2000-02-21
Page 1
BSP 772 T
Smart Power High-Side-Switch
Product Summary
Overvoltage protection
V
bb(AZ) V41
Operating voltage
V
bb(on) 5...34 V
On-state resistance 60 m
W
R
ON ANominal load current
I
L(nom) 2.6
Features
·
Overload protection
·
Current limitation
·
Short circuit protection
·
Thermal shutdown with restart
·
Overvoltage protection (including load dump)
·
Fast demagnetization of inductive loads
·
Reverse battery protection with external resistor
·
CMOS compatible input
·
Loss of GND and loss of
V
bb protection
·
ESD - Protection
·
Very low standby current
Application
All types of resistive, inductive and capacitive loads
µC compatible power switch for 12 V and 24 V DC applications
Replaces electromechanical relays and discrete circuits
General Description
N channel vertical power FET with charge pump, ground referenced CMOS compatible input,
monolithically integrated in Smart SIPMOS
â
technology. Fully protected by embedded
protection functions.
2000-02-21
Page 2
BSP 772 T
Block Diagram
+ Vbb
IN
Si gnal GND
ESD
miniPROFET
OUT
GND
Logic
Voltage
source
Charge pump
Level shifter Temperature
sensor
Rectifier
Limit for
unclamped
ind. loads
Gate
protection
Current
limit
Load GND
Load
V
Logic
Overvoltage
protection
Pin Symbol Function
1 GND Logic ground
2 IN Input, activates the power switch in case of logic high signal
3 OUT Output to the load
4 NC not connected
Positive power supply voltage5 Vbb
Vbb Positive power supply voltage6 Positive power supply voltageVbb7 Vbb Positive power supply voltage8
2000-02-21
Page 3
BSP 772 T
Maximum Ratings at
T
j = 25°C, unless otherwise specified
Parameter Symbol Value Unit
Supply voltage
V
bb 40 V
Supply voltage for full short circuit protection
T
j = -40...+150 °C
V
bb(SC) 36
Continuous input voltage
V
IN -10 ... +16
Load current (Short - circuit current, see page 5)
I
Lself limited A
Current through input pin (DC)
I
IN
±
5 mA
Operating temperature
T
j-40 ...+150 °C
Storage temperature
T
stg -55 ... +150
Power dissipation 1)
P
tot 1.5 W
Inductive load switch-off energy dissipation1)2)
single pulse, (see page 8)
Tj =150 °C,
V
bb = 13.5 V,
I
L = 1.5 A
E
AS 900 mJ
Load dump protection2)
V
LoadDump3)=
V
A +
V
S
R
I=2
W
,
t
d=400ms,
V
IN= low or high,
V
A=13,5V
R
L = 9
W
V
/RDGGXPS
63
V
Electrostatic discharge voltage (Human Body Model)
according to ANSI EOS/ESD - S5.1 - 1993
ESD STM5.1 - 1998
Input pin
all other pins
V
ESD
±
1
±
5
kV
Thermal Characteristics
Thermal resistance @ min. footprint
R
th
(
JA
)
- 95 - K/W
Thermal resistance @ 6 cm2 cooling area 1)
R
th
(
JA
)
- 70 83
1 Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6 cm2 (one layer, 70µm thick) copper area for drain
connection. PCB is vertical without blown air. (see page 16)
2not tested, specified by design
3
V
Loaddump is setup without the DUT connected to the generator per ISO 7637-1 and DIN 40839 .
Supply voltages higher than
V
bb(AZ) require an external current limit for the GND pin, e.g. with a
150
W
resistor in GND connection. A resistor for the protection of the input is integrated.
2000-02-21
Page 4
BSP 772 T
Electrical Characteristics
Parameter and Conditions Symbol Values Unit
DW7
M
&9EE 9XQOHVVRWKHUZLVHVSHFLILHG min. typ. max.
Load Switching Capabilities and Characteristics
On-state resistance
T
j = 25 °C,
I
L = 2 A,
V
bb = 9...40 V
T
j = 150 °C
R
ON
-
-
50
95
60
120
m
W
Nominal load current; Device on PCB 1)
T
C = 85 °C,
T
j
£
150 °C
I
L(nom) 2.6 3.1 - A
Turn-on time to 90%
V
OUT
R
L = 47
W
t
on - 90 180 µs
Turn-off time to 10%
V
OUT
R
L = 47
W
t
off - 110 230
Slew rate on 10 to 30% VOUT,
R
L = 47
W
dV/dton - 0.7 1.5 V/µs
Slew rate off 70 to 40% VOUT,
R
L = 47
W
-dV/dt
off - 0.7 1.5
Operating Parameters
Operating voltage
V
bb
(
on
)
5 - 34 V
Undervoltage shutdown of charge pump
T
j = -40...+85 °C
T
j = 150 °C
V
bb(under)
-
-
-
-
4
5.5
Undervoltage restart of charge pump
V
bb(u cp)
- 4 5.5
Standby current
T
j = -40...+85 °C,
V
IN = 0 V
T
j = 150 °C2) ,
V
IN = 0 V
I
bb(off)
-
-
-
-
10
15
µA
Leakage output current (included in
I
bb(off))
V
IN = 0 V
I
L(off) - - 5
Operating current
V
IN = 5 V
I
GND - 0.8 1.5 mA
1 Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6 cm2 (one layer, 70µm thick) copper area for drain
connection. PCB is vertical without blown air. (see page 16)
2higher current due temperature sensor
2000-02-21
Page 5
BSP 772 T
Electrical Characteristics
Parameter and Conditions Symbol Values Unit
DW7
M
&9EE 9XQOHVVRWKHUZLVHVSHFLILHG min. typ. max.
Protection Functions
Initial peak short circuit current limit (pin 5 to 3)
T
j = -40 °C,
V
bb = 20 V,
t
m = 150 µs
T
j = 25 °C
T
j = 150 °C
I
L(SCp)
-
-
9
-
17
-
28
-
-
A
Repetitive short circuit current limit
Tj = Tjt (see timing diagrams)
I
L(SCr) - 12 -
Output clamp (inductive load switch off)
at
V
OUT =
V
bb -
V
ON(CL),
I
bb = 4 mA
V
ON(CL) 41 47 - V
Overvoltage protection 1)
I
bb = 4 mA
V
bb(AZ) 41 - -
Thermal overload trip temperature
T
j
t150 - - °C
Thermal hysteresis
D
T
j
t- 10 - K
Reverse Battery
Reverse battery2) -
V
bb - - 32 V
Drain-source diode voltage (
V
OUT >
V
bb)
T
j = 150 °C -
V
ON - 600 - mV
1 see also VON(CL) in circuit diagram on page 7
2Requires a 150
W
resistor in GND connection. The reverse load current through the intrinsic drain-source diode has
to be limited by the connected load. Power dissipation is higher compared to normal operating conditions due to the
voltage drop across the drain-source diode. The temperature protection is not active during reverse current operation!
Input current has to be limited (see max. ratings page 3).
2000-02-21
Page 6
BSP 772 T
Electrical Characteristics
Parameter and Conditions Symbol Values Unit
DW7
M
&9EE 9XQOHVVRWKHUZLVHVSHFLILHG min. typ. max.
Input
Input turn-on threshold voltage
(see page 12)
V
IN(T+) - - 2.2 V
Input turn-off threshold voltage
(see page 12)
V
IN(T-) 0.8 - -
Input threshold hysteresis
D
V
IN
(
T
)
- 0.3 -
Off state input current (see page 12)
V
IN = 0.7 V
I
IN(off) 1 - 25 µA
On state input current (see page 12)
V
IN = 5 V
I
IN(on) 3 - 25
Input resistance (see page 7)
R
I1.5 3.5 5 k
W
2000-02-21
Page 7
BSP 772 T
Terms Inductive and overvoltage output clamp
PROFET
V
IN OUT
GND
bb
VIN
IIN
Vbb
Ibb
IL
VOUT
IGND
VON
RGND
+ Vbb
OUT
GND
VZ
VON
VON clamped to 47V typ.
Overvoltage protection of logic part
Input circuit (ESD protection)
+
V
bb
IN
GND
GND
R
Signal GND
Logic
VZ2
I
R
VZ1
IN
GND
I
R
ZD I
I
I
ESD-
7KHXVHRI(6']HQHUGLRGHVDVYROWDJHFODPS
DW'&FRQGLWLRQVLVQRWUHFRPPHQGHG
VZ1=6.1V typ., VZ2=Vbb(AZ)=47V typ.,
RI=3.5 k
W
typ., RGND=150
W
Reverse battery protection
GND
Logic
IN OUT
L
R
Power GND
GND
R
Signal G ND
Power
Inverse
I
R
Vbb
-
Diode
RGND=150
W
, RI=3.5k
W
typ.,
Temperature protection is not active during inverse
current
2000-02-21
Page 8
BSP 772 T
Vbb disconnect with charged inductive
load
PROFET
V
IN OUT
GND
bb
Vbb
high
GND disconnect
PROFET
V
IN OUT
GND
bb
Vbb VIN VGND
Inductive Load switch-off energy
dissipation
PROFET
V
IN OUT
GND
bb
=
E
E
E
EAS
bb
L
R
ELoad
RL
L
^
L
Z
GND disconnect with GND pull up
PROFET
V
IN OUT
GND
bb
Vbb VGND
VIN
Energy stored in load inductance: EL = ½ * L * IL2
While demagnetizing load inductance,
the enérgy dissipated in PROFET is
EAS = Ebb + EL - ER =
ò
VON(CL) * iL(t) dt,
with an approximate solution for RL > 0
W
:
EIL
RVV IR
V
AS L
Lbb OUT CL LL
OUT CL
=+ +
*
**( | )*ln( *
||
)
()| ()
21
2000-02-21
Page 9
BSP 772 T
Typ. transient thermal impedance
Z
thJA=f(
t
p) @ 6cm2 heatsink area
Parameter:
D
=
t
p/
T
10 -7
10 -6
10 -5 10 -4
10 -3
10 -2 10 -1
10 0 10 1 10 2 10 4
s
t
p
-2
10
-1
10
0
10
1
10
2
10
K/W
Z
thJA
D=0
D=0.01
D=0.02
D=0.05
D=0.1
D=0.2
D=0.5
Typ. transient thermal impedance
Z
thJA=f(
t
p) @ min. footprint
Parameter:
D
=
t
p/
T
10 -7
10 -6
10 -5 10 -4
10 -3
10 -2 10 -1
10 0 10 1 10 2 10 4
s
t
p
-2
10
-1
10
0
10
1
10
2
10
K/W
Z
thJA
D=0
D=0.01
D=0.02
D=0.05
D=0.1
D=0.2
D=0.5
Typ. on-state resistance
R
ON = f(
T
j) ;
V
bb = 13,5V ;
V
in = high
-40 -20 0 20 40 60 80 100 120 °C 160
T
j
0
20
40
60
m
W
100
R
ON
Typ. on-state resistance
R
ON = f(
V
bb);
I
L = 0.5A ;
V
in = high
0 5 10 15 20 25 30 V40
V
bb
0
20
40
60
80
m
W
120
R
ON
-40°C
25°C
150°C
2000-02-21
Page 10
BSP 772 T
Typ. turn off time
t
off = f(
T
j);
R
L = 47
W
-40 -20 0 20 40 60 80 100 120 °C 160
T
j
0
20
40
60
80
100
120
140
µs
180
t
off
9V
32V
Typ. turn on time
t
on = f(
T
j);
R
L = 47
W
-40 -20 0 20 40 60 80 100 120 °C 160
T
j
0
20
40
60
80
100
µs
140
t
on
9V
13.5V
32V
Typ. slew rate on
dV/dt
on = f(
T
j) ;
R
L = 47
W
-40 -20 0 20 40 60 80 100 120 °C 160
T
j
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
V/µs
2.0
d
V
d
t
on
9V
13.5V
32V
Typ. slew rate off
dV/dt
off = f(
T
j);
R
L = 47
W
-40 -20 0 20 40 60 80 100 120 °C 160
T
j
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
V/µs
2.0
-d
V
d
t
off
9V
13.5V
32V
2000-02-21
Page 11
BSP 772 T
Typ. leakage current
I
L(off) = f(
T
j) ;
V
bb = 32V ;
V
IN = low
-40 -20 0 20 40 60 80 100 120 °C 160
T
j
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
µA
2.2
I
L(off)
Typ. standby current
I
bb(off) = f(
T
j) ;
V
bb = 32V ;
V
IN = low
-40 -20 0 20 40 60 80 100 120 °C 160
T
j
0
1
2
3
4
µA
6
I
bb(off)
Typ. initial short circuit shutdown time
t
off(SC) = f(
T
j,start) ;
V
bb = 20V
-40 -20 0 20 40 60 80 100 120 °C 160
T
j
0.0
0.5
1.0
1.5
2.0
ms
3.0
t
off(SC)
Typ. initial peak short circuit current limit
I
L(SCp) = f(
T
j) ;
V
bb = 20V
-40 -20 0 20 40 60 80 100 120 °C 160
T
j
0
5
10
15
A
25
I
L(SCp)
2000-02-21
Page 12
BSP 772 T
Typ. input current
I
IN(on/off) = f(
T
j);
V
bb = 13,5V;
V
IN = low/high
V
INlow
£
0,7V;
V
INhigh = 5V
-40 -20 0 20 40 60 80 100 120 °C 160
T
j
0
2
4
6
8
µA
12
I
IN
on
off
Typ. input current
I
IN = f(
V
IN);
V
bb = 13.5V
0 2 4 V8
V
IN
0
20
40
60
80
100
120
140
160
µA
200
I
IN
-40...25°C
150°C
Typ. input threshold voltage
V
IN(th) = f(
T
j) ;
V
bb = 13,5V
-40 -20 0 20 40 60 80 100 120 °C 160
T
j
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
V
2.0
V
IN(th)
on
off
Typ. input threshold voltage
V
IN(th) = f(
V
bb) ;
T
j = 25°C
5 10 15 20 25 V35
V
bb
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
V
2.0
V
IN(th)
on
off
2000-02-21
Page 13
BSP 772 T
Maximum allowable load inductance
for a single switch off
L
= f(
I
L);
T
jstart=150°C,
V
bb=13.5V,
R
L=0
W
0.0 0.5 1.0 1.5 2.0 2.5 A3.5
I
L
0
250
500
750
1000
1250
1500
mH
2000
L
Maximum allowable inductive switch-off
energy, single pulse
E
AS = f(
I
L);
T
jstart = 150°C,
V
bb = 13,5V
0.0 0.5 1.0 1.5 2.0 2.5 A3.5
I
L
0
200
400
600
800
1000
mJ
1400
E
AS
2000-02-21
Page 14
BSP 772 T
Timing diagrams
Figure 2b: Switching a lamp,
Figure 1a: Vbb turn on:
IN
OUT
L
t
I
IN
V
OUT
V
bb
t
Figure 2a: Switching a resistive load,
turn-on/off time and slew rate definition Figure 2c: Switching an inductive load
IN
t
VOUT
IL
t
t
on
off
90%
dV/dton
dV/dtoff
10%
IN
L
t
V
I
OUT
2000-02-21
Page 15
BSP 772 T
Figure 3a: Turn on into short circuit,
shut down by overtemperature, restart by cooling
t
I
IN
L
L(SCr)
I
IL(SCp)
t
off(SC)
t
m
t
+HDWLQJXSRIWKHFKLSPD\UHTXLUHVHYHUDOPLOOLVHFRQGVGHSHQGLQJ
RQH[WHUQDOFRQGLWLRQV
Figure 4: Overtemperature:
Reset if Tj < Tjt
Figure 5: Undervoltage restart of charge pump
V o n
V
b b ( u n d e r )
V b b ( u c p )
V b b
IN
OUT
J
t
V
T
2000-02-21
Page 16
BSP 772 T
Package and ordering code
all dimensions in mm
Ordering code:
Q67060-S7302-A2
Printed circuit board (FR4, 1.5mm thick, one
layer 70µm, 6cm2 active heatsink area ) as
a reference for max. power dissipation Ptot
nominal load current IL(nom) and thermal
resistance Rthja
Published by
Infineon Technologies AG,
Bereichs Kommunikation
St.-Martin-Strasse 53,
D-81541 München
© Infineon Technologies AG 1999
All Rights Reserved.
Attention please!
The information herein is given to describe certain components and shall not be considered as warranted
characteristics.
Terms of delivery and rights to technical change reserved.
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement,
regarding circuits, descriptions and charts stated herein.
Infineon Technologies is an approved CECC manufacturer.
Information
For further information on technology, delivery terms and conditions and prices please contact your nearest
Infineon Technologies Office in Germany or our Infineon Technologies Reprensatives worldwide (see address list).
Warnings
Due to technical requirements components may contain dangerous substances.
For information on the types in question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express
written approval of Infineon Technologies, if a failure of such components can reasonably be expected to
cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device
or system Life support devices or systems are intended to be implanted in the human body, or to support
and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health
of the user or other persons may be endangered.