MOTOROLA MRF1508 (Cancelled) The MRF1508 is designed for broadband commercial and industrial applications at frequencies to 520 MHz. The high gain and broadband performance of this device makes it ideal for large-signal, common source amplifier applications in 12.5 volt mobile FM equipment. * Specified Performance @ 520 MHz, 12.5 Volts D Output Power -- 8 Watts Power Gain -- 14 dB Efficiency -- 60% * Characterized with Series Equivalent Large-Signal Impedance Parameters * Excellent Thermal Stability * Capable of Handling 20:1 VSWR, @ 15.5 Vdc, G 520 MHz, 2 dB Overdrive * RF Power Plastic Surface Mount Package * Broadband UHF/VHF Demonstration Amplifier S Information Available Upon Request * Available in Tape and Reel by Adding T1 Suffix to Part Number. T1 Suffix = 1,000 Units per 12 mm, 7 Inch Reel. MRF1508T1 LIFETIME BUY The RF MOSFET Line RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFETs 8 W, 520 MHz, 12.5 V LATERAL N-CHANNEL BROADBAND RF POWER MOSFET CASE 466-02, STYLE 1 (PLD 1.5) PLASTIC MAXIMUM RATINGS Rating Symbol Value Unit Drain-Source Voltage VDSS 40 Vdc Gate-Source Voltage VGS 20 Vdc Drain Current -- Continuous ID 4 Adc Total Device Dissipation @ TC = 25C (1) Derate above 25C PD 62.5 0.50 Watts W/C Storage Temperature Range Tstg - 65 to +150 C TJ 150 C Symbol Max Unit RJC 2 C/W Operating Junction Temperature THERMAL CHARACTERISTICS Characteristic Thermal Resistance, Junction to Case (1) Calculated based on the formula PD = TJ - TC RJC NOTE - CAUTION - MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed. REV 1 MOTOROLA RF DEVICE DATA Motorola, Inc. 1998 MRF1508 1 LAST ORDER 30JUN02 LAST SHIP 30DEC02 Order this document by MRF1508/D SEMICONDUCTOR TECHNICAL DATA Characteristic Symbol Min Typ Max Unit Zero Gate Voltage Drain Current (VDS = 40 Vdc, VGS = 0) IDSS -- -- 10 Adc Gate-Source Leakage Current (VGS = 20 Vdc, VDS = 0) IGSS -- -- 1 Adc Gate Threshold Voltage (VDS = 10 Vdc, ID = 100 A) VGS(th) 2.4 3 -- Vdc Drain-Source On-Voltage (VGS = 10 Vdc, ID = 2 Adc) VDS(on) 0.3 0.5 -- Vdc Forward Transconductance (VDS = 10 Vdc, ID = 2 Adc) gfs 1.3 1.75 -- S Input Capacitance (VDS = 12.5 Vdc, VGS = 0, f = 1 MHz) Ciss -- 47 -- pF Output Capacitance (VDS = 12.5 Vdc, VGS = 0, f = 1 MHz) Coss -- 35 -- pF Reverse Transfer Capacitance (VDS = 12.5 Vdc, VGS = 0, f = 1 MHz) Crss -- 4.1 -- pF Common-Source Amplifier Power Gain (VDD = 12.5 Vdc, Pout = 8 Watts, IDQ = 150 mA, f = 520 MHz) Gps 12 14 -- dB Drain Efficiency (VDD = 12.5 Vdc, Pout = 8 Watts, IDQ = 150 mA, f = 520 MHz) 55 60 -- % OFF CHARACTERISTICS ON CHARACTERISTICS LIFETIME BUY DYNAMIC CHARACTERISTICS FUNCTIONAL TESTS (In Motorola Test Fixture) MRF1508 2 MOTOROLA RF DEVICE DATA LAST ORDER 30JUN02 LAST SHIP 30DEC02 ELECTRICAL CHARACTERISTICS (TC = 25C unless otherwise noted) B1 + C1 C2 R1 C3 R3 + C4 C6 VDD C5 L1 Z7 N1 Z1 RF INPUT Z2 Z3 Z4 Z5 Z6 Z8 Z9 Z10 Z11 Z12 C12 C13 DUT Z13 N2 RF OUTPUT C8 C11 C7 B1 C1, C5 C2, C4 C3, C6, C7, C8 C9 C10 C11 C12 C13 L1 N1, N2 R1 R2 R3 C10 Z1, Z13 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10 Z11 Z12 Board Fair Rite Products Long Ferrite Bead 10 F, 50 V Electrolytic Capacitor 0.1 F, 100 mil Chip Capacitor 130 pF, 100 mil Chip Capacitor 0.8-8 pF, Variable Capacitor, Gigatrim 0.8-18 pF, Variable Capacitor, Johanson 16 pF, 100 mil Chip Capacitor 0.8-18 pF, Variable Capacitor, Johanson 0.8-8 pF, Variable Capacitor, Gigatrim 4 Turns, #20 AWG Enamel Coil, 0.1 ID Type-N Flange Mount Connector 1.1 M, 1/4 W Carbon Resistor 1.0 k, 0.1 W Chip Resistor 1 k, 1/4 W Carbon Resistor 0.290 x 0.081 Microstrip 0.070 x 0.217 Microstrip 2.950 x 0.217 Microstrip 0.150 x 0.217 Microstrip 0.250 x 0.217 Microstrip 0.250 x 0.0073 Microstrip AIO2 0.250 x 0.0073 Microstrip AIO2 0.050 x 0.217 Microstrip 0.100 x 0.217 Microstrip 0.150 x 0.217 Microstrip 1.500 x 0.217 Microstrip 1.550 x 0.217 Microstrip Glass Teflon, 31 mils, 2 oz. Copper Figure 1. 500 - 520 MHz Broadband Test Circuit TYPICAL CHARACTERISTICS 13 12 11 10 9 8 7 6 5 4 3 2 1 0 25 500 MHz IRL, INPUT RETURN LOSS (dB) Pout , OUTPUT POWER (WATTS) LIFETIME BUY C9 510 MHz 520 MHz 0 0.05 0.10 0.15 0.20 0.25 0.30 Pin, INPUT POWER (WATTS) 0.35 0.40 Figure 2. Output Power versus Input Power MOTOROLA RF DEVICE DATA 0.45 20 510 MHz 15 520 MHz 10 500 MHz 5 0 0 2 4 6 8 10 Pout, OUTPUT POWER (WATTS) 12 14 Figure 3. Input Return Loss versus Output Power MRF1508 3 LAST ORDER 30JUN02 LAST SHIP 30DEC02 R2 VGG TYPICAL CHARACTERISTICS 20 90 19 80 500 MHz 17 GAIN (dB) Eff, DRAIN EFFICIENCY (%) 18 16 15 14 510 MHz 520 MHz 13 12 2 8 6 10 Pout, OUTPUT POWER (WATTS) 4 510 MHz 50 40 500 MHz 30 10 14 12 0 Figure 4. Gain versus Output Power 500 MHz 510 MHz 11 520 MHz 9 7 5 12 14 520 MHz 75 13 VDD = 12.5 V Pin = 27 dBm 70 510 MHz 500 MHz 65 60 55 50 VDD = 12.5 V Pin = 27 dBm 45 40 0 100 200 300 400 500 600 IDQ, BIASING CURRENT (mA) 700 0 800 100 Figure 6. Output Power versus Biasing Current 200 400 500 300 600 IDQ, BIASING CURRENT (mA) 700 800 Figure 7. Drain Efficiency versus Biasing Current 80 510 MHz 14 520 MHz 12 10 8 6 8 9 10 11 12 13 14 15 VDD, SUPPLY VOLTAGE (VOLTS) Figure 8. Output Power versus Supply Voltage MRF1508 4 70 500 MHz 60 55 50 45 IDQ = 150 mA Pin = 27 dBm 35 16 510 MHz 65 40 IDQ = 150 mA Pin = 27 dBm 4 520 MHz 75 500 MHz Eff, DRAIN EFFICIENCY (%) 16 2 4 8 6 10 Pout, OUTPUT POWER (WATTS) 80 15 3 2 Figure 5. Drain Efficiency versus Output Power Eff, DRAIN EFFICIENCY (%) Pout , OUTPUT POWER (WATTS) LIFETIME BUY 0 18 Pout , OUTPUT POWER (WATTS) 60 20 11 10 70 30 8 9 10 11 12 13 14 15 16 VDD, SUPPLY VOLTAGE (VOLTS) Figure 9. Drain Efficiency versus Supply Voltage MOTOROLA RF DEVICE DATA LAST ORDER 30JUN02 LAST SHIP 30DEC02 520 MHz B1 + C1 C2 R1 C3 R3 + C4 C6 VDD C5 L1 C9 Z8 N1 RF INPUT Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z9 Z10 Z11 Z12 C13 C14 DUT N2 Z13 RF OUTPUT C8 C7 B1 C1, C5 C2, C4 C3, C6, C7, C8 C9 C10 C11 C12 C13 C14 L1 N1, N2 R1 R2 C11 C12 R3 Z1, Z13 Z2 Z3 Z4 Z5 Z6 Z7, Z8 Z9 Z10 Z11 Z12 Board Insert Fair Rite Products Long Ferrite Bead 10 F, 50 V Electrolytic Capacitor 0.1 F, 100 mil Chip Capacitor 130 pF, 100 mil Chip Capacitor 10 pF, 100 mil Chip Capacitor 0.8-8 pF, Variable Capacitor, Gigatrim 47 pF, 100 mil Chip Capacitor 16 pF, 100 mil Chip Capacitor 6.2 pF, 100 mil Chip Capacitor 5.1 pF, 100 mil Chip Capacitor 4 Turns, #20 AWG Enamel Coil, 0.1 ID Type-N Flange Mount Connector 1.1 M, 1/4 W Carbon Resistor 1.0 k, 0.1 W Chip Resistor 1 k, 1/4 W Carbon Resistor 0.290 x 0.081 Microstrip 0.150 x 0.217 Microstrip 2.650 x 0.217 Microstrip 0.200 x 0.217 Microstrip 0.300 x 0.217 Microstrip 0.050 x 0.217 Microstrip 0.313 x 0.160 Microstrip 0.200 x 0.217 Microstrip 0.800 x 0.217 Microstrip 2.400 x 0.217 Microstrip 0.100 x 0.217 Microstrip Glass Teflon, 31 mils, 2 oz. Copper Glass Teflon, 31 mils, 2 oz. Copper Figure 10. 400 - 470 MHz Broadband Test Circuit TYPICAL CHARACTERISTICS 0 14 440 MHz -2 12 10 470 MHz 400 MHz 8 6 4 2 IRL, INPUT RETURN LOSS (dB) Pout , OUTPUT POWER (WATTS) LIFETIME BUY C10 -4 -6 -8 440 MHz -10 400 MHz -12 470 MHz -14 -16 -18 0 0 200 400 600 800 Pin, INPUT POWER (MILLIWATTS) 1000 Figure 11. Output Power versus Input Power MOTOROLA RF DEVICE DATA -20 0 2 4 6 8 10 Pout, OUTPUT POWER (WATTS) 12 14 Figure 12. Input Return Loss versus Output Power MRF1508 5 LAST ORDER 30JUN02 LAST SHIP 30DEC02 R2 VGG 20 70 18 60 Eff, DRAIN EFFICIENCY (%) 440 MHz 16 GAIN (dB) 440 MHz 14 470 MHz 12 400 MHz 10 8 0 8 6 10 Pout, OUTPUT POWER (WATTS) 2 4 30 20 0 14 12 0 Figure 13. Gain versus Output Power 18 90 16 80 14 400 MHz 440 MHz 12 470 MHz 10 8 6 VDD = 12.5 V Pin = 27 dBm 4 2 70 14 12 440 MHz 470 MHz 60 400 MHz 50 40 30 VDD = 12.5 V Pin = 27 dBm 20 10 0 100 200 300 400 500 600 IDQ, BIASING CURRENT (mA) 700 0 800 200 400 500 300 600 IDQ, BIASING CURRENT (mA) 100 Figure 15. Output Power versus Biasing Current 700 800 Figure 16. Drain Efficiency versus Biasing Current 90 16 80 Eff, DRAIN EFFICIENCY (%) 400 MHz 14 440 MHz 12 10 470 MHz 8 6 IDQ = 150 mA Pin = 27 dBm 4 2 4 6 8 10 Pout, OUTPUT POWER (WATTS) 2 Figure 14. Drain Efficiency versus Output Power 18 Pout , OUTPUT POWER (WATTS) 400 MHz 40 10 Eff, DRAIN EFFICIENCY (%) Pout , OUTPUT POWER (WATTS) LIFETIME BUY 6 470 MHz 50 6 7 8 9 10 11 12 13 14 15 440 MHz 470 MHz 60 400 MHz 50 40 30 IDQ = 150 mA Pin = 27 dBm 20 16 VDD, SUPPLY VOLTAGE (VOLTS) Figure 17. Output Power versus Supply Voltage MRF1508 6 70 10 6 7 8 9 10 11 12 13 14 15 16 VDD, SUPPLY VOLTAGE (VOLTS) Figure 18. Drain Efficiency versus Supply Voltage MOTOROLA RF DEVICE DATA LAST ORDER 30JUN02 LAST SHIP 30DEC02 TYPICAL CHARACTERISTICS B1 + C1 C2 R1 C3 R3 L1 Z10 N1 Z1 RF INPUT Z2 Z3 L2 Z4 L3 Z6 Z7 L4 R4 Z8 Z9 Z11 L5 Z12 Z14 N2 Z13 DUT C8 RF OUTPUT C13 C7 C10 B1 C1, C5 C2, C4 C3, C6, C7, C8 C9 C10 C11 C12 C13 L1 L2 L3 L4 L5 N1, N2 R1 R2 C11 C9 C12 50 , 1/4 W Carbon Resistor 20 , 0.1 W Chip Resistor 0.200 x 0.081 Microstrip 0.050 x 0.081 Microstrip 0.450 x 0.081 Microstrip 0.050 x 0.081 Microstrip 0.550 x 0.081 Microstrip 0.350 x 0.081 Microstrip 1.150 x 0.081 Microstrip 0.250 x 0.081 Microstrip 0.350 x 0.081 Microstrip 0.500 x 0.081 Microstrip 1.150 x 0.081 Microstrip 1.450 x 0.081 Microstrip 0.050 x 0.081 Microstrip 0.200 x 0.081 Microstrip Glass Teflon, 31 mils, 2 oz. Copper R3 R4 Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10 Z11 Z12 Z13 Z14 Board Fair Rite Products Long Ferrite Bead 10 F, 50 V Electrolytic Capacitor 0.1 F, 100 mil Chip Capacitor 130 pF, 100 mil Chip Capacitor 82 pF, 100 mil Chip Capacitor 6.2 pF, 100 mil Chip Capacitor 30 pF, 100 mil Chip Capacitor 75 pF, 100 mil Chip Capacitor 39 pF, 100 mil Chip Capacitor 4 Turns, #20 AWG Enamel Coil, 0.1 ID 17.5 nH Air Core Inductor, Coilcraft A06T 22 nH Air Core Inductor, Coilcraft A07T 18.5 nH Air Core Inductor, Coilcraft A05T 5 nH Air Core Inductor, Coilcraft A02T Type-N Flange Mount Connector 1.1 M, 1/4 W Carbon Resistor 1.0 k, 0.1 W Chip Resistor Figure 19. 136 - 175 MHz Broadband Test Circuit TYPICAL CHARACTERISTICS 0 14 155 MHz -2 12 10 175 MHz 8 136 MHz 6 4 2 IRL, INPUT RETURN LOSS (dB) Pout , OUTPUT POWER (WATTS) LIFETIME BUY Z5 VDD + C5 C4 C6 -4 -6 175 MHz -8 -10 136 MHz -12 155 MHz -14 -16 -18 0 0 200 400 800 600 Pin, INPUT POWER (MILLIWATTS) 1000 Figure 20. Output Power versus Input Power MOTOROLA RF DEVICE DATA -20 0 2 4 6 8 10 Pout, OUTPUT POWER (WATTS) 12 14 Figure 21. Input Return Loss versus Output Power MRF1508 7 LAST ORDER 30JUN02 LAST SHIP 30DEC02 R2 VGG TYPICAL CHARACTERISTICS 30 80 Eff, DRAIN EFFICIENCY (%) 25 175 MHz GAIN (dB) 20 155 MHz 136 MHz 15 10 5 175 MHz 60 50 136 MHz 40 30 20 8 6 10 Pout, OUTPUT POWER (WATTS) 2 0 4 10 14 12 0 Figure 22. Gain versus Output Power 4 8 6 10 Pout, OUTPUT POWER (WATTS) 2 90 18 80 175 MHz 70 155 MHz 60 136 MHz Eff, DRAIN EFFICIENCY (%) 20 16 14 155 MHz 12 136 MHz 10 175 MHz 8 6 VDD = 12.5 V Pin = 27 dBm 4 2 50 40 30 VDD = 12.5 V Pin = 27 dBm 20 10 0 100 200 300 400 500 600 IDQ, BIASING CURRENT (mA) 700 0 800 90 18 80 155 MHz 14 12 136 MHz 10 8 6 IDQ = 150 mA Pin = 27 dBm 175 MHz 4 6 7 8 9 10 11 12 13 14 15 VDD, SUPPLY VOLTAGE (VOLTS) Figure 26. Output Power versus Supply Voltage MRF1508 8 800 175 MHz 70 155 MHz 60 136 MHz 50 40 30 IDQ = 150 mA Pin = 27 dBm 20 16 700 Figure 25. Drain Efficiency versus Biasing Current 20 16 400 500 600 300 200 IDQ, BIASING CURRENT (mA) 100 Figure 24. Output Power versus Biasing Current 2 14 12 Figure 23. Drain Efficiency versus Output Power Eff, DRAIN EFFICIENCY (%) Pout , OUTPUT POWER (WATTS) Pout , OUTPUT POWER (WATTS) LIFETIME BUY 0 155 MHz 70 10 6 7 8 9 10 11 12 13 14 15 16 VDD, SUPPLY VOLTAGE (VOLTS) Figure 27. Drain Efficiency versus Supply Voltage MOTOROLA RF DEVICE DATA LAST ORDER 30JUN02 LAST SHIP 30DEC02 90 ZOL* 520 ZOL* 470 f = 135 MHz f = 135 MHz Zin ZOL* 175 400 f = 500 MHz 520 Zin 470 Zin Zo = 10 175 f = 500 MHz VDD = 12.5 V, IDQ = 150 mA, Pout = 8 W VDD = 12.5 V, IDQ = 150 mA, Pout = 8 W VDD = 12.5 V, IDQ = 150 mA, Pout = 8 W f MHz Zin ZOL* f MHz Zin ZOL* f MHz Zin ZOL* 500 2.0 - j4.8 3.5 - j3.5 400 2.5 - j3.9 7.1 - j0.1 135 11.7 - j4.4 8.7 - j0.2 510 2.4 - j3.4 3.5 - j2.7 440 3.0 - j4.1 6.8 - j2.3 155 11.8 - j6.8 7.2 - j3.8 520 2.2 - j3.8 3.5 - j2.6 470 2.4 - j4.3 6.8 - j4.2 175 11.3 - j8.8 6.3 - j7.7 = Conjugate of source impedance with parallel 20 resistor and 82 pF capacitor in series with gate. (See Figure 1). ZOL* = Conjugate of the load impedance at given output power, voltage, frequency, and D > 50 %. Zin = Conjugate of source impedance with parallel 20 resistor and 82 pF capacitor in series with gate. (See Figure 10). ZOL* = Conjugate of the load impedance at given output power, voltage, frequency, and D > 50 %. Zin = Conjugate of source impedance with parallel 20 resistor and 82 pF capacitor in series with gate. (See Figure 19). ZOL* = Conjugate of the load impedance at given output power, voltage, frequency, and D > 50 %. Note: ZOL* was chosen based on tradeoffs between gain, drain efficiency, and device stability. Figure 28. Series Equivalent Input and Output Impedance MOTOROLA RF DEVICE DATA MRF1508 9 LAST ORDER 30JUN02 LAST SHIP 30DEC02 LIFETIME BUY Zin f = 400 MHz S11 f MHz |S11| S21 S12 S22 |S21| |S12| |S22| 50 0.770 -136 16.04 101 0.040 12 0.670 -137 100 0.760 -154 8.15 86 0.040 -3 0.680 -153 150 0.770 -160 5.30 77 0.040 -11 0.700 -158 200 0.780 -163 3.83 70 0.040 -18 0.720 -160 250 0.800 -165 2.91 64 0.040 -23 0.750 -161 300 0.820 -166 2.29 58 0.030 -27 0.780 -162 350 0.840 -167 1.87 54 0.030 -31 0.800 -163 400 0.850 -168 1.54 50 0.030 -35 0.820 -164 450 0.860 -168 1.29 47 0.030 -38 0.840 -165 500 0.870 -169 1.09 44 0.030 -39 0.850 -166 550 0.880 -170 0.96 41 0.020 -42 0.870 -166 600 0.890 -170 0.83 39 0.020 -43 0.880 -167 650 0.900 -171 0.72 37 0.020 -44 0.890 -168 700 0.910 -171 0.65 35 0.020 -44 0.890 -168 750 0.910 -172 0.59 32 0.020 -45 0.900 -169 800 0.920 -172 0.52 30 0.020 -48 0.910 -169 850 0.930 -173 0.46 29 0.020 -50 0.910 -170 900 0.930 -173 0.42 28 0.010 -51 0.920 -170 950 0.930 -173 0.38 26 0.010 -54 0.920 -170 1000 0.930 -173 0.35 24 0.010 -52 0.920 -171 1050 0.930 -174 0.31 23 0.010 -51 0.930 -171 1100 0.930 -174 0.28 22 0.010 -45 0.930 -171 1150 0.940 -174 0.26 21 0.010 -53 0.930 -172 1200 0.940 -174 0.24 21 0.010 -60 0.930 -172 MRF1508 10 MOTOROLA RF DEVICE DATA LAST ORDER 30JUN02 LAST SHIP 30DEC02 LIFETIME BUY Table 1. Common Source Scattering Parameters (VDS = 12.5 Vdc, IDQ = 150 mA) S11 f MHz |S11| S21 S12 S22 |S21| |S12| |S22| 50 0.840 -152 19.13 99 0.020 10 0.740 -158 100 0.820 -165 9.60 88 0.020 0 0.760 -167 150 0.820 -169 6.33 82 0.020 -6 0.760 -170 200 0.830 -171 4.68 77 0.020 -10 0.770 -170 250 0.830 -172 3.64 73 0.020 -13 0.780 -171 300 0.840 -172 2.94 69 0.020 -15 0.790 -171 350 0.850 -173 2.48 66 0.020 -18 0.800 -171 400 0.850 -173 2.09 62 0.020 -21 0.810 -171 450 0.860 -173 1.80 60 0.020 -22 0.820 -170 500 0.870 -174 1.56 57 0.020 -24 0.830 -171 550 0.870 -174 1.39 54 0.020 -25 0.840 -171 600 0.880 -174 1.23 52 0.020 -27 0.850 -171 650 0.880 -174 1.09 50 0.020 -26 0.860 -171 700 0.890 -174 1.00 48 0.010 -28 0.860 -171 750 0.900 -174 0.91 45 0.010 -29 0.870 -172 800 0.900 -174 0.82 43 0.010 -31 0.870 -172 850 0.910 -175 0.74 41 0.010 -32 0.880 -172 900 0.910 -175 0.68 40 0.010 -32 0.880 -172 950 0.910 -175 0.62 37 0.010 -36 0.880 -172 1000 0.910 -175 0.56 36 0.010 -33 0.880 -173 1050 0.920 -175 0.51 34 0.010 -35 0.880 -172 1100 0.920 -175 0.46 33 0.010 -25 0.890 -173 1150 0.920 -175 0.43 33 0.010 -34 0.880 -173 1200 0.920 -175 0.39 32 0.010 -40 0.880 -173 MOTOROLA RF DEVICE DATA MRF1508 11 LAST ORDER 30JUN02 LAST SHIP 30DEC02 LIFETIME BUY Table 2. Common Source Scattering Parameters (VDS = 12.5 Vdc, IDQ = 800 mA) S11 f MHz |S11| S21 S12 S22 |S21| |S12| |S22| 50 0.860 -152 18.90 100 0.020 11 0.740 -160 100 0.830 -165 9.46 89 0.020 1 0.770 -168 150 0.830 -169 6.24 83 0.020 -4 0.770 -171 200 0.840 -171 4.61 78 0.020 -9 0.780 -171 250 0.840 -172 3.59 74 0.020 -12 0.790 -171 300 0.840 -173 2.91 70 0.020 -15 0.800 -171 350 0.850 -173 2.45 67 0.020 -17 0.810 -171 400 0.860 -174 2.07 63 0.020 -20 0.820 -171 450 0.860 -174 1.78 60 0.020 -21 0.820 -171 500 0.870 -174 1.55 58 0.020 -22 0.840 -171 550 0.880 -174 1.39 55 0.020 -24 0.840 -171 600 0.880 -174 1.23 53 0.020 -24 0.850 -171 650 0.890 -175 1.09 51 0.010 -24 0.860 -172 700 0.890 -175 1.00 49 0.010 -25 0.860 -172 750 0.900 -175 0.91 46 0.010 -27 0.870 -172 800 0.900 -175 0.82 43 0.010 -28 0.870 -172 850 0.910 -175 0.74 42 0.010 -31 0.870 -173 900 0.910 -175 0.68 40 0.010 -30 0.870 -173 950 0.910 -175 0.62 38 0.010 -32 0.870 -173 1000 0.910 -175 0.56 36 0.010 -31 0.860 -173 1050 0.920 -175 0.51 35 0.010 -29 0.860 -173 1100 0.920 -175 0.46 34 0.010 -22 0.860 -173 1150 0.920 -175 0.43 34 0.010 -30 0.850 -173 1200 0.920 -175 0.39 33 0.010 -35 0.850 -172 MRF1508 12 MOTOROLA RF DEVICE DATA LAST ORDER 30JUN02 LAST SHIP 30DEC02 LIFETIME BUY Table 3. Common Source Scattering Parameters (VDS = 12.5 Vdc, IDQ = 1.5 A) LIFETIME BUY DESIGN CONSIDERATIONS The MRF1508 is a common-source, RF power, N-Channel enhancement mode, Lateral Metal-Oxide Semiconductor Field-Effect Transistor (MOSFET). Motorola Application Note AN211A, "FETs in Theory and Practice", is suggested reading for those not familiar with the construction and characteristics of FETs. This surface mount packaged device was designed primarily for VHF and UHF portable power amplifier applications. Manufacturability is improved by utilizing the tape and reel capability for fully automated pick and placement of parts. However, care should be taken in the design process to insure proper heat sinking of the device. The major advantages of Lateral RF power MOSFETs include high gain, simple bias systems, relative immunity from thermal runaway, and the ability to withstand severely mismatched loads without suffering damage. MOSFET CAPACITANCES The physical structure of a MOSFET results in capacitors between all three terminals. The metal oxide gate structure determines the capacitors from gate-to-drain (Cgd), and gate-to-source (Cgs). The PN junction formed during fabrication of the RF MOSFET results in a junction capacitance from drain-to-source (Cds). These capacitances are characterized as input (Ciss), output (Coss) and reverse transfer (Crss) capacitances on data sheets. The relationships between the inter-terminal capacitances and those given on data sheets are shown below. The Ciss can be specified in two ways: 1. Drain shorted to source and positive voltage at the gate. 2. Positive voltage of the drain in respect to source and zero volts at the gate. In the latter case, the numbers are lower. However, neither method represents the actual operating conditions in RF applications. Drain Cgd Gate Cds Ciss = Cgd + Cgs Coss = Cgd + Cds Crss = Cgd Cgs Source DRAIN CHARACTERISTICS One critical figure of merit for a FET is its static resistance in the full-on condition. This on-resistance, RDS(on), occurs in the linear region of the output characteristic and is specified at a specific gate-source voltage and drain current. The drain-source voltage under these conditions is termed VDS(on). For MOSFETs, VDS(on) has a positive temperature MOTOROLA RF DEVICE DATA coefficient at high temperatures because it contributes to the power dissipation within the device. BVDSS values for this device are higher than normally required for typical applications. Measurement of BVDSS is not recommended and may result in possible damage to the device. GATE CHARACTERISTICS The gate of the RF MOSFET is a polysilicon material, and is electrically isolated from the source by a layer of oxide. The DC input resistance is very high - on the order of 109 -- resulting in a leakage current of a few nanoamperes. Gate control is achieved by applying a positive voltage to the gate greater than the gate-to-source threshold voltage, VGS(th). Gate Voltage Rating -- Never exceed the gate voltage rating. Exceeding the rated VGS can result in permanent damage to the oxide layer in the gate region. Gate Termination -- The gates of these devices are essentially capacitors. Circuits that leave the gate open-circuited or floating should be avoided. These conditions can result in turn-on of the devices due to voltage build-up on the input capacitor due to leakage currents or pickup. Gate Protection -- These devices do not have an internal monolithic zener diode from gate-to-source. If gate protection is required, an external zener diode is recommended. Using a resistor to keep the gate-to-source impedance low also helps dampen transients and serves another important function. Voltage transients on the drain can be coupled to the gate through the parasitic gate-drain capacitance. If the gate-to-source impedance and the rate of voltage change on the drain are both high, then the signal coupled to the gate may be large enough to exceed the gate-threshold voltage and turn the device on. DC BIAS Since the MRF1508 is an enhancement mode FET, drain current flows only when the gate is at a higher potential than the source. RF power FETs operate optimally with a quiescent drain current (IDQ), whose value is application dependent. The MRF1508 was characterized at IDQ = 150 mA, which is the suggested value of bias current for typical applications. For special applications such as linear amplification, IDQ may have to be selected to optimize the critical parameters. The gate is a dc open circuit and draws no current. Therefore, the gate bias circuit may generally be just a simple resistive divider network. Some special applications may require a more elaborate bias system. GAIN CONTROL Power output of the MRF1508 may be controlled to some degree with a low power dc control signal applied to the gate, thus facilitating applications such as manual gain control, ALC/AGC and modulation systems. This characteristic is very dependent on frequency and load line. MRF1508 13 LAST ORDER 30JUN02 LAST SHIP 30DEC02 APPLICATIONS INFORMATION LIFETIME BUY AMPLIFIER DESIGN Impedance matching networks similar to those used with bipolar transistors are suitable for the MRF1508. For examples see Motorola Application Note AN721, "Impedance Matching Networks Applied to RF Power Transistors." Large-signal impedances are provided, and will yield a good first pass approximation. Since RF power MOSFETs are triode devices, they are not unilateral. This coupled with the very high gain of the MRF1508 yields a device capable of self oscillation. Stability may be achieved by techniques such as drain loading, input shunt resistive loading, or output to input feedback. The RF test fixture implements a parallel resistor and capacitor in series with the gate, and has a load line selected for a higher efficiency, lower gain, and more stable operating region. Tw o-port stabi l i ty anal y s is w i th the M RF1508 S-parameters provides a useful tool for selection of loading or feedback circuitry to assure stable operation. See Motorola Application Note AN215A, "RF Small-Signal Design Using Two-Port Parameters" for a discussion of two port network theory and stability. MRF1508 14 MOTOROLA RF DEVICE DATA LAST ORDER 30JUN02 LAST SHIP 30DEC02 MOUNTING The specified maximum thermal resistance of 2C/W assumes a majority of the 0.065 x 0.180 source contact on the back side of the package is in good contact with an appropriate heat sink. As with all RF power devices, the goal of the thermal design should be to minimize the temperature at the back side of the package. Refer to Motorola Application Note AN4005/D, "Thermal Management and Mounting Method for the PLD-1.5 RF Power Surface Mount Package," and Engineering Bulletin EB209/D, "Mounting Method for RF Power Leadless Surface Mount Transistor" for additional information. PACKAGE DIMENSIONS L R C 2 A F U ZONE X 4 3 EEEE EEEE EEEE EEEE EEEE EEEE EEE EEE 10_DRAFT P N K G Q 0.89 (0.035) X 45 _ ZONE W J E "5 _ RESIN BLEED/FLASH ALLOWABLE CASE 466-02 ISSUE B MOTOROLA RF DEVICE DATA ZONE V H 1 D B S NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH 3. RESIN BLEED/FLASH ALLOWABLE IN ZONE V, W, AND X. DIM A B C D E F G H J K L N P Q R S U ZONE V ZONE W ZONE X STYLE 1: PIN 1. 2. 3. 4. INCHES MIN MAX 0.255 0.265 0.225 0.235 0.065 0.072 0.130 0.150 0.021 0.026 0.026 0.044 0.050 0.070 0.045 0.063 0.160 0.180 0.273 0.285 0.245 0.255 0.230 0.240 0.000 0.008 0.055 0.063 0.200 0.210 0.006 0.012 0.006 0.012 0.000 0.021 0.000 0.010 0.000 0.010 MILLIMETERS MIN MAX 6.48 6.73 5.72 5.97 1.65 1.83 3.30 3.81 0.53 0.66 0.66 1.12 1.27 1.78 1.14 1.60 4.06 4.57 6.93 7.24 6.22 6.48 5.84 6.10 0.00 0.20 1.40 1.60 5.08 5.33 0.15 0.31 0.15 0.31 0.00 0.53 0.00 0.25 0.00 0.25 DRAIN GATE SOURCE SOURCE MRF1508 15 Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer. Mfax is a trademark of Motorola, Inc. How to reach us: USA / EUROPE / Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1-303-675-2140 or 1-800-441-2447 JAPAN: Nippon Motorola Ltd.: SPD, Strategic Planning Office, 141, 4-32-1 Nishi-Gotanda, Shagawa-ku, Tokyo, Japan. 03-5487-8488 Customer Focus Center: 1-800-521-6274 Mfax: RMFAX0@email.sps.mot.com - TOUCHTONE 1-602-244-6609 ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, Motorola Fax Back System - US & Canada ONLY 1-800-774-1848 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298 - http://sps.motorola.com/mfax/ HOME PAGE: http://motorola.com/sps/ MRF1508 16 MOTOROLA RF DEVICEMRF1508/D DATA