSTLVL9
0x01C3 5500 HOSTINTEN Host Interrupt Enable Register
268 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
5.34 Emulation Logic
This section describes the steps to use a third party debugger on the ARM926EJ-S within the device. The
debug capabilities and features for DSP and ARM are as shown below.
DSP:
Basic Debug
Execution Control
System Visibility
Real-Time Debug
Interrupts serviced while halted
Low/non-intrusive system visibility while running
Advanced Debug
Global Start
Global Stop
Specify targeted memory level(s) during memory accesses
HSRTDX (High Speed Real Time Data eXchange)
Advanced System Control
Subsystem reset via debug
Peripheral notification of debug events
Cache-coherent debug accesses
Analysis Actions
Stop program execution
Generate debug interrupt
Benchmarking with counters
External trigger generation
Debug state machine state transition
Combinational and Sequential event generation
Analysis Events
Program event detection
Data event detection
External trigger Detection
System event detection (i.e. cache miss)
Debug state machine state detection
Analysis Configuration
Application access
Debugger access
Table 5-145. DSP Debug Features
Category Hardware Feature Availability
Software breakpoint Unlimited
Up to 10 HWBPs, including:
Basic Debug 4 precise(1) HWBPs inside DSP core and one of them is associated with a counter.
Hardware breakpoint 2 imprecise(1) HWBPs from AET.
4 imprecise(1) HWBPs from AET which are shared for watch point.
(1) Precise hardware breakpoints will halt the processor immediately prior to the execution of the selected instruction. Imprecise breakpoints
will halt the processor some number of cycles after the selected instruction depending on device conditions.
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 269
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
Table 5-145. DSP Debug Features (continued)
Category Hardware Feature Availability
Up to 4 watch points, which are shared with HWBPs, and can also be used as 2 watch
Watch point points with data (32 bits)
Watch point with Data Up to 2, Which can also be used as 4 watch points.
Analysis Counters/timers 1x64-bits (cycle only) + 2x32-bits (water mark counters)
External Event Trigger In 1
External Event Trigger Out 1
ARM:
Basic Debug
Execution Control
System Visibility
Advanced Debug
Global Start
Global Stop
Advanced System Control
Subsystem reset via debug
Peripheral notification of debug events
Cache-coherent debug accesses
Program Trace
Program flow corruption
Code coverage
Path coverage
Thread/interrupt synchronization problems
Data Trace
Memory corruption
Timing Trace
Profiling
Analysis Actions
Stop program execution
Control trace streams
Generate debug interrupt
Benchmarking with counters
External trigger generation
Debug state machine state transition
Combinational and Sequential event generation
Analysis Events
Program event detection
Data event detection
External trigger Detection
System event detection (i.e. cache miss)
Debug state machine state detection
Analysis Configuration
Application access
Debugger access
270 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
Table 5-146. ARM Debug Features
Category Hardware Feature Availability
Software breakpoint Unlimited
Up to 14 HWBPs, including:
2 precise(1) HWBP inside ARM core which are shared with watch points.
Basic Debug Hardware breakpoint 8 imprecise(1) HWBPs from ETMs address comparators, which are shared with trace
function, and can be used as watch points.
4 imprecise(1) HWBPs from ICECrusher.
Up to 6 watch points, including:
2 from ARM core which is shared with HWBPs and can be associated with a data.
Watch point 8 from ETMs address comparators, which are shared with trace function, and
HWBPs.
2 from ARM core which is shared with HWBPs.
Watch point with Data
Analysis 8 watch points from ETM can be associated with a data comparator, and ETM has
total 4 data comparators.
Counters/timers 3x32-bit (1 cycle ; 2 event)
External Event Trigger In 1
External Event Trigger Out 1
Internal Cross-Triggering Signals One between ARM and DSP
Address range for trace 4
Data qualification for trace 2
System events for trace control 20
Trace Control Counters/Timers for trace control 2x16-bit
State Machines/Sequencers 1x3-State State Machine
Context/Thread ID Comparator 1
Independent trigger control units 12
Capture depth PC 4k bytes ETB
On-chip Trace Capture depth PC + Timing 4k bytes ETB
Capture Application accessible Y
(1) Precise hardware breakpoints will halt the processor immediately prior to the execution of the selected instruction. Imprecise breakpoints
will halt the processor some number of cycles after the selected instruction depending on device conditions.
5.34.1 JTAG Port Description
The device target debug interface uses the five standard IEEE 1149.1(JTAG) signals (TRST, TCK, TMS,
TDI, and TDO), a return clock (RTCK) due to the clocking requirements of the ARM926EJ-S and
emulation signals EMU0 and EMU1.
TRST holds the debug and boundary scan logic in reset (normal DSP operation) when pulled low (its
default state). Since TRST has an internal pull-down resistor, this ensures that at power up the device
functions in its normal (non-test) operation mode if TRST is not connected. Otherwise, TRST should be
driven inactive by the emulator or boundary scan controller. Boundary scan test cannot be performed
while the TRST pin is pulled low.
Table 5-147. JTAG Port Description
PIN TYPE NAME DESCRIPTION
When asserted (active low) causes all test and debug logic in the device to be reset
TRST I Test Logic Reset along with the IEEE 1149.1 interface
This is the test clock used to drive an IEEE 1149.1 TAP state machine and
TCK I Test Clock logic.Depending on the emulator attached to , this is a free running clock or a gated
clock depending on RTCK monitoring.
Synchronized TCK. Depending on the emulator attached to, the JTAG signals are
RTCK O Returned Test Clock clocked from RTCK or RTCK is monitored by the emulator to gate TCK.
TMS I Test Mode Select Directs the next state of the IEEE 1149.1 test access port state machine
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 271
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
TDO Router
TDI
Steps
CLK
TMS
Router
ARM926EJ-S/ETM
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
Table 5-147. JTAG Port Description (continued)
PIN TYPE NAME DESCRIPTION
TDI I Test Data Input Scan data input to the device
TDO O Test Data Output Scan data output of the device
EMU0 I/O Emulation 0 Channel 0 trigger + HSRTDX
EMU1 I/O Emulation 1 Channel 1 trigger + HSRTDX
5.34.2 Scan Chain Configuration Parameters
Table 5-148 shows the TAP configuration details required to configure the router/emulator for this device.
Table 5-148. JTAG Port Description
Router Port ID Default TAP TAP Name Tap IR Length
17 No C674x 38
18 No ARM926 4
19 No ETB 4
The router is revision C and has a 6-bit IR length.
5.34.3 Initial Scan Chain Configuration
The first level of debug interface that sees the scan controller is the TAP router module. The debugger
can configure the TAP router for serially linking up to 16 TAP controllers or individually scanning one of
the TAP controllers without disrupting the IR state of the other TAPs.
5.34.3.1 Adding TAPS to the Scan Chain
The TAP router must be programmed to add additional TAPs to the scan chain. The following JTAG scans
must be completed to add the ARM926EJ-S to the scan chain.
A Power-On Reset (POR) or the JTAG Test-Logic Reset state configures the TAP router to contain only
the routers TAP.
Figure 5-88. Adding ARM926EJ-S to the scan chain
Pre-amble: The device whose data reaches the emulator first is listed first in the board configuration file.
This device is a pre-amble for all the other devices. This device has the lowest device ID.
Post-amble: The device whose data reaches the emulator last is listed last in the board configuration file.
This device is a post-amble for all the other devices. This device has the highest device ID.
272 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
Function : Update the JTAG preamble and post-amble counts.
Parameter : The IR pre-amble count is '0'.
Parameter : The IR post-amble count is '0'.
Parameter : The DR pre-amble count is '0'.
Parameter : The DR post-amble count is '0'.
Parameter : The IR main count is '6'.
Parameter : The DR main count is '1'.
Function : Do a send-only JTAG IR/DR scan.
Parameter : The route to JTAG shift state is 'shortest transition'.
Parameter : The JTAG shift state is 'shift-ir'.
Parameter : The JTAG destination state is 'pause-ir'.
Parameter : The bit length of the command is '6'.
Parameter : The send data value is '0x00000007'.
Parameter : The actual receive data is 'discarded'.
Function : Do a send-only JTAG IR/DR scan.
Parameter : The route to JTAG shift state is 'shortest transition'.
Parameter : The JTAG shift state is 'shift-dr'.
Parameter : The JTAG destination state is 'pause-dr'.
Parameter : The bit length of the command is '8'.
Parameter : The send data value is '0x00000089'.
Parameter : The actual receive data is 'discarded'.
Function : Do a send-only JTAG IR/DR scan.
Parameter : The route to JTAG shift state is 'shortest transition'.
Parameter : The JTAG shift state is 'shift-ir'.
Parameter : The JTAG destination state is 'pause-ir'.
Parameter : The bit length of the command is '6'.
Parameter : The send data value is '0x00000002'.
Parameter : The actual receive data is 'discarded'.
Function : Embed the port address in next command.
Parameter : The port address field is '0x0f000000'.
Parameter : The port address value is '3'.
Function : Do a send-only JTAG IR/DR scan.
Parameter : The route to JTAG shift state is 'shortest transition'.
Parameter : The JTAG shift state is 'shift-dr'.
Parameter : The JTAG destination state is 'pause-dr'.
Parameter : The bit length of the command is '32'.
Parameter : The send data value is '0xa2002108'.
Parameter : The actual receive data is 'discarded'.
Function : Do a send-only all-ones JTAG IR/DR scan.
Parameter : The JTAG shift state is 'shift-ir'.
Parameter : The JTAG destination state is 'run-test/idle'.
Parameter : The bit length of the command is '6'.
Parameter : The send data value is 'all-ones'.
Parameter : The actual receive data is 'discarded'.
Function : Wait for a minimum number of TCLK pulses.
Parameter : The count of TCLK pulses is '10'.
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 273
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
TDI Router
ARM926EJ-S/ETM
TDO
Steps
CLK
TMS
Router
ARM926EJ-S/ETM
ETB
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
Function : Update the JTAG preamble and post-amble counts.
Parameter : The IR pre-amble count is '0'.
Parameter : The IR post-amble count is '6'.
Parameter : The DR pre-amble count is '0'.
Parameter : The DR post-amble count is '1'.
Parameter : The IR main count is '4'.
Parameter : The DR main count is '1'.
The initial scan chain contains only the TAP router module. The following steps must be completed in
order to add ETB TAP to the scan chain.
Figure 5-89. Adding ETB to the scan chain
Function : Do a send-only JTAG IR/DR scan.
Parameter : The route to JTAG shift state is 'shortest transition'.
Parameter : The JTAG shift state is 'shift-ir'.
Parameter : The JTAG destination state is 'pause-ir'.
Parameter : The bit length of the command is '6'.
Parameter : The send data value is '0x00000007'.
Parameter : The actual receive data is 'discarded'.
Function : Do a send-only JTAG IR/DR scan.
Parameter : The route to JTAG shift state is 'shortest transition'.
Parameter : The JTAG shift state is 'shift-dr'.
Parameter : The JTAG destination state is 'pause-dr'.
Parameter : The bit length of the command is '8'.
Parameter : The send data value is '0x00000089'.
Parameter : The actual receive data is 'discarded'.
Function : Do a send-only JTAG IR/DR scan.
Parameter : The route to JTAG shift state is 'shortest transition'.
Parameter : The JTAG shift state is 'shift-ir'.
Parameter : The JTAG destination state is 'pause-ir'.
Parameter : The bit length of the command is '6'.
Parameter : The send data value is '0x00000002'.
Parameter : The actual receive data is 'discarded'.
Function : Embed the port address in next command.
Parameter : The port address field is '0x0f000000'.
Parameter : The port address value is '3'.
274 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
Function : Do a send-only JTAG IR/DR scan.
Parameter : The route to JTAG shift state is 'shortest transition'.
Parameter : The JTAG shift state is 'shift-dr'.
Parameter : The JTAG destination state is 'pause-dr'.
Parameter : The bit length of the command is '32'.
Parameter : The send data value is '0xa3302108'.
Parameter : The actual receive data is 'discarded'.
Function : Do a send-only all-ones JTAG IR/DR scan.
Parameter : The JTAG shift state is 'shift-ir'.
Parameter : The JTAG destination state is 'run-test/idle'.
Parameter : The bit length of the command is '6'.
Parameter : The send data value is 'all-ones'.
Parameter : The actual receive data is 'discarded'.
Function : Wait for a minimum number of TCLK pulses.
Parameter : The count of TCLK pulses is '10'.
Function : Update the JTAG preamble and post-amble counts.
Parameter : The IR pre-amble count is '0'.
Parameter : The IR post-amble count is '6 + 4'.
Parameter : The DR pre-amble count is '0'.
Parameter : The DR post-amble count is '1 + 1'.
Parameter : The IR main count is '4'.
Parameter : The DR main count is '1'.
5.34.4 IEEE 1149.1 JTAG
The JTAG(1) interface is used for BSDL testing and emulation of the device.
The device requires that both TRST and RESET be asserted upon power up to be properly initialized.
While RESET initializes the device, TRST initializes the device's emulation logic. Both resets are required
for proper operation.
While both TRST and RESET need to be asserted upon power up, only RESET needs to be released for
the device to boot properly. TRST may be asserted indefinitely for normal operation, keeping the JTAG
port interface and device's emulation logic in the reset state.
TRST only needs to be released when it is necessary to use a JTAG controller to debug the device or
exercise the device's boundary scan functionality. Note: TRST is synchronous and must be clocked by
TCK; otherwise, the boundary scan logic may not respond as expected after TRST is asserted.
RESET must be released only in order for boundary-scan JTAG to read the variant field of IDCODE
correctly. Other boundary-scan instructions work correctly independent of current state of RESET.
For maximum reliability, the device includes an internal pulldown (IPD) on the TRST pin to ensure that
TRST will always be asserted upon power up and the device's internal emulation logic will always be
properly initialized.
JTAG controllers from Texas Instruments actively drive TRST high. However, some third-party JTAG
controllers may not drive TRST high but expect the use of a pullup resistor on TRST.
When using this type of JTAG controller, assert TRST to initialize the device after powerup and externally
drive TRST high before attempting any emulation or boundary scan operations.
(1) IEEE Standard 1149.1-1990 Standard-Test-Access Port and Boundary Scan Architecture.
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 275
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
5.34.4.1 JTAG Peripheral Register Description(s) JTAG ID Register (DEVIDR0)
Table 5-149. DEVIDR0 Register
BYTE ADDRESS ACRONYM REGISTER DESCRIPTION COMMENTS
Read-only. Provides 32-bit
0x01C1 4018 DEVIDR0 JTAG Identification Register JTAG ID of the device.
The JTAG ID register is a read-only register that identifies to the customer the JTAG/Device ID. For the
device, the JTAG ID register resides at address location 0x01C1 4018. The register hex value for each
silicon revision is:
0x0B7D 102F for silicon revision 1.0
0x0B7D 102F for silicon revision 1.1
0x1B7D 102F for silicon revision 2.0
For the actual register bit names and their associated bit field descriptions, see Figure 5-90 and
Table 5-150.
31-28 27-12 11-1 0
VARIANT (4-Bit) PART NUMBER (16-Bit) MANUFACTURER (11-Bit) LSB
R-xxxx R-1011 0111 1101 0001 R-0000 0010 111 R-1
LEGEND: R = Read, W = Write, n = value at reset
Figure 5-90. JTAG ID (DEVIDR0) Register Description - Register Value
276 Peripheral Information and Electrical Specifications Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
TCK
TDO
1
7
23
RTCK
4
56
9
8
TDI/TMS/TRST
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
Table 5-150. JTAG ID Register Selection Bit Descriptions
BIT NAME DESCRIPTION
31:28 VARIANT Variant (4-Bit) value
27:12 PART NUMBER Part Number (16-Bit) value
11-1 MANUFACTURER Manufacturer (11-Bit) value
0 LSB LSB. This bit is read as a "1".
5.34.4.2 JTAG Test-Port Electrical Data/Timing
Table 5-151. Timing Requirements for JTAG Test Port (see Figure 5-91)
1.3V, 1.2V 1.1V 1.0V
No. PARAMETER UNIT
MIN MAX MIN MAX MIN MAX
1 tc(TCK) Cycle time, TCK 40 50 66.6 ns
2 tw(TCKH) Pulse duration, TCK high 16 20 26.6 ns
3 tw(TCKL) Pulse duration, TCK low 16 20 26.6 ns
4 tc(RTCK) Cycle time, RTCK 40 50 66.6 ns
5 tw(RTCKH) Pulse duration, RTCK high 16 20 26.6 ns
6 tw(RTCKL) Pulse duration, RTCK low 16 20 26.6 ns
7 tsu(TDIV-RTCKH) Setup time, TDI/TMS/TRST valid before RTCK high 4 4 4 ns
8 th(RTCKH-TDIV) Hold time, TDI/TMS/TRST valid after RTCK high 4 6 8 ns
Table 5-152. Switching Characteristics Over Recommended Operating Conditions for JTAG Test Port
(see Figure 5-91)
1.3V, 1.2V 1.1V 1.0V
No. PARAMETER UNIT
MIN MAX MIN MAX MIN MAX
9 td(RTCKL-TDOV) Delay time, RTCK low to TDO valid 18 23 31 ns
Figure 5-91. JTAG Test-Port Timing
5.34.5 JTAG 1149.1 Boundary Scan Considerations
To use boundary scan, the following sequence should be followed:
Execute a valid reset sequence and exit reset
Wait at least 6000 OSCIN clock cycles
Enter boundary scan mode using the JTAG pins
No specific value is required on the EMU0 and EMU1 pins for boundary scan testing. If TRST is not driven
by the boundary scan tool or tester, TRST should be externally pulled high during boundary scan testing.
Copyright ©20092011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 277
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
6 Device and Documentation Support
6.1 Device Support
6.1.1 Development Support
TI offers an extensive line of development tools for the device platform, including tools to evaluate the
performance of the processors, generate code, develop algorithm implementations, and fully integrate and
debug software and hardware modules. The tool's support documentation is electronically available within
the Code Composer StudioIntegrated Development Environment (IDE).
The following products support development of the device applications:
Software Development Tools:
Code Composer StudioIntegrated Development Environment (IDE): including Editor
C/C++/Assembly Code Generation, and Debug plus additional development tools
Scalable, Real-Time Foundation Software (DSP/BIOS), which provides the basic run-time target
software needed to support any application.
Hardware Development Tools:
Extended Development System (XDS) Emulator
For a complete listing of development-support tools for the device, visit the Texas Instruments web site
on the Worldwide Web at http://www.ti.com uniform resource locator (URL). For information on pricing
and availability, contact the nearest TI field sales office or authorized distributor.
6.1.2 Device Nomenclature
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all
DSP devices and support tools. Each DSP commercial family member has one of three prefixes: X, P or
NULL (e.g., OMAP-L138). Texas Instruments recommends two of three possible prefix designators for its
support tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development
from engineering prototypes (TMX/TMDX) through fully qualified production devices/tools (TMS/TMDS).
Device development evolutionary flow:
XExperimental device that is not necessarily representative of the final device's electrical
specifications.
PFinal silicon die that conforms to the device's electrical specifications but has not completed
quality and reliability verification.
NULL Fully-qualified production device.
Support tool development evolutionary flow:
TMDX Development-support product that has not yet completed Texas Instruments internal
qualification testing.
TMDS Fully qualified development-support product.
X and P devices and TMDX development-support tools are shipped against the following disclaimer:
"Developmental product is intended for internal evaluation purposes."
Null devices and TMDS development-support tools have been characterized fully, and the quality and
reliability of the device have been demonstrated fully. TI's standard warranty applies.
Predictions show that prototype devices (X or P) have a greater failure rate than the standard production
devices. Texas Instruments recommends that these devices not be used in any production system
because their expected end-use failure rate still is undefined. Only qualified production devices are to be
used.
278 Device and Documentation Support Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
X OMAPL138 ( ) ZWT ( ) 3
PREFIX
DEVICE
SILICON REVISION
Blank = Silicon Revision 1.0
3 = 375 MHz (Revision 2.x)
PACKAGE TYPE
361 Pin Plastic BGA, with Pb-free
Soldered Balls [Green], 0.65 mm Ball Pitch
ZCE =
DEVICE SPEED RANGE
TEMPERATURE RANGE (JUNCTION)
A = Silicon Revision 1.1
B = Silicon Revision 2.0 or 2.1
4 = 456 MHz (Revision 2.x)
3 = 300 MHz (Revision 1.x)
Blank = Production Device
X = Experimental Device
P = Prototype Device
361 Pin Plastic BGA, with Pb-free
Soldered Balls [Green], 0.8 mm Ball Pitch
ZWT =
OMAPL138
Blank = 0°C to 90°C (Commercial Grade)
D = -40°C to 90°C (Industrial Grade)
A = -40°C to 105°C (Extended Grade)
(A)
(B)
(C)
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the
package type (for example, ZWT), the temperature range (for example, "Blank" is the commercial
temperature range), and the device speed range in megahertz (for example, "Blank" is the default).
Figure 6-1 provides a legend for reading the complete device.
A. BGA = Ball Grid Array
B. The device speed range symbolization indicates the maximum CPU frequency when the core voltage CVDD is set to
1.2 V.
C. Parts marked revision B are silicon revision 2.1 if '2.1'is marked on the package, and silicon revision 2.0 if there is no
'2.1'marking.
Figure 6-1. Device Nomenclature
6.2 Documentation Support
The following documents are available on the Internet at www.ti.com.Tip: Enter the literature number in
the search box.
DSP Reference Guides
SPRUG82 TMS320C674x DSP Cache User's Guide. Explains the fundamentals of memory caches
and describes how the two-level cache-based internal memory architecture in the
TMS320C674x digital signal processor (DSP) can be efficiently used in DSP applications.
Shows how to maintain coherence with external memory, how to use DMA to reduce
memory latencies, and how to optimize your code to improve cache efficiency. The internal
memory architecture in the C674x DSP is organized in a two-level hierarchy consisting of a
dedicated program cache (L1P) and a dedicated data cache (L1D) on the first level.
Accesses by the CPU to the these first level caches can complete without CPU pipeline
stalls. If the data requested by the CPU is not contained in cache, it is fetched from the next
lower memory level, L2 or external memory.
SPRUFE8 TMS320C674x DSP CPU and Instruction Set Reference Guide. Describes the CPU
architecture, pipeline, instruction set, and interrupts for the TMS320C674x digital signal
processors (DSPs). The C674x DSP is an enhancement of the C64x+ and C67x+ DSPs with
added functionality and an expanded instruction set.
SPRUFK5 TMS320C674x DSP Megamodule Reference Guide. Describes the TMS320C674x digital
signal processor (DSP) megamodule. Included is a discussion on the internal direct memory
access (IDMA) controller, the interrupt controller, the power-down controller, memory
protection, bandwidth management, and the memory and cache.
SPRUFK9 TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide. Provides
an overview and briefly describes the peripherals available on the device.
SPRUGM7 OMAP-L138 Applications Processor System Reference Guide .
Copyright ©20092011, Texas Instruments Incorporated Device and Documentation Support 279
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
6.3 Community Resources
The following links connect to TI community resources. Linked contents are provided "AS IS" by the
respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views;
see TI's Terms of Use.
TI E2E Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and
help solve problems with fellow engineers.
TI Embedded Processors Wiki Texas Instruments Embedded Processors Wiki. Established to help
developers get started with Embedded Processors from Texas Instruments and to foster
innovation and growth of general knowledge about the hardware and software surrounding
these devices.
280 Device and Documentation Support Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
www.ti.com
SPRS586CJUNE 2009REVISED APRIL 2011
7 Mechanical Packaging and Orderable Information
This section describes the packaging options, materials, thermal and mechanical parameters.
7.1 Thermal Data for ZCE Package
The following table(s) show the thermal resistance characteristics for the PBGAZCE mechanical
package.
Table 7-1. Thermal Resistance Characteristics (PBGA Package) [ZCE]
NO. °C/W(1) AIR FLOW (m/s)(2)
1 RΘJC Junction-to-case 7.6 N/A
2 RΘJB Junction-to-board 11.3 N /A
3 RΘJA Junction-to-free air 23.9 0.00
4 21.2 0.50
5 20.3 1.00
RΘJMA Junction-to-moving air
6 19.5 2.00
7 18.6 4.00
8 0.2 0.00
9 0.3 0.50
10 PsiJT Junction-to-package top 0.3 1.00
11 0.4 2.00
12 0.5 4.00
13 11.2 0.00
14 11.1 0.50
15 PsiJB Junction-to-board 11.1 1.00
16 11.0 2.00
17 10.9 4.00
(1) These measurements were conducted in a JEDEC defined 2S2P system and will change based on environment as well as application.
For more information, see these EIA/JEDEC standards EIA/JESD51-2, Integrated Circuits Thermal Test Method Environment
Conditions - Natural Convection (Still Air) and JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount
Packages. Power dissipation of 500 mW and ambient temp of 70C assumed. PCB with 2oz (70um) top and bottom copper thickness
and 1.5oz (50um) inner copper thickness
(2) m/s = meters per second
Copyright ©20092011, Texas Instruments Incorporated Mechanical Packaging and Orderable Information 281
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
OMAP-L138
SPRS586CJUNE 2009REVISED APRIL 2011
www.ti.com
7.2 Thermal Data for ZWT Package
The following table(s) show the thermal resistance characteristics for the PBGAZWT mechanical
package.
Table 7-2. Thermal Resistance Characteristics (PBGA Package) [ZWT]
NO. °C/W(1) AIR FLOW (m/s)(2)
1 RΘJC Junction-to-case 7.3 N/A
2 RΘJB Junction-to-board 12.4 N /A
3 RΘJA Junction-to-free air 23.7 0.00
4 21.0 0.50
5 20.1 1.00
RΘJMA Junction-to-moving air
6 19.3 2.00
7 18.4 4.00
8 0.2 0.00
9 0.3 0.50
10 PsiJT Junction-to-package top 0.3 1.00
11 0.4 2.00
12 0.5 4.00
13 12.3 0.00
14 12.2 0.50
15 PsiJB Junction-to-board 12.1 1.00
16 12.0 2.00
17 11.9 4.00
(1) These measurements were conducted in a JEDEC defined 2S2P system and will change based on environment as well as application.
For more information, see these EIA/JEDEC standards EIA/JESD51-2, Integrated Circuits Thermal Test Method Environment
Conditions - Natural Convection (Still Air) and JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount
Packages. Power dissipation of 1W and ambient temp of 70C assumed. PCB with 2oz (70um) top and bottom copper thickness and
1.5oz (50um) inner copper thickness
(2) m/s = meters per second
282 Mechanical Packaging and Orderable Information Copyright ©20092011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L138
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products Applications
Audio www.ti.com/audio Communications and Telecom www.ti.com/communications
Amplifiers amplifier.ti.com Computers and Peripherals www.ti.com/computers
Data Converters dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps
DLP® Products www.dlp.com Energy and Lighting www.ti.com/energy
DSP dsp.ti.com Industrial www.ti.com/industrial
Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical
Interface interface.ti.com Security www.ti.com/security
Logic logic.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Power Mgmt power.ti.com Transportation and www.ti.com/automotive
Automotive
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com Wireless www.ti.com/wireless-apps
RF/IF and ZigBee® Solutions www.ti.com/lprfTI E2E Community Home Page e2e.ti.com
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2011, Texas Instruments Incorporated