1
Motorola Small–Signal Transistors, FETs and Diodes Device Data
  
NPN and PNP Silicon
These transistors are designed for general purpose amplifier applications. They are
housed in the SOT–323/SC–70 which is designed for low power surface mount
applications.
MAXIMUM RATINGS
Rating Symbol Value Unit
CollectorEmitter Voltage MMBT3904WT1
MMBT3906WT1 VCEO 40
–40 Vdc
CollectorBase Voltage MMBT3904WT1
MMBT3906WT1 VCBO 60
–40 Vdc
EmitterBase Voltage MMBT3904WT1
MMBT3906WT1 VEBO 6.0
–5.0 Vdc
Collector Current — Continuous MMBT3904WT1
MMBT3906WT1 IC200
–200 mAdc
THERMAL CHARACTERISTICS
Characteristic Symbol Max Unit
Total Device Dissipation(1)
TA = 25°CPD150 mW
Thermal Resistance, Junction to Ambient R
q
JA 833 °C/W
Junction and Storage Temperature TJ, Tstg 55 to +150 °C
DEVICE MARKING
MMBT3904WT1 = AM
MMBT3906WT1 = 2A
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)
Characteristic Symbol Min Max Unit
OFF CHARACTERISTICS
CollectorEmitter Breakdown Voltage(2)
(IC = 1.0 mAdc, IB = 0) MMBT3904WT1
(IC = –1.0 mAdc, IB = 0) MMBT3906WT1
V(BR)CEO 40
–40
Vdc
CollectorBase Breakdown Voltage
(IC = 10
m
Adc, IE = 0) MMBT3904WT1
(IC = –10
m
Adc, IE = 0) MMBT3906WT1
V(BR)CBO 60
–40
Vdc
EmitterBase Breakdown Voltage
(IE = 10
m
Adc, IC = 0) MMBT3904WT1
(IE = –10
m
Adc, IC = 0) MMBT3906WT1
V(BR)EBO 6.0
–5.0
Vdc
Base Cutoff Current
(VCE = 30 Vdc, VEB = 3.0 Vdc) MMBT3904WT1
(VCE = –30 Vdc, VEB = –3.0 Vdc) MMBT3906WT1
IBL
50
–50
nAdc
Collector Cutoff Current
(VCE = 30 Vdc, VEB = 3.0 Vdc) MMBT3904WT1
(VCE = –30 Vdc, VEB = –3.0 Vdc) MMBT3906WT1
ICEX
50
–50
nAdc
1. Device mounted on FR4 glass epoxy printed circuit board using the minimum recommended footprint.
2. Pulse Test: Pulse Width
v
300
m
s; Duty Cycle
v
2.0%.
Thermal Clad is a trademark of the Bergquist Company.
Order this document
MMBT3904WT1/D

SEMICONDUCTOR TECHNICAL DATA




CASE 419–02, STYLE 3
SOT–323/SC–70
GENERAL PURPOSE
AMPLIFIER TRANSISTORS
SURFACE MOUNT
12
3
Motorola, Inc. 1996
   
2 Motorola Small–Signal Transistors, FETs and Diodes Device Data
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted) (Continued)
Characteristic Symbol Min Max Unit
ON CHARACTERISTICS(2)
DC Current Gain
(IC = 0.1 mAdc, VCE = 1.0 Vdc) MMBT3904WT1
(IC = 1.0 mAdc, VCE = 1.0 Vdc)
(IC = 10 mAdc, VCE = 1.0 Vdc)
(IC = 50 mAdc, VCE = 1.0 Vdc)
(IC = 100 mAdc, VCE = 1.0 Vdc)
(IC = –0.1 mAdc, VCE = –1.0 Vdc) MMBT3906WT1
(IC = –1.0 mAdc, VCE = –1.0 Vdc)
(IC = –10 mAdc, VCE = –1.0 Vdc)
(IC = –50 mAdc, VCE = –1.0 Vdc)
(IC = –100 mAdc, VCE = –1.0 Vdc)
hFE 40
70
100
60
30
60
80
100
60
30
300
300
CollectorEmitter Saturation V oltage
(IC = 10 mAdc, IB = 1.0 mAdc) MMBT3904WT1
(IC = 50 mAdc, IB = 5.0 mAdc)
(IC = –10 mAdc, IB = –1.0 mAdc) MMBT3906WT1
(IC = –50 mAdc, IB = –5.0 mAdc)
VCE(sat)
0.2
0.3
–0.25
–0.4
Vdc
BaseEmitter Saturation V oltage
(IC = 10 mAdc, IB = 1.0 mAdc) MMBT3904WT1
(IC = 50 mAdc, IB = 5.0 mAdc)
(IC = –10 mAdc, IB = –1.0 mAdc) MMBT3906WT1
(IC = –50 mAdc, IB = –5.0 mAdc)
VBE(sat) 0.65
–0.65
0.85
0.95
–0.85
–0.95
Vdc
SMALL–SIGNAL CHARACTERISTICS
CurrentGain — Bandwidth Product
(IC = 10 mAdc, VCE = 20 Vdc, f = 100 MHz) MMBT3904WT1
(IC = –10 mAdc, VCE = –20 Vdc, f = 100 MHz) MMBT3906WT1
fT300
250
MHz
Output Capacitance
(VCB = 5.0 Vdc, IE = 0, f = 1.0 MHz) MMBT3904WT1
(VCB = –5.0 Vdc, IE = 0, f = 1.0 MHz) MMBT3906WT1
Cobo
4.0
4.5
pF
Input Capacitance
(VEB = 0.5 Vdc, IC = 0, f = 1.0 MHz) MMBT3904WT1
(VEB = –0.5 Vdc, IC = 0, f = 1.0 MHz) MMBT3906WT1
Cibo
8.0
10.0
pF
Input Impedance
(VCE = 10 Vdc, IC = 1.0 mAdc, f = 1.0 kHz) MMBT3904WT1
(VCE = –10 Vdc, IC = –1.0 mAdc, f = 1.0 kHz) MMBT3906WT1
hie 1.0
2.0 10
12
k
Voltage Feedback Ratio
(VCE = 10 Vdc, IC = 1.0 mAdc, f = 1.0 kHz) MMBT3904WT1
(VCE = –10 Vdc, IC = –1.0 mAdc, f = 1.0 kHz) MMBT3906WT1
hre 0.5
0.1 8.0
10
X 10–4
SmallSignal Current Gain
(VCE = 10 Vdc, IC = 1.0 mAdc, f = 1.0 kHz) MMBT3904WT1
(VCE = –10 Vdc, IC = –1.0 mAdc, f = 1.0 kHz) MMBT3906WT1
hfe 100
100 400
400
Output Admittance
(VCE = 10 Vdc, IC = 1.0 mAdc, f = 1.0 kHz) MMBT3904WT1
(VCE = –10 Vdc, IC = –1.0 mAdc, f = 1.0 kHz) MMBT3906WT1
hoe 1.0
3.0 40
60
m
mhos
Noise Figure
(VCE = 5.0 Vdc, IC = 100
m
Adc, RS = 1.0 k , f = 1.0 kHz) MMBT3904WT1
(VCE = –5.0 Vdc, IC = –100
m
Adc, RS = 1.0 k , f = 1.0 kHz) MMBT3906WT1
NF
5.0
4.0
dB
SWITCHING CHARACTERISTICS
Delay T ime (VCC = 3.0 Vdc, VBE = –0.5 Vdc) MMBT3904WT1
(VCC = –3.0 Vdc, VBE = 0.5 Vdc) MMBT3906WT1 td
35
35
ns
Rise T ime (IC = 10 mAdc, IB1 = 1.0 mAdc) MMBT3904WT1
(IC = –10 mAdc, IB1 = –1.0 mAdc) MMBT3906WT1 tr
35
35
ns
Storage T ime (VCC = 3.0 Vdc, IC = 10 mAdc) MMBT3904WT1
(VCC = –3.0 Vdc, IC = –10 mAdc) MMBT3906WT1 ts
200
225
ns
Fall T ime (IB1 = IB2 = 1.0 mAdc) MMBT3904WT1
(IB1 = IB2 = –1.0 mAdc) MMBT3906WT1 tf
50
75
ns
2. Pulse Test: Pulse Width
v
300
m
s, Duty Cycle
v
2.0%.
   
3
Motorola Small–Signal Transistors, FETs and Diodes Device Data
MMBT3904WT1
Figure 1. Delay and Rise Time
Equivalent Test Circuit Figure 2. Storage and Fall Time
Equivalent Test Circuit
+3 V
275
10 k
1N916 CS < 4 pF*
+3 V
275
10 k
CS < 4 pF*
< 1 ns
0.5 V
+10.9 V
300 ns
DUTY CYCLE = 2%
< 1 ns
9.1 V
+10.9 V
DUTY CYCLE = 2% t1
0
10 < t1 < 500
m
s
* Total shunt capacitance of test jig and connectors
TYPICAL TRANSIENT CHARACTERISTICS
Figure 3. Capacitance
REVERSE BIAS VOLTAGE (VOLTS)
2.0
3.0
5.0
7.0
10
1.00.1
Figure 4. Charge Data
IC, COLLECTOR CURRENT (mA)
5000
1.0
VCC = 40 V
IC/IB = 10
Q, CHARGE (pC)
3000
2000
1000
500
300
200
700
100
50
70
2.0 3.0 5.0 7.0 10 20 30 50 70 100 200
CAPACITANCE (pF)
1.0 2.0 3.0 5.0 7.0 10 20 30 40
0.2 0.3 0.5 0.7
QT
QA
Cibo
Cobo
TJ = 25
°
C
TJ = 125
°
C
MMBT3904WT1 MMBT3904WT1
   
4 Motorola Small–Signal Transistors, FETs and Diodes Device Data
MMBT3904WT1
Figure 5. TurnOn Time
IC, COLLECTOR CURRENT (mA)
70
100
200
300
500
50
Figure 6. Rise Time
IC, COLLECTOR CURRENT (mA)
TIME (ns)
1.0 2.0 3.0 10 20 70
5100
t , RISE TIME (ns)
Figure 7. Storage Time
IC, COLLECTOR CURRENT (mA)
Figure 8. Fall Time
IC, COLLECTOR CURRENT (mA)
5.0 7.0 30 50 200
10
30
7
20
70
100
200
300
500
50
1.0 2.0 3.0 10 20 70
5100
5.0 7.0 30 50 200
10
30
7
20
70
100
200
300
500
50
1.0 2.0 3.0 10 20 70
5100
5.0 7.0 30 50 200
10
30
7
20
70
100
200
300
500
50
1.0 2.0 3.0 10 20 70
5100
5.0 7.0 30 50 200
10
30
7
20
r
t , FALL TIME (ns)
f
t , STORAGE TIME (ns)
s
VCC = 40 V
IC/IB = 10
VCC = 40 V
IB1 = IB2
IC/IB = 20
IC/IB = 10
IC/IB = 10
tr @ VCC = 3.0 V
td @ VOB = 0 V
40 V
15 V
2.0 V
IC/IB = 10
IC/IB = 20
IC/IB = 10
IC/IB = 20 t
s = ts1/8 tf
IB1 = IB2
MMBT3904WT1 MMBT3904WT1
MMBT3904WT1 MMBT3904WT1
TYPICAL AUDIO SMALL–SIGNAL CHARACTERISTICS
NOISE FIGURE VARIATIONS
(VCE = 5.0 Vdc, TA = 25°C, Bandwidth = 1.0 Hz)
Figure 9. Noise Figure
f, FREQUENCY (kHz)
4
6
8
10
12
2
0.1
Figure 10. Noise Figure
RS, SOURCE RESISTANCE (k OHMS)
0
NF, NOISE FIGURE (dB)
1.0 2.0 4.0 10 20 40
0.2 0.4
0100
4
6
8
10
12
2
14
0.1 1.0 2.0 4.0 10 20 40
0.2 0.4 100
NF, NOISE FIGURE (dB)
f = 1.0 kHz IC = 1.0 mA
IC = 0.5 mA IC = 50
m
A
IC = 100
m
A
SOURCE RESISTANCE = 200
W
IC = 1.0 mA
SOURCE RESISTANCE = 200
W
IC = 0.5 mA
SOURCE RESISTANCE = 500
W
IC = 100
m
A
SOURCE RESISTANCE = 1.0 k
IC = 50
m
A
MMBT3904WT1 MMBT3904WT1
   
5
Motorola Small–Signal Transistors, FETs and Diodes Device Data
MMBT3904WT1
h PARAMETERS
(VCE = 10 Vdc, f = 1.0 kHz, TA = 25°C)
Figure 11. Current Gain
IC, COLLECTOR CURRENT (mA)
70
100
200
300
50
Figure 12. Output Admittance
IC, COLLECTOR CURRENT (mA)
h , CURRENT GAIN
h , OUTPUT ADMITTANCE ( mhos)
Figure 13. Input Impedance
IC, COLLECTOR CURRENT (mA)
Figure 14. Voltage Feedback Ratio
IC, COLLECTOR CURRENT (mA)
30
100
50
5
10
20
2.0
3.0
5.0
7.0
10
1.0
0.1 0.2 1.0 2.0 5.0
0.5 10
0.3 0.5 3.0
0.7
2.0
5.0
10
20
1.0
0.2
0.5
oe
h , VOLTAGE FEEDBACK RATIO (X 10 )
re
h , INPUT IMPEDANCE (k OHMS)
ie
0.1 0.2 1.0 2.0 5.0 10
0.3 0.5 3.0
0.1 0.2 1.0 2.0 5.0 10
0.3 0.5 3.0
2
1
0.1 0.2 1.0 2.0 5.0 10
0.3 0.5 3.0
fe
m
–4
MMBT3904WT1 MMBT3904WT1
MMBT3904WT1 MMBT3904WT1
   
6 Motorola Small–Signal Transistors, FETs and Diodes Device Data
MMBT3904WT1
TYPICAL STATIC CHARACTERISTICS
Figure 15. DC Current Gain
IC, COLLECTOR CURRENT (mA)
0.3
0.5
0.7
1.0
2.0
0.2
0.1
h , DC CURRENT GAIN (NORMALIZED)
0.5 2.0 3.0 10 50 70
0.2 0.3
0.1 100
1.00.7 200
30205.0 7.0
FE
VCE = 1.0 V
TJ = +125
°
C
+25
°
C
–55
°
C
MMBT3904WT1
Figure 16. Collector Saturation Region
IB, BASE CURRENT (mA)
0.4
0.6
0.8
1.0
0.2
0.1
V , COLLECTOR EMITTER VOLTAGE (VOLTS)
0.5 2.0 3.0 100.2 0.3
01.00.7 5.0 7.0
CE
IC = 1.0 mA
TJ = 25
°
C
0.070.050.030.020.01
10 mA 30 mA 100 mA
MMBT3904WT1
Figure 17. “ON” Voltages
IC, COLLECTOR CURRENT (mA)
0.4
0.6
0.8
1.0
1.2
0.2
Figure 18. Temperature Coefficients
IC, COLLECTOR CURRENT (mA)
V, VOLTAGE (VOLTS)
1.0 2.0 5.0 10 20 50
0100
0.5
0
0.5
1.0
0 60 80 120 140 160 180
20 40 100
COEFFICIENT (mV/ C)
200
1.0
1.5
2.0
200
°
TJ = 25
°
CVBE(sat) @ IC/IB =10
VCE(sat) @ IC/IB =10
VBE @ VCE =1.0 V
+25
°
C TO +125
°
C
–55
°
C TO +25
°
C
+25
°
C TO +125
°
C
–55
°
C TO +25
°
C
q
VC FOR VCE(sat)
q
VB FOR VBE(sat)
MMBT3904WT1 MMBT3904WT1
   
7
Motorola Small–Signal Transistors, FETs and Diodes Device Data
MMBT3906WT1
Figure 19. Delay and Rise Time
Equivalent Test Circuit Figure 20. Storage and Fall Time
Equivalent Test Circuit
3 V
275
10 k
1N916 CS < 4 pF*
3 V
275
10 k
CS < 4 pF*
< 1 ns
+10.6 V 300 ns
DUTY CYCLE = 2%
< 1 ns
+9.1 V
10.9 V
DUTY CYCLE = 2% t1
0
10 < t1 < 500
m
s
* Total shunt capacitance of test jig and connectors
TYPICAL TRANSIENT CHARACTERISTICS
Cibo
Cobo
Figure 21. Capacitance
REVERSE BIAS VOLTAGE (VOLTS)
2.0
3.0
5.0
7.0
10
1.00.1
Figure 22. Charge Data
IC, COLLECTOR CURRENT (mA)
5000
1.0
VCC = 40 V
IC/IB = 10
Q, CHARGE (pC)
3000
2000
1000
500
300
200
700
100
50
70
2.0 3.0 5.0 7.0 10 20 30 50 70 100 200
CAPACITANCE (pF)
1.0 2.0 3.0 5.0 7.0 10 20 30 40
0.2 0.3 0.5 0.7
QT
QA
TJ = 25
°
C
TJ = 125
°
C
MMBT3906WT1 MMBT3906WT1
Figure 23. TurnOn Time
IC, COLLECTOR CURRENT (mA)
70
100
200
300
500
50
TIME (ns)
1.0 2.0 3.0 10 20 70
5100
5.0 7.0 30 50 200
10
30
7
20
IC/IB = 10
tr @ VCC = 3.0 V
td @ VOB = 0 V
40 V
15 V
2.0 V
MMBT3906WT1
Figure 24. Fall Time
IC, COLLECTOR CURRENT (mA)
70
100
200
300
500
50
1.0 2.0 3.0 10 20 70
5100
5.0 7.0 30 50 200
10
30
7
20
t , FALL TIME (ns)
f
VCC = 40 V
IB1 = IB2
IC/IB = 20
IC/IB = 10
MMBT3906WT1
   
8 Motorola Small–Signal Transistors, FETs and Diodes Device Data
MMBT3906WT1
TYPICAL AUDIO SMALL–SIGNAL CHARACTERISTICS
NOISE FIGURE VARIATIONS
(VCE = –5.0 Vdc, TA = 25°C, Bandwidth = 1.0 Hz)
f = 1.0 kHz IC = 1.0 mA
IC = 0.5 mA
IC = 50
m
A
IC = 100
m
A
SOURCE RESISTANCE = 200
W
IC = 1.0 mA
SOURCE RESISTANCE = 200
W
IC = 0.5 mA
SOURCE RESISTANCE = 2.0 k
IC = 100
m
A
SOURCE RESISTANCE = 2.0 k
IC = 50
m
A
Figure 25.
f, FREQUENCY (kHz)
1.0
2.0
3.0
4.0
5.0
0.1
Figure 26.
RS, SOURCE RESISTANCE (k
)
0
NF, NOISE FIGURE (dB)
1.0 2.0 4.0 10 20 40
0.2 0.4
0100
4.0
6.0
8.0
10
2.0
12
0.1 1.0 2.0 4.0 10 20 40
0.2 0.4 100
NF, NOISE FIGURE (dB)
MMBT3906WT1 MMBT3906WT1
hfe, CURRENT GAIN
Figure 27. Current Gain
IC, COLLECTOR CURRENT (mA)
70
100
200
300
50
Figure 28. Output Admittance
IC, COLLECTOR CURRENT (mA)
h , OUTPUT ADMITTANCE ( mhos)
Figure 29. Input Impedance
IC, COLLECTOR CURRENT (mA)
Figure 30. Voltage Feedback Ratio
IC, COLLECTOR CURRENT (mA)
30
100
70
10
30
2.0
3.0
5.0
7.0
10
1.0
0.1 0.2 1.0 2.0 5.0
0.5 10
0.5
0.7
2.0
5.0
10
20
1.0
0.2
0.5
oe
h , VOLTAGE FEEDBACK RATIO (X 10 )
re
h , INPUT IMPEDANCE (k
ie
0.1 0.2 1.0 2.0 5.0 10
0.5
0.1 0.2 1.0 2.0 5.0 10
0.5
7.0
5.0
0.1 0.2 1.0 2.0 5.0 10
0.5
m
–4
h PARAMETERS
(VCE = –10 Vdc, f = 1.0 kHz, TA = 25°C)
50
20
)
MMBT3906WT1 MMBT3906WT1
MMBT3906WT1 MMBT3906WT1
0.3 0.7 3.0 7.0 0.3 0.7 3.0 7.0
0.3
0.7
3.0
7.0
0.3 0.7 3.0 7.0 0.3 0.7 3.0 7.0
   
9
Motorola Small–Signal Transistors, FETs and Diodes Device Data
MMBT3906WT1
STATIC CHARACTERISTICS
Figure 31. DC Current Gain
IC, COLLECTOR CURRENT (mA)
0.3
0.5
0.7
1.0
2.0
0.2
0.1
h , DC CURRENT GAIN (NORMALIZED)
0.5 2.0 3.0 10 50 70
0.2 0.3
0.1 100
1.00.7 200
30205.0 7.0
FE
VCE = 1.0 V
TJ = +125
°
C
+25
°
C
–55
°
C
MMBT3906WT1
Figure 32. Collector Saturation Region
IB, BASE CURRENT (mA)
0.4
0.6
0.8
1.0
0.2
0.1
V , COLLECTOR EMITTER VOLTAGE (VOLTS)
0.5 2.0 3.0 100.2 0.3
01.00.7 5.0 7.0
CE
IC = 1.0 mA
TJ = 25
°
C
0.070.050.030.020.01
10 mA 30 mA 100 mA
MMBT3906WT1
Figure 33. “ON” Voltages
IC, COLLECTOR CURRENT (mA)
0.4
0.6
0.8
1.0
0.2
Figure 34. Temperature Coefficients
IC, COLLECTOR CURRENT (mA)
V, VOLTAGE (VOLTS)
1.0 2.0 5.0 10 20 50
0100
–0.5
0
0.5
1.0
0 60 80 120 140 160 180
20 40 100 200
–1.0
–1.5
–2.0
200
TJ = 25
°
CVBE(sat) @ IC/IB = 10
VCE(sat) @ IC/IB = 10
VBE @ VCE = 1.0 V +25
°
C TO +125
°
C
–55
°
C TO +25
°
C
+25
°
C TO +125
°
C
–55
°
C TO +25
°
C
q
VC FOR VCE(sat)
q
VS FOR VBE(sat)
V, TEMPERATURE COEFFICIENTS (mV/ C)
°θ
MMBT3906WT1 MMBT3906WT1
   
10 Motorola Small–Signal Transistors, FETs and Diodes Device Data
INFORMATION FOR USING THE SOT–323/SC–70 SURFACE MOUNT PACKAGE
MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS
Surface mount board layout is a critical portion of the total
design. The footprint for the semiconductor packages must
be the correct size to insure proper solder connection
interface between the board and the package. With the
correct pad geometry, the packages will self align when
subjected to a solder reflow process.
SOT–323/SC–70
mm
inches
0.035
0.9
0.075
0.7
1.9
0.028
0.65
0.025
0.65
0.025
SOT–323/SC–70 POWER DISSIPATION
The power dissipation of the SOT–323/SC–70 is a function
of the pad size. This can vary from the minimum pad size for
soldering to a pad size given for maximum power dissipation.
Power dissipation for a surface mount device is determined
by TJ(max), the maximum rated junction temperature of the
die, RθJA, the thermal resistance from the device junction to
ambient, and the operating temperature, TA. Using the
values provided on the data sheet for the SOT–323/SC–70
package, PD can be calculated as follows:
PD = TJ(max) – TA
RθJA
The values for the equation are found in the maximum
ratings table on the data sheet. Substituting these values into
the equation for an ambient temperature T A of 25°C, one can
calculate the power dissipation of the device which in this
case is 150 milliwatts.
PD = 150°C – 25°C
833°C/W = 150 milliwatts
The 833°C/W for the SOT–323/SC–70 package assumes
the use of the recommended footprint on a glass epoxy
printed circuit board to achieve a power dissipation of
150 milliwatts. There are other alternatives to achieving
higher power dissipation from the SOT–323/SC–70
package. Another alternative would be to use a ceramic
substrate or an aluminum core board such as Thermal
Clad. Using a board material such as Thermal Clad, an
aluminum core board, the power dissipation can be doubled
using the same footprint.
SOLDERING PRECAUTIONS
The melting temperature of solder is higher than the rated
temperature of the device. When the entire device is heated
to a high temperature, failure to complete soldering within a
short time could result in device failure. Therefore, the
following items should always be observed in order to
minimize the thermal stress to which the devices are
subjected.
Always preheat the device.
The delta temperature between the preheat and
soldering should be 100°C or less.*
When preheating and soldering, the temperature of the
leads and the case must not exceed the maximum
temperature ratings as shown on the data sheet. When
using infrared heating with the reflow soldering method,
the difference shall be a maximum of 10°C.
The soldering temperature and time shall not exceed
260°C for more than 10 seconds.
When shifting from preheating to soldering, the
maximum temperature gradient shall be 5°C or less.
After soldering has been completed, the device should
be allowed to cool naturally for at least three minutes.
Gradual cooling should be used as the use of forced
cooling will increase the temperature gradient and result
in latent failure due to mechanical stress.
Mechanical stress or shock should not be applied during
cooling.
* Soldering a device without preheating can cause excessive
thermal shock and stress which can result in damage to the
device.
   
11
Motorola Small–Signal Transistors, FETs and Diodes Device Data
PACKAGE DIMENSIONS
CASE 419–02
ISSUE G
SOT–323/SC–70
STYLE 3:
PIN 1. BASE
2. EMITTER
3. COLLECTOR
CRN
AL
D
G
V
SB
H
J
K
3
12
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
DIM MIN MAX MIN MAX
MILLIMETERSINCHES
A0.071 0.087 1.80 2.20
B0.045 0.053 1.15 1.35
C0.035 0.049 0.90 1.25
D0.012 0.016 0.30 0.40
G0.047 0.055 1.20 1.40
H0.000 0.004 0.00 0.10
J0.004 0.010 0.10 0.25
K0.017 REF 0.425 REF
L0.026 BSC 0.650 BSC
N0.028 REF 0.700 REF
R0.031 0.039 0.80 1.00
S0.079 0.087 2.00 2.20
V0.012 0.016 0.30 0.40
0.05 (0.002)
   
12 Motorola Small–Signal Transistors, FETs and Diodes Device Data
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty , representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit,
and specifically disclaims any and all liability , including without limitation consequential or incidental damages. “Typical” parameters can and do vary in different
applications. All operating parameters, including “T ypicals” must be validated for each customer application by customer’s technical experts. Motorola does
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in
systems intended for surgical implant into the body , or other applications intended to support or sustain life, or for any other application in which the failure of
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such
unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, af filiates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.
Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.
How to reach us:
USA/EUROPE: Motorola Literature Distribution; JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki,
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315
MFAX: RMF AX0@email.sps.mot.com – T OUCHTONE (602) 244–6609 HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
INTERNET: http://Design–NET.com 5 1 Ti ng Ko k Road, Tai Po, N.T., Hong Kong. 852–26629298
MMBT3904WT1/D
