Data Sheet No. PD60250
Typical Connection
Features
Floating channel designed for bootstrap operation
Fully operational to +600 V
Tolerant to negative transient voltage, dV/dt immune
Gate drive supply range from 10 V to 20 V
Undervoltage lockout
3.3 V, 5 V, and 15 V logic input compatible
Matched propagation delay for both channels
Outputs in phase with inputs
HIGH AND LOW SIDE DRIVER
Product Summary
VOFFSET 600 V max.
IO+/- 130 mA/270 mA
VOUT 10 V - 20 V
ton/off (typ.) 160 ns/150 ns
Delay Matching 50 ns
IRS2101(S)PbF
Description
The IRS2101 is a high voltage, high speed power
MOSFET and IGBT driver with independent high-side
and low-side referenced output channels. Proprietary
HVIC and latch immune CMOS technologies enable
ruggedized monolithic construction. The logic input
is compatible with standard CMOS or LSTTL output,
down to 3.3 V logic. The output drivers feature a high
pulse current buffer stage designed for minimum driver
cross-conduction. The floating channel can be used to
drive an N-channel power MOSFET or IGBT in the high-
side configuration which operates up to 600 V.
www.irf.com 1
(Refer to Lead Assignments for correct pin configuration). This diagram shows electrical connections only.
Please refer to our Application Notes and DesignTips for proper circuit board layout.
IRS2101











Packages
8-Lead PDIP
IRS2101
8-Lead SOIC
IRS2101S
RoHS compliant
IRS2101(S)PbF
www.irf.com 2
Symbol Definition Min. Max. Units
VB High-side floating supply voltage -0.3 625
VS
High-side floating supply offset voltage VB - 25 VB + 0.3
VHO
High-side floating output voltage VS - 0.3 VB + 0.3
VCC Low-side and logic fixed supply voltage -0.3 25
VLO
Low-side output voltage -0.3 VCC + 0.3
VIN Logic input voltage (HIN & LIN) -0.3 VCC + 0.3
dVS/d t Allowable offset supply voltage transient 50 V/ns
PDPackage power dissipation @ TA +25 °C(8 lead PDIP) 1.0
(8 lead SOIC) 0.625
RthJA Thermal resistance, junction to ambient (8 lead PDIP) 125
(8 lead SOIC) 200
TJJunction temperature 150
TSStorage temperature -55 150
TLLead temperature (soldering, 10 seconds) 300
Absolute Maximum Ratings
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage param-
eters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured
under board mounted and still air conditions.
W
°C/W
V
°C
Symbol Definition Min. Max. Units
VB
High-side floating supply absolute voltage VS + 10 VS + 20
VS High-side floating supply offset voltage Note 1 600
VHO
High-side floating output voltage VS
VB
VCC
Low-side and logic fixed supply voltage 10 20
VLO
Low-side output voltage 0 VCC
VIN Logic input voltage (HIN & LIN) 0 VCC
TAAmbient temperature -40 125
Note 1: Logic operational for VS of -5 V to +600 V. Logic state held for VS of -5 V to -VBS. (Please refer to the Design
Tip DT97-3 for more details).
Recommended Operating Conditions
The input/output logic timing diagram is shown in Fig. 1. For proper operation the device should be used within the
recommended conditions. The VS offset rating is tested with all supplies biased at a 15 V differential.
°C
V
IRS2101(S)PbF
www.irf.com 3
Symbol Definition Min. Typ. Max. Units Test Conditions
VIH Logic “1” input voltage 2.5 — —
VIL Logic “0” input voltage 0.8
VOH High level output voltage, VBIAS - VO 0.05 0.2
VOL Low level output voltage, VO 0.02 0.1
ILK Offset supply leakage current 50 VB = VS = 600 V
IQBS Quiescent VBS supply current 30 55
IQCC Quiescent VCC supply current 150 270
IIN+ Logic “1” input bias current —310 VIN = 5 V
IIN-
Logic “0” input bias current
5
VIN = 0 V
VCCUV+ VCC supply undervoltage positive going threshold 8 8.9 9.8
VCCUV- VCC supply undervoltage negative going threshold 7.4 8.2 9 VO = 0 V
IO+ Output high short circuit pulsed current 130 290 VIN = Logic “1”
PW10 µs
VO = 15 V
IO- Output low short circuit pulsed current 270 600 VIN = Logic “0”
PW10 µs
Symbol Definition Min. Typ. Max. Units Test Conditions
ton Turn-on propagation delay 160 220 VS = 0 V
toff Turn-off propagation delay 150 220 VS = 600 V
trTurn-on rise time 70 170
tfTurn-off fall time 35 90
M T Delay matching, HS & LS turn-on/off 50
Dynamic Electrical Characteristics
VBIAS (VCC, VBS) = 15 V, CL = 1000 pF and TA = 25 °C unless otherwise specified.
V
mA
V
µA
ns
Static Electrical Characteristics
VBIAS (VCC, VBS) = 15 V and TA = 25 °C unless otherwise specified. The VIN, VTH, and IIN parameters are referenced to
COM. The VO and IO parameters are referenced to COM and are applicable to the respective output leads: HO or LO.
VCC = 10 V to 20 V
IO = 2 mA
VIN = 0 V or 5 V
IRS2101(S)PbF
www.irf.com 4
Functional Block Diagram















IRS2101
IRS2101(S)PbF
www.irf.com 5
Lead Definitions
Symbol Description
HINLogic input for high-side gate driver output (HO), in phase
LINLogic input for low-side gate driver output (LO), in phase
VBHigh-side floating supply
HOHigh-side gate drive output
VSHigh-side floating supply return
VCCLow-side and logic fixed supply
LOLow-side gate drive output
COMLow-side return
Lead Assignments
8 Lead PDIP 8 Lead SOIC
IRS2101PbF IRS2101SPbF
Part Number
IRS2101(S)PbF
www.irf.com 6
Figure 2. Switching Time Waveform Definitions






! !
"! "!
#! #!
Figure 1. Input/Output Timing Diagram




Figure 3. Delay Matching Waveform Definitions



! !
#!

"!



IRS2101(S)PbF
www.irf.com 7
Figure 6A. T urn-On Time vs. Temperature Figure 6B. T urn-On Time vs. Supply V oltage
Figure 7A. T urn-Off Time vs. T emperature
Figure 7B. T urn-Off Time vs. Supply V oltage
Temperature (°C) VBIAS Supply Voltage (V)
Temperature (°C)
VBIAS Supply Voltage (V)
0
100
200
300
400
500
-50 -25 0 25 50 75 100 125
Turn -On Delay Time (n s)
Max.
T
y
p.
0
100
200
300
400
500
10 12 14 16 18 20
Turn-On Delay Time (ns)
Max.
Typ.
0
100
200
300
400
500
-50 -25 0 25 50 75 100 125
Max.
Typ.
Turn-Off Delay Time (ns)
0
100
200
300
400
500
10 12 14 16 18 20
Max.
Typ.
Turn-Off Delay Time (ns)
0
100
200
300
400
500
02468101214161820
Inp ut Voltage (V)
Figure 6C. T urn-On Time vs. Input V oltage
Figure 7C. T urn-Off Time vs. Input V oltage
0
100
200
300
400
500
0 2 4 6 8 101214161820
Turn-Off Delay Time (ns
Input Vol t age (V)
Max.
Typ.
Turn-On Delay Time (ns)
IRS2101(S)PbF
www.irf.com 8
0
1
2
3
4
5
6
7
8
10 12 14 16 18 20
VBIAS Supply Voltage (V)
Input Voltage (V)
0
1
2
3
4
5
6
7
8
-50 -25 0 25 50 75 100 125
Temperature (oC)
Input Voltage (V)
Figure 10A. T urn-Off Fall Time vs. Temperature
Temperature (°C)
VBIAS Supply Voltage (V)
Figure 10B. Turn-Off Fall Time vs. V oltage
Figure 12A. Logic "1" Input V oltage
vs. Temperature Figure 12B. Logic "1" Input V oltage
vs. V oltage
Turn-Off Fall Time (ns)
Turn-Off Fall Time (ns)
Figure 9A. T urn-On Rise Time vs. T emperature Figure 9B. T urn-On Rise Time vs. V oltage
Temperature (°C)
VBIAS Supply Voltage (V)
Turn-On Rise Time (ns)
Turn-On Rise Time (ns)
Min. Min.
0
50
100
150
200
-50 -25 0 25 50 75 100 125
Max.
Typ.
0
100
200
300
400
500
-50 -25 0 25 50 75 100 125
Max.
Typ. 0
100
200
300
400
500
10 12 14 16 18 20
Max.
Typ.
0
50
100
150
200
10 12 14 16 18 20
Max.
Typ.
IRS2101(S)PbF
www.irf.com 9
Vcc Supply Voltage (V)
Figure 14A. High Level Output Voltage
vs. Temperature
Figure 14B. High Level Output
vs. Supply Voltage
Figure 15A. Low Level Output Voltage
vs. Temperature
Figure 15B. Low level Output
vs.Supply Voltage
Temperature C)
0.0
0.1
0.2
0.3
0.4
0.5
10 12 14 16 18 20
VBAIS Supply Voltage (V)
High Level Output Voltage (V)
0.0
0.1
0.2
0.3
0.4
0.5
-50 -25 0 25 50 75 100 125
Temperature ( oC)
High Level Output Voltage (V)
0.0
0.1
0.2
0.3
0.4
0.5
-50 -25 0 25 50 75 100 125
Temperature (oC)
Low Level Output Voltage (V)
0
0.1
0.2
0.3
0.4
0.5
10 12 14 16 18 20
VBIAS Supply Voltage (V)
Low Level Output Voltage (V)
Max.
Typ.
Max.
Typ.
Max.
Typ.
Max.
Typ.
Max
0
1
2
3
4
5
6
-50 -25 0 25 50 75 100 125
Temperature (°C)
Temperature (°C)
Figure 13A. Logic "0" Input Bias Current
vs. Temperature
Max
0
1
2
3
4
5
6
10 12 14 16 18 20
Logic "0" Input Bias Current (µA)
Supply Voltage (V)
Figure 13B. Logic "0" Input Bias Current
vs. Voltage
IRS2101(S)PbF
www.irf.com 10
Figure 17A. VBS Supply Current
vs. Temperature Figure 17B. VBS Supply Current
vs. V oltage
VBS Floating Supply Voltage (V)
Figure 18A. Vcc Supply Current
vs. Temperature
Vcc Supply Current (µA)
Temperature (°C)
Temperature (°C)
Vcc Supply Current (µA)
Figure 18B. Vcc Supply Current
vs. V oltage
Vcc Supply Voltage (V)
VBS Supply Current (µA)
0
100
200
300
400
500
600
700
-50-250 255075100125
Max.
Typ.
0
100
200
300
400
500
600
700
10 12 14 16 18 20
Max.
Typ.
0
30
60
90
120
150
10 12 14 16 18 20
Max.
Typ.
VBS Supply Current (µA)
0
30
60
90
120
150
-50 -25 0 25 50 75 100 125
Max.
Typ.
Figure 16A. Offset Supply Current
vs. Temperature
Offset Supply Leakage Current (µA)
(µA)
0
100
200
300
400
500
0 100 200 300 400 500 600
Max.
Figure 16B. Offset Supply Current
vs. V oltage
VB Boost Voltage (V)
Offset Supply Leakage Current (µA)
Temperature (°C)
0
100
200
300
400
500
-50 -25 0 25 50 75 100 125
Max.
IRS2101(S)PbF
www.irf.com 11
Logic “0” Input Current (µA)
Figure 20A. Logic "0" Input Current
vs. Temperature
Temperature (°C)
Vcc Supply Voltage (V)
Figure 20B. Logic "0" Input Current
vs. V oltage
0
1
2
3
4
5
10 12 14 16 18 20
Max.
VCC UVLO Threshold +(V)
Figure 21A. Vcc Undervoltage Threshold(+)
vs. Temperature
Temperature (°C)
Figure 21B. Vcc Undervoltage Threshold(-)
vs. Temperature
VCC UVLO Threshold - (V)
6
7
8
9
10
11
-50 -25 0 25 50 75 100 125
Max.
Min.
Typ.
6
7
8
9
10
11
-50-25 0 25 50 75100125
Max.
Min.
Typ.
Temperature (°C)
0
1
2
3
4
5
-50 -25 0 25 50 75 100 125
Max.
Figure 19A. Logic"1" Input Current
vs. Temperature
Temperature (°C)
Logic 1” Input Current (µA)
Logic 1” Input Current (µA)
Figure 19B. Logic"1" Input Current
vs. V oltage
0
5
10
15
20
25
30
-50 -25 0 25 50 75 100 125
Max.
Typ.
0
5
10
15
20
25
30
10 12 14 16 18 20
Max.
Typ.
Vcc Supply Voltage (V)
Logic “0” Input Current (µA)
IRS2101(S)PbF
www.irf.com 12
Output Sink Current (mA)
Temperature (°C)
Figure 23A. Output Sink Current
vs. Temperature Figure 23B. Output Sink Current
vs. Supply V oltage
Output Sink Current (mA)
VBIAS Supply Voltage (V)
Output Source Current (mA)
Figure 22A. Output Source Current
vs. Temperature
Temperature (°C)
Figure 22B. Output Source Current
vs. Supply V oltage
Output Source Current (mA)
0
100
200
300
400
500
-50-25 0 25 50 75100125
Tem
p
erature
(
oC
)
0
100
200
300
400
500
10 12 14 16 18 20
S()
( )
VBIAS Supply Voltage (V)
0
200
400
600
800
1000
-50-250 255075100125 0
200
400
600
800
1000
10 12 14 16 18 20
Min.
Typ.
Min.
Typ.
Min.
Typ.
Min.
Typ.
IRS2101(S)PbF
www.irf.com 13
01-6014
01-3003 01 (MS-001AB)
8 Lead PDIP
Case Outlines
01-6027
01-0021 11 (MS-012AA)
8 Lead SOIC
87
5
65
D B
E
A
e
6X
H
0. 25 [.010] A
6
4312
4 . OUT LINE CONFORMS TO JEDE C OUTLINE MS- 012AA.
NOTES:
1. DI MENSI ONING & TOLERANCING PER ASME Y14.5M-1994.
2 . CONT ROLL ING DIMENSION: MIL LIMET ER
3 . D IMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
7
K x 4 5 °
8X L 8X c
y
FOOTPRINT
8X 0.72 [ . 02 8]
6. 46 [ . 2 55]
3X 1.27 [ . 05 0] 8X 1.78 [ . 07 0]
5 D IMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.
6 D IMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.
MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010].
7 D IMENSION IS THE L ENGT H OF L EAD FOR SOLDER ING TO
A SUBSTRATE.
MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006].
0. 25 [.010] CAB
e1 A
A1
8X b
C
0. 10 [.004]
e1
D
E
y
b
A
A1
H
K
L
.189
.1497
.013
.050 BASI C
.0532
.0040
.2284
.0099
.016
.1968
.1574
.020
.0688
.0098
.2440
.0196
.050
4.80
3.80
0.33
1.35
0.10
5.80
0.25
0.40
1.27 BASI C
5.00
4.00
0.51
1.75
0.25
6.20
0.50
1.27
MIN MAX MILLIMETERSINC H ES MIN MAX
DIM
e
c .0075 .0098 0.19 0.25
.025 BASI C 0.635 BASI C
IRS2101(S)PbF
www.irf.com 14
CARRIER TAPE DIMENSION FOR 8SOICN
Code Min Max Min Max
A 7.90 8.10 0.311 0.318
B 3.90 4.10 0.153 0.161
C 11.70 12.30 0.46 0.484
D 5.45 5.55 0.214 0.218
E 6.30 6.50 0.248 0.255
F 5.10 5.30 0.200 0.208
G 1.50 n/a 0.059 n/a
H 1.50 1.60 0.059 0.062
Metric Imperial
REEL DIMENSIONS FOR 8SOICN
Code Min Max Min Max
A 329.60 330.25 12.976 13.001
B 20.95 21.45 0.824 0.844
C 12.80 13.20 0.503 0.519
D 1.95 2.45 0.767 0.096
E 98.00 102.00 3.858 4.015
F n/a 18.40 n/a 0.724
G 14.50 17.10 0.570 0.673
H 12.40 14.40 0.488 0.566
Metric Imperial
E
F
A
C
D
G
A
BH
N
OT E : CONTROLLING
D
IMENSION IN MM
LOADED TAPE FEED DIRECTION
A
H
F
E
G
D
B
C
Tape & Reel
8-lead SOIC
IRS2101(S)PbF
www.irf.com 15
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105
ORDER INFORMATION
8-Lead PDIP IRS2101PbF
8-Lead SOIC IRS2101SPbF
8-Lead SOIC Tape & Reel IRS2101STRPbF
LEADFREE PART MARKING INFORMATION
Lead Free Released
Non-Lead Free
Released
Part number
Date code
IRxxxxxx
YWW?
?XXXX
Pin 1
Identifier
IR logo
Lot Code
(Prod mode - 4 digit SPN code)
Assembly site code
Per SCOP 200-002
P
?MARKING CODE
S
The SOIC-8 is MSL2 qualified.
This product has been designed and qualified for the industrial level.
Qualification standards can be found at www.irf.com
Data and specifications subject to change without notice. 11/27/2006