Intel® 82571 & 82572 Gigabit Ethernet
Controller
Datasheet
Revision 2.0
December 2006
ii
ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND
CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABI L ITY WHATSOEVER, AND INTEL DISCLAIMS ANY
EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
Intel products are not intended for use in medical, life saving, or life sustaining applications.
Intel may make changes to specifications and product descriptions at any time, without notice.
Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel
reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from
future changes to them.
The Intel product(s) referenced in this document may contain design defects or errors known as errata which may cause the
product to deviate from published specifications. Current characterized errata are available on request.
MPEG is an international standard for vide o compr ess io n/decompression promoted by ISO. Implementations of MPEG CODECs,
or MPEG enabled platforms may require licenses from various entities, including Intel Corporation.
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.
Copies of documents which have an order number and are referenced in this document, or other Intel literature may be obtained
by calling 1-800-548-4725 or by visiting Intel's website at http://www.intel.com.
Intel and Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and
other countries.
*Other names and brands may be claimed as the property of others.
Copyright © Intel Corporation, 2003 - 2006
iii
Datasheet—82571/82572 Ethernet Controller
Revision History
Date Revision Notes
Oct 2002 0.15 Initial Release
Feb 2003 0.5 Revised ballout, added package drawing, added visual pin descriptions,
changed some ball names to “EXP” ball naming convention.
Aug 2003 0.6
Updated power specifications.
Changed names to “PE” naming convention
Revised signal descriptions, pinout information tables, and ballout grid.
Modified LAN disable ballout to cover A-0 (DEV_DIS_N) and B-0
(DEV_OFF_N).
Removed integrated Baseboard Management Controller.
Oct 2003 0.75
Updated operating temperature
Changed DEV_DIS_N pin (A Stepping) to RSVD_NC
Corrected LED descriptions in signal descriptions in signal descriptions
Added Absolute Maximum Ratings
Added General Operating Conditions
Added Power Specifications
Added voltage Ramp and Sequencing Recommendations
Added DC I/O Specifications
Added Timing Specifications
Edited Thermal Characteristics
May 2004 0.85 Section 4.4, Figure 2; Section 4.5.1.1;Section 4.5.1.2, Figure 5; Section
4.5.2, Figure 6; Section 5.1, Figure 7; Section 5.1, Figure 8; Section 5.4,
Figure 9, ball T6 changed to PERST_N.
January
2005 0.90 Included 82572EI information
Updated signal names
Updated power numbers
May 2005 0.92 Corrected 1.1 V Operating Range in Table 2
Nov 2005 1.0 Changed document status to “Intel Confidential,” updated power values,
made minor corrections to text
March
2006 1.1
Corrected pinlists
Pin A7 DEVICE_DIS_N has been moved to Reserved and No Connect
Signals; this pin is now R eserved. Refer to 82571EB/82571EI Design Guide
for guidance on proper connection.
Pin R4 LAN_PWR_GOOD has been moved to Reserved and No Connect
Signals; this pin is now R eserved. Refer to 82571EB/82571EI Design Guide
for guidance on proper connection.
August
2006 1.2 Corrected signal names; minor text edits
December
2006 2.0
Changed signal names PERST# to PE_RST_N and PE_WAKEn to
PE_WAKE_N; SMBCLK1 and SMBD1 are now reserved--Do not use these
pins--connect them to 3.3 V through a 100K ohms resistor; updated
schematics.
82571/82572 Ethernet Controller—Datasheet
iv
Contents
1.0 Introduction ............................................................................................................. 1
1.1 Document Scope ........... .......... ... .. .......... .. .. ........... .. ........... .. .. .......... .. ... .......... .. . 1
1.2 Reference Documents.......................................................................................... 1
1.3 Block Diagram.................................................................................................... 3
2.0 Features of the 82571/82 572 Gigabit Ethernet Controller ......................................... 5
2.1 PCI Express Features .......................................................................................... 5
2.2 MAC-Specific Features......................................................................................... 5
2.3 PHY Specific Features.......................................................................................... 6
2.4 Host Offloading Features...................................................................................... 6
2.5 Manageability Features........................................................................................ 7
2.6 Additional Device Feature s........ ... .. .. .......... .. .. ... .......... .. .. ..................... ... .. .. ......... 7
2.7 Technology Feature s .......... ........... .. .. .......... .. ........... .. .. ........... .. .. ........... .. .. ......... 8
3.0 Sign al Descriptions ................................................................................................... 9
3.1 Signal Type Definitions........................................................................................ 9
3.2 PCI Express Interface.......................................................................................... 9
3.3 Power Manage me nt Si g nals.............. .......... .. .. ........... .. .. ........... .. .. ........... .. .. ........10
3.4 SMB and Fast Management Link Bus Signals..........................................................11
3.5 EEPROM and Serial FLASH Interface Signals........................... .. .. .......... .. ... .......... ..12
3.6 LED Signals ......................................................................................................12
3.7 Other Signals ....................................................................................................13
3.8 Crystal Signals ..................................................................................................13
3.9 PHY Analog Signals............................................................................................13
3.9.1 Port 0 ................. .. .. ........... .. .. .......... ... .......... .. .. ........... .. ........... .. .. ........13
3.9.2 Port 1 (82571 Only) ................................................................................14
3.10 Serializer / Deserializer Signals............................................................................15
3.11 Test Interface Signals.........................................................................................15
3.12 Power Suppl y Co nne ctions ............. .. .. .......... .. ... .. .......... .. .. ........... .. .. ...................16
3.12.1 Digital and An alog Supplies................. ... .......... .. ........... .. .......... ... .. ..........16
3.12.2 Grounds, Reserved Pins and No Connec ts..... .... .. .. .. .. ... ............ .. .. ............. ..16
4.0 Voltage, Temperature, and Timing Specifications.....................................................17
4.1 Targeted Abso lute Maximum Ratings............. .. ... .......... .. .. ........... .. .. .....................17
4.2 Targeted Recommended Operating Conditions.......................................................17
4.2.1 General Operating Conditions................................................................... 17
4.2.2 Voltage Ramps......... .. .. ........... .. .. ........... .. .. .......... ... .. .......... .. .. ........... .. ..18
4.2.3 Voltage Power Sequencing Options............................................................19
4.3 DC Specifications..... .. .. .......... .. ... .......... .. .. ..................... .. ... .......... .. .. ........... .. .. ..19
4.3.1 Power Specifications--8257 1E B............ ...................... .. .. .. .........................19
4.3.2 Power Specifications--8257 2E I .......... .. ... .. ..................... .. .. .. .....................21
4.3.3 I/O Characteristics..................................................................................22
4.4 Targeted AC Characteristics ................................................................................23
4.5 Targeted Timing Specifications ............................................................................24
4.5.1 PCI Express Interface..............................................................................25
4.5.2 EEPROM Interface...................................................................................28
4.5.3 FLASH Interface .............. .. .......... .. .. ........... .. .. ........... .. .. .......... ... .. ..........29
5.0 Package and Pinout Information..............................................................................31
5.1 Package Information . .........................................................................................31
5.2 Thermal Specification............. ........... .. .. .. ........... .. .. .. ........... .. .. .. .......... ... .. .. ........33
5.3 Pinout Information.............................................................................................33
5.4 Visual Pin Assignments.......................................................................................44
1
Datasheet—82571/82572 Gigabit Ethernet Controller
1.0 Introduction
The Intel® 82571EB Gigabit Ethernet Controller is a single, compact component with
two full-integrated Gigabit Ethernet Media Access Control (MAC) and physical layer
(PHY) ports. The Intel 82571/82572 Gigabit Ethernet Controller is a single-port version
of the controller in the same package. These devices use the PCI Express* architecture
(Rev. 1.0a). The Intel 82571/82572 Gigabit Ethernet Controller enables dual- or single-
port gigabit ethernet implementation in a very small area--ideal for both server and
workstation network designs that have critical space constraints.
The Intel 82571/82572 Gigabit Ethernet Controller provides a standard IEEE 802.3
Ethernet interface for 1000BASE-T, 100BASE-TX, and 10BASE-T applications (802.3,
802.3u, and 802.3ab). Ports also contain a Serializer-Deserializer (SERDES) to support
1000Base-SX/LX (optical fiber) and Gigabit backplane applications. In addition to
managing MAC and PHY Ethernet layer functions, the controller manages PCI Express
packet traffic across its tran saction, link, and physical/logical layers.
The Intel 82572EI Gigabit Ethernet Controller’s on-board System Management Bus
(SMB) ports enable network manageability implementations required by information
technology personnel for remote control and alerting via the LAN. With SMB,
management packets can be routed to or from a management processor. The SMB
ports enable industry standards, such as Alert Standard Format (ASF) 2.0, to be
implemented using the 82571/82572 Gigabit Ethernet Controller. In addition, on-chip
ASF 2.0 circuitry provides alerting and remote control capabilities with standardized
interfaces. Enhanced pass-through capabilities also allow system remote control over
standardized interfaces.
The 82571/82572 Gigabit Ethernet Controller with PCIe* architecture is design ed for
high performance and low memory latency. The device is optimized to connect to a
system Memory Control Hub (MCH) using four PCI Express lanes. Alternatively, the
82571/82572 Gigabit Ethernet Controller controller can connect to an I/O Control Hub
(ICH6 & 7) that has a PCI Express interface.
Wide internal data paths eliminate performance bottlenecks by efficiently handling
large address and data words. Combining a parallel and pipe-lined logic architecture
optimized for gigabit ethernet and independent transmit and receive queues, the
82571/82572 Gigabit Ethernet Controller efficiently handles packets with minimum
latency. The 82571/82572 Gigabit Ethernet Controller includes advanced interrupt
handling features. The 82571/82572 Gigabit Ethernet Controller uses efficient ring
buffer descriptor data structures, with up to 64 packet descriptors cached on-chip. A
large 48 KByte per port on-chip packet buffer maintains superior performance. In
addition, using hardware acceler ation, the controller offloads tasks from the host, such
as TCP/UDP/IP checksum calculations and TCP segmentation.
The 82571/82572 Gigabit Ethernet Controller is packag ed in a 17 mm x 17 mm, 256-
ball grid array.
1.1 Document Scope
This document contains targeted datasheet specifications for the 82571/82572 Gigabit
Ethernet Controller, including signal descriptions, DC and AC parameters, packaging
data, and pinout information.
1.2 Reference Documents
This application assumes that the designer is acquainted with high-speed design and
board layout techniques. The following documents provide additional information:
82571/82572 Gigabit Ethernet Controller Design Guide. Intel Corporation.
82571/82572 Gigabit Ethernet Controller—Datasheet
2
Intel Ethernet Controllers Timing Device Selection Guide, AP-419. Intel
Corporation.
PCI Express Base Specification, Revision 1.0a. PCI Special Interest Group.
PCI Exp ress Card Electromechanical Specification, Revision 1.0a. PCI Special
Interest Group.
PCI Bus Power Management Interface Specification, Revision 1.1. PCI Special
Interest Group.
IEEE Standard 802.3, 2000 Edition. Institute of Electrical and Electronics Engineers
(IEEE). This version incorporates various IEEE standards previously published
separately.
3
Datasheet—82571/82572 Gigabit Ethernet Controller
1.3 Block Diagram
Figure 1. 82571/82572 Gigabit Ethernet Controller Block Diagram (Single Port Shown)
PCIe
Core
PCIe Interface
EEPROM Flash
DMA
Engine
Packet
Buffer
TX MAC
(10/100 /
1000 Mb)
RX MAC
(10/100 /
1000 Mb)
Packet /
Manageability
Filter
TX
Switch
ASF
Manageability
GMII /
MII
Link I /F
MDIO
MDIO
RMON
Statistics
SM Bus
Host Arbiter
82571/82572 Gigabit Ethernet Controller—Datasheet
4
Note: This page is intentionally left blank.
5
Datasheet—82571/82572 Gigabit Ethernet Controller
2.0 Features of the 82571/82572 Gigabit Ethernet
Controller
2.1 PCI Express Features
2.2 MAC-Specific Features
Features Benefits
Uses x4 PCI Express interface on MCH device Bus sharing not required
Low latency path to memory
Relieves congestion for IO devices
Peak bandwidth 2 GB/s in each direction per PCI
Express lane Supports Gigabit Ethernet at full wire speed
PCI Express Power Management Compatible extensions to PCI power management
and ACPI
PE_WAKE_n available for wakeup event
High bandwidth density per pin Less congested board routing
Features Benefits
Optimized transmit and receive queues Network packets handled without waiting or
buffer overflow.
IEEE 802.3x compliant flow control support with
software controllable pause times and threshold
values
Control over the transmissions of pause frames
through software or hardware triggering
Frame loss reduced from receive overruns
Caches up to 64 packet descriptors (per queue) Efficient use of PCI Express bandwidth
Separate transmit queue per port Efficient packet prioritization
Programmable host memory receive buffers (256
Bytes to 16 KBytes) and cache line size (64 Bytes to
128 Bytes) Efficient use of PCI Express bandwidth
Wide, pipelined internal data path architecture Low latency data handling
Superior DMA transfer rate performance
Dual 48 KByte configurable Transmit and Receive
FIFO buffers No external FIFO memory requirements
FIFO size adjustable to application
Descriptor ring management hardware for transmit
and receive Simple software programming model
Optimized descriptor fetching and write-back
mechanisms Efficient system memory and use of PCI Express
bandwidth
Mechanism available for reducing interrupts
generated by transmit and receive operations Maximizes system performance and throughput
Supports trans mission and reception of packet s up to
9 kB Enables jumbo frames
82571/82572 Gigabit Ethernet Controller—Datasheet
6
2.3 PHY Specific Features
2.4 Host Offloading Features
Features Benefits
Integrated PHY for 10/100/1000 Mbps operation Smaller footprint and lower power dissipation
compared to multi-chip MAC and PHY solu tions
IEEE 802.3ab Auto-Negotiation support Automatic link configuration including speed,
duplex, and flow control
IEEE 802.3ab PHY compliance and compatibility Robust operation over the installed base of
Category-5 (CAT-5) twisted pair cabling
State-of-the-art DSP architecture implements digital
adaptive equalization, echo cancellation, and cross-
talk cancellation
Robust performance in noisy environments
Tolerance of common electrical signal
impairments
PHY cable correction and diagnostics Improved end-user troubleshooting
Tolerance of common wiring faults
Low-Power Link-Up (LPLU)
•Smart Speed
•Smart Power-Down
Enables link in low-power mode
Reacts to various link speeds
Features Benefits
Transmit and receive IP, TCP and UDP checksum off-
loading capabilities Lower CPU utilization
Transmit TCP segmentation Increased throughput and lower CPU utilization
Large send offload feature (in Microsoft*
Windows* XP) compatible
IPv6 Offloading Checksum and segmentation capability extended
to new standard packet type
Advanced packet filtering
16 exact matched packets (unicast or multicast)
4096-bit hash filter for multicast frames
Promiscuous (unicast and multicast) transfer
mode support
Optional filtering of invalid frames
IEEE 802.1q VLAN support with VLAN tag insertion,
stripping and packet filtering for up to 4096 VLAN
tags Ability to create multiple virtual LAN segments
Descriptor ring management hardware for transmit
and receive
Optimized fetching and write-back mechanisms
for efficient system memory and PCI bandwidth
usage
9 kB jumbo frame support High throughput for large data transfers on
networks supporting jumbo frames
7
Datasheet—82571/82572 Gigabit Ethernet Controller
2.5 Manageability Features
2.6 Additional Device Features
Features Benefits
Manageability features:
One SMBus port with Fast Management Link
Capability
Alerting Standards Format 1.0 and 2.0
Advanced Power Management (Wake on LAN)
Alerting and control via standardized interfaces
Network management flexibility
Manageability data transfers up to 8 Mb/s peak
rate
On-board microcontroller
Enables effective ASF 2.0 implementations
Promotes customized designs
Allows packets routing to and from either LAN
port and a server management processor
Supports serial text and keyboard redirection
Supports remote floppy/CD
Preboot eXecution Environment (PXE) Flash interface
support (32-bit nd 64-bit) Local Flash interface for PXE image
Compliance with PCI Power Management 1.1 and
ACPI 2.0 register set compliant including:
D0 and D3 power states
Network Device Class Power Management
Specification 1.1
PCI power management capability requirements
for PC and embedded applications
SNMP and RMON statistic counters Easy system monitoring with industry standard
consoles
SDG 3.0, WfM 3.0, and PC2001 compliance Remote network management capabilities
through DMI 2.0 and SNMP software
Wake on LAN support Packet recog nition and w ak e-up for NIC and LO M
applications without software configuration
Features Benefits
82571EB: Two complete Gigabit Ethernet connections
in a single device
Inherent dual port teaming ability
High availability using one port for failover
Higher throughput than single Gigabit Ethernet
port
Lower latency due to one electrical load on the
bus
Saves critical board space
Reduced multi-port Gigabit Ethernet costs
Integrated SERDES Supports backplane and fiber applicatio ns as well
as copper-based Gigabit
Four activity and link indication outputs (per port)
that directly drive LEDs Link and activity indications (10, 100, and 1000
Mbps) on each port
Programmable LED functionality Software definable function (speed, link, and
activity) and blinking allowing flexible LED
implementations
Internal PLL for clock generation can use a 25 MHz
crystal Lower component count and system cost
JTAG (IEEE 1149.1) Test Access Port built in silicon Simplified testing using boundary scan
Four software definable pins per port Additional flexibility for LEDs or other low speed
I/O devices
Provides loopback capabilities Validates silicon integrity
82571/82572 Gigabit Ethernet Controller—Datasheet
8
2.7 Technology Features
Features Benefits
256-pin Flip-Chip Ball Grid Array (FC-BGA) package 17 mm X 17 mm component
occupies only 28% more board
space than a single port device
Implemented in 90 nm CMOS process Offers lowest geometry to minimize
power and size while maintaining
Intel quality and reliability standards
Operating temperature:
1000BASE-T, 0° C to 55° C (with thermal management)
1000BASE-T, 0° C to 70° C (with increased thermal
management)
1000BASE-SX/LX (or SERDES backplane), 0°C to 70° C
Storage temperature 65° C to 140° C
Simple thermal design
Typical targeted power dissipation:
~3.50 W @ D0 1000 Mbps
~0.78mW @ D3 100 Mbps (wakeup enabled)
~0.36mW @ D3 wakeup disabled
Minimizes impact of incorporating
Gigabit instead of Fast Ethernet.
9
Datasheet—82571/82572 Ethernet Controller
3.0 Signal Descriptions
Note: The targeted signal names are subject to change without notice. Verify with your local
Intel sales office that you have the latest information before finalizing a design.
3.1 Signal Type Definitions
The signals of the controller are electrically defined as follows:
3.2 PCI Express Interface
Name Definition
IInput
Standard input only digital signal.
OOutput
Standard output only digital signal.
TS Tri-state
Bi-directional three-state digital input/output signal.
OD
Open Drain
Wired-OR with other agents.
The signaling agent asserts the OD signal, but the signal is returned to the inactive state by a
weak pull-up resistor. The pull-up resistor may require two or three clock periods to fully
restore the signal to the de-asserted state.
AAnalog
PCIe*, SERDES, or, PHY analog signal.
A(I) Analog-Input
Standard input only analog signal.
A(O) Analog-Output
Standard output only analog signal.
PPower
Power connection, voltage reference, or other reference connection.
Symbol Type Name and Function
PERn[3:0]
PERp[3:0] A(I)
High Speed Serial Receive Data
These signals connect to corresponding PETn and PETp signals on a system
motherboard or a PCI Express connector. Series AC coupling capacitors are
required at the tr ansmitter end. Th e PCI Express differential inputs are c lock ed at
2.5 Gb/s.
PETn[3:0]
PETp[3:0] A(O)
High Speed Serial Transmit Data
These signals connect to corresponding PERn and PERp signals on a system
motherboard or a PCI Express connector. Series AC coupling capacitors are
required at the 82571EB/82572EI controller end. The PCI Express differential
outputs are clocked at 2.5 Gb/s.
82571/82572 Ethernet Controller—Datasheet
10
3.3 Power Management Signals
PE_RCOMPp
PE_RCOMPn PHigh Speed Serial Impedance Compensation
Connect the recommended resistor value acro ss these balls. Refer to the
82571EB/82572EI Design Guide for the recommended value.
PE_CLKp
PE_CLKn I100 MHz Differential Clock for the PCI Express Interface
The reference clock is furnished by the system and has a 300 ppm frequency
tolerance.
PE_RST_N I
PCI Express Reset
When the signal is low, all PCI Express functions are held in reset. When the
signal is high, it denotes that main power is available to the 82571EB/82572EI
controller and the reference clock is running.
In systems with a PCI Express add-in card, this signal routes to the connector.
Symbol Type Name and Function
AUX_PWR I Auxiliary Power Present.
If the Auxiliary Power signal is high, then auxiliary power is present and the
82571EB/82572EI device should support the D3cold power state.
LAN0_DIS_N
LAN1_DIS_N/
RSVD_B8 I
LAN Disables 0 or 1
Disables individual Ethernet ports. State is latched upon a rising edge of
PERST_N or a PCI Express reset ev ent. This pin has an internal pu ll-up res istor.
Note: Both ports cannot be disabled at the same time.
DEV_OFF_N I Device Off
Asynchronously disab les Ethernet contro ller, including voltage regu lator control
outputs if selected in CTRL_EXT. This pin has an internal pull-up resistor.
PE_WAKE_N OD
Wake
The device drives this signal low when it receives a wake-up event and either
the PME Enable bit in the Power Management Control/Status Register or the
Advanced Power Management Enable (APME) bit of the Wake-up Control
Register (WUC) is 1b.
Symbol Type Name and Function
11
Datasheet—82571/82572 Ethernet Controller
3.4 SMB and Fast Management Link Bus Signals
Symbol Type Name and Function
SMBCLK0/FLBMCK I/O
SMB Clo c k
The SMB Clock signals are open drain signals for the serial SMB interface
(Ports A and B). Alternatively, when SMB Port A is configured for a Fast
Management Link Bus, SMB Clock A becomes the Fast Management Link Bus
Master Clock. The Fast Management Link Bus can be clocked up to 6.5 MHz.
Note: Only SMBus 0 is support ed; use only SMBCLK0. SMBCLK1 (pin P13) is
reserved. Do not use this pin. Connect it to 3.3 V through a 100K ohm
resistor.
SMBD0/FLBMD I/O
SMB Data
The SMB Data signals are open drain sign als for the serial SMB interface
(Ports A and B). Alternatively, when SMB Port A is configur ed for a Fast
Management Link Bus, SMB Data A becomes Fast Management Link Bus
Master Data.
Note: Only SMBus 0 is supported; use only SMBD0. SMBD1 (pin P12) is
reserved. Do not use this pin. Connect it to 3.3 V through a 100K ohm
resistor.
SMBALRT_N/
PCI_PWR_GOOD I/O
SMB Alert
The SMB Alert signal is an open drain signal for serial SMB Port A. In ASF
mode, this signal acts as a power good input. It acts as an alert input in
82559 compatible mode.
FLBSD O
Fast Management Link Bus Slave Data.
When SMB Port A is configured for a Fast Management Link Bus, this signal
becomes the serial data path for slave data from the 82571EB/82572EI
controller.
FLBINTEX O
Fast Management Link Bus Interrupt Extension
Driven by the 82571EB/82572EI controller as a slave to alert the master to
read data. Alternatively, it signals the master to extend the low phase of the
clock.
82571/82572 Ethernet Controller—Datasheet
12
3.5 EEPROM and Serial FLASH Interface Signals
3.6 LED Signals
Symbol Type Name and Function
EE_DI O EEPROM Data Input
The EEPROM Data Input pin is used for output to the SPI EEPROM memory device.
EE_DO I EEPROM Data Output
The EEPROM Data Output pin is used for input from the SPI EEPROM memory
device. The EE_DO i ncludes an internal pull-up resistor.
EE_CS_N O EEPROM Chip Select
The EEPROM Chip Select signal is used to enable the device.
EE_SK O EEPROM Serial Clock
The EEPROM Shift Clock provides the clock r ate for the SPI EEPROM interface, which
is approximately 2 MHz.
FLSH_CE_N O FLASH Chip Enable Output.
Used to enable FLASH device.
FLSH_SCK O FLASH Serial Clock Output.
Inout from the memory device.
FLSH_SI O FLASH Serial Data Input.
This pin is an output to the memory device.
FLSH_SO I FLASH Serial Data Output
This pin is an input from the memory device.
Symbol Type Name and Function
LED0_0 O LED0_0.
Programmable LED output for Port A. As the Link LED, it indicates link connectivity
on Port A.
LED0_1 O LED0_1.
Programmable LED output for Port A. As the Activity LED, it flashes to indicate
receive activity on Port A for packets destined for this node.
LED0_2 O LED0_2
Programmable LED output for Port A. As the Link 100 LED, it indicates link at 100
Mbps for Po rt A.
LED0_3 O LED0_3.
Programmable LED output for P ort A. As the Link 1000 LED , it indicates link at 1000
Mbps for Po rt A.
LED1_0/
RSVD_P8 OLEDB0_N.
Programmable LED output for Port B. As the Link LED, it indicates link connectivity
on Port B. (82571 only.)
LED1_1/
RSVD_R8 OLED1_1.
Programmable LED output for Port B. As the Activity LED, it flashes to indicate
receive activity on Port B for packets destined for this node. (82571 EB only.)
LED1_2/
RSVD_T8 OLED1_2.
Programmable LED output for Port B. As the Link 100 LED, it indicates link at 100
Mbps for Port B. (82571 EB only.)
LED1_3/
RSVD_P9 OLED1_3.
Programmable LED output for P ort B. As the Link 1000 LED, it indicat es link at 1000
Mbps for Port B. (82571 EB only.)
13
Datasheet—82571/82572 Ethernet Controller
3.7 Other Signals
3.8 Crystal Signals
3.9 PHY Analog Signals
3.9.1 Port 0
Symbol Type Name and Function
SDP0_1
SDP0_2
SDP0_3
SDP0_4
SDP1_1/RSVD_P6
SDP1_2/RSVD_B6
SDP1_3/RSVD_C6
SDP1_4/RSVD_R6
TS
Software Defined Pin
The Software Defined Pins are programmable with respect to input and output
capability. SDP0_3 and SDP1_3 may optionally be configu red as interrupt in puts .
SDP signals default to inputs upon power-up, but may be configured differen tly
by the EEPROM.
Symbol Type Name and Function
XTAL1 I
Crystal One
The Crystal One pin is a 25 MHz input signal. It should be connected to a parallel
resonant crystal with a frequency tolerance of 30 ppm or better. The other end of the
crystal should be connected to XTAL2. Optionally, an oscillator can be connected to
XTAL 1. See the design guide for more information..
XTAL2 O Crystal Two
Crystal Two is the output of an internal oscillator circuit used to drive a crystal into
oscillation.
Symbol Type Name and Function
RBIAS0p
RBIAS0n P
Bias Resistors
These are the reference connections for the Media Dependent Interfac e. The
recommended resistor value should be connected across the positive/negative pair, even if
the MDI interface is not used. Refer to the 82571EB/82572EI Design Guide for the
recommended value.
MDI_PLUS0_0
MDI_MINUS0_0 A
Media Dependent Interface [0]
1000BASE-T: In MDI configuration, these correspond to BI_DA+/-, and in MDI-X
configuration, they correspond to BI_DB+/-.
100BASE-TX: In MDI configuration, these are used for the transmit pair, and in MDI-X
configuration, they are used for the receive pair.
10BASE-T: In MDI configuration, they are used for the transmit pair, and in MDI-X
configuration, used for the receive pair.
82571/82572 Ethernet Controller—Datasheet
14
3.9.2 Port 1 (82571 Only)
MDI_PLUS0_1
MDI_MINUS0_1 A
Media Dependent Interfa ce [1]
1000BASE-T: In MDI configuration, these correspond to BI_DB+/-, and in MDI-X
configuration, they correspond to BI_DA+/-.
100BASE-TX: In MDI configuration, they are used for the receive pair, and in MDI-X
configuration, they are used for the transit pair.
10BASE-T: In MDI configuration, they are used for the receive pair, and in MDI-X
configuration, they are used for the transit pair.
MDI_PLUS0_2
MDI_MINUS0_2 A
Media Dependent Interfa ce [2]
1000BASE-T: In MDI configuration, these correspond to BI_DC+/-, and in MDI-X
configuration, they correspond to BI_DD+/-.
100BASE-TX: Unused.
10BASE-T: Unused
MDI_PLUS0_3
MDI_MINUS0_3 A
Media Dependent Interfa ce [3]
1000BASE-T: In MDI configuration, these correspond to BI_DD+/-, and in MDI-X
configuration, they correspond to BI_DC+/-.
100BASE-TX: Unused.
10BASE-T: Unused.
Symbol Type Name and Function
Symbol Type Name and Function
RBIAS1p/RSVD_M14
RBIAS1n/RSVD_N14 P
Bias Resistors
These are the reference connections for the Media Dependent Interface. The
recommended resistor value should be conne cted acro ss the positive/negative pai r,
even if the MDI interface is not used. Refer to the 82571EB/82572EI Design Guide
for the recommended value.
MDI_PLUS1_0/RSVD_T14
MDI_MINUS1_0/RSVD_R14 A
Media Dependent Interfa ce [0]
1000BASE-T: In MDI configuration, these correspond to BI_DA+/-, and in MDI-X
configuration, they correspond to BI_DB+/-.
100BASE-TX: In MDI configuration, these are used for the transmit pair, and in
MDI-X c onfiguration, they are used for the receive pair.
10BASE-T: In MDI configuration, they are used for the transmit pair, and in MDI-X
configuration, used for the receive pair.
MDI_PLUS1_1/RSVD_T15
MDI_MINUS1_1/RSVD_R15 A
Media Dependent Interfa ce [1]
1000BASE-T: In MDI configuration, these correspond to BI_DB+/-, and in MDI-X
configuration, they correspond to BI_DA+/-.
100BASE-TX: In MDI configuration, they are used for the receive pair, and in MDI-
X configuration, they are used for the transit pair.
10BASE-T: In MDI configuration, they are used for the receive pair, and in MDI-X
configuration, they are used for the transit pair.
MDI_PLUS1_2/RSVD_P16
MDI_MINUS1_2/RSVD_P15 A
Media Dependent Interfa ce [2]
1000BASE-T: In MDI configuration, these correspond to BI_DC+/-, and in MDI-X
configuration, they correspond to BI_DD+/-.
100BASE-TX: Unused.
10BASE-T: Unused
MDI_PLUS1_3/RSVD_N16
MDI_MINUS1_3/RSVD_N15 A
Media Dependent Interfa ce [3]
1000BASE-T: In MDI configuration, these correspond to BI_DD+/-, and in MDI-X
configuration, they correspond to BI_DC+/-.
100BASE-TX: Unused.
10BASE-T: Unused.
15
Datasheet—82571/82572 Ethernet Controller
3.10 Serializer / Deserializer Signals
3.11 Test Interface Signals
Symbol Type Name and Function
SRDSI_0_PLUS
SRDSI_0_MINUS
SRDSI_1_PLUS/RSVD_M16
SRDSI_1_MINUS/RSVD_L16
A(I)
SERDES Receive Pairs
Signals SRDSI_0_PLUS and SRDSI_0_MINUS make the differential
receive pair for the 1.25 GHz serial interface for Port 0. Inputs
should be PICMIG 3.1-compliant.
Signals SRDSI_1_PLUS and SRDSI_1_MINUS make the differential
receive pair for the 1.25 GHz serial interface for Port 1. Inputs
should be PICMIG 3.1-compliant.
If the SERDES interface is not used, these pins should not be
connected.
SRDSO_0_PLUS
SRDSO_0_MINUS
SRDSO_1_PLUS/RSVD_K15
SRDSO_1_MINUS/RSVD_L15
A(O)
SERDES Transmit Pairs
Signals SRDSO_0_PLUS and SRDSO_0_MINUS make the
differential transmit pair for the 1.25 GHz serial interface for P ort 0.
Outputs drive PICMIG 3.1-compliant signals.
Signals SRDSO_1_PLUS and SRDSO_1_MINUS make the
differential transmit pair for the 1.25 GHz serial interface for P ort 1.
Outputs drive PICMIG 3.1-compliant signals.
If the SERDES interface is not used, these pins should not be
connected.
SRDSA_SIG_DET
SRDSB_SIG_DET/RSVD_C4 I
Signal Detects
These pins (SRDSA_SIG_DET for Port 0; SRDSB_SIG_DET for Port
1) indicate whether the SERDES signals (connected to the 1.25 GHz
serial interface) have been detected by the optical transceivers. If
the SERDES interfac e is not used, the SIG_DET inputs can be left
unconnected.
SRDS_RCOMPp
SRDS_RCOMPn A
SERDES Impedance Compensation.
Connect the re commended resistor value across these bal ls, eve n if
not using the SERDES interface. Refer to the 82571EB/82572EI
Design Guide for the recommended value.
Symbol Type Name and Function
JTCK I JTAG Test Access Port Clock
JTDI I JTAG Test Access Port Test Data In
JTDO O JTAG Test Access Port Test Data Out
JTMS I JTAG Test Access Port Mode Se lect
IEEE_TEST0p
IEEE_TEST0n
IEEE_TEST1p/RSVD_R13
IEEE_TEST1n/RSVD_T13
O
IEEE Analog Test Pins
Differential outputs providing reference clocks for IEEE PHY
conformance verification. For prototype testing, connect each pair to
two-pin headers. For production systems, leave pins unconnected.
THERM_Dp
THERM_Dn OThermal Diode Reference
Can be used to measure the slicon device temperature.
TEST_EN I Factory Test Pin
Attach a 1 K pull-down resistor to ground for normal operation.
82571/82572 Ethernet Controller—Datasheet
16
3.12 Power Supply Connections
3.12.1 Digital and Analog Supplies
3.12.2 Grounds, Reserved Pins and No Conn ects
Symbol Type Name and Function
VCC33 P 3.3V Digital Power Supply.
For I/O circuits.
VCC18 P 1.8V Analog Power Supply
For PHY analog, PHY I/O, PCI Express analog, and Phase Lock Loop circuits, Connect
all 1.8V pins to a single power supply.
VCC11 P 1.1V Digital Power Supply
For cor e digital, PHY digital, PCI Expre ss digital and clock circuits, c onnect all 1.1V pins
to a single power supply.
Symbol Type Name and Function
VSSA P Analog Ground
Connects to PHY analog circuits. Connect directly to analog ground.
VSS P Digital Ground
Connects to core and digital I/O. Connect to GND.
RSVD_ pin# P
Reserved Pin
These pins are reserved by In tel and may have factory test functions. For normal
operation, do not connect any circuitry to these pins (allow them to “float”). Some
special configurations may require pull-up or pull-down resistors on these pins.
Please refer to the 82571EB/82572EI design guide for more information.
NC_pin# P No Connect
This pin is not connected internally.
17
Datasheet—82571/82572 Gigabit Ethernet Controller
4.0 Voltage, Temperature, and Timing Specifications
4.1 Targeted Absolute Maximum Ratings
4.2 Targeted Recommended Operating Conditions
4.2.1 General Operating Conditions
Table 1. Absolute Maximum Ratingsa
a. Maximum ratings are referenced to ground (VSS). Permanent device damage is likely to occur if the ratings
in this table are exce eded for an indefin ite durati on. The se values s hould no t be us ed as th e limits for n ormal
device operations.
Symbol Parameter Min Max Unit
VCC(3.3) DC supply voltage on 3.3V pins
with respect to VSS VSS - 0.5 4.6 V
VCC(1.8) DC supply voltage on 1.8V pins
with respect to VSSb
b. During normal device power up and power down, the 1.8V and 1.1V supplies must not ramp before the 3.3V
supply.
VSS - 0.3 2.5 V
VCC(1.1) DC supply voltage on 1.1V pins
with respect to VSSbVSS - 0.2 1.7 V
VI / VO
3.3V I/O Voltage
1.8V I/O Voltage
1.1V I/O Voltage
VSS - 0.5
VSS - 0.3
VSS - 0.2
4.6
2.5
1.7 V
IODC output current N/A 30 mA
Tstorage Storage temperature range -65 140 °C
ESD per MIL_STD-883 Test
Method 3015, Specification 2001V
Latchup Over/Undershoot: 150
mA, 125° C
N/A VDD overstress:
VDD(3.3) * (7.2 V) V
Table 2. Recommended Operating Conditions a
a. Sustained operation of the device at cond itions exceeding these values, e ven if they are within th e absolute
maximum rating limits, might result in permanent damage. Device functionality to stated DC and AC limits is
not guaranteed, if conditions exceed recommended operating conditions.
Symbol Parameter Min Max Unit
VCC(3.3) DC supply voltage on 3.3V pins 3.0 3.6 V
VCC(1.8) DC supply voltage on 1.8V pinsb
b. See Section 4.2.2 for voltage ramp and sequencing recommendations.
1.71 1.89 V
VCC(1.1) DC supply voltage on 1.1V pins 1.045 1.155 V
tR / tF Input rise/fall time (normal input) 0 200 ns
TaOperating temperature range
(ambient) 055
c
c. 1000BASE-T designs require thermal management (heatsink and/or forced air flow) to achieve 0° to 55° C
operation. Increased thermal management can incre ase this temperature range to 0° to 70° C. Applications
using the SERDES interface are rated for 0° to 70° C without thermal management.
°C
TJJunction temperature N/A 110 °C
82571/82572 Gigabit Ethernet Controller—Datasheet
18
4.2.2 Voltage Ramps
Table 3. 3.3V Supply Voltage Ramp
Parameter Description Min Max Unit
Rise Time Time from 10% to 90% mark 0.1 100a
a. Good design practices achieve voltage ramps to within the regulation bands in approximately 20 ms or less.
ms
Monotonicity Voltage dip allowed in ramp N/A 0 mV
Slope Ramp rate at any time betw een 10%
to 90% 24 28000 mV/ms
Operational
Range Voltage range for normal operating
conditions 33.6 V
Ripple Maximum voltage ripple at a
bandwidth equal to 50 MHz N/A 70 mVpeak-peak
Overshoot
Settling Time Overshoot time upon rampb
b. Excessive overshoot can affect long term reliability.
N/A 0.05 ms
Overshoot Maximum voltage allowedbN/A 100 mV
Table 4. 1.8V Supply Voltage Ramp
Parameter Description Min Max Unit
Rise Time Time from 10% to 90% mark 0.1 100a
a. Good design practices achieve voltage ramps to within the regulation bands in approximately 20 ms or less.
ms
Monotonicity Voltage dip allowed in ramp N/A 0 mV
Slope Ramp rate at any time betw een 10%
to 90% 14 60000 mV/ms
Operational
Range Voltage range for normal operating
conditions 1.71 1.89 V
Ripple Maximum voltage ripple at a
bandwidth equal to 1 MHz N/A 40 mVpeak-peak
Overshoot
SettlingTime Overshoot time upon rampb
b. Excessive overshoot can affect long term reliability.
N/A 0.1 ms
Overshoot Maximum voltage allowedbN/A 100 mV
Table 5. 1.1V Supply Voltage Ramp
Parameter Description Min Max Unit
Rise Time Time from 10% to 90% mark 0.1 100a
a. Good design practices achieve voltage ramps to within the regulation bands in approximately 20 ms or less.
ms
Monotonicity Voltage dip allowed in ramp N/A 0 mV
Slope Ramp rate at any time betw een 10%
to 90% 7.6 33600 mV/ms
Operational
Range Voltage range for normal operating
conditions 1.045 1.155 V
Ripple Maximum voltage ripple at a
bandwidth equal to 1 MHz N/A 40 mVpeak-peak
Overshoot
SettlingTime Overshoot time upon rampb
b. Excessive overshoot can affect long term reliability.
N/A 0.05 ms
Overshoot Maximum voltage allowedbN/A 100 mV
19
Datasheet—82571/82572 Gigabit Ethernet Controller
4.2.3 Voltage Power Sequencing Options
To meet 375 mA inrush current requirements (not including external capacitors) the
ramp time should be 5 ms -100 ms on all power rail s. For faster ramps (100 us - 5
ms), expect higher inrush current due to th e high charging current of the decoupling
capacitors of 3.3V, 1.8V and 1.1V rails.
4.3 DC Specifications
4.3.1 Power Specifications--82571EB
Table 6. DC Characteristics
Symbol Parameter Condition Min Typ Max Units
VCC(3.3) DC supply voltage on 3.3V
pins 3.00 3.30 3.60 V
VCC(1.8) DC supply voltage on 1.8V
pins 1.71 1.80 1.89 V
VCC(1.1) DC supply voltage on 1.1V
pins 1.045 1.100 1.155 V
Table 7. D0a--Active Link
D0a--Active Link
@10
Mbps @100
Mbps @ 1000 Mbps
(copper) @ 1000 Mbps
(SERDES)
Typ
Icc
(mA)a
a. Typical conditions: operating temperature (TA) = 25 C, nominal
voltages and continuous n etwor k traffic at link speed at full duplex.
Typ
Icc
(mA)a
Typ
Icc
(mA)a
Max
Icc
(mA)a
Typ
Icc
(mA)a
Max
Icc
(mA)b
b. Maximum conditions: maximum operating temperature (TJ) va lues,
typical voltage valu es and continuous network traffic at link sp eed at
full duplex.
3.3V 26 26 26 34 42 46
1.8V 350 399 893 913 254 282
1.1V 370 456 1022 1520 529 1002
Total
Device
Power 1.12W 1.31W 2.82W 3.43W 1.18W 1.76W
82571/82572 Gigabit Ethernet Controller—Datasheet
20
Table 8. D0a--Idle Link L0s Only
D0a--Idle Link
L0s Only
Unplugged--no
link @10Mbps @100Mbps @1000Mbps
(copper)
Typ Icc (mA)a
a. Typical conditions: room temperature (TA)=25C, nominal voltages and idle network
(no traffic) at full duplex
3.3V 26 26 26 26
1.8V 130 123 306 837
1.1V 332 334 414 839
Total
Device
Power 0.69W 0.67W 1.10W 2.52W
Table 9. D3cold
D3cold - wake-up
enabled D3cold-
wake
disabled
(no link)
@10
Mbps @100
Mbps
Typ Icc
(mA)a, b
a. D3 Cold activated on a Windows Server 2003
OS--using Hbernate mode
b. L0s enable, L1 disabled
Typ Icc
(mA)a, b Typ Icc
(mA)a b
3.3V 26 26 26
1.8V 74 243 76
1.1V 133 236 123
Total
Device
Power 0.37W 0.78W 0.36W
Table 10. D(r) Unintialized
D(r) Uninitialized
Disabled through
LAN_DIS_N
Typ Icc (mA)
Disabled through
DEV_OFF_N
Typ Icc (mA)
3.3V 26 26
1.8V 63 68
1.1V 130 83
Total Device
Power 0.34W 0.30W
21
Datasheet—82571/82572 Gigabit Ethernet Controller
4.3.2 Power Specifications--82572EI
Table 11. D0 a --Active Link
D0a--Active Link
@10
Mbps @100
Mbps @ 1000 Mbps
(copper)
Typ
Icc
(mA)a
a. Typical conditions: operating temperature (TA)
= 25 C, nominal voltages and continuous
network traffic at link speed at full duplex.
Typ
Icc
(mA)a
Typ
Icc
(mA)a
Max
Icc
(mA)a
3.3V 26 26 26 34
1.8V 210 211 484 502
1.1V 291 232 494 1023
Total
Device
Power 0.78W 0.72W 1.50W 2.14W
Table 12. D0a--Idle Link
D0a--Idle Link
L0s Only
Unplugged--no
link @10Mbps @100Mbps @1000Mbps
(copper)
Typ Icc (m A)a
a. Typical conditions: room temperature (TA)=25C, nominal voltages and idle network
(no traffic) at full duplex
3.3V 26 26 26 26
1.8V 111 102 199 425
1.1V 176 179 218 839
Total
Device
Power
b
b. LOs enabled; L1 disabled
0.48W 0.47W 0.68W 1.77W
82571/82572 Gigabit Ethernet Controller—Datasheet
22
4.3.3 I/O Characteristics
Table 13. D3cold
D3cold - wake-up
enabled D3cold-wake
disabled;
unplugged, no link
@10
Mbps @100
Mbps
Typ Icc
(mA)a, b
a. D3 Cold activated on a Windows Server 2003 OS--using
Hbernate mode
b. LOs enabled, L1 disabled
Typ Icc
(mA)a, b Typ Icc (mA)a b
3.3V 26 26 26
1.8V 77 173 84
1.1V 120 163 110
Total
Device
Power 0.36W 0.58W 0.36W
Table 14. D(r) Unintialized
D(r) Uninitialized
Disabled through
LAN_DIS_N
Typ Icc (mA)
Disabled through
DEV_OFF_N
Typ Icc (mA)
3.3V 26 26
1.8V 60 68
1.1V 114 83
Total Device
Power 0.32W 0.30W
Table 15. I/O Characteristicsa
Symbol Parameter Condition Min Typ Max Units
VIH Input high voltage 2.0 N/A VCC(3.3)
+ 0.5 V
VIL Input low voltage -0.5 N/A 0.8 V
IIN Input current VIN = VDD(3.3) or
VSS -15 N/A 15 µA
VOH Output high voltage
IOH = -16 mA
VCC = Min 2.4 N/A N/A
V
IOH = -100 µA
VCC = Min VCC - 0.02 N/A N/A
VOL Output low voltage
IOL = 14 mA
VCC = Min N/A N/A 0.4
V
IOL = 100 µA
VCC = Min N/A N/A 0.2
23
Datasheet—82571/82572 Gigabit Ethernet Controller
4.4 Targeted AC Characteristics
IOZ Off-state output leakage
current VO = VCC or VSS -10 N/A 10 µA
CINbInput capacitance N/A 2.5 N/A pF
PU Internal pull-up 2.6 N/A 5.5 k
a. The input buffer also has hysteresis > 160 mV.
b. Cin= 2.5 pF(maximum input capacitance), Cout = 16 pF (characterized max output load capacitance per 160
MHz).
Table 16. 25 MHz Clock Input Requiremen ts
Symbol Parameter Min Typ Max Unit
f0 Frequency N/A 25.000 N/A MHz
df0 Frequency Variation -50 N/A +50 ppm
Dc Duty Cycle 40 N/A 60 %
tr Rise Time N/A N/A 5 ns
tf Fall Time N/A N/A 5 n s
Jptp Clock Jitter (peak-to-peak)a
a. Clock jitter is defined according to the recommendations of part 40.6.1.2.5 IEEE 1000Base-T Standard (at
least 105 clock edges, filtered by HPF with cut off frequency of 5000 Hz).
N/A N/A 250 ps
Cin Input Capacitance N/A 20 N/A pF
T Operating Temperature N/A N/A 70 ° C
Aptp Input clock amplitude (peak-to-
peak) 1.0 1.2 1.3 V
Vcm Clock common mode N/A 0.6 N/A V
Table 17. Re ference Crystal Specification Requirements
Specification Value
Vibrational Mode Fundamental
Nominal Frequency 25.000 MHz at 25 °C
Frequency Tolerance
±30 ppm recommended
±50 ppm across the entire
operating temperature range
(required by IEEE
specifications)
Temperature Stability +/- 30 ppm at 0 °C to 70 °C
Calibration Mode Parallel
Load Capacitance 20 pF to 24 pF
Shunt Capacitance 6 pF maximum
Series Resistance, Rs 50 maximum
Drive Level 0.5 mW maximum
Aging +/- 5.0 ppm per year maximum
Insulation Resistance 500 ΜΩ minimum at DC 100 V
Table 15. I/O Characteristicsa
Symbol Parameter Condition Min Typ Max Units
82571/82572 Gigabit Ethernet Controller—Datasheet
24
Figure 2. AC Test Loads for General Output Pins
4.5 Targeted Timing Specifications
Note: Timing specifications are preliminary and subject to change. Verify with your local Intel
sales office that you have the latest information before finalizing a design.
Board Capacitance 4 pF
External Capacitors 27 pF
Board Resistance 0.1
Table 18. Link Interface Clock Requirements
Symbol Parameter Min Typ Max Unit
fGTXaGTX_CLK frequency N/A 125 N/A MHz
a. GTX_CLK is used externally for test purposes only.
Table 19. EEPROM Interface Clock Requirements
Symbol Parameter Min Typ Max Unit
fSK SPI EEPROM Clock N/A 2 2.1 MHz
Table 20. AC Test Loads for General Output Pins
Symbol Parameter Min Typ Max Unit
CLCapacitance of test load N/A 16 N/A pF
Table 17. Reference Crystal Specification Requirements
Specification Value
C
L
25
Datasheet—82571/82572 Gigabit Ethernet Controller
4.5.1 PCI Express Interface
4.5.1.1 Differential Transmitter (TX) Output Specifications
Table 21. Differential Transmitter (TX) Output Specifications
Symbol Parameter Min Typ Max Units
UI Unit Interval 399.88 400 400.12 ps
VTX-DIFFp-p Differential Peak
to Peak Output
Voltage 0.800 N/A 1.2 V
VTX-DE-RATIO
De-Emphasized
Differential
Output Voltage
(Ratio)
-3.0 -3.5 -4.0 dB
TTX-EYE Minimum TX
Eye Width 0.70 N/A N/A UI
TTX-RISE,
TTX-FALL
D+/D- TX
Output Rise/F all
Time 0.125 N/A N/A UI
VTX-CM-ACp RMS AC Peak
Common Mode
Output Voltage N/A N/A 20 mV
VTX-CM-DC-LINE-
DELTA
Absolute Delta
of DC Common
Mode Voltage
between D+
and D-
0N/A25mV
VTX-IDLE-DIFFp Electrical Idle
Differential Peak
Output Voltage 0N/A20mV
VTX-RCV-DETECT
The amount of
voltage change
allowed during
Receiver
Detectoin
N/A N/A 600 mV
RLTX-DIFF Differential
Return Loss 12 N/A N/A dB
RLTX-CM Common Mode
Return Loss 6N/AN/AdB
ZTX-DIFF-DC DC Differential
TX Impedance 80 100 120
LTX-SKEW Lane-toLane
Output Skew N/A N/A 500 + 2 UI ps
82571/82572 Gigabit Ethernet Controller—Datasheet
26
Figure 3. PCI Express Transmitter Eye Diagram
Figure 4. PCI Express Transmitter Test Load
[De-emphasized Bit]
566 mV (3 dB) >= VTX-DIFFp-p-MIN >= 505 mV (4 dB)
[Transition Bit]
VTX-DIFFp-p-MIN = 800 mV
VTX-DIFF = 0 mV
(D+ D- Crossing Point)
[Transition Bit]
VTX-DIFFp-p-MIN = 800 mV
0.7 UI = UI - 0.3 UI(JTX-TOTAL-MAX)
VTX-DIFF = 0 mV
(D+ D- Crossing Point)
TX
Silicon + Package
C = C
TX
C = C
TX
R = 50 R = 50
D+ Package Pin
D- Package Pin
27
Datasheet—82571/82572 Gigabit Ethernet Controller
4.5.1.2 Differential Receiver (RX) Input Specifications
Figure 5. PCI Express Receiver Eye Diagram
Table 22. Differential Receiver (RX) Output Specifications
Symbol Parameter Min Typ Max Units
UI Unit Interval 399.88 400 400.12 ps
VRX-DIFFp-p Differential Peak
to Peak Output
Voltage 0.175 N/A 1.2 V
RTX-EYE Minimum RX
Eye Width 0.4 N/A N/A UI
VRX-CM-ACp AC Peak
Common Mode
Input Voltage N/A N/A 150 mV
RLRX-DIFF Differential
Return Loss 15 N/A N/A dB
RLRX-CM Common Mode
Return Loss 6N/AN/AdB
ZRX-DIFF-DC DC Differential
Input
Impedance 80 100 120
LRX-SKEW Total Skew N/A N/A 20 ns
VRX-DIFFp-p-MIN > 175 mV
VRX-DIFF = 0 mV
(D+ D- Crossing Point)
0.4 UI = TRX-EYE-MIN
VRX-DIFF = 0 mV
(D+ D- Crossing Point)
82571/82572 Gigabit Ethernet Controller—Datasheet
28
4.5.2 EEPROM Interface
Figure 6. EEPROM Interface Time Diagram
Table 23. EEPROM Interface Time Specifications
Symbol Parameter Min Typ Max Units
tSCK SCK clock
frequency 022.1MHz
tRI Input rise time N/A 2.5 ns 2 µs
tFI Input fall time N/A 2.5 ns 2 µs
tWH SCK high timea200 250 N/A ns
tWH SCK low timea200 250 N/A ns
tCS CS high time 250 N/A N/A ns
tCSS CS setup time 250 N/A N/A ns
tCSH CS hold time 250 N/A N/A ns
tSU Data-in setup
time 50 N/A N/A ns
tHData-in hold
time 50 N/A N/A ns
tVOutput Valid 0 N/A 200 ns
tHO Output hold
time 0N/AN/Ans
tDIS Output dis able
time N/A N/A 250 ns
tWC Write cycle time N/A N/A 10 ms
a. 50% duty cycle.
CS
SCK
SI
SO
V
IH
V
IL
V
IH
V
IL
V
IH
V
IL
V
IH
V
IL
t
CSS tCSH
t
CS
t
WH
t
WL
t
SU
t
H
t
V
t
HO
t
DIO
Hi-ZHi-Z
VALID IN
29
Datasheet—82571/82572 Gigabit Ethernet Controller
4.5.3 FLASH Interface
Figure 7. FLASH Interface Time Diagram
Table 24. FLASH Interface Time Specifications
Symbol Parameter Min Typ Max Units
tSCK SCK clock
frequency 0 15.625 20 MHz
tRI Input rise time N/A 2.5 ns 20 ns
tFI Input fall time N/A 2.5 ns 20 ns
tWH SCK high timea
a. 50% duty cycle.
20 32 N/A ns
tWH SCK low timea20 32 N/A ns
tCS CS high time 25 N/A N/A ns
tCSS CS setup time 25 N/A N/A ns
tCSH CS hold time 250 N/A N/A ns
tSU Data-in setup
time 5N/AN/Ans
tHData-in hold
time 5N/AN/Ans
tVOutput Valid 0 N/A 20 ns
tHO Output hold
time 0N/AN/Ans
tDIS Output disable
time N/A N/A 100 ns
tEC Erase cycle time
per sector N/A 60 100 µs
CS
VIH
VIL
VIH
VIL
VIH
VIL
tcss
tWH tWL
tCSH
tCS
Sck
VALID IN
tSU tH
SI
VOH
VOL
HI-Z HI-Z
tHO tDIS
SO
tv
82571/82572 Gigabit Ethernet Controller—Datasheet
30
31
Datasheet—82571/82572 Gigabit Ethernet Controller
5.0 Package and Pinout Information
This section describes the 82571/82572 Gigabit Ethernet Controller’s physical
characteristics. The pin number-to-signal mapping is indicated beginning with Table 25.
Note: The targeted signal names are subject to change without notice. Verify with your local
Intel sales office that you have the latest information before finalizing a design.
5.1 Package Information
The device is a 256-lead flip-chip ball grid array (FC -BGA) measuring 17 mm x 17 mm.
The nominal ball pitch is 1 mm. See Figure 9.
Figure 8. 82571EB/8257 2E I Con troller FC-BGA Package Ball Pad Dime nsions
0.43 mm
Solder Resist Opening
0.62 mm
Metal Diameter
Detail Area
82571/82572 Gigabit Ethernet Controller—Datasheet
32
Figure 9. Mechanical Specifications
33
Datasheet—82571/82572 Gigabit Ethernet Controller
5.2 Thermal Specification
The device is specified for operation when the ambient temperature (TA) is within the
range of 0° C to 55° C. For more information about the thermal characteristics of the
device, including operation outside of this range, please refer to the 82571EB/82572EB
Thermal Application Note, AP-490
5.3 Pinout Information
Signal names apply to both the 82571EB and the 82572EI unless there is a “/”, which
indicates that the the first name is for the 82571EB and the second name is for the
82572EI.
Table 25. PCI Express Signals
SignalPinSignalPinSignalPin
PERn0R2PERn3B1PETn2D2
PERp0T2PERp3C1PETp2E2
PERn1 M2 PETn0 P1 PETn3 A2
PERp1 N2 PETp0 R1 PETp3 B2
PERn2 E1 PETn1 L1 PE_RCOMPn G2
PERp2 F1 PETp1 M1 PE_RCOMPp H2
PE_CLKn J2 PE_CLKp K2 PE_RST_N T6
Table 26. Power Managem ent Sig nals
Signal Pin Signal Pin
LAN0_DIS_N B7 PE_WAKE_N P11
LAN1_DIS_N/
RSVD_B8 B8 AUX_PWR C8
DEV_OFF_N T3
Table 27. SMB/Fast Management Link Bus Signals
SignalPinSignalPin
SMBCLK0/FLBMCK T12 SMBALRT_N/
PCI_PWR_GOOD R11
SMBD0/FLBMD R12 FLBSD P7
FLBINTEX R7
Table 28. EEPROM and Serial FLASH Interface Signals
SignalPinSignalPinSignalPin
EE_SK B12 EE_CS_N C13 FLSH_SI T9
EE_DO A12 FLSH_SCK R10 FLSH_SO R9
EE_DI C12 FLSH_CE_N P10
82571/82572 Gigabit Ethernet Controller—Datasheet
34
Table 31. PHY and SERDES Signals
Table 29. LED Signals
Signal Pin Signal Pin Signal Pin
LED0_0 B11 LED0_1 C11 LED1_3/RSVD_P9 P9
LED0_2 B10 LED1_0/RSVD_P8 P8 LED1_1/RSVD_R8 R8
LED0_3 C10 LED1_2/RSVD_T8 T8
Table 30. Other Signals
Signal Pin Signal Pin
SDP0_0 B9 SDP1_0/RSVD_P6 P6
SDP0_1 A9 SDP1_1/RSVD_B6 B6
SDP0_2 C9 SDP1_2/RSVD_C6 C6
SDP0_3 A8 SDP1_3/RSVD_R6 R6
Signal Pin Signal Pin Signal Pin
MDI_MINUS0_0 B14 MDI_MINUS1_3/
RSVD_N15 N15 SRDSI_0_MINUS F16
MDI_PLUS0_0 A14 MDI_PLUS1_3/
RSVD_N16 N16 SRDSI_0_PLUS E16
MDI_MINUS0_1 B15 RBIAS0n D14 SRDSO_1_MINUS/
RSVD_L15 L15
MDI_PLUS0_1 A15 RBIAS0p E14 SRDSO_1_PLUS/
RSVD_K15 K15
MDI_MINUS0_2 C15 RBIAS1n/
RSVD_N14 N14 SRDSB_SIG_DET/
RSVD_C4 C4
MDI_PLUS0_2 C16 RBIAS1p/
RSVD_M14 M14 SRDSI_1_MINUS/
RSVD_L16 L16
MDI_MINUS0_3 D15 SRDSO_0_MINUS F15 SRDSI_1_PLUS/
RSVD_M16 M16
MDI_PLUS1_2/
RSVD_P16 P16 SRDSO_0_PLUS G15 SRDSA_SIG_DET B4
MDI_PLUS0_3 D16 MDI_MINUS1_0/
RSVD_R14 R14 SRDS_RCOMPn H14
MDI_PLUS1_1/
RSVD_T15 T15 MDI_PLUS1_0/
RSVD_T14 T14 SRDS_RCOMPp H15
MDI_MINUS1_2/
RSVD_P15 P15 MDI_MINUS1_1/
RSVD_R15 R15
35
Datasheet—82571/82572 Gigabit Ethernet Controller
Table 32. Test Interface Signals
SignalPinSignalPinSignalPin
JTCK P4 IEEE_TEST0n A13 THERM_Dp D4
JTDI R3 IEEE_TEST0p B13 THERM_Dn D5
JTDO P5 IEEE_TEST1n/
RSVD_T13 T13
JTMS P3 IEEE_TEST1p/
RSVD_R13 R13
TEST_EN R5
Table 33. Crystal Signals
Signal Pin
XTAL1 J16
XTAL2 H16
Table 34. Power Signals
Signal Pin Signal Pin Signal Pin
VCC33 A4 VCC18 M4 VCC11 M9
VCC33A10VCC18M5VCC11M13
VCC33 D7 VCC18 K4 VCC11 E12
VCC33 D9 VCC11 E7 VCC11 F13
VCC33 N7 VCC11 E9 VCC11 G12
VCC33 N9 VCC11 E13 VCC11 K12
VCC33 T5 VCC11 F7 VCC11 L13
VCC33 T11 VCC11 F9 VCC11 M12
VCC18 E10 VCC11 G7 VCC11 F12
VCC18 F10 VCC11 G9 VCC11 L12
VCC18 G10 VCC11 H7 VCC11 J4
VCC18 H10 VCC11 H9 VCC11 J5
VCC18 J10 VCC11 J7 VCC11 N4
VCC18 K10 VCC11 J9 VCC11 N5
VCC18 L10 VCC11 K7
VCC18 M10 VCC11 K9
VCC18 H4 VCC11 L7
VCC18 H5 VCC11 L9
VCC18 K5 VCC11 M7
Table 35. Ground Signals (Sheet 1 of 2)
SignalPinSignalPinSignalPin
VSSA A1 VSSA H13 VSS A5
VSSA A16 VSSA J3 VSS A11
VSSA B16 VSSA J11 VSS D6
82571/82572 Gigabit Ethernet Controller—Datasheet
36
VSSA C2 VSSA J12 VSS D8
VSSA C14 VSSA J13 VSS D10
VSSA D1 VSSA K1 VSS E5
VSSA D3 VSSA K3 VSS E6
VSSA D11 VSSA K11 VSS E8
VSSA D12 VSSA K13 VSS F5
VSSA D13 VSSA K14 VSS F6
VSSA E3 VSSA K16 VSS F8
VSSA E4 VSSA L2 VSS G6
VSSA E11 VSSA L3 VSS G8
VSSA E15 VSSA L4 VSS H6
VSSA F2 VSSA L5 VSS H8
VSSA F3 VSSA L11 VSS J6
VSSA F4 VSSA L14 VSS J8
VSSA F11 VSSA M3 VSS K6
VSSA F14 VSSA M11 VSS K8
VSSA G1 VSSA M15 VSS L6
VSSA G3 VSSA N1 VSS L8
VSSA G4 VSSA N3 VSS M6
VSSA G5 VSSA N11 VSS M8
VSSA G11 VSSA N12 VSS N6
VSSA G13 VSSA N13 VSS N8
VSSA G14 VSSA P2 VSS N10
VSSA G16 VSSA P14 VSS T4
VSSA H3 VSSA R16 VSS T10
VSSA H11 VSSA T1
VSSA H12 VSSA T16
Table 35. Ground Signals (Sheet 2 of 2)
Signal Pin Signal Pin Signal Pin
37
Datasheet—82571/82572 Gigabit Ethernet Controller
Table 36. 82571 Reserved and No Connect Signals
Note: These pins are reserved by Intel and may have factory test functions. For normal
operation, do not connect any circuitry to these pins (allow them to “float”). Some
configurations ma y require pull-up or pull-down resistors on these pins. Please refer to
the 82571EB/82572EI design guide for more information.
Signal Pin Signal Pin
RSVD_A3 A3 RSVD_H1 H1
RSVD_ A6 A6 RSVD_J1 J1
DEVICE_DIS_N A7 RSVD_J14 J14
RSVD_B3 B3 RSVD_J15 J15
RSVD_ B5 B5 SMBD1 P12
RSVD_ C3 C3 SMBCLK1 P13
RSVD_ C5 C5 LAN_PWR_GOOD R4
RSVD_ C7 C7 NC_T7 T7
82571/82572 Gigabit Ethernet Controller—Datasheet
38
Table 37. 825 71 Signal Names in Pin Order
Pin Signal Name Pin Signal Name Pin Signal Name
A1 VSSA C9 SDP0_2 F1 PERp2
A2 PETn3 C10 LED0_3 F2 VSSA
A3 RSVD_A3 C11 LED0_1 F3 VSSA
A4 VCC33 C12 EE_DI F4 VSSA
A5 VSS C13 EE_CS_N F5 VSS
A6 RSVD_A6 C14 VSSA F6 VSS
A7 DEVICE_DIS_N C15 MDI_MINUS0_2 F7 VCC11
A8 SDP0_3 C16 MDI_PLUS0_2 F8 VSS
A9 SDP0_1 D1 VSSA F9 VCC11
A10 VCC33 D2 PETn2 F10 VCC18
A11 VSS D3 VSSA F11 VSSA
A12 EE_DO D4 THERM_Dp F12 VCC11
A13 IEEE_TEST0n D5 THERM_Dn F13 VCC11
A14 MDI_PLUS0_0 D6 VSS F14 VSSA
A15 MDI_PLUS0_1 D7 VCC33 F15 SRDSO_0_MINUS
A16 VSSA D8 VSS F16 SRDSI_0_MINUS
B1PERn3D9VCC33G1 VSSA
B2 PETp3 D10 VSS G2 PE_RCOMPn
B3 RSVD_B3 D11 VSSA G3 VSSA
B4 SRDSA_SIG_DET D12 VSSA G4 VSSA
B5 RSVD_B5 D13 VSSA G5 VSSA
B6 SDP1_1 D14 RBIAS0n G6 VSS
B7 LAN0_DIS_N D15 MDI_MINUS0_3 G7 VCC11
B8 LAN1_DIS_N D16 MDI_PLUS0_3 G8 VSS
B9 SDP0_0 E1 PERn2 G9 VCC11
B10 LED0_2 E2 PETp2 G10 VCC18
B11 LED0_0 E3 VSSA G11 VSSA
B12 EE_SK E4 VSSA G12 VCC11
B13 IEEE_TEST0p E5 VSS G13 VSSA
B14 MDI_MINUS0_0 E6 VSS G14 VSSA
B15 MDI_MINUS0_1 E7 VCC11 G15 SRDSO_0_PLUS
B16 VSSA E8 VSS G16 VSSA
C1 PERp3 E9 VCC11 H1 RSVD_H1
C2 VSSA E10 VCC18 H2 PE_RCOMPp
C3 RSVD_C3 E11 VSSA H3 VSSA
C4 SRDSB_SIG_DET E12 VCC11 H4 VCC18
C5 RSVD_C5 E13 VCC11 H5 VCC18
C6 SDP1_2 E14 RBIAS0p H6 VSS
C7 RSVD_C7 E15 VSSA H7 VCC11
C8 AUX_PWR E16 SRDSI_0_PLUS H8 VSS
39
Datasheet—82571/82572 Gigabit Ethernet Controller
H9 VCC11 L1 PETn1 N9 VCC33
H10 VCC18 L2 VSSA N10 VSS
H11 VSSA L3 VSSA N11 VSSA
H12 VSSA L4 VSSA N12 VSSA
H13 VSSA L5 VSSA N13 VSSA
H14 SRDS_RCOMPn L6 VSS N14 RBIAS1n
H15 SRDS_RCOMPp L7 VCC11 N15 MDI_MINUS1_3
H16 XTAL2 L8 VSS N16 MDI_PLUS1_3
J1 RSVD_J1 L9 VCC11 P1 PETn0
J2 PE_CLKn L10 VCC18 P2 VSSA
J3 VSSA L11 VSSA P3 JTMS
J4 VCC11 L12 VCC11 P4 JTCK
J5 VCC11 L13 VCC11 P5 JTDO
J6 VSS L14 VSSA P6 SDP1_0
J7 VCC11 L15 SRDSO_1_MINUS P7 FLBSD
J8 VSS L16 SRDSI_1_MINUS P8 LED1_0
J9 VCC11 M1 PETp1 P9 LED1_3
J10 VCC18 M2 PERn1 P10 FLSH_CE_N
J11 VSSA M3 VSSA P11 PE_WAKE_N
J12 VSSA M4 VCC18 P12 SMBD1
J13 VSSA M5 VCC18 P13 SMBCLK1
J14 RSVD_J14 M6 VSS P14 VSSA
J15 RSVD_J15 M7 VCC11 P15 MDI_MINUS1_2
J16 XTAL1 M8 VSS P16 MDI_PLUS1_2
K1 VSSA M9 VCC11 R1 PETp0
K2 PE_CLKp M10 VCC18 R2 PERn0
K3 VSSA M11 VSSA R3 JTDI
K4 VCC18 M12 VCC11 R4 LAN_PWR_GOOD
K5 VCC18 M13 VCC11 R5 TEST_EN
K6 VSS M14 RBIAS1p R6 SDP1_3
K7 VCC11 M15 VSSA R7 FLBINTEX
K8 VSS M16 SRDSI_1_PLUS R8 LED1_1
K9 VCC11 N1 VSSA R9 FLSH_SO
K10 VCC18 N2 PERp1 R10 FLSH_SCK
K11 VSSA N3 VSSA R11 SMBALRT_N/PCI_PWR_GOOD
K12 VCC11 N4 VCC11 R12 SMBD0
K13 VSSA N5 VCC11 R13 IEEE_TEST1p
K14 VSSA N6 VSS R14 MDI_MINUS1_0
K15 SRDSO_1_PLUS N7 VCC33 R15 MDI_MINUS1_1
K16VSSA N8 VSS R16VSSA
Table 37. 82571 Signal Names in Pin Order
Pin Signal Name Pin Signal Name Pin Signal Name
82571/82572 Gigabit Ethernet Controller—Datasheet
40
Table 38. 82572 Reserved and No Con nec t Sig nal s
Note: These pins are reserved by Intel and may have factory test functions. For normal
operation, do not connect any circuitry to these pins (allow them to “float”). Some
configurations may require pull- up or pull-down resistors on these pins. Please refer to
the 82571EB/82572EI design guide for more information.
T1 VSSA T7 NC_T7 T13 IEEE_TEST1n
T2 PERp0 T8 LED1_2 T14 MDI_PLUS1_0
T3 DEV_OFF_N T9 FLSH_SI T15 MDI_PLUS1_1
T4 VSS T10 VSS T16 VSSA
T5 VCC33 T11 VCC33
T6 PE_RST_N T12 SMBCLK0
Table 37. 825 71 Signal Names in Pin Order
Pin Signal Name Pin Signal Name Pin Signal Name
Signal Pin
RSVD_A3 A3
RSVD_ A6 A6
DEVICE_DIS_N A7
RSVD_B3 B3
RSVD_ B5 B5
RSVD_ C3 C3
RSVD_ C5 C5
RSVD_ C7 C7
RSVD_H1 H1
RSVD_J1 J1
RSVD_J14 J14
RSVD_J15 J15
SMBD1 P12
SMBCLK1 P13
LAN_PWR_GOOD R4
NC_T7 T7
41
Datasheet—82571/82572 Gigabit Ethernet Controller
Table 39. 825 72 Signal Names in Pin Order
Pin Signal Name Pin Signal Name Pin Signal Name
A1 VSSA C9 SDP0_2 F1 PERp2
A2 PETn3 C10 LED0_3 F2 VSSA
A3 RSVD_A3 C11 LED0_1 F3 VSSA
A4 VCC33 C12 EE_DI F4 VSSA
A5 VSS C13 EE_CS_N F5 VSS
A6 RSVD_A6 C14 VSSA F6 VSS
A7 DEVICE_DIS_N C15 MDI_MINUS0_2 F7 VCC11
A8 SDP0_3 C16 MDI_PLUS0_2 F8 VSS
A9 SDP0_1 D1 VSSA F9 VCC11
A10 VCC33 D2 PETn2 F10 VCC18
A11 VSS D3 VSSA F11 VSSA
A12 EE_DO D4 THERM_Dp F12 VCC11
A13 IEEE_TEST0n D5 THERM_Dn F13 VCC11
A14 MDI_PLUS0_0 D6 VSS F14 VSSA
A15 MDI_PLUS0_1 D7 VCC33 F15 SRDSO_0_MINUS
A16 VSSA D8 VSS F16 SRDSI_0_MINUS
B1 PERn3 D9 VCC33 G1 VSSA
B2 PETp3 D10 VSS G2 PE_RCOMPn
B3 RSVD_B3 D11 VSSA G3 VSSA
B4 SRDSA_SIG_DET D12 VSSA G4 VSSA
B5 RSVD_B5 D13 VSSA G5 VSSA
B6 RSVD_B6 D14 RBIAS0n G6 VSS
B7 LAN0_DIS_N D15 MDI_MINUS0_3 G7 VCC11
B8 RSVD_B8 D16 MDI_PLUS0_3 G8 VSS
B9 SDP0_0 E1 PERn2 G9 VCC11
B10 LED0_2 E2 PETp2 G10 VCC18
B11 LED0_0 E3 VSSA G11 VSSA
B12 EE_SK E4 VSSA G12 VCC11
B13 IEEE_TEST0p E5 VSS G13 VSSA
B14 MDI_MINUS0_0 E6 VSS G14 VSSA
B15 MDI_MINUS0_1 E7 VCC11 G15 SRDSO_0_PLUS
B16 VSSA E8 VSS G16 VSSA
C1 PERp3 E9 VCC11 H1 RSVD_H1
C2 VSSA E10 VCC18 H2 PE_RCOMPp
C3 RSVD_C3 E11 VSSA H3 VSSA
C4 RSVD_C4 E12 VCC11 H4 VCC18
C5 RSVD_C5 E13 VCC11 H5 VCC18
C6 RSVD_C6 E14 RBIAS0p H6 VSS
C7 RSVD_C7 E15 VSSA H7 VCC11
C8 AUX_PWR E16 SRDSI_0_PLUS H8 VSS
82571/82572 Gigabit Ethernet Controller—Datasheet
42
H9 VCC11 L1 PETn1 N9 VCC33
H10 VCC18 L2 VSSA N10 VSS
H11 VSSA L3 VSSA N11 VSSA
H12 VSSA L4 VSSA N12 VSSA
H13 VSSA L5 VSSA N13 VSSA
H14 SRDS_RCOMPn L6 VSS N14 RSVD_N14
H15 SRDS_RCOMPp L7 VCC11 N15 RSVD_N15
H16 XTAL2 L8 VSS N16 RSVD_N16
J1 RSVD_J1 L9 VCC11 P1 PETn0
J2 PE_CLKn L10 VCC18 P2 VSSA
J3 VSSA L11 VSSA P3 JTMS
J4 VCC11 L12 VCC11 P4 JTCK
J5 VCC11 L13 VCC11 P5 JTDO
J6 VSS L14 VSSA P6 RSVD_P6
J7 VCC11 L15 RSVD_L15 P7 FLBSD
J8 VSS L16 RSVD_L16 P8 RSVD_P8
J9 VCC11 M1 PETp1 P9 RSVD_P9
J10 VCC18 M2 PERn1 P10 FLSH_CE_N
J11 VSSA M3 VSSA P11 PE_WAKE_N
J12 VSSA M4 VCC18 P12 SMBD1
J13 VSSA M5 VCC18 P13 SMBCLK1
J14 RSVD_J14 M6 VSS P14 VSSA
J15 RSVD_J15 M7 VCC11 P15 RSVD_P15
J16 XTAL1 M8 VSS P16 RSVD_P16
K1 VSSA M9 VCC11 R1 PETp0
K2 PE_CLKp M10 VCC18 R2 PERn0
K3 VSSA M11 VSSA R3 JTDI
K4 VCC18 M12 VCC11 R4 LAN_PWR_GOOD
K5 VCC18 M13 VCC11 R5 TEST_EN
K6 VSS M14 RSVD_M14 R6 RSVD_R6
K7 VCC11 M15 VSSA R7 FLBINTEX
K8 VSS M16 RSVD_M16 R8 RSVD_R8
K9 VCC11 N1 VSSA R9 FLSH_SO
K10 VCC18 N2 PERp1 R10 FLSH_SCK
K11 VSSA N3 VSSA R11 PCI_PWR_GOOD
K12VCC11 N4 VCC11R12FLBMD
K13 VSSA N5 VCC11 R13 RSVD_R13
K14 VSSA N6 VSS R14 RSVD_R14
K15 RSVD_K15 N7 VCC33 R15 RSVD_R15
K16 VSSA N8 VSS R16 VSSA
Pin Signal Name Pin Signal Name Pin Signal Name
43
Datasheet—82571/82572 Gigabit Ethernet Controller
T1 VSSA T7 NC_T7 T13 RSVD_T13
T2 PERp0 T8 RSVD_T8 T14 RSVD_T14
T3 DEV_OFF_N T9 FLSH_SI T15 RSVD_T15
T4 VSS T10 VSS T16 VSSA
T5 VCC33 T11 VCC33
T6 PE_RST_N T12 FLBMCK
Pin Signal Name Pin Signal Name Pin Signal Name
82571/82572 Gigabit Ethernet Controller—Datasheet
44
5.4 Visual Pin Assignments
Figure 10. 82571EB/82572EI Visual Pin Assignment pt.1 (Top View)
ABCDEFGH
16 VSSA VSSA MDI_
PLUS0_2 MDI_
PLUS0_3 SRDSI_0
_PLUS SRDSI_0
_MINUS VSSA XTAL2
15 MDI_PLUS0_1 MDI_
MINUS0_1 MDI_
MINUS0_2 MDI_
MINUS0_3 VSSA SRDSO_0
_MINUS SRDSO_0
_PLUS SRDS_RCOMP
p
14 MDI_PLUS0_0 MDI_MINUS0
_0 VSSA RBIAS0n RBIAS0p VSSA VSSA SRDS_RCOMP
n
13 IEEE_TEST0n IEEE_TEST0p EE_CS_N VSSA VCC11 VCC11 VSSA VSSA
12 EE_DO EE_SK EE_DI VSSA VCC11 VCC11 VCC11 VSSA
11 VSS LED0_0 LED0_1 VSSA VSSA VSSA VSSA VSSA
10 VCC33 LED0_2 LED0_3 VSS VCC18 VCC18 VCC18 VCC18
9SDP0_1 SDP0_0 SDP0_2 VCC33 VCC11 VCC11 VCC11 VCC11
8SDP0_3 LAN1_DIS_N/
RSVD_B8 AUX_PWR VSS VSS VSS VSS VSS
7DEVICE_DIS_N LAN0_DIS_N RSVD_C7 VCC33 VCC11 VCC11 VCC11 VCC11
6RSVD_A6 SDP1_1/
RSVD_B6 SDP1_2/
RSVD_C6 VSS VSS VSS VSS VSS
5VSS RSVD_B5 RSVD_C5 THERM_
Dn VSS VSS VSSA VCC18
4VCC33 SRDSA_SIG_
DET SRDSB_SIG_D
ET/RSVD_C4 THERM_
Dp VSSA VSSA VSSA VCC18
3RSVD_A3 RSVD_B3 RSVD_C3 VSSA VSSA VSSA VSSA VSSA
2PETn3 PETp3 VSSA PETn2 PETp2 VSSA PE_RCOMPn PE_RCOMPp
1VSSA PERn3 PERp3 VSSA PERn2 PERp2 VSSA RSVD_H1
45
Datasheet—82571/82572 Gigabit Ethernet Controller
Figure 11. 82571EB/8 2572EI Visual Pin Assignment pt.2 (Top View)
JK L M N P R T
XTAL1 VSSA SRDSI_1_MIN
US/RSVD_L16
SRDSI_1_PL
US/
RSVD_M16
MDI_PLUS1_
3/
RSVD_N16
MDI_PLUS1
_2/
RSVD_P16 VSSA VSSA 16
RSVD_J1
5
SRDSO_1_
PLUS/
RSVD_K15
SRDSO_1_
MINUS/
RSVD_L15 VSSA MDI_MINUS
1_3/
RSVD_N15
MDI_MINUS
1_2
/RSVD_P15
MDI_MINUS
1_1/
RSVD_15
MDI_PLUS
1_1/
RSVD_T15
15
RSVD_J1
4VSSA VSSA RBIAS1p/
RSVD_M14 RBIAS1n/
RSVD_N14 VSSA MDI_MINUS
1_0/
RSVD_R14
MDI_PLUS
1_0/
RSVD_T14
14
VSSA VSSA VCC11 VCC11 VSSA SMBCLK1 IEEE_TEST1
p/
RSVD_R13
IEEE_TEST
1n/
RSVD_T13
13
VSSA VCC11 VCC11 VCC11 VSSA SMBD1 SMBD0/
FLBMD SMBCLK0/
FLBMCK 12
VSSA VSSA VSSA VSSA VSSA PE_WAKE_N SMBALRT_N/
PCI_PWR_G
OOD VCC33 11
VCC18 VCC18 VCC18 VCC18 VSS FLSH_CE_N FLSH_SCK VSS 10
VCC11 VCC11 VCC11 VCC11 VCC33 LED1_3/
RSVD_P9 FLSH_SO FLSH_SI 9
VSS VSS VSS VSS VSS LED1_0/
RSVD_P8 LED1_1/
RSVD_R8 LED1_2/
RSVD_T8 8
VCC11 VCC11 VCC11 VCC11 VCC33 FLBSD FLBINTEX NC_T7 7
VSS VSS VSS VSS VSS SDP1_0/
RSVD_P6 SDP1_3/
RSVD_R6 PE_RST_N 6
VCC11 VCC18 VSSA VCC18 VCC11 JTDO TEST_EN VCC33 5
VCC11 VCC18 VSSA VCC18 VCC11 JTCK RSVD VSS 4
VSSA VSSA VSSA VSSA VSSA JTMS JTDI DEV_OFF_
N3
PE_CLKn PE_CLKp VSSA PERn1 PERp1 VSSA PERn0 PERp0 2
RSVD_J1 VSSA PETn1 PETp1 VSSA PETn0 PETp0 VSSA 1
82571/82572 Gigabit Ethernet Controller—Datasheet
46
Mouser Electronics
Authorized Distributor
Click to View Pricing, Inventory, Delivery & Lifecycle Information:
Intel:
JL82572EI S LJB8 JL82571EB S LJB4 JL82571EB S LJB5 HL82571EB S LJAY HL82572EI S LJB2