Not Recommended for New Designs
This product was manufactured for Maxim by an outside wafer foundry
using a process that is no longer available. It is not recommended for
new designs. The data sheet remains available for existing users.
A Maxim replacement or an industry second-source m a y be available.
Please see the QuickView data sheet for this part or contact technical
support for assistance.
For further information, contact Maxim’s Applications Tech Support.
_______________General Description
The single MAX473, dual MAX474, and quad MAX475
are single-supply (2.7V to 5.25V), unity-gain-stable op
amps with rail-to-rail output swing. Each op amp guar-
antees a 10MHz unity-gain bandwidth, 15V/µs slew
rate, and 600drive capability while typically consum-
ing only 2mA supply current. In addition, the input
range includes the negative supply rail and the output
swings to within 50mV of each supply rail.
Single-supply operation makes these devices ideal for
low-power and low-voltage portable applications. With
their fast slew rate and settling time, they can replace
higher-current op amps in large-signal applications.
The MAX473/MAX474/MAX475 are available in DIP and
SO packages in the industry-standard op-amp pin
configurations. The MAX473 and MAX474 are also
offered in the µMAX package, the smallest 8-pin SO.
________________________Applications
Portable Equipment
Battery-Powered Instruments
Signal Processing
Discrete Filters
Signal Conditioning
Servo-Loops
____________________________Features
15V/µs Min Slew Rate
+3V Single-Supply Operation
Guaranteed 10MHz Unity-Gain Bandwidth
2mA Supply Current per Amplifier
Input Range Includes Negative Rail
Outputs Short-Circuit Protected
Rail-to-Rail Output Swing (to within ±50mV)
µMAX Package (the smallest 8-pin SO)
______________Ordering Information
MAX473/MAX474/MAX475
Single/Dual/Quad, 10MHz
Single-Supply Op Amps
________________________________________________________________
Maxim Integrated Products
1
1
2
3
4
8
7
6
5
NULL
VCC
OUT
N.C.
VEE
IN+
IN-
NULL
MAX473
DIP/SO/µMAX
TOP VIEW
1
2
3
4
8
7
6
5
VCC
OUTB
INB-
INB+VEE
INA+
INA-
OUTA
MAX474
DIP/SO/µMAX
A
B
Pin Configurations continued on last page.
_________________Pin Configurations
9.9k
9.9k
9.9k
9.9k
9.9k
9.9k
127k
3V 3V 3V
1V 1V
BANDPASS OUTPUT
1Vp-p at 190kHz
VIN
100mVp-p
1V
fo = 190kHz
Q = 10
BANDPASS FILTER
82pF 82pF
1/4 MAX475 1/4 MAX475 1/4 MAX475
__________Typical Operating Circuit
Call toll free 1-800-998-8800 for free samples or literature.
19-0260; Rev 1; 3/95
PART
MAX473CPA
MAX473CSA
MAX473C/D 0°C to +70°C
0°C to +70°C
0°C to +70°C
TEMP. RANGE PIN-PACKAGE
8 Plastic DIP
8 SO
Dice*
MAX473EPA -40°C to +85°C 8 Plastic DIP
MAX473ESA -40°C to +85°C 8 SO
MAX473MJA -55°C to +125°C 8 CERDIP
Ordering Information continued on last page.
* Dice are specified at T
A
= +25°C, DC parameters only.
MAX473CUA 0°C to +70°C 8 µMAX
MAX473/MAX474/MAX475
Single/Dual/Quad, 10MHz
Single-Supply Op Amps
2 _______________________________________________________________________________________
ABSOLUTE MAXIMUM RATINGS
ELECTRICAL CHARACTERISTICS
(+3V VCC +5V, VEE = 0V, VCM = 0.5V, VOUT = 0.5V, TA= +25°C, unless otherwise noted.)
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
Supply Voltage (VCC - VEE)......................................................7V
Input Voltage (IN+, IN-, IN_+, IN_-).........................(VCC + 0.3V)
to (VEE - 0.3V)
Output Short-Circuit Duration.....................................Continuous
Continuous Power Dissipation (TA= +70°C)
8-Pin Plastic DIP (derate 9.09mW/°C above +70°C) ...727mW
8-Pin SO (derate 5.88mW/°C above +70°C)................471mW
8-Pin µMAX (derate 4.1mW/°C above +70°C).............330mW
8-Pin CERDIP (derate 8.00mW/°C above +70°C)........640mW
14-Pin Plastic DIP (derate 10.00mW/°C above +70°C)...800mW
14-Pin SO (derate 8.33mW/°C above +70°C)..............667mW
14-Pin CERDIP (derate 9.09mW/°C above +70°C)......727mW
Operating Temperature Ranges
MAX47_C_ _ ......................................................0°C to +70°C
MAX47_E_ _.....................................................-40°C to +85°C
MAX47_MJ_...................................................-55°C to +125°C
Junction Temperatures
MAX47_C_ _/E_ _........................................................ +150°C
MAX47_MJ_................................................................ +175°C
Storage Temperature Range.............................-65°C to +160°C
Lead Temperature (soldering, 10sec).............................+300°C
VIN+ - VIN- = +1V, RL= no load
Sourcing 5mA
MAX475
Sinking 5mA
MAX474
MAX473
0.3V VOUT
(VCC - 0.5V)
VCC = 2.7V to 6.0V
VEE VCM (VCC - 1.9V)
Current flows out of terminals
f = 10kHz
High
V
VCC - 0.05VOH
Output Voltage
dB
90
AVOL
Large-Signal Gain
(Note 1)
76
100
76
82 90
94 105
110 nV/Hz
40en
Input Noise-Voltage Density
mV
±0.80 ±2.5
VOS
Input Offset Voltage ±0.70 ±2.0
±0.70 ±2.0
dB80 90PSRRPower-Supply Rejection Ratio dB80 90CMRRCommon-Mode Rejection Ratio
nA0 80 150IB
Input Bias Current nA±10 ±30IOS
Input Offset Current
V
VCC - 1.9 VCC - 1.7
Common-Mode Voltage
15 17Slew Rate SR VCC = 5V, RL= 10k, CL= 20pF,
VIN+ - VIN- = +1V step V/µs
RL= no load
RL= 10k
RL= 600
VCC = 5V
VCC = 3V
VCC = 5V
VCC = 3V
Unity-Gain Bandwidth
(Note 2) GBW 3V VCC 5V 10 12 MHz
VCC = 2.7V 10
VCM Low
VOL VIN+ - VIN- = -1V, RL= no load VEE + 0.05
VEE - 0.1 VEE
CONDITIONS UNITSMIN TYP MAXSYMBOLPARAMETER
MAX473/MAX474/MAX475
Single/Dual/Quad, 10MHz
Single-Supply Op Amps
_______________________________________________________________________________________ 3
ELECTRICAL CHARACTERISTICS (continued)
(+3V VCC +5V, VEE = 0V, VCM = 0.5V, VOUT = 0.5V, TA= +25°C, unless otherwise noted.)
ELECTRICAL CHARACTERISTICS
(+3V VCC +5V, VEE = 0V, VCM = 0.5V, VOUT = 0.5V, TA= 0°C to +70°C, unless otherwise noted.)
CL= 20pF
CL= 150pF
To 0.1%, CL= 20pF
Single supply
Per amplifier
RL= 10k,
CL= 20pF
RL= 10k,
CL= 20pF
CONDITIONS
%
5
Overshoot 10
ns400tS
Settling Time
2.7 5.25 mA2.0 3.0IS
Supply Current
63 degrees
58
Phase Margin
10 dB
12
Gain Margin
UNITSMIN TYP MAXSYMBOLPARAMETER
MAX475
MAX474
MAX473
Dual supplies
Single supply
VIN+ - VIN- = +1V, RL= no load
Per amplifier
VCC = 5V, RL= 10k, CL= 20pF,
VIN+ - VIN- = +1V step
0.4V VOUT
(VCC - 0.6V)
Current flows out of terminals
VEE VCM (VCC - 1.9V)
VCC = 2.7V to 6.0V
CONDITIONS
V
±1.35 ±2.625
Operating Supply-Voltage
Range 2.7 5.25 mA3.3IS
Supply Current
V/µsSRSlew Rate
mV
±3.0
VOS
Input Offset Voltage ±2.0
±2.0
V
VOH
Output Voltage VCC - 0.07
dB
80
AVOL
Large-Signal Gain
(Note 1) 94
nA0 175IB
Input Bias Current nA±35IOS
Input Offset Current dB78CMRRCommon-Mode Rejection Ratio dB78PSRRPower-Supply Rejection Ratio
UNITSMIN TYP MAXSYMBOLPARAMETER
Dual supplies V
±1.35 ±2.625
Operating Supply-Voltage
Range
VCC = 5V
VCC = 3V
VCC = 5V
VCC = 3V
RL= 10k
RL= 600
12
AV= +1, VIN = 1/2 VCC step, see
Typical
Operating Characteristics
ns700tPU
Power-Up Time
VOL VIN+ - VIN- = -1V, RL= no load VEE + 0.07
MAX473/MAX474/MAX475
Single/Dual/Quad, 10MHz
Single-Supply Op Amps
4 _______________________________________________________________________________________
Note 1: Gain decreases to zero as the output swings beyond the specified limits.
Note 2: Guaranteed by correlation to slew rate.
RL= 10k
RL= 600
10
MAX475
MAX474
MAX473
Dual supplies
Single supply
VIN+ - VIN- = +1V, RL= no load
Per amplifier
VCC = 5V, RL= 10k, CL= 20pF,
VIN + - VIN- = +1V step
0.4V VOUT
(VCC - 0.6V)
Current flows out of terminals
VEE VCM (VCC - 2.0V)
VCC = 2.7V to 6.0V
CONDITIONS
V
±1.35 ±2.625
Operating Supply-Voltage
Range 2.7 5.25 mA3.4IS
Supply Current
V/µsSRSlew Rate
mV
±3.3
VOS
Input Offset Voltage ±2.3
±2.3
V
VOH
Output Voltage VCC - 0.08
dB
72
AVOL
Large-Signal Gain
(Note 1) 94
nA0 200IB
Input Bias Current nA±50IOS
Input Offset Current dB72CMRRCommon-Mode Rejection Ratio dB72PSRRPower-Supply Rejection Ratio
UNITSMIN TYP MAXSYMBOLPARAMETER
RL= 10k
RL= 600
9
MAX475
MAX474
MAX473
Dual supplies
Single supply
VIN+ - VIN- = +1V, RL= no load
Per amplifier
VCC = 5V, RL= 10k, CL= 20pF,
VIN+ - VIN- = +1V step
0.5V VOUT
(VCC - 0.6V)
Current flows out of terminals
VEE VCM (VCC - 2.15V)
VCC = 2.7V to 6.0V
CONDITIONS
V
±1.35 ±2.625
Operating Supply-Voltage
Range 2.7 5.25
mA3.6IS
Supply Current
V/µsSRSlew Rate
mV
±4.0
VOS
Input Offset Voltage ±2.8
±2.8
V
VOH
Output Voltage VCC - 0.1
dB
70
AVOL
Large-Signal Gain
(Note 1) 90
nA0 225IB
Input Bias Current nA±60IOS
Input Offset Current dB70CMRRCommon-Mode Rejection Ratio dB70PSRRPower-Supply Rejection Ratio
UNITSMIN TYP MAXSYMBOLPARAMETER
ELECTRICAL CHARACTERISTICS
(+3V VCC +5V, VEE = 0V, VCM = 0.5V, VOUT = 0.5V, TA= -40°C to +85°C, unless otherwise noted.)
ELECTRICAL CHARACTERISTICS
(+3V VCC +5V, VEE = 0V, VCM = 0.5V, VOUT = 0.5V, TA= -55°C to +125°C, unless otherwise noted.)
VOL VIN+ - VIN- = - 1V, RL= no load
VIN+ - VIN- = -1V, RL= no loadVOL
VEE + 0.08
VEE + 0.1
MAX473/MAX474/MAX475
Single/Dual/Quad, 10MHz
Single-Supply Op Amps
_______________________________________________________________________________________
5
1.0 2
SUPPLY CURRENT PER AMPLIFIER
vs. SUPPLY VOLTAGE
473 TOC-01
VCC-VEE (V)
IS (mA)
1.5
2.0
2.5
3.0
3 456 0
-60
SUPPLY CURRENT vs. TEMPERATURE
473 TOC-02
TEMPERATURE (°C)
IS (mA)
1.0
2.0
3.0
0.5
1.5
2.5
-20 20 60 100 140
VCC = 5V
VCC = 3V
0-60
INPUT BIAS CURRENT
vs. TEMPERATURE
473 TOC-03
TEMPERATURE (°C)
IB (nA)
40
80
120
20
60
100
-20 20 60 100 140
12-60
GAIN-BANDWIDTH PRODUCT
vs. TEMPERATURE
473 TOC-04
TEMPERATURE (°C)
GBW (MHz)
14
15
16
13
-20 20 60 100 140
AVCL = 40dB
2.7 0.1 1 10 100 1000
MAXIMUM OUTPUT VOLTAGE
vs. LOAD RESISTANCE
2.8
473 TOC-07
LOAD RESISTANCE (k)
VOUT MAX (V)
2.9
3.0
3.1 VCC = 3V
RL
VCC
1V
8-60
SLEW RATE vs. TEMPERATURE
473 TOC-05
TEMPERATURE (°C)
SLEW RATE (V/µs)
14
17
20
11
-20 20 60 100 140
VCC = 3V
VCC = 5V
5.2
4.7 0.1 1 10 100 1000
MAXIMUM OUTPUT VOLTAGE
vs. LOAD RESISTANCE
4.8
473 TOC-06
LOAD RESISTANCE (k)
VOUT MAX (V)
4.9
5.0
5.1
VCC = 5V
RL
VCC
1V
0.5
00.1 1 10 100 1000 10,000
MINIMUM OUTPUT VOLTAGE
vs. LOAD RESISTANCE
0.1
473 TOC-08
LOAD RESISTANCE (k)
VOUT MIN (V)
0.2
0.3
0.4
VCC
1V RL
VCC = 3V VCC = 5V
__________________________________________Typical Operating Characteristics
(VCC = 5V, VEE = 0V, TA = +25°C, unless otherwise noted.)
MAX473/MAX474/MAX475
Single/Dual/Quad, 10MHz
Single-Supply Op Amps
6 _______________________________________________________________________________________
____________________________Typical Operating Characteristics (continued)
(VCC = 5V, VEE = 0V, TA = +25°C, unless otherwise noted.)
0-60
MAXIMUM OUTPUT VOLTAGE
vs. TEMPERATURE
473 TOC-10
TEMPERATURE (°C)
VOUT MAX, VCC -VOUT (mV)
10
20
5
15
-20 20 60 100 140
VCC
1V
VCC = 5V
VCC = 3V
85 0.1 1 10 100 1000 10,000
OPEN-LOOP VOLTAGE GAIN
vs. LOAD RESISTANCE
95
473 TOC-11
LOAD RESISTANCE (k)
OPEN-LOOP VOLTAGE GAIN (dB)
105
115
125
VCC = 3V
VCC = 5V
10-60
OPEN-LOOP GAIN vs. TEMPERATURE
473 TOC-12
TEMPERATURE (°C)
OPEN-LOOP GAIN (dB)
50
90
130
30
70
110
-20 20 60 100 140
RL = 10k
RL = 600
30
01 10 1000
OVERSHOOT vs. CAPACITIVE LOAD
10
20
473 TOC-13
CAPACITIVE LOAD (pF)
OVERSHOOT (%)
100
40
VCC = 3V
0.5V STEP
VCC = 5V
1.0V STEP
RL = NO LOAD
-60
-90 10 100 1k 10k 100k
TOTAL HARMONIC DISTORTION
AND NOISE vs. FREQUENCY
-85
-80
473 TOC-17
FREQUENCY (Hz)
THD + NOISE (dB)
-75
-70
-65
AV = +1
VIN = 1.5Vp-p
1000
10 10 100 1k 10k 100k
VOLTAGE-NOISE DENSITY
vs. FREQUENCY
473 TOC-14
FREQUENCY (Hz)
100
VOLTAGE-NOISE DENSITY (nV/Hz)
INPUT REFERRED
100
10 10 100 1k 10k 100k
CURRENT-NOISE DENSITY
vs. FREQUENCY
473 TOC-15
FREQUENCY (Hz)
CURRENT-NOISE DENSITY (pA/Hz)
INPUT REFERRED
0-60
MINIMUM OUTPUT VOLTAGE
vs. TEMPERATURE
473 TOC-09
TEMPERATURE (°C)
VOUT MIN,
I
VEE -VOUT
I
(mV)
20
40
10
30
50
-20 20 60 100 140
VCC = 5V
VCC = 3V
VCC
1V
MAX473/MAX474/MAX475
Single/Dual/Quad, 10MHz
Single-Supply Op Amps
_______________________________________________________________________________________
7
-3
1k 10k 100k 1M 10M
UNITY-GAIN FOLLOWER 
FREQUENCY RESPONSE
-2
473 TOC-19
FREQUENCY (Hz)
GAIN (dB)
-1
0
1
180
144
108
72
36
0
-36
-72
-108
-144
-180
VCC = 3V
RL = 10k
II
20pF
PHASE (DEGREES)
GAIN
PHASE
-3
-4 1k 10k 100k 1M 10M
UNITY-GAIN FOLLOWER 
FREQUENCY RESPONSE
-2
473 TOC-20
FREQUENCY (Hz)
GAIN (dB)
-1
0
1180
144
108
72
36
0
-36
-72
-108
-144
-180
VCC = 5V
RL = 10k
II
20pF
PHASE (DEGREES)
GAIN
PHASE
1k 10k 100k 1M 10M
GAIN AND PHASE vs. FREQUENCY
0
473 TOC-21
FREQUENCY (Hz)
GAIN (dB)
20
-20
40
-40
180
144
108
72
36
0
-36
-72
-108
-144
-180
PHASE (DEGREES)
10k 10k
100 20pF
VCC = 3V
GAIN
PHASE
1k 10k 100k 1M 10M
GAIN AND PHASE vs. FREQUENCY
0
473 TOC-22
FREQUENCY (Hz)
GAIN (dB)
20
-20
40
-40
180
144
108
72
36
0
-36
-72
-108
-144
-180
VCC = 5V
PHASE (DEGREES)
10k 10k
100 20pF
GAIN
PHASE
80
20 1 10 100 1000
POWER-SUPPLY REJECTION RATIO
vs. FREQUENCY
30
40
473 TOC-23
FREQUENCY (kHz)
PSRR (dB)
50
60
70
VCC = 3V ± 300mV
VCC = 5V ± 250mV
1sec/div
0.1Hz to 10Hz VOLTAGE NOISE
INPUT REFERRED VOLTAGE (2µV/div)
A : VCC, 5V/div
B : VOUT, 1V/div
POWER-UP TIME
A
B
500ns/div
1k
1k
100k 10pF
____________________________Typical Operating Characteristics (continued)
(VCC = 5V, VEE = 0V, TA = +25°C, unless otherwise noted.)
MAX473/MAX474/MAX475
Single/Dual/Quad, 10MHz
Single-Supply Op Amps
8 _______________________________________________________________________________________
____________________________Typical Operating Characteristics (continued)
(VCC = 5V, VEE = 0V, TA = +25°C, unless otherwise noted.)
VCC = 3V, AV = +1, RL = 10k, CL = 100pF
A : VIN, 50mV/div
B : VOUT, 50mV/div
SMALL-SIGNAL TRANSIENT RESPONSE
(VCC = 3V)
A
0.5V
B
0.5V
200ns/div
VCC = 5V, AV = +1, RL = 10k, CL = 220pF
A : VIN, 50mV/div
B : VOUT, 50mV/div
SMALL-SIGNAL TRANSIENT RESPONSE
(VCC = 5V)
A
0.5V
B
0.5V
200ns/div
VCC = 5V, AV = +1, RL = 10k, CL = 220pF
A : VIN, 1V/div
B : VOUT, 500mV/div
LARGE-SIGNAL TRANSIENT RESPONSE
A
0.5V
B
0.5V
200ns/div
VCC = 5V, VIN- = 2.0V, RL = 10k, CL = 33pF
A : VIN+, 1V/div
B : VOUT, 1V/div
OVERDRIVING THE OUTPUT
A
1.5V
B
200ns/div 0V
MAX473/MAX474/MAX475
Single/Dual/Quad, 10MHz
Single-Supply Op Amps
_______________________________________________________________________________________ 9
______________________________________________________________Pin Description
Amplifier D OutputOUTD14
Amplifier D Inverting InputIND-13
Amplifier D Noninverting InputIND+12
Amplifier C Noninverting InputINC+10
Amplifier C Inverting InputINC-9
Amplifier C OutputOUTC8
MAX474 MAX475
PIN
INB+
OUT
INB-
OUTB
VCC
IN+
INA+
VEE
N.C.
INA-
IN-
OUTA
NULL
NAME
5
6
7
4
3
11
2
1
MAX473
Amplifier B Noninverting Input5
Amplifier Output 6
Amplifier B Inverting Input6
Amplifier B Output7
Positive Power-Supply Pin. Connect to (+) terminal of power supply.87
Noninverting Input3
Amplifier A Noninverting Input3
Negative Power-Supply Pin. Connect to ground or a negative voltage.44
No Connect—not internally connected5
Amplifier A Inverting Input2
Inverting Input2
Amplifier A Output1
Offset Null Input. Connect to one end of 2kpotentiometer for offset voltage
trimming. Connect wiper to VEE. See Figure 1.
1, 8
FUNCTION
__________Applications Information
Power Supplies
The MAX473/MAX474/MAX475 operate from a single
2.7V to 5.25V power supply, or from dual supplies of
±1.35V to ±2.625V. For single-supply operation,
bypass the power supply with 0.1µF. If operating from
dual supplies, bypass each supply to ground. With
0.1µF bypass capacitance, channel separation
(MAX474/MAX475) is typically better than 120dB with
signal frequencies up to 300kHz. Increasing the
bypass capacitance (e.g. 10µF || 0.1µF) maintains
channel separation at higher frequencies.
Minimizing Offsets
The MAX473’s maximum offset voltage is ±2mV
(TA= +25°C). If additional offset adjustment is required,
connect a 2ktrim potentiometer between pins 1, 8, and
4 (Figure 1). Input offset voltage for the dual MAX474
and quad MAX475 cannot be externally trimmed.
The MAX473/MAX474/MAX475 are bipolar op amps
with low input bias currents. The bias currents at both
inputs flow out of the device. Matching the resistance
at the op amp’s inputs significantly reduces the offset
error caused by the bias currents. Place a resistor (R3)
from the noninverting input to ground when using the
inverting configuration (Figure 2a); place R3 in series
with the noninverting input when using the noninverting
configuration (Figure 2b). Select R3 such that the paral-
lel combination of R2 and R1 equals R3. Adding R3 will
slightly increase the op amp’s voltage noise.
Output Loading and Stability
The MAX473/MAX474/MAX475 op amps are unity-gain
stable. Any op amp’s stability depends on the configu-
ration, closed-loop gain, and load capacitance. The
unity-gain, noninverting buffer is the most sensitive gain
configuration, and driving capacitive loads decreases
stability.
MAX473/MAX474/MAX475
The MAX473/MAX474/MAX475 have excellent phase
margin (the difference between 180° and the unity-gain
phase angle). It is typically 63° with a load of 10kin
parallel with 20pF. Generally, higher phase margins
indicate greater stability.
Capacitive loads form an RC network with the op amp’s
output resistance, causing additional phase shift that
reduces the phase margin. Figure 3 shows the
MAX473/MAX474/MAX475 output response when dri-
ving a 390pF load in parallel with 10k.
When driving large capacitive loads, add an output iso-
lation resistor, as shown in Figure 4. This resistor
improves the phase margin by isolating the load
capacitance from the amplifier output. Figure 5 shows
the MAX473/MAX474/MAX475 driving a capacitive load
of 1000pF using the circuit of Figure 4.
Feedback Resistors
The feedback resistors appear as a resistance network
to the op amp’s feedback input (Figure 2). This resis-
tance, combined with the op amp’s input and stray
capacitance (total input capacitance), forms a pole that
adds unwanted phase shift when either the total input
capacitance or feedback resistance is too large. For
example, using the noninverting configuration with a
gain of 10, if the total capacitance at the negative input
is 10pF and the effective resistance (R1 || R2) is 9k,
this RC network introduces a pole at fo= 1.8MHz. At
input frequencies above fo, the pole introduces addi-
tional phase shift, which reduces the overall bandwidth
and adversely affects stability. Choose feedback resis-
tors small enough so they do not adversely affect the
op amp’s operation at the frequencies of interest.
Overdriving the Outputs
The output voltage swing for specified operation is from
(VEE + 0.3V) to (VCC - 0.5V) (
see Electrical Characteristics
).
Exercising the outputs beyond these limits drives the out-
put transistors toward saturation, resulting in bandwidth
degradation, response-time increase, and gain decrease
(which affects linearity). Operation in this region causes a
slight distortion in the output waveform, but does not
adversely affect the op amp.
Single/Dual/Quad, 10MHz
Single-Supply Op Amps
10 ______________________________________________________________________________________
MAX473
VEE
NULL
2k
NULL
1
4
8
VIN
VOUT
R1
R2
R3
R3 = R2R1
VIN
VOUT
R3
R2
R1
R3 = R2R1
Figure 1. Offset Null Circuit
Figure 2a. Reducing Offset Error Due to Bias Current:
Inverting Configuration
Figure 2b. Reducing Offset Error Due to Bias Current:
Noninverting Configuration
MAX473/MAX474/MAX475
Single/Dual/Quad, 10MHz
Single-Supply Op Amps
______________________________________________________________________________________ 11
Full-Power Bandwidth
The MAX473/MAX474/MAX475’s fast 15V/µs slew rate
maximizes full-power bandwidth (FPBW). The FPBW is
given by:
SR
FPBW (Hz) = —————————————
π[VOUT peak-to-peak(max)]
where the slew rate (SR) is 15V/µs min. Figure 6 shows
the full-power bandwidth as a function of the peak-to-
peak AC output voltage.
Layout
A good layout improves performance by decreasing
the amount of stray capacitance at the amplifier’s
inputs and output. Since stray capacitance might be
unavoidable, minimize trace lengths and resistor leads,
and place external components as close to the pins as
possible.
Driving 390pF in parallel with 10k,
VCC = 5V, buffer configuration
VIN
VOUT
RL
10
MAX473/MAX474/
MAX475
CL
100
0.1 01 342
1
10
MAX473-FIG6
OUTPUT VOLTAGE SWING (Vp-p)
FULL-POWER BANDWIDTH (MHz)
FULL-POWER
BANDWIDTH
SMALL-SIGNAL 
GAIN BANDWIDTH
Figure 3. MAX474 Driving 390pF
Figure 4. Capacitive-Load Driving Circuit
Figure 5. The MAX473 easily drives 1000pF using the
Capacitive-Load Driving Circuit (Figure 4).
Figure 6. Full-Power Bandwidth vs. Peak-to-Peak AC Voltage
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
12
__________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 (408) 737-7600
© 1995 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.
MAX473/MAX474/MAX475
Single/Dual/Quad, 10MHz
Single-Supply Op Amps
_Ordering Information (continued)
____Pin Configurations (continued)
_________________Chip Topographies
* Dice are specified at T
A
= +25°C, DC parameters only.
NULL
OUT
VCC
NULL
IN-
IN+
VEE
0.065"
(1.651mm)
0.052"
(1.321mm)
OUTB
INB+
INB-
OUTA
INA+
INA-
VCC
VEE
0.084"
(2.134mm)
0.058"
(1.473mm)
14
13
12
11
10
9
8
1
2
3
4
5
6
7
OUTD
IND-
IND+
VEE
VCC
INA+
INA-
OUTA
TOP VIEW
MAX475
INC+
INC-
OUTC
OUTB
INB-
INB+
DIP/SO
AD
BC
TRANSISTOR COUNT: 185
SUBSTRATE CONNECTED TO VEE
TRANSISTOR COUNT: 355
SUBSTRATE CONNECTED TO VEE
MAX474
MAX473
PART
MAX474CPA
MAX474CSA
MAX474C/D 0°C to +70°C
0°C to +70°C
0°C to +70°C
TEMP. RANGE PIN-PACKAGE
8 Plastic DIP
8 SO
Dice*
MAX474EPA -40°C to +85°C 8 Plastic DIP
MAX474ESA -40°C to +85°C 8 SO
MAX474MJA -55°C to +125°C 8 CERDIP
MAX475CPD 0°C to +70°C 14 Plastic DIP
MAX475CSD 0°C to +70°C 14 SO
MAX475EPD -40°C to +85°C 14 Plastic DIP
MAX475ESD -40°C to +85°C 14 SO
MAX475MJD -55°C to +125°C 14 CERDIP
MAX474CUA 0°C to +70°C 8 µMAX