MT9V137: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
Features
MT9V137 DS- Rev. E Pub. 4/15 EN 1©Semiconductor Components Industries, LLC,2015
1/4-Inch Color CMOS NTSC/PAL Digital Image SOC
with Overlay Processor
MT9V137 Datasheet, Rev. E
For the latest datasheet, please visit www.onsemi.com
Features
Low-power CMOS image sensor with integrated
image flow processor (IFP) and video encoder
1/4-inch optical format, VGA resolution (640H x
480V)
±2.5% additional columns and rows to compensate
for lens alignment tolerances
Overlay generator for dynamic bitmap overlay
Integrated video encoder for NTSC/PAL with overlay
capability and 10-bit I-DAC
Integrated microcontroller for flexibility
On-chip image flow processor performs
sophisticated processing, such as color recovery and
correction, sharpening, gamma, lens shading
correction, on-the-fly defect correction, auto white
balancing, and auto exposure
Auto black level calibration
10-bit, on-chip analog-to-digital converter (ADC)
Internal master clock generated by on-chip phase-
locked loop (PLL)
Two-wire serial programming interface
Interface to low-cost Flash through SPI bus
High-level host command interface
Stand alone operation support
Comprehensive tool support for overlay generation
and lens correction setup
Development system with DevWare
Overlay generation and compilation tools
Applications
Analog surveillance CCTV
Surveillance network IP camera
Key parameters are continued on next page.
See details of new features on page 3.
See “Ordering Information” on page 4.
Table 1: Key Parameters
Parameter Typical Value
Pixel size
and type
5.6 m x 5.6 m active pinned-
photodiode with high-sensitivity mode
for low-light conditions
Sensor format 680H x 512V (includes ±2.5% of rows
and columns for lens alignment)
NTSC output 720H x 480V
PAL output 720H x 576V
Imaging area Total array size: 3.584 mm x 2.688 mm
Optical format ¼-inch
Frame rate 50/60 fields/sec
Sensor scan mode Progressive scan
Color filter array RGB standard Bayer
Shutter type Electronic rolling shutter (ERS)
Automatic
Functions
Exposure, white balance, black level
offset correction, flicker avoidance,
color saturation control, on-the-fly
defect correction, aperture correction
Programmable
Controls
Exposure, white balance, horizontal
and vertical blanking, color, sharpness,
gamma correction, lens shading
correction, horizontal and vertical
image flip, zoom, windowing, sampling
rates, GPIO control
MT9V137 DS- Rev. E Pub. 4/15 EN 2©Semiconductor Components Industries, LLC,2015.
MT9V137: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
Applications
Notes: 1. Graphical overlay is available only in CCIR656 output format.
2. Analog output enabled; parallel output disabled.
Table 2: Key Parameters (continued)
Parameter Typical Value
Overlay Support1
Utilizes SPI interface to load overlay data from external flash/EEPROM memory with the
following features:
•Overlay Size 360 x 480 pixel rendered into 720 x 480 pixel display format
•Up to four (4) overlays may be blended simultaneously
•Selectable readout: Rotating order user selected
•Dynamic scenes by loading pre-rendered frames from external memory
•Palette of 32 colors out of 64,000
•8 colors per bitmap
•Blend factor dynamically programmable for smooth transitions
•Fast Update rate of up to 30 fps
•Every bitmap object has independent x/y position
•Statistic Engine to calibrate optical alignment
•Number Generator
Windowing Programmable to any size
Max analog gain 0.5–16x
ADC 10-bit, on-chip
Output interface Analog composite video out, single-ended or differential; 8-, 10-bit parallel digital
output
Output data formats1Digital: Raw Bayer 8-,10-bit, CCIR656, 565RGB, 555RGB, 444RGB
Data rate
Parallel: 27 MB/s
NTSC: 60 fields/sec
PAL: 50 fields/sec
Control interface
Two-wire I/F for register interface plus high-level command exchange. SPI port to
interface to external memory to load overlay data, register settings, or firmware
extensions.
Input clock for PLL 27 MHz
SPI Clock Frequencies 4.5 - 9.0 - 18 MHz, programmable
Supply voltage
Analog: 2.8 V ±5%
Core: 1.8 V ±5%
IO: 2.8V ±5%
Power consumption Full resolution at 60 fps: <350mW2
Package 48-pin Ceramic LCC, 11.43mm x 11.43mm, 0.8mm pitch
Ambient temperature
Operating: –30°C to 70°C
Storage: –50°C to +150°C
Dark Current < 200e/s at 60°C with a gain of 1
Fixed pattern noise Column < 2%
Row < 2%
Responsivity 11.9 V/lux-s at 550nm
Signal to noise ratio (S/N) 45 dB
Pixel dynamic range 74.6 dB
MT9V137 DS- Rev. E Pub. 4/15 EN 3©Semiconductor Components Industries, LLC,2015.
MT9V137: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
New Features
New Features
Integrated Video Encoder for PAL/NTSC with Overlay Capability
Composite analog output (NTSC/PAL)
8-bit parallel digital output ITU-R BT.656 format
Raw Bayer format
On-Chip Overlay Generator
Static and dynamic overlay graphics with four overlay planes plus number plane
Support for serial SPI memory up to 16 megabytes
•Number generator
Overlay blending and x/y positioning
Overlay position adjustment and statistics engine to calibrate overlay
Overlay support utilizes SPI interface to load overlay data from external
Serial Flash/EEPROM to support the following features:
Overlay size 360 x 480 pixel rendered into 720 x 480 pixel display format
Up to four overlays may be blended simultaneously
Selectable readout: rotating order user selected
Dynamic scenes by loading pre-rendered frames from external memory
Palette of 32 colors out of 64,000
Eight colors per bitmap
Blend factor dynamically programmable for smooth transitions
Fast update rate of up to 30 fps
Every bitmap object has independent x/y position
Statistics engine to calibrate optical alignment
MT9V137 DS- Rev. E Pub. 4/15 EN 4©Semiconductor Components Industries, LLC,2015.
MT9V137: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
Ordering Information
Ordering Information
Table 3: Available Part Numbers
Part Number Product Description Orderable Product Attribute Description
MT9V137C12STC-DP VGA 1/4" SOC Dry Pack with Protective Film
MT9V137C12STC-DR VGA 1/4" CIS SOC Dry Pack without Protective Film
MT9V137 DS- Rev. E Pub. 4/15 EN 5©Semiconductor Components Industries, LLC,2015.
MT9V137: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
Table of Contents
Table of Contents
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
New Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
Ordering Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
System Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
Pin Descriptions and Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
SOC Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
Sensor Pixel Array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
Usage Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
External Overlay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
Multicamera Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
External Signal Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
Slave Two-Wire Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44
Integrated Lens Distortion Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49
Overlay Capability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
Serial Memory Partition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54
Overlay Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
Overlay Character Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
Modes and Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
Electrical Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76
Spectral Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86
Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88
MT9V137 DS- Rev. E Pub. 4/15 EN 6©Semiconductor Components Industries, LLC,2015.
MT9V137: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
List of Figures
List of Figures
Figure 1: Internal Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Figure 2: System Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
Figure 3: Using a Crystal Instead of an External Oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
Figure 4: Sensor Core Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
Figure 5: Pixel Array Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
Figure 6: Image Capture Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
Figure 7: Sensor Pixel Array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
Figure 8: Pixel Color Pattern Detail (top right corner) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
Figure 9: Spatial Illustration of Image Readout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
Figure 10: Color Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
Figure 11: Color Bar Test Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
Figure 12: Color Bars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
Figure 13: Gamma Correction Curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
Figure 14: Auto-Config Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
Figure 15: Flash Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
Figure 16: Usage Mode 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
Figure 17: Host Mode with Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
Figure 18: Host Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
Figure 19: External Overlay System Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
Figure 20: Multicamera System Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
Figure 21: External Signal Processing Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
Figure 22: Power-Up Sequence – Configuration Options Flow Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
Figure 23: Interface Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
Figure 24: Single READ from Random Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46
Figure 25: Single Read from Current Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46
Figure 26: Sequential READ, Start from Random Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47
Figure 27: Sequential READ, Start from Current Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47
Figure 28: Single WRITE to Random Location. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47
Figure 29: Sequential WRITE, Start at Random Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48
Figure 30: Barrel Distortion Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49
Figure 31: Vertical Perspective Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51
Figure 32: Conversion Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52
Figure 33: Overlay Data Flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
Figure 34: Memory Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54
Figure 35: Overlay Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
Figure 36: Internal Block Diagram Overlay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
Figure 37: Example of Character Descriptor 0 Stored in ROM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
Figure 38: Full Character Set for Overlay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
Figure 39: Single-Ended Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
Figure 40: Differential Connection—Grounded Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
Figure 41: CCIR656 8-Bit Parallel Interface Format for 525/60 (625/50) Video Systems . . . . . . . . . . . . . . . . . . . .61
Figure 42: Typical CCIR656 Vertical Blanking Intervals for 525/60 Video System. . . . . . . . . . . . . . . . . . . . . . . . . .62
Figure 43: Typical CCIR656 Vertical Blanking Intervals for 625/50 Video System. . . . . . . . . . . . . . . . . . . . . . . . . .63
Figure 44: Parallel Input Data Timing Waveform Using DIN_CLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64
Figure 45: Primary Clock Relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65
Figure 46: Typical I/O Equivalent Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67
Figure 47: NTSC Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68
Figure 48: Serial Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68
Figure 49: Digital Output I/O Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69
Figure 50: Slew Rate Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70
Figure 51: Configuration Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71
Figure 52: Power Up Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72
Figure 53: Power Down Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73
Figure 54: FRAME_SYNC to FRAME_VALID/LINE_VALID. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73
Figure 55: Reset to SPI Access Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74
Figure 56: Reset to Serial Access Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74
MT9V137 DS- Rev. E Pub. 4/15 EN 7©Semiconductor Components Industries, LLC,2015.
MT9V137: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
List of Figures
Figure 57: Reset to AE/AWB Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74
Figure 58: SPI Output Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76
Figure 59: Video Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82
Figure 60: Equivalent Pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83
Figure 61: V Pulse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84
Figure 62: Two-Wire Serial Bus Timing Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85
Figure 63: Quantum Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86
Figure 64: 63-Ball iBGA Package Outline Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87
MT9V137 DS- Rev. E Pub. 4/15 EN 8©Semiconductor Components Industries, LLC,2015.
MT9V137: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
List of Tables
List of Tables
Table 1: Key Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
Table 2: Key Parameters (continued). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
Table 3: Available Part Numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
Table 4: Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
Table 5: Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
Table 6: Reset/Default State of Interfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
Table 7: EIA Color Bars (NTSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
Table 8: EBU Color Bars (PAL). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
Table 9: NTSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
Table 10: PAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
Table 11: YCbCr Output Data Ordering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
Table 12: RGB Ordering in Default Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
Table 13: 2-Byte Bayer Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
Table 14: SPI Flash Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
Table 15: SPI Commands Supported . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
Table 16: GPIO Bit Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
Table 17: System Manager Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40
Table 18: Overlay Host Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40
Table 19: Dewarp Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41
Table 20: GPIO Host Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41
Table 21: Flash Manager Host Commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41
Table 22: Sequencer Host Commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42
Table 23: TX Manager Host Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43
Table 24: Two-Wire Interface ID Address Switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44
Table 25: Lens Correction Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49
Table 26: Transfer Time Estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54
Table 27: Character Generator Details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
Table 28: Field, Vertical Blanking, EAV, and SAV States 525/60 Video System . . . . . . . . . . . . . . . . . . . . . . . . . . . .62
Table 29: Field, Vertical Blanking, EAV, and SAV States for 625/50 Video System . . . . . . . . . . . . . . . . . . . . . . . . .63
Table 30: Parallel Input Data Timing Values Using DIN_CLK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64
Table 31: Output Data Ordering in DOUT RGB Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66
Table 32: Output Data Ordering in Sensor Stand-Alone Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66
Table 33: Parallel Digital Output I/O Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69
Table 34: Slew Rate for PIXCLK and DOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70
Table 35: Configuration Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71
Table 36: Power Up Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72
Table 37: Power Down Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73
Table 38: FRAME_SYNC to FRAME_VALID/LINE_VALID Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74
Table 39: RESET_BAR Delay Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74
Table 40: SPI Data Setup and Hold Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76
Table 41: Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77
Table 42: Electrical Characteristics and Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77
Table 43: Video DAC Electrical Characteristics–Single-Ended Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78
Table 44: Video DAC Electrical Characteristics–Differential Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78
Table 45: Digital I/O Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79
Table 46: Power Consumption – Condition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80
Table 47: Power Consumption – Condition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80
Table 48: NTSC Signal Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81
Table 49: Video Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82
Table 50: Equivalent Pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83
Table 51: V Pulse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84
MT9V137 DS- Rev. E Pub. 4/15 EN 9©Semiconductor Components Industries, LLC,2015.
MT9V137: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
List of Tables
Table 52: Two-Wire Serial Bus Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85
MT9V137 DS- Rev. E Pub. 4/15 EN 10 ©Semiconductor Components Industries, LLC,2015.
MT9V137: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
General Description
General Description
The ON Semiconductor MT9V137 is a VGA-format, single-chip CMOS active-pixel
digital image sensor for surveillance applications. It captures high-quality color images
at VGA resolution and outputs NTSC or PAL interlaced composite video.
The VGA CMOS image sensor features ON Semiconductors breakthrough low-noise
CMOS imaging technology that achieves near-CCD image quality (based on signal-to-
noise ratio and low-light sensitivity) while maintaining the inherent size, cost, low
power, and integration advantages of ON Semiconductor's advanced active pixel CMOS
process technology.
The MT9V137 is a complete camera-on-a-chip. It incorporates sophisticated camera
functions on-chip and is programmable through a simple two-wire serial interface or by
an attached SPI Flash memory that contains setup information that may be loaded auto-
matically at startup.
The MT9V137 performs sophisticated processing functions including color recovery,
color correction, sharpening, programmable gamma correction, auto black reference
clamping, auto exposure, 50Hz/60Hz flicker avoidance, lens shading correction, auto
white balance (AWB), and on-the-fly defect identification and correction.
The MT9V137 outputs interlaced-scan images at 30 or 25 fps, supporting both NTSC and
PAL video formats. The image data can be output on one or two output ports:
Composite analog video (single-ended and differential output support)
Parallel 8-, 10-bit digital
MT9V137: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
Architecture
MT9V137 DS- Rev. E Pub. 4/15 EN 11 ©Semiconductor Components Industries, LLC,2015.
Architecture
Internal Block Diagram
Figure 1: Internal Block Diagram
Note: The active array is smaller than the sensor array.
Image Flow Processor
Color & Gamma Correction
Color Space Conversion
Edge Enhancement
Camera Control
AW B
AE
Overlay
Graphics
Generation
¼” VGA ROI
@ 60 Frames/s
640 x 480 Active Array
VideoEncoder
DAC
SPI & 2W I/F
Interface
SPI
4 2
8
10
NTSC/
PAL
BT-656
2.8V 1. 8V
Two-Wire I/F
Lens Shading
Correction
MT9V137 DS- Rev. E Pub. 4/15 EN 12 ©Semiconductor Components Industries, LLC,2015.
MT9V137: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
System Block Diagram
System Block Diagram
The system block diagram will depend on the application. The system block diagram in
Figure 2 shows all components; optional peripheral components are highlighted. The
optional microcontroller controls the MT9V137 sensor using the two-wire serial bus.
Optional components will vary by application. For further details, see the MT9V137
Register and Variable Reference.
Figure 2: System Block Diagram
SPI Serial Data
Flash
10Kb - 16 MB
LP Filter
27
MHz
DAC _POS
μC 2WIRE I/F
Composite
Video
PAL /NTSC
VAA (2.8V )
VAA_PIX (2.8V)
VDD (1.8V)
EXTCLK
4.7 kΩ
DAC_REF
2.8V
DAC _NEG
LDO
VDD_IO (2.8V)
CCIR 656/
GPO
Optional
XTAL
75Ω
VDD_PLL (2.8V)
VDD_DAC (2.8V)
RESET_BAR
PIXCLK
FRAME _VALID
LINE _VALID
DOUT [7:0]
DOUT_LSB0,1
MT9V137: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
System Block Diagram
MT9V137 DS- Rev. E Pub. 4/15 EN 13 ©Semiconductor Components Industries, LLC,2015.
Crystal Usage
As an alternative to using an external oscillator, a fundamental 27 MHz crystal may be
connected between EXTCLK and XTAL. Two small loading capacitors of 15–22pF of NPO
dielectric should be added as shown in Figure 3.
ON Semiconductor does not recommend using the crystal option for surveillance appli-
cations above 85°C. A crystal oscillator with temperature compensation is recom-
mended.
Figure 3: Using a Crystal Instead of an External Oscillator
When using Xtal as the clock source, the internal inverter circuit has a 100K bias resistor
in parallel to Xtal, which can be connected or disconnected by register 0x0014 bit[14].
The clockin_bias_en bit is set to 1 by default.
EXTCLK
XTAL
18pF
-
NPO
27.000 MHz
Sensor
18
pF
-
NPO
MT9V137 DS- Rev. E Pub. 4/15 EN 14 ©Semiconductor Components Industries, LLC,2015.
MT9V137: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
Pin Descriptions and Assignments
Pin Descriptions and Assignments
Table 1: Pin Descriptions
Pin Number Pin Name Type Description
Clock and Reset
9 EXTCLK Input Master input clock (27MHz): This either can be a square-wave generated from
an oscillator (in which case the XTAL input must be left unconnected) or
connected directly to a crystal.
10 XTAL Output If EXTCLK is connected to one pin of a crystal, this signal is connected to the
other pin; otherwise this signal must be left unconnected.
12 RESET_BAR Input Asynchronous active-low reset: When asserted, the device will return all
interfaces to their reset state. When released, the device will initiate the boot
sequence.
Register Interface
17 SCLK Input These two signals implement serial communications protocol for access to
the internal register set and memory.
18 SDATA Input/OD
16 SADDR Input This signal controls the device ID that will respond to serial communication
commands.
Two-wire serial interface device ID selection:
0: 0x90
1: 0xBA
SPI Interface
22 SPI_SCLK Output Clock output for interfacing to an external SPI memory such as Flash/
EEPROM. Tristated when RESET_BAR is asserted.
21 SPI_SDI Input Data in from SPI device. This signal has an internal pull-up resistor.
20 SPI_SDO Output Data out to SPI device. Tristated when RESET_BAR is asserted.
19 SPI_CS_N Output Chip selects to SPI device. Tristated when RESET_BAR is asserted.
(Parallel) Pixel Data Output
32 FRAME_VALID Input/Output Pixel data from the MT9V137 can be routed out on this interface and
processed externally.
To save power, these signals are driven to a constant logic level unless the
parallel pixel data output or alternate (GPIO) function is enabled for these
pins.
This interface is disabled by default.
The slew rate of these outputs is programmable.
These signals can also be used as general purpose input/outputs.
31 LINE_VALID Input/Output
33 PIXCLK Output
39, 40, 41,
42, 43, 44,
45, 46
DOUT[7:0] Output
38 DOUT_LSB1 Input/Output When the sensor core is running in bypass mode, it will generate 10 bits of
output data per pixel. These two pins make the two LSB of pixel data
available externally. Leave DOUT_LSB1 unconnected if not used. To save
power, these signals are driven to a constant logic level unless the sensor core
is running in bypass mode or the alternate function is enabled for these pins.
The slew rate of these outputs is programmable. For analog output, the
DOUT_LSB0 cannot be left unconnected, and must be strapped to select either
NTSC or PAL mode. For more information, see Table 14, “GPIO Bit
Descriptions,” on page 40.
37 DOUT_LSB0 Input/Output
Composite Video Output
MT9V137: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
Pin Descriptions and Assignments
MT9V137 DS- Rev. E Pub. 4/15 EN 15 ©Semiconductor Components Industries, LLC,2015.
6 DAC_POS Output Positive video DAC output in differential mode.
Video DAC output in single-ended mode.
This interface is enabled by default using NTSC/PAL signalling. For
applications where composite video output is not required, the video DAC can
be placed in a power-down state under software control.
4 DAC_NEG Output Negative video DAC output in differential mode. Connect to AGND in single-
ended mode.
2 DAC_REF Output External reference resistor for the video DAC.
Manufacturing Test Interface
27 TDI Input JTAG Test pin (Reserved for Test Mode)
26 TDO Output JTAG Test pin (Reserved for Test Mode)
25 TMS Input JTAG Test pin (Reserved for Test Mode)
24 TCK Input JTAG Test pin (Reserved for Test Mode)
23 TRST_N Input Connect to GND
Power
8, 14, 35, 48 DGND Supply Digital ground.
3 GND_DAC Supply Video DAC GND
1, 7, 15, 34 VDD Supply Supply for VDD core: 1.8V nominal.
13, 36, 47 VDD_IO Supply Supply for digital IOs: 2.8V nominal.
5V
DD_DAC Supply Supply for video DAC: 2.8V nominal.
11 VDD_PLL Supply Supply for PLL: 2.8V nominal.
29 AGND Supply Analog ground.
28 VAA Supply Analog power: 2.8V nominal.
30 VAA_PIX Supply Analog pixel array power: 2.8V nominal. Must be at same voltage potential as
VAA.
Table 1: Pin Descriptions (continued)
Pin Number Pin Name Type Description
MT9V137 DS- Rev. E Pub. 4/15 EN 16 ©Semiconductor Components Industries, LLC,2015.
MT9V137: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
Pin Descriptions and Assignments
Pin Assignments
Figure 4: Pin Assignments
Table 2: Reset/Default State of Interfaces
Name Reset State Default State Notes
EXTCLK Clock running or stopped Clock running Input
XTAL N/A N/A Input
RESET_BAR Asserted De-asserted Input
SCLK N/A N/A Input. Must always be driven to a valid logic
level.
SDATA High impedance High impedance Input/Output. A valid logic level should be
established by pull-up resistor.
SADDR N/A N/A Input. Must always be driven to a valid logic
level. Must be permanently tied to VDD_IO or
GND.
SPI_SCLK High impedance. Driven, logic 0 Output. Output enable is R0x0032[9].
SPI_SDI Internal pull-up enabled. Internal pull-up enabled Input. Internal pull-up is permanently
enabled.
SPI_SDO High impedance Driven, logic 0 Output enable is R0x0032[9].
SPI_CS_N High impedance Driven, logic 1 Output enable is R0x0032[9].
123456 48474645
44 43
19 20 21 22 23 24 25 26 27 28 29 30
7
8
9
10
11
12
13
14
15
16
17
18
42
41
40
39
38
37
36
35
34
33
32
31
VDD
GND
EXTCLK
XTAL
V
DD
_PLL
RESET_BAR
VDD_IO
GND
VDD
SADDR
SCLK
SDATA
DOUT4
DOUT5
DOUT6
DOUT7
DOUT_LSB1
DOUT_LSB0
V
DD
IO
GND
V
DD
PIXCLK
FRAME_VALID
LINE_VALID
SPI_CS_N
SPI_SD0
SPI_SDI
SPI_CLK
TRST_N
TCK
TMS
TDO
TDI
VAA
AGND
V
AA
_PIX
DAC_POS
VDD_DAC
DAC_NEG
GND_DAC
DAC_REF
VDD
GND
VDD-IO
DOUT0
DOUT1
DOUT2
DOUT3
MT9V137: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
Pin Descriptions and Assignments
MT9V137 DS- Rev. E Pub. 4/15 EN 17 ©Semiconductor Components Industries, LLC,2015.
Notes: 1. The reason for defining the default state as logic 0 rather than high impedance is this: when wired
in a system (for example, on our demo boards), these outputs will be connected, and the inputs to
which they are connected will want to see a valid logic level. No current drain should result from
driving these to a valid logic level (unless there is a pull-up at the system level).
2. These pads have their input circuitry powered down, but they are not output-enabled. Therefore,
they can be left floating but they will not drive a valid logic level to an attached device.
FRAME_VALID High impedance High impedance Input/Output. This interface disabled by
default. Input buffers (used for GPIO function)
powered down by default, so these pins can
be left unconnected (floating). After reset,
these pins are powered up, sampled, then
powered down again as part of the auto-
configuration mechanism. See Note 2.
LINE_VALID
PIXCLK High impedance Driven, logic 0
Output. This interface disabled by default.
See Note 1.
DOUT7
DOUT6
DOUT5
DOUT4
DOUT3
DOUT2
DOUT1
DOUT0
DOUT_LSB1 High impedance High impedance Input/Output. This interface disabled by
default. Input buffers (used for GPIO function)
powered down by default, so these pins can
be left unconnected (floating). After reset,
these pins are powered-up, sampled, then
powered down again as part of the auto-
configuration mechanism. For analog output,
the DOUT_LSB0 cannot be left unconnected,
and must be strapped to select either NTSC or
PAL mode
DOUT_LSB0 High impedance Driven, logic 0
DAC_POS High impedance Driven Output. Interface disabled by hardware reset
and enabled by default when the device starts
streaming.
DAC_NEG
DAC_REF
TDI Internal pull-up enabled Internal pull-up enabled Input. Internal pull-up means that this pin can
be left unconnected (floating).
TDO High impedance High impedance Output. Driven only during appropriate parts
of the JTAG shifter sequence.
TMS Internal pull-up enabled Internal pull-up enabled Input. Internal pull-up means that this pin can
be left unconnected (floating).
TCK Internal pull-up enabled Internal pull-up enabled Input. Internal pull-up means that this pin can
be left unconnected (floating).
TRST_N N/A N/A Input. Must always be driven to a valid logic
level. Must be driven to GND for normal
operation.
Table 2: Reset/Default State of Interfaces (continued)
Name Reset State Default State Notes
MT9V137 DS- Rev. E Pub. 4/15 EN 18 ©Semiconductor Components Industries, LLC,2015.
MT9V137: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
SOC Description
SOC Description
Detailed Architecture Overview
Sensor Core
The sensor consists of a pixel array, an analog readout chain, a 10-bit ADC with programmable
gain and black offset, and timing and control as illustrated in Figure 4.
Figure 5: Sensor Core Block Diagram
Pixel Array Structure
The sensor core pixel array is configured as 744 columns by 512 rows, as shown in
Figure 5. This includes black rows and columns.
Figure 6: Pixel Array Description
The black row data are used internally for the automatic black level adjustment.
However, these black rows can also be read out by setting the sensor to raw data output
mode.
There are 744 columns by 512 rows of optically-active pixels that include a pixel
boundary around the VGA (640 x 480) image to avoid boundary effects during color
interpolation and correction.
Communication
Bus
to IFP
10-Bit Data
to IFP
Sync
Signals
Clock
Control Register
Analog Processing
Active Pixel
Sensor (APS)
Array Timing and Control
ADC
active border rows
black row
black rows
black columns
black columns
active border rows
active border columns
active border columns
Active pixel array
640 x 480
(not to scale)
Pixel logical address = (743, 511)
Pixel logical address = (0, 0)
MT9V137: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
SOC Description
MT9V137 DS- Rev. E Pub. 4/15 EN 19 ©Semiconductor Components Industries, LLC,2015.
The one additional active column and two additional active rows are used to enable
horizontally and vertically mirrored readout to start on the same color pixel.
Figure 6 illustrates the process of capturing the image. The original scene is flipped and
mirrored by the sensor optics. Sensor readout starts at the lower right corner. The image
is presented in true orientation by the output display.
Figure 7: Image Capture Example
SCENE
(Front view)
OPTICS
IMAGE CAPTURE
IMAGE RENDERING
Start Readout
Row by Row
IMAGE SENSOR
(Rear view)
Start Rasterization
Process of Image Gathering and Image Display
DISPLAY
(Front view)
MT9V137 DS- Rev. E Pub. 4/15 EN 20 ©Semiconductor Components Industries, LLC,2015.
MT9V137: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
Sensor Pixel Array
Sensor Pixel Array
The active pixel array is 640 x 480 pixels. In addition, there are rows and columns for lens
alignment and demosaic.
Not shown in Figure 7 are pixels for black level calibration.
Figure 8: Sensor Pixel Array
The range of adjustment is from Row 0 to 22 and Column 0 to 30. There are 4 rows/
columns needed to calculate the RGB values. The window should be moved only at even
numbers.
Figure 9: Pixel Color Pattern Detail (top right corner)
Lens Alignment Pixels - 16 Columns
Lens Alignment Pixels - 12 Rows
Lens Alignment Pixels - 12 Rows
Lens Alignment Pixels - 16 Columns
Demosaic Pixels - 4 Columns
Demosaic Pixels - 4 Columns
Demosaic Pixels - 4 Rows
Demosaic Pixels - 4 Rows
Active Pixels
640 Rows, 480 Columns
Black Pixels
Column Readout Direction
.
.
.
...
Row
Readout
Direction
R
G
R
G
B
G
First Active
Border
Pixel
(64, 0)
R
G
R
G
B
G
R
G
R
G
B
G
G
B
G
G
R
G
B
G
B
G
R
G
B
G
B
G
R
G
B
G
B
B
G
B
MT9V137: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
Sensor Pixel Array
MT9V137 DS- Rev. E Pub. 4/15 EN 21 ©Semiconductor Components Industries, LLC,2015.
Output Data Format
The sensor core image data are read out in progressive scan order. Valid image data are
surrounded by horizontal and vertical blanking, shown in Figure 9.
For NTSC output, the horizontal size is stretched from 640 to 720 pixels. The vertical size
is 243 pixels per field; 240 image pixels and 3 dark pixels that are located at the bottom of
the image field.
For PAL output, the horizontal size is also stretched from 640 to 720 pixels. The vertical
size is 288 pixels per field.
Figure 10: Spatial Illustration of Image Readout
P0,0 P0,1 P0,2.....................................P0,n-1 P0,n
P2,0 P2,1 P2,2.....................................P2,n-1 P2,n
00 00 00 .................. 00 00 00
00 00 00 .................. 00 00 00
Pm-2,0 Pm-2,1.....................................Pm-2,n-1 Pm-2,n
Pm,0 Pm,1.....................................Pm,n-1 Pm,n
00 00 00 .................. 00 00 00
00 00 00 .................. 00 00 00
00 00 00 .................. 00 00 00
00 00 00 .................. 00 00 00
00 00 00 .................. 00 00 00
00 00 00 .................. 00 00 00
00 00 00 ..................................... 00 00 00
00 00 00 ..................................... 00 00 00
00 00 00 ..................................... 00 00 00
00 00 00 ..................................... 00 00 00
Valid Image Odd Field Horizontal
Blanking
Vertical Even Blanking Vertical/Horizontal
Blanking
P1,0 P1,1 P1,2.....................................P1,n-1 P1,n
P3,0 P3,1 P3,2.....................................P3,n-1 P3,n
00 00 00 .................. 00 00 00
00 00 00 .................. 00 00 00
Pm-1,0 Pm-1,1.....................................Pm-1,n-1 Pm-1,n
Pm+1,0 Pm+1,1..................................Pm+1,n-1 Pm+1,n
00 00 00 .................. 00 00 00
00 00 00 .................. 00 00 00
00 00 00 .................. 00 00 00
00 00 00 .................. 00 00 00
00 00 00 .................. 00 00 00
00 00 00 .................. 00 00 00
00 00 00 ..................................... 00 00 00
00 00 00 ..................................... 00 00 00
00 00 00 ..................................... 00 00 00
00 00 00 ..................................... 00 00 00
Valid Image Even Field Horizontal
Blanking
Vertical Odd Blanking Vertical/Horizontal
Blanking
MT9V137 DS- Rev. E Pub. 4/15 EN 22 ©Semiconductor Components Industries, LLC,2015.
MT9V137: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
Sensor Pixel Array
Image Flow Processor
Image and color processing in the MT9V137 are implemented as an image flow
processor (IFP) coded in hardware logic. During normal operation, the embedded
microcontroller will automatically adjust the operation parameters. The IFP is broken
down into different sections, as outlined in Figure 10.
Figure 11: Color Pipeline
MT9V137: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
Sensor Pixel Array
MT9V137 DS- Rev. E Pub. 4/15 EN 23 ©Semiconductor Components Industries, LLC,2015.
Test Patterns
During normal operation of the MT9V137, a stream of raw image data from the sensor
core is continuously fed into the color pipeline. For test purposes, this stream can be
replaced with a fixed image generated by a special test module in the pipeline. The
module provides a selection of test patterns sufficient for basic testing of the pipeline.
Test patterns are accessible by programming a register and are shown in Figure 11. ON
Semiconductor recommends disabling the MCU before enabling test patterns.
Figure 12: Color Bar Test Pattern
Test Pattern Example
Flat Field
Vertical Ramp
Color Bar
Vertical Stripes
Pseudo-Random
MT9V137 DS- Rev. E Pub. 4/15 EN 24 ©Semiconductor Components Industries, LLC,2015.
MT9V137: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
Sensor Pixel Array
NTSC/PAL Test Pattern Generation
There is a built-in standard EIA (NTSC) and EBU (PAL) color bars to support hue and
color saturation characterization. Each pattern consists of seven color bars (white,
yellow, cyan, green, magenta, red, and blue). The Y, Cb and Cr values for each bar are
detailed in Tables 4 and 5.
The test pattern is invoked through a Host Command call to the TX Manager. See the
MT9V137 Host Command Specification.
Figure 13: Color Bars
CCIR-656 Format
The color bar data is encoded in 656 data streams. The duration of the blanking and
active video periods of the generated 656 data are summarized in the following tables.
Table 3: EIA Color Bars (NTSC)
Nominal Range White Yellow Cyan Green Magenta Red Blue
Y 16 to 235 180 162 131 112 84 65 35
Cb 16 to 240 128 44 156 72 184 100 212
Cr 16 to 240 128 142 44 58 198 212 114
Table 4: EBU Color Bars (PAL)
Nominal Range White Yellow Cyan Green Magenta Red Blue
Y 16 to 235 235 162 131 112 84 65 35
Cb 16 to 240 128 44 156 72 184 100 212
Cr 16 to 240 128 142 44 58 198 212 114
Table 5: NTSC
Line Numbers Field Description
1-3 2 Blanking
4-19 1 Blanking
20-263 1 Active video
264-265 1 Blanking
266-282 2 Blanking
283-525 2 Active Video
MT9V137: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
Sensor Pixel Array
MT9V137 DS- Rev. E Pub. 4/15 EN 25 ©Semiconductor Components Industries, LLC,2015.
Black Level Subtraction and Digital Gain
Image stream processing starts with black level subtraction and multiplication of all
pixel values by a programmable digital gain. Both operations can be independently set
to separate values for each color channel (R, Gr, Gb, B). Independent color channel
digital gain can be adjusted with registers. Independent color channel black level adjust-
ments can also be made. If the black level subtraction produces a negative result for a
particular pixel, the value of this pixel is set to 0.
Positional Gain Adjustments (PGA)
Lenses tend to produce images whose brightness is significantly attenuated near the
edges. There are also other factors causing fixed pattern signal gradients in images
captured by image sensors. The cumulative result of all these factors is known as image
shading. The MT9V137 has an embedded shading correction module that can be
programmed to counter the shading effects on each individual R, Gb, Gr, and B color
signal.
The Correction Function
The correction functions can then be applied to each pixel value to equalize the
response across the image as follows:
(EQ 1)
where P are the pixel values and f is the color dependent correction functions for each
color channel.
Color Interpolation
In the raw data stream fed by the sensor core to the IFP, each pixel is represented by a
10-bit integer number, which can be considered proportional to the pixel's response to a
one-color light stimulus, red, green, or blue, depending on the pixel's position under the
color filter array. Initial data processing steps, up to and including the defect correction,
preserve the one-color-per-pixel nature of the data stream, but after the defect correc-
tion it must be converted to a three-colors-per-pixel stream appropriate for standard
color processing. The conversion is done by an edge-sensitive color interpolation
module. The module pads the incomplete color information available for each pixel
with information extracted from an appropriate set of neighboring pixels. The algorithm
used to select this set and extract the information seeks the best compromise between
preserving edges and filtering out high frequency noise in flat field areas. The edge
threshold can be set through register settings.
Table 6: PAL
Line Numbers Field Description
1-22 1 Blanking
23-310 1 Active video
311-312 1 Blanking
313-335 2 Blanking
336-623 2 Active video
624-625 2 Blanking
Pcorrected(row,col)=Psensor(row,col)*f(row,col)
MT9V137 DS- Rev. E Pub. 4/15 EN 26 ©Semiconductor Components Industries, LLC,2015.
MT9V137: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
Sensor Pixel Array
Color Correction and Aperture Correction
To achieve good color fidelity of the IFP output, interpolated RGB values of all pixels are
subjected to color correction. The IFP multiplies each vector of three pixel colors by a
3 x 3 color correction matrix. The three components of the resulting color vector are all
sums of three 10-bit numbers. Since such sums can have up to 12 significant bits, the bit
width of the image data stream is widened to 12 bits per color (36 bits per pixel). The
color correction matrix can be either programmed by the user or automatically selected
by the auto white balance (AWB) algorithm implemented in the IFP. Color correction
should ideally produce output colors that are corrected for the spectral sensitivity and
color crosstalk characteristics of the image sensor. The optimal values of the color
correction matrix elements depend on those sensor characteristics and on the spectrum
of light incident on the sensor. The color correction variables can be adjusted through
register settings.
To increase image sharpness, a programmable 2D aperture correction (sharpening filter)
is applied to color-corrected image data. The gain and threshold for 2D correction can
be defined through register settings.
MT9V137: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
Sensor Pixel Array
MT9V137 DS- Rev. E Pub. 4/15 EN 27 ©Semiconductor Components Industries, LLC,2015.
Gamma Correction
The MT9V137 IFP includes a block for gamma correction that can adjust its shape based
on brightness to enhance the performance under certain lighting conditions. Two
custom gamma correction tables may be uploaded corresponding to a brighter lighting
condition and a darker lighting condition. At power-up, the IFP loads the two tables with
default values. The final gamma correction table used depends on the brightness of the
scene and takes the form of an interpolated version of the two tables.
The gamma correction curve (as shown in Figure 13) is implemented as a piecewise
linear function with 19 knee points, taking 12-bit arguments and mapping them to 8-bit
output. The abscissas of the knee points are fixed at 0, 64, 128, 256, 512, 768, 1024, 1280,
1536, 1792, 2048, 2304, 2560, 2816, 3072, 3328, 3584, 3840, and 4096. The 8-bit ordinates
are programmable through IFP registers.
Figure 14: Gamma Correction Curve
RGB to YUV Conversion
For further processing, the data is converted from RGB color space to YUV color space.
Color Kill
To remove high-or low-light color artifacts, a color kill circuit is included. It affects only
pixels whose luminance exceeds a certain preprogrammed threshold. The U and V
values of those pixels are attenuated proportionally to the difference between their lumi-
nance and the threshold.
YUV Color Filter
As an optional processing step, noise suppression by one-dimensional low-pass filtering
of Y and/or UV signals is possible. A 3- or 5-tap filter can be selected for each signal.