LESHAN RADIO COMPANY, LTD.
M9–1/6
1
3
2
General Purpose Transistors
NPN Silicon
MAXIMUM RATINGS
Rating Symbol Value Unit
Collector–Emitter V oltage V CEO 32 Vdc
Collector–Base V oltage V CBO 32 Vdc
Emitter–Base V oltage V EBO 5.0 Vdc
Collector Current — Continuous I C100 mAdc
THERMAL CHARACTERISTICS
Characteristic Symbol Max Unit
Total Device Dissipation FR– 5 Board, (1) PD225 mW
TA = 25°C
Derate above 25°C 1.8 mW/°C
Thermal Resistance, Junction to Ambient RθJA 55 6 °C/W
Total Device Dissipation PD300 mW
Alumina Substrate, (2) TA = 25°C
Derate above 25°C 2.4 mW/°C
Thermal Resistance, Junction to Ambient RθJA 417 °C/W
Junction and Storage Temperature TJ , Tstg –55 to +150 °C
DEVICE MARKING
BCW60ALT1 = AA, BCW60BLT1 = AB, BCW60DLT1 = AD
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted.)
Characteristic Symbol Min Max Unit
OFF CHARACTERISTICS
Collector–Emitter Breakdown Voltage
(IC = 2.0mAdc, IE = 0 ) V (BR)CEO 32 Vdc
Emitter–Base Breakdown V oltage
(I E= 1.0 µAdc, I C = 0) V (BR)EBO 5.0 Vdc
Collector Cutoff Current I CES
(VCE = 32 Vdc, ) 20 nAdc
(VCE = 32 Vdc, TA = 150°C) 20 µAdc
Emitter Cutoff Current
(I EB= 4.0 Vdc, I C = 0) I EBO 20 nAdc
1. FR– 5 = 1.0 x 0.75 x 0.062 in.
2. Alumina = 0.4 x 0.3 x 0.024 in. 99.5% alumina.
BCW60ALT1
BCW60BLT1
BCW60DLT1
CASE 318–08, STYLE 6
SOT–23 (TO–236AB)
2
EMITTER
3
COLLECTOR
1
BASE
LESHAN RADIO COMPANY, LTD.
M9–2/6
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted) (Continued)
Characteristic Symbol Min Max Unit
ON CHARACTERISTICS
DC Current Gain hFE
( IC= 10 µAdc, VCE = 5.0 Vdc ) BCW60A 20
BCW60B 30
BCW60D 100
( IC= 2.0 mAdc, VCE = 5.0 Vdc ) hFE
BCW60A 120 220
BCW60B 175 310
BCW60D 380 630
( IC= 50 mAdc, VCE = 1.0 Vdc ) hFE
BCW60A 60
BCW60B 70
BCW60D 100
AC Current Gain hFE
( VCE = 5.0Vdc, IC= 2.0 mAdc, BCW60A 125 250
f= 1.0 kHz ) BCW60B 175 350
BCW60D 350 700
Collector–Emitter Saturation V oltage V CE(sat) Vdc
( IC = 50 mAdc, IB = 1.25 mAdc ) 0.55
( IC = 10 mAdc, IB = 0.25 mAdc ) 0.35
Base–Emitter Saturation V oltage V BE(sat) Vdc
( IC = 50 mAdc, IB = 1.25 mAdc ) 0.7 1.05
( IC = 50 mAdc, IB = 0.25 mAdc ) 0.6 0.85
Base–Emitter On Voltage V BE(on) Vdc
( IC = 2.0 mAdc, VCE = 5.0 Vdc ) 0.6 0.75
SMSMALL–SIGNAL CHARACTERISTICS
Current–Gain — Bandwidth Product f T125 MHz
(I C = 10 mAdc, V CE = 5.0 Vdc, f = 100 MHz)
Output Capacitance C obo 4.5 pF
(V CE = 10 Vdc, I C = 0, f = 1.0 MHz)
Noise Figure NF 6.0 dB
(V
CE
= 5.0 Vdc, I
C
= 0.2 mAdc, R
S
= 2.0 k, f = 1.0 kHz, BW = 200 Hz)
SWITCHING CHARACTERISTICS
Turn–On T ime t on 150 ns
(I C = 10 mAdc, I B1 = 1.0 mAdc)
T urn–Off Time t off 800 ns
(I
B2
= 1.0 mAdc, V
BB
= 3.6 Vdc, R
1
= R
2
= 5.0 k, R
L
= 990 )
BCW60ALT1 BCW60BLT1 BCW60DLT1
Figure 1. Turn–On Time Figure 2. Turn–Off Time
EQUIVALENT SWITCHING TIME TEST CIRCUITS
*Total shunt capacitance of test jig and connectors
10 k
+3.0 V
275
C S < 4.0 pF*
10 k
+3.0 V
275
C S < 4.0 pF* 1N916
300 ns
DUTY CYCLE = 2%
– 0.5 V
10 < t 1 < 500 µs
DUTY CYCLE = 2% +10.9 V
<1.0 ns
<1.0 ns
+10.9 V t 1
– 9.1 V
0
LESHAN RADIO COMPANY, LTD.
M9–3/6
Noise Figure is Defined as:
NF = 20 log 10
(
–––––––––––––––)
1/ 2
e n= Noise Voltage of the Transistor referred to the input. (Figure 3)
I n= Noise Current of the T ransistor referred to the input. (Figure 4)
K = Boltzman’s Constant (1.38 x 10 –23 j/°K)
T = Temperature of the Source Resistance (°K)
R s= Source Resistance ()
e n 2 +4KTRS +I n2 R S2
4KTR S
TYPICAL NOISE CHARACTERISTICS
(V CE = 5.0 Vdc, T A = 25°C)
f, FREQUENCY (Hz)
Figure 3. Noise Voltage f, FREQUENCY (Hz)
Figure 4. Noise Current
e n , NOISE VOLTAGE (nV)
BANDWIDTH = 1.0 Hz
R S 0
IC= 1.0mA
100µA
30µA
30µA
I n , NOISE CURRENT (pA)
BANDWIDTH = 1.0 Hz
R S
IC=1.0mA
300µA100µA
30µA
BANDWIDTH = 1.0 Hz BANDWIDTH = 1.0 Hz
NOISE FIGURE CONTOURS
(V CE = 5.0 Vdc, T A = 25°C)
R S , SOURCE RESISTANCE ()
R S , SOURCE RESISTANCE ()
R S , SOURCE RESISTANCE ()
20
10
7.0
5.0
3.0
2.0
10 20 50 100 200 500 1.0k 2.0k 5.0k 10 k 10 20 50 100 200 500 1.0k 2.0k 5.0k 10 k
100
50
20
10
5.0
2.0
1.0
0.5
0.2
0.1
500k
200k
100k
50k
20k
10k
5.0k
2.0k
1.0k
500
200
100
50
1.0M
500k
200k
100k
50k
20k
10k
5.0k
2.0k
1.0k
500
200
100
10 20 30 50 70 100 200 300 500 700 1.0K
10 20 30 50 70 100 200 300 500 700 1.0K
10 20 30 50 70 100 200 300 500 700 1.0K
2.0 dB 3.0 dB 4.0dB 6.0 dB 10 dB 2.0 dB 3.0dB
5.0 dB
8.0 dB
1.0 dB
2.0 dB 3.0 dB
5.0 dB
8.0 dB
10 Hz to 15.7Hz
10µA
1.0 dB
500k
200k
100k
50k
20k
10k
5.0k
2.0k
1.0k
500
200
100
50
BCW60ALT1 BCW60BLT1 BCW60DLT1
I C , COLLECTOR CURRENT (µA)
Figure 5. Narrow Band, 100 Hz
I C , COLLECTOR CURRENT (µA)
Figure 7. Wideband
I C , COLLECTOR CURRENT (µA)
Figure 6. Narrow Band, 1.0 kHz
~
~~
~
8
10 µA
LESHAN RADIO COMPANY, LTD.
M9–4/6
I B , BASE CURRENT (mA)
Figure 9. Collector Saturation Region
I C , COLLECTOR CURRENT (mA)
Figure 12. Temperature Coefficients
V CE , COLLECTOR–EMITTER VOLTAGE (VOLTS)
Figure 10. Collector Characteristics
I C , COLLECTOR CURRENT (mA)
Figure 11. “On” Voltages
I C , COLLECTOR CURRENT (mA)
V, VOLTAGE (VOLTS)
V
CE
, COLLECTOR– EMITTER VOL TAGE (VOL TS)
θ V , TEMPERATURE COEFFICIENTS (mV/°C)
θ VB for V BE
∗ θ VC for V CE(sat)
V
BE(on)
@ V
CE
= 1.0 V
V
CE(sat)
@ I
C
/I
B
= 10
V
BE(sat)
@ I
C
/I
B
= 10
T J = 25°C
I
C
= 1.0 mA 50 mA 100 mA
10 mA
T
J
= 25°C
*APPLIES for I
C
/ I
B
<
h
FE
/ 2
T
A
= 25°C
PULSE WIDTH =300 µs
DUTY CYCLE
<
2.0%
I
B
= 500 µA
100 µA
200 µA
300 µA
400 µA
–55°C to 25°C
–55°C to 25°C
25°C to 125°C
25°C to 125°C
1.4
1.2
1.0
0.8
0.6
0.4
0.2
00.1 0.2 0.5 1.0 2.0 5.0 10 20 50 100
1.6
0.8
0
–0.8
–1.6
–2.4
0.1 0.2 0.5 1.0 2.0 5.0 10 20 50 100
1.0
0.8
0.6
0.4
0.2
0
0.002 0.0050.010.02 0.05 0.1 0.2 0.5 1.0 2.0 5.0 10 20
100
80
60
40
20
00 5.0 10 15 20 25 30 35 40
TYPICAL NOISE CHARACTERISTICS
BCW60ALT1 BCW60BLT1 BCW60DLT1
400
200
100
80
60
40
hFE , DC CURRENT GAIN
0.0040.006 0.01 0.02 0.03 0.05 0.07 0.1 0.2 0.3 0.5 0.7 1.0 2.0 3.0 5.0 7.0 10 20 30 50 70 100
I C , COLLECT OR CURRENT (mA)
Figure 8. DC Current Gain
V
CE
= 1.0 V
V
CE
= 10 V
T
J
= 125°C
25°C
– 55°C
LESHAN RADIO COMPANY, LTD.
M9–5/6
TYPICAL DYNAMIC CHARACTERISTICS
C, CAPACITANCE (pF)
I C , COLLECTOR CURRENT (mA)
Figure 13. Turn–On Time I C , COLLECT OR CURRENT (mA)
Figure 14. Turn–Off Time
I C , COLLECTOR CURRENT (mA)
Figure 15. Current–Gain — Bandwidth Product
V R , REVERSE VOLTAGE (VOLTS)
Figure 16. Capacitance
I C , COLLECTOR CURRENT (mA)
Figure 17. Input Impedance I C , COLLECTOR CURRENT (mA)
Figure 18. Output Admittance
t, TIME (ns)
t, TIME (ns)
f
T
, CURRENT– GAIN — BANDWIDTH PRODUCT (MHz)
h ie , INPUT IMPEDANCE ( k )
hoe , OUTPUT ADMITTANCE ( µmhos )
td @ V BE(off)= 0.5 Vdc
t f
VCC= 3.0 V
IC /I B= 10
IB1=IB2
T J= 25°C
t f
t s
5.0 V
C ib
C ob
T J= 25°C
f =
1.0MHz
VCE= 10 Vdc
f = 1.0 kHz
T A = 25°C
VCE= 10 Vdc
f = 1.0 kHz
T A= 25°C
h
fe
200 @ I
C
= 1.0 mA
300
200
100
70
50
30
20
10
7.0
5.0
3.01.0 2.0 3.0 5.0 7.0 10 20 30 50 70 100
1000
700
500
300
200
100
70
50
30
20
10
1.0 2.0 3.0 5.0 7.0 10 20 30 50 70 100
500
300
200
100
70
500.5 0.7 1.0 2.0 3.0 5.0 7.0 10 20 30 50
10.0
7.0
5.0
3.0
2.0
1.0 0.05 0.1 0.2 0.5 1.0 2.0 5.0 10 20 50
20
10
7.0
5.0
3.0
2.0
1.0
0.7
0.5
0.3
0.2
0.1 0.2 0.5 1.0 2.0 5.0 10 20 50 100
200
100
70
50
30
20
10
7.0
5.0
3.0
2.0 0.1 0.2 0.5 1.0 2.0 5.0 10 20 50 100
BCW60ALT1 BCW60BLT1 BCW60DLT1
V CC= 3.0 V
IC /I B= 10
T J= 25°C
V CE=20 V
T J = 25°C
f=100MHz
h
fe
200 @ I
C
= 1.0 mA
~
~
~
~
LESHAN RADIO COMPANY, LTD.
M9–6/6
T J , JUNCTION TEMPERATURE (°C)
Figure 19A.
V CC = 30 Vdc
I C , COLLECTOR CURRENT (nA)
104
103
102
101
100
10–1
10–2
–4 –2 0 +20 +40 +60 +80 +100 +120 +140 +160
I
CBO
AND
I
CEX
@ V
BE(off)
= 3.0 Vdc
I CEO
DESIGN NOTE: USE OF THERMAL RESPONSE DAT A
A train of periodical power pulses can be represented by the
model as shown in Figure 19A. Using the model and the device
thermal response the normalized effective transient thermal re-
sistance of Figure 19 was calculated for various duty cycles.
To find Z θJA(t) , multiply the value obtained from Figure 19 by
the steady state value R θJA .
Example:
The MPS3904 is dissipating 2.0 watts peak under the follow-
ing conditions:
t 1 = 1.0 ms, t 2 = 5.0 ms. (D = 0.2)
Using Figure 19 at a pulse width of 1.0 ms and D = 0.2, the
reading of r(t) is 0.22.
The peak rise in junction temperature is therefore
T = r(t) x P (pk) x R θJA = 0.22 x 2.0 x 200 = 88°C.
For more information, see AN–569.
t, TIME (ms)
Figure 19. Thermal Response
r( t) TRANSIENT THERMAL RESISTANCE(NORMALIZED)
D = 0.5
0.02
0.05
0.1
0.2
0.01 SINGLE PULSE
DUTY CYCLE, D = t 1 / t 2
D CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT t 1 (SEE AN–569)
Z θJA(t) = r(t) • RθJA
T J(pk) – T A = P (pk) Z θJA(t)
FIGURE 19A
P(pk)
t 2
t 1
1.0
0.7
0.5
0.3
0.2
0.1
0.07
0.05
0.03
0.02
0.01
0.01 0.02 0.05 0.1 0.2 0.5 1.0 2.0 5.0 10 20 50 100 200 500 1.0k 2.0k 5.0k 10k 20k 50k 100k
BCW60ALT1 BCW60BLT1 BCW60DLT1
V CE , COLLECT OR–EMITTER VOLTAGE (VOLTS)
Figure 20.
CURRENT LIMIT
THERMAL LIMIT
SECOND BREAKDOWN LIMIT
2.0 4.0 6.0 8.0 10 20 40
The safe operating area curves indicate I C –V CE limits of
the transistor that must be observed for reliable operation.
Collector load lines for specific circuits must fall below the
limits indicated by the applicable curve.
The data of Figure 20 is based upon T J(pk) = 150°C; T C or
T A is variable depending upon conditions. Pulse curves are
valid for duty cycles to 10% provided T J(pk)
<
150°C. T J(pk)
may be calculated from the data in Figure 19. At high case
or ambient temperatures, thermal limitations will reduce the
power that can be handled to values less than the limitations
imposed by second breakdown.
T A = 25°C
T C = 25°C
T J = 150°C
100µs
1.0 ms
1.0 s
10µs
dc
dc
I C , COLLECTOR CURRENT (mA)
400
200
100
60
40
20
10
6.0
4.0