IRMS-IN = IOUT x D x r2
12
1 - D +
19
LMR12015
,
LMR12020
www.ti.com
SNVS817B –JUNE 2012–REVISED JUNE 2019
Product Folder Links: LMR12015 LMR12020
Submit Documentation FeedbackCopyright © 2012–2019, Texas Instruments Incorporated
Typical Application (continued)
8.2.1.2.2 Inductor Material Selection
When selecting an inductor, make sure that it is capable of supporting the peak output current without saturating.
Inductor saturation will result in a sudden reduction in inductance and prevent the regulator from operating
correctly. To prevent the inductor from saturating over the entire –40°C to +125°C range, pick an inductor with a
saturation current higher than the upper limit of ICL listed in Electrical Characteristics.
Ferrite core inductors are recommended to reduce AC loss and fringing magnetic flux. The drawback of ferrite
core inductors is their quick saturation characteristic. The current limit circuit has a propagation delay and so is
oftentimes not fast enough to stop a saturated inductor from going above the current limit. This has the potential
to damage the internal switch. To prevent a ferrite core inductor from getting into saturation, the inductor
saturation current rating should be higher than the switch current limit ICL. The LMR12015/20 is quite robust in
handling short pulses of current that are a few amps above the current limit. Saturation protection is provided by
a second current limit which is 30% higher than the cycle-by-cycle current limit. When the saturation protection is
triggered thedevice turns off the output switch and attempt to soft start. (When a compromise has to be made,
pick an inductor with a saturation current just above the lower limit of the ICL.) Be sure to validate the short-circuit
protection over the intended temperature range.
An inductor's saturation current is usually lower when hot. Consult the inductor vendor if the saturation current
rating is only specified at room temperature.
Soft saturation inductors such as the iron powder types can also be used. Such inductors do not saturate
suddenly and therefore are safer when there is a severe overload or even shorted output. Their physical sizes
are usually smaller than the Ferrite core inductors. The downside is their fringing flux and higher power
dissipation due to relatively high AC loss, especially at high frequencies.
8.2.1.3 Input Capacitor
An input capacitor is necessary to ensure that VIN does not drop excessively during switching transients. The
primary specifications of the input capacitor are capacitance, voltage, RMS current rating, and equivalent series
inductance (ESL). The recommended input capacitance is 10 µF, although 4.7 µF works well for input voltages
below 6 V. The input voltage rating is specifically stated by the capacitor manufacturer. Make sure to check any
recommended deratings and also verify if there is any significant change in capacitance at the operating input
voltage and the operating temperature. The input capacitor maximum RMS input current rating (IRMS-IN) must be
greater than:
where
• r is the ripple ratio defined earlier
• IOUT is the output current, and
• D is the duty cycle (23)
It can be shown from the above equation that maximum RMS capacitor current occurs when D = 0.5. Always
calculate the RMS at the point where the duty cycle, D, is closest to 0.5. The ESL of an input capacitor is usually
determined by the effective cross sectional area of the current path. A large leaded capacitor will have high ESL
and a 0805 ceramic chip capacitor will have very low ESL. At the operating frequencies of the LMR12015/20,
certain capacitors may have an ESL so large that the resulting impedance (2πfL) is higher than that required to
provide stable operation. As a result, surface mount capacitors are strongly recommended. Sanyo POSCAP,
Tantalum or Niobium, Panasonic SP or Cornell Dubilier Low ESR are all good choices for input capacitors and
have acceptable ESL. Multilayer ceramic capacitors (MLCC) have very low ESL. For MLCCs TI recommends
using X7R or X5R dielectrics. Consult the capacitor manufacturer's datasheet to see how rated capacitance
varies over operating conditions.