1.0 Functional Description
The LM99 temperature sensor incorporates a delta V
BE
based temperature sensor using a Local or Remote diode
and a 10-bit plus sign ∆Σ ADC (Delta-Sigma Analog-to-
Digital Converter). The LM99 is compatible with the serial
SMBus version 2.0 two-wire interface. Digital comparators
compare the measured Local Temperature (LT) to the Local
High (LHS), Local Low (LLS) and Local T_CRIT (LCS) user-
programmable temperature limit registers. The measured
Remote Temperature (RT) is digitally compared to the Re-
mote High (RHS), Remote Low (RLS) and Remote T_CRIT
(RCS) user-programmable temperature limit registers. Acti-
vation of the ALERT output indicates that a comparison is
greater than the limit preset in a T_CRIT or HIGH limit
register or less than the limit preset in a LOW limit register.
The T_CRIT_A output responds as a true comparator with
built in hysteresis. The hysteresis is set by the value placed
in the Hysteresis register (TH). Activation of T_CRIT_A oc-
curs when the temperature is above the T_CRIT setpoint.
T_CRIT_A remains activated until the temperature goes be-
low the setpoint calculated by T_CRIT − TH. The hysteresis
register impacts both the remote temperature and local tem-
perature readings.
The LM99 may be placed in a low power consumption
(Shutdown) mode by setting the RUN/STOP bit found in the
Configuration register. In the Shutdown mode, the LM99’s
SMBus interface remains while all circuitry not required is
turned off.
The Local temperature reading and setpoint data registers
are 8-bits wide. The format of the 11-bit remote temperature
data is a 16-bit left justified word. Two 8-bit registers, high
and low bytes, are provided for each setpoint as well as the
temperature reading. Two offset registers (RTOLB and
RTOHB) can be used to compensate for non–ideality error,
discussed further in Section 4.1 DIODE NON-IDEALITY.
The remote temperature reading reported is adjusted by
subtracting from, or adding to, the actual temperature read-
ing the value placed in the offset register.
1.1 CONVERSION SEQUENCE
The LM99 takes approximately 31.25 ms to convert the
Local Temperature (LT), Remote Temperature (RT), and to
update all of its registers. Only during the conversion pro-
cess the busy bit (D7) in the Status register (02h) is high.
These conversions are addressed in a round–robin se-
quence. The conversion rate may be modified by the Con-
version Rate Register (04h). When the conversion rate is
modified a delay is inserted between conversions; however,
the actual conversion time remains at 31.25 ms. Different
conversion rates will cause the LM99 to draw different
amounts of supply current as shown in Figure 2.
1.2 THE ALERT OUTPUT
The LM99’s ALERT pin is an active-low open-drain output
that is triggered by a temperature conversion that is outside
the limits defined by the temperature setpoint registers. Re-
set of the ALERT output is dependent upon the selected
method of use. The LM99’s ALERT pin is versatile and will
accommodate three different methods of use to best serve
the system designer: as a temperature comparator, as a
temperature–based interrupt flag, and as part of an SMBus
ALERT system. The three methods of use are further de-
scribed below. The ALERT and interrupt methods are differ-
ent only in how the user interacts with the LM99.
Each temperature reading (LT and RT) is associated with a
T_CRIT setpoint register (LCS, RCS), a HIGH setpoint reg-
ister (LHS and RHS) and a LOW setpoint register (LLS and
RLS). At the end of every temperature reading, a digital
comparison determines whether that reading is above its
HIGH or T_CRIT setpoint or below its LOW setpoint. If so,
the corresponding bit in the STATUS REGISTER is set. If the
ALERT mask bit is not high, any bit set in the STATUS
REGISTER, with the exception of Busy (D7) and OPEN
(D2), will cause the ALERT output to be pulled low. Any
temperature conversion that is out of the limits defined by the
temperature setpoint registers will trigger an ALERT. Addi-
tionally, the ALERT mask bit in the Configuration register
must be cleared to trigger an ALERT in all modes.
1.2.1 ALERT Output as a Temperature Comparator
When the LM99 is implemented in a system in which it is not
serviced by an interrupt routine, the ALERT output could be
used as a temperature comparator. Under this method of
use, once the condition that triggered the ALERT to go low is
no longer present, the ALERT is de-asserted (Figure 3). For
example, if the ALERT output was activated by the compari-
son of LT >LHS, when this condition is no longer true the
ALERT will return HIGH. This mode allows operation without
software intervention, once all registers are configured dur-
ing set-up. In order for the ALERT to be used as a tempera-
ture comparator, bit D0 (the ALERT configure bit) in the
FILTER and ALERT CONFIGURE REGISTER (xBF) must
be set high. This is not the power on default default state.
20053839
FIGURE 2. Conversion Rate Effect on Power Supply
Current
LM99
www.national.com7