1
®
FN7176.3
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
1-888-INTERSIL or 1-888-468-3774 |Intersil (and design) is a registered trademark of Intersil Americas Inc.
Copyright Intersil Americas Inc. 2002-2004, 2007, 2010. All Rights Reserved
All other trademarks mentioned are the property of their respective owners.
EL5123, EL5223, EL5323, EL5423
12MHz 4-, 8-, 10- and 12-Channel
Rail-to-Rail Input-Output Buffers
The EL5123, EL5223, EL5323, and EL5423 are low power,
high voltage rail-to-rail input/output buffers designed
primarily for use in reference voltage buffering applications
for TFT-LCDs. They are available in quad (EL5123), octal
(EL5223), 10-Channel (EL5323), and 12-Channel (EL5423)
topologies. All buffers feature a -3dB bandwidth of 12MHz
and operate from just 600µA per buffer. This family also
features fast slewing and settling times, as well as a
continuous output drive capability of 30mA (sink and
source).
The quad channel EL5123 is available in the 10 Ld MSOP
package. The 8-Channel EL5223 is available in both the
20 Ld TSSOP and 24 Ld QFN packages, the 10-Channel
EL5323 in the 24 Ld TSSOP and 24 Ld QFN packages, and
the 12-Channel EL5423 in the 28 Ld TSSOP and 32 Ld QFN
packages. All buffers are specified for operation over the full
-40°C to +85°C temperature range.
Features
12MHz -3dB bandwidth
Supply voltage = 4.5V to 16.5V
Low supply current (per buffer) = 600µA
High slew rate = 15V/µs
Rail-to-rail input/output swing
Ultra-small packages
Pb-Free Available (RoHS Compliant)
Applications
TFT-LCD drive circuits
Electronics notebooks
Electronic games
Touch-screen displays
Personal communication devices
Personal digital assistants (PDA)
Portable instrumentation
Sampling ADC amplifiers
Wireless LANs
Office automation
Active filters
ADC/DAC buffers
Data Sheet August 31, 2010
2FN7176.3
August 31, 2010
Pinouts
EL5223, EL5323
(24 LD QFN)
TOP VIEW
EL5123
(10 LD MSOP)
TOP VIEW
EL5223
(20 LD TSSOP)
TOP VIEW
EL5423
(32 LD QFN)
TOP VIEW
EL5423
(28 LD TSSOP)
TOP VIEW
EL5323
(24 LD TSSOP)
TOP VIEW
* NOT AVAILABLE IN EL5223
VIN3
VIN4
VIN5
VS+
VIN6
VIN7
VIN8
VOUT3
VOUT4
VOUT5
VS-
VOUT6
VOUT7
VOUT8
VIN2
VIN1*
NC
VOUT1*
VOUT2
VIN9
CVIN10*
NC
VOUT10*
VOUT9
19
18
17
16
15
14
13
24
23
22
21
20
8
9
10
11
12
1
2
3
4
5
6
7
THERMAL
PAD**
* *THERMAL PAD CONNECTS TO VS-
VOUT1
VOUT2
VS-
VOUT3
VOUT4
VIN1
VIN2
VS+
VIN3
VIN4
1
2
3
4
10
9
8
7
5 6
1
2
3
4
16
15
14
13
5
6
7
12
11
9
8
10
20
19
18
17
VIN1
VIN2
VIN3
VIN4
VS+
VIN5
VIN6
VIN7
VIN8
VOUT1
VOUT2
VOUT3
VOUT4
VS-
VS-
VOUT5
VOUT6
VOUT7
VOUT8
VS+
THERMAL
PAD**
25
24
23
22
21
20
19
32
31
30
29
28
10
11
12
13
14
1
2
3
4
5
6
7
VIN3
VIN4
VIN5
VIN6
VS+
VIN7
VIN8
VOUT3
VOUT4
VOUT5
VOUT6
VS-
VOUT7
VOUT8
VIN2
VIN1
NC
NC
NC
VIN11
VIN12
NC
NC
NC
8
9
18
17
15 27
16 26
VOUT9
VOUT1
0
VOUT12
VOUT11
VIN9
VIN10
VOUT1
VOUT2
* *THERMAL PAD CONNECTS TO VS-
1
2
3
4
28
27
26
25
5
6
7
24
23
22
821
9
10
20
19
11
12
13
18
17
16
14 15
VIN1
VIN2
VIN3
VIN4
VIN5
VIN6
VS+
VS+
VIN7
VIN8
VIN9
VIN10
VOUT1
VOUT2
VOUT3
VOUT4
VOUT5
VOUT6
VS-
VS-
VOUT7
VOUT8
VOUT9
VOUT10
VIN11
VIN12
VOUT11
VOUT12
1
2
3
4
16
15
14
13
5
6
7
12
11
9
8
10
20
19
18
17
24
23
22
21
VIN1
VIN2
VIN3
VIN4
VIN5
VS+
VS+
VIN6
VIN7
VIN8
VIN9
VIN10
VOUT1
VOUT2
VOUT3
VOUT4
VOUT5
VS-
VS-
VOUT6
VOUT7
VOUT8
VOUT9
VOUT10
EL5123, EL5223, EL5323, EL5423
3FN7176.3
August 31, 2010
Ordering Information
PART NUMBER PART MARKING PACKAGE PKG. DWG. #
EL5123CY P 10 Ld MSOP (3.0mm) MDP0043
EL5123CY-T7* P 10 Ld MSOP (3.0mm) MDP0043
EL5123CY-T13* P 10 Ld MSOP (3.0mm) MDP0043
EL5123CYZ (Note) BAAAT 10 Ld MSOP (3.0mm) (Pb-free) MDP0043
EL5123CYZ-T7* (Note) BAAAT 10 Ld MSOP (3.0mm) (Pb-free) MDP0043
EL5123CYZ-T13* (Note) BAAAT 10 Ld MSOP (3.0mm) (Pb-free) MDP0043
EL5223CL 5223CL 24 Ld QFN (4mmx5mm) MDP0046
EL5223CL-T7* 5223CL 24 Ld QFN (4mmx5mm) MDP0046
EL5223CL-T13* 5223CL 24 Ld QFN (4mmx5mm) MDP0046
EL5223CLZ (Note) 5223CLZ 24 Ld QFN (4mmx5mm) (Pb-free) MDP0046
EL5223CLZ-T7* (Note) 5223CLZ 24 Ld QFN (4mmx5mm) (Pb-free) MDP0046
EL5223CLZ-T13* (Note) 5223CLZ 24 Ld QFN (4mmx5mm) (Pb-free) MDP0046
EL5223CR 5223CR 20 Ld TSSOP (4.4mm) MDP0044
EL5223CR-T7* 5223CR 20 Ld TSSOP (4.4mm) MDP0044
EL5223CR-T13* 5223CR 20 Ld TSSOP (4.4mm) MDP0044
EL5223CRZ (Note) 5223CRZ 20 Ld TSSOP (4.4mm) (Pb-free) M20.173
EL5223CRZ-T7* (Note) 5223CRZ 20-Ld TSSOP (4.4mm) (Pb-free) M20.173
EL5223CRZ-T13* (Note) 5223CRZ 20 Ld TSSOP (4.4mm) (Pb-free) M20.173
EL5323CL 5323CL 24 Ld QFN (4mmx5mm) MDP0046
EL5323CL-T7* 5323CL 24 Ld QFN (4mmx5mm) MDP0046
EL5323CL-T13* 5323CL 24 Ld QFN (4mmx5mm) MDP0046
EL5323CLZ (Note) 5323CLZ 24 Ld QFN (4mmx5mm) (Pb-free) MDP0046
EL5323CLZ-T7* (Note) 5323CLZ 24 Ld QFN (4mmx5mm) (Pb-free) MDP0046
EL5323CLZ-T13* (Note) 5323CLZ 24 Ld QFN (4mmx5mm) (Pb-free) MDP0046
EL5323CR 5323CR 24 Ld TSSOP (4.4mm) MDP0044
EL5323CR-T13* 5323CR 24 Ld TSSOP (4.4mm) MDP0044
EL5323CRZ (Note) 5323CRZ 24 Ld TSSOP (4.4mm) (Pb-free) MDP0044
EL5323CRZ-T7* (Note) 5323CRZ 24 Ld TSSOP (4.4mm) (Pb-free) MDP0044
EL5323CRZ-T13* (Note) 5323CRZ 24 Ld TSSOP (4.4mm) (Pb-free) MDP0044
EL5423CL 5423CL 32 Ld QFN (5mmx6mm) MDP0046
EL5423CL-T7* 5323CL 32 Ld QFN (5mmx6mm) MDP0046
EL5423CL-T13* 5423CL 32 Ld QFN (5mmx6mm) MDP0046
EL5423CLZ (Note) 5423CLZ 32 Ld QFN (5mmx6mm) (Pb-free) MDP0046
EL5423CLZ-T7* (Note) 5423CLZ 32 Ld QFN (5mmx6mm) (Pb-free) MDP0046
EL5423CLZ-T13* (Note) 5423CLZ 32 Ld QFN (5mmx6mm) (Pb-free) MDP0046
EL5123, EL5223, EL5323, EL5423
4FN7176.3
August 31, 2010
EL5423CR 5423CR 28 Ld TSSOP (4.4mm) MDP0044
EL5423CR-T7* 5423CR 28 Ld TSSOP (4.4mm) MDP0044
EL5423CR-T13* 5423CR 28 Ld TSSOP (4.4mm) MDP0044
EL5423CRZ (Note) 5423CRZ 28 Ld TSSOP (4.4mm) (Pb-free) MDP0044
EL5423CRZ-T7* (Note) 5423CRZ 28 Ld TSSOP (4.4mm) (Pb-free) MDP0044
EL5423CRZ-T13* (Note) 5423CRZ 28 Ld TSSOP (4.4mm) (Pb-free) MDP0044
*Please refer to TB347 for details on reel specifications.
NOTE: These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100%
matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations).
Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J
STD-020.
Ordering Information (Continued)
PART NUMBER PART MARKING PACKAGE PKG. DWG. #
EL5123, EL5223, EL5323, EL5423
5FN7176.3
August 31, 2010
Absolute Maximum Ratings (TA = +25°C) Thermal Information
Supply Voltage between VS+ and VS- . . . . . . . . . . . . . . . . . . . .+18V
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . VS- -0.5V, VS +0.5V
Maximum Continuous Output Current . . . . . . . . . . . . . . . . . . . 30mA
ESD Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2kV
Maximum Die Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . +125°C
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . -65°C to +150°C
Operating Temperature . . . . . . . . . . . . . . . . . . . . . . .-40°C to +85°C
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Curves
Pb-free reflow profile . . . . . . . . . . . . . . . . . . . . . . . . . .see link below
http://www.intersil.com/pbfree/Pb-FreeReflow.asp
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and
result in failures not covered by warranty.
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests
are at the specified temperature and are pulsed tests, therefore: TJ = TC = TA
NOTES:
1. Measured over operating temperature range.
2. Instantaneous peak current.
3. Slew rate is measured on rising and falling edges
Electrical Specifications VS+ = +5V, VS- = -5V, RL = 10kΩ and CL = 10pF to 0V, TA = +25°C, Unless Otherwise Specified.
PARAMETER DESCRIPTION CONDITION MIN TYP MAX UNIT
INPUT CHARACTERISTICS
VOS Input Offset Voltage VCM = 0V 0.5 12 mV
TCVOS Average Offset Voltage Drift (Note 1) 5 µV/°C
IBInput Bias Current VCM = 0V 2 50 nA
RIN Input Impedance 1GΩ
CIN Input Capacitance 1.35 pF
AVVoltage Gain -4.5V VOUT 4.5V 0.99 1.01 V/V
OUTPUT CHARACTERISTICS
VOL Output Swing Low IL = -5mA -4.95 -4.85 V
VOH Output Swing High IL = +5mA 4.85 4.95 V
IOUT (max) Output Current (Note 2) RL = 10Ω±120 mA
POWER SUPPLY PERFORMANCE
PSRR Power Supply Rejection Ratio VS is moved from ±2.25V to ±7.75V 55 80 dB
ISSupply Current No load (EL5123) 2.4 3.4 mA
No load (EL5223) 5.5 6.8 mA
No load (EL5323) 6 8.5 mA
No load (EL5423) 7.45 10.1 mA
DYNAMIC PERFORMANCE
SR Slew Rate (Note 3) -4.0V VOUT 4.0V, 20% to 80% 7 15 V/µs
tSSettling to +0.1% (AV = +1) (AV = +1), VO = 2V step 250 ns
BW -3dB Bandwidth RL = 10kΩ, CL = 10pF 12 MHz
CS Channel Separation f = 5MHz 75 dB
EL5123, EL5223, EL5323, EL5423
6FN7176.3
August 31, 2010
Electrical Specifications VS+ =+5V, VS- = 0V, RL = 10kΩ and CL = 10pF to 2.5V, TA = +25°C, Unless Otherwise Specified.
PARAMETER DESCRIPTION CONDITION MIN TYP MAX UNIT
INPUT CHARACTERISTICS
VOS Input Offset Voltage VCM = 2.5V 0.5 12 mV
TCVOS Average Offset Voltage Drift (Note 1) 5 µV/°C
IBInput Bias Current VCM = 2.5V 2 50 nA
RIN Input Impedance 1GΩ
CIN Input Capacitance 1.35 pF
AVVoltage Gain 0.5V VOUT 4.5V 0.99 1.01 V/V
OUTPUT CHARACTERISTICS
VOL Output Swing Low IL = -2.5mA 80 150 mV
VOH Output Swing High IL = +2.5mA 4.85 4.92 V
IOUT (max) Output Current (Note 2) RL = 10Ω±120 mA
POWER SUPPLY PERFORMANCE
PSRR Power Supply Rejection Ratio VS is moved from 4.5V to 15.5V 55 80 dB
ISSupply Current No load (EL5123) 2.4 3.2 mA
No load (EL5223) 5.2 6.5 mA
No load (EL5323) 5.8 8 mA
No load (EL5423) 7.2 9.7 mA
DYNAMIC PERFORMANCE
SR Slew Rate (Note 3) 1V VOUT 4V, 20% to 80% 12 V/µs
tSSettling to +0.1% (AV = +1) (AV = +1), VO = 2V step 250 ns
BW -3dB Bandwidth RL = 10kΩ, CL = 10pF 12 MHz
CS Channel Separation f = 5MHz 75 dB
Electrical Specifications VS+ = +15V, VS- = 0V, RL = 10kΩ and CL = 10pF to 7.5V, TA = +25°C, Unless Otherwise Specified.
PARAMETER DESCRIPTION CONDITION MIN TYP MAX UNIT
INPUT CHARACTERISTICS
VOS Input Offset Voltage VCM = 7.5V 0.5 14 mV
TCVOS Average Offset Voltage Drift (Note 1) 5 µV/°C
IBInput Bias Current VCM = 7.5V 2 50 nA
RIN Input Impedance 1GΩ
CIN Input Capacitance 1.35 pF
AVVoltage Gain 0.5V VOUT 14.5V 0.99 1.01 V/V
OUTPUT CHARACTERISTICS
VOL Output Swing Low IL = -7.5mA 80 150 mV
VOH Output Swing High IL = +7.5mA 14.85 14.95 V
IOUT (max) Output Current (Note 2) RL = 10Ω120 200 mA
EL5123, EL5223, EL5323, EL5423
7FN7176.3
August 31, 2010
POWER SUPPLY PERFORMANCE
PSRR Power Supply Rejection Ratio VS is moved from 4.5V to 15.5V 55 80 dB
ISSupply Current No load (EL5123) 2.4 3.7 mA
No load (EL5223) 5.7 7.1 mA
No load (EL5323) 6.2 8.7 mA
No load (EL5423) 7.8 10.4 mA
DYNAMIC PERFORMANCE
SR Slew Rate (Note 3) 1V VOUT 14V, 20% to 80% 18 V/µs
tSSettling to +0.1% (AV = +1) (AV = +1), VO = 2V step 250 ns
BW -3dB Bandwidth RL = 10kΩ, CL = 10pF 12 MHz
CS Channel Separation f = 5MHz 75 dB
Electrical Specifications VS+ = +15V, VS- = 0V, RL = 10kΩ and CL = 10pF to 7.5V, TA = +25°C, Unless Otherwise Specified.
PARAMETER DESCRIPTION CONDITION MIN TYP MAX UNIT
EL5123, EL5223, EL5323, EL5423
8FN7176.3
August 31, 2010
Typical Performance Curves
FIGURE 1. OUTPUT SWING vs FREQUENCY FIGURE 2. TOTAL HARMONIC DISTORTION + NOISE vs
FREQUENCY
FIGURE 3. OVERSHOOT vs LOAD CAPACITANCE FIGURE 4. SETTLING TIME vs STEP SIZE
FIGURE 5. FREQUENCY RESPONSE FOR VARIOUS CLFIGURE 6. FREQUENCY RESPONSE FOR VARIOUS RL
12
10
8
6
4
2
0
10k 100k 1M 10M
FREQUENCY (Hz)
VOP-P (V)
VS = ±5V
RL = 10kΩ
0.018
0.016
0.014
0.012
0.01
0.008
0.006
THD + NOISE (%)
VS = ±5V
RL = 10kΩ
VIN = 2VP-P
1k 10k 100k
FREQUENCY (Hz)
80
70
60
50
40
20
0
OVERSHOOT (%)
30
10
VS = ±5V
RL = 10kΩ
VIN = 100mV
10 100 1k
CAPACITANCE (pF)
10
6
2
-6
-10
200 400 650
SETTLING TIME (ns)
STEP SIZE (V)
-2
250 300 350 450 500 550 600
VS = ±5V
RL = 10kΩ
CL = 12pF
NORMALIZED MAGNITUDE (dB)
20
10
0
-10
-20
-30
VS = ±5V
RL = 10kΩ1000pF
100k 1M 10M 100M
FREQUENCY (Hz)
12pF
100pF
47pF
NORMALIZED MAGNITUDE (dB)
20
10
0
-10
-20
-30
VS = ±5V
CL = 10pF
100k 1M 10M 100M
FREQUENCY (Hz)
10kΩ
150Ω
562Ω
1kΩ
EL5123, EL5223, EL5323, EL5423
9FN7176.3
August 31, 2010
FIGURE 7. PSRR vs FREQUENCY FIGURE 8. OUTPUT IMPEDANCE vs FREQUENCY
FIGURE 9. INPUT NOISE SPECTRAL DENSITY vs FREQUENCY FIGURE 10. INPUT OFFSET VOLTAGE DISTRIBUTION
FIGURE 11. INPUT BIAS CURRENT vs TEMPERATURE FIGURE 12. OUTPUT HIGH VOLTAGE vs TEMPERATURE
Typical Performance Curves (Continued)
PSRR (dB)
100
80
60
40
20
0
VS = ±5V
PSRR+
PSRR-
1k 10M
FREQUENCY (Hz)
10k 100k 1M
OUTPUT IMPEDANCE (Ω)
600
480
360
240
120
0
VS = ±5V
TA = +25°C
100k 1M 10M 100M
FREQUENCY (Hz)
VOLTAGE NOISE (nV/Hz)
100
10
1
10k 100M
FREQUENCY (Hz)
100k 1M 10M
25
20
15
10
5
0
-6
-4
-2
0
2
4
6
INPUT OFFSET VOLTAGE (mV)
% OF BUFFERS
2.5
1.5
0.5
-0.5
-1.5
-2.5
INPUT BIAS CURRENT (nA)
VS = ±5V
-35 85
TEMPERATURE (°C)
-15 25 65545
4.955
4.950
4.945
4.940
4.935
4.925
OUTPUT HIGH VOLTAGE (V)
4.930 VS = ±5V
IOUT = 5mA
-35 85
TEMPERATURE (°C)
-15 25 65545
EL5123, EL5223, EL5323, EL5423
10 FN7176.3
August 31, 2010
FIGURE 13. SLEW RATE vs TEMPERATURE FIGURE 14. OUTPUT LOW VOLTAGE vs TEMPERATURE
FIGURE 15. VOLTAGE GAIN vs TEMPERATURE FIGURE 16. SUPPLY CURRENT PER CHANNEL vs
TEMPERATURE
FIGURE 17. SUPPLY CURRENT PER CHANNEL vs SUPPLY
VOLTAGE
FIGURE 18. SMALL SIGNAL TRANSIENT RESPONSE
Typical Performance Curves (Continued)
15.1
14.1
SLEW RATE (V/µs)
14.9
14.7
14.5
14.3
VS = ±5V
-35 85
TEMPERATURE (°C)
-15 25 65545
-4.934
-4.938
-4.942
-4.946
-4.954
OUTPUT LOW VOLTAGE (V)
-4.950
VS = ±5V
IOUT = -5mA
-35 85
TEMPERATURE (°C)
-15 25 65545
1.0014
1.0006
1.0000
0.9998
VOLTAGE GAIN (V/V)
1.0010
VS = ±5V
-35 85
TEMPERATURE (°C)
-15 25 65545
0.62
SUPPLY CURRENT (mA)
0.63
0.66
0.65
0.64
VS = ±5V
-35 85
TEMPERATURE (°C)
-15 25 65545
0.71
0.69
0.67
0.65
0.63
18
SUPPLY VOLTAGE (V)
SUPPLY CURRENT (mA)
4 6 10 12 14 168
TA = +25°C
200ns/DIV
50mV/DIV
VS = ±5V
RL = 10kΩ
CL = 12pF
EL5123, EL5223, EL5323, EL5423
11 FN7176.3
August 31, 2010
FIGURE 19. LARGE SIGNAL TRANSIENT RESPONSE FIGURE 20. PACKAGE POWER DISSIPATION vs AMBIENT
TEMPERATURE
FIGURE 21. PACKAGE POWER DISSIPATION vs AMBIENT
TEMPERATURE
FIGURE 22. PACKAGE POWER DISSIPATION vs AMBIENT
TEMPERATURE
FIGURE 23. PACKAGE POWER DISSIPATION vs AMBIENT TEMPERATURE
Typical Performance Curves (Continued)
1µs/DIV
1V/DIV
JEDEC JESD51-7 HIGH EFFECTIVE THERMAL
CONDUCTIVITY TEST BOARD, QFN EXPOSED
DIEPAD SOLDERED TO PCB PER JESD51-5
3.0
2.5
2.0
1.5
1.0
0.5
0
0 25 50 75 100 125 15085
AMBIENT TEMPERATURE (°C)
POWER DISSIPATION (W)
2.857W
2.703W
θJA = +37°C/W
QFN24 θJA = +35°C/W
QFN32
JEDEC JESD51-3 AND SEMI G42-88
(SINGLE LAYER) TEST BOARD
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
714mW
θJA = +140°C/W
QFN24 θJA = +132°C/W
QFN32
0 25 50 75 100 125 15085
AMBIENT TEMPERATURE (°C)
POWER DISSIPATION (W)
758mW
JEDEC JESD51-7 HIGH EFFECTIVE THERMAL
CONDUCTIVITY TEST BOARD
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0
POWER DISSIPATION (W)
0 25 50 75 100 125 15085
AMBIENT TEMPERATURE (°C)
1.111W
1.333W
870mW
θJA = +95°C/W
TSSOP20
θJA = +115°C/W
MSOP10
θJA = +85°C/W
TSSOP24
θJA = +75°C/W
TSSOP28
1.176W
JEDEC JESD51-3 LOW EFFECTIVE THERMAL
CONDUCTIVITY TEST BOARD
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
0 25 50 75 100 125 15085
AMBIENT TEMPERATURE (°C)
POWER DISSIPATION (W)
486mW
θJA = +206°C/W
MSOP10
714mW
θJA = +140°C/W
TSSOP20
θJA = +120°C/W
TSSOP28
θJA = +128°C/W
TSSOP24
833mW
781mW
EL5123, EL5223, EL5323, EL5423
12 FN7176.3
August 31, 2010
Applications Information
Product Description
The EL5123, EL5223, EL5323, and EL5423 unity gain
buffers are fabricated using a high voltage CMOS process. It
exhibits rail-to-rail input and output capability and has low
power consumption (600µA per buffer). These features
make the EL5123, EL5223, EL5323, and EL5423 ideal for a
wide range of general-purpose applications. When driving a
load of 10kΩ and 12pF, the EL5123, EL5223, EL5323, and
EL5423 have a -3dB bandwidth of 12MHz and exhibits
15V/µs slew rate.
Operating Voltage, Input, and Output
The EL5123, EL5223, EL5323, and EL5423 are specified
with a single nominal supply voltage from 5V to 15V or a split
supply with its total range from 5V to 15V. Correct operation
is guaranteed for a supply range of 4.5V to 16.5V. Most
EL5123, EL5223, EL5323, and EL5423 specifications are
stable over both the full supply range and operating
temperatures of -40°C to +85°C. Parameter variations with
operating voltage and/or temperature are shown in the
“Typical Performance Curves” on page 8.
The output swings of the EL5123, EL5223, EL5323, and
EL5423 typically extend to within 50mV of positive and
negative supply rails with load currents of 5mA. Decreasing
load currents will extend the output voltage range even closer
to the supply rails. Figure 24 shows the input and output
waveforms for the device. Operation is from ±5V supply with a
10kΩ load connected to GND. The input is a 10VP-P sinusoid.
The output voltage is approximately 9.985VP-P
.
FIGURE 24. OPERATION WITH RAIL-TO-RAIL INPUT AND
OUTPUT
Short Circuit Current Limit
The EL5123, EL5223, EL5323, and EL5423 will limit the
short circuit current to ±120mA if the output is directly
shorted to the positive or the negative supply. If an output is
shorted indefinitely, the power dissipation could easily
increase such that the device may be damaged. Maximum
reliability is maintained if the output continuous current never
exceeds ±30mA. This limit is set by the design of the internal
metal interconnects.
Output Phase Reversal
The EL5123, EL5223, EL5323, and EL5423 are immune to
phase reversal as long as the input voltage is limited from
VS- -0.5V to VS+ +0.5V. Figure 25 shows a photo of the
output of the device with the input voltage driven beyond the
supply rails. Although the device's output will not change
phase, the input's over-voltage should be avoided. If an input
voltage exceeds supply voltage by more than 0.6V,
electrostatic protection diodes placed in the input stage of
the device begin to conduct and overvoltage damage could
occur.
FIGURE 25. OPERATION WITH BEYOND-THE-RAILS INPUT
Power Dissipation
With the high-output drive capability of the EL5123, EL5223,
EL5323, and EL5423 buffer, it is possible to exceed the
+125°C “absolute-maximum junction temperature” under
certain load current conditions. Therefore, it is important to
calculate the maximum junction temperature for the
application to determine if load conditions need to be
modified for the buffer to remain in the safe operating area.
The maximum power dissipation allowed in a package is
determined according to Equation 1:
where:
TJMAX = Maximum junction temperature
TAMAX = Maximum ambient temperature
θJA = Thermal resistance of the package
PDMAX = Maximum power dissipation in the package
The maximum power dissipation actually produced by an IC
is the total quiescent supply current times the total power
supply voltage, plus the power in the IC due to the loads, or:
OUTPUT INPUT
5V
5V
10µs VS = ±5V
TA = +25°C
VIN = 10VP-P
1V
1V
10µs
VS=±2.5V
TA=25°C
VIN=6VP-P
PDMAX
TJMAX TAMAX
ΘdJA
---------------------------------------------
=(EQ. 1)
PDMAX ΣiV[SISMAX VS+(VOUTi)ILOADi]×+×=(EQ. 2)
EL5123, EL5223, EL5323, EL5423
13 FN7176.3
August 31, 2010
when sourcing, and
when sinking.
where:
i = 1 to Total number of buffers
VS = Total supply voltage
ISMAX = Maximum quiescent current per channel
VOUTi = Maximum output voltage of the application
ILOADi = Load current
If we set the Equations 2 and 3 equal to each other, we can
solve for RLOADi to avoid device overheat. The package
power dissipation curves provide a convenient way to see if
the device will overheat. The maximum safe power
dissipation can be found graphically, based on the package
type and the ambient temperature. By using the previous
equation, it is a simple matter to see if PDMAX exceeds the
device's power derating curves.
Unused Buffers
It is recommended that any unused buffer have the input tied
to the ground plane.
Driving Capacitive Loads
The EL5123, EL5223, EL5323, and EL5423 can drive a wide
range of capacitive loads. As load capacitance increases,
however, the -3dB bandwidth of the device will decrease and
the peaking increase. The buffers drive 10pF loads in
parallel with 10kΩ with just 1.5dB of peaking, and 100pF
with 6.4dB of peaking. If less peaking is desired in these
applications, a small series resistor (usually between 5Ω and
50Ω) can be placed in series with the output. However, this
will obviously reduce the gain slightly. Another method of
reducing peaking is to add a “snubber” circuit at the output.
A snubber is a shunt load consisting of a resistor in series
with a capacitor. Values of 150Ω and 10nF are typical. The
advantage of a snubber is that it does not draw any DC load
current or reduce the gain.
Power Supply Bypassing and Printed Circuit
Board Layout
As with any high frequency device, good printed circuit
board layout is necessary for optimum performance. Ground
plane construction is highly recommended, lead lengths
should be as short as possible, and the power supply pins
must be well bypassed to reduce the risk of oscillation. For
normal single supply operation, where the VS- pin is
connected to ground, a 0.1µF ceramic capacitor should be
placed from VS+ pin to ground. A 4.7µF tantalum capacitor
should then be connected from VS+ pin to ground. One
4.7µF capacitor may be used for multiple devices. This same
capacitor combination should be placed at each supply pin
to ground if split supplies are to be used.
PDMAX ΣiV[SISMAX V(OUTiV
S-)ILOADi×+×]=(EQ. 3)
EL5123, EL5223, EL5323, EL5423
14 FN7176.3
August 31, 2010
EL5123, EL5223, EL5323, EL5423
Mini SO Package Family (MSOP)
1
(N/2)
(N/2)+1
N
PLANE
SEATING
N LEADS
0.10 C
PIN #1
I.D.
E1E
b
DETAIL X
3° ±3°
GAUGE
PLANE
SEE DETAIL "X"
c
A
0.25
A2
A1 L
0.25 C A B
D
A
M
B
e
C
0.08 C A B
M
H
L1
MDP0043
MINI SO PACKAGE FAMILY
SYMBOL
MILLIMETERS
TOLERANCE NOTESMSOP8 MSOP10
A1.101.10 Max. -
A1 0.10 0.10 ±0.05 -
A2 0.86 0.86 ±0.09 -
b 0.33 0.23 +0.07/-0.08 -
c0.180.18 ±0.05 -
D 3.00 3.00 ±0.10 1, 3
E4.904.90 ±0.15 -
E1 3.00 3.00 ±0.10 2, 3
e0.650.50 Basic -
L0.550.55 ±0.15 -
L1 0.95 0.95 Basic -
N 8 10 Reference -
Rev. D 2/07
NOTES:
1. Plastic or metal protrusions of 0.15mm maximum per side are not
included.
2. Plastic interlead protrusions of 0.25mm maximum per side are
not included.
3. Dimensions “D” and “E1” are measured at Datum Plane “H”.
4. Dimensioning and tolerancing per ASME Y14.5M-1994.
15 FN7176.3
August 31, 2010
EL5123, EL5223, EL5323, EL5423
QFN (Quad Flat No-Lead) Package Family
PIN #1
I.D. MARK
2
1
3
(N-2)
(N-1)
N
(N/2)
2X
0.075
TOP VIEW
(N/2)
NE
2
3
1
PIN #1 I.D.
(N-2)
(N-1)
N
b
L
N LEADS
BOTTOM VIEW
DETAIL X
PLANE
SEATING
N LEADS
C
SEE DETAIL "X"
A1
(L)
N LEADS
& EXPOSED PAD
0.10
SIDE VIEW
0.10 BA
MC
C
B
A
E
2X
0.075 C
D
3
5
7
(E2)
(D2)
e
0.08 C
C
(c)
A
2
C
MDP0046
QFN (QUAD FLAT NO-LEAD) PACKAGE FAMILY
(COMPLIANT TO JEDEC MO-220)
SYMBOL
MILLIMETERS
TOLERANCE NOTESQFN44 QFN3 QFN32
A 0.90 0.90 0.90 0.90 ±0.10 -
A1 0.02 0.02 0.02 0.02 +0.03/-0.02 -
b 0.25 0.25 0.23 0.22 ±0.02 -
c 0.20 0.20 0.20 0.20 Reference -
D 7.00 5.00 8.00 5.00 Basic -
D2 5.10 3.80 5.80 3.60/2.48 Reference 8
E 7.00 7.00 8.00 6.00 Basic -
E2 5.10 5.80 5.80 4.60/3.40 Reference 8
e 0.50 0.50 0.80 0.50 Basic -
L 0.55 0.40 0.53 0.50 ±0.05 -
N 44 38 32 32 Reference 4
ND 11 7 8 7 Reference 6
NE 11 12 8 9 Reference 5
SYMBOL
MILLIMETERS TOLER-
ANCE NOTESQFN28 QFN2 QFN20 QFN16
A 0.90 0.90 0.90 0.90 0.90 ±0.10 -
A1 0.02 0.02 0.02 0.02 0.02 +0.03/
-0.02
-
b 0.25 0.25 0.30 0.25 0.33 ±0.02 -
c 0.20 0.20 0.20 0.20 0.20 Reference -
D 4.00 4.00 5.00 4.00 4.00 Basic -
D2 2.65 2.80 3.70 2.70 2.40 Reference -
E 5.00 5.00 5.00 4.00 4.00 Basic -
E2 3.65 3.80 3.70 2.70 2.40 Reference -
e 0.50 0.50 0.65 0.50 0.65 Basic -
L 0.40 0.40 0.40 0.40 0.60 ±0.05 -
N 28 24 20 20 16 Reference 4
ND 6 5 5 5 4 Reference 6
NE 8 7 5 5 4 Reference 5
Rev 11 2/07
NOTES:
1. Dimensioning and tolerancing per ASME Y14.5M-1994.
2. Tiebar view shown is a non-functional feature.
3. Bottom-side pin #1 I.D. is a diepad chamfer as shown.
4. N is the total number of terminals on the device.
5. NE is the number of terminals on the “E” side of the package
(or Y-direction).
6. ND is the number of terminals on the “D” side of the package
(or X-direction). ND = (N/2)-NE.
7. Inward end of terminal may be square or circular in shape with radius
(b/2) as shown.
8. If two values are listed, multiple exposed pad options are available.
Refer to device-specific datasheet.
16 FN7176.3
August 31, 2010
EL5123, EL5223, EL5323, EL5423
Thin Shrink Small Outline Plastic Packages (TSSOP)
α
INDEX
AREA E1
D
N
123
-B-
0.10(0.004) C AMBS
e
-A-
b
M
-C-
A1
A
SEATING PLANE
0.10(0.004)
c
E0.25(0.010) BM M
L
0.25
0.010
GAUGE
PLANE
A2
NOTES:
1. These package dimensions are within allowable dimensions of
JEDEC MO-153-AC, Issue E.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Dimension “D” does not include mold flash, protrusions or gate burrs.
Mold flash, protrusion and gate burrs shall not exceed 0.15mm
(0.006 inch) per side.
4. Dimension “E1” does not include interlead flash or protrusions. Inter-
lead flash and protrusions shall not exceed 0.15mm (0.006 inch) per
side.
5. The chamfer on the body is optional. If it is not present, a visual index
feature must be located within the crosshatched area.
6. “L” is the length of terminal for soldering to a substrate.
7. “N” is the number of terminal positions.
8. Terminal numbers are shown for reference only.
9. Dimension “b” does not include dambar protrusion. Allowable dambar
protrusion shall be 0.08mm (0.003 inch) total in excess of “b” dimen-
sion at maximum material condition. Minimum space between protru-
sion and adjacent lead is 0.07mm (0.0027 inch).
10. Controlling dimension: MILLIMETER. Converted inch dimensions
are not necessarily exact. (Angles in degrees)
0.05(0.002)
M20.173
20 LEAD THIN SHRINK SMALL OUTLINE PLASTIC
PACKAGE
SYMBOL
INCHES MILLIMETERS
NOTESMIN MAX MIN MAX
A - 0.047 - 1.20 -
A1 0.002 0.006 0.05 0.15 -
A2 0.031 0.051 0.80 1.05 -
b 0.0075 0.0118 0.19 0.30 9
c 0.0035 0.0079 0.09 0.20 -
D 0.252 0.260 6.40 6.60 3
E1 0.169 0.177 4.30 4.50 4
e 0.026 BSC 0.65 BSC -
E 0.246 0.256 6.25 6.50 -
L 0.0177 0.0295 0.45 0.75 6
N20 207
α0o8o0o8o-
Rev. 1 6/98
17
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see www.intersil.com
FN7176.3
August 31, 2010
EL5123, EL5223, EL5323, EL5423
Thin Shrink Small Outline Package Family (TSSOP)
N(N/2)+1
(N/2)
TOP VIEW
AD
0.20 C
2X
B A
N/2 LEAD TIPS
B
E1
E
0.25 CAB
M
1
H
PIN #1 I.D.
0.05
e
C
0.10 C
N LEADS SIDE VIEW
0.10 CABM
b
c
SEE DETAIL “X
END VIEW
DETAIL X
A2
0° - 8°
GAUGE
PLANE
0.25
L
A1
A
L1
SEATING
PLANE
MDP0044
THIN SHRINK SMALL OUTLINE PACKAGE FAMILY
SYMBOL
MILLIMETERS
TOLERANCE14 LD 16 LD 20 LD 24 LD 28 LD
A 1.20 1.20 1.20 1.20 1.20 Max
A1 0.10 0.10 0.10 0.10 0.10 ±0.05
A2 0.90 0.90 0.90 0.90 0.90 ±0.05
b 0.25 0.25 0.25 0.25 0.25 +0.05/-0.06
c 0.15 0.15 0.15 0.15 0.15 +0.05/-0.06
D 5.00 5.00 6.50 7.80 9.70 ±0.10
E 6.40 6.40 6.40 6.40 6.40 Basic
E1 4.40 4.40 4.40 4.40 4.40 ±0.10
e 0.65 0.65 0.65 0.65 0.65 Basic
L 0.60 0.60 0.60 0.60 0.60 ±0.15
L1 1.00 1.00 1.00 1.00 1.00 Reference
Rev. F 2/07
NOTES:
1. Dimension “D” does not include mold flash, protrusions or gate
burrs. Mold flash, protrusions or gate burrs shall not exceed
0.15mm per side.
2. Dimension “E1” does not include interlead flash or protrusions.
Interlead flash and protrusions shall not exceed 0.25mm per
side.
3. Dimensions “D” and “E1” are measured at dAtum Plane H.
4. Dimensioning and tolerancing per ASME Y14.5M-1994.