Preliminary data
This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to
change without notice.
May 2011 Doc ID 018845 Rev 1 1/53
53
LSM320DL
Linear sensor module
3D accelerometer sensor and 2D gyroscope sensor
Features
Analog supply voltage 2.4 V to 3.6 V
Digital supply voltage IOs, 1.8 V
Low power mode
Power-down mode
3 independent acceleration channels and 2
angular rate channels (pitch and yaw)
±2g/±4g/±8/±16g dynamically selectable full-
scale
±250/±500/±2000 dps dynamically selectable
full-scale
Embedded temperature sensor
SPI/I2C serial interface (16-bit data output)
Programmable interrupt generator for free-fall
and motion detection
ECOPACK® RoHS and “Green” compliant
Applications
GPS navigation systems
Impact recognition and logging
Gaming and virtual reality input devices
Motion activated functions
Intelligent power saving for handheld devices
Vibration monitoring and compensation
Free-fall detection
6D orientation detection
Description
The LSM320DL is a system-in-package featuring
a 3D digital accelerometer and a 2D digital
gyroscope.
The ST modules family uses a robust and mature
manufacturing process already used for the
production of micromachined accelerometers.
The various sensing elements are manufactured
using specialized micromachining processes,
while the IC interfaces are realized using a CMOS
technology that allows to design a dedicated
circuit which is trimmed to better match the
sensing element characteristics.
LSM320DL has a dynamic user selectable full-
scale acceleration range of ±2g/±4g/±8/±16g and
angular rate of ±250/±500/±2000 deg/sec.
The accelerometer and gyroscope sensors can
be either activated or put in low power/power-
down mode separately for application optimized
power saving.
The LSM320DL is available in a plastic land grid
array (LGA) package.
Several years ago ST successfully pioneered the
use of this package for accelerometers. Today, ST
has the widest manufacturing capability and
strongest expertise in the world for production of
sensors in a plastic LGA package.
Table 1. Device summary
Order codes Temperature
range [°C] Package Packing
LSM320DL
-40 to +85 LGA 28L
Tray
LSM320DLTR Tape and
reel
LGA 28L 7.5 x 4.4 x 1.1 mm
www.st.com
Contents LSM320DL
2/53 Doc ID 018845 Rev 1
Contents
1 Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2 Module specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1 Mechanical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Communication interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.1 SPI - serial peripheral interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.2 I2C - inter IC control interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.6.1 Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.6.2 Zero level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3 Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1 Factory calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4 Application hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.1 External capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Soldering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5 Digital interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.1 I2C serial interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.1.1 I2C operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2 SPI bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2.1 SPI read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.2.2 SPI write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.2.3 SPI read in 3-wire mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6 Register mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
LSM320DL Contents
Doc ID 018845 Rev 1 3/53
7 Registers description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.1 CTRL_REG1_A (20h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.2 CTRL_REG2_A (21h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.3 CTRL_REG3_A (22h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.4 CTRL_REG4_A (23h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.5 CTRL_REG5_A (24h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.6 CTRL_REG6_A (25h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.7 REFERENCE/DATACAPTURE_A (26h) . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.8 STATUS_REG_A (27h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.9 OUT_X_L_A (28h), OUT_X_H_A (29h) . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.10 OUT_Y_L_A (2Ah), OUT_Y_H_A (2Bh) . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.11 OUT_Z_L _A(2Ch), OUT_Z_H_A (2Dh) . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.12 FIFO_CTRL_REG_A (2Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.13 FIFO_SRC_REG_A (2Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.14 INT1_CFG_A (30h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.15 INT1_SRC_A (31h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.16 INT1_THS_A (32h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.17 INT1_DURATION_A (33h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.18 CLICK_CFG _A (38h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.19 CLICK_SRC_A (39h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.20 CLICK_THS_A (3Ah) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7.21 TIME_LIMIT_A (3Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7.22 TIME_LATENCY_A (3Ch) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7.23 TIME WINDOW_A (3Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.24 CTRL_REG1_G (20h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.25 CTRL_REG2_G (21h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.26 CTRL_REG3_G (22h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.27 CTRL_REG4_G (23h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.28 CTRL_REG5_G (24h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.29 REFERENCE/DATACAPTURE_G (25h) . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.30 OUT_TEMP_G (26h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.31 STATUS_REG_G (27h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.32 OUT_X_L_G (28h), OUT_X_H_G (29h) . . . . . . . . . . . . . . . . . . . . . . . . . 45
Contents LSM320DL
4/53 Doc ID 018845 Rev 1
7.33 OUT_Z_L_G (2Ch), OUT_Z_H_G (2Dh) . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.34 FIFO_CTRL_REG_G (2Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.35 FIFO_SRC_REG_G (2Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.36 INT1_CFG_G (30h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.37 INT1_SRC_G (31h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.38 INT1_THS_XH_G (32h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.39 INT1_THS_XL_G (33h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.40 INT1_THS_ZH_G (36h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.41 INT1_THS_ZL_G (37h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
7.42 INT1_DURATION_G (38h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
8 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
LSM320DL List of tables
Doc ID 018845 Rev 1 5/53
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 3. Mechanical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 4. Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Table 5. Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 6. SPI slave timing values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 7. I2C slave timing values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 8. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 9. Part list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 10. Serial interface pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 11. Serial interface pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 12. Transfer when master is writing one byte to slave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 13. Transfer when master is writing multiple bytes to slave:. . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 14. Transfer when master is receiving (reading) one byte of data from slave: . . . . . . . . . . . . . 23
Table 15. Transfer when master is receiving (reading) multiple bytes of data from slave . . . . . . . . . 23
Table 16. Linear acceleration SAD+Read/Write patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 17. Angular rate SAD+Read/Write patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 18. Register address map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 19. CTRL_REG1_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 20. CTRL_REG1_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 21. Data rate configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 22. CTRL_REG2_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 23. CTRL_REG2_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 24. High pass filter mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 25. CTRL_REG3_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 26. CTRL_REG3_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 27. CTRL_REG4_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 28. CTRL_REG4_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 29. CTRL_REG5_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 30. CTRL_REG5_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 31. CTRL_REG6_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 32. CTRL_REG6 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 33. REFERENCE_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 34. REFERENCE register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 35. STATUS_REG_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 36. STATUS_REG_A register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 37. FIFO_CTRL_REG_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 38. FIFO_CTRL_REG_A register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 39. FIFO mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 40. FIFO_SRC_REG_A register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 41. INT1_CFG_REG_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 42. INT1_CFG_REG_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 43. Interrupt mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 44. INT1_SRC_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 45. INT1_SRC_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 46. INT1_THS_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 47. INT1_THS_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 48. INT1_DURATION_Aregister. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
List of tables LSM320DL
6/53 Doc ID 018845 Rev 1
Table 49. INT1_DURATION_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 50. CLICK_CFG_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 51. CLICK_CFG_A description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 52. CLICK_SRC_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 53. CLICK_SRC_A description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 54. CLICK_THS_A register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 55. CLICK_SRC_A description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 56. TIME_LIMIT_A register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 57. TIME_LIMIT_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 58. TIME_LATENCY_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 59. TIME_LATENCY_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 60. TIME_WINDOW_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 61. TIME_WINDOW_A description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 62. CTRL_REG1_G register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 63. CTRL_REG1_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 64. DR and BW configuration setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 65. Power mode selection configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 66. CTRL_REG2_G register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 67. CTRL_REG2_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 68. High pass filter mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 69. High pass filter cut-off frequency configuration [Hz] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 70. CTRL_REG1_G register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 71. CTRL_REG3_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 72. CTRL_REG4_G register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 73. CTRL_REG4_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 74. CTRL_REG5_G register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 75. CTRL_REG5_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 76. Out_Sel configuration setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 77. INT_SEL configuration setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 78. REFERENCE_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 79. REFERENCE_G register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 80. OUT_TEMP_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 81. OUT_TEMP_G register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 82. STATUS_REG_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 83. STATUS_REG_G description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 84. REFERENCE_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 85. REFERENCE_G register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 86. FIFO mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 87. FIFO_SRC_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 88. FIFO_SRC_G register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 89. INT1_CFG_G register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 90. INT1_CFG_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 91. INT1_SRC_G register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 92. INT1_SRC_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 93. INT1_THS_XH_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 94. INT1_THS_XH_G description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 95. INT1_THS_XL_G register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 96. INT1_THS_XL_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 97. INT1_THS_ZH_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 98. INT1_THS_ZH_G description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 99. INT1_THS_ZL_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
LSM320DL List of tables
Doc ID 018845 Rev 1 7/53
Table 100. INT1_THS_ZL_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 101. INT1_DURATION_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 102. INT1_DURATION_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 103. LGA 28L 7.5 x 4.4 x 1.1 mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 104. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
List of figures LSM320DL
8/53 Doc ID 018845 Rev 1
List of figures
Figure 1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 2. Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 3. SPI slave timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 4. I2C slave timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 5. LSM320DL electrical connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 6. Read and write protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 7. SPI read protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 8. Multiple bytes SPI read protocol (2 bytes example) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 9. SPI write protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 10. Multiple bytes SPI write protocol (2 bytes example) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 11. SPI read protocol in 3-wire mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 12. INT1_Sel and Out_Sel configuration block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Figure 13. Wait disabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Figure 14. Wait enabled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Figure 15. LGA 28L 7.5 x 4.4 x 1.1 package drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
LSM320DL Block diagram and pin description
Doc ID 018845 Rev 1 9/53
1 Block diagram and pin description
1.1 Block diagram
Figure 1. Block diagram
Y+
Z+
Y-
Z-
X+
X-
MUX
CS_A/G
SDA/SDI_A/G
SDO_A/G
I (a)
+
-
CHARGE
AMPLIFIER
Sensing Block
Sensing Interface
A/D Control
Logicconverter
I2C/SPI
INT1_A
INT2_A
I ()
Drive+
Drive-
Feedback+
Feedback-
DEMODULATOR
VOLTAGE
AUTOMATIC
GAIN
CONTROL
LOW
-
PASS
FILTER
GAIN
AMPLIFIER
ANALOG
CONDITIONING
CONTROL LOGIC
&
INTERRUPT GEN.
CLOCK
TRIMMING
CIRCUITS
REFERENCE
SET/RESET
CIRCUITSGENERATOR
PHASE
+
-
CHARGE
AMPLIFIER
X+
Z+
X-
Z-
MUX
INT_G
DRDY_G
SCL_A/G
AM09273V1
Block diagram and pin description LSM320DL
10/53 Doc ID 018845 Rev 1
1.2 Pin description
Figure 2. Pin connection
Y
1
X
Z
DIRECTION OF
DETECTABLE
ACCELERATIONS
Z
DIRECTION OF
DETECTABLE
ANGULAR RATE
1
+
X
+
z
X
FILTVDD
FILTIN Y
(BOTTOM VIEW)
24
1
SDO_A
SDA/SDI_G
INT1_A
SDA/SDI_A
LSM320DL
Res
28
CS_G
DRDY_G
10
15
11
14
25
INT2_A
SDO_G
Res
VddIO_A
VCONT
Res
Res
Vdd
CS_A
Res
Res
INT_G
Vdd
Res
Res
SCL_A
GND Res
SCL_G
Vdd_IO_G
Res
AM09274V1
Table 2. Pin description
Pin# Name Function
1SDA/SDI_A
Accelerometer:
I2C serial data (SDA)
SPI serial data input (SDI)
3-wire interface serial data output (SDO)
2 Res Reserved connect to GND
3SDO_A
Accelerometer:
SPI serial data output (SDO)
I2C least significant bit of the device address (SA0)
4SCL_A
Accelerometer:
I2C serial clock (SCL)
SPI serial port clock (SPC)
5 DRDY_G Gyroscope data ready
6 INT1_A Accelerometer interrupt signal
7SDO_G
Gyroscope:
SPI serial data output (SDO)
I2C least significant bit of the device address (SA0)
8 INT2_A Accelerometer interrupt signal
9SDA/SDI_G
Gyroscope:
I2C serial data (SDA)
SPI serial data input (SDI)
3-wire interface serial data output (SDO)
LSM320DL Block diagram and pin description
Doc ID 018845 Rev 1 11/53
10 CS_G
Gyroscope:
SPI enable
I2C/SPI mode selection (1: SPI idle mode / I2C communication
enabled; 0: SPI communication mode / I2C disabled)
11 Res Reserved connect to GND
12 VddIO_G Gyroscope power supply for IO pins
13 SCL_G
Gyroscope:
I2C serial clock (SCL)
SPI serial port clock (SPC)
14 Res Reserved connect to GND
15 Vdd Power supply
16 Res Reserved connect to GND
17 CS_A
Accelerometer:
SPI enable
I2C/SPI mode selection (1: SPI idle mode / I2C communication
enabled; 0: SPI communication mode / I2C disabled)
18 Res Reserved connect to GND
19 Res Reserved connect to GND
20 Res Reserved connect to GND
21 INT_G Gyroscope interrupt signal
22 Vdd Power supply
23 Res Reserved connect to GND
24 Res Reserved connect to GND
25 GND 0 V power supply
26 VCONT PLL filter connection
27 Res Reserved connect to GND
28 VddIO_A Accelerometer power supply for IO pins
Table 2. Pin description (continued)
Pin# Name Function
Module specifications LSM320DL
12/53 Doc ID 018845 Rev 1
2 Module specifications
2.1 Mechanical characteristics
@ Vdd = 3V, T = 25 °C unless otherwise noted(a).
a. The product is factory calibrated at 3 V. The operational power supply range is from 2.4 V to 3.6 V.
Table 3. Mechanical characteristics
Symbol Parameter Test conditions Min. Typ.(1) Max. Unit
LA_FS Linear acceleration
measurement range(2)
FS bit set to 00 ±2.0
g
FS bit set to 01 ±4.0
FS bit set to 10 ±8.0
FS bit set to 11 ±16.0
G_FS Angular rate
measurement range(2)
FS bit set to 00 ±250
dpsFS bit set to 01 ±500
FS bit set to 10 ±2000
LA_So Linear acceleration
sensitivity
FS bit set to 00 1
mg/digit
FS bit set to 01 2
FS bit set to 10 4
FS bit set to 11 12
G_So Angular rate sensitivity
FS bit set to 00 8.75
mdps/
digit
FS bit set to 01 17.5
FS bit set to 10 70
LA_So
Linear acceleration
sensitivity change vs.
temperature
FS bit set to 00 ±0.05 %/°C
G_So Angular rate sensitivity
change vs. temperature From -40 to +85 °C ±2 %
LA_TyOff Typical Zero-g level offset
accuracy(3) FS bit set to 00 ±60 mg
G_TyOff Typical zero-rate level(4) FS bit set to 00 10 LSb
LA_TCOff Zero-g level change vs.
temperature Max. delta from 25 °C ±0.5 mg/°C
G_TCOff Zero-rate level change vs.
temperature
FS bit set to 00
from -40 to +85 °C ±0.03 dps/°C
An Acceleration noise density
FS bit set to 00
Normal mode, ODR bit set to
1001
220 µg/
Rn Rate noise density FS bit set to 00 0.03 °/s/
Top Operating temperature range -40 +85 °C
H
z
H
z
LSM320DL Module specifications
Doc ID 018845 Rev 1 13/53
2.2 Electrical characteristics
@ Vdd = 3 V, T = 25 °C unless otherwise noted.
1. Typical specifications are not guaranteed.
2. Verified by wafer level test and measurement of initial offset and sensitivity.
3. Typical Zero-g level offset value after MSL3 preconditioning.
4. Offset can be eliminated by enabling the built-in high pass filter.
Table 4. Electrical characteristics
Symbol Parameter Test conditions Min. Typ.(1) Max. Unit
Vdd Supply voltage 2.4 3.6 V
Vdd_IO Power supply for I/O 1.71 Vdd+0.1 V
LA_Idd LA current consumption in
normal mode
ODR = 50Hz 11 µA
ODR = 1Hz 2
LA_IddLowP LA current consumption in low
power mode ODR = 50Hz 6 µA
LA_IddPdn LA current consumption in
power-down mode T = 25°C 0.5 µA
G_Idd AR current consumption in
normal mode 6mA
G_IddSL Supply current
in sleep mode(2) 1.5 mA
G_IddPdn AR current consumption in
power-down mode T = 25 °C 5 µA
VIH Digital high level input voltage 0.8*Vdd_IO V
VIL Digital low level input voltage 0.2*Vdd_IO V
VOH High level output voltage 0.9*Vdd_IO V
VOL Low level output voltage 0.1*Vdd_IO V
Top Operating temperature range -40 +85 °C
1. Typical specifications are not guaranteed.
2. Sleep mode introduces a faster turn-on time compared to power-down mode.
Module specifications LSM320DL
14/53 Doc ID 018845 Rev 1
2.3 Temperature sensor characteristics
@ Vdd =3.0 V, T= 25 °C, unless otherwise noted.(b)
b. The product is factory calibrated at 3.0 V.
Table 5. Temperature sensor characteristics
Symbol Parameter Test condition Min. Typ.(1)
1. Typical specifications are not guaranteed.
Max. Unit
TSDr
Temperature sensor
output change vs.
temperature
-
-1 °C/digit
TODR Temperature refresh
rate 1Hz
To p Operating
temperature range -40 +85 °C
LSM320DL Module specifications
Doc ID 018845 Rev 1 15/53
2.4 Communication interface characteristics
2.4.1 SPI - serial peripheral interface
Subject to general operating conditions for Vdd and Top.
Figure 3. SPI slave timing diagram (c)
3. When no communication is on-going, data on CS, SPC, SDI, and SDO are driven by internal pull-up resistors.
Table 6. SPI slave timing values
Symbol Parameter
Value (1)
Unit
Min. Max.
tc(SPC) SPI clock cycle 100 ns
fc(SPC) SPI clock frequency 10 MHz
tsu(CS) CS setup time 6
ns
th(CS) CS hold time 8
tsu(SI) SDI input setup time 5
th(SI) SDI input hold time 15
tv(SO) SDO valid output time 50
th(SO) SDO output hold time 9
tdis(SO) SDO output disable time 50
1. Values are guaranteed at 10 MHz clock frequency for SPI with both 4 and 3 wires, based on characterization results, not
tested in production.
c. Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO, for both input and output ports.
SPC
CS
SDI
SDO
t
su(CS)
t
v(SO)
t
h(SO)
t
h(SI)
t
su(SI)
t
h(CS)
t
dis(SO)
t
c(SPC)
MSB IN
MSB OUT LSB OUT
LSB IN
(3)
(3)
(3)
(3)
(3)
(3)
(3)
(3)
Module specifications LSM320DL
16/53 Doc ID 018845 Rev 1
2.4.2 I2C - inter IC control interface
Subject to general operating conditions for Vdd and Top.
Figure 4. I2C slave timing diagram (d)
Table 7. I2C slave timing values
Symbol Parameter
I2C standard mode(1) I2C fast mode (1)
Unit
Min. Max. Min. Max.
f(SCL) SCL clock frequency 0 100 0 400 KHz
tw(SCLL) SCL clock low time 4.7 1.3
µs
tw(SCLH) SCL clock high time 4.0 0.6
tsu(SDA) SDA setup time 250 100 ns
th(SDA) SDA data hold time 0,01 3.45 0 0.9 µs
tr(SDA) tr(SCL) SDA and SCL rise time 1000 20 + 0.1Cb (2) 300
ns
tf(SDA) tf(SCL) SDA and SCL fall time 300 20 + 0.1Cb (2) 300
th(ST) START condition hold time 4 0.6
µs
tsu(SR) Repeated START condition
setup time 4.7 0.6
tsu(SP) STOP condition setup time 4 0.6
tw(SP:SR) Bus free time between STOP
and START condition 4.7 1.3
1. Data based on standard I2C protocol requirement, not tested in production.
2. Cb = total capacitance of one bus line, in pF.
d. Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO, for both ports.
SDA
SCL
t
f(SDA)
t
su(SP)
t
w(SCLL)
t
su(SDA)
t
r(SDA)
t
su(SR)
t
h(ST)
t
w(SCLH)
t
h(SDA)
t
r(SCL)
t
f(SCL)
t
w(SP:SR)
START
REPEATED
START
STOP
START
AM09238V1
LSM320DL Module specifications
Doc ID 018845 Rev 1 17/53
2.5 Absolute maximum ratings
Stresses above those listed as “absolute maximum ratings” may cause permanent damage
to the device. This is a stress rating only and functional operation of the device under these
conditions is not implied. Exposure to maximum rating conditions for extended periods may
affect device reliability.
Table 8. Absolute maximum ratings
Symbol Ratings Maximum value Unit
Vdd Supply voltage -0.3 to 4.8 V
Vdd_IO I/O pins supply voltage -0.3 to 4.8 V
Vin Input voltage on any control pin (SCL, SDA/SDI) -0.3 to Vdd_IO +0.3 V
APOW Acceleration (any axis, powered, Vdd = 3 V) 3000 g for 0.5 ms
10000 g for 0.1 ms
AUNP Acceleration (any axis, unpowered) 3000 g for 0.5 ms
10000 g for 0.1 ms
TOP Operating temperature range -40 to +85 °C
TSTG Storage temperature range -40 to +125 °C
ESD Electrostatic discharge protection 2 (HBM) kV
This is a mechanical shock sensitive device, improper handling can cause permanent
damage to the part
This is an ESD sensitive device, improper handling can cause permanent damage to
the part
Module specifications LSM320DL
18/53 Doc ID 018845 Rev 1
2.6 Terminology
2.6.1 Sensitivity
Linear acceleration sensitivity can be determined, for example, by applying 1 g acceleration
to the device. As the sensor can measure DC accelerations this can be done easily by
pointing the axis of interest towards the center of the Earth, noting the output value, rotating
the sensor by 180 degrees (pointing to the sky) and noting the output value again. By doing
so, ±1 g acceleration is applied to the sensor. Subtracting the larger output value from the
smaller one, and dividing the result by 2, leads to the actual sensitivity of the sensor. This
value changes very little over temperature and also very little over time. The sensitivity
tolerance describes the range of sensitivities of a large population of sensors.
Angular rate sensitivity describes the angular rate gain of the sensor and can be determined
by applying a defined angular velocity to it. This value changes very little over temperature
and also very little over time.
2.6.2 Zero level
Linear acceleration Zero-g level offset (TyOff) describes the deviation of an actual output
signal from the ideal output signal if no acceleration is present. A sensor in a steady-state on
a horizontal surface measures 0 g in the X axis and 0 g in the Y axis, whereas the Z axis
measures 1 g. The output is ideally in the middle of the dynamic range of the sensor
(content of OUT registers 00h, data expressed as 2’s complement number). A deviation
from the ideal value in this case is called Zero-g offset. Offset is, to some extent, a result of
stress to the MEMS sensor and therefore the offset can slightly change after mounting the
sensor onto a printed circuit board or exposing it to extensive mechanical stress. The offset
changes little over temperature, see “Zero-g level change vs. temperature”. The Zero-g level
tolerance (TyOff) describes the standard deviation of the range of Zero-g levels of a
population of sensors.
Angular rate zero-rate level describes the actual output value if there is no angular rate
present. The zero-rate level of precise MEMS sensors is, to some extent, a result of stress
to the sensor and therefore zero-rate level can slightly change after mounting the sensor
onto a printed circuit board or after exposing it to extensive mechanical stress. This value
changes very little over temperature and also very little over time.
LSM320DL Functionality
Doc ID 018845 Rev 1 19/53
3 Functionality
The LSM320DL is a system-in-package featuring a 3D digital accelerometer and a 2D digital
gyroscope.
The complete device includes specific sensing elements and two IC interfaces able to
measure both the acceleration and angular rate applied to the module and to provide a
signal to the external world through an SPI/I2C serial interface.
The various sensing elements are manufactured using specialized micromachining
processes, while the IC interfaces are realized using a CMOS technology that allows to
design a dedicated circuit which is trimmed to better match the sensing element
characteristics.
The LSM320DL may also be configured to generate an inertial wake-up and free-fall
interrupt signal according to a programmed acceleration event along the enabled axes.
3.1 Factory calibration
The IC interface is factory calibrated for sensitivity and zero level. The trimming values are
stored inside the device by a non-volatile memory. Any time the device is turned on, the
trimming parameters are downloaded into the registers to be used during the normal
operation. This allows the user to use the device without further calibration.
Application hints LSM320DL
20/53 Doc ID 018845 Rev 1
4 Application hints
Figure 5. LSM320DL electrical connection
4.1 External capacitors
The device core is supplied through Vdd line. Power supply decoupling capacitors (C4=100
nF ceramic, C3=10 µF Al) should be placed as near as possible to the supply pin of the
device (common design practice).
All the voltage and ground supplies must be present at the same time to have proper
behavior of the IC (refer to Figure 5).
The functionality of the device and the measured acceleration/angular rate data is
selectable and accessible through the SPI/I2C interface.
Table 9. Part list
Component Typical value
C1 10 nF
C2 470 nF
C3 10 µF
C4 100 nF
C5 100 nF
R2 10 kOhm
Digital signal from/to signal controller.Signals levels are defined by proper selection of Vdd
Y
1
X
Z
DIRECTION OF
DETECTABLE
ACCELERATIONS
X
Z
DIRECTION OF
DETECTABLE
ANGULAR RATE
1
+
X
+
z
Vdd_IO
GND
Vdd
C4
C3
FILTVDD
FILTIN Y
(TOP VIEW)
24
1
SDO_A
SDA/SDI_G
INT1_A
SDA/SDI_A
LSM320DL
Res
28
CS_G
DRDY_G
10
15
11
14 25
INT2_A
SDO_G
Res
VddIO_A
VCONT
Res
Vdd
CS_A
Res
INT_G
Vdd
Res
SCL_A
GND
Res
SCL_G
Vdd_IO_G
Res
Vdd_IO
C1
R2C2
GND
C5
GND
Reserved pins have to be connected to GND
Res
Res
Res
AM09275V1
LSM320DL Application hints
Doc ID 018845 Rev 1 21/53
The functions, the threshold, and the timing of the two interrupt pins for each sensor can be
completely programmed by the user though the SPI/I2C interface.
4.2 Soldering information
The LGA package is compliant with the ECOPACK®, RoHS and “Green” standard.
It is qualified for soldering heat resistance according to JEDEC J-STD-020D.
Leave “Pin 1 Indicator” unconnected during soldering.
Land pattern and soldering recommendations are available at www.st.com/mems.
Digital interfaces LSM320DL
22/53 Doc ID 018845 Rev 1
5 Digital interfaces
The registers embedded inside the LSM320DL may be accessed through both the I2C and
SPI serial interfaces. The latter may be SW configured to operate either in 3-wire or 4-wire
interface mode.
To select/exploit the I2C interface, CS line must be tied high (i.e. connected to Vdd_IO).
5.1 I2C serial interface
The LSM320DL I2C is a bus slave. The I2C is employed to write the data into the registers
whose content can also be read back.
The relevant I2C terminology is given in the table below.
There are two signals associated with the I2C bus: the serial clock line (SCL) and the serial
data line (SDA). The latter is a bidirectional line used for sending and receiving the data
to/from the interface.
Table 10. Serial interface pin description
Pin name Pin description
CS_A Linear acceleration SPI enable
Linear acceleration I2C/SPI mode selection (1: I2C mode; 0: SPI enabled)
CS_G Angular Rate SPI enable
Angular Rate I2C/SPI mode selection (1: I2C mode; 0: SPI enabled)
SCL_A
SCL_G
I2C serial clock (SCL)
SPI serial port clock (SPC)
SDA/SDI_A
SDA/SDI_G
I2C serial data (SDA)
SPI serial data input (SDI)
3-wire interface serial data output (SDO)
SDO_A
SDO_G
I2C less significant bit of the device address (SA0)
SPI serial data output (SDO)
Table 11. Serial interface pin description
Term Description
Transmitter The device which sends data to the bus
Receiver The device which receives data from the bus
Master The device which initiates a transfer, generates clock signals and terminates a
transfer
Slave The device addressed by the master
LSM320DL Digital interfaces
Doc ID 018845 Rev 1 23/53
5.1.1 I2C operation
The transaction on the bus is started through a START (ST) signal. A START condition is
defined as a HIGH to LOW transition on the data line while the SCL line is held HIGH. After
this has been transmitted by the master, the bus is considered busy. The next byte of data
transmitted after the start condition contains the address of the slave in the first 7 bits and
the eighth bit tells whether the master is receiving data from the slave or transmitting data to
the slave. When an address is sent, each device in the system compares the first seven bits
after a start condition with its address. If they match, the device considers itself addressed
by the master.
Data transfer with acknowledge is mandatory. The transmitter must release the SDA line
during the acknowledge pulse. The receiver must then pull the data line LOW so that it
remains stable low during the HIGH period of the acknowledge clock pulse. A receiver which
has been addressed is obliged to generate an acknowledge after each byte of data
received.
The I2C embedded inside the LSM320DL behaves as a slave device and the following
protocol must be adhered to. After the start condition (ST), a slave address is sent, once a
slave acknowledge (SAK) has been returned, an 8-bit sub-address (SUB) is transmitted: the
7 LSb represent the actual register address while the MSB enables address auto increment.
If the MSb of the SUB field is ‘1’, the SUB (register address) is automatically increased to
allow multiple data read/write.
Data are transmitted in byte format (DATA). Each data transfer contains 8 bits. The number
of bytes transferred per transfer is unlimited. Data is transferred with the most significant bit
(MSb) first. If a receiver can’t receive another complete byte of data until it has performed
some other function, it can hold the clock line, SCL LOW, to force the transmitter into a wait
Table 12. Transfer when master is writing one byte to slave
Master ST SAD + W SUB DATA SP
Slave SAK SAK SAK
Table 13. Transfer when master is writing multiple bytes to slave:
Master ST SAD + W SUB DATA DATA SP
Slave SAK SAK SAK SAK
Table 14. Transfer when master is receiving (reading) one byte of data from slave:
Master ST SAD + W SUB SR SAD + R NMAK SP
Slave SAK SAK SAK DATA
Table 15. Transfer when master is receiving (reading) multiple bytes of data from slave
Master ST SAD+W SUB SR SAD+R MAK MAK NMAK SP
Slave SAK SAK SAK DATA DATA DATA
Digital interfaces LSM320DL
24/53 Doc ID 018845 Rev 1
state. Data transfer only continues when the receiver is ready for another byte and releases
the data line. If a slave receiver doesn’t acknowledge the slave address (i.e. it is not able to
receive because it is performing some real time function), the data line must be left HIGH by
the slave. The master can then abort the transfer. A LOW to HIGH transition on the SDA line
while the SCL line is HIGH is defined as a STOP condition. Each data transfer must be
terminated by the generation of a STOP (SP) condition.
In order to read multiple bytes, it is necessary to assert the most significant bit of the sub-
address field. In other words, SUB(7) must be equal to 1 while SUB(6-0) represents the
address of the first register to be read.
In the presented communication format, MAK is Master Acknowledge, and NMAK is No
Master Acknowledge.
Default address:
The SDO/SA0 pad can be used to modify less significant bits of the device address. If the
SA0 pad is connected to voltage supply, LSb is ‘1’ (ex. address 0011001b), or else, if the
SA0 pad is connected to ground, the LSb value is ‘0’ (ex address 0011000b).
The slave address is completed with a Read/Write bit. If the bit is ‘1’ (Read), a repeated
START (SR) condition must be issued after the two sub-address bytes; if the bit is ‘0’ (Write)
the master transmits to the slave with direction unchanged. Table 16 and Table 17 explain
how the SAD+Read/Write bit pattern is composed, listing all the possible configurations.
Linear acceleration address: the default (factory) 7-bit slave address is
001100xb.
Angular rate sensor: the default (factory) 7-bit slave address is 110100xb.
Table 16. Linear acceleration SAD+Read/Write patterns
Command SAD[6:1] SAD[0] = SA0 R/W SAD+R/W
Read 001100 0 1 00110001 (31h)
Write 001100 0 0 00110000 (30h)
Read 001100 1 1 00110011 (33h)
Write 001100 1 0 00110010 (32h)
Table 17. Angular rate SAD+Read/Write patterns
Command SAD[6:1] SAD[0] = SA0 R/W SAD+R/W
Read 110100 0 1 11010001 (F1h)
Write 110100 0 0 11010000 (F0h)
Read 110100 1 1 11010011 (F3h)
Write 110100 1 0 11010010 (F2h)
LSM320DL Digital interfaces
Doc ID 018845 Rev 1 25/53
5.2 SPI bus interface
The LSM320DL SPI is a bus slave. The SPI allows to write and read the registers of the
device.
The serial interface interacts with the outside world with 4 wires: CS, SPC, SDI, and
SDO.(SPC, SDI, SD0 are common)
Figure 6. Read and write protocol
CS is the serial port enable and it is controlled by the SPI master. It goes low at the start of
the transmission and returns to high at the end. SPC is the serial port clock and it is
controlled by the SPI master. It is stopped high when CS is high (no transmission). SDI and
SDO are respectively the serial port data input and output. Those lines are driven at the
falling edge of SPC and should be captured at the rising edge of SPC.
Both the read register and write register commands are completed in 16 clock pulses or in
multiples of 8 in case of multiple bytes read/write. Bit duration is the time between two falling
edges of SPC. The first bit (bit 0) starts at the first falling edge of SPC after the falling edge
of CS while the last bit (bit 15, bit 23, ...) starts at the last falling edge of SPC just before the
rising edge of CS.
bit 0: RW bit. When 0, the data DI(7:0) is written into the device. When 1, the data DO(7:0)
from the device is read. In the latter case, the chip drives SDO at the start of bit 8.
bit 1: MS bit. When 0, the address remains unchanged in multiple read/write commands.
When 1, the address is auto incremented in multiple read/write commands.
bit 2-7: address AD(5:0). This is the address field of the indexed register.
bit 8-15: data DI(7:0) (write mode). This is the data that is written into the device (MSb first).
bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first).
In multiple read/write commands, further blocks of 8 clock periods are added. When the MS
bit is ‘0’, the address used to read/write data remains the same for every block. When the
MS bit is ‘1’, the address used to read/write data is increased at every block.
The function and the behavior of SDI and SDO remain unchanged.
CS
SPC
SDI
SDO
RW
AD5 AD4 AD3 AD2 AD1 AD0
DI7DI6DI5DI4DI3DI2DI1DI0
DO7DO6DO5DO4DO3DO2DO1DO0
MS
Digital interfaces LSM320DL
26/53 Doc ID 018845 Rev 1
5.2.1 SPI read
Figure 7. SPI read protocol
The SPI Read command is performed with 16 clock pulses. Multiple byte read command is
performed adding blocks of 8 clock pulses at the previous one.
bit 0: READ bit. The value is 1.
bit 1: MS bit. When 0, do not increment address, when 1, increment address in multiple
reading.
bit 2-7: address AD(5:0). This is the address field of the indexed register.
bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first).
bit 16-... : data DO(...-8). Further data in multiple byte reading.
Figure 8. Multiple bytes SPI read protocol (2 bytes example)
5.2.2 SPI write
Figure 9. SPI write protocol
The SPI write command is performed with 16 clock pulses. Multiple byte write command is
performed adding blocks of 8 clock pulses at the previous one.
CS
SPC
SDI
SDO
RW
DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0
AD5 AD4 AD3 AD2 AD1 AD0
MS
CS
SPC
SDI
SDO
RW
DO7DO6DO5DO4DO3DO2DO1DO0
AD5 AD4 AD3 AD2 AD1 AD0
DO15 DO14 DO13 DO12 DO11 DO10 DO9 DO8
MS
CS
SPC
SDI
RW DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0
AD5 AD4 AD3 AD2 AD1 AD0MS
LSM320DL Digital interfaces
Doc ID 018845 Rev 1 27/53
bit 0: WRITE bit. The value is 0.
bit 1: MS bit. When 0, do not increment address, when 1, increment address in multiple
writing.
bit 2 -7: address AD(5:0). This is the address field of the indexed register.
bit 8-15: data DI(7:0) (write mode). This is the data that is written inside the device (MSb
first).
bit 16-... : data DI(...-8). Further data in multiple byte writing.
Figure 10. Multiple bytes SPI write protocol (2 bytes example)
5.2.3 SPI read in 3-wire mode
3-wire mode is entered by setting to ‘1’ bit SIM (SPI serial interface mode selection) in
CTRL_REG4.
Figure 11. SPI read protocol in 3-wire mode
The SPI read command is performed with 16 clock pulses:
bit 0: READ bit. The value is 1.
bit 1: MS bit. When 0, do not increment address, when 1, increment address in multiple
reading.
bit 2-7: address AD(5:0). This is the address field of the indexed register.
bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first).
Multiple read command is also available in 3-wire mode.
CS
SPC
SDI
RW
AD5 AD4 AD3 AD2 AD1 AD0
DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0 DI15 DI14 DI13 DI12 DI11 DI10 DI9 DI8
MS
CS
SPC
SDI/O
RW DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0
AD5 AD4 AD3 AD2 AD1 AD0
MS
Register mapping LSM320DL
28/53 Doc ID 018845 Rev 1
6 Register mapping
Table 18 below provides a listing of the 8-bit registers embedded in the device and the
related addresses:
Table 18. Register address map
Name Slave
Address Type
Register address
Default Comment
Hex Binary
Reserved (do not modify) 001100xb 00 - 1F Reserved
CTRL_REG1_A 001100xb rw 20 010 0000 00000111
CTRL_REG2_A 001100xb rw 21 010 0001 00000000
CTRL_REG3_A 001100xb rw 22 010 0010 00000000
CTRL_REG4_A 001100xb rw 23 010 0011 00000000
CTRL_REG5_A 001100xb rw 24 010 0100 00000000
CTRL_REG6_A 001100xb rw 25 010 0101 00000000
REFERENCE_A 001100xb rw 26 010 0110 00000000
STATUS_REG_A 001100xb r 27 010 0111 00000000
OUT_X_L_A 001100xb r 28 010 1000 output
OUT_X_H_A 001100xb r 29 010 1001 output
OUT_Y_L_A 001100xb r 2A 010 1010 output
OUT_Y_H_A 001100xb r 2B 010 1011 output
OUT_Z_L_A 001100xb r 2C 010 1100 output
OUT_Z_H_A 001100xb r 2D 010 1101 output
FIFO_CTRL_REG 001100xb rw 2E 010 1110 00000000
FIFO_SRC_REG 001100xb r 2F 010 1111
INT1_CFG_A 001100xb rw 30 011 0000 00000000
INT1_SOURCE_A 001100xb r 31 011 0001 00000000
INT1_THS_A 001100xb rw 32 011 0010 00000000
INT1_DURATION_A 001100xb rw 33 011 0011 00000000
INT2_CFG_A 001100xb rw 34 011 0100 00000000
INT2_SOURCE_A 001100xb r 35 011 0101 00000000
INT2_THS_A 001100xb rw 36 011 0110 00000000
INT2_DURATION_A 001100xb rw 37 011 0111 00000000
CLICK_CFG_A 001100xb rw 38 0 11 1000 00000000
CLICK_SRC_A 001100xb rw 39 011 1001 00000000
CLICK_THS_A 001100xb rw 3A 011 1010 00000000
TIME_LIMIT_A 001100xb rw 3B 011 1011 00000000
LSM320DL Register mapping
Doc ID 018845 Rev 1 29/53
Registers marked as Reserved must not be changed. The writing to those registers may
cause permanent damage to the device.
The content of the registers that are loaded at boot should not be changed. They contain the
factory calibration values. Their content is automatically restored when the device is
powered up.
TIME_LATENCY_A 001100xb rw 3C 011 1100 00000000
TIME_WINDOW_A 001100xb rw 3D 011 1101 00000000
Reserved (do not modify) 001100xb 3E-3F -- Reserved
Reserved 110100xb - 00-1E - - Reserved
CTRL_REG1_G 110100xb rw 20 010 0000 00000111
CTRL_REG2_G 110100xb rw 21 010 0001 00000000
CTRL_REG3_G 110100xb rw 22 010 0010 00000000
CTRL_REG4_G 110100xb rw 23 010 0011 00000000
CTRL_REG5_G 110100xb rw 24 010 0100 00000000
REFERENCE_G 110100xb rw 25 010 0101 00000000
OUT_TEMP_G 110100xb r 26 010 0110 output
STATUS_REG_G 110100xb r 27 010 0111 output
OUT_X_L_G 110100xb r 28 010 1000 output
OUT_X_H_G 110100xb r 29 010 1001 output
Reserved 110100xb r 2A - - Reserved
Reserved 110100xb r 2B - - Reserved
OUT_Z_L_G 110100xb r 2C 010 1100 output
OUT_Z_H_G 110100xb r 2D 010 1101 output
FIFO_CTRL_REG_G 110100xb rw 2E 010 1110 00000000
FIFO_SRC_REG_G 110100xb r 2F 010 1111 output
INT1_CFG_G 110100xb rw 30 011 0000 00000000
INT1_SRC_G 110100xb r 31 011 0001 output
INT1_TSH_XH_G 110100xb rw 32 011 0010 00000000
INT1_TSH_XL_G 110100xb rw 33 011 0011 00000000
Reserved 110100xb rw 34 - - Reserved
Reserved 110100xb rw 35 - - Reserved
INT1_TSH_ZH_G 110100xb rw 36 011 0110 00000000
INT1_TSH_ZL_G 110100xb rw 37 011 0111 00000000
INT1_DURATION_G 110100xb rw 38 011 1000 00000000
Table 18. Register address map (continued)
Name Slave
Address Type
Register address
Default Comment
Hex Binary
Registers description LSM320DL
30/53 Doc ID 018845 Rev 1
7 Registers description
The device contains a set of registers which are used to control its behavior and to retrieve
acceleration, angular rate and temperature data. The registers address, made of 7 bits, is
used to identify them and to write the data through serial interface.
7.1 CTRL_REG1_A (20h)
ODR<3:0> is used to set power mode and ODR selection. In Table 21 all the frequencies
resulting in a combination of ODR<3:0> are reported.
Table 19. CTRL_REG1_A register
ODR3 ODR2 ODR1 ODR0 LPen Zen Yen Xen
Table 20. CTRL_REG1_A description
ODR3-0 Data rate selection. Default value: 0
(0000: power-down; Others: refer to Table 21., “Data rate configuration”)
LPen Low power mode enable. Default value: 0
(0: normal mode; 1: low power mode)
Zen Z axis enable. Default value: 1
(0: Z axis disabled; 1: Z axis enabled)
Ye n Y axis enable. Default value: 1
(0: Y axis disabled; 1: Y axis enabled)
Xen X axis enable. Default value: 1
(0: X axis disabled; 1: X axis enabled)
Table 21. Data rate configuration
ODR3 ODR2 ODR1 ODR0 Power mode selection
0000Power down mode
0 0 0 1 Normal / low power mode (1 Hz)
0 0 1 0 Normal / low power mode (10 Hz)
0 0 1 1 Normal / low power mode (25 Hz)
0 1 0 0 Normal / low power mode (50 Hz)
0 1 0 1 Normal / low power mode (100 Hz)
0 1 1 0 Normal / low power mode (200 Hz)
0 1 1 1 Normal / low power mode (400 Hz)
1000Low power mode (1.620 kHz)
1 0 0 1 Normal (1.344 kHz) / Low Power mode (5.376 kHz)
LSM320DL Registers description
Doc ID 018845 Rev 1 31/53
7.2 CTRL_REG2_A (21h)
7.3 CTRL_REG3_A (22h)
Table 22. CTRL_REG2_A register
HPM1 HPM0 HPCF2 HPCF1 FDS HPCLICK HPIS2 HPIS1
Table 23. CTRL_REG2_A description
HPM1 -HPM0 High pass filter mode selection. Default value: 00
Refer to Table 24
HPCF2 -
HPCF1 High pass filter cut-off frequency selection
FDS
Filtered data selection. Default value: 0
(0: internal filter bypassed; 1: data from internal filter sent to output register and
FIFO)
HPCLICK High pass filter enabled for CLICK function.
(0: filter bypassed; 1: filter enabled)
HPIS2 High pass filter enabled for AOI function on interrupt 2,
(0: filter bypassed; 1: filter enabled)
HPIS1 High pass filter enabled for AOI function on interrupt 1,
(0: filter bypassed; 1: filter enabled)
Table 24. High pass filter mode configuration
HPM1 HPM0 High pass filter mode
0 0 Normal mode (reset reading HP_RESET_FILTER)
0 1 Reference signal for filtering
1 0 Normal mode
1 1 Autoreset on interrupt event
Table 25. CTRL_REG3_A register
I1_CLICK I1_AOI1 0(1)
1. This bit must be set to ‘0’ for correct operation.
I1_DRDY1 I1_DRDY2 I1_WTM I1_OVERRUN --
Table 26. CTRL_REG3_A description
I1_CLICK CLICK interrupt on INT1. Default value 0.
(0: disable; 1: enable)
I1_AOI1 AOI1 interrupt on INT1. Default value 0.
(0: disable; 1: enable)
Registers description LSM320DL
32/53 Doc ID 018845 Rev 1
7.4 CTRL_REG4_A (23h)
7.5 CTRL_REG5_A (24h)
I1_DRDY1 DRDY1 interrupt on INT1. Default value 0.
(0: disable; 1: enable)
I1_DRDY2 DRDY2 interrupt on INT1. Default value 0.
(0: disable; 1: enable)
I1_WTM FIFO Watermark interrupt on INT1. Default value 0.
(0: disable; 1: enable)
I1_OVERRUN FIFO Overrun interrupt on INT1. Default value 0.
(0: disable; 1: enable)
Table 26. CTRL_REG3_A description (continued)
Table 27. CTRL_REG4_A register
0(1)
1. This bit must be set to ‘0’ for correct operation.
BLE FS1 FS0 HR 0(1) 0(1) SIM
Table 28. CTRL_REG4_A description
BLE Big/little endian data selection. Default value 0.
(0: data LSB @ lower address; 1: data MSB @ lower address)
FS1-FS0 Full scale selection. default value: 00
(00: +/- 2G; 01: +/- 4G; 10: +/- 8G; 11: +/- 16G)
HR High resolution output mode: default value: 0
(0: high resolution disable; 1: high resolution enable)
SIM SPI serial interface mode selection. Default value: 0
(0: 4-wire interface; 1: 3-wire interface).
Table 29. CTRL_REG5_A register
BOOT FIFO_EN -- -- LIR_INT1 D4D_INT1 0(1)
1. This bit must be set to ‘0’ for correct operation.
0(1)
Table 30. CTRL_REG5_A description
BOOT Reboot memory content. Default value: 0
(0: normal mode; 1: reboot memory content)
FIFO_EN FIFO enable. Default value: 0
(0: FIFO disable; 1: FIFO enable)
LIR_INT1 Latch interrupt request on INT1_SRC register, with INT1_SRC register
cleared by reading INT1_SRC itself. Default value: 0.
(0: interrupt request not latched; 1: interrupt request latched)
D4D_INT1 4D enable: 4D detection is enabled on INT1 when 6D bit on INT1_CFG is set
to 1.
LSM320DL Registers description
Doc ID 018845 Rev 1 33/53
7.6 CTRL_REG6_A (25h)
7.7 REFERENCE/DATACAPTURE_A (26h)
7.8 STATUS_REG_A (27h)
Table 31. CTRL_REG6_A register
I2_CLICKen I2_INT1 0(1)
1. This bit must be set to ‘0’ for correct operation.
BOOT_I2 0(1) -- H_LACTIVE --
Table 32. CTRL_REG6 description
I2_CLICKen Click interrupt on INT2. Default value 0.
I2_INT1 Interrupt 1 function enabled on INT2. Default 0.
BOOT_I2 Boot on INT2.
H_LACTIVE 0: interrupt active high; 1: interrupt active low.
Table 33. REFERENCE_A register
Ref7 Ref6 Ref5 Ref4 Ref3 Ref2 Ref1 Ref0
Table 34. REFERENCE register description
Ref 7-Ref0 Reference value for interrupt generation. Default value: 0
Table 35. STATUS_REG_A register
ZYXOR ZOR YOR XOR ZYXDA ZDA YDA XDA
Table 36. STATUS_REG_A register description
ZYXOR X, Y, and Z axis data overrun. Default value: 0
(0: no overrun has occurred; 1: a new set of data has overwritten the previous ones)
ZOR Z axis data overrun. Default value: 0
(0: no overrun has occurred; 1: a new data for the Z-axis has overwritten the previous
one)
YOR Y axis data overrun. Default value: 0
(0: no overrun has occurred; 1: a new data for the Y-axis has overwritten the previous
one)
XOR X axis data overrun. Default value: 0
(0: no overrun has occurred; 1: a new data for the X-axis has overwritten the previous
one)
ZYXDA X, Y, and Z axis new data available. Default value: 0
(0: a new set of data is not yet available; 1: a new set of data is available)
Registers description LSM320DL
34/53 Doc ID 018845 Rev 1
7.9 OUT_X_L_A (28h), OUT_X_H_A (29h)
X-axis acceleration data. The value is expressed in 2’s complement.
7.10 OUT_Y_L_A (2Ah), OUT_Y_H_A (2Bh)
Y-axis acceleration data. The value is expressed in 2’s complement.
7.11 OUT_Z_L _A(2Ch), OUT_Z_H_A (2Dh)
Z-axis acceleration data. The value is expressed in 2’s complement.
7.12 FIFO_CTRL_REG_A (2Eh)
ZDA Z axis new data available. Default value: 0
(0: a new data for the Z-axis is not yet available; 1: a new data for the Z-axis is available)
YDA Y axis new data available. Default value: 0
(0: a new data for the Y-axis is not yet available; 1: a new data for the Y-axis is available)
Table 36. STATUS_REG_A register description (continued)
Table 37. FIFO_CTRL_REG_A register
FM1 FM0 TR FTH4 FTH3 FTH2 FTH1 FTH0
Table 38. FIFO_CTRL_REG_A register description
FM1-FM0 FIFO mode selection. Default value: 00 (see Table 39)
TR Trigger selection. Default value: 0
0: trigger event linked to trigger signal on INT1
1: trigger event linked to trigger signal on INT2
FTH4:0 Default value: 0
Table 39. FIFO mode configuration
FM1 FM0 FIFO mode
0 0 Bypass mode
0 1 FIFO mode
1 0 Stream mode
1 1 Trigger mode
LSM320DL Registers description
Doc ID 018845 Rev 1 35/53
7.13 FIFO_SRC_REG_A (2Fh)
7.14 INT1_CFG_A (30h)
Content of this register is loaded at boot.
Write operation at this address is possible only after system boot.
Difference between AOI-6D = ‘01’ and AOI-6D = ‘11’.
Table 40. FIFO_SRC_REG_A register
WTM OVRN_FIFO EMPTY FSS4 FSS3 FSS2 FSS1 FSS0
Table 41. INT1_CFG_REG_A register
AOI 6D ZHIE/
ZUPE
ZLIE/
ZDOWNE
YHIE/
YUPE
YLIE/
YDOWNE
XHIE/
XUPE
XLIE/
XDOWNE
Table 42. INT1_CFG_REG_A description
AOI AND/OR combination of interrupt events. Default value: 0. Refer to Table 43
6D 6-direction detection function enabled. Default value: 0. Refer to Table 43
ZHIE/
ZUPE
Enable interrupt generation on Z high event or on direction recognition. Default
value: 0 (0: disable interrupt request;1: enable interrupt request)
ZLIE/
ZDOWNE
Enable interrupt generation on Z low event or on direction recognition. Default
value: 0 (0: disable interrupt request; 1: enable interrupt request)
YHIE/
YUPE
Enable interrupt generation on Y high event or on direction recognition. Default
value: 0 (0: disable interrupt request; 1: enable interrupt request.)
YLIE/
YDOWNE
Enable interrupt generation on Y low event or on direction recognition. Default
value: 0 (0: disable interrupt request; 1: enable interrupt request.)
XHIE/
XUPE
Enable interrupt generation on X high event or on direction recognition. Default
value: 0 (0: disable interrupt request; 1: enable interrupt request.)
XLIE/XDOWNE Enable interrupt generation on X low event or on direction recognition. Default
value: 0 (0: disable interrupt request; 1: enable interrupt request.)
Table 43. Interrupt mode
AOI 6D Interrupt mode
0 0 OR combination of interrupt events
0 1 6-direction movement recognition
1 0 AND combination of interrupt events
1 1 6-direction position recognition
Registers description LSM320DL
36/53 Doc ID 018845 Rev 1
AOI-6D = ‘01’ is movement recognition. An interrupt is generated when orientation moves
from unknown zone to known zone. The interrupt signal stays for a duration ODR.
AOI-6D = ‘11’ is direction recognition. An interrupt is generated when orientation is inside a
known zone. The interrupt signal stays until orientation is inside the zone.
7.15 INT1_SRC_A (31h)
Interrupt 1 source register. Read only register.
Reading at this address clears the INT1_SRC IA bit (and the interrupt signal on the INT 1
pin) and allows the refreshment of data in the INT1_SRC register if the latched option is
chosen.
7.16 INT1_THS_A (32h)
Table 44. INT1_SRC_A register
0 IA ZHZLYHYLXHXL
Table 45. INT1_SRC_A description
IA Interrupt active. Default value: 0
(0: no interrupt has been generated; 1: one or more interrupts have been generated)
ZH Z high. Default value: 0
(0: no interrupt, 1: Z high event has occurred)
ZL Z low. Default value: 0
(0: no interrupt; 1: Z low event has occurred)
YH Y high. Default value: 0
(0: no interrupt, 1: Y high event has occurred)
YL Y low. Default value: 0
(0: no interrupt, 1: Y low event has occurred)
XH X high. Default value: 0
(0: no interrupt, 1: X high event has occurred)
XL X low. Default value: 0
(0: no interrupt, 1: X low event has occurred)
Table 46. INT1_THS_A register
0 THS6 THS5 THS4 THS3 THS2 THS1 THS0
Table 47. INT1_THS_A description
THS6 - THS0 Interrupt 1 threshold. Default value: 000 0000
LSM320DL Registers description
Doc ID 018845 Rev 1 37/53
7.17 INT1_DURATION_A (33h)
D6 - D0 bits set the minimum duration of the interrupt 1 event to be recognized. Duration
steps and maximum values depend on the ODR chosen.
7.18 CLICK_CFG _A (38h)
7.19 CLICK_SRC_A (39h)
Table 48. INT1_DURATION_Aregister
0 D6D5D4D3D2D1D0
Table 49. INT1_DURATION_A description
D6 - D0 Duration value. Default value: 000 0000
Table 50. CLICK_CFG_A register
-- -- ZD ZS YD YS XD XS
Table 51. CLICK_CFG_A description
ZD Enable interrupt double CLICK on Z axis. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured accel. value
higher than preset threshold)
ZS Enable interrupt single CLICK on Z axis. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured accel. value
higher than preset threshold)
YD Enable interrupt double CLICK on Y axis. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured accel. value
higher than preset threshold)
YS Enable interrupt single CLICK on Y axis. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured accel. value
higher than preset threshold)
XD Enable interrupt double CLICK on X axis. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured accel. value
higher than preset threshold)
XS Enable interrupt single CLICK on X axis. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured accel. value
higher than preset threshold)
Table 52. CLICK_SRC_A register
-- IA DCLICK SCLICK Sign Z Y X
Registers description LSM320DL
38/53 Doc ID 018845 Rev 1
7.20 CLICK_THS_A (3Ah)
7.21 TIME_LIMIT_A (3Bh)
7.22 TIME_LATENCY_A (3Ch)
Table 53. CLICK_SRC_A description
IA Interrupt active. Default value: 0
(0: no interrupt has been generated; 1: one or more interrupts have been generated)
DCLICK Double CLICK-CLICK enable. Default value: 0 (0: double CLICK-CLICK detection dis-
able, 1: double CLICK-CLICK detection enable)
SCLICK Single CLICK-CLICK enable. Default value: 0 (0: single CLICK-CLICK detection dis-
able, 1: single CLICK-CLICK detection enable)
Sign CLICK-CLICK Sign. 0: positive detection, 1: negative detection
Z Z CLICK-CLICK detection. Default value: 0
(0: no interrupt, 1: Z high event has occurred)
Y Y CLICK-CLICK detection. Default value: 0
(0: no interrupt, 1: Y high event has occurred)
X X CLICK-CLICK detection. Default value: 0
(0: no interrupt, 1: X high event has occurred)
Table 54. CLICK_THS_A register
-- Ths6 Ths5 Ths4 Ths3 Ths2 Ths1 Ths0
Table 55. CLICK_SRC_A description
Ths6-Ths0 CLICK-CLICK threshold. Default value: 000 0000
Table 56. TIME_LIMIT_A register
-- TLI6 TLI5 TLI4 TLI3 TLI2 TLI1 TLI0
Table 57. TIME_LIMIT_A description
TLI7-TLI0 CLICK-CLICK time limit. Default value: 000 0000
Table 58. TIME_LATENCY_A register
TLA7 TLA6 TLA5 TLA4 TLA3 TLA2 TLA1 TLA0
LSM320DL Registers description
Doc ID 018845 Rev 1 39/53
7.23 TIME WINDOW_A (3Dh)
7.24 CTRL_REG1_G (20h)
DR<1:0> is used to set ODR selection. BW <1:0> is used to set Bandwidth selection.
Table 64 shows all frequencies resulting in combination of DR / BW bits.
Table 59. TIME_LATENCY_A description
TLA7-TLA0 CLICK-CLICK time latency. Default value: 000 0000
Table 60. TIME_WINDOW_A register
TW7 TW6 TW5 TW4 TW3 TW2 TW1 TW0
Table 61. TIME_WINDOW_A description
TW7-TW0 CLICK-CLICK time window
Table 62. CTRL_REG1_G register
DR1 DR0 BW1 BW0 PD Zen 0(1)
1. This bit must be set to ‘0’ for correct operation.
Xen
Table 63. CTRL_REG1_G description
DR1-DR0 Output data rate selection. Refer to Table 64
BW1-BW0 Bandwidth selection. Refer to Table 64
PD Power-down mode enable. Default value: 0
(0: power-down mode, 1: normal mode or sleep mode)
Zen Z axis enable. Default value: 1
(0: Z axis disabled; 1: Z axis enabled)
Xen X axis enable. Default value: 1
(0: X axis disabled; 1: X axis enabled)
Registers description LSM320DL
40/53 Doc ID 018845 Rev 1
Combination of PD, Zen, Xen are used to set the device in different modes (power-
down/normal/sleep mode) according to the following table.
7.25 CTRL_REG2_G (21h)
Table 64. DR and BW configuration setting
DR <1:0> BW <1:0> ODR [Hz] Cut-off
00 00 100 12.5
00 01 100 25
00 10 100 25
00 11 100 25
01 00 200 12.5
01 01 200 25
01 10 200 50
01 11 200 70
10 00 400 20
10 01 400 25
10 10 400 50
10 11 400 110
11 00 800 30
11 01 800 35
11 10 800 50
11 11 800 110
Table 65. Power mode selection configuration
Mode PD Zen Xen
Power-down 0 - -
Sleep100
Normal 1 - -
Table 66. CTRL_REG2_G register
0(1)
1. Value loaded at boot. This value must not be changed.
0(1) HPM1 HPM1 HPCF3 HPCF2 HPCF1 HPCF0
LSM320DL Registers description
Doc ID 018845 Rev 1 41/53
7.26 CTRL_REG3_G (22h)
Table 67. CTRL_REG2_G description
HPM1-
HPM0
High pass filter mode selection. Default value: 00
Refer to Table 68
HPCF3-
HPCF0
High pass filter cut-off frequency selection
Refer to Table 69
Table 68. High pass filter mode configuration
HPM1 HPM0 High pass filter mode
0 0 Normal mode (reset reading HP_RESET_FILTER
0 1 Reference signal for filtering
1 0 Normal mode
1 1 Autoreset an interrupt event
Table 69. High pass filter cut-off frequency configuration [Hz]
HPCF-0 ODR = 100 Hz ODR = 200 Hz ODR = 400 Hz ODR = 800 Hz
00008 153056
0001 4 8 15 30
0010 2 4 8 15
00111248
0100 0.5 1 2 4
0101 0.2 0.5 1 2
0110 0.1 0.2 0.5 1
0111 0.05 0.1 0.2 0.5
1000 0.02 0.05 0.1 0.2
1001 0.01 0.02 0.05 0.1
Table 70. CTRL_REG1_G register
I1_Int1 I1_Boot H_Lactive PP_OD I2_DRDY I2_WTM I2_ORun I2_Empty
Table 71. CTRL_REG3_G description
I1_Int1 Interrupt enable on INT1 pin. Default value 0. (0: disable; 1: enable)
I1_Boot Boot status available on INT1. Default value 0. (0: disable; 1: enable)
H_Lactive Interrupt active configuration on INT1. Default value 0. (0: high; 1:low)
Registers description LSM320DL
42/53 Doc ID 018845 Rev 1
7.27 CTRL_REG4_G (23h)
7.28 CTRL_REG5_G (24h)
PP_OD Push-pull/open drain. Default value: 0. (0: push-pull; 1: open drain)
I2_DRDY Date ready on DRDY/INT2. Default value 0. (0: disable; 1: enable)
I2_WTM FIFO watermark interrupt on DRDY/INT2. Default value: 0. (0: disable; 1: enable)
I2_ORun FIFO overrun interrupt on DRDY/INT2. Default value: 0. (0: disable; 1: enable)
I2_Empty FIFO empty interrupt on DRDY/INT2. Default value: 0. (0: disable; 1: enable)
Table 71. CTRL_REG3_G description (continued)
Table 72. CTRL_REG4_G register
BDU BLE FS1 FS0 -- 0(1)
1. This bit must be set to ‘0’ for correct operation.
0(1) SIM
Table 73. CTRL_REG4_G description
BDU Block data update. Default value: 0
(0: continuous update; 1: output registers not updated until MSB and LSB
reading)
BLE Big/little endian data selection. Default value 0.
(0: data LSB @ lower address; 1: data MSB @ lower address)
FS1-FS0 Full scale selection. Default value: 00
(00: 250 dps; 01: 500 dps; 10: 2000 dps; 11: 2000 dps)
SIM SPI serial interface mode selection. Default value: 0
(0: 4-wire interface; 1: 3-wire interface).
Table 74. CTRL_REG5_G register
BOOT FIFO_EN -- HPen INT1_Sel1 INT1_Sel0 Out_Sel1 Out_Sel0
Table 75. CTRL_REG5_G description
BOOT Reboot memory content. Default value: 0
(0: normal mode; 1: reboot memory content)
FIFO_EN FIFO enable. Default value: 0
(0: FIFO disable; 1: FIFO enable)
HPen High pass filter enable. Default value: 0
(0: HPF disabled; 1: HPF enabled, see Figure 12)
LSM320DL Registers description
Doc ID 018845 Rev 1 43/53
Figure 12. INT1_Sel and Out_Sel configuration block diagram
INT1_Sel1-
INT1_Sel0
INT1 selection configuration. Default value: 0
(see Table 77)
Out_Sel1-
Out_Sel0
Out selection configuration. Default value: 0
(see Table 76)
Table 76. Out_Sel configuration setting
Hpen OUT_SEL1 OUT_SEL0 Description
x00
Data in DataReg and FIFO are non-high-
pass-filtered
x01
Data in DataReg and FIFO are high-pass-
filtered
01x
Data in DataReg and FIFO are low-pass-
filtered by LPF2
11x
Data in DataReg and FIFO are high-pass and
low-pass-filtered by LPF2
Table 77. INT_SEL configuration setting
Hpen INT_SEL1 INT_SEL2 Description
x00
Non-high-pass-filtered data are used for
interrupt generation
x01
High-pass-filtered data are used for interrupt
generation
Table 75. CTRL_REG5_G description (continued)
ADC
LPF1 HPF
0
1
HPen
LPF2
10
11
01
00
Out_Sel <1:0>
DataReg
FIFO
32x16x3
00
11
10
01
Interrupt
generator
INT1_Sel <1:0>
AM09276V1
Registers description LSM320DL
44/53 Doc ID 018845 Rev 1
7.29 REFERENCE/DATACAPTURE_G (25h)
7.30 OUT_TEMP_G (26h)
7.31 STATUS_REG_G (27h)
01x
Low-pass-filtered data are used for interrupt
generation
11x
High-pass and low-pass-filtered data are
used for interrupt generation
Table 77. INT_SEL configuration setting (continued)
Hpen INT_SEL1 INT_SEL2 Description
Table 78. REFERENCE_G register
Ref7 Ref6 Ref5 Ref4 Ref3 Ref2 Ref1 Ref0
Table 79. REFERENCE_G register description
Ref 7-Ref0 Reference value for interrupt generation. Default value: 0
Table 80. OUT_TEMP_G register
Temp7 Temp6 Temp5 Temp4 Temp3 Temp2 Temp1 Temp0
Table 81. OUT_TEMP_G register description
Temp7-Temp0 Temperature data (1LSB/deg - 8 bit resolution). The value is expressed as
two’s complement.
Table 82. STATUS_REG_G register
ZXOR ZOR - XOR ZXDA ZDA -- XDA
Table 83. STATUS_REG_G description
ZXOR
X, Z-axis data overrun. Default value: 0
(0: no overrun has occurred, 1: new data has overwritten the previous one before it was
read)
ZOR Z-axis data overrun. Default value: 0
(0: no overrun has occurred, 1: a new data for the Z-axis has overwritten the previous one)
XOR X-axis data overrun. Default value: 0
(0: no overrun has occurred, 1: a new data for the X-axis has overwritten the previous one)
LSM320DL Registers description
Doc ID 018845 Rev 1 45/53
7.32 OUT_X_L_G (28h), OUT_X_H_G (29h)
X-axis angular rate data. The value is expressed as 2’s complement.
7.33 OUT_Z_L_G (2Ch), OUT_Z_H_G (2Dh)
Z-axis angular rate data. The value is expressed as 2’s complement.
7.34 FIFO_CTRL_REG_G (2Eh)
7.35 FIFO_SRC_REG_G (2Fh)
ZXDA X, Z-axis new data available. Default value: 0
(0: a new set of data is not yet available; 1: a new set of data is available)
ZDA Z-axis new data available. Default value: 0
(0: a new data for the Z-axis is not yet available; 1: a new data for the Z-axis is available)
XDA X-axis new data available. Default value: 0
(0: a new data for the X-axis is not yet available; 1: a new data for the X-axis is available)
Table 83. STATUS_REG_G description (continued)
Table 84. REFERENCE_G register
FM2 FM1 FM0 WTM4 WTM3 WTM2 WTM1 WTM0
Table 85. REFERENCE_G register description
FM2-FM0 FIFO mode selection. Default value: 00 (see Table 86)
WTM4-WTM0 FIFO threshold. Watermark level setting
Table 86. FIFO mode configuration
FM2 FM1 FM0 FIFO mode
000Bypass mode
001FIFO mode
010Stream mode
011Stream-to-FIFO mode
100Bypass-to-stream mode
Table 87. FIFO_SRC_G register
WTM OVRN EMPTY FSS4 FSS3 FSS2 FSS1 FSS0
Registers description LSM320DL
46/53 Doc ID 018845 Rev 1
7.36 INT1_CFG_G (30h)
Configuration register for interrupt source.
7.37 INT1_SRC_G (31h)
Table 88. FIFO_SRC_G register description
WTM Watermark status. (0: FIFO filling is lower than WTM level; 1: FIFO filling is equal
or higher than WTM level)
OVRN Overrun bit status.
(0: FIFO is not completely filled; 1:FIFO is completely filled)
EMPTY FIFO empty bit.
(0: FIFO not empty; 1: FIFO empty)
FSS4-FSS1 FIFO stored data level
Table 89. INT1_CFG_G register
AND/OR LIR ZHIE ZLIE 0(1)
1. This bit must be set to ‘0’ for correct operation.
0(1) XHIE XLIE
Table 90. INT1_CFG_G description
AND/OR AND/OR combination of interrupt events. Default value: 0
(0: OR combination of interrupt events 1: AND combination of interrupt events
LIR
Latch interrupt request. Default value: 0
(0: interrupt request not latched; 1: interrupt request latched)
Cleared by reading INT1_SRC reg.
ZHIE
Enable interrupt generation on Z high event. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured accel. value
higher than preset threshold)
ZLIE
Enable interrupt generation on Z low event. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured accel. value
lower than preset threshold)
XHIE
Enable interrupt generation on X high event. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured accel. value
higher than preset threshold)
XLIE
Enable interrupt generation on X low event. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured accel. value
lower than preset threshold)
Table 91. INT1_SRC_G register
0IAZHZL----XHXL
LSM320DL Registers description
Doc ID 018845 Rev 1 47/53
Interrupt source register. Read only register.
Reading at this address clears the INT1_SRC IA bit (and eventually the interrupt signal on
the INT1 pin) and allows the refreshment of data in the INT1_SRC register if the latched
option is chosen.
7.38 INT1_THS_XH_G (32h)
7.39 INT1_THS_XL_G (33h)
7.40 INT1_THS_ZH_G (36h)
Table 92. INT1_SRC_G description
IA Interrupt active. Default value: 0
(0: no interrupt has been generated; 1: one or more interrupts have been generated)
ZH Z high. Default value: 0 (0: no interrupt; 1: Z high event has occurred)
ZL Z low. Default value: 0 (0: no interrupt; 1: Z low event has occurred)
XH X high. Default value: 0 (0: no interrupt; 1: X high event has occurred)
XL X low. Default value: 0 (0: no interrupt; 1: X low event has occurred)
Table 93. INT1_THS_XH_G register
-- THSX14 THSX13 THSX12 THSX11 THSX10 THSX9 THSX8
Table 94. INT1_THS_XH_G description
THSX14 - THSX9 Interrupt threshold. Default value: 0000 0000
Table 95. INT1_THS_XL_G register
THSX7 THSX6 THSX5 THSX4 THSX3 THSX2 THSX1 THSX0
Table 96. INT1_THS_XL_G description
THSX7 - THSX0 Interrupt threshold. Default value: 0000 0000
Table 97. INT1_THS_ZH_G register
-- THSZ14 THSZ13 THSZ12 THSZ11 THSZ10 THSZ9 THSZ8
Registers description LSM320DL
48/53 Doc ID 018845 Rev 1
7.41 INT1_THS_ZL_G (37h)
7.42 INT1_DURATION_G (38h)
D6 - D0 bits set the minimum duration of the interrupt event to be recognized. Duration steps
and maximum values depend on the ODR chosen.
WAIT bit has the following meaning:
Wait =’0’: the interrupt falls immediately if signal crosses the selected threshold
Wait =’1’: if signal crosses the selected threshold, the interrupt falls only after the duration
has counted a number of samples at the selected data rate, written into the duration counter
register.
Table 98. INT1_THS_ZH_G description
THSZ14 - THSZ9 Interrupt threshold. Default value: 0000 0000
Table 99. INT1_THS_ZL_G register
THSZ7 THSZ6 THSZ5 THSZ4 THSZ3 THSZ2 THSZ1 THSZ0
Table 100. INT1_THS_ZL_G description
THSZ7 - THSZ0 Interrupt threshold. Default value: 0000 0000
Table 101. INT1_DURATION_G register
WAIT D6 D5 D4 D3 D2 D1 D0
Table 102. INT1_DURATION_G description
WAIT WAIT enable. Default value: 0 (0: disable; 1: enable)
D6 - D0 Duration value. Default value: 000 0000
LSM320DL Registers description
Doc ID 018845 Rev 1 49/53
Figure 13. Wait disabled
Figure 14. Wait enabled
!-6
!-6
!-6
Package information LSM320DL
50/53 Doc ID 018845 Rev 1
8 Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK
specifications, grade definitions, and product status are available at: www.st.com.
ECOPACK is an ST trademark.
LSM320DL Package information
Doc ID 018845 Rev 1 51/53
Figure 15. LGA 28L 7.5 x 4.4 x 1.1 package drawing
Table 103. LGA 28L 7.5 x 4.4 x 1.1 mechanical data
Dim.
mm
Min. Typ. Max.
A1 1.1
A2 0.855
A3 0.2
D1 4.25 4.4 4.55
E1 7.25 7.5 7.55
N1 0.3
L1 5.4
L2 1.8
P2 1.2
T1 0.6
T2 0.4
M 0.1
d 0.3
k 0.05
h 0.1
D1
E1
A1
P2
L1
T2
T1
L2
d
M
B
E
D
A
k
kD
kE
K
hC
C
Pin 1 Indicator
TOP VIEW
Seating
Plane
N1
==
A3
A2
k
Revision history LSM320DL
52/53 Doc ID 018845 Rev 1
9 Revision history
Table 104. Document revision history
Date Revision Changes
18-May-2011 1 Initial release.
LSM320DL
Doc ID 018845 Rev 1 53/53
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2011 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com