2007-04-20
BFP740F
1
12
43
NPN Silicon Germanium RF Transistor
High gain ultra low noise RF transistor
Provides outstanding performance for
a wide range of wireless applications
up to 10 GHz and more
Ideal for CDMA and WLAN applications
Outstanding noise figure F = 0.5 dB at 1.8 GHz
Outstanding noise figure F = 0.75 dB at 6 GHz
High maximum stable gain
Gms = 27.5 dB at 1.8 GHz
Gold metallization for extra high reliability
150 GHz fT-Silicon Germanium technology
Pb-free (RoHS compliant) package1)
Qualified according AEC Q101
1
34
2
Direction of Unreeling
Top View
XYs
ESD (Electrostatic discharge) sensitive device, observe handling precaution!
Type Marking Pin Configuration Package
BFP740F R7s 1=B 2=E 3=C 4=E - - TSFP-4
1Pb-containing package may be available upon special request
2007-04-20
BFP740F
2
Maximum Ratings
Parameter Symbol Value Unit
Collector-emitter voltage
TA > 0°C
T
A
0°C
VCEO
4
3.5
V
Collector-emitter voltage VCES 13
Collector-base voltage VCBO 13
Emitter-base voltage VEBO 1.2
Collector current IC30 mA
Base current IB3
Total power dissipation1)
TS 90°C Ptot 160 mW
Junction temperature T
j
150 °C
Ambient temperature T
A
-65 ... 150
Storage temperature Tst
g
-65 ... 150
Thermal Resistance
Parameter Symbol Value Unit
Junction - soldering point2) RthJS 370 K/W
Electrical Characteristics at TA = 25°C, unless otherwise specified
Parameter Symbol Values Unit
min. typ. max.
DC Characteristics
Collector-emitter breakdown voltage
IC = 1 mA, IB = 0 V(BR)CEO 4 4.7 - V
Collector-emitter cutoff current
VCE = 13 V, VBE = 0 ICES - - 30 µA
Collector-base cutoff current
VCB = 5 V, IE = 0 ICBO - - 100 nA
Emitter-base cutoff current
VEB = 0.5 V, IC = 0 IEBO - - 3 µA
DC current gain
IC = 25 mA, VCE = 3 V, pulse measured hFE 160 250 400 -
1TS is measured on the collector lead at the soldering point to the pcb
2For calculation of RthJA please refer to Application Note Thermal Resistance
2007-04-20
BFP740F
3
Electrical Characteristics at T
A
= 25°C, unless otherwise specified
Parameter Symbol Values Unit
min. typ. max.
AC Characteristics (verified by random sampling)
Transition frequency
IC = 25 mA, VCE = 3 V, f = 1 GHz fT- 42 - GHz
Collector-base capacitance
VCB = 3 V, f = 1 MHz, VBE = 0 ,
emitter grounded
Ccb - 0.08 0.14 pF
Collector emitter capacitance
VCE = 3 V, f = 1 MHz, VBE = 0 ,
base grounded
Cce - 0.2 -
Emitter-base capacitance
VEB = 0.5 V, f = 1 MHz, VCB = 0 ,
collector grounded
Ceb - 0.44 -
Noise figure
IC = 8 mA, VCE = 3 V, f = 1.8 GHz, ZS = ZSopt
IC = 8 mA, VCE = 3 V, f = 6 GHz, ZS = ZSopt
F
-
-
0.5
0.75
-
-
dB
Power gain, maximum stable1)
IC = 25 mA, VCE = 3 V, ZS = ZSopt,
ZL = ZLopt , f = 1.8 GHz
Gms - 27.5 - dB
Power gain, maximum available1)
IC = 25 mA, VCE = 3 V, ZS = ZSopt,
ZL = ZLopt, f = 6 GHz
Gma - 19 - dB
Transducer gain
IC = 25 mA, VCE = 3 V, ZS = ZL = 50 ,
f = 1.8 GHz
f = 6 GHz
|S21e|2
-
-
25
15
-
-
dB
Third order intercept point at output2)
VCE = 3 V, IC = 25 mA, ZS=ZL=50 , f = 1.8 GHz IP3- 25 - dBm
1dB Compression point at output
IC = 25 mA, VCE = 3 V, ZS=ZL=50 , f = 1.8 GHz P-1dB - 11 -
1Gma = |S21e / S12e| (k-(k²-1)1/2), Gms = |S21e / S12e|
2IP3 value depends on termination of all intermodulation frequency components.
Termination used for this measurement is 50 from 0.1 MHz to 6 GHz
2007-04-20
BFP740F
4
SPICE Parameter (Gummel-Poon Model, Berkley-SPICE 2G.6 Syntax):
Transistor Chip Data:
IS = 384.4 aA
VAF = 400 V
NE = 1.586 -
VAR = 1.28 V
NC = 1.5 -
RBM = 1.69
CJE = 220 fF
TF = 2.1 ps
ITF = 290 mA
VJC = 550 mV
TR = 13 ps
MJS = 180 m
XTI = 910 m
AF = 1 -
BF = 1.1 k
IKF = 512.1 mA
BR = 62 -
IKR = 5 mA
RB = 3.23
RE = 90 m
VJE = 590 mV
XTF = 3 -
PTF = 100 mdeg
MJC = 152 m
CJS = 79.7 fF
XTB = -2.2 -
FC = 950 m
KF = 0 -
NF = 1.018 -
ISE = 4.296 fA
NR = 1-
ISC = 3.85 fA
IRB = 10 A
RC = 6.88
MJE = 70 m
VTF = 1.32 V
CJC = 99.5 fF
XCJC = 10 m
VJS = 570 mV
EG = 1.11 eV
TNOM 298 K
All parameters are ready to use, no scalling is necessary.
Package Equivalent Circuit: LBC = 0.1 nH
LCC = 0.2 nH
LEC = 20 pH
LBB = 0.411 nH
LCB = 0.696 nH
LEB = 21 pH
CBEC = 0.1 pF
CBCC = 1fF
CES = 0.34 pF
CBS = 39 fF
CCS = 75 fF
CCEO = 0.177 pF
CBEO = 92 fF
CCEI = 0.217 pF
CBEI = 52 fF
REC =2
RBS = 3.5 k
RCS = 1.65 k
RES = 90
B C
E
CCEOCBEO
CCEI
CBEI
CBEC
CBCC
S
C
B
E
LBC
LCC
LEC
CBS
RCS
RES
LBB LCB
LEB
RBS
CCS
CES
REC
BFP740F_Chip
Valid up to 6GHz
For examples and ready to use parameters
please contact your local Infineon Technologies
distributor or sales office to obtain a Infineon
Technologies CD-ROM or see Internet:
http://www.infineon.com
2007-04-20
BFP740F
5
Total power dissipation Ptot = ƒ(TS)
0 15 30 45 60 75 90 105 120 °C 150
TS
0
20
40
60
80
100
120
140
mW
180
Ptot
Permissible Pulse Load RthJS = ƒ(tp)
10 -7 10 -6 10 -5 10 -4 10 -3 10 -2 10 0
s
tp
1
10
2
10
3
10
K/W
RthJS
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0
Permissible Pulse Load
Ptotmax/PtotDC = ƒ(tp)
10 -7 10 -6 10 -5 10 -4 10 -3 10 -2 10 0
s
tp
0
10
1
10
2
10
-
Ptotmax/PtotDC
D = 0
0.005
0.01
0.02
0.05
0.1
0.2
0.5
Collector-base capacitance Ccb = ƒ (VCB)
f = 1 MHz
0 2 4 6 8 10 12
0
0.02
0.04
0.06
0.08
0.1
0.12
0.14
0.16
0.18
0.2
V
CB
[V]
C
cb
[pF]
2007-04-20
BFP740F
6
Third order Intercept Point IP3 = ƒ (IC)
(Output, ZS = ZL = 50 )
VCE = parameter, f = 900 MHz
0 5 10 15 20 25 30 35
0
3
6
9
12
15
18
21
24
27
30
I
C
[mA]
IP
3
[dBm]
1.00V
2.00V
3.00V
4.00V
Transition frequency fT = ƒ(IC)
VCE = parameter in V, f = 2 GHz
0 5 10 15 20 25 30 35
0
5
10
15
20
25
30
35
40
45
50
I
C
[mA]
f
T
[GHz]
2V to 4V
1.00V
0.75V
0.50V
Power gain Gma, Gms = ƒ (f)
VCE = 3 V, IC = 25 mA
0 1 2 3 4 5 6
5
10
15
20
25
30
35
40
45
50
55
f [GHz]
[GHz]
G [dB]
G
ms
G
ma
|S
21
|
2
Power gain Gma, Gms = ƒ (IC)
VCE = 3 V
f = parameter in GHz
0 5 10 15 20 25 30 35
10
12
14
16
18
20
22
24
26
28
30
32
34
I
C
[mA]
G [dB]
6.00GHz
5.00GHz
4.00GHz
3.00GHz
2.40GHz
1.80GHz
0.90GHz
2007-04-20
BFP740F
7
Power gain Gma, Gms = ƒ (VCE)
IC = 25 mA
f = parameter in GHz
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0
4
8
12
16
20
24
28
32
36
V
CE
[V]
G [dB]
6.00GHz
5.00GHz
4.00GHz
3.00GHz
2.40GHz
1.80GHz
0.90GHz
Noise figure F = ƒ(IC)
VCE = 3 V, f = parameter in GHz
ZS = ZSopt
0 5 10 15 20 25 30
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2
F [dB]
I
c
[mA]
f = 0.9GHz
f = 3GHz
f = 2.4GHz
f = 6GHz
f = 5GHz
f = 1.8GHz
Noise figure F = ƒ(IC)
VCE = 3 V, f = 1.8 GHz
0 5 10 15 20 25 30
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2
I
c
[mA]
F [dB]
Z
S
= 50
Z
S
= Z
Sopt
Noise figure F = ƒ(f)
VCE = 3 V, ZS = ZSopt
01234567
0
0.2
0.4
0.6
0.8
1
1.2
1.4
F [dB]
f [GHz]
I
C
= 25mA
I
C
= 8mA
2007-04-20
BFP740F
8
Source impedance for min.
noise figure vs. frequency
VCE = 3 V, IC = 8 mA / 25 mA
10.2 0.4 2 4
0
1
−1
−5
10
1.5
−10
−1.5
0.5
−0.5
0.1
2
−0.1
−2
0.2
−0.2
0.3 3
−0.3 −3
0.4
−0.4
4
−4
5
3GHz
I
c
= 8mA
1.8GHz
6GHz
5GHz
0.9GHz
I
c
= 25mA
4GHz
2.4GHz
2007-04-20
BFP740F
9
Package TSFP-4
Package Outline
Foot Print
Marking Layout (Example)
Standard Packing
Reel ø180 mm = 3.000 Pieces/Reel
Reel ø330 mm = 10.000 Pieces/Reel
BFP420F
Type code
Pin 1
0.35
0.45
0.9
0.5 0.5
40.2
1.55 0.7
1.4
8
Pin 1
±0.05
0.2
±0.05
1.4
12
10˚ MAX.
±0.05
0.8
1.2
±0.05
±0.04
0.55
±0.05
0.2
±0.05
0.15
±0.05
0.2
0.5
±0.05
0.5
±0.05
43
Manufacturer
2007-04-20
BFP740F
10
Edition 2006-02-01
Published by
Infineon Technologies AG
81726 München, Germany
© Infineon Technologies AG 2007.
All Rights Reserved.
Attention please!
The information given in this dokument shall in no event be regarded as a guarantee
of conditions or characteristics (“Beschaffenheitsgarantie”). With respect to any
examples or hints given herein, any typical values stated herein and/or any information
regarding the application of the device, Infineon Technologies hereby disclaims any
and all warranties and liabilities of any kind, including without limitation warranties of
non-infringement of intellectual property rights of any third party.
Information
For further information on technology, delivery terms and conditions and prices
please contact your nearest Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements components may contain dangerous substances.
For information on the types in question please contact your nearest
Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or
systems with the express written approval of Infineon Technologies, if a failure of
such components can reasonably be expected to cause the failure of that
life-support device or system, or to affect the safety or effectiveness of that
device or system.
Life support devices or systems are intended to be implanted in the human body,
or to support and/or maintain and sustain and/or protect human life. If they fail,
it is reasonable to assume that the health of the user or other persons
may be endangered.