This is information on a product in full production.
November 2018 DS6494 Rev 8 1/82
1
SPC560D30x
SPC560D40x
32-bit MCU family built on the Power Architecture®
for automotive body electronics applications
Datasheet production data
Features
AEC-Q100 qualified
High-performance up to 48 MHz e200z0h CPU
32-bit Power Architecture® technology
CPU
Variable length encoding (VLE)
Memory
Up to 256 KB Code Flash with ECC
Up to 64 (4x16) KB Data Flash with ECC
Up to 16 KB SRAM with ECC
Interrupts
16 priority levels
Non-maskable interrupt (NMI)
Up to 38 external interrupts including
18 wakeup lines
16-channel eDMA
GPIOs: 45 (LQFP64), 79 (LQFP100)
Timer units
4-channel 32-bit periodic interrupt timers
4-channel 32-bit system timer module
System watchdog timer
32-bit real-time clock timer
16-bit counter time-triggered I/Os
Up to 28 channels with PWM/MC/IC/OC
5 independent counters
27-channels with ADC trigger capability
12-bit analog-to-digital converter (ADC) with up
to 33 channels
Up to 61 channels via external multiplexing
Individual conversion registers
Cross triggering unit (CTU)
Dedicated diagnostic module for lighting
Advanced PWM generation
Time-triggered diagnostics
PWM-synchronized ADC measurements
Communications interfaces
1 FlexCAN interface (2.0B active) with
32 message buffers
3 LINFlex/UART, 1 with DMA capability
2 DSPI
Clock generation
4 to 16 MHz fast external crystal oscillator
16 MHz fast internal RC oscillator
128 kHz slow internal RC oscillator
Software-controlled FMPLL
Clock monitoring unit
Exhaustive debugging capability
Nexus1 on all packages
Nexus2+ available on emulation device
(SPC560B64B2-ENG)
On-chip CAN/UART bootstrap loader
Low power capabilities
Several low power mode configurations
Ultra-low power standby with RTC, SRAM
and CAN monitoring
Fast wakeup schemes
Single 5 V or 3.3 V supply
Operates in ambient temperature range of
-40 to 125 °C
LQFP64 (10 x 10 x 1.4 mm)
LQFP100 (14 x 14 x 1.4 mm)
Table 1. Device summary
Package
Part number
128 Kbyte code
Flash
256 Kbyte code
Flash
LQFP100 SPC560D30L3 SPC560D40L3
LQFP64 SPC560D30L1 SPC560D40L1
www.st.com
Contents SPC560D30x, SPC560D40x
2/82 DS6494 Rev 8
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1 Document overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3 Package pinouts and signal descriptions . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1 Package pinouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Pad configuration during reset phases . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Voltage supply pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4 Pad types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
3.5 System pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
3.6 Functional ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2 Parameter classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3 NVUSRO register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3.1 NVUSRO[PAD3V5V] field description . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3.2 NVUSRO[OSCILLATOR_MARGIN] field description . . . . . . . . . . . . . . . 25
4.3.3 NVUSRO[WATCHDOG_EN] field description . . . . . . . . . . . . . . . . . . . . 25
4.4 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.5 Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.6 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.6.1 Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.6.2 Power considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.7 I/O pad electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.7.1 I/O pad types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.7.2 I/O input DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.7.3 I/O output DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.7.4 Output pin transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.7.5 I/O pad current specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.8 RESET electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
DS6494 Rev 8 3/82
SPC560D30x, SPC560D40x Contents
3
4.9 Power management electrical characteristics . . . . . . . . . . . . . . . . . . . . . 40
4.9.1 Voltage regulator electrical characteristics . . . . . . . . . . . . . . . . . . . . . . 40
4.9.2 Low voltage detector electrical characteristics . . . . . . . . . . . . . . . . . . . 43
4.10 Power consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.11 Flash memory electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.11.1 Program/Erase characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.11.2 Flash power supply DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.11.3 Start-up/Switch-off timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.12 Electromagnetic compatibility (EMC) characteristics . . . . . . . . . . . . . . . . 48
4.12.1 Designing hardened software to avoid noise problems . . . . . . . . . . . . . 48
4.12.2 Electromagnetic interference (EMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.12.3 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . . 49
4.13 Fast external crystal oscillator (4 to 16 MHz) electrical characteristics . . 50
4.14 FMPLL electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.15 Fast internal RC oscillator (16 MHz) electrical characteristics . . . . . . . . . 54
4.16 Slow internal RC oscillator (128 kHz) electrical characteristics . . . . . . . . 54
4.17 ADC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.17.2 Input impedance and ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.17.3 ADC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.18 On-chip peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.18.1 Current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.18.2 DSPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.18.3 JTAG characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5 Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.1 ECOPACK® . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2.1 LQFP100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2.2 LQFP64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Appendix A Acronyms and abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Introduction SPC560D30x, SPC560D40x
4/82 DS6494 Rev 8
1 Introduction
1.1 Document overview
This document describes the device features and highlights the important electrical and
physical characteristics.
1.2 Description
These 32-bit automotive microcontrollers are a family of system-on-chip (SoC) devices
designed to be central to the development of the next wave of central vehicle body
controller, smart junction box, front module, peripheral body, door control and seat control
applications.
This family is one of a series of next-generation integrated automotive microcontrollers
based on the Power Architecture technology and designed specifically for embedded
applications.
The advanced and cost-efficient e200z0h host processor core of this automotive controller
family complies with the Power Architecture technology and only implements the VLE
(variable-length encoding) APU (auxiliary processing unit) and provides improved code
density. It operates at speed of up to 48 MHz and offers high performance processing
optimized for low power consumption. It capitalizes on the available development
infrastructure of current power architecture devices and is supported with software drivers,
operating systems and configuration code to assist with the user’s implementations.
The device platform has a single level of memory hierarchy and can support a wide range of
on-chip static random access memory (SRAM) and internal flash memory.
Table 2. SPC560D30x and SPC560D40x device comparison
Feature
Device
SPC560D30L1 SPC560D30L3 SPC560D40L1 SPC560D40L3
CPU e200z0h
Execution speed Static – up to 48 MHz
Code flash memory 128 KB 256 KB
Data flash memory 64 KB (4 × 16 KB)
SRAM 12 KB 16 KB
eDMA 16 ch
ADC (12-bit) 16 ch 33 ch 16 ch 33 ch
CTU 16 ch
Total timer I/O (1)
eMIOS 14 ch, 16-bit 28 ch, 16-bit 14 ch, 16-bit 28 ch, 16-bit
Type X(2) 2ch 5ch 2ch 5ch
Type Y(3) —9ch—9ch
Type G(4) 7ch 7ch 7ch 7ch
DS6494 Rev 8 5/82
SPC560D30x, SPC560D40x Introduction
77
Type H(5) 4ch 7ch 4ch 7ch
SCI (LINFlex) 3
SPI (DSPI) 2
CAN (FlexCAN) 1
GPIO(6) 45 79 45 79
Debug JTAG
Package LQFP64 LQFP100 LQFP64 LQFP100
1. Refer to eMIOS chapter of device reference manual for information on the channel configuration and functions.
2. Type X = MC + MCB + OPWMT + OPWMB + OPWFMB + SAIC + SAOC
3. Type Y = OPWMT + OPWMB + SAIC + SAOC
4. Type G = MCB + IPWM + IPM + DAOC + OPWMT + OPWMB + OPWFMB + OPWMCB + SAIC + SAOC
5. Type H = IPWM + IPM + DAOC + OPWMT + OPWMB + SAIC + SAOC
6. I/O count based on multiplexing with peripherals.
Table 2. SPC560D30x and SPC560D40x device comparison (continued)
Feature
Device
SPC560D30L1 SPC560D30L3 SPC560D40L1 SPC560D40L3
Block diagram SPC560D30x, SPC560D40x
6/82 DS6494 Rev 8
2 Block diagram
Figure 1 shows a top-level block diagram of the SPC560D30x and SPC560D40x device
series.
Figure 1. SPC560D30x and SPC560D40x series block diagram
2 x
DSPI
FMPLL
Nexus 1
SRAM
SIUL
Reset Control
16 KB
External
IMUX
GPIO &
JTAG
Pad Control
JTAG Port
e200z0h
Interrupt requests
64-bit 3 x 3 Crossbar Switch
1 x
FlexCAN
Peripheral Bridge
Interrupt
Request
Interrupt
Request
I/O
Clocks
Instructions
Data
Voltage
Regulator
NMI
SWT PIT
STM
NMI
SIUL
. . . . . . . . .
. . .
INTC
3 x
LINFlex
1 x
eMIOS
33 ch.
ADC
CMU
SRAM Flash
Code Flash
256 KB
Data Flash
64 KB
MC_PCUMC_MEMC_CGMMC_RGM BAM
CTU
RTC SSCM
(Master)
(Master)
(Slave)
(Slave)
(Slave)
Controller
Controller
Legend:
ADC Analog-to-Digital Converter
BAM Boot Assist Module
CMU Clock Monitor Unit
CTU Cross Triggering Unit
DSPI Deserial Serial Peripheral Interface
ECSM Error Correction Status Module
eDMA Enhanced Direct Memory Access
eMIOS Enhanced Modular Input Output System
Flash Flash memory
FlexCAN Controller Area Network (FlexCAN)
FMPLL Frequency-Modulated Phase-Locked Loop
IMUX Internal Multiplexer
INTC Interrupt Controller
JTAG JTAG Controller
LINFlex Serial Communication Interface (LIN support)
MC_CGM Clock Generation Module
MC_ME Mode Entry Module
MC_PCU Power Control Unit
MC_RGM Reset Generation Module
NMI Non-Maskable Interrupt
PIT Periodic Interrupt Timer
RTC Real-Time Clock
SIUL System Integration Unit Lite
SRAM Static Random-Access Memory
SSCM System Status Configuration Module
STM System Timer Module
SWT Software Watchdog Timer
WKPU Wakeup Unit
XBAR Crossbar switch
eDMA
ECSM
from peripheral
blocks
WKPU
Request
Interrupt
Request
(Master)
DS6494 Rev 8 7/82
SPC560D30x, SPC560D40x Block diagram
77
Table 3 summarizes the functions of all the blocks present in the SPC560D30x and
SPC560D40x series of microcontrollers. Note that the presence and number of blocks
varies by device and package.
Table 3. SPC560D30x and SPC560D40x series block summary
Block Function
Analog-to-digital converter (ADC) Multi-channel, 12-bit analog-to-digital converter
Boot assist module (BAM) A block of read-only memory containing VLE code which is executed according
to the boot mode of the device
Clock generation module
(MC_CGM)
Provides logic and control required for the generation of system and peripheral
clocks
Clock monitor unit (CMU) Monitors clock source (internal and external) integrity
Cross triggering unit (CTU) Enables synchronization of ADC conversions with a timer event from the
eMIOS or PIT
Crossbar switch (XBAR)
Supports simultaneous connections between two master ports and three slave
ports. The crossbar supports a 32-bit address bus width and a 64-bit data bus
width.
Deserial serial peripheral
interface (DSPI)
Provides a synchronous serial interface for communication with external
devices
Enhanced direct memory access
(eDMA)
Performs complex data transfers with minimal intervention from a host
processor via “n” programmable channels.
Enhanced modular input output
system (eMIOS) Provides the functionality to generate or measure events
Error correction status module
(ECSM)
Provides a myriad of miscellaneous control functions for the device including
program-visible information about configuration and revision levels, a reset
status register, wakeup control for exiting sleep modes, and optional features
such as information on memory errors reported by error-correcting codes
Flash memory Provides non-volatile storage for program code, constants and variables
FlexCAN (controller area
network) Supports the standard CAN communications protocol
Frequency-modulated phase-
locked loop (FMPLL)
Generates high-speed system clocks and supports programmable frequency
modulation
Internal multiplexer (IMUX) SIU
subblock
Allows flexible mapping of peripheral interface on the different pins of the
device
Interrupt controller (INTC) Provides priority-based preemptive scheduling of interrupt requests
JTAG controller (JTAGC) Provides the means to test chip functionality and connectivity while remaining
transparent to system logic when not in test mode
LINFlex controller Manages a high number of LIN (Local Interconnect Network protocol)
messages efficiently with a minimum of CPU load
Mode entry module (MC_ME)
Provides a mechanism for controlling the device operational mode and mode
transition sequences in all functional states. It also manages the power control
unit, reset generation module, clock generation module, and holds the
configuration, control and status registers accessible for applications
Non-maskable interrupt (NMI) Handles external events which produces an immediate response, such as
power down detection
Block diagram SPC560D30x, SPC560D40x
8/82 DS6494 Rev 8
Periodic interrupt timer (PIT) Produces periodic interrupts and triggers
Power control unit (MC_PCU)
Reduces the overall power consumption by disconnecting parts of the device
from the power supply via a power switching device; device components are
grouped into sections called “power domains” which are controlled by the PCU
Real-time counter (RTC) Provides a free-running counter and interrupt generation capability that can be
used for timekeeping applications
Reset generation module
(MC_RGM)
Centralizes reset sources and manages the device reset sequence of the
device
Static random-access memory
(SRAM) Provides storage for program code, constants, and variables
System integration unit lite (SIUL)
Provides control over all the electrical pad controls and up 32 ports with 16-bits
of bidirectional, general-purpose input and output signals and supports up to 32
external interrupts with trigger event configuration
System status and configuration
module (SSCM)
Provides system configuration and status data (such as memory size and
status, device mode and security status), device identification data, debug
status port enable and selection, and bus and peripheral abort enable/disable
System timer module (STM) Provides a set of output compare events to support AUTOSAR (Automotive
Open System Architecture) and operating system tasks
Software watchdog timer (SWT) Provides protection from runaway code
Wakeup unit (WKPU)
Supports up to 18 external sources that can generate interrupts or wakeup
events, of which one can cause non-maskable interrupt requests or wakeup
events.
Table 3. SPC560D30x and SPC560D40x series block summary (continued)
Block Function
DS6494 Rev 8 9/82
SPC560D30x, SPC560D40x Package pinouts and signal descriptions
77
3 Package pinouts and signal descriptions
3.1 Package pinouts
The available LQFP pinouts are provided in the following figures. For pin signal
descriptions, refer to Table 6.
Figure 2 shows the SPC560D30x and SPC560D40x in the LQFP100 package.
Figure 2. LQFP100 LQFP pin configuration (top view)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
PB[3]
PC[9]
PC[14]
PC[15]
PA[2]
PE[0]
PA[1]
PE[1]
PE[8]
PE[9]
PE[10]
PA[0]
PE[11]
VSS_HV
VDD_HV
VSS_HV
RESET
VSS_LV
VDD_LV
VDD_BV
PC[11]
PC[10]
PB[0]
PB[1]
PC[6]
PA[11]
PA[10]
PA[9]
PA[8]
PA[7]
VDD_HV
VSS_HV
PA[3]
PB[15]
PD[15]
PB[14]
PD[14]
PB[13]
PD[13]
PB[12]
PD[12]
PB[11]
PD[11]
PD[10]
PD[9]
PB[7]
PB[6]
PB[5]
VDD_HV_ADC
VSS_HV_ADC
PC[7]
PA[15]
PA[14]
PA[4]
PA[13]
PA[12]
VDD_LV
VSS_LV
XTAL
VSS_HV
EXTAL
VDD_HV
PB[9]
PB[8]
PB[10]
PD[0]
PD[1]
PD[2]
PD[3]
PD[4]
PD[5]
PD[6]
PD[7]
PD[8]
PB[4]
PB[2]
PC[8]
PC[13]
PC[12]
PE[7]
PE[6]
PE[5]
PE[4]
PC[4]
PC[5]
PE[3]
PE[2]
PH[9]
PC[0]
VSS_LV
VDD_LV
VDD_HV
VSS_HV
PC[1]
PH[10]
PA[6]
PA[5]
PC[2]
PC[3]
PE[12]
LQFP100
Package pinouts and signal descriptions SPC560D30x, SPC560D40x
10/82 DS6494 Rev 8
Figure 3 shows the SPC560D30x and SPC560D40x in the LQFP64 package.
Figure 3. LQFP64 LQFP pin configuration (top view)
3.2 Pad configuration during reset phases
All pads have a fixed configuration under reset.
During the power-up phase, all pads are forced to tristate.
After power-up phase, all pads are forced to tristate with the following exceptions:
PA[9] (FAB) is pull-down. Without external strong pull-up the device starts fetching from
flash.
PA[8] (ABS[0]) is pull-up.
RESET pad is driven low. This is pull-up only after PHASE2 reset completion.
JTAG pads (TCK, TMS and TDI) are pull-up while TDO remains tristate.
Precise ADC pads (PB[7:4] and PD[11:0]) are left tristate (no output buffer available).
Main oscillator pads (EXTAL, XTAL) are tristate.
3.3 Voltage supply pins
Voltage supply pins are used to provide power to the device. Two dedicated pins are used
for 1.2 V regulator stabilization.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
PB[3]
PC[9]
PA[2]
PA[1]
PA[0]
VSS_HV
VDD_HV
VSS_HV
RESET
VSS_LV
VDD_LV
VDD_BV
PC[10]
PB[0]
PB[1]
PC[6]
PA[11]
PA[10]
PA[9]
PA[8]
PA[7]
PA[3]
PB[15]
PB[14]
PB[13]
PB[12]
PB[11]
PB[7]
PB[6]
PB[5]
VDD_HV_ADC
VSS_HV_ADC
PC[7]
PA[15]
PA[14]
PA[4]
PA[13]
PA[12]
VDD_LV
VSS_LV
XTAL
VSS_HV
EXTAL
VDD_HV
PB[9]
PB[8]
PB[10]
PB[4]
PB[2]
PC[8]
PC[4]
PC[5]
PH[9]
PC[0]
VSS_LV
VDD_LV
VDD_HV
VSS_HV
PC[1]
PH[10]
PA[6]
PA[5]
PC[2]
PC[3]
LQFP64
DS6494 Rev 8 11/82
SPC560D30x, SPC560D40x Package pinouts and signal descriptions
77
3.4 Pad types
In the device the following types of pads are available for system pins and functional port
pins:
S = Slow (1)
M = Medium (1) (2)
F = Fast (1) (2)
I = Input only with analog feature (1)
J = Input/Output (‘S’ pad) with analog feature
X = Oscillator
3.5 System pins
The system pins are listed in Table 5.
Table 4. Voltage supply pin descriptions
Port pin Function
Pin number
LQFP64 LQFP100
VDD_HV Digital supply voltage 7, 28, 34, 56 15, 37, 52, 70, 84
VSS_HV Digital ground 6, 8, 26, 33, 55 14, 16, 35, 51, 69, 83
VDD_LV
1.2 V decoupling pins. Decoupling capacitor must be
connected between these pins and the nearest VSS_LV
pin(1)
11, 23, 57 19, 32, 85
VSS_LV
1.2 V decoupling pins. Decoupling capacitor must be
connected between these pins and the nearest VDD_LV
pin(1)
10, 24, 58 18, 33, 86
VDD_BV Internal regulator supply voltage 12 20
1. A decoupling capacitor must be placed between each of the three VDD_LV/VSS_LV supply pairs to ensure stable voltage
(refer the Section 4.5: Recommended operating conditions in the device datasheet for details).
1. Refer, Section 4.7: I/O pad electrical characteristics in the device datasheet for details.
2. All medium and fast pads are in slow configuration by default at reset and can be configured as fast or medium
(see the PCR[SRC] description in the device reference manual).
Package pinouts and signal descriptions SPC560D30x, SPC560D40x
12/82 DS6494 Rev 8
3.6 Functional ports
The functional port pins are listed in Table 6.
Table 5. System pin descriptions
Port
pin Function I/O
direction
Pad
type
RESET
configuration
Pin number
LQFP64 LQFP100
RESET Bidirectional reset with Schmitt-Trigger
characteristics and noise filter I/O M
Input, weak
pull-up only
after PHASE2
917
EXTAL
Analog output of the oscillator amplifier
circuit, when the oscillator is not in bypass
mode. Analog input for the clock generator
when the oscillator is in bypass mode(1)
I/O X Tristate 27 36
XTAL
Analog input of the oscillator amplifier
circuit. Needs to be grounded if oscillator is
used in bypass mode(1)
I X Tristate 25 34
1. Refer to the relevant section of the device datasheet.
Table 6. Functional port pin descriptions
Port pin PCR Alternate
function(1) Function Peripheral I/O
direction(2)
Pad
type
RESET
configuration
Pin number
LQFP64 LQFP100
Port A
PA[0] PCR[0]
AF0
AF1
AF2
AF3
GPIO[0]
E0UC[0]
CLKOUT
E0UC[13]
WKPU[19](3)
SIUL
eMIOS_0
CGL
eMIOS_0
WKPU
I/O
I/O
O
I/O
I
M Tristate 5 12
PA[1] PCR[1]
AF0
AF1
AF2
AF3
GPIO[1]
E0UC[1]
NMI(4)
WKPU[2](3)
SIUL
eMIOS_0
WKPU
WKPU
I/O
I/O
I
I
S Tristate 4 7
PA[2] PCR[2]
AF0
AF1
AF2
AF3
GPIO[2]
E0UC[2]
MA[2]
WKPU[3](3)
SIUL
eMIOS_0
ADC
WKPU
I/O
I/O
O
I
S Tristate 3 5
DS6494 Rev 8 13/82
SPC560D30x, SPC560D40x Package pinouts and signal descriptions
77
PA[3] PCR[3]
AF0
AF1
AF2
AF3
GPIO[3]
E0UC[3]
CS4_0
EIRQ[0]
ADC1_S[0]
SIUL
eMIOS_0
DSPI_0
SIUL
ADC
I/O
I/O
I/O
I
I
S Tristate 43 68
PA[4] PCR[4]
AF0
AF1
AF2
AF3
GPIO[4]
E0UC[4]
CS0_1
WKPU[9](3)
SIUL
eMIOS_0
DSPI_1
WKPU
I/O
I/O
I/O
I
S Tristate 20 29
PA[5] PCR[5]
AF0
AF1
AF2
AF3
GPIO[5]
E0UC[5]
SIUL
eMIOS_0
I/O
I/O
M Tristate 51 79
PA[6] PCR[6]
AF0
AF1
AF2
AF3
GPIO[6]
E0UC[6]
CS1_1
EIRQ[1]
SIUL
eMIOS_0
DSPI_1
SIUL
I/O
I/O
I/O
I
S Tristate 52 80
PA[7] PCR[7]
AF0
AF1
AF2
AF3
GPIO[7]
E0UC[7]
EIRQ[2]
ADC1_S[1]
SIUL
eMIOS_0
SIUL
ADC
I/O
I/O
I
I
S Tristate 44 71
PA[8] PCR[8]
AF0
AF1
AF2
AF3
N/A(5)
GPIO[8]
E0UC[8]
E0UC[14]
EIRQ[3]
ABS[0]
SIUL
eMIOS_0
eMIOS_0
SIUL
BAM
I/O
I/O
I
I
S
Input,
weak
pull-up
45 72
PA[9] PCR[9]
AF0
AF1
AF2
AF3
N/A(5)
GPIO[9]
E0UC[9]
CS2_1
FAB
SIUL
eMIOS_0
DSPI_1
BAM
I/O
I/O
I/O
I
SPull-
down 46 73
Table 6. Functional port pin descriptions (continued)
Port pin PCR Alternate
function(1) Function Peripheral I/O
direction(2)
Pad
type
RESET
configuration
Pin number
LQFP64 LQFP100
Package pinouts and signal descriptions SPC560D30x, SPC560D40x
14/82 DS6494 Rev 8
PA[10] PCR[10]
AF0
AF1
AF2
AF3
GPIO[10]
E0UC[10]
LIN2TX
ADC1_S[2]
SIUL
eMIOS_0
LINFlex_2
ADC
I/O
I/O
O
I
S Tristate 47 74
PA[11] PCR[11]
AF0
AF1
AF2
AF3
GPIO[11]
E0UC[11]
EIRQ[16]
ADC1_S[3]
LIN2RX
SIUL
eMIOS_0
SIUL
ADC
LINFlex_2
I/O
I/O
I
I
I
S Tristate 48 75
PA[12] PCR[12]
AF0
AF1
AF2
AF3
GPIO[12]
EIRQ[17]
SIN_0
SIUL
SIUL
DSPI_0
I/O
I
I
S Tristate 22 31
PA[13] PCR[13]
AF0
AF1
AF2
AF3
GPIO[13]
SOUT_0
CS3_1
SIUL
DSPI_0
DSPI_1
I/O
O
I/O
M Tristate 21 30
PA[14] PCR[14]
AF0
AF1
AF2
AF3
GPIO[14]
SCK_0
CS0_0
E0UC[0]
EIRQ[4]
SIUL
DSPI_0
DSPI_0
eMIOS_0
SIUL
I/O
I/O
I/O
I/O
I
M Tristate 19 28
PA[15] PCR[15]
AF0
AF1
AF2
AF3
GPIO[15]
CS0_0
SCK_0
E0UC[1]
WKPU[10](3)
SIUL
DSPI_0
DSPI_0
eMIOS_0
WKPU
I/O
I/O
I/O
I/O
I
M Tristate 18 27
Port B
PB[0] PCR[16]
AF0
AF1
AF2
AF3
GPIO[16]
CAN0TX
LIN2TX
SIUL
FlexCAN_0
LINFlex_2
I/O
O
O
M Tristate 14 23
Table 6. Functional port pin descriptions (continued)
Port pin PCR Alternate
function(1) Function Peripheral I/O
direction(2)
Pad
type
RESET
configuration
Pin number
LQFP64 LQFP100
DS6494 Rev 8 15/82
SPC560D30x, SPC560D40x Package pinouts and signal descriptions
77
PB[1] PCR[17]
AF0
AF1
AF2
AF3
GPIO[17]
LIN0RX
WKPU[4](3)
CAN0RX
SIUL
LINFlex_0
WKPU
FlexCAN_0
I/O
I
I
I
S Tristate 15 24
PB[2] PCR[18]
AF0
AF1
AF2
AF3
GPIO[18]
LIN0TX
SIUL
LINFlex_0
I/O
O
MTristate 64 100
PB[3] PCR[19]
AF0
AF1
AF2
AF3
GPIO[19]
WKPU[11](3)
LIN0RX
SIUL
WKPU
LINFlex_0
I/O
I
I
S Tristate 1 1
PB[4] PCR[20]
AF0
AF1
AF2
AF3
GPIO[20]
ADC1_P[0]
SIUL
ADC
I
I
I Tristate 32 50
PB[5] PCR[21]
AF0
AF1
AF2
AF3
GPIO[21]
ADC1_P[1]
SIUL
ADC
I
I
I Tristate 35 53
PB[6] PCR[22]
AF0
AF1
AF2
AF3
GPIO[22]
ADC1_P[2]
SIUL
ADC
I
I
I Tristate 36 54
PB[7] PCR[23]
AF0
AF1
AF2
AF3
GPIO[23]
ADC1_P[3]
SIUL
ADC
I
I
I Tristate 37 55
Table 6. Functional port pin descriptions (continued)
Port pin PCR Alternate
function(1) Function Peripheral I/O
direction(2)
Pad
type
RESET
configuration
Pin number
LQFP64 LQFP100
Package pinouts and signal descriptions SPC560D30x, SPC560D40x
16/82 DS6494 Rev 8
PB[8] PCR[24]
AF0
AF1
AF2
AF3
GPIO[24]
ADC1_S[4]
WKPU[25](3)
SIUL
ADC
WKPU
I
I
I
I Tristate 30 39
PB[9] PCR[25]
AF0
AF1
AF2
AF3
GPIO[25]
ADC1_S[5]
WKPU[26](3)
SIUL
ADC
WKPU
I
I
I
I Tristate 29 38
PB[10] PCR[26]
AF0
AF1
AF2
AF3
GPIO[26]
ADC1_S[6]
WKPU[8](3)
SIUL
ADC
WKPU
I/O
I
I
J Tristate 31 40
PB[11] PCR[27]
AF0
AF1
AF2
AF3
GPIO[27]
E0UC[3]
CS0_0
ADC1_S[12]
SIUL
eMIOS_0
DSPI_0
ADC
I/O
I/O
I/O
I
J Tristate 38 59
PB[12] PCR[28]
AF0
AF1
AF2
AF3
GPIO[28]
E0UC[4]
CS1_0
ADC1_X[0]
SIUL
eMIOS_0
DSPI_0
ADC
I/O
I/O
O
I
J Tristate 39 61
PB[13] PCR[29]
AF0
AF1
AF2
AF3
GPIO[29]
E0UC[5]
CS2_0
ADC1_X[1]
SIUL
eMIOS_0
DSPI_0
ADC
I/O
I/O
O
I
J Tristate 40 63
PB[14] PCR[30]
AF0
AF1
AF2
AF3
GPIO[30]
E0UC[6]
CS3_0
ADC1_X[2]
SIUL
eMIOS_0
DSPI_0
ADC
I/O
I/O
O
I
J Tristate 41 65
Table 6. Functional port pin descriptions (continued)
Port pin PCR Alternate
function(1) Function Peripheral I/O
direction(2)
Pad
type
RESET
configuration
Pin number
LQFP64 LQFP100
DS6494 Rev 8 17/82
SPC560D30x, SPC560D40x Package pinouts and signal descriptions
77
PB[15] PCR[31]
AF0
AF1
AF2
AF3
GPIO[31]
E0UC[7]
CS4_0
ADC1_X[3]
SIUL
eMIOS_0
DSPI_0
ADC
I/O
I/O
O
I
J Tristate 42 67
Port C
PC[0](6) PCR[32]
AF0
AF1
AF2
AF3
GPIO[32]
TDI
SIUL
JTAGC
I/O
I
M
Input,
weak
pull-up
59 87
PC[1](6) PCR[33]
AF0
AF1
AF2
AF3
GPIO[33]
TDO
SIUL
JTAGC
I/O
O
F Tristate 54 82
PC[2] PCR[34]
AF0
AF1
AF2
AF3
GPIO[34]
SCK_1
EIRQ[5]
SIUL
DSPI_1
SIUL
I/O
I/O
I
M Tristate 50 78
PC[3] PCR[35]
AF0
AF1
AF2
AF3
GPIO[35]
CS0_1
MA[0]
EIRQ[6]
SIUL
DSPI_1
ADC
SIUL
I/O
I/O
O
I
S Tristate 49 77
PC[4] PCR[36]
AF0
AF1
AF2
AF3
GPIO[36]
SIN_1
EIRQ[18]
SIUL
DSPI_1
SIUL
I/O
I
I
M Tristate 62 92
PC[5] PCR[37]
AF0
AF1
AF2
AF3
GPIO[37]
SOUT_1
EIRQ[7]
SIUL
DSPI_1
SIUL
I/O
O
I
M Tristate 61 91
Table 6. Functional port pin descriptions (continued)
Port pin PCR Alternate
function(1) Function Peripheral I/O
direction(2)
Pad
type
RESET
configuration
Pin number
LQFP64 LQFP100
Package pinouts and signal descriptions SPC560D30x, SPC560D40x
18/82 DS6494 Rev 8
PC[6] PCR[38]
AF0
AF1
AF2
AF3
GPIO[38]
LIN1TX
SIUL
LINFlex_1
I/O
O
S Tristate 16 25
PC[7] PCR[39]
AF0
AF1
AF2
AF3
GPIO[39]
LIN1RX
WKPU[12](3)
SIUL
LINFlex_1
WKPU
I/O
I
I
S Tristate 17 26
PC[8] PCR[40]
AF0
AF1
AF2
AF3
GPIO[40]
LIN2TX
E0UC[3]
SIUL
LINFlex_2
eMIOS_0
I/O
O
I/O
S Tristate 63 99
PC[9] PCR[41]
AF0
AF1
AF2
AF3
GPIO[41]
E0UC[7]
LIN2RX
WKPU[13](3)
SIUL
eMIOS_0
LINFlex_2
WKPU
I/O
I/O
I
I
S Tristate 2 2
PC[10] PCR[42]
AF0
AF1
AF2
AF3
GPIO[42]
MA[1]
SIUL
ADC
I/O
O
M Tristate 13 22
PC[11] PCR[43]
AF0
AF1
AF2
AF3
GPIO[43]
MA[2]
WKPU[5](3)
SIUL
ADC
WKPU
I/O
O
I
S Tristate 21
PC[12] PCR[44]
AF0
AF1
AF2
AF3
GPIO[44]
E0UC[12]
EIRQ[19]
SIUL
eMIOS_0
SIUL
I/O
I/O
I
M Tristate 97
PC[13] PCR[45]
AF0
AF1
AF2
AF3
GPIO[45]
E0UC[13]
SIUL
eMIOS_0
I/O
I/O
S Tristate 98
Table 6. Functional port pin descriptions (continued)
Port pin PCR Alternate
function(1) Function Peripheral I/O
direction(2)
Pad
type
RESET
configuration
Pin number
LQFP64 LQFP100
DS6494 Rev 8 19/82
SPC560D30x, SPC560D40x Package pinouts and signal descriptions
77
PC[14] PCR[46]
AF0
AF1
AF2
AF3
GPIO[46]
E0UC[14]
EIRQ[8]
SIUL
eMIOS_0
SIUL
I/O
I/O
I
S Tristate 3
PC[15] PCR[47]
AF0
AF1
AF2
AF3
GPIO[47]
E0UC[15]
EIRQ[20]
SIUL
eMIOS_0
SIUL
I/O
I/O
I
M Tristate 4
Port D
PD[0] PCR[48]
AF0
AF1
AF2
AF3
GPIO[48]
WKPU[27](3)
ADC1_P[4]
SIUL
WKPU
ADC
I
I
I
I Tristate 41
PD[1] PCR[49]
AF0
AF1
AF2
AF3
GPIO[49]
WKPU[28](3)
ADC1_P[5]
SIUL
WKPU
ADC
I
I
I
I Tristate 42
PD[2] PCR[50]
AF0
AF1
AF2
AF3
GPIO[50]
ADC1_P[6]
SIUL
ADC
I
I
I Tristate 43
PD[3] PCR[51]
AF0
AF1
AF2
AF3
GPIO[51]
ADC1_P[7]
SIUL
ADC
I
I
I Tristate 44
Table 6. Functional port pin descriptions (continued)
Port pin PCR Alternate
function(1) Function Peripheral I/O
direction(2)
Pad
type
RESET
configuration
Pin number
LQFP64 LQFP100
Package pinouts and signal descriptions SPC560D30x, SPC560D40x
20/82 DS6494 Rev 8
PD[4] PCR[52]
AF0
AF1
AF2
AF3
GPIO[52]
ADC1_P[8]
SIUL
ADC
I
I
I Tristate 45
PD[5] PCR[53]
AF0
AF1
AF2
AF3
GPIO[53]
ADC1_P[9]
SIUL
ADC
I
I
I Tristate 46
PD[6] PCR[54]
AF0
AF1
AF2
AF3
GPIO[54]
ADC1_P[10]
SIUL
ADC
I
I
I Tristate 47
PD[7] PCR[55]
AF0
AF1
AF2
AF3
GPIO[55]
ADC1_P[11]
SIUL
ADC
I
I
I Tristate 48
PD[8] PCR[56]
AF0
AF1
AF2
AF3
GPIO[56]
ADC1_P[12]
SIUL
ADC
I
I
I Tristate 49
PD[9] PCR[57]
AF0
AF1
AF2
AF3
GPIO[57]
ADC1_P[13]
SIUL
ADC
I
I
I Tristate 56
PD[10] PCR[58]
AF0
AF1
AF2
AF3
GPIO[58]
ADC1_P[14]
SIUL
ADC
I
I
I Tristate 57
Table 6. Functional port pin descriptions (continued)
Port pin PCR Alternate
function(1) Function Peripheral I/O
direction(2)
Pad
type
RESET
configuration
Pin number
LQFP64 LQFP100
DS6494 Rev 8 21/82
SPC560D30x, SPC560D40x Package pinouts and signal descriptions
77
PD[11] PCR[59]
AF0
AF1
AF2
AF3
GPIO[59]
ADC1_P[15]
SIUL
ADC
I
I
I Tristate 58
PD[12] PCR[60]
AF0
AF1
AF2
AF3
GPIO[60]
CS5_0
E0UC[24]
ADC1_S[8]
SIUL
DSPI_0
eMIOS_0
ADC
I/O
O
I/O
I
J Tristate 60
PD[13] PCR[61]
AF0
AF1
AF2
AF3
GPIO[61]
CS0_1
E0UC[25]
ADC1_S[9]
SIUL
DSPI_1
eMIOS_0
ADC
I/O
I/O
I/O
I
J Tristate 62
PD[14] PCR[62]
AF0
AF1
AF2
AF3
GPIO[62]
CS1_1
E0UC[26]
ADC1_S[10]
SIUL
DSPI_1
eMIOS_0
ADC
I/O
O
I/O
I
J Tristate 64
PD[15] PCR[63]
AF0
AF1
AF2
AF3
GPIO[63]
CS2_1
E0UC[27]
ADC1_S[11]
SIUL
DSPI_1
eMIOS_0
ADC
I/O
O
I/O
I
J Tristate 66
Port E
PE[0] PCR[64]
AF0
AF1
AF2
AF3
GPIO[64]
E0UC[16]
WKPU[6](3)
SIUL
eMIOS_0
WKPU
I/O
I/O
I
S Tristate 6
PE[1] PCR[65]
AF0
AF1
AF2
AF3
GPIO[65]
E0UC[17]
SIUL
eMIOS_0
I/O
I/O
M Tristate 8
Table 6. Functional port pin descriptions (continued)
Port pin PCR Alternate
function(1) Function Peripheral I/O
direction(2)
Pad
type
RESET
configuration
Pin number
LQFP64 LQFP100
Package pinouts and signal descriptions SPC560D30x, SPC560D40x
22/82 DS6494 Rev 8
PE[2] PCR[66]
AF0
AF1
AF2
AF3
GPIO[66]
E0UC[18]
EIRQ[21]
SIN_1
SIUL
eMIOS_0
SIUL
DSPI_1
I/O
I/O
I
I
M Tristate 89
PE[3] PCR[67]
AF0
AF1
AF2
AF3
GPIO[67]
E0UC[19]
SOUT_1
SIUL
eMIOS_0
DSPI_1
I/O
I/O
O
M Tristate 90
PE[4] PCR[68]
AF0
AF1
AF2
AF3
GPIO[68]
E0UC[20]
SCK_1
EIRQ[9]
SIUL
eMIOS_0
DSPI_1
SIUL
I/O
I/O
I/O
I
M Tristate 93
PE[5] PCR[69]
AF0
AF1
AF2
AF3
GPIO[69]
E0UC[21]
CS0_1
MA[2]
SIUL
eMIOS_0
DSPI_1
ADC
I/O
I/O
I/O
O
M Tristate 94
PE[6] PCR[70]
AF0
AF1
AF2
AF3
GPIO[70]
E0UC[22]
CS3_0
MA[1]
EIRQ[22]
SIUL
eMIOS_0
DSPI_0
ADC
SIUL
I/O
I/O
O
O
I
M Tristate 95
PE[7] PCR[71]
AF0
AF1
AF2
AF3
GPIO[71]
E0UC[23]
CS2_0
MA[0]
EIRQ[23]
SIUL
eMIOS_0
DSPI_0
ADC
SIUL
I/O
I/O
O
O
I
M Tristate 96
PE[8] PCR[72]
AF0
AF1
AF2
AF3
GPIO[72]
E0UC[22]
SIUL
eMIOS_0
I/O
I/O
M Tristate 9
PE[9] PCR[73]
AF0
AF1
AF2
AF3
GPIO[73]
E0UC[23]
WKPU[7](3)
SIUL
eMIOS_0
WKPU
I/O
I/O
I
S Tristate 10
Table 6. Functional port pin descriptions (continued)
Port pin PCR Alternate
function(1) Function Peripheral I/O
direction(2)
Pad
type
RESET
configuration
Pin number
LQFP64 LQFP100
DS6494 Rev 8 23/82
SPC560D30x, SPC560D40x Package pinouts and signal descriptions
77
PE[10] PCR[74]
AF0
AF1
AF2
AF3
GPIO[74]
CS3_1
EIRQ[10]
SIUL
DSPI_1
SIUL
I/O
O
I
STristate 11
PE[11] PCR[75]
AF0
AF1
AF2
AF3
GPIO[75]
E0UC[24]
CS4_1
WKPU[14](3)
SIUL
eMIOS_0
DSPI_1
WKPU
I/O
I/O
O
I
S Tristate 13
PE[12] PCR[76]
AF0
AF1
AF2
AF3
GPIO[76]
ADC1_S[7]
EIRQ[11]
SIUL
ADC
SIUL
I/O
I
I
S Tristate 76
Port H
PH[9](6) PCR[121]
AF0
AF1
AF2
AF3
GPIO[121]
TCK
SIUL
JTAGC
I/O
I
S
Input,
weak
pull-up
60 88
PH[10](6) PCR[122]
AF0
AF1
AF2
AF3
GPIO[122]
TMS
SIUL
JTAGC
I/O
I
S
Input,
weak
pull-up
53 81
1. Alternate functions are chosen by setting the values of the PCR.PA bitfields inside the SIUL module. PCR.PA = 00 ® AF0;
PCR.PA = 01 ® AF1; PCR.PA = 10 ® AF2; PCR.PA = 11 ® AF3. This is intended to select the output functions; to use one
of the input functions, the PCR.IBE bit must be written to ‘1’, regardless of the values selected in the PCR.PA bitfields. For
this reason, the value corresponding to an input only function is reported as “—”.
2. Multiple inputs are routed to all respective modules internally. The input of some modules must be configured by setting the
values of the PSMIO.PADSELx bitfields inside the SIUL module.
3. All WKPU pins also support external interrupt capability. See “wakeup unit” chapter of the device reference manual for
further details.
4. NMI has higher priority than alternate function. When NMI is selected, the PCR.AF field is ignored.
5. “Not applicable” because these functions are available only while the device is booting. Refer to “BAM” chapter of the
device reference manual for details.
6. Out of reset all the functional pins except PC[0:1] and PH[9:10] are available to the user as GPIO.
PC[0:1] are available as JTAG pins (TDI and TDO respectively).
PH[9:10] are available as JTAG pins (TCK and TMS respectively).
If the user configures these JTAG pins in GPIO mode the device is no longer compliant with IEEE 1149.1 2001.
Table 6. Functional port pin descriptions (continued)
Port pin PCR Alternate
function(1) Function Peripheral I/O
direction(2)
Pad
type
RESET
configuration
Pin number
LQFP64 LQFP100
Electrical characteristics SPC560D30x, SPC560D40x
24/82 DS6494 Rev 8
4 Electrical characteristics
4.1 Introduction
This section contains electrical characteristics of the device as well as temperature and
power considerations.
This product contains devices to protect the inputs against damage due to high static
voltages. However, it is advisable to take precautions to avoid application of any voltage
higher than the specified maximum rated voltages.
To enhance reliability, unused inputs can be driven to an appropriate logic voltage level (VDD
or VSS). This can be done by the internal pull-up or pull-down, which is provided by the
product for most general purpose pins.
The parameters listed in the following tables represent the characteristics of the device and
its demands on the system.
In the tables where the device logic provides signals with their respective timing
characteristics, the symbol “CC” for Controller Characteristics is included in the Symbol
column.
In the tables where the external system must provide signals with their respective timing
characteristics to the device, the symbol “SR” is for System Requirement is included in the
Symbol column.
4.2 Parameter classification
The electrical parameters shown in this supplement are guaranteed by various methods. To
give the customer a better understanding, the classifications listed in Table 7 are used and
the parameters are tagged accordingly in the tables where appropriate.
Note: The classification is shown in the column labeled “C” in the parameter tables where
appropriate.
Table 7. Parameter classifications
Classification tag Tag description
P Those parameters are guaranteed during production testing on each individual device.
CThose parameters are achieved by the design characterization by measuring a statistically
relevant sample size across process variations.
T
Those parameters are achieved by design characterization on a small sample size from
typical devices under typical conditions unless otherwise noted. All values shown in the typical
column are within this category.
D Those parameters are derived mainly from simulations.
DS6494 Rev 8 25/82
SPC560D30x, SPC560D40x Electrical characteristics
77
4.3 NVUSRO register
Bit values in the Non-Volatile User Options (NVUSRO) Register control portions of the
device configuration, namely electrical parameters such as high voltage supply and
oscillator margin, as well as digital functionality (watchdog enable/disable after reset).
For a detailed description of the NVUSRO register, refer to the device reference manual.
4.3.1 NVUSRO[PAD3V5V] field description
The DC electrical characteristics are dependent on the PAD3V5V bit value. Table 8 shows
how NVUSRO[PAD3V5V] controls the device configuration.
4.3.2 NVUSRO[OSCILLATOR_MARGIN] field description
The fast external crystal oscillator consumption is dependent on the
OSCILLATOR_MARGIN bit value. Table 9 shows how NVUSRO[OSCILLATOR_MARGIN]
controls the device configuration.
4.3.3 NVUSRO[WATCHDOG_EN] field description
The watchdog enable/disable configuration after reset is dependent on the
WATCHDOG_EN bit value. Ta ble 10 shows how NVUSRO[WATCHDOG_EN] controls the
device configuration.
Table 8. PAD3V5V field description
Value (1)
1. Default manufacturing value is ‘1’. Value can be programmed by customer in Shadow Flash.
Description
0 High voltage supply is 5.0 V
1 High voltage supply is 3.3 V
Table 9. OSCILLATOR_MARGIN field description
Value (1)
1. Default manufacturing value is ‘1’. Value can be programmed by customer in Shadow Flash.
Description
0 Low consumption configuration (4 MHz/8 MHz)
1 High margin configuration (4 MHz/16 MHz)
Table 10. WATCHDOG_EN field description
Value (1)
1. Default manufacturing value is ‘1’. Value can be programmed by customer in Shadow Flash.
Description
0 Disable after reset
1 Enable after reset
Electrical characteristics SPC560D30x, SPC560D40x
26/82 DS6494 Rev 8
4.4 Absolute maximum ratings
Note: Stresses exceeding the recommended absolute maximum ratings may cause permanent
damage to the device. This is a stress rating only and functional operation of the device at
these or any other conditions above those indicated in the operational sections of this
specification are not implied. Exposure to absolute maximum rating conditions for extended
periods may affect device reliability. During overload conditions (VIN >V
DD or VIN <V
SS),
the voltage on pins with respect to ground (VSS) must not exceed the recommended values.
Table 11. Absolute maximum ratings
Symbol Parameter Conditions
Value
Unit
Min Max
VSS SR Digital ground on VSS_HV pins 0 0 V
VDD SR Voltage on VDD_HV pins with respect
to ground (VSS)0.3 6.0 V
VSS_LV SR
Voltage on VSS_LV (low voltage digital
supply) pins with respect to ground
(VSS)
—V
SS 0.1 VSS +0.1 V
VDD_BV SR Voltage on VDD_BV (regulator supply)
pin with respect to ground (VSS)
0.3 6.0
V
Relative to VDD VDD 0.3 VDD +0.3
VSS_ADC SR
Voltage on VSS_HV_ADC (ADC
reference) pin with respect to ground
(VSS)
—V
SS 0.1 VSS +0.1 V
VDD_ADC SR
Voltage on VDD_HV_ADC (ADC
reference) pin with respect to ground
(VSS)
0.3 6.0
V
Relative to VDD VDD 0.3 VDD +0.3
VIN SR Voltage on any GPIO pin with respect to
ground (VSS)
0.3 6.0
V
Relative to VDD VDD 0.3 VDD +0.3
IINJPAD SR Injected input current on any pin during
overload condition 10 10 mA
IINJSUM SR Absolute sum of all injected input
currents during overload condition 50 50 mA
IAVGSEG SR Sum of all the static I/O current within a
supply segment (1)
VDD = 5.0 V ± 10%,
PAD3V5V = 0 —70
mA
VDD = 3.3 V ± 10%,
PAD3V5V = 1 —64
ICORELV SR Low voltage static current sink through
VDD_BV ——150mA
TSTORAGE SR Storage temperature 55 150 °C
1. Supply segments are described in Section 4.7.5: I/O pad current specification.
DS6494 Rev 8 27/82
SPC560D30x, SPC560D40x Electrical characteristics
77
4.5 Recommended operating conditions
Table 12. Recommended operating conditions (3.3 V)
Symbol C Parameter Conditions
Value
Unit
Min Max
VSS SR Digital ground on VSS_HV pins 0 0 V
VDD(1) SR Voltage on VDD_HV pins with respect
to ground (VSS)—3.03.6V
VSS_LV(2) SR
Voltage on VSS_LV (low voltage digital
supply) pins with respect to ground
(VSS)
—V
SS 0.1 VSS +0.1 V
VDD_BV(3) SR Voltage on VDD_BV pin (regulator
supply) with respect to ground (VSS)
—3.03.6
V
Relative to VDD VDD 0.1 VDD +0.1
VSS_ADC SR
Voltage on VSS_HV_ADC (ADC
reference) pin with respect to ground
(VSS)
—V
SS 0.1 VSS +0.1 V
VDD_ADC(4) SR Voltage on VDD_HV_ADC pin (ADC
reference) with respect to ground (VSS)
—3.0
(5) 3.6
V
Relative to VDD VDD 0.1 VDD +0.1
VIN SR Voltage on any GPIO pin with respect to
ground (VSS)
—V
SS 0.1
V
Relative to VDD —V
DD +0.1
IINJPAD SR Injected input current on any pin during
overload condition 55mA
IINJSUM SR Absolute sum of all injected input
currents during overload condition 50 50 mA
TVDD SR VDD slope to ensure correct power up(6) —3.0
(7)
250 x 103
(0.25
[V/µs])
V/s
1. 100 nF capacitance needs to be provided between each VDD/VSS pair.
2. 330 nF capacitance needs to be provided between each VDD_LV/VSS_LV supply pair.
3. 470 nF capacitance needs to be provided between VDD_BV and the nearest VSS_LV (higher value may be needed
depending on external regulator characteristics).
4. 100 nF capacitance needs to be provided between VDD_ADC/VSS_ADC pair.
5. Full electrical specification cannot be guaranteed when voltage drops below 3.0 V. In particular, ADC electrical
characteristics and I/Os DC electrical specification may not be guaranteed. When voltage drops below VLVDHVL, device is
reset.
6. Guaranteed by device validation.
7. Minimum value of TVDD must be guaranteed until VDD reaches 2.6 V (maximum value of VPORH).
Electrical characteristics SPC560D30x, SPC560D40x
28/82 DS6494 Rev 8
Note: SRAM data retention is guaranteed with VDD_LV not below 1.08 V.
Table 13. Recommended operating conditions (5.0 V)
Symbol C Parameter Conditions
Value
Unit
Min Max
VSS SR Digital ground on VSS_HV pins 0 0 V
VDD(1) SR Voltage on VDD_HV pins with respect to
ground (VSS)
—4.55.5
V
Voltage drop(2) 3.0 5.5
VSS_LV(3) SR Voltage on VSS_LV (low voltage digital
supply) pins with respect to ground (VSS)—V
SS 0.1 VSS +0.1 V
VDD_BV(4) SR Voltage on VDD_BV pin (regulator
supply) with respect to ground (VSS)
—4.55.5
VVoltage drop(2) 3.0 5.5
Relative to VDD VDD 0.1 VDD +0.1
VSS_ADC SR
Voltage on VSS_HV_ADC (ADC
reference) pin with respect to ground
(VSS
—V
SS 0.1 VSS +0.1 V
VDD_ADC(5) SR Voltage on VDD_HV_ADC pin (ADC
reference) with respect to ground (VSS)
—4.55.5
VVoltage drop(2) 3.0 5.5
Relative to VDD VDD 0.1 VDD +0.1
VIN SR Voltage on any GPIO pin with respect to
ground (VSS)
—V
SS 0.1
V
Relative to VDD —V
DD +0.1
IINJPAD SR Injected input current on any pin during
overload condition 55mA
IINJSUM SR Absolute sum of all injected input
currents during overload condition 50 50 mA
TVDD SR VDD slope to ensure correct power up(6) —3.0
(7)
250 x 103
(0.25
[V/ µs])
V/ s
1. 100 nF capacitance needs to be provided between each VDD/VSS pair.
2. Full device operation is guaranteed by design when the voltage drops below 4.5 V down to 3.6 V. However, certain analog
electrical characteristics will not be guaranteed to stay within the stated limits.
3. 330 nF capacitance needs to be provided between each VDD_LV/VSS_LV supply pair.
4. 470 nF capacitance needs to be provided between VDD_BV and the nearest VSS_LV (higher value may be needed
depending on external regulator characteristics).
5. 100 nF capacitance needs to be provided between VDD_ADC/VSS_ADC pair.
6. Guaranteed by device validation.
7. Minimum value of TVDD must be guaranteed until VDD reaches 2.6 V (maximum value of VPORH).
DS6494 Rev 8 29/82
SPC560D30x, SPC560D40x Electrical characteristics
77
4.6 Thermal characteristics
4.6.1 Package thermal characteristics
Note: Thermal characteristics are targets based on simulation that are subject to change per
device characterization.
4.6.2 Power considerations
The average chip-junction temperature, TJ, in degrees Celsius, may be calculated using
Equation 1:
Table 14. LQFP thermal characteristics
Symbol C Parameter Conditions(1) Value Unit
RJA CC D Thermal resistance, junction-to-
ambient natural convection(2)
Single-layer board —1s
LQFP64 72.1
°C/W
LQFP100 65.2
Four-layer board — 2s2p
LQFP64 57.3
LQFP100 51.8
RJB CC D Thermal resistance, junction-to-
board(3) Four-layer board — 2s2p
LQFP64 44.1
°C/W
LQFP100 41.3
RJC CC D Thermal resistance, junction-to-case(4)
Single-layer board — 1s
LQFP64 26.5
°C/W
LQFP100 23.9
Four-layer board — 2s2p
LQFP64 26.2
LQFP100 23.7
JB CC D
Junction-to-board thermal
characterization parameter, natural
convection
Single-layer board — 1s
LQFP64 41
°C/W
LQFP100 41.6
Four-layer board — 2s2p
LQFP64 43
LQFP100 43.4
JC CC D
Junction-to-case thermal
characterization parameter, natural
convection
Single-layer board — 1s
LQFP64 11.5
°C/W
LQFP100 10.4
Four-layer board — 2s2p
LQFP64 11.1
LQFP100 10.2
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = –40 to 125 °C
2. Junction-to-ambient thermal resistance determined per JEDEC JESD51-3 and JESD51-7. Thermal test board meets
JEDEC specification for this package. When Greek letters are not available, the symbols are typed as RthJA.
3. Junction-to-board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC specification for
the specified package. When Greek letters are not available, the symbols are typed as RthJB.
4. Junction-to-case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is
used for the case temperature. Reported value includes the thermal resistance of the interface layer. When Greek letters
are not available, the symbols are typed as RthJC.
Electrical characteristics SPC560D30x, SPC560D40x
30/82 DS6494 Rev 8
Equation 1 TJ = TA + (PD x RJA)
Where:
TA is the ambient temperature in °C.
RJA is the package junction-to-ambient thermal resistance, in °C/W.
PD is the sum of PINT and PI/O (PD = PINT + PI/O).
PINT is the product of IDD and VDD, expressed in watts. This is the chip internal
power.
PI/O represents the power dissipation on input and output pins; user determined.
Most of the time for the applications, PI/O< PINT and may be neglected. On the other hand,
PI/O may be significant, if the device is configured to continuously drive external modules
and/or memories.
An approximate relationship between PD and TJ (if PI/O is neglected) is given by:
Equation 2 PD = K / (TJ + 273 °C)
Therefore, solving equations 1 and 2:
Equation 3 K = PD x (TA + 273 °C) + RJA x PD2
Where:
K is a constant for the particular part, which may be determined from Equation 3
by measuring PD (at equilibrium) for a known TA. Using this value of K, the values
of PD and TJ may be obtained by solving equations 1 and 2 iteratively for any
value of TA.
4.7 I/O pad electrical characteristics
4.7.1 I/O pad types
The device provides four main I/O pad types depending on the associated alternate
functions:
Slow pads — These pads are the most common pads, providing a good compromise
between transition time and low electromagnetic emission.
Medium pads — These pads provide transition fast enough for the serial
communication channels with controlled current to reduce electromagnetic emission.
Input only pads — These pads are associated to ADC channels (ADC_P[X]) providing
low input leakage.
Medium pads can use slow configuration to reduce electromagnetic emission except for
PC[1], that is medium only, at the cost of reducing AC performance.
4.7.2 I/O input DC characteristics
Table 15 provides input DC electrical characteristics as described in Figure 4.
DS6494 Rev 8 31/82
SPC560D30x, SPC560D40x Electrical characteristics
77
Figure 4. Input DC electrical characteristics definition
VIL
VIN
VIH
PDIx = ‘1’
VDD
VHYS
(GPDI register of SIUL)
PDIx = ‘0’
Table 15. I/O input DC electrical characteristics
Symbol C Parameter Conditions(1) Value
Unit
Min Typ Max
VIH SR P Input high level CMOS
(Schmitt Trigger) —0.65V
DD —V
DD+0.4 V
VIL SR P Input low level CMOS (Schmitt
Trigger) 0.4 0.35VDD V
VHYS CC C Input hysteresis CMOS
(Schmitt Trigger) —0.1V
DD ——V
ILKG CC
D
Digital input leakage
No injection
on adjacent
pin
TA=40 °C 2 200
nA
DT
A= 25 °C 2 200
DT
A= 85 °C 5 300
DT
A= 105 °C 12 500
PT
A= 125 °C 70 1000
WFI(2) SR P Digital input filtered pulse 40 ns
WNFI(2) SR P Digital input not filtered pulse 1000 ns
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
2. In the range from 40 to 1000 ns, pulses can be filtered or not filtered, according to the operating temperature and voltage.
Electrical characteristics SPC560D30x, SPC560D40x
32/82 DS6494 Rev 8
4.7.3 I/O output DC characteristics
The following tables provide DC characteristics for bidirectional pads:
Table 16 provides weak pull figures. Both pull-up and pull-down resistances are
supported.
Table 17 provides output driver characteristics for I/O pads when in SLOW
configuration.
Table 18 provides output driver characteristics for I/O pads when in MEDIUM
configuration.
Table 16. I/O pull-up/pull-down DC electrical characteristics
Symbol C Parameter Conditions(1) Value
Unit
Min Typ Max
|IWPU|CC
P
Weak pull-up current
absolute value
VIN = VIL, VDD = 5.0 V ± 10%
PAD3V5V = 0 10 150
µAC PAD3V5V = 1(2) 10 250
PV
IN = VIL, VDD = 3.3 V ± 10% PAD3V5V = 1 10 150
|IWPD|CC
P
Weak pull-down current
absolute value
VIN = VIH, VDD = 5.0 V ± 10%
PAD3V5V = 0 10 150
µAC PAD3V5V = 1(2) 10 250
PV
IN = VIH, VDD = 3.3 V ± 10% PAD3V5V = 1 10 150
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
2. The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but RESET are
configured in input or in high impedance state.
Table 17. SLOW configuration output buffer electrical characteristics
Symbol C Parameter Conditions(1) Value
Unit
Min Typ Max
VOH CC
P
Output high
level
SLOW
configuration
Push Pull
IOH = 2mA,
VDD = 5.0 V ± 10%, PAD3V5V = 0
(recommended)
0.8VDD ——
VC IOH = 2mA,
VDD = 5.0 V ± 10%, PAD3V5V = 1(2) 0.8VDD ——
C
IOH = 1mA,
VDD = 3.3 V ± 10%, PAD3V5V = 1
(recommended)
VDD 0.8
VOL CC
P
Output low
level
SLOW
configuration
Push Pull
IOL = 2 mA,
VDD = 5.0 V ± 10%, PAD3V5V = 0
(recommended)
0.1VDD
VC IOL = 2 mA,
VDD = 5.0 V ± 10%, PAD3V5V = 1(2) 0.1VDD
C
IOL = 1 mA,
VDD = 3.3 V ± 10%, PAD3V5V = 1
(recommended)
——0.5
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
DS6494 Rev 8 33/82
SPC560D30x, SPC560D40x Electrical characteristics
77
2. The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but RESET are
configured in input or in high impedance state.
Table 18. MEDIUM configuration output buffer electrical characteristics
Symbol C Parameter Conditions(1) Value
Unit
Min Typ Max
VOH CC
C
Output high
level
MEDIUM
configuration
Push
Pull
IOH = 3.8 mA,
VDD = 5.0 V ± 10%, PAD3V5V = 0 0.8VDD ——
V
P
IOH = 2mA,
VDD = 5.0 V ± 10%, PAD3V5V = 0
(recommended)
0.8VDD ——
CIOH = 1mA,
VDD = 5.0 V ± 10%, PAD3V5V = 1(2) 0.8VDD ——
C
IOH = 1mA,
VDD = 3.3 V ± 10%, PAD3V5V = 1
(recommended)
VDD 0.8
CIOH = 100 µA,
VDD = 5.0 V ± 10%, PAD3V5V = 0 0.8VDD ——
VOL CC
C
Output low
level
MEDIUM
configuration
Push
Pull
IOL = 3.8 mA,
VDD = 5.0 V ± 10%, PAD3V5V = 0 0.2VDD
V
P
IOL = 2 mA,
VDD = 5.0 V ± 10%, PAD3V5V = 0
(recommended)
0.1VDD
CIOL = 1 mA,
VDD = 5.0 V ± 10%, PAD3V5V = 1(2) 0.1VDD
C
IOL = 1 mA,
VDD = 3.3 V ± 10%, PAD3V5V = 1
(recommended)
——0.5
CIOL = 100 µA,
VDD = 5.0 V ± 10%, PAD3V5V = 0 0.1VDD
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
2. The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but RESET are
configured in input or in high impedance state.
Electrical characteristics SPC560D30x, SPC560D40x
34/82 DS6494 Rev 8
4.7.4 Output pin transition times
4.7.5 I/O pad current specification
The I/O pads are distributed across the I/O supply segment. Each I/O supply segment is
associated to a VDD/VSS supply pair as described in Table 20.
Table 21 provides I/O consumption figures.
In order to ensure device reliability, the average current of the I/O on a single segment
should remain below the IAVGSEG maximum value.
Table 19. Output pin transition times
Symbol C Parameter Conditions(1) Value
Unit
Min Typ Max
ttr CC
D
Output transition
time output pin(2)
SLOW
configuration
CL = 25 pF
VDD = 5.0 V ± 10%, PAD3V5V = 0
——50
ns
TC
L = 50 pF 100
DC
L = 100 pF 125
DC
L = 25 pF
VDD = 3.3 V ± 10%, PAD3V5V = 1
——50
TC
L = 50 pF 100
DC
L = 100 pF 125
ttr CC
D
Output transition
time output pin(2)
MEDIUM
configuration
CL = 25 pF
VDD = 5.0 V ± 10%, PAD3V5V = 0
SIUL.PCRx.SRC = 1
——10
ns
TC
L = 50 pF 20
DC
L = 100 pF 40
DC
L = 25 pF
VDD = 3.3 V ± 10%, PAD3V5V = 1
SIUL.PCRx.SRC = 1
——12
TC
L = 50 pF 25
DC
L = 100 pF 40
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
2. CL includes device and package capacitances (CPKG < 5 pF).
Table 20. I/O supply segment
Package
Supply segment
1234
LQFP100 pin 16 – pin 35 pin 37 – pin 69 pin 70 – pin 83 pin 84 – pin 15
LQFP64 pin 8 – pin 26 pin 28 – pin 55 pin 56 – pin 7
DS6494 Rev 8 35/82
SPC560D30x, SPC560D40x Electrical characteristics
77
Table 22 provides the weight of concurrent switching I/Os.
In order to ensure device functionality, the sum of the weight of concurrent switching I/Os on
a single segment should remain below 100%.
Table 21. I/O consumption
Symbol C Parameter Conditions(1) Value
Unit
Min Typ Max
ISWTSLW(2) CC D
Dynamic I/O current
for SLOW
configuration
CL = 25 pF
VDD = 5.0 V ± 10%,
PAD3V5V = 0 ——20
mA
VDD = 3.3 V ± 10%,
PAD3V5V = 1 ——16
ISWTMED(2) CC D
Dynamic I/O current
for MEDIUM
configuration
CL = 25 pF
VDD = 5.0 V ± 10%,
PAD3V5V = 0 ——29
mA
VDD = 3.3 V ± 10%,
PAD3V5V = 1 ——17
IRMSSLW CC D
Root mean square
I/O current for
SLOW configuration
CL = 25 pF, 2 MHz
VDD = 5.0 V ± 10%,
PAD3V5V = 0
——2.3
mA
CL = 25 pF, 4 MHz 3.2
CL = 100 pF, 2 MHz 6.6
CL = 25 pF, 2 MHz
VDD = 3.3 V ± 10%,
PAD3V5V = 1
——1.6
CL = 25 pF, 4 MHz 2.3
CL = 100 pF, 2 MHz 4.7
IRMSMED CC D
Root mean square
I/O current for
MEDIUM
configuration
CL = 25 pF, 13 MHz
VDD = 5.0 V ± 10%,
PAD3V5V = 0
——6.6
mA
CL = 25 pF, 40 MHz 13.4
CL = 100 pF, 13 MHz 18.3
CL = 25 pF, 13 MHz
VDD = 3.3 V ± 10%,
PAD3V5V = 1
—— 5
CL = 25 pF, 40 MHz 8.5
CL = 100 pF, 13 MHz 11
IAVGSEG SR D
Sum of all the static
I/O current within a
supply segment
VDD = 5.0 V ± 10%, PAD3V5V = 0 70
mA
VDD = 3.3 V ± 10%, PAD3V5V = 1 65
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
2. Stated maximum values represent peak consumption that lasts only a few ns during I/O transition.
Table 22. I/O weight
Pad
LQFP100/LQFP64
Weight 5 V Weight 3.3 V
SRC(1)= 0 SRC = 1 SRC = 0 SRC = 1
PB[3] 9% 9% 10% 10%
PC[9] 8% 8% 10% 10%
Electrical characteristics SPC560D30x, SPC560D40x
36/82 DS6494 Rev 8
PC[14] 8% 8% 10% 10%
PC[15] 8% 11% 9% 10%
PA[2]8%8%9%9%
PE[0] 7% 7% 9% 9%
PA[1]7%7%8%8%
PE[1] 7% 10% 8% 8%
PE[8] 6% 9% 8% 8%
PE[9] 6% 6% 7% 7%
PE[10] 6% 6% 7% 7%
PA[0]5%7%6%7%
PE[11]5%5%6%6%
PC[11] 7% 7% 9% 9%
PC[10] 8% 11% 9% 10%
PB[0] 8% 11% 9% 10%
PB[1] 8% 8% 10% 10%
PC[6] 8% 8% 10% 10%
PC[7] 8% 8% 10% 10%
PA[15] 8% 11% 9% 10%
PA[14] 7% 11% 9% 9%
PA[4]7%7%8%8%
PA[13] 7% 10% 8% 9%
PA[12] 7% 7% 8% 8%
PB[9] 1% 1% 1% 1%
PB[8] 1% 1% 1% 1%
PB[10] 5% 5% 6% 6%
PD[0]1%1%1%1%
PD[1]1%1%1%1%
PD[2]1%1%1%1%
PD[3]1%1%1%1%
PD[4]1%1%1%1%
PD[5]1%1%1%1%
PD[6]1%1%1%1%
Table 22. I/O weight (continued)
Pad
LQFP100/LQFP64
Weight 5 V Weight 3.3 V
SRC(1)= 0 SRC = 1 SRC = 0 SRC = 1
DS6494 Rev 8 37/82
SPC560D30x, SPC560D40x Electrical characteristics
77
PD[7]1%1%1%1%
PD[8]1%1%1%1%
PB[4] 1% 1% 1% 1%
PB[5] 1% 1% 1% 1%
PB[6] 1% 1% 1% 1%
PB[7] 1% 1% 1% 1%
PD[9]1%1%1%1%
PD[10] 1% 1% 1% 1%
PD[11] 1% 1% 1% 1%
PB[11] 9% 9% 11% 11%
PD[12] 8% 8% 10% 10%
PB[12] 8% 8% 10% 10%
PD[13] 8% 8% 9% 9%
PB[13] 8% 8% 9% 9%
PD[14] 7% 7% 9% 9%
PB[14] 7% 7% 8% 8%
PD[15] 7% 7% 8% 8%
PB[15] 6% 6% 7% 7%
PA[3]6%6%7%7%
PA[7]4%4%5%5%
PA[8]4%4%5%5%
PA[9]4%4%5%5%
PA[10] 5% 5% 6% 6%
PA[11] 5% 5% 6% 6%
PE[12] 5% 5% 6% 6%
PC[3]5%5%6%6%
PC[2]5%7%6%6%
PA[5]5%6%5%6%
PA[6]4%4%5%5%
PC[1] 5% 17% 4% 12%
PC[0]6%9%7%8%
PE[2] 7% 10% 8% 9%
Table 22. I/O weight (continued)
Pad
LQFP100/LQFP64
Weight 5 V Weight 3.3 V
SRC(1)= 0 SRC = 1 SRC = 0 SRC = 1
Electrical characteristics SPC560D30x, SPC560D40x
38/82 DS6494 Rev 8
Note: VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = -40 to 125 °C, unless otherwise specified.
4.8 RESET electrical characteristics
The device implements a dedicated bidirectional RESET pin.
Figure 5. Start-up reset requirements
PE[3] 7% 10% 9% 9%
PC[5] 8% 11% 9% 10%
PC[4] 8% 11% 9% 10%
PE[4] 8% 12% 10% 10%
PE[5] 8% 12% 10% 11%
PE[6] 9% 12% 10% 11%
PE[7] 9% 12% 10% 11%
PC[12] 9% 13% 11% 11%
PC[13] 9% 9% 11% 11%
PC[8] 9% 9% 11% 11%
PB[2] 9% 13% 11% 12%
1. SRC: “Slew Rate Control” bit in SIU_PCR
Table 22. I/O weight (continued)
Pad
LQFP100/LQFP64
Weight 5 V Weight 3.3 V
SRC(1)= 0 SRC = 1 SRC = 0 SRC = 1
VIL
VDD
device reset forced by RESET
VDDMIN
RESET
VIH
device start-up phase
DS6494 Rev 8 39/82
SPC560D30x, SPC560D40x Electrical characteristics
77
Figure 6. Noise filtering on reset signal
VRESET
VIL
VIH
VDD
filtered by
hysteresis
filtered by
lowpass filter
WFRST
WNFRST
hw_rst
‘1’
‘0’
filtered by
lowpass filter
WFRST
unknown reset
state device under hardware reset
Table 23. Reset electrical characteristics
Symbol C Parameter Conditions(1) Value
Unit
Min Typ Max
VIH SR P
Input High Level
CMOS (Schmitt
Trigger)
0.65VDD —V
DD +0.4 V
VIL SR P
Input low Level
CMOS (Schmitt
Trigger)
0.4 0.35VDD V
VHYS CC C
Input hysteresis
CMOS (Schmitt
Trigger)
—0.1V
DD ——V
VOL CC P Output low level
Push Pull, IOL = 2 mA,
VDD = 5.0 V ± 10%, PAD3V5V = 0
(recommended)
——0.1V
DD
V
Push Pull, IOL = 1 mA,
VDD = 5.0 V ± 10%,
PAD3V5V = 1(2)
——0.1V
DD
Push Pull, IOL = 1 mA,
VDD = 3.3 V ± 10%, PAD3V5V = 1
(recommended)
——0.5
Electrical characteristics SPC560D30x, SPC560D40x
40/82 DS6494 Rev 8
4.9 Power management electrical characteristics
4.9.1 Voltage regulator electrical characteristics
The device implements an internal voltage regulator to generate the low voltage core supply
VDD_LV from the high voltage ballast supply VDD_BV. The regulator itself is supplied by the
common I/O supply VDD. The following supplies are involved:
HV: High voltage external power supply for voltage regulator module. This must be
provided externally through VDD power pin.
BV: High voltage external power supply for internal ballast module. This must be
provided externally through VDD_BV power pin. Voltage values should be aligned with
VDD.
LV: Low voltage internal power supply for core, FMPLL and flash digital logic. This is
generated by the internal voltage regulator but provided outside to connect stability
ttr CC D
Output transition
time output pin(3)
MEDIUM
configuration
CL = 25 pF,
VDD = 5.0 V ± 10%, PAD3V5V = 0 —— 10
ns
CL = 50 pF,
VDD = 5.0 V ± 10%, PAD3V5V = 0 —— 20
CL = 100 pF,
VDD = 5.0 V ± 10%, PAD3V5V = 0 —— 40
CL = 25 pF,
VDD = 3.3 V ± 10%, PAD3V5V = 1 —— 12
CL = 50 pF,
VDD = 3.3 V ± 10%, PAD3V5V = 1 —— 25
CL = 100 pF,
VDD = 3.3 V ± 10%, PAD3V5V = 1 —— 40
WFRST SR P RESET input filtered
pulse ——40ns
WNFRST SR P RESET input not
filtered pulse 1000 ns
|IWPU|CCP
Weak pull-up current
absolute value
VDD = 3.3 V ± 10%, PAD3V5V = 1 10 150
µA
VDD = 5.0 V ± 10%, PAD3V5V = 0 10 150
VDD = 5.0 V ± 10%,
PAD3V5V = 1(4) 10 250
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
2. This is a transient configuration during power-up, up to the end of reset PHASE2 (refer to RGM module section of the
device reference manual).
3. CL includes device and package capacitance (CPKG <5pF).
4. The configuration PAD3V5 = 1 when VDD = 5 V is only transient configuration during power-up. All pads but RESET are
configured in input or in high impedance state.
Table 23. Reset electrical characteristics (continued)
Symbol C Parameter Conditions(1) Value
Unit
Min Typ Max
DS6494 Rev 8 41/82
SPC560D30x, SPC560D40x Electrical characteristics
77
capacitor. It is further split into four main domains to ensure noise isolation between
critical LV modules within the device:
LV_COR: Low voltage supply for the core. It is also used to provide supply for
FMPLL through double bonding.
LV_CFLA: Low voltage supply for code flash module. It is supplied with dedicated
ballast and shorted to LV_COR through double bonding.
LV_DFLA: Low voltage supply for data flash module. It is supplied with dedicated
ballast and shorted to LV_COR through double bonding.
LV_PLL: Low voltage supply for FMPLL. It is shorted to LV_COR through double
bonding.
Figure 7. Voltage regulator capacitance connection
The internal voltage regulator requires external capacitance (CREGn) to be connected to the
device in order to provide a stable low voltage digital supply to the device. Capacitances
should be placed on the board as near as possible to the associated pins. Care should also
be taken to limit the serial inductance of the board to less than 5 nH.
Each decoupling capacitor must be placed between each of the three VDD_LV/VSS_LV supply
pairs to ensure stable voltage (see Section 4.5: Recommended operating conditions).
CREG1 (LV_COR/LV_DFLA)
DEVICE
VSS_LV
VDD_BV
VDD_LV
CDEC1 (Ballast decoupling)
VSS_LV VDD_LV VDD
VSS_LV VDD_LV
CREG2 (LV_COR/LV_CFLA)
CREG3 CDEC2
DEVICE
VDD_BV
I
VDD_LVn
VREF
VDD
Voltage Regulator
VSS
VSS_LVn
(supply/IO decoupling)(LV_COR/LV_PLL)
Electrical characteristics SPC560D30x, SPC560D40x
42/82 DS6494 Rev 8
Table 24. Voltage regulator electrical characteristics
Symbol C Parameter Conditions(1) Value
Unit
Min Typ Max
CREGn SR Internal voltage regulator
external capacitance 200 500 nF
RREG SR Stability capacitor equivalent
serial resistance
Range:
10 kHz to 20 MHz ——0.2W
CDEC1 SR Decoupling capacitance(2)
ballast
VDD_BV/VSS_LV pair:
VDD_BV = 4.5 V to 5.5 V 100(3)
470(4)
nF
VDD_BV/VSS_LV pair:
VDD_BV = 3 V to 3.6 V 400
CDEC2 SR Decoupling capacitance
regulator supply VDD/VSS pair 10 100 nF
VMREG CC
T
Main regulator output voltage
Before exiting from
reset 1.32
V
PAfter trimming 1.16 1.28
IMREG SR Main regulator current provided
to VDD_LV domain ——150 mA
IMREGINT CC DMain regulator module current
consumption
IMREG = 200 mA 2
mA
IMREG = 0 mA 1
VLPREG CC PLow-power regulator output
voltage After trimming 1.16 1.28 V
ILPREG SR Low power regulator current
provided to VDD_LV domain ——
15 mA
ILPREGINT CC
D
Low-power regulator module
current consumption
ILPREG = 15 mA;
TA = 55°C ——
600
µA
ILPREG = 0 mA;
TA = 55°C 5
VULPREG CC PUltra low power regulator output
voltage After trimming 1.16 1.28 V
IULPREG SR Ultra low power regulator current
provided to VDD_LV domain ——5mA
IULPREGINT CC DUltra low power regulator module
current consumption
IULPREG = 5 mA;
TA = 55°C ——
100
µA
IULPREG = 0 mA;
TA = 55 °C 2
IDD_BV CC DIn-rush average current on
VDD_BV during power-up(5) ——300(6) mA
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
2. This capacitance value is driven by the constraints of the external voltage regulator supplying the VDD_BV voltage. A typical
value is in the range of 470 nF.
3. This value is acceptable to guarantee operation from 4.5 V to 5.5 V.
DS6494 Rev 8 43/82
SPC560D30x, SPC560D40x Electrical characteristics
77
4.9.2 Low voltage detector electrical characteristics
The device implements a power-on reset (POR) module to ensure correct power-up
initialization, as well as five low voltage detectors (LVDs) to monitor the VDD and the VDD_LV
voltage while device is supplied:
POR monitors VDD during the power-up phase to ensure device is maintained in a safe
reset state (refer to RGM Destructive Event Status (RGM_DES) Register flag F_POR
in device reference manual)
LVDHV3 monitors VDD to ensure device reset below minimum functional supply (refer
to RGM Destructive Event Status (RGM_DES) Register flag F_LVD27 in device
reference manual)
LVDHV3B monitors VDD_BV to ensure device reset below minimum functional supply
(refer to RGM Destructive Event Status (RGM_DES) Register flag F_LVD27_VREG in
device reference manual)
LVDHV5 monitors VDD when application uses device in the 5.0 V ± 10% range (refer to
RGM Functional Event Status (RGM_FES) Register flag F_LVD45 in device reference
manual)
LVDLVCOR monitors power domain No. 1 (refer to RGM Destructive Event Status
(RGM_DES) Register flag F_LVD12_PD1 in device reference manual)
LVDLVBKP monitors power domain No. 0 (refer to RGM Destructive Event Status
(RGM_DES) Register flag F_LVD12_PD0 in device reference manual)
Figure 8. Low voltage detector vs reset
4. External regulator and capacitance circuitry must be capable of providing IDD_BV while maintaining supply VDD_BV in
operating range.
5. In-rush average current is seen only for short time during power-up and on standby exit (maximum 20 µs, depending on
external capacitances to be loaded).
6. The duration of the in-rush current depends on the capacitance placed on LV pins. BV decoupling capacitors must be sized
accordingly. Refer to IMREG value for minimum amount of current to be provided in cc.
VDD
VLVDHVxH
RESET
VLVDH VxL
Electrical characteristics SPC560D30x, SPC560D40x
44/82 DS6494 Rev 8
4.10 Power consumption
Table 26 provides DC electrical characteristics for significant application modes. These
values are indicative values; actual consumption depends on the application.
Table 25. Low voltage detector electrical characteristics
Symbol C Parameter Conditions(1) Value
Unit
Min Typ Max
VPORUP SR P Supply for functional POR module
TA = 25 °C,
after trimming
1.0 5.5 V
VPORH CC P Power-on reset threshold 1.5 2.6 V
VLVDHV3H CC T LVDHV3 low voltage detector high threshold 2.95 V
VLVDHV3L CC P LVDHV3 low voltage detector low threshold 2.6 2.9 V
VLVDHV3BH CC P LVDHV3B low voltage detector high
threshold 2.95 V
VLVDHV3BL CC P LVDHV3B low voltage detector low threshold 2.6 2.9 V
VLVDHV5H CC T LVDHV5 low voltage detector high threshold 4.5 V
VLVDHV5L CC P LVDHV5 low voltage detector low threshold 3.8 4.4 V
VLVDLVCORL CC P LVDLVCOR low voltage detector low
threshold 1.08 1.16 V
VLVDLVBKPL CC P LVDLVBKP low voltage detector low
threshold 1.08 1.16 V
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
Table 26. Power consumption on VDD_BV and VDD_HV
Symbol C Parameter Conditions(1) Value
Unit
Min Typ Max
IDDMAX(2) CC D RUN mode maximum
average current ——90130
(3) mA
IDDRUN(4) CC
T
RUN mode typical
average current(5)
fCPU = 8 MHz 7
mA
Tf
CPU = 16 MHz 18
Tf
CPU = 32 MHz 29
Pf
CPU = 48 MHz 40 100
IDDHALT CC
C
HALT mode current(6)
Slow internal RC
oscillator (128 kHz)
running
TA=2C 8 15
mA
PT
A=12C 14 25
IDDSTOP CC
P
STOP mode current(7)
Slow internal RC
oscillator (128 kHz)
running
TA=2C 180 700
(8)
µA
DT
A=5C 500
DT
A=8C 1 6
(8)
mADT
A=10C 2 9
(8)
PT
A= 125 °C 4.5 12(8)
DS6494 Rev 8 45/82
SPC560D30x, SPC560D40x Electrical characteristics
77
4.11 Flash memory electrical characteristics
The data flash operation depends strongly on the code flash operation. If code flash is
switched-off, the data flash is disabled.
4.11.1 Program/Erase characteristics
Table 27 shows the program and erase characteristics.
IDDSTDBY CC
P
STANDBY mode
current(9)
Slow internal RC
oscillator (128 kHz)
running
TA= 25 °C 30 100
µA
DT
A=5C 75
DT
A= 85 °C 180 700
DT
A= 105 °C 315 1000
PT
A= 125 °C 560 1700
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
2. Running consumption does not include I/Os toggling which is highly dependent on the application. The given value is
thought to be a worst case value with all peripherals running, and code fetched from code flash while modify operation
ongoing on data flash. Notice that this value can be significantly reduced by application: switch off not used peripherals
(default), reduce peripheral frequency through internal prescaler, fetch from RAM most used functions, use low power
mode when possible.
3. Higher current may be sinked by device during power-up and standby exit. Refer to in-rush average current on Table 24.
4. RUN current measured with typical application with accesses on both flash memory and SRAM.
5. Only for the “P” classification: Code fetched from SRAM: serial IPs CAN and LIN in loop-back mode, DSPI as Master, PLL
as system clock (3 × Multiplier) peripherals on (eMIOS/CTU/ADC) and running at maximum frequency, periodic SW/WDG
timer reset enabled.
6. Data flash power down. Code flash in low power. SIRC (128 kHz) and FIRC (16 MHz) on. 10 MHz XTAL clock. FlexCAN: 0
ON (clocked but no reception or transmission). LINFlex: instances: 0, 1, 2 ON (clocked but no reception or transmission),
instance: 3 clocks gated. eMIOS: instance: 0 ON (16 channels on PA[0]–PA[11] and PC[12]–PC[15]) with PWM 20 kHz,
instance: 1 clock gated. DSPI: instance: 0 (clocked but no communication). RTC/API ON.PIT ON. STM ON. ADC ON but
no conversion except 2 analog watchdogs.
7. Only for the “P” classification: No clock, FIRC (16 MHz) off, SIRC (128 kHz) on, PLL off, HPVreg off, ULPVreg/LPVreg on.
All possible peripherals off and clock gated. Flash in power down mode.
8. When going from RUN to STOP mode and the core consumption is > 6 mA, it is normal operation for the main regulator
module to be kept on by the on-chip current monitoring circuit. This is most likely to occur with junction temperatures
exceeding 125°C and under these circumstances, it is possible for the current to initially exceed the maximum STOP
specification by up to 2 mA. After entering stop, the application junction temperature will reduce to the ambient level and
the main regulator will be automatically switched off when the load current is below 6 mA.
9. Only for the “P” classification: ULPVreg on, HP/LPVreg off, 16 KB SRAM on, device configured for minimum consumption,
all possible modules switched off.
Table 26. Power consumption on VDD_BV and VDD_HV (continued)
Symbol C Parameter Conditions(1) Value
Unit
Min Typ Max
Table 27. Program and erase specifications (code flash)
Symbol C Parameter
Value
Unit
Min Typ(1) Initial
max(2) Max(3)
tdwprogram CC C Double word (64-bits) program time(4) 22 50 500 µs
t16Kpperase CC C 16 KB block preprogram and erase time 300 500 5000 ms
Electrical characteristics SPC560D30x, SPC560D40x
46/82 DS6494 Rev 8
t32Kpperase CC C 32 KB block preprogram and erase time 400 600 5000 ms
t128Kpperase CC C 128 KB block preprogram and erase time 800 1300 7500 ms
tesus CC C Erase suspend latency 30 30 µs
1. Typical program and erase times assume nominal supply values and operation at 25 °C. All times are subject to change
pending device characterization.
2. Initial factory condition: < 100 program/erase cycles, 25 °C, typical supply voltage.
3. The maximum program and erase times occur after the specified number of program/erase cycles. These maximum values
are characterized but not guaranteed.
4. Actual hardware programming times. This does not include software overhead.
Table 27. Program and erase specifications (code flash) (continued)
Symbol C Parameter
Value
Unit
Min Typ(1) Initial
max(2) Max(3)
Table 28. Program and erase specifications (data flash)
Symbol C Parameter
Value
Unit
Min Typ(1) Initial
max(2) Max(3)
tswprogram CC C Single word (32-bits) program time(4) 30 70 300 µs
t16Kpperase CC C 16 KB block preprogram and erase time 700 800 1500 ms
tBank_D CC C 64 KB block preprogram and erase time 1900 2300 4800 ms
1. Typical program and erase times assume nominal supply values and operation at 25 °C. All times are subject to change
pending device characterization.
2. Initial factory condition: < 100 program/erase cycles, 25 °C, typical supply voltage.
3. The maximum program and erase times occur after the specified number of program/erase cycles. These maximum values
are characterized but not guaranteed.
4. Actual hardware programming times. This does not include software overhead.
Table 29. Flash module life
Symbol C Parameter Conditions
Value
Unit
Min Typ Max
P/E CC C
Number of program/erase
cycles per block over the
operating temperature range
(TJ)
16 KB blocks 100000 cycles
32 KB blocks 10000 100000 cycles
128 KB blocks 1000 100000 cycles
Retention CC C
Minimum data retention at
85 °C average ambient
temperature(1)
Blocks with
0–1000 P/E cycles 20
years
Blocks with
1001–10000 P/E cycles 10
Blocks with
10001–100000 P/E
cycles
5—
DS6494 Rev 8 47/82
SPC560D30x, SPC560D40x Electrical characteristics
77
ECC circuitry provides correction of single bit faults and is used to improve further
automotive reliability results. Some units will experience single bit corrections throughout
the life of the product with no impact to product reliability.
4.11.2 Flash power supply DC characteristics
Table 31 shows the power supply DC characteristics on external supply.
Note: Power supply for data flash is actually provided by code flash; this means that data flash
cannot work if code flash is not powered.
1. Ambient temperature averaged over application duration. It is recommended not to exceed the product operating
temperature range.
Table 30. Flash memory read access timing
Symbol C Parameter Conditions(1) Max Unit
fCFREAD CC
PMaximum working frequency for reading code flash memory at
given number of wait states in worst conditions
2 wait states 48
MHz
C 0 wait states 20
fDFREAD CC P Maximum working frequency for reading data flash memory at given
number of wait states in worst conditions 6 wait states 48 MHz
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
Table 31. Flash power supply DC electrical characteristics
Symbol C Parameter Conditions(1) Value
Unit
Min Typ Max
ICFREAD CC D Sum of the current consumption
on VDDHV and VDDBV on read
access
Flash module read
fCPU = 48 MHz
Code flash 33 mA
IDFREAD CC D Data flash 4 mA
ICFMOD CC D Sum of the current consumption
on VDDHV and VDDBV on matrix
modification (program/erase)
Program/Erase on-going
while reading flash
registers, fCPU = 48 MHz
Code flash 33 mA
IDFMOD CC D Data flash 6 mA
IFLPW CC D
Sum of the current consumption
on VDDHV and VDDBV during
flash low-power mode
Code flash 910 µA
ICFPWD CC D Sum of the current consumption
on VDDHV and VDDBV during
flash power-down mode
Code flash 125 µA
IDFPWD CC D Data flash 25 µA
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
Electrical characteristics SPC560D30x, SPC560D40x
48/82 DS6494 Rev 8
4.11.3 Start-up/Switch-off timings
4.12 Electromagnetic compatibility (EMC) characteristics
Susceptibility tests are performed on a sample basis during product characterization.
4.12.1 Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user apply EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Software recommendations The software flowchart must include the management of
runaway conditions such as:
Corrupted program counter
Unexpected reset
Critical data corruption (control registers...)
Prequalification trials Most of the common failures (unexpected reset and program
counter corruption) can be reproduced by manually forcing a low state on the reset pin
or the oscillator pins for 1 second.
To complete these trials, ESD stress can be applied directly on the device. When
unexpected behavior is detected, the software can be hardened to prevent
unrecoverable errors occurring (see the application note Software Techniques For
Improving Microcontroller EMC Performance (AN1015)).
Table 32. Start-up time/Switch-off time
Symbol C Parameter Conditions(1) Value
Unit
Min Typ Max
tFLARSTEXIT CC T Delay for flash module to exit reset mode
Code flash 125 µs
Data flash 150 µs
tFLALPEXIT CC T Delay for flash module to exit low-power
mode(2) Code flash 0.5 µs
tFLAPDEXIT CC T Delay for flash module to exit power-
down mode
Code flash 30 µs
Data flash 30(3) µs
tFLALPENTRY CC T Delay for flash module to enter low-
power mode Code flash 0.5 µs
tFLAPDENTRY CC T Delay for flash module to enter
power-down mode
Code flash 1.5 µs
Data flash 4(3) µs
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
2. Data flash does not support low-power mode.
3. If code flash is already switched-on.
DS6494 Rev 8 49/82
SPC560D30x, SPC560D40x Electrical characteristics
77
4.12.2 Electromagnetic interference (EMI)
The product is monitored in terms of emission based on a typical application. This emission
test conforms to the IEC 61967-1 standard, which specifies the general conditions for EMI
measurements.
Note: EMI testing and I/O port waveforms per IEC 61967-1, -2, -4
For information on conducted emission and susceptibility measurement (norm IEC 61967-
4), please contact your local marketing representative.
4.12.3 Absolute maximum ratings (electrical sensitivity)
Based on two different tests (ESD and LU) using specific measurement methods, the
product is stressed in order to determine its performance in terms of electrical sensitivity.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to the each pin combination. The sample size
depends on the number of supply pins in the device (3 parts × (n + 1) supply pin). This test
conforms to the AEC-Q100-002/-003/-011 standard. For more details, refer to the
application note Electrostatic Discharge Sensitivity Measurement (AN1181).
Table 33. EMI radiated emission measurement
Symbol C Parameter Conditions
Value
Unit
Min Typ Max
SR Scan range 0.150 1000 MHz
fCPU SR Operating frequency 48 MHz
VDD_LV SR LV operating
voltages 1.28 V
SEMI CC T Peak level
VDD = 5V, T
A=2C,
LQFP100 package
Test conforming to IEC 61967-
2, fOSC = 8 MHz/fCPU = 48 MHz
No PLL
frequency
modulation
18 dBµV
± 2% PLL
frequency
modulation
14 dBµV
Table 34. ESD absolute maximum ratings
Symbol C Ratings Conditions Class Max value
Unit
VESD(HBM) CC T Electrostatic discharge voltage
(Human Body Model)
TA = 25 °C
conforming to AEC-Q100-002 H1C 2000 V
VESD(MM) CC T Electrostatic discharge voltage
(Machine Model)
TA = 25 °C
conforming to AEC-Q100-003 M2 200 V
VESD(CDM) CC T Electrostatic discharge voltage
(Charged Device Model)
TA = 25 °C
conforming to AEC-Q100-011 C3A
500 V
750 (corners) V
Electrical characteristics SPC560D30x, SPC560D40x
50/82 DS6494 Rev 8
Note: All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for
Automotive Grade Integrated Circuits.
A device will be defined as a failure if after exposure to ESD pulses the device no longer
meets the device specification requirements. Complete DC parametric and functional
testing shall be performed per applicable device specification at room temperature followed
by hot temperature, unless specified otherwise in the device specification.
Static latch-up (LU)
Two complementary static tests are required on six parts to assess the latch-up
performance:
A supply overvoltage is applied to each power supply pin.
A current injection is applied to each input, output and configurable I/O pin.
These tests are compliant with the EIA/JESD 78 IC latch-up standard.
4.13 Fast external crystal oscillator (4 to 16 MHz) electrical
characteristics
The device provides an oscillator/resonator driver. Figure 9 describes a simple model of the
internal oscillator driver and provides an example of a connection for an oscillator or a
resonator.
Table 36 provides the parameter description of 4 MHz to 16 MHz crystals used for the
design simulations.
Table 35. Latch-up results
Symbol C Parameter Conditions Class
LU CC T Static latch-up class TA = 125 °C
conforming to JESD 78 II level A
DS6494 Rev 8 51/82
SPC560D30x, SPC560D40x Electrical characteristics
77
Figure 9. Crystal oscillator and resonator connection scheme
C2
C1
Crystal
XTAL
EXTAL
Resonator
XTAL
EXTAL
DEVICE
DEVICE
DEVICE
XTAL
EXTAL
I
R
VDD
2. A series resistor may be required, according to the crystal oscillator supplier recommendations.
1. XTAL/EXTAL must not be directly used to drive external circuits
Notes:
Table 36. Crystal description
Nominal
frequency
(MHz)
NDK
crystal
reference
Crystal
equivalent
series
resistance
(ESR)
Crystal
motional
capacitance
(Cm) fF
Crystal
motional
inductance
(Lm) mH
Load on
xtalin/xtalout
C1=C
2 (pF)(1)
Shunt
capacitance
between
xtalout and
xtalin
C0(2) (pF)
4 NX8045GB 300 2.68 591.0 21 2.93
8
NX5032GA
300 2.46 160.7 17 3.01
10 150 2.93 86.6 15 2.91
12 120 3.11 56.5 15 2.93
16 120 3.90 25.3 10 3.00
1. The values specified for C1 and C2 are the same as used in simulations. It should be ensured that the testing includes all
the parasitics (from the board, probe, crystal, etc.) as the AC / transient behavior depends upon them.
2. The value of C0 specified here includes 2 pF additional capacitance for parasitics (to be seen with bond-pads, package,
etc.).
Electrical characteristics SPC560D30x, SPC560D40x
52/82 DS6494 Rev 8
Figure 10. Fast external crystal oscillator (4 to 16 MHz) timing diagram
VFXOSCOP
TFXOSCSU
VXTAL
VFXOSC
valid internal clock
90%
10%
1/fFXOSC
S_MTRANS bit (ME_GS register)
‘1’
‘0’
Table 37. Fast external crystal oscillator (4 to 16 MHz) electrical characteristics
Symbol C Parameter Conditions(1) Value
Unit
Min Typ Max
fFXOSC SR Fast external crystal
oscillator frequency —4.016.0MHz
gmFXOSC
CC C
Fast external crystal
oscillator
transconductance
VDD = 3.3 V ± 10%,
PAD3V5V = 1
OSCILLATOR_MARGIN = 0
2.2 8.2
mA/V
CC P
VDD = 5.0 V ± 10%,
PAD3V5V = 0
OSCILLATOR_MARGIN = 0
2.0 7.4
CC C
VDD = 3.3 V ± 10%,
PAD3V5V = 1
OSCILLATOR_MARGIN = 1
2.7 9.7
CC C
VDD = 5.0 V ± 10%,
PAD3V5V = 0
OSCILLATOR_MARGIN = 1
2.5 9.2
VFXOSC CC T Oscillation amplitude at
EXTAL
fOSC = 4 MHz,
OSCILLATOR_MARGIN = 0 1.3
V
fOSC = 16 MHz,
OSCILLATOR_MARGIN = 1 1.3
VFXOSCOP CC P Oscillation operating
point ——0.95V
IFXOSC(2) CC T Fast external crystal
oscillator consumption ——23mA
DS6494 Rev 8 53/82
SPC560D30x, SPC560D40x Electrical characteristics
77
4.14 FMPLL electrical characteristics
The device provides a frequency-modulated phase-locked loop (FMPLL) module to
generate a fast system clock from the main oscillator driver.
tFXOSCSU CC T Fast external crystal
oscillator start-up time
fOSC = 4 MHz,
OSCILLATOR_MARGIN = 0 —— 6
ms
fOSC = 16 MHz,
OSCILLATOR_MARGIN = 1 ——1.8
VIH SR P Input high level CMOS
(Schmitt Trigger) Oscillator bypass mode 0.65VDD —V
DD+0.4 V
VIL SR P Input low level CMOS
(Schmitt Trigger) Oscillator bypass mode 0.4 0.35VDD V
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
2. Stated values take into account only analog module consumption but not the digital contributor (clock tree and enabled
peripherals).
Table 37. Fast external crystal oscillator (4 to 16 MHz) electrical characteristics (continued)
Symbol C Parameter Conditions(1) Value
Unit
Min Typ Max
Table 38. FMPLL electrical characteristics
Symbol C Parameter Conditions(1) Value
Unit
Min Typ Max
fPLLIN SR FMPLL reference clock(2) —448MHz
PLLIN SR FMPLL reference clock duty
cycle(2) —4060%
fPLLOUT CC D FMPLL output clock frequency 16 48 MHz
fVCO(3) CC P
VCO frequency without
frequency modulation —256512
MHz
VCO frequency with
frequency modulation —245533
fCPU SR System clock frequency 48 MHz
fFREE CC P Free-running frequency 20 150 MHz
tLOCK CC P FMPLL lock time Stable oscillator (fPLLIN = 16 MHz) 40 100 µs
tLTJIT CC FMPLL long term jitter fPLLIN = 16 MHz (resonator),
fPLLCLK at 48 MHz, 4000 cycles 10 ns
IPLL CC C FMPLL consumption TA = 25 °C 4 mA
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
2. PLLIN clock retrieved directly from FXOSC clock. Input characteristics are granted when oscillator is used in functional
mode. When bypass mode is used, oscillator input clock should verify fPLLIN and PLLIN.
3. Frequency modulation is considered ±4%.
Electrical characteristics SPC560D30x, SPC560D40x
54/82 DS6494 Rev 8
4.15 Fast internal RC oscillator (16 MHz) electrical characteristics
The device provides a 16 MHz fast internal RC oscillator (FIRC). This is used as the default
clock at the power-up of the device.
4.16 Slow internal RC oscillator (128 kHz) electrical
characteristics
The device provides a 128 kHz slow internal RC oscillator (SIRC). This can be used as the
reference clock for the RTC module.
Table 39. Fast internal RC oscillator (16 MHz) electrical characteristics
Symbol C Parameter Conditions(1) Value
Unit
Min Typ Max
fFIRC
CC P Fast internal RC oscillator high
frequency
TA = 25 °C, trimmed 16
MHz
SR 12 20
IFIRCRUN(2) CC T
Fast internal RC oscillator high
frequency current in running
mode
TA = 25 °C, trimmed 200 µA
IFIRCPWD CC D
Fast internal RC oscillator high
frequency current in power
down mode
TA = 25 °C 10 µA
IFIRCSTOP CC T
Fast internal RC oscillator high
frequency and system clock
current in stop mode
TA = 25 °C
sysclk = off 500
µA
sysclk = 2 MHz 600
sysclk = 4 MHz 700
sysclk = 8 MHz 900
sysclk = 16 MHz 1250
tFIRCSU CC C Fast internal RC oscillator
start-up time VDD = 5.0 V ± 10% 1.1 2.0 µs
FIRCPRE CC C
Fast internal RC oscillator
precision after software
trimming of fFIRC
TA = 25 °C 1— 1%
FIRCTRIM CC C Fast internal RC oscillator
trimming step TA = 25 °C 1.6 %
FIRCVAR CC C
Fast internal RC oscillator
variation in temperature and
supply with respect to fFIRC at
TA= 55°C in high-frequency
configuration
5— 5%
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
2. This does not include consumption linked to clock tree toggling and peripherals consumption when RC oscillator is ON.
DS6494 Rev 8 55/82
SPC560D30x, SPC560D40x Electrical characteristics
77
4.17 ADC electrical characteristics
4.17.1 Introduction
The device provides a 12-bit Successive Approximation Register (SAR) analog-to-digital
converter.
Table 40. Slow internal RC oscillator (128 kHz) electrical characteristics
Symbol C Parameter Conditions(1) Value
Unit
Min Typ Max
fSIRC
CC P Slow internal RC oscillator low
frequency
TA = 25 °C, trimmed 128
kHz
SR 100 150
ISIRC(2) CC C Slow internal RC oscillator low
frequency current TA = 25 °C, trimmed 5 µA
tSIRCSU CC P Slow internal RC oscillator start-
up time TA = 25 °C, VDD = 5.0 V±10% 8 12 µs
SIRCPRE CC C
Slow internal RC oscillator
precision after software trimming
of fSIRC
TA = 25 °C 2— 2
%
SIRCTRIM CC C Slow internal RC oscillator
trimming step ——2.7
SIRCVAR CC P
Slow internal RC oscillator
variation in temperature and
supply with respect to fSIRC at
TA= 55°C in high frequency
configuration
High frequency configuration 10 10 %
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
2. This does not include consumption linked to clock tree toggling and peripherals consumption when RC oscillator is ON.
Electrical characteristics SPC560D30x, SPC560D40x
56/82 DS6494 Rev 8
Figure 11. ADC characteristics and error definitions
4.17.2 Input impedance and ADC accuracy
In the following analysis, the input circuit corresponding to the precise channels is
considered.
To preserve the accuracy of the A/D converter, it is necessary that analog input pins have
low AC impedance. Placing a capacitor with good high frequency characteristics at the input
pin of the device can be effective: the capacitor should be as large as possible, ideally
infinite. This capacitor contributes to attenuating the noise present on the input pin;
furthermore, it sources charge during the sampling phase, when the analog signal source is
a high-impedance source.
A real filter can typically be obtained by using a series resistance with a capacitor on the
input pin (simple RC filter). The RC filtering may be limited according to the value of source
(2)
(1)
(3)
(4)
(5)
Offset Error (EO)
Offset Error (EO)
Gain Error (EG)
1 LSB (ideal)
1023
1022
1021
1020
1019
1018
5
4
3
2
1
0
7
6
1 2 3 4 5 6 7 1017 1018 1019 1020 1021 1022 1023
(1) Example of an actual transfer curve
(2) The ideal transfer curve
(3) Differential non-linearity error (DNL)
(4) Integral non-linearity error (INL)
(5) Center of a step of the actual transfer curve
1 LSB ideal = VDD_ADC / 1024
Vin(A) (LSBideal)
code out
DS6494 Rev 8 57/82
SPC560D30x, SPC560D40x Electrical characteristics
77
impedance of the transducer or circuit supplying the analog signal to be measured. The filter
at the input pins must be designed taking into account the dynamic characteristics of the
input signal (bandwidth) and the equivalent input impedance of the ADC itself.
In fact a current sink contributor is represented by the charge sharing effects with the
sampling capacitance: being CS and Cp2 substantially two switched capacitances, with a
frequency equal to the conversion rate of the ADC, it can be seen as a resistive path to
ground. For instance, assuming a conversion rate of 1 MHz, with CS+Cp2 equal to 3 pF, a
resistance of 330 k is obtained (REQ = 1 / (fc×(C
S+Cp2)), where fc represents the
conversion rate at the considered channel). To minimize the error induced by the voltage
partitioning between this resistance (sampled voltage on CS+Cp2) and the sum of RS + RF
,
the external circuit must be designed to respect the Equation 4:
Equation 4
Equation 4 generates a constraint for external network design, in particular on a resistive
path.
Figure 12. Input equivalent circuit (precise channels)
VA
RSRF
+
REQ
---------------------
1
2
---LSB
RF
CF
RSRLRSW1
CP2 CS
VDD
Sampling
Source Filter Current Limiter
EXTERNAL CIRCUIT INTERNAL CIRCUIT SCHEME
CP1
RAD
Channel
Selection
VA
RS: Source impedance
RF: Filter resistance
CF: Filter capacitance
RL: Current limiter resistance
RSW1: Channel selection switch impedance
RAD: Sampling switch impedance
CP: Pin capacitance (two contributions, CP1 and CP2)
CS: Sampling capacitance
Electrical characteristics SPC560D30x, SPC560D40x
58/82 DS6494 Rev 8
Figure 13. Input equivalent circuit (extended channels)
A second aspect involving the capacitance network shall be considered. Assuming the three
capacitances CF
, CP1 and CP2 are initially charged at the source voltage VA (refer to the
equivalent circuit in Figure 13): A charge sharing phenomenon is installed when the
sampling phase is started (A/D switch close).
Figure 14. Transient behavior during sampling phase
In particular two different transient periods can be distinguished:
R
F
C
F
R
S
R
L
R
SW1
C
P3
C
S
V
DD
Sampling
Source Filter Current Limiter
EXTERNAL CIRCUIT INTERNAL CIRCUIT SCHEME
C
P1
R
AD
Channel
Selection
V
A
C
P2
Extended
R
SW2
Switch
RS: Source impedance
RF: Filter resistance
CF: Filter capacitance
RL: Current limiter resistance
RSW1: Channel selection switch impedance (two contributions, RSW1 and RSW2)
RAD: Sampling switch impedance
CP: Pin capacitance (two contributions, CP1, CP2 and CP3)
CS: Sampling capacitance
VA
VA1
VA2
t
ts
VCS Voltage transient on CS
V <0.5 LSB
12
1 < (RSW + RAD) CS << ts
2
= R
L
(C
S
+ C
P1
+ C
P2
)
DS6494 Rev 8 59/82
SPC560D30x, SPC560D40x Electrical characteristics
77
1. A first and quick charge transfer from the internal capacitance CP1 and CP2 to the
sampling capacitance CS occurs (CS is supposed initially completely discharged):
considering a worst case (since the time constant in reality would be faster) in which
CP2 is reported in parallel to CP1 (call CP = CP1 + CP2), the two capacitances CP and
CS are in series, and the time constant is
Equation 5
Equation 5 can again be simplified considering only CS as an additional worst
condition. In reality, the transient is faster, but the A/D converter circuitry has been
designed to be robust also in the very worst case: the sampling time ts is always much
longer than the internal time constant:
Equation 6
The charge of CP1 and CP2 is redistributed also on CS, determining a new value of the
voltage VA1 on the capacitance according to the Equation 7:
Equation 7
2. A second charge transfer involves also CF (that is typically bigger than the on-chip
capacitance) through the resistance RL: again considering the worst case in which CP2
and CS were in parallel to CP1 (since the time constant in reality would be faster), the
time constant is:
Equation 8
In this case, the time constant depends on the external circuit: in particular imposing
that the transient is completed well before the end of sampling time ts, a constraints on
RL sizing is obtained:
Equation 9
Of course, RL shall be sized also according to the current limitation constraints, in
combination with RS (source impedance) and RF (filter resistance). Being CF
definitively bigger than CP1, CP2 and CS, then the final voltage VA2 (at the end of the
charge transfer transient) will be much higher than VA1. Equation 10 must be respected
(charge balance assuming now CS already charged at VA1):
1RSW RAD
+=
CPCS
CPCS
+
----------------------
1RSW RAD
+CSts
«
VA1 CSCP1 CP2
++VACP1 CP2
+=
2RL
CSCP1 CP2
++
10 2
10 RLCSCP1 CP2
++=ts
Electrical characteristics SPC560D30x, SPC560D40x
60/82 DS6494 Rev 8
Equation 10
The two transients above are not influenced by the voltage source that, due to the presence
of the RFCF filter, is not able to provide the extra charge to compensate the voltage drop on
CS with respect to the ideal source VA; the time constant RFCF of the filter is very high with
respect to the sampling time (ts). The filter is typically designed to act as anti-aliasing.
Figure 15. Spectral representation of input signal
Calling f0 the bandwidth of the source signal (and as a consequence the cut-off frequency of
the anti-aliasing filter, fF), according to the Nyquist theorem the conversion rate fC must be
at least 2f0; it means that the constant time of the filter is greater than or at least equal to
twice the conversion period (tc). Again the conversion period tc is longer than the sampling
time ts, which is just a portion of it, even when fixed channel continuous conversion mode is
selected (fastest conversion rate at a specific channel): in conclusion it is evident that the
time constant of the filter RFCF is definitively much higher than the sampling time ts, so the
charge level on CS cannot be modified by the analog signal source during the time in which
the sampling switch is closed.
The considerations above lead to impose new constraints on the external circuit, to reduce
the accuracy error due to the voltage drop on CS; from the two charge balance equations
above, it is simple to derive Equation 11 between the ideal and real sampled voltage on CS:
Equation 11
From this formula, in the worst case (when VA is maximum, that is for instance 5 V),
assuming to accept a maximum error of half a count, a constraint is evident on CF value:
Equation 12
VA2 CSCP1 CP2 CF
+++VACF
VA1
+C
P1 CP2
+C
S
+=
f0f
Analog source bandwidth (VA)
f0f
Sampled signal spectrum (fC = conversion rate)
fC
f
Anti-aliasing filter (fF = RC filter pole)
fF
2 f0<fC (Nyquist)
fF = f0 (anti-aliasing filtering condition)
tc<2 RFCF (conversion rate vs. filter pole)
Noise
CF2048 CS
DS6494 Rev 8 61/82
SPC560D30x, SPC560D40x Electrical characteristics
77
4.17.3 ADC electrical characteristics
Table 41. ADC input leakage current
Symbol C Parameter Conditions
Value
Unit
Min Typ Max
ILKG CC
C
Input leakage current
TA=40 °C
No current injection on adjacent
pin
—1—
nA
CT
A=2C 1
CT
A= 105 °C 8 200
PT
A=12C 45 400
Table 42. ADC conversion characteristics
Symbol C Parameter Conditions(1) Value
Unit
Min Typ Max
VSS_ADC SR
Voltage on
VSS_HV_ADC
(ADC reference) pin
with respect to
ground (VSS)(2)
0.1 0.1 V
VDD_ADC SR
Voltage on
VDD_HV_ADC pin
(ADC reference)
with respect to
ground (VSS)
—V
DD 0.1 VDD +0.1 V
VAINx SR Analog input
voltage(3) —V
SS_ADC 0.1 VDD_ADC +0.1 V
fADC SR ADC analog
frequency
VDD =5.0V 3.33 32 + 4%
MHz
VDD =3.3V 3.33 20 + 4%
ADC_SYS SR ADC clock duty
cycle (ipg_clk) ADCLKSEL = 1(4) 45 —55 %
tADC_PU SR ADC power up
delay ——1.5 µs
tsCC
TSampling time(5)
VDD = 3.3 V
fADC = 20 MHz,
INPSAMP = 12 600 ns
fADC = 3.33 MHz,
INPSAMP = 255 ——76.2µs
TSampling time(5)
VDD = 5.0 V
fADC = 24 MHz,
INPSAMP = 13 500 ns
fADC = 3.33 MHz,
INPSAMP = 255 ——76.2µs
Electrical characteristics SPC560D30x, SPC560D40x
62/82 DS6494 Rev 8
tcCC
PConversion time(6)
VDD = 3.3 V
fADC = 20 MHz,
INPCMP = 0 2.4
µs
fADC = 13.33 MHz,
INPCMP = 0 ——3.6
PConversion time(6)
VDD = 5.0 V
fADC = 32 MHz,
INPCMP = 0 1.5
µs
fADC = 13.33 MHz,
INPCMP = 0 ——3.6
CSCC DADC input sampling
capacitance 5pF
CP1 CC DADC input pin
capacitance 1 3pF
CP2 CC DADC input pin
capacitance 2 1 pF
CP3 CC DADC input pin
capacitance 3 1.5 pF
RSW1 CC DInternal resistance
of analog source ——
1 k
RSW2 CC DInternal resistance
of analog source ——2 k
RAD CC DInternal resistance
of analog source ——
0.3 k
IINJ SR Input current
injection
Current
injection
on one
ADC
input,
different
from the
converte
d one
VDD =
3.3 V ± 10% 5— 5
mA
VDD =
5.0 V ± 10% 5 5
INLP CC T
Absolute integral
non-linearity-precise
channels
No overload —13LSB
INLX CC T
Absolute integral
non-linearity-
extended channels
No overload —1.5 5 LSB
DNL CC TAbsolute differential
non-linearity No overload —0.5 1 LSB
EO CC TAbsolute offset error —2LSB
EGCC TAbsolute gain error —2LSB
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
Table 42. ADC conversion characteristics (continued)
Symbol C Parameter Conditions(1) Value
Unit
Min Typ Max
DS6494 Rev 8 63/82
SPC560D30x, SPC560D40x Electrical characteristics
77
4.18 On-chip peripherals
4.18.1 Current consumption
2. Analog and digital VSS must be common (to be tied together externally).
3. VAINx may exceed VSS_ADC and VDD_ADC limits, remaining on absolute maximum ratings, but the results of the conversion
will be clamped respectively to 0x000 or 0xFFF.
4. Duty cycle is ensured by using system clock without prescaling. When ADCLKSEL = 0, the duty cycle is ensured by internal
divider by 2.
5. During the sampling time the input capacitance CS can be charged/discharged by the external source. The internal
resistance of the analog source must allow the capacitance to reach its final voltage level within tS. After the end of the
sampling time tS, changes of the analog input voltage have no effect on the conversion result. Values for the sample clock
tS depend on programming.
6. This parameter does not include the sampling time tS, but only the time for determining the digital result and the time to load
the result’s register with the conversion result.
Table 43. On-chip peripherals current consumption
Symbol C Parameter Conditions Typical value(1) Unit
IDD_BV(CAN) CC T
CAN (FlexCAN)
supply current on
VDD_BV
500 Kbyte/s Total (static + dynamic)
consumption:
FlexCAN in loop-back
mode
XTAL at 8 MHz used as
CAN engine clock source
Message sending period
is 580 µs
8×f
periph + 85 µA
125 Kbyte/s 8 × fperiph + 27 µA
IDD_BV(eMIOS) CC T eMIOS supply
current on VDD_BV
Static consumption:
eMIOS channel OFF
Global prescaler enabled
29 × fperiph µA
Dynamic consumption:
It does not change varying the
frequency (0.003 mA)
A
IDD_BV(SCI) CC T SCI (LINFlex) supply
current on VDD_BV
Total (static + dynamic) consumption:
–LIN mode
Baudrate: 20 Kbyte/s
5×f
periph + 31 µA
IDD_BV(SPI) CC T SPI (DSPI) supply
current on VDD_BV
Ballast static consumption (only clocked) 1 µA
Ballast dynamic consumption
(continuous communication):
Baudrate: 2 Mbit/s
Transmission every 8 µs
Frame: 16-bits
16 × fperiph µA
IDD_BV(ADC) CC T ADC supply current
on VDD_BV
VDD = 5.5 V
Ballast static consumption
(no conversion) 41 × fperiph µA
Ballast dynamic
consumption (continuous
conversion)(2)
5×f
periph µA
Electrical characteristics SPC560D30x, SPC560D40x
64/82 DS6494 Rev 8
Note: Operating conditions: TA = 25 °C, fperiph = 8 MHz to 48 MHz
4.18.2 DSPI characteristics
IDD_HV_ADC(ADC) CC T ADC supply current
on VDD_HV_ADC
VDD = 5.5 V
Analog static consumption
(no conversion) 2×f
periph µA
Analog dynamic
consumption (continuous
conversion)
75 × fperiph + 32 µA
IDD_HV(FLASH) CC T
CFlash + DFlash
supply current on
VDD_HV
VDD = 5.5 V 8.21 mA
IDD_HV(PLL) CC T PLL supply current
on VDD_HV
VDD = 5.5 V 30 × fperiph µA
1. fperiph is an absolute value.
2. During the conversion, the total current consumption is given from the sum of the static and dynamic consumption, i.e.,
(41 + 5) × fperiph.
Table 43. On-chip peripherals current consumption (continued)
Symbol C Parameter Conditions Typical value(1) Unit
Table 44. DSPI characteristics
No. Symbol C Parameter
DSPI0/DSPI1
Unit
Min Typ Max
1t
SCK SR
D
SCK cycle time
Master mode
(MTFE = 0) 125
ns
DSlave mode
(MTFE = 0) 125
DMaster mode
(MTFE = 1) 83
DSlave mode
(MTFE = 1) 83
—f
DSPI SR D DSPI digital controller frequency fCPU MHz
tCSC CC D
Internal delay between pad
associated to SCK and pad
associated to CSn in master
mode
Master mode 130(1) ns
tASC CC D
Internal delay between pad
associated to SCK and pad
associated to CSn in master
mode for CSn11
Master mode 130(1) ns
2t
CSCext(2) SR D CS to SCK delay Slave mode 32 ns
3t
ASCext(3) SR D After SCK delay Slave mode 1/fDSPI + 5 ns
4t
SDC
CC D
SCK duty cycle
Master mode tSCK/2
ns
SR D Slave mode tSCK/2
DS6494 Rev 8 65/82
SPC560D30x, SPC560D40x Electrical characteristics
77
5t
ASR D Slave access time 1/fDSPI +70 ns
6t
DI SR D Slave SOUT disable time 7 ns
7t
PCSC SR D PCSx to PCSS time 0 ns
8t
PASC SR D PCSS to PCSx time 0 ns
9t
SUI SR D Data setup time for inputs
Master mode 43
ns
Slave mode 5
10 tHI SR D Data hold time for inputs
Master mode 0
ns
Slave mode 2(4) ——
11 tSUO(5) CC D Data valid after SCK edge
Master mode 32
ns
Slave mode 52
12 tHO(5) CC D Data hold time for outputs
Master mode 0
ns
Slave mode 8
1. Maximum is reached when CSn pad is configured as SLOW pad while SCK pad is configured as MEDIUM pad.
2. The tCSC delay value is configurable through a register. When configuring tCSC (using PCSSCK and CSSCK fields in
DSPI_CTARx registers), delay between internal CS and internal SCK must be higher than tCSC to ensure positive tCSCext.
3. The tASC delay value is configurable through a register. When configuring tASC (using PASC and ASC fields in
DSPI_CTARx registers), delay between internal CS and internal SCK must be higher than tASC to ensure positive tASCext.
4. This delay value corresponds to SMPL_PT = 00b which is bit field 9 and 8 of DSPI_MCR.
5. SCK and SOUT configured as MEDIUM pad.
Note: Operating conditions: COUT = 10 to 50 pF, SlewIN = 3.5 to 15 ns
Table 44. DSPI characteristics (continued)
No. Symbol C Parameter
DSPI0/DSPI1
Unit
Min Typ Max
Electrical characteristics SPC560D30x, SPC560D40x
66/82 DS6494 Rev 8
Figure 16. DSPI classic SPI timing – master, CPHA = 0
Data Last Data
First Data
First Data Data Last Data
SIN
SOUT
PCSx
SCK Output
4
9
12
1
11
10
4
SCK Output
(CPOL = 0)
(CPOL = 1)
3
2
Note: Numbers shown reference Table 44.
DS6494 Rev 8 67/82
SPC560D30x, SPC560D40x Electrical characteristics
77
Figure 17. DSPI classic SPI timing – master, CPHA = 1
Figure 18. DSPI classic SPI timing – slave, CPHA = 0
Data Last Data
First Data
SIN
SOUT
12 11
10
Last Data
Data
First Data
SCK Output
SCK Output
PCSx
9
(CPOL = 0)
(CPOL = 1)
Note: Numbers shown reference Table 44.
Last Data
First Data
3
4
1
Data
Data
SIN
SOUT
SS
4
5 6
9
11
10
12
SCK Input
First Data Last Data
SCK Input
2
(CPOL = 0)
(CPOL = 1)
Note: Numbers shown reference Table 44.
Electrical characteristics SPC560D30x, SPC560D40x
68/82 DS6494 Rev 8
Figure 19. DSPI classic SPI timing – slave, CPHA = 1
Figure 20. DSPI modified transfer format timing – master, CPHA = 0
5 6
9
12
11
10
Last Data
Last Data
SIN
SOUT
SS
First Data
First Data
Data
Data
SCK Input
SCK Input
(CPOL = 0)
(CPOL = 1)
Note: Numbers shown reference Table 44.
PCSx
3
1
4
10
4
9
12 11
SCK Output
SCK Output
SIN
SOUT
First Data Data Last Data
First Data Data Last Data
2
(CPOL = 0)
(CPOL = 1)
Note: Numbers shown reference Table 44.
DS6494 Rev 8 69/82
SPC560D30x, SPC560D40x Electrical characteristics
77
Figure 21. DSPI modified transfer format timing – master, CPHA = 1
Figure 22. DSPI modified transfer format timing – slave, CPHA = 0
PCSx
10
9
12 11
SCK Output
SCK Output
SIN
SOUT
First Data Data Last Data
First Data Data Last Data
(CPOL = 0)
(CPOL = 1)
Note: Numbers shown reference Table 44.
Last Data
First Data
3
4
1
Data
Data
SIN
SOUT
SS
4
5 6
9
11
10
SCK Input
First Data Last Data
SCK Input
2
(CPOL = 0)
(CPOL = 1)
12
Note: Numbers shown reference Table 44.
Electrical characteristics SPC560D30x, SPC560D40x
70/82 DS6494 Rev 8
Figure 23. DSPI modified transfer format timing – slave, CPHA = 1
Figure 24. DSPI PCS strobe (PCSS) timing
4.18.3 JTAG characteristics
5 6
9
12
11
10
Last Data
Last Data
SIN
SOUT
SS
First Data
First Data
Data
Data
SCK Input
SCK Input
(CPOL = 0)
(CPOL = 1)
Note: Numbers shown reference Table 44.
PCSx
78
PCSS
Note: Numbers shown reference Table 44.
Table 45. JTAG characteristics
No. Symbol C Parameter
Value
Unit
Min Typ Max
1t
JCYC CC D TCK cycle time 83.33 ns
2t
TDIS CC D TDI setup time 15 ns
3t
TDIH CC D TDI hold time 5 ns
DS6494 Rev 8 71/82
SPC560D30x, SPC560D40x Electrical characteristics
77
Figure 25. Timing diagram – JTAG boundary scan
4t
TMSS CC D TMS setup time 15 ns
5t
TMSH CC D TMS hold time 5 ns
6t
TDOV CC D TCK low to TDO valid 49 ns
7t
TDOI CC D TCK low to TDO invalid 6 ns
Table 45. JTAG characteristics (continued)
No. Symbol C Parameter
Value
Unit
Min Typ Max
INPUT DATA VALID
OUTPUT DATA VALID
DATA INPUTS
DATA OUTPUTS
DATA OUTPUTS
TCK
Note: Numbers shown reference Table 45.
3/5
2/4
7
6
Package characteristics SPC560D30x, SPC560D40x
72/82 DS6494 Rev 8
5 Package characteristics
5.1 ECOPACK®
In order to meet environmental requirements, ST offers the devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
5.2 Package mechanical data
5.2.1 LQFP100
Figure 26. LQFP100 mechanical drawing
DS6494 Rev 8 73/82
SPC560D30x, SPC560D40x Package characteristics
77
Table 46. LQFP100 mechanical data
Symbol
mm inches(1)
Min Typ Max Min Typ Max
A 1.600 0.0630
A1 0.050 0.150 0.0020 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 0.200 0.0035 0.0079
D 15.800 16.000 16.200 0.6220 0.6299 0.6378
D1 13.800 14.000 14.200 0.5433 0.5512 0.5591
D3 12.000 0.4724
E 15.800 16.000 16.200 0.6220 0.6299 0.6378
E1 13.800 14.000 14.200 0.5433 0.5512 0.5591
E3 12.000 0.4724
e 0.500 0.0197
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 1.000 0.0394
k 0.0°3.5°7.0°0.0°3.5°7.0°
Tolerance mm inches
ccc 0.080 0.0031
1. Values in inches are converted from mm and rounded to four decimal digits.
Package characteristics SPC560D30x, SPC560D40x
74/82 DS6494 Rev 8
5.2.2 LQFP64
Figure 27. LQFP64 mechanical drawing
5W_ME
L
A1 K
L1
c
A
A2
ccc C
D
D1
D3
E3 E1 E
32
33
48
49
b
64
1
Pin 1
identification 16
17
Table 47. LQFP64 mechanical data
Symbol
mm inches(1)
Min Typ Max Min Typ Max
A 1.6 0.0630
A1 0.05 0.15 0.0020 0.0059
A2 1.35 1.4 1.45 0.0531 0.0551 0.0571
b 0.17 0.22 0.27 0.0067 0.0087 0.0106
c 0.09 0.2 0.0035 0.0079
D 11.8 12 12.2 0.4646 0.4724 0.4803
D1 9.8 10 10.2 0.3858 0.3937 0.4016
D3 7.5 0.2953
E 11.8 12 12.2 0.4646 0.4724 0.4803
E1 9.8 10 10.2 0.3858 0.3937 0.4016
E3 7.5 0.2953
e—0.50.0197
L 0.45 0.6 0.75 0.0177 0.0236 0.0295
L1 1 0.0394
k 0.0°3.5°7.0°0.0°3.5°7.0°
ccc 0.08 0.0031
1. Values in inches are converted from mm and rounded to four decimal digits.
DS6494 Rev 8 75/82
SPC560D30x, SPC560D40x Ordering information
77
6 Ordering information
Figure 28. Commercial product code structure
Memory PackingCore Family
Y = Tray
X = Tape and Reel 90°
3E0 = 32 MHz EEPROM
5V/3V
4E0 = 48 MHz EEPROM
5V/3V
B = –40 to 105 °C
C = –40 to 125 °C
L1 = LQFP64
L3 = LQFP100
40 = 256 KB
30 = 128 KB
D = Access family
0 = e200z0h
SPC56 = Power
Architecture in 90 nm
TemperaturePackage Custom version
SPC56 40 Y0D CL3 4E0
Example code:
Product identifier
Acronyms and abbreviations SPC560D30x, SPC560D40x
76/82 DS6494 Rev 8
Appendix A Acronyms and abbreviations
Table 48 lists acronyms and abbreviations used in this document.
Table 48. Acronyms and abbreviations
Term Meaning
APU Auxilliary processing unit
CMOS Complementary metal–oxide–semiconductor
CPHA Clock phase
CPOL Clock polarity
CS Peripheral chip select
DAOC Double action output compare
ECC Error code correction
EVTO Event out
GPIO General purpose input/output
IPM Input period measurement
IPWM Input pulse width measurement
MB Message buffer
MC Modulus counter
MCB Modulus counter buffered (up/down)
MCKO Message clock out
MDO Message data out
MSEO Message start/end out
MTFE Modified timing format enable
NVUSRO Non-volatile user options register
OPWFMB Output pulse width and frequency modulation buffered
OPWMB Output pulse width modulation buffered
OPWMCB Center aligned output pulse width modulation buffered with dead time
OPWMT Output pulse width modulation trigger
PWM Pulse width modulation
SAIC Single action input capture
SAOC Single action output compare
SCK Serial communications clock
SOUT Serial data out
TCK Test clock input
TDI Test data input
DS6494 Rev 8 77/82
SPC560D30x, SPC560D40x Acronyms and abbreviations
77
TDO Test data output
TMS Test mode select
Table 48. Acronyms and abbreviations
Term Meaning
Revision history SPC560D30x, SPC560D40x
78/82 DS6494 Rev 8
Revision history
Table 49 summarizes revisions to this document.
Table 49. Document revision history
Date Revision Changes
09-Jul-2009 1 Initial release.
18-Feb-2010 2
Updated the following tables:
- Absolute maximum ratings
- Low voltage power domain electrical characteristics;
- On-chip peripherals current consumption
- DSPI characteristics;
- JTAG characteristics;
- ADC conversion characteristics;
Inserted a note on “Flash power supply DC characteristics” section.
10-Aug-2010 3
“Features” section: Updated information concerning eMIOS, ADC,
LINFlex, Nexus and low power capabilities
“SPC560D30x and SPC560D40x device comparison” table: updated
the “Execution speed” row
“SPC560D30x and SPC560D40x series block diagram” figure:
updated max number of Crossbar Switches
updated Legend
“SPC560D30x and SPC560D40x series block summary” table:
added contents concernig the eDMA block
“LQFP100 pin configuration (top view)” figure:
removed alternate functions
updated supply pins
“LQFP64 pin configuration (top view)” figure: removed alternate
functions
Added “Pin muxing” section
“NVUSRO register” section: Deleted “NVUSRO[WATCHDOG_EN]
field description“ section
“Recommended operating conditions (3.3 V)” table:
–TV
DD: deleted min value
In footnote No. 3, changed capacitance value between VDD_BV
and VSS_LV
“Recommended operating conditions (5.0 V)” table: deleted TVDD
min value
“LQFP thermal characteristics” table: changed RJC values
“I/O input DC electrical characteristics” table:
–W
FI: updated max value
–W
NFI: updated min value
“I/O consumption” table: removed IDYNSEG row
Added “I/O weight” table
“Program and erase specifications (Code Flash)” table: deleted
TBank_C row
DS6494 Rev 8 79/82
SPC560D30x, SPC560D40x Revision history
81
10-Aug-2010 3
(cont.)
Updated the following tables:
“Voltage regulator electrical characteristics”
“Low voltage monitor electrical characteristics”
“Low voltage power domain electrical characteristics”
“Start-up time/Switch-off time”
“Fast external crystal oscillator (4 to 16 MHz) electrical
characteristics”
“FMPLL electrical characteristics”
“Fast internal RC oscillator (16 MHz) electrical characteristics”
“ADC conversion characteristics”
“On-chip peripherals current consumption”
“DSPI characteristics”
“DSPI characteristics” section: removed “DSPI PCS strobe (PCSS)
timing” figure
Updated “Order codes” table
Added “Order codes for engineering samples” table
Updated “Commercial product code structure” table
16-Sep-2011 4
Formatting and editorial changes throughout
Device comparison table: for the “Total timer I/O eMIOS”, changed
“13 ch” to “14 ch”
SPC560D30/SPC560D40 series block summary:
added definition for “AUTOSAR” acronym
changed “System watchdog timer” to “Software watchdog timer”
LQFP64 pin configuration (top view): changed pin 6 from VPP_TEST
to VSS_HV
Added section “Pad configuration during reset phases”
Added section “Voltage supply pins”
Added section “Pad types”
Added section “System pins”
Renamed and updated section “Functional ports” (was previously
section “Pin muxing”); update includes replacing all instances of
WKUP with WKPU (WKPU is the correct abbreviation for Wakeup
Unit)
Section “NVUSRO register”: edited content to separate configuration
into electrical parameters and digital functionality
Added section “NVUSRO[WATCHDOG_EN] field description”
Absolute maximum ratings: Removed “C” column from table
Replaced “TBD” with “—” in TVDD min value cell of 3.3 V and 5 V
recommended operating conditions tables
LQFP thermal characteristics: removed RJB single layer board
conditions; updated footnote 4
I/O input DC electrical characteristics: removed footnote “All values
need to be confirmed during device validation”; updated ILKG
characteristics
Table 49. Document revision history (continued)
Date Revision Changes
Revision history SPC560D30x, SPC560D40x
80/82 DS6494 Rev 8
16-Sep-2011 4
(cont.)
MEDIUM configuration output buffer electrical characteristics:
changed “IOH = 100 µA” to “IOL = 100 µA” in VOL conditions
I/O consumption: replaced instances of “Root medium square” with
“Root mean square”
Updated section “Voltage regulator electrical characteristics”
Section “Low voltage detector electrical characteristics”: changed
title (was “Voltage monitor electrical characteristics”); added a fifth
LVD (LVDHV3B); added event status flag names found in RGM
chapter of device reference manual to POR module and LVD
descriptions; replaced instances of “Low voltage monitor” with “Low
voltage detector”; deleted note referencing power domain No. 2 (this
domain is not present on the device); updated electrical
characteristics table
Updated and renamed section “Power consumption” (was previously
section “Low voltage domain power consumption”)
Program and erase specifications (code flash): updated symbols;
updated tesus values
Updated Flash memory read access timing
EMI radiated emission measurement: updated SEMI values
Updated FMPLL electrical characteristics
Crystal oscillator and resonator connection scheme: inserted
footnote about possibly requiring a series resistor
Fast internal RC oscillator (16 MHz) electrical characteristics:
updated tFIRCSU values
Section “Input impedance and ADC accuracy”: changed “VA/VA2” to
“VA2/VA” in Equation 13
ADC conversion characteristics:
updated conditions for sampling time VDD = 5.0 V
updated conditions for conversion time VDD = 5.0 V
Updated Abbreviations
Removed Order codes tables.
01-Dec-2011 5 Replaced “TBD” with “8.21 mA” in IDD_HV(FLASH) cell of On-chip
peripherals current consumption table
Table 49. Document revision history (continued)
Date Revision Changes
DS6494 Rev 8 81/82
SPC560D30x, SPC560D40x Revision history
81
04-Feb-2013 6
Removed all instances of table footnote “All values need to be
confirmed during device validation
Section 4.1: Introduction, removed Caution note.
Table 12: Recommended operating conditions (3.3 V), added
minimum value of TVDD and footnote about it.
Table 13: Recommended operating conditions (5.0 V), added
minimum value of TVDD and footnote about it.
Updated Section 4.17.2: Input impedance and ADC accuracy
In Table 24, changed VLVDHV3L, VLVDHV3BL from 2.7 V to 2.6 V.
Revised the Table 29: Flash module life
Updated Table 44: DSPI characteristics, to add specifications 7 and
8, tPCSC and tPASC.
Inserted Figure 24: DSPI PCS strobe (PCSS) timing
17-Sep-2013 7 Updated Disclaimer.
01-Nov-2018 8
Removed the following two tables:
Order codes
Order codes for engineering samples
Table 49. Document revision history (continued)
Date Revision Changes
SPC560D30x, SPC560D40x
82/82 DS6494 Rev 8
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2018 STMicroelectronics – All rights reserved