Data Sheet, V 2.08, September 2008
TLE4997
Programmable Linear Hall Sensor
Sensors
Never stop thinking.
_TLE4997
x_
D
ata_
Sh
eet.
b
oo
k
P
age
1
W
e
d
nes
d
ay,
O
cto
b
er
1
,
2008
5
:
08
PM
Edition 2008-09
Published by Infineon Techn ologies AG,
Am Campeon 1-12,
85579 Neubiberg, Germany
© Infineon Technologies AG 2008.
All Rights Reserved.
Attention pleas e!
The information herein is given to describe certain components and shall not be considered as a guarantee of
characteristics.
Terms of delivery and rights to technical change reserved.
We he reby disclai m any and all warranties, i ncludi ng but not limited to warranties of non-infringement, regardi ng
circuits, descri ptions and charts stated herein.
Information
For further information on technology, delivery terms and conditions and prices please contact your nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements components may contain dangerous substances. For information on the types in
question please contact your nearest Infineon Technolog ies Office.
Infineon Technologies Compo nent s may on ly be used in life-support devices or systems with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure
of that life-support device or system, or to af fect the safety or ef fectiveness o f that device or system. Life support
devices or systems are intended to be implanted in the human body, or to support and/or maintain and sust ain
and/or protect human life. If th ey fail, it is r easonable to assu me th at the health o f the user or other p ersons may
be endangered.
_TLE4997
x_
D
ata_
Sh
eet.
b
oo
k
P
age
2
W
e
d
nes
d
ay,
O
cto
b
er
1
,
2008
5
:
08
PM
TLE4997
Revision History: 2008-09 V 2.08
Previous Version: V 2.07, July 2008
Page Subjects (major changes since l ast revision)
12 Table 2: ESD specification (HBM) changed from 2kV to 4kV
general spelling and typing errors
We Listen to Your Comments
Any information within this document that you feel is wrong, unclear or missing at all?
Your feedback will help us to continuously improve the quality of this document.
Please send your proposal (including a reference to this document) to:
sensors@infineon.com
_TLE4997
x_
D
ata_
Sh
eet.
b
oo
k
P
age
3
W
e
d
nes
d
ay,
O
cto
b
er
1
,
2008
5
:
08
PM
TLE4997
Data Sheet 4 V 2.08, 2008-09
Table of Contents Page
1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Target Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Principle of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Further Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Transfer Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3 Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4 Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5 Electrical and Magnetic Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
6 Signal Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.1 Magnetic Field Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.2 Gain Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.3 Offset Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.4 DSP Input Low Pass Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.5 DAC Input Interpolation Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.6 Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
7 Error Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.1 Voltages Outside the Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.2 Open Circuit of Supply Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.3 Not Correctable EEPROM Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
8 Temperature Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
8.1 Parameter Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
9 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
9.1 Calibration Data Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
9.2 Programming Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
9.3 Laboratory Evaluation Programmer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
10 Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
11 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
_TLE4997
x_
D
ata_
Sh
eet.
b
oo
k
P
age
4
W
e
d
nes
d
ay,
O
cto
b
er
1
,
2008
5
:
08
PM
TLE4997
Data Sheet 5 V 2.08, 2008-09
List of Figures Page
Figure 1 Pin Configuration and Hall Cell Location . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 2 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 3 Examples of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 4 Ratiometry Error Band . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 5 Signal Processing Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 6 DSP Input Filter (Magnitude Plot) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 7 DAC Input Filter (Magnitude Plot) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 8 Clamping Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 9 EEPROM Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 10 Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 11 PG-SSO-3-10 (Plastic Green Single Small Outline Package) . . . . . . . 33
_TLE4997
x_
D
ata_
Sh
eet.
b
oo
k
P
age
5
W
e
d
nes
d
ay,
O
cto
b
er
1
,
2008
5
:
08
PM
TLE4997
Data Sheet 6 V 2.08, 2008-09
List of Tables Page
Table 1 Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 2 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 3 Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Table 4 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 5 Magnetic Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 6 Range Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 7 Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 8 Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 9 Offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 10 Low Pass Filter Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 11 Low Pass Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 12 Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 13 Undervoltage and Overvoltage (All values with RL 10k). . . . . . . . . . 25
Table 14 Open Circuit (OBD Parameters) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 15 EEPROM Error Signalling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 16 Temperature Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 17 Calibration Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 18 Programming Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
_TLE4997
x_
D
ata_
Sh
eet.
b
oo
k
P
age
6
W
e
d
nes
d
ay,
O
cto
b
er
1
,
2008
5
:
08
PM
Type Marking Ordering Code Package
TLE4997 4997E2 SP000235288 PG-SSO-3-10
TLE4997Programmable Linear Hall Sensor
Data Sheet 7 V 2.08, 2008-09
1 Overview
1.1 Features
High linear and ratiometric push-pull rail-to-rail output
signal
20-bit Digital Signal Processing
Digital temperature compensation
12-bit overall resolution
Operates from -40°C up to 150°C
Low drift of output signal over temperature and lifetime
Programmable parameters stored in EEPROM with single bit error correction:
magnetic range and magnetic sensitivity (gain)
zero field voltage (offset)
bandwidth
polarity of the output slope
clamping option
temperature coefficient for all common magnets
memory lock
Re-programmable until memory lock
Single supply voltage 4.5 - 5.5 V (4 - 7 V in extended range)
Operation between -200 mT and +200 mT within three ranges
Slim 3-pin package (Green)
Reverse polarity and overvoltage protection for all pins
Output short circuit protection
On-board diagnostics (wire breakage detection, undervoltage, overvoltage)
Digital readout of internal temperature and magnetic field values in calibration mode.
Individual programming and operation of multiple sensors with common power supply
Two-point calibration of magnetic transfer function
Precise calibration without iteration steps
High immunity against mechanical stress, EMC, ESD
_TLE4997
x_
D
ata_
Sh
eet.
b
oo
k
P
age
7
W
e
d
nes
d
ay,
O
cto
b
er
1
,
2008
5
:
08
PM
TLE4997
Overview
Data Sheet 8 V 2.08, 2008-09
1.2 Target Applications
Robust replacement of potentiometers
No mechanical abrasion
Resistant to humidity, temperature, pollution and vibration
Linear and angular position sensing in automotive applications like pedal position,
suspension control, valve or throttle position, headlight levelling and steering angle
High current sensing for battery management, motor control, and electronic fuse
1.3 Pin Configuration
Figure 1 shows the location of the Hall element in the chip and the distance between the
Hall probe and the surface of the package.
Figure 1 Pin Configuration and Hall Cell Location
Table 1 Pin Definitions and Functions
Pin No. Symbol Function
1VDD Supply voltage / programming interface
2GND Ground
3OUT Output voltage / programming interface
1
Center of
Hall Probe
23
AEP03717
0.38
±0.05
2.03±0.1
1.625
±0.1
Hall-Probe
Branded Sid
e
_TLE4997
x_
D
ata_
Sh
eet.
b
oo
k
P
age
8
W
e
d
nes
d
ay,
O
cto
b
er
1
,
2008
5
:
08
PM
TLE4997
General
Data Sheet 9 V 2.08, 2008-09
2 General
2.1 Block Diagram
Figure 2 shows a simplified block diagram.
Figure 2 Block Diagram
2.2 Functional Description
The linear Hall IC TLE4997has been designed specifically to meet the demands of highly
accurate rotation and position detection, as well as for current measurement
applications.
The sensor provides a ratiometric analog output voltage, which is ideally suited to
Analog-to-Digital (A/D) conversion with the supply voltage as a reference.
The IC is produced in BiCMOS technology with high voltage capability and also provides
reverse polarity protection.
Digital signal processing using a 16-bit DSP architecture and digital temperature
compensation guarantees excellent stability over a long period of time.
The minimum overall resolution is 12 bits. Nevertheless, some internal stages work with
resolutions up to 20 bits.
HALL
Bias
A
D
DSP
D
A
A
D
Temp.
Sense
ROM
EEPROM
Interface
enable
OUT
V
DD
GND
Supply
OBD
V
DD
_TLE4997
x_
D
ata_
Sh
eet.
b
oo
k
P
age
9
W
e
d
nes
d
ay,
O
cto
b
er
1
,
2008
5
:
08
PM
TLE4997
General
Data Sheet 10 V 2.08, 2008-09
2.3 Principle of Operation
A magnetic flux is measured by a Hall-eff ect cell.
The output signal from the Hall-effect cell is converted from Analog to Digital signals.
The chopped Hall-effect cell and continuous-time A to D conversion provide very low
and stable magnetic offset.
A programmable Low-Pass filter reduces the noise.
The temperature is measured and A to D converted.
Temperature compensation is processed digitally using a second order function.
Digital processing of output voltage is based on zero field and sensitivity value.
The output voltage range can be clamped by digital limiters.
The final output value is D to A converted.
The output voltage is proportional to the supply voltage (ratiometric DAC).
An On-Board-Diagnostics (OBD) circuit co nnects the output to VDD
or GND in case of errors.
2.4 Further Notes
Product qualification is based on “AEC Q100 Rev. G” (Automotive Electronics Council -
Stress test qualification for integrated circuits).
_TLE4997
x_
D
ata_
Sh
eet.
b
oo
k
P
age
10
W
e
d
nes
d
ay,
O
cto
b
er
1
,
2008
5
:
08
PM
TLE4997
General
Data Sheet 11 V 2.08, 2008-09
2.5 Transfer Functions
The examples in Figure 3 show how easily different magnetic field ranges can be
mapped to the output voltage.
Polarity Mode:
Unipolar: Only North- or South-oriented magnetic fields are measured.
Bipolar: Magnetic fields can be measured in both orientations.
The limit points must not be symmetric to the zero field point.
Inversion: The gain values can be set positive or negative.
Figure 3 Examples of Operation
Note: Due to the ratiometry, voltage drops at the VDD line are imaged in the output
signal.
0
550
-50
5100
-100
5200
-200
VOUT (V)
VOUT VOUT
00
B (mT) VOUT (V)
B (mT) VOUT (V)
B (mT)
000
Example 1:
- Bipolar Example 2:
- Unipolar
- Big offset
- Output for 3.3 V
Example 3:
- Bipolar
- I nv er ted (neg. gain)
_TLE4997
x_
D
ata_
Sh
eet.
b
oo
k
P
age
11
W
e
d
nes
d
ay,
O
cto
b
er
1
,
2008
5
:
08
PM
TLE4997
Maximum Ratings
Data Sheet 12 V 2.08, 2008-09
3 Maximum Ratings
Note: Stresses above those listed under “Absolute Maximum Ratings” may cause
permanent damage to the device. This is a stress rating only and functional
operation of the device at these or any other conditions above those indicated in
the operational sections of this specification is not implied. Furthermore, only
single error cases are assumed. More than one stress/error case may also
damage the device.
Exposure to absolute maximum rating conditions for extended periods may affect
device reliability. During absolute maximum rating overload con ditions (VIN > VDD
or VIN < VSS) the voltage on VDD pins with respect to ground (VSS) must not
exceed the values defined by the absolute maximum ratings.
Table 2 Absolute Maximum Ratings
Parameter Symbol Limit Values Unit Notes
min. max.
Storage temperature TST -40 150 °C
Junction temperature TJ-40 170 °C For 96h 1)
1) For limited time only. Depends on customer temperature lifetime cycles. Please ask for support by Infineon.
Voltage on VDD pins with
respect to ground (VSS)VDD -20 2)
2) max 24 h @ -50°C Ta < 30°C
max 10 min. @ 30°C Ta < 80°C
max 30 sec. @ 80°C Ta < 125°C
max 15 sec. @ 125°C Ta 150°C.
20 3)
3) max. 24 h @ TJ < 80°C.
V4) RTHja 150 K/W
4) Guaranteed by laboratory characterization , tested at ±18V.
Supply current
@ overvoltage IDDov -52 mA
Supply current
@ reverse voltage IDDrev - 75 -mA
Voltage on output pin with
respect to ground (VSS)VOUTov -16 5)
5) Max. 1 ms @ TJ < 30°C; -8.5 V for 100 h @ TJ < 80°C.
16 3) VRTHja 150 K/W
Vout may be > VDD
Magnetic field BMAX -unlimited T
ESD protection VESD -4.0 kV According HBM
JESD22-A114-B 6)
6) 100 pF and 1.5 k
_TLE4997
x_
D
ata_
Sh
eet.
b
oo
k
P
age
12
W
e
d
nes
d
ay,
O
cto
b
er
1
,
2008
5
:
08
PM
TLE4997
Operating Range
Data Sheet 13 V 2.08, 2008-09
4 Operating Range
The following operating conditions must not be exceeded in order to ensure correct
operation of the TLE4997. All parameters specified in the following sections of this
document refer to these operating conditions, unless other wise indicated.
Table 3 Operating Range
Parameter Symbol Limit Values Unit Notes
min. max.
Supply voltag e VDD 4.5 5.5 V
4 7 V Extended range 1)
1) For reduced output accuracy.
Output current IOUT -1 1mA 2)
2) For VOUT within the range of 5% ... 95% of VDD.
Load resistance RL10
10 -
-kPull-down to GND
Pull-up to VDD
Load capacitance CL0210 nF
Junction temperature 3)
3) RTHja 150 K/W.
TJ-40 125
150 °C For 5000h
For 1000h4) 5)
4) For reduced magnetic accuracy.
5) Not additive.
Note: Keeping signal levels within the limits specified in this table ensures operation
without overload conditions.
Useful lifetime tLive -16 years
_TLE4997
x_
D
ata_
Sh
eet.
b
oo
k
P
age
13
W
e
d
nes
d
ay,
O
cto
b
er
1
,
2008
5
:
08
PM
TLE4997
Electrical and Magnetic Parameters
Data Sheet 14 V 2.08, 2008-09
5 Electrical and Magnetic Parameters
Table 4 Electrical Characteristics
Parameter Symbol Limit Values Unit Notes
min. typ. max.
Output voltage range VOUT 5
6-95
94 % of
VDD
For TA 120°C
For TA > 120°C
Supply current IDD 37.5 10 mA 1)
1) Also in extended VDD range. For VOUT within the range of 5%... 95% of VDD, IOUT= 0mA.
Output current @ OUT
shorted to supply lines IOUTsh -30 -30 mA For operating supply
voltage range only
Zero field voltage VZERO -100 -100 %Of VDD 2)
2) Programmable in steps of 1.22 mV ( @ VDD = 5V ).
Zero field voltage drift
VZERO -10 -10 mV In lifetime 3)
3) For Sensitivity S 25 mV/mT. For higher sensitivities the magnetic offset drift is dominant. This means that for
the precalibrated (typical) 60mV/mT sensitivity the typical output drift might be given due to the allowed
magnetic offset toleren c e up to ±0.4mT x 60 mV/mT = ±24 mV.
-10 -10 mV Error band ov. temp.4)
Ratiometry error ERAT -0.25 -+0.25 %Of VDD4)5)
4) For 4.5 VVDD5.5 V and within nominal VOUT range; see “Ratiometry” on Page 15 for details on ERAT.
5) For the maximum error in the extended voltage range, see “Ratiometry” on Page 15.
Thermal resistance RthJA - - 219 K/W Junction to air
RthJC - - 47 K/W Junction to case
Power on time tPon - - 1
10 ms
VOUT ± 5% of VDD
VOUT ± 1% of VDD
Power On Reset level VDDpon 2 - 4 V
Output DAC quantization
VOUT 1.22 mV @ VDD = 5 V
Output DAC resolution -12 bit
Output DAC bandwidth fDAC -3.2 -kHz Interpolation filter 6)
6) More information, see “DAC Input Interpolation Filter” on Page 22.
Output noise Vnoise - - 4.68 mVpp 5% exceeded 7)8)
7) 100 mT range, sensitivity 60 mV/mT, LP-filter 244 Hz, 160 Hz extern al RC low pass filter as application circui t.
8) ’5% exceeded’ means that 5 of 100 continuously measured VOUT samples are out of limit.
Differential non-linearity DNL -1 - 1 LSB Of output DAC
Signal delay tDS - - 250 µs @ 100 Hz 9)
9) A sinusoidal magnetic field is applied, VOUT shows amplitude of 20% of VDD, no LP filter is selected.
_TLE4997
x_
D
ata_
Sh
eet.
b
oo
k
P
age
14
W
e
d
nes
d
ay,
O
cto
b
er
1
,
2008
5
:
08
PM
TLE4997
Electrical and Magnetic Parameters
Data Sheet 15 V 2.08, 2008-09
Ratiometry
The linear Hall sensor works like a potentiometer. The output voltage is proportional to
the supply voltage. The division factor depends on the magnetic field strength. This
behavior is called “ratiometric”’.
The supply voltage VDD should be used as the reference for the A/D Converter of the
microcontroller. In this case, variations of VDD are compensated.
The ratiometry error is defined as follows:
The ratiometry error band displays as a “Butterfly Curve”.
Figure 4 Ratiometry Error Band
Note: Take care of possible voltage drops on the VDD and VOUT line degrading the
result. Ideally, both values are acquired and their ratio is calculated to gain the
highest accuracy. This method should be used especially during calibration.
ERAT VOUT VDD
()
VDD
-------------------------------VOUT 5V()
5V
---------------------------



= 100× %
E
RAT
%
0
V
DD
V
4567
0.25
0.5
0.75
1
-0.25
-0.5
-0.75
-1
_TLE4997
x_
D
ata_
Sh
eet.
b
oo
k
P
age
15
W
e
d
nes
d
ay,
O
cto
b
er
1
,
2008
5
:
08
PM
TLE4997
Electrical and Magnetic Parameters
Data Sheet 16 V 2.08, 2008-09
Calculation of the Junction Temperature
The total power dissipation PTOT of the chip increases its temperature above the ambient
temperature.
The power multiplied with the total thermal resista nce RthJA (Junction to Ambient) leads
to the final junction temperature. RthJA is the sum of the addition of the values of the two
components Junction to Case and Case to Ambient.
RthJA = RthJC + RthCA
TJ = TA +
T
T = RthJA x PTOT = RthJA x ( VDD x IDD + VOUT x IOUT ) IDD , IOUT > 0, if direction is into IC
Example (assuming no noticeable load on Vout):
VDD = 5 V
IDD = 10 mA
T = 219 [K/W] x (5 [V] x 0.01 [A] + 0 [VA]) = 11 K
For moulded sensors, the calculation with RthJC is more adequate.
Magnetic Parameters
Table 5 Magnetic Characteristics
Parameter Symbol Limit Values Unit Notes
min. typ. max.
Sensitivity S± 12.5 -± 300 mV/mT 1) 2)
1) Programmable in steps of 0.024%.
2) @ VDD = 5 V and TJ = 25°C
Magnetic field range MFR ± 50 ± 1003)
3) This range is also used for temperature and offset pre-calibration of the IC.
± 200 mT Programmable 4)
4) Depending on the Offset and Gain settings, the output may saturate at lower fields.
Integral nonlinearity INL -15 -15 mV = ± 0.3% of VDD5)
5) INL = Vout - Vout,lse with Vout,lse = least square error fit of Vout.
Valid in the range (5% of VDD) < VOUT < (95% of VDD) for TJ 120°C
and (6% of VDD) < VOUT < (94% of VDD) for 120°C < TJ 150°C
Magnetic offset BOS -400 -400 µT6) 7) 8)
6) In operating temperature range and over lifetime.
7) For Sensitivity S > 25 mV / mT. For lower sensitivities, the zero field voltage drift is dominant.
8) Measured at ± 100 mT range.
Magnetic offset drift BOS - 5 - 5 µT / °C Error band 7)
_TLE4997
x_
D
ata_
Sh
eet.
b
oo
k
P
age
16
W
e
d
nes
d
ay,
O
cto
b
er
1
,
2008
5
:
08
PM
TLE4997
Signal Processing
Data Sheet 17 V 2.08, 2008-09
6 Signal Processing
The flow diagram in Figure 5 shows the data processing algorithm.
Figure 5 Signal Processing Flow
Magnetic Field Path
The analog output signal of the chopped Hall cell is converted in the continuous-time
A/D Converter. The range of the chopped A/D Converter can bet set in several steps
(see Table 6). This assures a suitable level for the A/D Converter.
After the A/D conversion, a digital low pass filter reduces the bandwidth (Table 10).
A multiplier amplifies the value according to the gain setting (see Table 8) plus
temperature compensation.
The offset value is added (see Table 9).
A limiter reduces the resulting signal to 12 bits and feeds the D/A converter.
Temperature Compensation
(Details are listed in Chapter 8)
The output signal of the temperature cell is also A/D converted.
The temperature is normalized by subtraction of the T0 value (zero point of the
quadratic function).
The linear path is multiplied with the TC1 value.
D
A
A
D
X
S tor ed in
EEPROM
Memory
X
-T
0
+
TC
1
X
A
D
Temperature
Compensation
Hall
Sensor
Temperature
Sensor
Limiter
(Clamp)
out
1
X
Range LP
LP
DAC
+
Offset
Gain
X
TC
2
+
_TLE4997
x_
D
ata_
Sh
eet.
b
oo
k
P
age
17
W
e
d
nes
d
ay,
O
cto
b
er
1
,
2008
5
:
08
PM
TLE4997
Signal Processing
Data Sheet 18 V 2.08, 2008-09
In the quadratic path, the difference temperature is squared and multiplied with the
TC2 value.
Both path outputs are added together to the gain value from the EEPROM.
6.1 Magnetic Field Ranges
The working range of the magnetic field defines the input range of the A/D Converter. It
is always symmetric to the zero field point . Any two points in the magnetic range can be
selected to be the end points of the output curve. The output voltage represents the
range between the two points.
In the case of fields higher than the range values, the output signal may be distorted.
The range must be set before the calibration of offset and gain.
Table 6 Range Setting
Range Range in mT Parameter R
Low ± 50 3
Mid ± 100 1
High ± 200 0
Table 7 Range
Parameter Symbol Limit Values Unit Notes
min. max.
Register size R2bit 1)
1) Ranges do not have a guaranteed absol ute accuracy. The temperature pre-calibration is performed in the mid
range (100 mT).
_TLE4997
x_
D
ata_
Sh
eet.
b
oo
k
P
age
18
W
e
d
nes
d
ay,
O
cto
b
er
1
,
2008
5
:
08
PM
TLE4997
Signal Processing
Data Sheet 19 V 2.08, 2008-09
6.2 Gain Setting
The sensitivity is defined by the range and the gain setting. The output of the A/D
Converter is multiplied with the gain value.
The gain value can be calculated by
:
6.3 Offset Setting
The offset voltage corresponds to an output voltage with zero field at the sensor.
The offset value can be calculated by:
Table 8Gain
Parameter Symbol Limit Values Unit Notes
min. max.
Register size G15 bit Unsigned integer value
Gain range Gain - 4.0 3.9998 -1)2)
1) For gain values between - 0.5 and + 0.5, the numeri c accuracy decreases.
To obtain a flatter output curve, it is recommended to select a higher range setting.
2) A gain value of +1.0 corresponds to a typical 40 mV/mT sensitivity (100 mT range, not guaranteed). Infineon
pre-calibrates the samples to 60mV/mT (100mT range) in the final test, but does not guarantee the accuracy
of this calibration. It is crucial to do a final calibration of each IC within the application using the Gain/VOS value.
Gain quantization steps Gain 244.14 ppm Corresponds to 1/4096
Table 9 Offset
Parameter Symbol Limit Values Unit Notes
min. max.
Register size OS 15 bit Unsigned integer value
Offset range VOS -400 399 % VDD 1)
1) Infineon pre-calibrates the samples at zero field to 50% of VDD (100mT range) in the final test, but does not
guarantee the accu racy of this calibration. It is crucial to do a final calibration of each IC wi thin the application
using the Gain/VOS value.
Offset quantization
steps VOS 1.22 mV @ VDD = 5 V
generally VDD / 4095
Gain G 16384()
4096
------------------------------
=
VOS OS 16384()
4096
--------------------------------- VDD
×=
_TLE4997
x_
D
ata_
Sh
eet.
b
oo
k
P
age
19
W
e
d
nes
d
ay,
O
cto
b
er
1
,
2008
5
:
08
PM
TLE4997
Signal Processing
Data Sheet 20 V 2.08, 2008-09
6.4 DSP Input Low Pass Filter
A digital Low Pass Filter is placed between the Hall A/D Converter and the DSP to
reduce the noise level. The Low Pass filter has a constant DC amplification of 0 dB (this
is exactly a gain of 1), which means that its setting has no influence on the internal Hall
A/D Converter value.
The bandwidth can be set in 8 steps.
Table 10 Low Pass Filter Setting
Note: In Low Pass filter setting 7 (filter off), the output noise increases. Because of
higher DSP load, the current consumption also rises slightly.
Parameter LP Cutoff frequency in Hz (at 3dB attenuation)1)
1) As this is a digital filter running with an RC-based oscillator, the cutoff frequency may vary within ±25%.
078
1244
2421
3615
4826
51060
61320
7off 2)
2) The output low pass-interpolation filter behavior remains as main component in the signal path.
Table 11 Low Pass Filter
Parameter Symbol Limit Values Unit Notes
min. max.
Register size LP 3bit
Corner frequency
variation f - 25 + 25 %
_TLE4997
x_
D
ata_
Sh
eet.
b
oo
k
P
age
20
W
e
d
nes
d
ay,
O
cto
b
er
1
,
2008
5
:
08
PM
TLE4997
Signal Processing
Data Sheet 21 V 2.08, 2008-09
Figure 6 shows the characteristic of the filter as a magnitude plot (the highest setting is
marked). The “off” position would be a flat 0 dB line. In this case, the output decimation
filter limits the bandwidth of the sensor. The update rate after the Low Pass filter is
16 kHz.
Figure 6 DSP Input Filter (Magnitude Plot)
10
1
10
2
10
3
0
-6
-5
-4
-3
-2
-1
M agni tude ( dB)
Fr equency ( Hz)
_TLE4997
x_
D
ata_
Sh
eet.
b
oo
k
P
age
21
W
e
d
nes
d
ay,
O
cto
b
er
1
,
2008
5
:
08
PM
TLE4997
Signal Processing
Data Sheet 22 V 2.08, 2008-09
6.5 DAC Input Interpolation Filter
An interpolation filter is placed between the DSP and the output DAC. It cannot be
switched off. This filter limits the frequency behavior of the complete system if the DSP
input filter is disabled. The update rate after the interpolation filter is 256 kHz.
Figure 7 DAC Input Filter (Magnitude Plot)
Note: As this is a digital filter running with an RC-based oscillator, the cutoff frequency
may vary within ±25%.
10
1
10
2
10
3
0
-6
-5
-4
-3
-2
-1
M agni tude ( dB)
Fr equency ( Hz) 10
4
_TLE4997
x_
D
ata_
Sh
eet.
b
oo
k
P
age
22
W
e
d
nes
d
ay,
O
cto
b
er
1
,
2008
5
:
08
PM
TLE4997
Signal Processing
Data Sheet 23 V 2.08, 2008-09
6.6 Clamping
The clamping function is useful for splitting the output voltage into the operating range
and error ranges. If the magnetic field is outside the selected measurement range, the
output voltage Vout is limited to the clamping values.
The clamping values are calculated by:
Clamping low voltage:
Clamping high voltage:
Note: For an exact setup, the register value may be re-adjus ted due to the actual output
voltage in the clamping condition. The output voltage range itself has electrical
limits. See the Electrical Characteristics of Vout.
Table 12 Clamping
Parameter Symbol Limit Values Unit Notes
min. max.
Register size CL,CH 2 x 12 bit
Clamping voltage low VCLL 099.98 % VDD 1)
1) If clamping is set, it must be within the allowed output voltage range to be effective.
Clamping voltage high VCLH 099.98 % VDD 1)
Clamping quantization
steps
VCLQ 1.22 mV @ VDD = 5 V
Clamping voltage drift
VCL -15 15 mV in lifetime2)
2) Valid in the range (5% of VDD) < VOUT < (95% of VDD) for TJ 120°C
and (6% of VDD) < VOUT < (94% of VDD) for 120°C < TJ 150°C
-15 15 over temperature2)
VCLL CL
4096
------------VDD
×=
VCLH CH
4096
------------VDD
×=
_TLE4997
x_
D
ata_
Sh
eet.
b
oo
k
P
age
23
W
e
d
nes
d
ay,
O
cto
b
er
1
,
2008
5
:
08
PM
TLE4997
Signal Processing
Data Sheet 24 V 2.08, 2008-09
Figure 8 shows an example in which the magnetic field range between Bmin and Bmax
is mapped to voltages between 0.8 V and 4.2 V.
If it is not necessary to signal errors, the maximum output voltage range between 0.3 V
and 4.7 V can be used.
Figure 8 Clamping Example
Note: The high value must be above the low value.
If VCLL is set to a higher value than VCLH, the VCLH value is dominating. This would
lead to a constant output voltage independent of the magnetic field strength.
0
1
B
min
B (mT)
B
max
V
out
(V)
5
2
4
3
Error rang e
Error rang e
Operating range
V
CLH
V
CLL
_TLE4997
x_
D
ata_
Sh
eet.
b
oo
k
P
age
24
W
e
d
nes
d
ay,
O
cto
b
er
1
,
2008
5
:
08
PM
TLE4997
Error Detection
Data Sheet 25 V 2.08, 2008-09
7 Error Detection
Different error ca ses can b e detected by the On-Board-Diagnostics (OBD) and reported
to the microcontroller. The OBD is useful only when the clamping function is enabled. It
is important to set the clamping threshold values inside the error voltage values shown
in Table 13 and Table 14 to ensure that it is possible to distinguish between correct
output voltages and error signals.
7.1 Voltages Outside the Operating Range
The output signals error conditions, if VDD lies
inside the ratings specified in Table 2 "Absolute Maximum Ratings" on Page 12
outside the range specified in Table 3 "Operating Range" on Page 13.
7.2 Open Circuit of Supply Lines
In the case of interrupted supply lines, the data acquisition device can alert the user. If
two sensors are placed in parallel, the output of the remaining working sensor may be
still used for an emergency operation.
Table 13 Undervoltage and Overvoltage (All va lues with RL 10k)
Parameter Symbol Limit Values Unit Notes
min. max.
Undervoltage threshold VDDuv 3 4 V
Overvoltage threshold VDDov 78.3 V
Output voltage
@ undervoltage VOUTuv 0.95 x VDD - V 3V VDD VDDuv
Output voltage
@ overvoltage VOUTov 0.97 x VDD - V VDDov < VDD 16 V
Supply current 1)
1) For overvoltage and reverse voltage, see Table 2 "Absolute Maximum Ratings" on Page 12.
IDDuv -10 mA @ undervoltage
Table 14 Open Circuit (OBD Parameters) 1)
1) With VDD = 5 V and RL 10 kpull-down or RL 20 kpull-up.
Parameter Symbol Limit Values Unit Notes
min. max.
Output voltage
@ open VDD line VOUT 00.18
0.2 V TJ120°C
120°C < TJ 150°C
Output voltage
@ open GND line VOUT 4.82
4.8 5 V TJ120°C
120°C < TJ 150°C
_TLE4997
x_
D
ata_
Sh
eet.
b
oo
k
P
age
25
W
e
d
nes
d
ay,
O
cto
b
er
1
,
2008
5
:
08
PM
TLE4997
Error Detection
Data Sheet 26 V 2.08, 2008-09
7.3 Not Correctable EEPROM Errors
The parity method is able to correct one single bit in one EEPROM line. One other single
bit error in another line can also be detected. As this situation is not correctable, this
status is signalled at the output pin by clamping the output value to VDD.
Table 15 EEPROM Error Signalling
Parameter Symbol Limit Values Unit Notes
min. max.
Output voltage @
EEPROM error VOUT 0.97 x VDD VDD V
_TLE4997
x_
D
ata_
Sh
eet.
b
oo
k
P
age
26
W
e
d
nes
d
ay,
O
cto
b
er
1
,
2008
5
:
08
PM
TLE4997
Temperature Compensation
Data Sheet 27 V 2.08, 2008-09
8 Temperature Compensation
The magnetic field strength of a magnet depends on the temperature. This material
constant is specific to different magnet types. Therefore, the TLE4997 offers a second
order temperature compensation polynomial, by which the Hall signal output is multiplied
in the DSP. There are three parameters for the compensation:
Reference temperature T0
A linear part (1st order) TC1
A quadratic part (2nd order) TC2
The following formula describes the sensitivity dependent on the temperature in relation
to the sensitivity at the reference temperature T0:
For more information, see also the signal processing flow in Figure 5.
The full temperature compensation of the complete system is done in two steps:
1. Pre-calibration in the Infineon final test.
The parameters TC1, TC2, T0 are set to maximally flat temperature characteristics
regarding the Hall probe and internal analog processing parts.
2. Overall System calibration.
The typical coefficients TC1, TC2, T0 of the magnetic circuitr y are programmed. This
can be done deterministically, as the algorithm of the DSP is fully reproducible. The
final settings of the TC1, TC2, T0 values are relative to the pre-calibrated values.
Table 16 Temperature Compensation
Parameter Symbol Limit Values Unit Notes
min. max.
Register size TC1TL - 9 bit Unsigned integer values
1st order coefficient TC1TC1-1000 2500 ppm/ °C 1)
1) Full adjustable range: -2441 to +5355 ppm/°C, can be only used after confirmation by Infineon
Quantization steps of TC1
TC115.26 ppm/ °C
Register size TC2TQ - 8 bit Unsigned integer values
2nd order coefficient TC2TC2- 4 4 ppm/ °C² 2)
2) Full adjustable range: -15 to +15 ppm/°C², can be only used after confirmation by Infineon
Quantization steps of TC2
TC20.119 ppm/ °C²
Register size T0TR - 3 bit Unsigned integer values
Reference temperature T0- 48 64 °C
Quantization steps of T0
T016 °C 3)
3) A quantization step of 1°C is handled by algorithm (See Application Note).
STC T() 1TC1TT
0
()×TC2TT
0
()
2
×++=
_TLE4997
x_
D
ata_
Sh
eet.
b
oo
k
P
age
27
W
e
d
nes
d
ay,
O
cto
b
er
1
,
2008
5
:
08
PM
TLE4997
Temperature Compensation
Data Sheet 28 V 2.08, 2008-09
8.1 Parameter Calculation
The parameters TC1, TC2 and T0 may be calculated by:
Now the output VOUT for a given field BIN at a specific temperature can be roughly
calculated by:
BFSR is the full range magnetic field. It is dependent on the range setting (e.g 100 mT).
So is the nominal sensitivity of the Hall probe times the Gain factor set in the EEPROM.
STC is the temperature-dependent sensitivity factor calculated by the DSP.
STCHall is the temperature behavior of t he Hall probe.
The pre-calibration at Infineon is performed such that the following condition is met:
Within the application, an additional factor BIN(T) / BIN(T0) will be given due to the
magnetic system. STC needs now to be modified to STCnew so that the following condition
is satisfied:
Therefore, the new sensitivity parameters STCnew can be calculated from the
pre-calibrated setup STC using the relation:
TC1TL 160
65536
---------------------- 1000000×=
TC2TQ 128
8388608
----------------------- 1000000×=
T016TR 48=
VOUT BIN
BFSR
-------------STC
×STCHall
×SoVDD
××



VOS
+=
STC TJT0
()STCHall TJ
()×1
BIN T()
BIN T0
()
-------------------- STCnew T() STCHall T()×× STC T() STCHall T()×1≈≈
BIN T()
BIN T0
()
-------------------- STCnew T()×STC T()
_TLE4997
x_
D
ata_
Sh
eet.
b
oo
k
P
age
28
W
e
d
nes
d
ay,
O
cto
b
er
1
,
2008
5
:
08
PM
TLE4997
Calibration
Data Sheet 29 V 2.08, 2008-09
9Calibration
A special hardware interface to an external computing system and measurement
equipment is required for calibration of the sensor. All calibration and setup bits can be
written into a random access memory (RAM). This allows the EEPROM to remain
untouched during the entire calibration process. Therefore, this temporary setup (using
the RAM only) does not stress the EEPROM— and even allows a pre-verification1) of the
setup before programming—as the number of EEPROM programming cycles is limited
to provide a high data endurance.
The digital signal processing is completely deterministic. This allows a two point
calibration in one step without iterations. The two magnetic fields (here described as two
“positions” of an external magnetic circuitry) need to be applied only once. Furthermore,
a complete setup and calibration procedure can be performed requiring only one
EEPROM programming cycle at the end2).
After setting up the temperature coefficients, the ca librated Hall A/D Converter values of
both positions need to be read and the sensor output signals (using a DAC test mode)
need to be acquired for the corresponding end points. Using this data, the signal
processing parameters can be immediately calculated with a program running on the
external computing system.
Note: The calibration and programming process must be performed only at the
start of life of the device.
Note: Depending on the application and external instrumentation setup, the accuracy of
the 2 point calibration can be improved.
1) This feature is not required for a deterministic two-point setup to fulfill the specification.
2) Details and basic algorithms for this step are available on request.
Table 17 Calibration Characteristics
Parameter Symbol Limit Values Unit Notes
min. max.
Temperature of sensor at
2 point calibration and
programming
tCAL 10 30 °C
2 point calibration
accuracy1)
1) Setup and validation performed at start of life.
VCAL1 -10 10 mV Position 1
VCAL2 -10 10 mV Position 2
_TLE4997
x_
D
ata_
Sh
eet.
b
oo
k
P
age
29
W
e
d
nes
d
ay,
O
cto
b
er
1
,
2008
5
:
08
PM
TLE4997
Calibration
Data Sheet 30 V 2.08, 2008-09
9.1 Calibration Data Memory
When the MEMLOCK bits are programmed (two redundant bits), the memory contents
are frozen and may no longer be changed. Furthermore, the programming interface is
locked out and the chip remains in Application Mode only. This prevents accidental
programming due to environmental influences.
Figure 9 EEPROM Map
A matrix parity architecture allows the automatic correction of any single bit error. Each
row is protected by a row parity bit. The sum of bits set including this bit must be an odd
number (ODD PARITY). Each column is additionally protected by a column parity bit.
The sum of all the bits in the even positions (0, 2, etc.) of all lines must be an even
number (EVEN PARITY); the sum of all the bits in the odd positions (1,3, etc.) must be
an odd number (ODD PARITY). This mechanism o f different parity calculations protects
against many block errors (such as erasing a full line or even the entire EEPROM).
When modifying the application bits (such as Gain, Offset, TC, etc.) the parity bits must
be updated. For the column bits, the pre-calibration area must be also read out and
considered for correct parity generation.
Note: A specific programming algorithm must be followed to ensure the data retention.
A separate detailed programming specification is available on request.
User - Calibr at ion Bit s
Pr e - Ca libration Bit s
Column Parity Bits
RowA Par ity Bits
_TLE4997
x_
D
ata_
Sh
eet.
b
oo
k
P
age
30
W
e
d
nes
d
ay,
O
cto
b
er
1
,
2008
5
:
08
PM
TLE4997
Calibration
Data Sheet 31 V 2.08, 2008-09
9.2 Programming Interface
The supply pin and the output pin are used as two-wire interface to transmit the
EEPROM data to and from the sensor.
This allows
communication with high data reliability
bus-type connection of several sensors
In many applications, two sensors are used to measure the same parameter. This
redundancy allows the operation to continue in an emergency mode. If both sensors use
the same power supply lines, they can be programmed together in parallel.
The data transfer protocol and programming is described in a separate document
(TLE4997 Programming Guide).
9.3 Laboratory Evaluation Programmer
For the programming of evaluation samples and QA (quality assurance) samples a
programming equipment is available on request.
Table 18 Programming Characteristics
Parameter Symbol Limit Values Unit Notes
min. max.
Number of EEPROM
programming cycles NPRG -10 Cycles
1)
1) 1 cycle is the simultaneous change of 1 bit.
Programming allowed
only at start of lifetime
Ambient temperature at
programming TPRG 10 30 °C
Programming time tPRG 100 -ms For complete memory 2)
2) Depending on clock frequency at VDD, write pulse 10ms ±1%, erase pulse 80ms ±1%.
Calibration memory -135 Bit All active EEPROM bits
Error correction -25 Bit All parity EEPROM bits
_TLE4997
x_
D
ata_
Sh
eet.
b
oo
k
P
age
31
W
e
d
nes
d
ay,
O
cto
b
er
1
,
2008
5
:
08
PM
TLE4997
Application Circuit
Data Sheet 32 V 2.08, 2008-09
10 Application Circuit
Figure 10 shows the connection of multiple sensors to a microcontroller.
Figure 10 Application Circuit
Note: For calibration and programming, the interface must be connected directly to the
output pin.
The given application circuit must be regarded as only an example. It needs to be
adapted according to the requirements of the specific application.
optional
Voltage Tracker
e.g.
TLE4250
Ref
ADC
ref
ADC
in1
ADC
in2
ADC
GND
47nF 10k
100 nF10k100 nF47nF
47nF 10k
100 nF10k100 nF47nF
µC
TLE
4997
out
V
DD
GND
TLE
4997
out
V
DD
GND
_TLE4997
x_
D
ata_
Sh
eet.
b
oo
k
P
age
32
W
e
d
nes
d
ay,
O
cto
b
er
1
,
2008
5
:
08
PM
TLE4997
Package Outlines
Data Sheet 33 V 2.08, 2008-09
11 Package Outlines
Figure 11 PG-SSO-3-10 (Plastic Green Single Small Outline Package)
1) No solder function area
Molded body dimensions do not unclude plastic or metal protrusion of 0.15 max per side
±0.3
12.7
±0.4
6.35
12.7±1
Total tolerance at 19 pitches ±1
±0.3
4
19
±0.5
9
-0.50
+0.75
33 MAX.
(Useable
Length)
(10)
±0.5
18
A
±0.5
6
1
-1
-0.15
0.25
±0.1
0.39
Tape
Adhesive
Tape
(0.25)
1
±0.2 1)
0.1 MAX.
0.5
0.5
±0.05
±0.1
0.42 3x
1.5
±0.05
4.06
4.05
±0.05
2 x 1.27 = 2.54
A
2
±0.05
1.5
0.36 ±0.05
0.82±0.05
P-PG-SSO-3-10-PO V02
45˚
123
B
B
C2
C
_TLE4997
x_
D
ata_
Sh
eet.
b
oo
k
P
age
33
W
e
d
nes
d
ay,
O
cto
b
er
1
,
2008
5
:
08
PM
www.infineon.com
Published by Infineon Technologies AG
_TLE4997
x_
D
ata_
Sh
eet.
b
oo
k
P
age
36
W
e
d
nes
d
ay,
O
cto
b
er
1
,
2008
5
:
08
PM