FN7967
Rev.2.00
Jan 31, 2019
ISL32600E, ISL32601E, ISL32602E, ISL32603E
1.8V to 3.3V, Micro-Power, ±15kV ESD, +125 °C, Slew Rate Limited
RS-485/RS-422 Transceivers
DATASHEET
FN7967 Rev.2.00 Page 1 of 25
Jan 31, 2019
The ISL32600E, ISL32601E, ISL32602E, and ISL32603E are
±15kV IEC61000 ESD protected, micro-power, wide supply
range transceivers for differential communication. The
ISL32600E and ISL32601E operate with VCC 2.7V and have
maximum supply currents as low as 100µA with both the
transmitter (Tx) and receiver (Rx) enabled. The ISL32602E and
ISL32603E operate with supply voltages as low as 1.8V. These
transceivers have very low bus currents, so they present less
than a 1/8 unit load to the bus. This allows more than 256
transmitters on the network without violating the RS-485
specification’s 32 unit load maximum.
The Rx inputs feature symmetrical switching thresholds and up
to 65mV of hysteresis to improve noise immunity and to
reduce duty cycle distortion in the presence of slow moving
input signals (see Figure 39 on page 18). The Rx input
common-mode range is the full -7V to +12V RS-485 range for
supply voltages 3V.
Hot plug circuitry ensures that the Tx and Rx outputs remain in
a high impedance state while the power supply stabilizes.
This transceiver family uses slew rate limited drivers, which
reduce EMI, and minimize reflections from improperly terminated
transmission lines or from unterminated stubs in multidrop and
multipoint applications.
The ISL32600E and ISL32602E are configured for full duplex
(separate Rx input and Tx output pins) applications. The
ISL32601E and ISL32603E are half duplex versions that
multiplex the Rx inputs and Tx outputs to allow transceivers
with output disable functions in 8 Ld packages. Table 1 on
page 3 provides a summary of each device’s features.
Related Literature
For a full list of related documents, visit our website:
ISL32600E, ISL32601E, ISL32602E, and ISL32603E device
pages
Features
Single 1.8V, 3V, or 3.3V supply
Low supply currents
- ISL32601E . . . . . . . . . . . . . . . . . . 100µA (maximum) at 3V
- ISL32603E . . . . . . . . . . . . . . . . 150µA (maximum) at 1.8V
Ultra low shutdown supply current. . . . . . . . . . . . . . . . . . 10nA
IEC61000 ESD protection on RS-485 I/O pins. . . . . . . ±15kV
- Class 3 ESD levels on all other pins. . . . . . . . . . >8kV HBM
Symmetrical switching thresholds for less duty cycle
distortion (see Figure 39 on page 18)
Up to 65mV hysteresis for improved noise immunity
Data rates from 128kbps to 460kbps
Specified for +125°C operation
1/8 unit load allows up to 256 devices on the bus
-7V to +12V common-mode input/output voltage range
(VCC 3V)
Half and full duplex pinouts; three state Rx and Tx outputs
5V tolerant logic inputs
Tiny MSOP packages consume 50% less board space
Applications
Differential sensor interfaces
Process control networks
•Security camera networks
Building environmental control/lighting systems
FIGURE 1. THE ISL32600E AND ISL32601E HAVE A 9.6kbps
OPERATING ICC LOWER THAN THE STATIC ICC OF
MANY EXISTING 3V TRANSCEIVERS
SUPPLY VOLTAGE (V)
ICC (A)
2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6
10µ
100µ
1m
25°C, RD = ∞, CD = 50pF
DE = VCC, RE = GND
ISL3260xE STATIC
ISL3260xE DYNAMIC (9.6kbps)
ISL3172E STATIC
ISL3172E DYNAMIC (9.6kbps)
FIGURE 2. THE ISL32602E AND ISL32603E WITH VCC = 1.8V
REDUCE OPERATING ICC BY A FACTOR OF 25 TO 40,
COMPARED WITH ICC AT VCC =3.3V
SUPPLY VOLTAGE (V)
ICC (A)
100µ
1m
10m
1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6
DE = VCC, RE = GND
STATIC
DYNAMIC (128kbps)
DYNAMIC (256kbps)
25°C, RD = ∞, CD = 50pF
ISL32600E, ISL32601E, ISL32602E, ISL32603E
FN7967 Rev.2.00 Page 2 of 25
Jan 31, 2019
Typical Operating Circuits
FIGURE 3. HALF DUPLEX NETWORK USING ISL32603E
FIGURE 4. FULL DUPLEX NETWORK USING ISL32600E
NOTE: For calculating the resistor values see TB509, “Detecting Bus Signals Correctly with Failsafe Biased RS-485 Receivers”.
1.8V
RB
RT2
RB
VFS
RO
RE
DE
DI
A/Y
B/Z
1
2
3
4
5
GND
VCC
7
6
8100nF
RPU
1.8V
RT1
RO
RE
DE
DI
A/Y
B/Z
1
2
3
4
5
GND
VCC
7
6
8
100nF
RPU
1.8V
} Note 14
3.3V
RO
DI
A
B
2
5
GND
VCC
11
12
13, 14 100nF
6, 7
Z
Y9
10
3.3V
100nF
RE
DE
3
4
RO
DI
A
B
2
5
GND
VCC
11
10
13, 14
6, 7
Z
Y9
12
RE
DE
3
4
RPU
RPU RB
RT
RB
RB
RT
RB
VFS
VFS
(PIN NUMBERS FOR SOIC)
} Note 14
ISL32600E, ISL32601E, ISL32602E, ISL32603E
FN7967 Rev.2.00 Page 3 of 25
Jan 31, 2019
Ordering Information
PART NUMBER
(Notes 2, 3)
PART
MARKING
TEMP. RANGE
(°C)
TAPE AND REEL
(Units) (Note 1)
PACKAGE
(RoHS Compliant)
PKG.
DWG. #
ISL32600EFBZ 32600EFBZ -40 to +125 - 14 Ld SOIC M14.15
ISL32600EFBZ-T 32600EFBZ -40 to +125 2.5k 14 Ld SOIC M14.15
ISL32600EFBZ-T7A 32600EFBZ -40 to +125 250 14 Ld SOIC M14.15
ISL32600EFUZ 32600 -40 to +125 - 10 Ld MSOP M10.118
ISL32600EFUZ-T 32600 -40 to +125 2.5k 10 Ld MSOP M10.118
ISL32600EFUZ-T7A 32600 -40 to +125 250 10 Ld MSOP M10.118
ISL32601EFBZ 32601 EFBZ -40 to +125 - 8 Ld SOIC M8.15
ISL32601EFBZ-T 32601 EFBZ -40 to +125 2.5k 8 Ld SOIC M8.15
ISL32601EFBZ-T7A 32601 EFBZ -40 to +125 250 8 Ld SOIC M8.15
ISL32601EFUZ 32601 -40 to +125 - 8 Ld MSOP M8.118
ISL32601EFUZ-T 32601 -40 to +125 2.5k 8 Ld MSOP M8.118
ISL32601EFUZ-T7A 32601 -40 to +125 250 8 Ld MSOP M8.118
ISL32602EFBZ 32602EFBZ -40 to +125 - 14 Ld SOIC M14.15
ISL32602EFBZ-T 32602EFBZ -40 to +125 2.5k 14 Ld SOIC M14.15
ISL32602EFBZ-T7A 32602EFBZ -40 to +125 250 14 Ld SOIC M14.15
ISL32602EFUZ 32602 -40 to +125 - 10 Ld MSOP M10.118
ISL32602EFUZ-T 32602 -40 to +125 2.5k 10 Ld MSOP M10.118
ISL32602EFUZ-T7A 32602 -40 to +125 250 10 Ld MSOP M10.118
ISL32603EFBZ 32603 EFBZ -40 to +125 - 8 Ld SOIC M8.15
ISL32603EFBZ-T 32603 EFBZ -40 to +125 2.5k 8 Ld SOIC M8.15
ISL32603EFBZ-T7A 32603 EFBZ -40 to +125 250 8 Ld SOIC M8.15
ISL32603EFUZ 32603 -40 to +125 - 8 Ld MSOP M8.118
ISL32603EFUZ-T 32603 -40 to +125 2.5k 8 Ld MSOP M8.118
ISL32603EFUZ-T7A 32603 -40 to +125 250 8 Ld MSOP M8.118
NOTES:
1. See TB347 for details about reel specifications.
2. These Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte tin plate
plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Pb-free products are
MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.
3. For Moisture Sensitivity Level (MSL), see the ISL32600E, ISL32601E, ISL32602E, and ISL32603E device information pages. For more information
about MSL, see TB363.
TABLE 1. SUMMARY OF FEATURES
PART
NUMBER
SUPPLY
RANGE (V)
HALF/FULL
DUPLEX
DATA RATE
(kbps)
SLEW-RATE
LIMITED?
HOT
PLUG?
# DEVICES
ON BUS
RX/TX
ENABLE?
QUIESCENT
ICC (µA)
LOW POWER
SHUTDOWN?
PIN
COUNT
ISL32600E 2.7 to 3.6 FULL 128 - 256 YES YES 256 YES 60 at 3V YES 10, 14
ISL32601E 2.7 to 3.6 HALF 128 - 256 YES YES 256 YES 60 at 3V YES 8
ISL32602E 1.8 to 3.6 FULL 256 - 460 YES YES 256 YES 105 at 1.8V YES 10, 14
ISL32603E 1.8 to 3.6 HALF 256 - 460 YES YES 256 YES 105 at 1.8V YES 8
ISL32600E, ISL32601E, ISL32602E, ISL32603E
FN7967 Rev.2.00 Page 4 of 25
Jan 31, 2019
Pin Configurations
ISL32601E, ISL32603E
(8 LD MSOP, SOIC)
TOP VIEW
ISL32600E, ISL32602E
(10 LD MSOP)
TOP VIEW
ISL32600E, ISL32602E
(14 LD SOIC)
TOP VIEW
RO
RE
DE
DI
1
2
3
4
8
7
6
5
VCC
B/Z
A/Y
GND
D
R
RO
RE
DE
DI
GND
VCC
A
B
Z
Y
1
2
3
4
5
10
9
8
7
6
D
R
NC
RO
RE
DE
DI
GND
GND
VCC
NC
A
B
Z
Y
NC
1
2
3
4
5
6
7
14
13
12
11
10
9
8
D
R
Pin Descriptions
PIN
8 LD
PACKAGE
10 LD
PACKAGE
14 LD
PACKAGE FUNCTION
RO 1 1 2 Receiver output: If A-B 200mV, RO is high; if A-B -200mV, RO is low; if A and B are unconnected (floating),
RO = high.
RE 2 2 3 Receiver output enable. RO is enabled when RE is low; RO is high impedance when RE is high. If the Rx enable
function is not required, connect RE directly to GND.
DE 3 3 4 Driver output enable. The driver outputs, Y and Z, are enabled by bringing DE high, and are high impedance
when DE is low. If the Tx enable function is not required, connect DE to VCC.
DI 4 4 5 Driver input. A low on DI forces output Y low and output Z high. Similarly, a high on DI forces output Y high and
output Z low.
GND 5 5 6, 7 Ground connection.
A/Y 6 - - ±15kV IEC61000 ESD protected RS-485/422 level, noninverting receiver input and noninverting driver output.
Pin is an input if DE = 0; pin is an output if DE = 1.
B/Z 7 - - ±15kV IEC61000 ESD protected RS-485/422 level, inverting receiver input and inverting driver output. Pin is
an input if DE = 0; pin is an output if DE = 1.
A - 9 12 ±15kV IEC61000 ESD protected RS-485/422 level, noninverting receiver input.
B - 8 11 ±15kV IEC61000 ESD protected RS-485/422 level, inverting receiver input.
Y - 6 9 ±15kV IEC61000 ESD protected RS-485/422 level, noninverting driver output.
Z - 7 10 ±15kV IEC61000 ESD protected RS-485/422 level, inverting driver output.
VCC 8 10 14 System power supply input (2.7V to 3.6V for the ISL32600E and ISL32601E; 1.8V to 3.6V for the ISL32602E
and ISL32603E).
NC - - 1, 8, 13 No internal connection.
ISL32600E, ISL32601E, ISL32602E, ISL32603E
FN7967 Rev.2.00 Page 5 of 25
Jan 31, 2019
Truth Tables
TRANSMITTING
INPUTS OUTPUTS
RE DE DI Z Y
X1101
X1010
0 0 X High-Z High-Z
1 0 X High-Z * High-Z *
NOTE: *Shutdown Mode (See Note 11).
Truth Tables (continued)
RECEIVING
INPUTS OUTPUT
RE DE
Half Duplex
DE
Full Duplex
A-B RO
00 X V
AB 0.2V 1
0 0 X 0.2V > VAB > -0.2V Undetermined
00 X V
AB -0.2V 0
00 XInputs Open 1
10 0 X High-Z *
11 1 X High-Z
NOTE: *Shutdown Mode (See Note 11).
ISL32600E, ISL32601E, ISL32602E, ISL32603E
FN7967 Rev.2.00 Page 6 of 25
Jan 31, 2019
Absolute Maximum Ratings Thermal Information
VCC to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7V
Input Voltages
DI, DE, RE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to 7V
Input/Output Voltages
A, B, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -8V to +13V
A/Y, B/Z, Y, Z (VCC = 0V or 3V) . . . . . . . . . . . . . . . . . . . . . . . -8V to +13V
A/Y, B/Z, Y, Z (1.8V VCC < 3V) . . . . . . . . . . . . . . . . . . . . . . . -8V to +11V
RO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to (VCC +0.3V)
Short-Circuit Duration
Y, Z. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Indeterminate
ESD Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Specification Table
Latch-Up (per JESD78, Level 2, Class A). . . . . . . . . . . . . . . . . . . . . . +125°C
Thermal Resistance (Typical, Notes 4, 5)JA (°C/W) JC (°C/W)
8 Ld SOIC Package . . . . . . . . . . . . . . . . . . . . 105 47
8 Ld MSOP Package . . . . . . . . . . . . . . . . . . . 140 40
10 Ld MSOP Package . . . . . . . . . . . . . . . . . . 160 59
14 Ld SOIC Package . . . . . . . . . . . . . . . . . . . 128 39
Maximum Junction Temperature (Plastic Package) . . . . . . . . . . . +150°C
Maximum Storage Temperature Range . . . . . . . . . . . . . -65°C to +150°C
Pb-Free Reflow Profile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see TB493
Recommended Operating Conditions
Supply Voltage Range
ISL32600E, ISL32601E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3V to 3.3V
ISL32602E, ISL32603E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.8V to 3.3V
Differential Load Resistance
ISL32600E, ISL32601E . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60Ω or 120Ω
ISL32602E, ISL32603E . . . . . . . . . . . . . . 10kΩ at 1.8V; 120Ω at 3.3V
Common-Mode Range
ISL32600E, ISL32601E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -7V to +12V
ISL32602E, ISL32603E
VCC = 1.8V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -2V to +2V
VCC = 3.3V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -7V to +12V
Temperature Range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -40°C to +125°C
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions can adversely impact product
reliability and result in failures not covered by warranty.
NOTES:
4. JA is measured with the component mounted on a high-effective thermal conductivity test board in free air. See TB379 for details.
5. For JC, the “case temp” location is taken at the package top center.
ISL32600E, ISL32601E Electrical Specifications Test Conditions: VCC = 2.7V to 3.6V; typical values are at VCC = 3V,
TA= +25°C; unless otherwise specified. Boldface limits apply across the operating temperature range. (Note 6)
PARAMETER SYMBOL TEST CONDITIONS
TEMP
(°C)
MIN
(Note 15)TYP
MAX
(Note 15)UNIT
DC CHARACTERISTICS
Driver Differential VOUT VOD RL = 100Ω (RS-422) (Figure 5A, VCC 3.15V) Full 1.95 2.1 -V
RL = 54Ω (RS-485)
(Figure 5A)
VCC = 2.7V Full 1.2 1.5 VCC V
VCC 3V Full 1.4 1.7 VCC V
No Load Full --VCC V
RL = 60Ω, -7V VCM 12V (Figure 5B, VCC 3V) Full 1.3 --V
Change in Magnitude of Driver
Differential VOUT for
Complementary Output States
VOD RL = 54Ω or 100Ω (Figure 5A)Full-0.01 0.2 V
Driver Common-Mode VOUT VOC RL = 54Ω or 100Ω (Figure 5A)Full--3V
Change in Magnitude of Driver
Common-Mode VOUT for
Complementary Output States
VOC RL = 54Ω or 100Ω (Figure 5A)Full-0.01 0.2 V
Output Leakage Current (Y, Z) (Full
Duplex Versions Only)
IOZD DE = 0V, VCC = 0V
(-7V VIN 12V) or
2.7V VCC 3.6V
VIN = 12V (VCC 3V) Full -360 µA
VIN = 10V (VCC = 2.7V) Full -360 µA
VIN = -7V Full -30 -10 -µA
Driver Short-Circuit Current,
VO = High or Low
IOSD DE = VCC, -7V VY or VZ 12V (Note 8)Full--±250 mA
Logic Input High Voltage VIH DI, DE, RE Full 2--V
Logic Input Low Voltage VIL DI, DE, RE Full --0.7 V
ISL32600E, ISL32601E, ISL32602E, ISL32603E
FN7967 Rev.2.00 Page 7 of 25
Jan 31, 2019
Logic Input Current IIN1 DI = DE = RE = 0V or VCC (Note 14)Full-1 -1µA
Input Current (A, B, A/Y, B/Z) IIN2 DE = 0V, VCC = 0V
(-7V VIN 12V) or
2.7V VCC 3.6V
VIN = 12V (VCC 2.7V
for A, B)
Full -80 125 µA
VIN = 12V (VCC 3V for
A/Y, B/Z)
Full -80 125 µA
VIN = 10V (VCC = 2.7V
for A/Y, B/Z)
Full -80 125 µA
VIN = -7V Full -100 -50 -µA
Receiver Differential Threshold
Voltage
VTH -7V VCM 12V Full -200 0200 mV
Receiver Input Hysteresis VTH -7V VCM 12V Full -40 -mV
Receiver Output High Voltage VOH IO = -4mA, VID = 200mV Full VCC - 0.5 --V
Receiver Output Low Voltage VOL IO = 4mA, VID = -200mV Full --0.4 V
Three-State (High Impedance)
Receiver Output Current
IOZR 0V VO VCC, RE = VCC Full -1 -1µA
Receiver Short-Circuit Current IOSR 0V VO VCC Full -30 ±60 mA
SUPPLY CURRENT
No-Load Supply Current (Note 7)I
CC DI = 0V or VCC,
DE = VCC, RE = 0V or
VCC
VCC = 3V Full -60 100 µA
VCC = 3.6V Full -70 120 µA
DI = 0V or VCC, Rx Only
(DE = 0V, RE = 0V)
VCC = 3V Full -42 65 µA
VCC = 3.6V Full -46 80 µA
Shutdown Supply Current ISHDN DE = 0V, RE = VCC, DI = 0V or VCC Full -0.01 1µA
ESD PERFORMANCE
RS-485 Pins (A, Y, B, Z, A/Y, B/Z) IEC61000-4-2, Air-Gap Discharge Method 25 -±15 -kV
IEC61000-4-2, Contact Discharge Method 25 -±8 -kV
Human Body Model, from Bus Pins to GND 25 -±15 -kV
All Pins HBM, per MIL-STD-883 Method 3015 25 -±8 -kV
Machine Model 25 -400 -V
SWITCHING CHARACTERISTICS
Maximum Data Rate fMAX RDIFF = 54Ω,
(Figures 8, 9)
VCC = 2.7V Full 128 --kbps
VCC 3V Full 256 --kbps
Driver Differential Output Delay tDD RDIFF = 54Ω, CD = 50pF (Figure 6)Full-340 600 ns
Driver Differential Output Skew tSKEW RDIFF = 54Ω, CD = 50pF (Figure 6)Full-130 ns
Driver Differential Rise or Fall Time tR, tFRDIFF = 54Ω, CD = 50pF (Figure 6)Full200 400 1000 ns
Driver Enable to Output High tZH RL = 1kΩ, CL = 50pF, SW = GND (Figure 7),
(Note 9)
Full --1000 ns
Driver Enable to Output Low tZL RL = 1kΩ, CL = 50pF, SW = VCC (Figure 7),
(Note 9)
Full --1000 ns
Driver Disable from Output High tHZ RL = 1kΩ, CL = 50pF, SW = GND (Figure 7)Full--150 ns
Driver Disable from Output Low tLZ RL = 1kΩ, CL = 50pF, SW = VCC (Figure 7)Full--150 ns
Driver Enable from Shutdown to
Output High
tZH(SHDN) RL = 1kΩ, CL = 50pF, SW = GND (Figure 7),
(Notes 11, 12)
Full --10 µs
ISL32600E, ISL32601E Electrical Specifications Test Conditions: VCC = 2.7V to 3.6V; typical values are at VCC = 3V,
TA= +25°C; unless otherwise specified. Boldface limits apply across the operating temperature range. (Note 6) (Continued)
PARAMETER SYMBOL TEST CONDITIONS
TEMP
(°C)
MIN
(Note 15)TYP
MAX
(Note 15)UNIT
ISL32600E, ISL32601E, ISL32602E, ISL32603E
FN7967 Rev.2.00 Page 8 of 25
Jan 31, 2019
Driver Enable from Shutdown to
Output Low
tZL(SHDN) RL = 1kΩ, CL = 50pF, SW = VCC (Figure 7),
(Notes 11, 12)
Full --10 µs
Time to Shutdown tSHDN (Note 11)Full50 -600 ns
Receiver Input to Output Delay tPLH, tPHL (Figure 9)Full-750 1300 ns
Receiver Skew | tPLH - tPHL |t
SKD (Figure 9)Full-115 300 ns
Receiver Enable to Output High tZH RL = 1kΩ, CL = 15pF, SW = GND (Figure 10),
(Note 10)
Full --50 ns
Receiver Enable to Output Low tZL RL = 1kΩ, CL = 15pF, SW = VCC (Figure 10),
(Note 10)
Full --50 ns
Receiver Disable from Output High tHZ RL = 1kΩ, CL = 15pF, SW = GND (Figure 10)Full -12 50 ns
Receiver Disable from Output Low tLZ RL = 1kΩ, CL = 15pF, SW = VCC (Figure 10)Full-13 50 ns
Receiver Enable from Shutdown to
Output High
tZH(SHDN) RL = 1kΩ, CL = 15pF, SW = GND (Figure 10),
(Notes 11, 13)
Full --12 µs
Receiver Enable from Shutdown to
Output Low
tZL(SHDN) RL = 1kΩ, CL = 15pF, SW = VCC (Figure 10),
(Notes 11, 13)
Full --12 µs
ISL32600E, ISL32601E Electrical Specifications Test Conditions: VCC = 2.7V to 3.6V; typical values are at VCC = 3V,
TA= +25°C; unless otherwise specified. Boldface limits apply across the operating temperature range. (Note 6) (Continued)
PARAMETER SYMBOL TEST CONDITIONS
TEMP
(°C)
MIN
(Note 15)TYP
MAX
(Note 15)UNIT
ISL32602E, ISL32603E Electrical Specifications Test Conditions: VCC = 1.8V to 3.6V; Typical values are at VCC = 1.8V,
TA= +25°C; unless otherwise specified. Boldface limits apply across the operating temperature range. (Note 6)
PARAMETER SYMBOL TEST CONDITIONS
TEMP
(°C)
MIN
(Note 15)TYP
MAX
(Note 15)UNIT
DC CHARACTERISTICS
Driver Differential VOUT VOD RL = 100Ω (RS-422)
(Figure 5A)
VCC = 1.8V Full 0.8 0.9 -V
VCC 3.15V Full 1.95 2.25 -V
No Load, VCC = 1.8V Full 1.1 1.4 VCC
RL = 54Ω (RS-485) (Figure 5A, VCC 3V) Full 1.5 1.95 -V
RL = 60Ω, -7V VCM 12V (Figure 5B, VCC 3V) Full 1.3 --V
Change in Magnitude of Driver
Differential VOUT for
Complementary Output States
VOD RL = 100Ω (Figure 5A)Full-0.01 0.2 V
Driver Common-Mode VOUT VOC RL = 100Ω (Figure 5A)Full--3V
Change in Magnitude of Driver
Common-Mode VOUT for
Complementary Output States
VOC RL = 100Ω (Figure 5A)Full-0.01 0.2 V
Output Leakage Current (Y, Z)
(Full Duplex Versions Only)
IOZD DE = 0V, VCC = 0V
(-7V VIN 12V) or
1.8V or
3V VCC 3.6V
VOUT =12V (V
CC 3V) Full -160 µA
VOUT =10V (V
CC = 1.8V) Full -160 µA
VOUT = -7V Full -30 -10 -µA
Driver Short-Circuit Current,
VO = High or Low
IOSD DE = VCC, -7V VY or VZ 12V (3.0V VCC 3.6V) or
-7V VY or VZ 10V (VCC =1.8V) (Note 8)
Full --±250 mA
Logic Input High Voltage VIH DI, DE, RE VCC 1.8V Full 1.26 --V
VCC 3V Full 2--V
Logic Input Low Voltage VIL DI, DE, RE VCC 1.8V Full --0.4 V
VCC 3V Full --0.8 V
Logic Input Current IIN1 DI = DE = RE = 0V or VCC (Note 14)Full-1 -1µA
ISL32600E, ISL32601E, ISL32602E, ISL32603E
FN7967 Rev.2.00 Page 9 of 25
Jan 31, 2019
Input Current (A, B, A/Y, B/Z) IIN2 DE = 0V, VCC = 0V
(-7V VIN 12V) or
1.8V or
3V VCC 3.6V
VIN = 12V (A, B Only) Full -80 125 µA
VIN =12V (V
CC 3V for A/Y,
B/Z)
Full -80 125 µA
VIN =10V (V
CC = 1.8V for
A/Y, B/Z)
Full -80 125 µA
VIN = -7V Full -100 -50 -µA
Receiver Differential Threshold
Voltage
VTH -7V VY or VZ 2V at VCC = 1.8V or -7V VY or
VZ 12V at VCC 3V
Full -200 0200 mV
Receiver Input Hysteresis VTH -7V VY or VZ 2V at VCC = 1.8V or -7V VY or
VZ 12V at VCC 3V
Full -65 -mV
Receiver Output High Voltage VOH IO = -1mA, VID = 200mV Full VCC - 0.4 --V
Receiver Output Low Voltage VOL IO = 2.2mA, VID = -200mV Full --0.4 V
Three-State (High Impedance)
Receiver Output Current
IOZR 0V VO VCC, RE = VCC Full -1 -1µA
Receiver Short-Circuit Current IOSR 0V VO VCC Full --±60 mA
SUPPLY CURRENT
No-Load Supply Current (Note 7)I
CC DI = 0V or VCC,
DE = VCC, RE = 0V or
VCC
VCC = 1.8V Full -105 150 µA
VCC = 3.6V Full -150 350 µA
DI = 0V or VCC, Rx Only
(DE = 0V,
RE = 0V)
VCC = 1.8V Full -90 115 µA
VCC = 3.6V Full -125 260 µA
Shutdown Supply Current ISHDN DE = 0V, RE = VCC, DI = 0V or VCC Full --1µA
ESD PERFORMANCE
RS-485 Pins (A, Y, B, Z, A/Y, B/Z) IEC61000-4-2, Air-Gap Discharge Method 25 -±15 -kV
IEC61000-4-2, Contact Discharge Method 25 -±8 -kV
Human Body Model, from Bus Pins to GND 25 -±15 -kV
All Pins HBM, per MIL-STD-883 Method 3015 25 -±8 -kV
Machine Model 25 -400 -V
SWITCHING CHARACTERISTICS
Maximum Data Rate fMAX (Figure 8, 9)V
CC = 1.8V, RDIFF = Full 256 --kbps
VCC 3V, RDIFF = 54ΩFull 460 --kbps
Driver Differential Output Delay tDD CD = 50pF (Figure 6)V
CC = 1.8V, RDIFF = Full -750 2600 ns
VCC 3V, RDIFF = 54ΩFull -350 1500 ns
Driver Differential Output Skew tSKEW CD = 50pF (Figure 6)V
CC = 1.8V, RDIFF = Full -120 220 ns
VCC 3V, RDIFF = 54ΩFull -2100 ns
Driver Differential Rise or Fall Time tR, tFCD = 50pF (Figure 6)V
CC = 1.8V, RDIFF = Full 150 1700 4500 ns
VCC 3V, RDIFF = 54ΩFull 200 400 900 ns
Driver Enable to Output High tZH RL = 1kΩ, CL = 50pF, SW = GND (Figure 7), (Note 9)Full --3000 ns
Driver Enable to Output Low tZL RL = 1kΩ, CL = 50pF, SW = VCC (Figure 7), (Note 9)Full --3000 ns
Driver Disable from Output High tHZ RL = 1kΩ, CL = 50pF, SW = GND (Figure 7)Full--250 ns
Driver Disable from Output Low tLZ RL = 1kΩ, CL = 50pF, SW = VCC (Figure 7)Full--250 ns
ISL32602E, ISL32603E Electrical Specifications Test Conditions: VCC = 1.8V to 3.6V; Typical values are at VCC = 1.8V,
TA= +25°C; unless otherwise specified. Boldface limits apply across the operating temperature range. (Note 6) (Continued)
PARAMETER SYMBOL TEST CONDITIONS
TEMP
(°C)
MIN
(Note 15)TYP
MAX
(Note 15)UNIT
ISL32600E, ISL32601E, ISL32602E, ISL32603E
FN7967 Rev.2.00 Page 10 of 25
Jan 31, 2019
Driver Enable from Shutdown to
Output High
tZH(SHDN) RL = 1kΩ, CL = 50pF, SW = GND (Figure 7),
(Notes 11, 12)
Full --3000 ns
Driver Enable from Shutdown to
Output Low
tZL(SHDN) RL = 1kΩ, CL = 50pF, SW = VCC (Figure 7),
(Notes 11, 12)
Full --3000 ns
Time to Shutdown tSHDN (Note 11)Full50 500 1200 ns
Receiver Input to Output Delay tPLH, tPHL (Figure 9)Full-180 1000 ns
Receiver Skew | tPLH - tPHL |t
SKD (Figure 9)Full-35 250 ns
Receiver Enable to Output High tZH RL = 1kΩ, CL = 15pF, SW = GND (Figure 10),
(Note 10)
Full --100 ns
Receiver Enable to Output Low tZL RL = 1kΩ, CL = 15pF, SW = VCC (Figure 10), (Note 10)Full --100 ns
Receiver Disable from Output High tHZ RL = 1kΩ, CL = 15pF, SW = GND (Figure 10)Full--75 ns
Receiver Disable from Output Low tLZ RL = 1kΩ, CL = 15pF, SW = VCC (Figure 10)Full--75 ns
Receiver Enable from Shutdown to
Output High
tZH(SHDN) RL = 1kΩ, CL = 15pF, SW = GND (Figure 10),
(Notes 11, 13)
Full --5500 ns
Receiver Enable from Shutdown to
Output Low
tZL(SHDN) RL = 1kΩ, CL = 15pF, SW = VCC (Figure 10),
(Notes 11, 13)
Full --5500 ns
NOTES:
6. All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to device ground unless otherwise
specified.
7. Supply current specification is valid for loaded drivers when DE = 0V.
8. Applies to peak current. See Typical Performance Curves starting on page 13 for more information.
9. When testing this parameter, keep RE = 0 to prevent the device from entering SHDN.
10. When testing this parameter, the RE signal high time must be short enough (typically <100ns) to prevent the device from entering SHDN.
11. Devices are put into shutdown by bringing RE high and DE low. If the inputs are in this state for less than 50ns, the parts are assured not to enter
shutdown. If the inputs are in this state for at least 600ns (1200ns if VCC = 1.8V), the parts are assured to have entered shutdown. See Low Power
Shutdown Mode” on page 19.
12. Keep RE = VCC, and set the DE signal low time >600ns (1200ns if VCC = 1.8V) to ensure that the device enters SHDN.
13. Set the RE signal high time >600ns (1200ns if VCC = 1.8V) to ensure that the device enters SHDN.
14. If the Tx or Rx enable function is not needed, connect the enable pin to the appropriate supply (see Pin Descriptions” on page 4).
15. Compliance to datasheet limits is assured by one or more methods: production test, characterization, and/or design.
ISL32602E, ISL32603E Electrical Specifications Test Conditions: VCC = 1.8V to 3.6V; Typical values are at VCC = 1.8V,
TA= +25°C; unless otherwise specified. Boldface limits apply across the operating temperature range. (Note 6) (Continued)
PARAMETER SYMBOL TEST CONDITIONS
TEMP
(°C)
MIN
(Note 15)TYP
MAX
(Note 15)UNIT
ISL32600E, ISL32601E, ISL32602E, ISL32603E
FN7967 Rev.2.00 Page 11 of 25
Jan 31, 2019
Test Circuits and Waveforms
FIGURE 5A. VOD AND VOC FIGURE 5B. VOD WITH COMMON MODE LOAD
FIGURE 5. DC DRIVER TEST CIRCUITS
FIGURE 6A. TEST CIRCUIT FIGURE 6B. MEASUREMENT POINTS
FIGURE 6. DRIVER PROPAGATION DELAY AND DIFFERENTIAL TRANSITION TIMES
FIGURE 7A. TEST CIRCUIT FIGURE 7B. MEASUREMENT POINTS
FIGURE 7. DRIVER ENABLE AND DISABLE TIMES
D
DE
DI
VCC
VOD
VOC
RL/2
RL/2
Z
Y
D
DE
DI
VCC
VOD
375Ω
375Ω
Z
Y
RL = 60Ω
VCM
-7V to +12V
D
DE
DI
VCC
SIGNAL
GENERATOR
CD
RDIFF
Z
Y
OUT (Z)
VCC
0V
50%50%
VOH
VOL
OUT (Y)
tDDLH tDDHL
DIFF OUT (Y - Z)
tR
+VOD
-VOD
90% 90%
tF
10% 10%
DI
tSKEW = |tDDLH - tDDHL|
D
DE
DI Z
Y
VCC
GND
SW
PARAMETER OUTPUT RE DI SW
tHZ Y/Z X 1/0 GND
tLZ Y/Z X 0/1 VCC
tZH Y/Z 0 (Note 9)1/0GND
tZL Y/Z 0 (Note 9)0/1 V
CC
tZH(SHDN) Y/Z 1 (Note 12)1/0 GND
tZL(SHDN) Y/Z 1 (Note 12)0/1 V
CC
SIGNAL
GENERATOR
1kΩ
50pF
OUT (Y, Z)
VCC
0V
50%50%
VOH
0V
VOH - 0.25V
tHZ
OUT (Y, Z)
VCC
VOL
VOL + 0.25V
tLZ
DE
OUTPUT HIGH
OUTPUT LOW
tZL, tZL(SHDN)
tZH, tZH(SHDN)
50%
50%
Note 11
Note 11
Note 11
ISL32600E, ISL32601E, ISL32602E, ISL32603E
FN7967 Rev.2.00 Page 12 of 25
Jan 31, 2019
FIGURE 8A. TEST CIRCUIT FIGURE 8B. MEASUREMENT POINTS
FIGURE 8. DRIVER DATA RATE
FIGURE 9A. TEST CIRCUIT FIGURE 9B. MEASUREMENT POINTS
FIGURE 9. RECEIVER PROPAGATION DELAY AND DATA RATE
FIGURE 10A. TEST CIRCUIT FIGURE 10B. MEASUREMENT POINTS
FIGURE 10. RECEIVER ENABLE AND DISABLE TIMES
Test Circuits and Waveforms (Continued)
D
DE
DI
VCC
SIGNAL
GENERATOR
Z
Y
50pF VOD
-
+
RDIFF
VCC
0V
DIFF OUT (Y - Z) +VOD
-VOD
DI
0V
SIGNAL
GENERATOR
RRO
RE
A
B
GND
15pF
RO
+1V
-1V
tPLH
0V0V
VCC
0V
50% 50%
tPHL
A
1kΩVCC
GND
SW
PARAMETER DE A SW
tHZ X +1.5V GND
tLZ X -1.5V VCC
tZH (Note 10)0+1.5VGND
tZL (Note 10) 0 -1.5V VCC
tZH(SHDN) (Note 13)0 +1.5V GND
tZL(SHDN) (Note 11) 0 -1.5V VCC
SIGNAL
GENERATOR
RRO
RE
A
B
GND
15pF
RO
VCC
0V
50%50%
VOH
0V
1.5V
VOH - 0.25V
tHZ
RO
VCC
VOL
1.5V
VOL + 0.25V
tLZ
RE
OUTPUT HIGH
OUTPUT LOW
tZL, tZL(SHDN)
tZH, tZH(SHDN)
Note 11
Note 11
Note 11
ISL32600E, ISL32601E, ISL32602E, ISL32603E
FN7967 Rev.2.00 Page 13 of 25
Jan 31, 2019
Typical Performance Curves VCC = 3V (ISL32600E, ISL32601E) or 1.8V (ISL32602E, ISL32603E), TA = +25°C; unless
otherwise specified
FIGURE 11. ISL32600E, ISL32601E DRIVER DIFFERENTIAL
OUTPUT VOLTAGE vs TEMPERATURE
FIGURE 12. ISL32600E, ISL32601E RECEIVER OUTPUT CURRENT
vs RECEIVER OUTPUT VOLTAGE
FIGURE 13. ISL32600E, ISL32601E STATIC SUPPLY CURRENT vs
TEMPERATURE
FIGURE 14. ISL32600E, ISL32601E DYNAMIC SUPPLY
CURRENT vs SUPPLY VOLTAGE AT DIFFERENT DATA
RATES
FIGURE 15. ISL32600E, ISL32601E PERFORMANCE WITH
VCC = 3V, 256kbps, 3000ft (915m) CAT 5 CABLE
FIGURE 16. ISL32600E, ISL32601E PERFORMANCE WITH
VCC = 2.7V, 128kbps, 4000ft (1220m) CAT 5 CABLE
TEMPERATURE (°C)
DIFFERENTIAL OUTPUT VOLTAGE (V)
1.5
1.7
1.9
2.1
2.3
2.5
2.7
2.9
-40 -25 -10 5 20 35 50 65 80 95 110 125
RDIFF = 10kΩ
RDIFF = 54Ω
RDIFF = 100Ω
RECEIVER OUTPUT VOLTAGE (V)
RECEIVER OUTPUT CURRENT (mA)
-20
-15
-10
-5
0
5
10
15
20
25
30
0 0.5 1.0 1.5 2.0 2.5 3.0
VOH, +25°C
VOL, +125°C
VOH, +125°C
VOL, +25°C
VOL, +85°C
VOH, +85°C
TEMPERATURE (°C)
ICC (µA)
25
30
35
40
45
50
55
60
65
70
-40 -25 -10 5 20 35 50 65 80 95 110 125
RE = 0V
DE = VCC
DE = 0V
VCC = 2.7V
VCC = 3.0V
VCC = 3.3V
VCC = 2.7V
VCC = 3.0V
VCC = 3.3V
VCC (V)
ICC (A)
2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6
100µ
1m
10m
RD = ∞, CD = 50pF
128kbps
9.6kbps
256kbps
DE = VCC, RE = 0V
Tx AND Rx BOTH
SWITCHING
TIME (20µs/DIV)
RECEIVER INPUTS (V)
RECEIVER OUTPUT (V)
-2
0
1
2
3
0
3
2
0
DRIVER INPUT (V)
R
D
= ∞
A-B
DI
-1
3
1
ISL32600E, ISL32601E, ISL32602E, ISL32603E
FN7967 Rev.2.00 Page 14 of 25
Jan 31, 2019
FIGURE 17. ISL32600E, ISL32601E DRIVER DIFFERENTIAL
PROPAGATION DELAY vs TEMPERATURE
FIGURE 18. ISL32600E, ISL32601E DRIVER DIFFERENTIAL SKEW
vs TEMPERATURE
FIGURE 19. ISL32600E, ISL32601E RECEIVER PROPAGATION
DELAY vs TEMPERATURE
FIGURE 20. ISL32600E, ISL32601E RECEIVER SKEW vs
TEMPERATURE
FIGURE 21. ISL32600E, ISL32601E DRIVER AND RECEIVER
WAVEFORMS, LOW TO HIGH
FIGURE 22. ISL32600E, ISL32601E DRIVER AND RECEIVER
WAVEFORMS, HIGH TO LOW
Typical Performance Curves VCC = 3V (ISL32600E, ISL32601E) or 1.8V (ISL32602E, ISL32603E), TA = +25°C; unless
otherwise specified (Continued)
TEMPERATURE (°C)
PROPAGATION DELAY (ns)
330
340
350
360
370
380
390
400
-40 -25 -10 5 20 35 50 65 80 95 110 125
tDDHL
RD = 54Ω, CD = 50pF
tDDLH
TEMPERATURE (°C)
SKEW (ns)
0
0.5
1.0
1.5
2.0
2.5
3.0
-40 -25 -10 5 20 35 50 65 80 95 110 125
tSKEW = |tDDLH - tDDHL|
RD = 54Ω, CD = 50pF
TEMPERATURE (°C)
PROPAGATION DELAY (ns)
-40 -25 -10 5 20 35 50 65 80 95 110 125
600
650
700
750
800
850
900
950
1000
tPLH
tPHL
TEMPERATURE (°C)
SKEW (ns)
110
112
114
116
118
120
122
124
126
128
130
-40 -25 -10 5 20 35 50 65 80 95 110 125
tSKEW = |tPLH - tPHL|
TIME (200ns/DIV)
RECEIVER OUTPUT (V)
RDIFF = 54Ω, CD = 50pF
0
3
DRIVER OUTPUT (V)
0
3
DRIVER INPUT (V)
DI
RO
-2
-1
1
2
A/Y - B/Z
0
TIME (200ns/DIV)
RECEIVER OUTPUT (V)
RDIFF = 54Ω, CD = 50pF
0
3
DRIVER OUTPUT (V)
0
3
DRIVER INPUT (V)
DI
RO
-2
-1
1
2
A/Y - B/Z
0
ISL32600E, ISL32601E, ISL32602E, ISL32603E
FN7967 Rev.2.00 Page 15 of 25
Jan 31, 2019
FIGURE 23. ISL32600E, ISL32601E DRIVER OUTPUT CURRENT
vs SHORT-CIRCUIT VOLTAGE
FIGURE 24. ISL32602E, ISL32603E DRIVER OUTPUT CURRENT
vs SHORT-CIRCUIT VOLTAGE
FIGURE 25. ISL32602E, ISL32603E DRIVER DIFFERENTIAL
OUTPUT VOLTAGE vs TEMPERATURE
FIGURE 26. ISL32602E, ISL32603E RECEIVER OUTPUT CURRENT
vs RECEIVER OUTPUT VOLTAGE
FIGURE 27. ISL32602E, ISL32603E STATIC SUPPLY CURRENT vs
TEMPERATURE
FIGURE 28. ISL32602E, ISL32603E DYNAMIC SUPPLY
CURRENT vs SUPPLY VOLTAGE AT DIFFERENT DATA
RATES
Typical Performance Curves VCC = 3V (ISL32600E, ISL32601E) or 1.8V (ISL32602E, ISL32603E), TA = +25°C; unless
otherwise specified (Continued)
OUTPUT VOLTAGE (V)
OUTPUT CURRENT (mA)
-150
-100
-50
0
50
100
150
200
-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12
Y OR Z = HIGH
Y OR Z = LOW
+25°C
+125°C
-40°C
+125°C
+25°C
-40°C
OUTPUT VOLTAGE (V)
OUTPUT CURRENT (mA)
-40
-20
0
20
40
60
80
100
120
140
-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12
Y OR Z = HIGH
Y OR Z = LOW
+25°C
+125°C
-40°C
+125°C
-40°C
+25°C
-40°C
TEMPERATURE (°C)
DIFFERENTIAL OUTPUT VOLTAGE (V)
0.7
0.9
1.1
1.3
1.5
1.7
1.9
2.1
2.3
2.5
-40 -25 -10 5 20 35 50 65 80 95 110 125
VCC = 3.3V, RDIFF = 54Ω
VCC = 1.8V, RDIFF = 10kΩ
VCC = 1.8V, RDIFF = 100Ω
VCC = 3.3V, RDIFF = 100Ω
RECEIVER OUTPUT VOLTAGE (V)
RECEIVER OUTPUT CURRENT (mA)
-30
-20
-10
0
10
20
30
0 0.5 1.0 1.5 2.0 2.5 3.0 3.3
VOH, +25°C
VOL, +25°C
VOL, +125°C
VOH, +125°C
VCC = 3.3V
VCC = 1.8V
VCC = 3.3V
VOL, +25°C
VOL, +85°C
VOL, +125°C
VOH, +85°C
VOL, +85°C
VOH, +25°C, +85°C, +125°C
TEMPERATURE (°C)
ICC (µA)
60
80
100
120
140
160
180
-40 -25 -10 5 20 35 50 65 80 95 110 125
RE = 0V
VCC = 1.8V, DE = VCC
VCC = 3.3V, DE = VCC
VCC = 1.8V, DE = 0V
VCC = 3.3V, DE = 0V
VCC (V)
ICC (A)
10µ
100µ
1m
10m
1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6
100m
RD = ∞, CD = 50pF
9.6kbps
460kbps
DE = VCC, RE = 0V
Tx AND Rx BOTH
SWITCHING
STATIC
128kbps
256kbps
ISL32600E, ISL32601E, ISL32602E, ISL32603E
FN7967 Rev.2.00 Page 16 of 25
Jan 31, 2019
FIGURE 29. ISL32602E, ISL32603E PERFORMANCE WITH
VCC = 1.8V, 256kbps, 1000ft (305m) CAT 5 CABLE
FIGURE 30. ISL32602E, ISL32603E PERFORMANCE WITH
VCC = 3.3V, 460kbps, 2000ft (610m) CAT 5 CABLE
FIGURE 31. ISL32602E, ISL32603E DRIVER DIFFERENTIAL
PROPAGATION DELAY vs TEMPERATURE
FIGURE 32. ISL32602E, ISL32603E DRIVER DIFFERENTIAL SKEW
vs TEMPERATURE
FIGURE 33. ISL32602E, ISL32603E RECEIVER PROPAGATION
DELAY vs TEMPERATURE
FIGURE 34. ISL32602E, ISL32603E RECEIVER SKEW vs
TEMPERATURE
Typical Performance Curves VCC = 3V (ISL32600E, ISL32601E) or 1.8V (ISL32602E, ISL32603E), TA = +25°C; unless
otherwise specified (Continued)
TIME (10µs/DIV)
RECEIVER INPUTS (V)
RECEIVER OUTPUT (V)
-1.5
0
1.0
1.5
2
0
DRIVER INPUT (V)
R
D
= ∞
A-B
DI
-1.0
2.0
0
0.5
1.0
1.5
2.0
-0.5
0.5
TIME (10µs/DIV)
RECEIVER INPUTS (V)
RECEIVER OUTPUT (V)
-3
0
1
2
3
0
3
2
0
DRIVER INPUT (V)
R
D
= ∞
A-B
DI
-2
4
1
4
-1
3
TEMPERATURE (°C)
PROPAGATION DELAY (ns)
300
400
500
600
700
800
900
1000
1100
1200
-40 -25 -10 5 20 35 50 65 80 95 110 125
VCC = 3.3V, RD = 54Ω
tDDHL
CD = 50pF
tDDHL
VCC = 1.8V, RD = ∞
tDDLH
tDDLH
TEMPERATURE (°C)
SKEW (ns)
0
20
40
60
80
100
120
-40 -25 -10 5 20 35 50 65 80 95 110 125
VCC = 3.3V, RD = 54Ω
VCC = 1.8V, RD = ∞
CD = 50pF tSKEW = |tDDLH - tDDHL|
TEMPERATURE (°C)
PROPAGATION DELAY (ns)
100
120
140
160
180
200
220
240
260
280
300
-40 -25 -10 5 20 35 50 65 80 95 110 125
VCC = 3.3V, tPLH
VCC = 3.3V, tPHL
VCC = 1.8V, tPLH
VCC = 1.8V, tPHL
TEMPERATURE (°C)
SKEW (ns)
0
20
40
60
80
100
120
140
-40-25-105 203550658095110125
VCC = 3.3V
VCC = 1.8V
tSKEW = |tPLH - tPHL|
ISL32600E, ISL32601E, ISL32602E, ISL32603E
FN7967 Rev.2.00 Page 17 of 25
Jan 31, 2019
Die Characteristics
SUBSTRATE POTENTIAL (POWERED UP):
GND
PROCESS:
Si Gate BiCMOS
Application Information
RS-485 and RS-422 are differential (balanced) data
transmission standards for use in long haul or noisy
environments. RS-422 is a subset of RS-485, so RS-485
transceivers are also RS-422 compliant. RS-422 is a
point-to-multipoint (multidrop) standard, which allows only one
driver and up to 10 receivers on each bus, assuming one unit
load devices. RS-485 is a true multipoint standard, which allows
up to 32 one-unit load devices (any combination of drivers and
receivers) on each bus. To allow for multipoint operation, the
RS-485 specification requires that drivers must handle bus
contention without sustaining any damage.
FIGURE 35. ISL32602E, ISL32603E DRIVER AND RECEIVER
WAVEFORMS, LOW TO HIGH
FIGURE 36. ISL32602E, ISL32603E DRIVER AND RECEIVER
WAVEFORMS, HIGH TO LOW
FIGURE 37. ISL32602E, ISL32603E DRIVER AND RECEIVER
WAVEFORMS, LOW TO HIGH
FIGURE 38. ISL32602E, ISL32603E DRIVER AND RECEIVER
WAVEFORMS, HIGH TO LOW
Typical Performance Curves VCC = 3V (ISL32600E, ISL32601E) or 1.8V (ISL32602E, ISL32603E), TA = +25°C; unless
otherwise specified (Continued)
TIME (1µs/DIV)
RECEIVER OUTPUT (V)
RDIFF = 10kΩ, CD = 50pF
0
2
DRIVER OUTPUT (V)
0
2
DRIVER INPUT (V)
DI
RO
-1.5
-1.0
-0.5
0
0.5
1.0
1.5
A/Y - B/Z
VCC = 1.8V
TIME (1µs/DIV)
RECEIVER OUTPUT (V)
RDIFF = 10kΩ, CD = 50pF
0
2
DRIVER OUTPUT (V)
0
2
DRIVER INPUT (V)
DI
RO
-1.5
-1.0
-0.5
0
0.5
1.0
1.5
A/Y - B/Z
VCC = 1.8V
TIME (200ns/DIV)
RECEIVER OUTPUT (V)
RDIFF = 54Ω, CD = 50pF
0
3
DRIVER OUTPUT (V)
0
3
DRIVER INPUT (V)
DI
RO
-3
-2
-1
0
1
2
3
A/Y - B/Z
VCC = 3.3V
TIME (200ns/DIV)
RECEIVER OUTPUT (V)
RDIFF = 54Ω, CD = 50pF
0
3
DRIVER OUTPUT (V)
0
3
DRIVER INPUT (V)
DI
RO
-3
-2
-1
0
1
2
3
A/Y - B/Z
VCC = 3.3V
ISL32600E, ISL32601E, ISL32602E, ISL32603E
FN7967 Rev.2.00 Page 18 of 25
Jan 31, 2019
Another important advantage of RS-485 is the extended
Common-Mode Range (CMR), which specifies that the driver
outputs and receiver inputs withstand signals that range from
-7V to +12V. RS-422 and RS-485 are intended for runs as long as
4000ft, so the wide CMR is necessary to handle ground potential
differences and voltages induced in the cable by external fields.
Receiver Features
The ISL3260xE devices use a differential input receiver for
maximum noise immunity and common-mode rejection. Input
sensitivity is greater than ±200mV, as required by the RS-422
and RS-485 specifications. The symmetrical ±200mV switching
thresholds eliminate the duty cycle distortion that occurs on
receivers with Full Fail Safe (FFS) functionality and with slowly
transitioning input signals (see Figure 39). FFS receiver switching
points have a negative offset, so the RO high time is naturally
longer than the low time. The ISL3260xE’s larger receiver input
sensitivity range enables an increase of the receiver input
hysteresis. The 40mV to 65mV receiver hysteresis increases the
noise immunity, which is an advantage for noisy networks or
networks with slow bus transitions.
The receiver input resistance of 96kΩ surpasses the RS-422
specification of 4kΩ and is eight times the RS-485 Unit Load (UL)
requirement of 12kΩ minimum. Therefore, these products are
known as “one-eighth UL” transceivers and there can be up to
256 of these devices on a network while still complying with the
RS-485 loading specification.
Receiver inputs function with common-mode voltages as great as
+9V/-7V outside the power supplies (that is, +12V and -7V) at
VCC = 3V, making them ideal for long networks where induced
voltages and ground potential differences are realistic concerns.
The positive CMR is limited to +2V when the ISL32602E or
ISL32603E is operated with VCC = 1.8V.
All the receivers include a “fail-safe if open” function that assures
a high level receiver output if the receiver inputs are unconnected
(floating). Because the Rx is not FFS, terminated networks may
require bus biasing resistors (pull-up on noninverting input,
pull-down on inverting input) to preserve the bus idle state when
the bus is not actively driven.
Receivers operate at data rates from 128kbps to 460kbps
depending on the supply voltage, and all receiver outputs are
tri-statable using the active low RE input. There are no parasitic
diodes nor ESD diodes to VCC on the RE input, so RE is tolerant of
input voltages up to 5.5V, even with the ISL3260xE powered
down (VCC = 0V).
Driver Features
The ISL3260xE drivers are differential output devices that deliver
at least 1.4V with VCC 3V across a 54Ω load (RS-485) and at
least 1.95V with VCC 3.15V across a 100Ω load (RS-422). The
1.8V transmitters deliver a 1.1V unloaded, differential level.
Drivers operate at data rates from 128kbps to 460kbps
depending on the supply voltage, and they feature low
propagation delay skews to maximize bit width. Driver outputs
are slew rate limited to minimize EMI and to reduce reflections in
unterminated or improperly terminated networks.
All drivers are tri-statable using the active high DE input. There
are no parasitic diodes nor ESD diodes to VCC on the DI and DE
inputs, so these inputs are tolerant of input voltages up to 5.5V,
even with the ISL3260xE powered down (VCC = 0V).
1.8V Operation
The ISL32602E and ISL32603E are specifically designed to
operate with supply voltages as low as 1.8V. Avoid termination
resistors at this operating condition, and the unterminated driver
is assured to deliver a healthy 1.1V differential output voltage.
This low supply voltage limits the +CMR to +2V, but the CMR
increases as VCC increases.
For proper 1.8V operation, the ISL32602E and ISL32603E must
run at a higher operating current. Therefore, their ICC with
VCC = 3.3V is considerably higher than the ICC of the ISL32600E
and ISL32601E, which are optimized for low ICC at 3.3V (see
Figures 1 and 2).
Hot Plug Function
When a piece of equipment powers up, a period of time when the
processor or ASIC driving the RS-485 control lines (DE, RE) is
unable to ensure that the RS-485 Tx and Rx outputs are kept
disabled. If the equipment is connected to the bus, a driver
activating prematurely during power-up may crash the bus. To
avoid this scenario, the ISL3260xE devices incorporate a hot plug
function. During power-up, circuitry monitoring VCC ensures that the
Tx and Rx outputs remain disabled for a period of time, regardless of
the state of DE and RE. This gives the processor/ASIC a chance to
stabilize and drive the RS-485 control lines to the proper states.
ESD Protection
All pins on the ISL3260xE devices include Class 3 (>8kV) Human
Body Model (HBM) ESD protection structures, but the RS-485 pins
(driver outputs and receiver inputs) incorporate advanced
structures allowing them to survive ESD events in excess of ±15kV
HBM and ±15kV IEC61000. The RS-485 pins are particularly
vulnerable to ESD damage because they typically connect to an
exposed port on the exterior of the finished product. Touching the
port pins, or connecting a cable, can cause an ESD event that can
destroy unprotected ICs. The new ESD structures protect the device
FIGURE 39. COMPARED WITH A FULL-FAILSAFE ISL3172E
RECEIVER, THE SYMMETRICAL RX THRESHOLDS OF
THE ISL3260xE DELIVER LESS OUTPUT DUTY CYCLE
DISTORTION WHEN DRIVEN WITH SLOW INPUT
SIGNALS
TIME (4µs/DIV)
RECEIVER INPUT (V)
RECEIVER OUTPUT (V)
0
4
-1
0
1
0
4
VCC = 3.3V, DATA RATE = 125kbps
ISL3260xE
ISL3172E
A-B
ISL32600E, ISL32601E, ISL32602E, ISL32603E
FN7967 Rev.2.00 Page 19 of 25
Jan 31, 2019
whether or not it is powered up without degrading the transceiver’s
CMR. The built-in ESD protection eliminates the need for board
level protection structures such as transient suppression diodes
and the associated undesirable capacitive load they present.
IEC61000-4-2 Testing
The IEC61000 test method applies to finished equipment, rather
than to an individual IC. Therefore, the pins most likely to suffer
an ESD event are those that are exposed to the outside world (the
RS-485 pins in this case), the IC is tested in its typical application
configuration (power applied) rather than testing each pin-to-pin
combination. The lower current limiting resistor coupled with the
larger charge storage capacitor yields a test that is much more
severe than the HBM test. The extra ESD protection built into this
device’s RS-485 pins allows the design of equipment meeting
Level 4 criteria without the need for additional board level
protection on the RS-485 port.
AIR-GAP DISCHARGE TEST METHOD
For the air-gap discharge test method, a charged probe tip moves
toward the IC pin until the voltage arcs to it. The current
waveform delivered to the IC pin depends on approach speed,
humidity, temperature, etc. so it is difficult to obtain repeatable
results. The ISL3260xE RS-485 pins withstand ±15kV air-gap
discharges.
CONTACT DISCHARGE TEST METHOD
During the contact discharge test, the probe contacts the tested
pin before the probe tip is energized, and eliminates the
variables associated with the air-gap discharge. The result is a
more repeatable and predictable test, but equipment limits
prevent testing devices at voltages higher than ±8kV. The
ISL3260xE devices survive ±8kV contact discharges on the
RS-485 pins.
Data Rate, Cables, and Terminations
RS-485/422 are intended for network lengths up to 4000ft
(1220m), but the maximum system data rate decreases as the
transmission length increases. The ISL32600E and ISL32601E
operate at data rates up to 128kbps at the maximum (4000ft)
distance, or at data rates of 256kbps for cable lengths less than
3000ft (915m). The ISL32602E and ISL32603E, with VCC =1.8V,
are limited to 1000ft (305m) at 256kbps, or 2000ft (610m) at
128kbps. With VCC = 3.3V, the ISL32602E and ISL32603E
deliver 460kbps over 2000ft, 256kbps over 3000ft, or 128kbps
over 4000ft cables.
Twisted pair is the cable of choice for RS-485 and RS-422
networks. Twisted pair cables tend to pick up noise and other
electromagnetically induced voltages as common-mode signals
that are effectively rejected by the differential receivers in these
ICs.
Short networks using these transceivers need not be terminated,
but terminations are recommended for 2.7V to 3.6V powered
networks unless power dissipation is an overriding concern.
Terminations are not recommended for 1.8V applications due to
the low drive available from those transmitters.
In point-to-point, or point-to-multipoint (single driver on bus)
networks, terminate the main cable in its characteristic
impedance (typically 120Ω) at the end farthest from the driver. In
multi-receiver applications, keep stubs connecting receivers to
the main cable as short as possible. Multipoint (multi-driver)
systems require that the main cable be terminated in its
characteristic impedance at both ends. Keep stubs connecting a
transceiver to the main cable as short as possible.
Terminated networks using the ISL3260xE may require bus
biasing resistors (pull-up on noninverting input, pull-down on
inverting input) to preserve the bus idle state when the bus is not
actively driven. Without bus biasing, the termination resistor
collapses the undriven, differential bus voltage to 0V, which is an
undefined level to the ISL3260xE Rx. Bus biasing forces a few
hundred mV positive differential voltage on the undriven bus,
which all RS-485 and RS-422 Rx interpret as a valid logic high.
Built-In Driver Overload Protection
As stated previously, the RS-485 specification requires that
drivers survive worst case bus contentions undamaged. These
devices meet this requirement using driver output short-circuit
current limits and on-chip thermal shutdown circuitry.
The driver output stages incorporate short-circuit current limiting
circuitry that ensures that the output current never exceeds the
RS-485 specification, even at the common-mode voltage range
extremes. Additionally, these devices use a foldback circuit which
reduces the short-circuit current, and thus the power dissipation,
whenever the contending voltage exceeds either supply.
In the event of a major short-circuit condition, the ISL3260xE’s
thermal shutdown feature disables the drivers whenever the die
temperature becomes excessive. Thermal shutdown eliminates
the power dissipation, allowing the die to cool. The drivers
automatically re-enable after the die temperature drops by about
20°C. If the condition persists, the thermal shutdown/re-enable
cycle repeats until the fault is cleared. Receivers remain
operational during thermal shutdown.
Low Power Shutdown Mode
These micro-power transceivers all use a fraction of the power
required by their counterparts, but they also include a shutdown
feature that reduces the already low quiescent ICC to a 10nA
trickle. These devices enter shutdown whenever the receiver and
driver are simultaneously disabled (RE =V
CC and DE = GND) for a
period of at least 600ns (1200ns at VCC = 1.8V). Disabling both
the driver and the receiver for fewer than 50ns assures that the
transceiver does not enter shutdown.
Note that most receiver and driver enable times increase when the
transceiver enables from shutdown. See Notes 9 through 13 on
page 10 for more information.
ISL32600E, ISL32601E, ISL32602E, ISL32603E
FN7967 Rev.2.00 Page 20 of 25
Jan 31, 2019
Revision History The revision history provided is for informational purposes only and is believed to be accurate, but not warranted.
Please visit our website to make sure you have the latest revision.
DATE REVISION CHANGE
Jan 31, 2019 FN7967.2 Updated Figures 3 and 4.
Updated ordering information table by adding all tape and reel parts and information and updating notes.
Updated links throughout document.
Removed About Intersil section.
Updated disclaimer.
Oct 20, 2017 FN7967.1 Added the Related Literature section.
Updated the Truth Table on page 3.
Applied Intersil A Renesas Company template.
June 22, 2012 FN7967.0 Initial Release.
ISL32600E, ISL32601E, ISL32602E, ISL32603E
FN7967 Rev.2.00 Page 21 of 25
Jan 31, 2019
Package Outline Drawings
M8.118
8 LEAD MINI SMALL OUTLINE PLASTIC PACKAGE
Rev 4, 7/11
DETAIL "X"
SIDE VIEW 2
TYPICAL RECOMMENDED LAND PATTERN
TOP VIEW
PIN# 1 ID
0.25 - 0.36
DETAIL "X"
0.10 ± 0.05
(4.40)
(3.00)
(5.80)
H
C
1.10 MAX
0.09 - 0.20
3°±3°
GAUGE
PLANE 0.25
0.95 REF
0.55 ± 0.15
B
0.08 C A-B D
3.0±0.05
12
8
0.85±010
SEATING PLANE
A
0.65 BSC
3.0±0.05 4.9±0.15
(0.40)
(1.40)
(0.65)
D
5
5
SIDE VIEW 1
Dimensioning and tolerancing conform to JEDEC MO-187-AA
Plastic interlead protrusions of 0.15mm max per side are not
Dimensions in ( ) are for reference only.
Dimensions are measured at Datum Plane "H".
Plastic or metal protrusions of 0.15mm max per side are not
Dimensions are in millimeters.
3.
4.
5.
6.
NOTES:
1.
2.
and AMSEY14.5m-1994.
included.
included.
0.10 C
M
For the most recent package outline drawing, see M8.118.
ISL32600E, ISL32601E, ISL32602E, ISL32603E
FN7967 Rev.2.00 Page 22 of 25
Jan 31, 2019
M8.15
8 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE
Rev 4, 1/12
DETAIL "A"
TOP VIEW
INDEX
AREA
123
-C-
SEATING PLANE
x 45°
NOTES:
1. Dimensioning and tolerancing per ANSI Y14.5M-1994.
2. Package length does not include mold flash, protrusions or gate burrs.
Mold flash, protrusion and gate burrs shall not exceed 0.15mm
(0.006 inch) per side.
3. Package width does not include interlead flash or protrusions. Interlead
flash and protrusions shall not exceed 0.25mm (0.010 inch) per side.
4. The chamfer on the body is optional. If it is not present, a visual index
feature must be located within the crosshatched area.
5. Terminal numbers are shown for reference only.
6. The lead width as measured 0.36mm (0.014 inch) or greater above the
seating plane, shall not exceed a maximum value of 0.61mm (0.024 inch).
7. Controlling dimension: MILLIMETER. Converted inch dimensions are not
necessarily exact.
8. This outline conforms to JEDEC publication MS-012-AA ISSUE C.
SIDE VIEW “A
SIDE VIEW “B”
1.27 (0.050)
6.20 (0.244)
5.80 (0.228)
4.00 (0.157)
3.80 (0.150)
0.50 (0.20)
0.25 (0.01)
5.00 (0.197)
4.80 (0.189)
1.75 (0.069)
1.35 (0.053)
0.25(0.010)
0.10(0.004)
0.51(0.020)
0.33(0.013)
0.25 (0.010)
0.19 (0.008)
1.27 (0.050)
0.40 (0.016)
1.27 (0.050)
5.20(0.205)
1
2
3
45
6
7
8
TYPICAL RECOMMENDED LAND PATTERN
2.20 (0.087)
0.60 (0.023)
For the most recent package outline drawing, see M8.15.
ISL32600E, ISL32601E, ISL32602E, ISL32603E
FN7967 Rev.2.00 Page 23 of 25
Jan 31, 2019
M10.118
10 LEAD MINI SMALL OUTLINE PLASTIC PACKAGE
Rev 1, 4/12
DETAIL "X"
SIDE VIEW 2
TYPICAL RECOMMENDED LAND PATTERN
TOP VIEW
PIN# 1 ID
0.18 - 0.27
DETAIL "X"
0.10 ± 0.05
(4.40)
(3.00)
(5.80)
H
C
1.10 MAX
0.09 - 0.20
3°±3°
GAUGE
PLANE 0.25
0.95 REF
0.55 ± 0.15
B
0.08 C A-B D
3.0±0.05
12
10
0.85±010
SEATING PLANE
A
0.50 BSC
3.0±0.05 4.9±0.15
(0.29)
(1.40)
(0.50)
D
5
5
SIDE VIEW 1
Dimensioning and tolerancing conform to JEDEC MO-187-BA
Plastic interlead protrusions of 0.15mm max per side are not
Dimensions in ( ) are for reference only.
Dimensions are measured at Datum Plane "H".
Plastic or metal protrusions of 0.15mm max per side are not
Dimensions are in millimeters.
3.
4.
5.
6.
NOTES:
1.
2.
and AMSEY14.5m-1994.
included.
included.
0.10 C
M
For the most recent package outline drawing, see M10.118.
ISL32600E, ISL32601E, ISL32602E, ISL32603E
FN7967 Rev.2.00 Page 24 of 25
Jan 31, 2019
M14.15
14 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE
Rev 1, 10/09
A
D
4
0.25 A-BMC
C
0.10 C
5B
D
3
0.10 A-BC
4
0.20 C 2X
2X
0.10 DC 2X
H
0.10 C
6
36
ID MARK
PIN NO.1 (0.35) x 4
SEATING PLANE
GAUGE PLANE
0.25
(5.40)
(1.50)
1.27
0.31-0.51
4° ± 4°
DETAIL"A" 0.22±0.03
0.10-0.25
1.25 MIN
1.75 MAX
(1.27) (0.6)
6.0
8.65
3.9
7
14 8
Dimensioning and tolerancing conform to AMSEY14.5m-1994.
Dimension does not include interlead flash or protrusions.
Dimensions in ( ) for Reference Only.
Interlead flash or protrusions shall not exceed 0.25mm per side.
Datums A and B to be determined at Datum H.
4.
5.
3.
2.
Dimensions are in millimeters.
NOTES:
1.
The pin #1 indentifier may be either a mold or mark feature.
6. Does not include dambar protrusion. Allowable dambar protrusion
7. Reference to JEDEC MS-012-AB.
shall be 0.10mm total in excess of lead width at maximum condition.
DETAIL "A"
SIDE VIEW
TYPICAL RECOMMENDED LAND PATTERN
TOP VIEW
For the most recent package outline drawing, see M14.15.
5HQHVDV(OHFWURQLFV&RUSRUDWLRQ$OOULJKWVUHVHUYHG
1RWLFH
 'HVFULSWLRQVRIFLUFXLWVVRIWZDUHDQGRWKHUUHODWHGLQIRUPDWLRQLQWKLVGRFXPHQWDUHSURYLGHGRQO\WRLOOXVWUDWHWKHRSHUDWLRQRIVHPLFRQGXFWRUSURGXFWV
DQGDSSOLFDWLRQH[DPSOHV<RXDUHIXOO\UHVSRQVLEOHIRUWKHLQFRUSRUDWLRQRUDQ\RWKHUXVHRIWKHFLUFXLWVVRIWZDUHDQGLQIRUPDWLRQLQWKHGHVLJQRI\RXU
SURGXFWRUV\VWHP5HQHVDV(OHFWURQLFVGLVFODLPVDQ\DQGDOOOLDELOLW\IRUDQ\ORVVHVDQGGDPDJHVLQFXUUHGE\\RXRUWKLUGSDUWLHVDULVLQJIURPWKHXVHRI
WKHVHFLUFXLWVVRIWZDUHRULQIRUPDWLRQ
 5HQHVDV(OHFWURQLFVKHUHE\H[SUHVVO\GLVFODLPVDQ\ZDUUDQWLHVDJDLQVWDQGOLDELOLW\IRULQIULQJHPHQWRUDQ\RWKHUFODLPVLQYROYLQJSDWHQWVFRS\ULJKWVRU
RWKHULQWHOOHFWXDOSURSHUW\ULJKWVRIWKLUGSDUWLHVE\RUDULVLQJIURPWKHXVHRI5HQHVDV(OHFWURQLFVSURGXFWVRUWHFKQLFDOLQIRUPDWLRQGHVFULEHGLQWKLV
GRFXPHQWLQFOXGLQJEXWQRWOLPLWHGWRWKHSURGXFWGDWDGUDZLQJVFKDUWVSURJUDPVDOJRULWKPVDQGDSSOLFDWLRQH[DPSOHV
 1ROLFHQVHH[SUHVVLPSOLHGRURWKHUZLVHLVJUDQWHGKHUHE\XQGHUDQ\SDWHQWVFRS\ULJKWVRURWKHULQWHOOHFWXDOSURSHUW\ULJKWVRI5HQHVDV(OHFWURQLFVRU
RWKHUV
 <RXVKDOOQRWDOWHUPRGLI\FRS\RUUHYHUVHHQJLQHHUDQ\5HQHVDV(OHFWURQLFVSURGXFWZKHWKHULQZKROHRULQSDUW5HQHVDV(OHFWURQLFVGLVFODLPVDQ\
DQGDOOOLDELOLW\IRUDQ\ORVVHVRUGDPDJHVLQFXUUHGE\\RXRUWKLUGSDUWLHVDULVLQJIURPVXFKDOWHUDWLRQPRGLILFDWLRQFRS\LQJRUUHYHUVHHQJLQHHULQJ
 5HQHVDV(OHFWURQLFVSURGXFWVDUHFODVVLILHGDFFRUGLQJWRWKHIROORZLQJWZRTXDOLW\JUDGHV6WDQGDUGDQG+LJK4XDOLW\7KHLQWHQGHGDSSOLFDWLRQVIRU
HDFK5HQHVDV(OHFWURQLFVSURGXFWGHSHQGVRQWKHSURGXFWVTXDOLW\JUDGHDVLQGLFDWHGEHORZ
6WDQGDUG &RPSXWHUVRIILFHHTXLSPHQWFRPPXQLFDWLRQVHTXLSPHQWWHVWDQGPHDVXUHPHQWHTXLSPHQWDXGLRDQGYLVXDOHTXLSPHQWKRPH
HOHFWURQLFDSSOLDQFHVPDFKLQHWRROVSHUVRQDOHOHFWURQLFHTXLSPHQWLQGXVWULDOURERWVHWF
+LJK4XDOLW\ 7UDQVSRUWDWLRQHTXLSPHQWDXWRPRELOHVWUDLQVVKLSVHWFWUDIILFFRQWUROWUDIILFOLJKWVODUJHVFDOHFRPPXQLFDWLRQHTXLSPHQWNH\
ILQDQFLDOWHUPLQDOV\VWHPVVDIHW\FRQWUROHTXLSPHQWHWF
8QOHVVH[SUHVVO\GHVLJQDWHGDVDKLJKUHOLDELOLW\SURGXFWRUDSURGXFWIRUKDUVKHQYLURQPHQWVLQD5HQHVDV(OHFWURQLFVGDWDVKHHWRURWKHU5HQHVDV
(OHFWURQLFVGRFXPHQW5HQHVDV(OHFWURQLFVSURGXFWVDUHQRWLQWHQGHGRUDXWKRUL]HGIRUXVHLQSURGXFWVRUV\VWHPVWKDWPD\SRVHDGLUHFWWKUHDWWR
KXPDQOLIHRUERGLO\LQMXU\DUWLILFLDOOLIHVXSSRUWGHYLFHVRUV\VWHPVVXUJLFDOLPSODQWDWLRQVHWFRUPD\FDXVHVHULRXVSURSHUW\GDPDJHVSDFHV\VWHP
XQGHUVHDUHSHDWHUVQXFOHDUSRZHUFRQWUROV\VWHPVDLUFUDIWFRQWUROV\VWHPVNH\SODQWV\VWHPVPLOLWDU\HTXLSPHQWHWF5HQHVDV(OHFWURQLFVGLVFODLPV
DQ\DQGDOOOLDELOLW\IRUDQ\GDPDJHVRUORVVHVLQFXUUHGE\\RXRUDQ\WKLUGSDUWLHVDULVLQJIURPWKHXVHRIDQ\5HQHVDV(OHFWURQLFVSURGXFWWKDWLV
LQFRQVLVWHQWZLWKDQ\5HQHVDV(OHFWURQLFVGDWDVKHHWXVHUVPDQXDORURWKHU5HQHVDV(OHFWURQLFVGRFXPHQW
 :KHQXVLQJ5HQHVDV(OHFWURQLFVSURGXFWVUHIHUWRWKHODWHVWSURGXFWLQIRUPDWLRQGDWDVKHHWVXVHUVPDQXDOVDSSOLFDWLRQQRWHV*HQHUDO1RWHVIRU
+DQGOLQJDQG8VLQJ6HPLFRQGXFWRU'HYLFHVLQWKHUHOLDELOLW\KDQGERRNHWFDQGHQVXUHWKDWXVDJHFRQGLWLRQVDUHZLWKLQWKHUDQJHVVSHFLILHGE\
5HQHVDV(OHFWURQLFVZLWKUHVSHFWWRPD[LPXPUDWLQJVRSHUDWLQJSRZHUVXSSO\YROWDJHUDQJHKHDWGLVVLSDWLRQFKDUDFWHULVWLFVLQVWDOODWLRQHWF5HQHVDV
(OHFWURQLFVGLVFODLPVDQ\DQGDOOOLDELOLW\IRUDQ\PDOIXQFWLRQVIDLOXUHRUDFFLGHQWDULVLQJRXWRIWKHXVHRI5HQHVDV(OHFWURQLFVSURGXFWVRXWVLGHRIVXFK
VSHFLILHGUDQJHV
 $OWKRXJK5HQHVDV(OHFWURQLFVHQGHDYRUVWRLPSURYHWKHTXDOLW\DQGUHOLDELOLW\RI5HQHVDV(OHFWURQLFVSURGXFWVVHPLFRQGXFWRUSURGXFWVKDYHVSHFLILF
FKDUDFWHULVWLFVVXFKDVWKHRFFXUUHQFHRIIDLOXUHDWDFHUWDLQUDWHDQGPDOIXQFWLRQVXQGHUFHUWDLQXVHFRQGLWLRQV8QOHVVGHVLJQDWHGDVDKLJKUHOLDELOLW\
SURGXFWRUDSURGXFWIRUKDUVKHQYLURQPHQWVLQD5HQHVDV(OHFWURQLFVGDWDVKHHWRURWKHU5HQHVDV(OHFWURQLFVGRFXPHQW5HQHVDV(OHFWURQLFVSURGXFWV
DUHQRWVXEMHFWWRUDGLDWLRQUHVLVWDQFHGHVLJQ<RXDUHUHVSRQVLEOHIRULPSOHPHQWLQJVDIHW\PHDVXUHVWRJXDUGDJDLQVWWKHSRVVLELOLW\RIERGLO\LQMXU\
LQMXU\RUGDPDJHFDXVHGE\ILUHDQGRUGDQJHUWRWKHSXEOLFLQWKHHYHQWRIDIDLOXUHRUPDOIXQFWLRQRI5HQHVDV(OHFWURQLFVSURGXFWVVXFKDVVDIHW\
GHVLJQIRUKDUGZDUHDQGVRIWZDUHLQFOXGLQJEXWQRWOLPLWHGWRUHGXQGDQF\ILUHFRQWURODQGPDOIXQFWLRQSUHYHQWLRQDSSURSULDWHWUHDWPHQWIRUDJLQJ
GHJUDGDWLRQRUDQ\RWKHUDSSURSULDWHPHDVXUHV%HFDXVHWKHHYDOXDWLRQRIPLFURFRPSXWHUVRIWZDUHDORQHLVYHU\GLIILFXOWDQGLPSUDFWLFDO\RXDUH
UHVSRQVLEOHIRUHYDOXDWLQJWKHVDIHW\RIWKHILQDOSURGXFWVRUV\VWHPVPDQXIDFWXUHGE\\RX
 3OHDVHFRQWDFWD5HQHVDV(OHFWURQLFVVDOHVRIILFHIRUGHWDLOVDVWRHQYLURQPHQWDOPDWWHUVVXFKDVWKHHQYLURQPHQWDOFRPSDWLELOLW\RIHDFK5HQHVDV
(OHFWURQLFVSURGXFW<RXDUHUHVSRQVLEOHIRUFDUHIXOO\DQGVXIILFLHQWO\LQYHVWLJDWLQJDSSOLFDEOHODZVDQGUHJXODWLRQVWKDWUHJXODWHWKHLQFOXVLRQRUXVHRI
FRQWUROOHGVXEVWDQFHVLQFOXGLQJZLWKRXWOLPLWDWLRQWKH(85R+6'LUHFWLYHDQGXVLQJ5HQHVDV(OHFWURQLFVSURGXFWVLQFRPSOLDQFHZLWKDOOWKHVH
DSSOLFDEOHODZVDQGUHJXODWLRQV5HQHVDV(OHFWURQLFVGLVFODLPVDQ\DQGDOOOLDELOLW\IRUGDPDJHVRUORVVHVRFFXUULQJDVDUHVXOWRI\RXUQRQFRPSOLDQFH
ZLWKDSSOLFDEOHODZVDQGUHJXODWLRQV
 5HQHVDV(OHFWURQLFVSURGXFWVDQGWHFKQRORJLHVVKDOOQRWEHXVHGIRURULQFRUSRUDWHGLQWRDQ\SURGXFWVRUV\VWHPVZKRVHPDQXIDFWXUHXVHRUVDOHLV
SURKLELWHGXQGHUDQ\DSSOLFDEOHGRPHVWLFRUIRUHLJQODZVRUUHJXODWLRQV<RXVKDOOFRPSO\ZLWKDQ\DSSOLFDEOHH[SRUWFRQWUROODZVDQGUHJXODWLRQV
SURPXOJDWHGDQGDGPLQLVWHUHGE\WKHJRYHUQPHQWVRIDQ\FRXQWULHVDVVHUWLQJMXULVGLFWLRQRYHUWKHSDUWLHVRUWUDQVDFWLRQV
 ,WLVWKHUHVSRQVLELOLW\RIWKHEX\HURUGLVWULEXWRURI5HQHVDV(OHFWURQLFVSURGXFWVRUDQ\RWKHUSDUW\ZKRGLVWULEXWHVGLVSRVHVRIRURWKHUZLVHVHOOVRU
WUDQVIHUVWKHSURGXFWWRDWKLUGSDUW\WRQRWLI\VXFKWKLUGSDUW\LQDGYDQFHRIWKHFRQWHQWVDQGFRQGLWLRQVVHWIRUWKLQWKLVGRFXPHQW
7KLVGRFXPHQWVKDOOQRWEHUHSULQWHGUHSURGXFHGRUGXSOLFDWHGLQDQ\IRUPLQZKROHRULQSDUWZLWKRXWSULRUZULWWHQFRQVHQWRI5HQHVDV(OHFWURQLFV
 3OHDVHFRQWDFWD5HQHVDV(OHFWURQLFVVDOHVRIILFHLI\RXKDYHDQ\TXHVWLRQVUHJDUGLQJWKHLQIRUPDWLRQFRQWDLQHGLQWKLVGRFXPHQWRU5HQHVDV
(OHFWURQLFVSURGXFWV
1RWH 5HQHVDV(OHFWURQLFVDVXVHGLQWKLVGRFXPHQWPHDQV5HQHVDV(OHFWURQLFV&RUSRUDWLRQDQGDOVRLQFOXGHVLWVGLUHFWO\RULQGLUHFWO\FRQWUROOHG
VXEVLGLDULHV
1RWH 5HQHVDV(OHFWURQLFVSURGXFWVPHDQVDQ\SURGXFWGHYHORSHGRUPDQXIDFWXUHGE\RUIRU5HQHVDV(OHFWURQLFV
5HY1RYHPEHU
&RUSRUDWH+HDGTXDUWHUV &RQWDFW,QIRUPDWLRQ
72<268)25(6,$7R\RVX
.RWRNX7RN\R-DSDQ
ZZZUHQHVDVFRP
)RUIXUWKHULQIRUPDWLRQRQDSURGXFWWHFKQRORJ\WKHPRVWXSWRGDWH
YHUVLRQRIDGRFXPHQWRU\RXUQHDUHVWVDOHVRIILFHSOHDVHYLVLW
ZZZUHQHVDVFRPFRQWDFW
7UDGHPDUNV
5HQHVDVDQGWKH5HQHVDVORJRDUHWUDGHPDUNVRI5HQHVDV(OHFWURQLFV
&RUSRUDWLRQ$OOWUDGHPDUNVDQGUHJLVWHUHGWUDGHPDUNVDUHWKHSURSHUW\
RIWKHLUUHVSHFWLYHRZQHUV
Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com
Contact Information
For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/
Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.