TYPES TIP140, TIP141, TIP142 N-P-N DARLINGTON-CONNECTED SILICON POWER TRANSISTORS DESIGNED FOR COMPLEMENTARY USE WITH TIP 145, TIP 146, TIP 147 @ 125 W at 25C Case Temperature e Minhefe of 1000 at4V,5A e 10-A Rated Collector Current @ 100-mJ Reverse Energy Rating COLLECTOR CTT ST device schematic EMITTER mechanical data THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE MOUNTING TAB MECHANICAL INTERCHANGEARILITY OF TH 140 9570. 0530 00% aus PLASTIC PACKAGE B20 agra O50 ewes TT 6290 4RE Jokes a= aft fice} =P | a ota 0615 Gabe TepenaTone = ive aa oe 1 __ 8 as 0.225 Eooss one oe te a4eaDs ALL DIMENSIONS ARE IN INCHES THI PORTION OF LEADS: FREE OF FLASH ease couecron 4 2685 170. 2 DIMENSION! absolute maximum ratings at 25C case temperature (unless otherwise noted) . TIP14O0 ~TIP141 TIP142 Collector-Base Voitage .. . Co 60V 80 V 100 V Collector-Emitter Voltage (See Note 1) Se 60 V 80V 100 V Emitter-Base Voltage 2 0 6. 5Vv Sv 5V Continuous Collector Current - 10 A-_+ NOTES: Peak Collector Current (See Note 2) Continuous Base Current Safe Operating Areas at (or below) 25 c Case Temperature Continuous Device Dissipation at (or below) 25C Case Temperature (See Note 3). Continuous Device Dissipation at (or below} 25C Free-Air Temperature (See Note 4) Unclamped Inductive Load Energy (See Note 5) wo ee Operating Collector Junction Temperature Range Storage Temperature Range Lead Temperature 1/8 Inch from Case for 10 Seconds . These vatues apply when the base-emitter diode is open-circuited, . This value applies for tw 0.3 ms, duty cycle < 10%. __ 15 A _> m@ 0.5 A _+ See Figures 7 and 8 -125 W > -_ 3.5 W +100 mJ > 65C to 150C o 65C to 150C o + 260C > . Derate linearly to 150C free-air temperature at the rate of 28 mW/C or refer to Dissipation Derating Curve, Figura 10. . This rating is based on the capability of the transistors to operate safely in the circuit of Figure 2. L = 100 mH, Regge = 100 22, Vep2 = OV, Ag = 0.1 2, Veg = 20 V. Energy * 12L/2. TEXAS INSTRUMENTS 4 2 3. Derate linearly to 150C case temperature at the rate of 1 W/C or refer to Dissipation Derating Curve, Figure 9. 4 5 2-225TYPES TIP140, TIP141, TIP142 N-P-N DARLINGTON-CONNECTED SILICON POWER TRANSISTORS electrical characteristics at 25C case temperature PARAMETER TEST CONDITIONS Trr40 TIPISt Tip sz UNIT MIN MAX|MIN MAX|MIN MAX Collector-Emitter Vv, Ie = 30 mA, (gp = 0, See Note 6 60 80 100 Vv (BR}CEO Breakdown Voltage c m 8 Voce = 30V, ip=0 2 \cEO Collector Cutoff Current Voe = 40V, Ig=0 2 mA Voce = 50V, ip=O 2 Vcp = 60V, Ie =0 1 ICBO Collector Cutoff Current Vep-80V, ip=0 1 mA Vop=100V, Ip =O 1 leBo Emitter Cutoff Current Vep=5YV, c= 0 2 2 2 |] mA Static F: d =4yV, IG=5A 1000 1000 1000 hee atic orwar Current VcE Cc See Notes 6 and 7 Transfer Ratio VcE=4Y, ic = 10A 500 500 500 VBE Base-E mitter Voltage Vce=4V, le= 10A, See Notes 6 and 7 3 3 3 v -Emi 10 mA 5A 2 2 2 VCE (sat) Collector Emitter {g m See Notes 6 and 7 Vv Saturation Voltage Ip = 40 mA, 104 3 3 3 NOTES: 6. These parameters must be measured using pulse tachniques. ty = 300 us, duty cycle < 2%. 7. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts and located within 0.125 inch from the device body. switching characteristics at 25C case temperature PARAMETER TEST CONDITIONST TYP UNIT ton Turn-On Time != 104A, 1p) = 40 mA, Iga) = 40 mA, 0.9 > Toft Turn-Off Time VBE(off) = 4.2V, RL =32, See Figure 1 11 tvoltage and current values shown are nominal; exact values vary slightly with transistor parameters. PARAMETER MEASUREMENT INFORMATION INPUT _C-Qrwontron OUTPUT 4@ po~- 4 MONITOR 1NOt4 Agar ~ 500. I 66.0 ( + ' t M4040 eo C) 2N6127 | (TUT ~ 1NO14 1NOT4 1ND14 [ | ~-~ | i Rep2 < 1502 RAL =30 270 pF | OUTPUT | Vi gone ~ 90% P+ VeB1 = 44V eT ADJUST FOR eT Von = 42 V AT INPUT MONITOR TEST CIRCUIT VOLTAGE WAVEFORMS NOTES: A. Vgen is a -30-V pulse (from O V) into a 50-22 termination. 5. The Vggn waveform is supplied by a generator with the failowing characteristics: t, < 15 ns, te < 15 ns, Zour = 50 2, ty = 20 us, duty cycle < 2%, . Waveforms ara monitored on an oscilloscope with the following characteristics: ty < 15 ns, Rip, * 10 M&, Ci, < 11.5 pF. . Resistors must be noninductive types. . The d-c power supplies may require additional bypassing in order to minimize ringing. moo FIGURE 1 2-226 TEXAS INSTRUMENTSTYPES TIP140, TIP141, TIP142 N-P-N DARLINGTON-CONNECTED SILICON POWER TRANSISTORS INDUCTIVE LOAD SWITCHING 2Ne127 RBBI 100 mH eu son Teka son | Aga2= 1000 Vec=20 tc TQ wonton i Vep2 = 0 = = Vapi" 10V As =0.19 TEST CIRCUIT NOTE A: Input pulse width is increased until Iopy = 1.42 A. FIGURE 2 yotw ~ 7 ms (See Note A} input | VOLTAGE | f ~V~ fmt r 100 ms 2 1aza-4t)--~---1 COLLECTOR A TAN CURRENT 4 ! t ! | ViBRICER ~T 7 [ 1 VOLTAGE AND CURRENT WAVEFORMS COLLECTOR 1 VOLTAGE ' ry av Vee sat) TYPICAL CHARACTERISTICS STATIC FORWARO CURRENT TRANSFER RATIO ry COLLECTOR CURRENT 8 8 VCE *4 See Notes 6 and 7 20.000 3 he EStatic Forward Current Transfer Ratio - au 8 2 8 8 700 400 o4 07 1 2 4 7 10 I~Collector CurrentA FIGURE 3 COLLECTOR-EMITTER SATURATION VOLTAGE CASE TEMPERATURE Gand a7 =2mA,I*1 VCE (sat)Cotlector-Emitter Saturation VoltageV 04 -76 -50-25 0 2 50 76 100 126 160175 TeCase TernperatureC FIGURE 5 VgEBaseEmitter VoltageV bfe!-Small-Signat Forward Current Transter Ratio BASE-EMITTER VOLTAGE ve CASE TEMPERATURE 40 Voes4Vv 3.6 Notes 6 and 7 32 28 24 20 16 12 08 04 75-60-25 0 26 50 76 100 125 150 175 Te~Case Temperature~"C FIGURE 4 SMALL-SIGNAL COMMON-EMITTER FORWARD CURRENT TRANSFER RATIO FREQUENCY Vee = 10V igs 1A To = 26C 1 2 4 7 10 {Frequency MHz FIGURE 6 NOTES: 6. These parameters must be measured using pulse techniques, ty = 300 us, duty cycle < 2%. 7. These parameters are measured with voitage-sensing contacts separate from the current-carrying contacts and located within 0.125 inch from the device body. TEXAS INSTRUMENTS 2-227TYPES TIP140, TIP141, TIP142 N-P-N DARLINGTON-CONNECTED SILICON POWER TRANSISTORS MAXIMUM SAFE OPERATING AREAS MAXIMUM COLLECTOR CURRENT MAXIMUM COLLECTOR CURRENT vs vs COLLECTOR-EMITTER VOLTAGE UNCLAMPED INDUCTIVE LOAD D-C Tc <25C Vcc = 20V Rep2 = 1002 Tc = 25C See Figure 2 tcMaximum Collector Current-A {cMaximum Collector CurrentA TIP1 TIP146 P147 10 20 40 70 100 200 400 0.4 1 4 10 40 100 400 VcECollector-Emitter VoltageV LUnclamped Inductive LoadmH FIGURE 7 FIGURE 8 NOTE 8: Above this point the safe operating area has not been defined. THERMAL INFORMATION CASE TEMPERATURE FREE-AIR TEMPERATURE DISSIPATION DERATING CURVE DISSIPATION DERATING CURVE # 150 = { 2 5 2 e a 125 8 a a 8 100 8 Resa <35.7CW a Ragc < 1C/w 3 2 6 75 3 z : 38 50 g 5 E = & 3 25 % 7 0 E 0 25 50 75 100 125 150 0 25 50 75 100 125 150 TcCase TemperatureC TaFree-Air TemperatureC FIGURE 9 FIGURE 10 Tl cannot assume any respansibility for any circuits shown 2-228 TEXAS INSTRUMENTS or represent that they ote free from patent infringement TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIM IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBL3-6 Prot @ Typ To = 25 9C VCEO \cp hFE @ Ic type (100 C) min max min max NPN PNP Ww A A TIP 35B TIP 368 30 80 25 25 100 1,5 TIP 35 C TIP 36 90 7100 25 25 100 15 TIP 41 TIP 42 65 40 6 15 75 3 TIP41A TIP 424 65 60 6 15 75 3 TIP 41B TIP 42B 65 80 6 15 75 3 TIP 416 TIP 42C 65 100 6 15 75 3 TIP 3055 TIP 5530 90 70 15 20 4 BD 633 BD 634 30 45 2 25 1 BD 635 BD 636 30 60 2 25 1 BD 637 BD 638 30 80 2 25 1 BD 733 BD 734 40 32 4 50 2 BD 735 BD 736 40 32 4 50 2 BD 737 BD738 40 45 4 40 2 TIP 110 TIP 115 50 60 2 1000 1 TIP 1141 TIP 116 50 80 2 1000 1 TIP 112 TIP 117 50 100 2 1000 1 TIP 120 TIP 125 65 60 5 1000 3 TIP 121 TIP 126 65 80 5 1000 3 TIP 122 TIP 127 65 100 5 1000 3 TIP 140 TIP 145 125 60 10 1000 5 TIP 141 TIP 146 125 80 10 1000 5 TIP 142 TIP 147 125 100 10 1000 5 Prot @ Typ Ta = 25C To = 25 9C VCEO Icb hee @ le type (100 C} (100 C} min max min max Ww Ww Vv A A 2N 4915 4 87,5 80 5 25 100 2,5 2N 4998 2 (20) 80 2 30 90 1 2N 5000 2 (20) 80 2 70 200 1 2N 5002 (33,3) 80 5 30 90 2,5 2N 5004 (33,3) 80 5 70 200 2,5 2N 5038 5 140 90 20 20 100 12 2N 5039 5 140 76 20 20 100 10 2N 6148 1 (4) 80 2 30 30 1 2N 5150 1 (4) 80 2 70 200 1 2N 5152 (6,7) 80 2 30 90 2,5 2N 5154 (6,7) 80 2 70 200 25 2N 5301 5 200 40 20 40 60 1 2N 5302 5 200 60 20 40 60 1 2N 5303 5 200 80 20 40 60 1 TEXAS INSTRUMENTSfT Ices @ VcE Gehause Anwendungen min (IcEQ) package applications, remarks MHz BA Vv 3 700 80 TO-3P Verstarker, Schalter, komplementar zu TIP 36 B amplifier, switch, complementary to TIP 36 B 3 700 100 TO-66P Verstarker, Schalter, komplementar zu TIP 36 C amplifier, switch, complementary to TIP 36 C 3 400 40 TO-66P Verstarker, Schalter, komplementar zu TIP 42 amplifier, switch, complementary to TIP 42 3 400 60 TO-66P Verstarker, Schalter, komplementar zu TIP 42 A amplifier, switch, complementary to TIP 42 A 3 400 80 TO-66P Verstarker, Schalter, komplementar zu TIP 42 B amplifier, switch, complementary to TIP 42 B 3 400 100 TO-66P Verstarker, Schalter, komplementar zu TIP 42 C amplifier, switch, complementary to TIP 42 C TO-3P TO-66 Kompiementar TO-66 Endstufen TO-66 for complementary output stages TO-66 TO-66 TO-66 TO-66P TO-66P Darlington TO-66P TO-66P Verstarker, Schalter . TO-66P amplifier, switch Darlington TO-66P TO-3P TO-3P Darlington TO-3P fT ICES @ VE Gehause Anwendungen, Bemerkungen min (IcEO) package applications, remarks MHz HA v 4 (1000) 80 TO-3 Verstarker, Schalter amplifier, switch 50 (0,05) 40 TO-59 Fir Computeranwendung 60 (0,05) 40 TO-59 komplementar zu 2N 4999, 2N 5001, 2N 5003, 2N 5005 60 (0,05) 40 TO-59 computer application 70 (0,05) 40 TO-59 complementary to 2N 4999, 2N 5001, 2N 5003, 2N 5005 60 50 140 TO-3 Verstarker und schnelle Schalter 60 50 110 TO-3 amplifier and high-speed switch 50 (0,05) 40 TO-39 Fur Computeranwendung 60 (0,05) 40 TO-39 komplementar zu 2N 5147, 2N 5149, 2N 5151, 2N 5153 60 (0,05) 40 TO-39 computer application 70 (0,05) 40 TO-39 complementary to 2N 5147, 2N 5149, 2N 5151, 2N 5153 4 (5) 40 TO-3 Verstarker, Schalter 4 (5) 60 TO-3 amplifier, switch 4 (5) 80 TO-3 TEXAS INSTRUMENTS 37