IRFR4105Z
IRFU4105Z
HEXFET® Power MOSFET
VDSS = 55V
RDS(on) = 24.5m
ID = 30A
8/25/03
www.irf.com 1
AUTOMOTIVE MOSFET
PD - 94752
Specifically designed for Automotive applications, this HEXFET®
Power MOSFET utilizes the latest processing techniques to
achieve extremely low on-resistance per silicon area. Additional
features of this design are a 175°C junction operating tempera-
ture, fast switching speed and improved repetitive avalanche
rating . These features combine to make this design an extremely
efficient and reliable device for use in Automotive applications and
a wide variety of other applications.
S
D
G
Description
Advanced Process Technology
Ultra Low On-Resistance
175°C Operating Temperature
Fast Switching
Repetitive Avalanche Allowed up to Tjmax
Features
D-Pak
IRFR4105Z I-Pak
IRFU4105Z
HEXFET® is a registered trademark of International Rectifier.
Absolute Maximum Ratings
Parameter Units
ID @ TC = 25 °C Cont inuous Dr ain C urrent , VGS @ 10V (Silicon Limited)
ID @ TC = 10 C Cont inuous Dr ain C urrent , VGS @ 10V A
IDM
P
u
l
se
d
D
ra
i
n
C
urrent
c
PD @TC = 25°C Power Dissipati on W
Li ne ar D erating Fac tor W/ °C
VGS Gate- t o- Sour c e Voltage V
EAS (Thermally limited)
Si
n
gl
e
P
u
l
se
A
va
l
anc
h
e
E
ner
gy
d
mJ
EAS (Tested )
Si
n
gl
e
P
u
l
se
A
va
l
anc
h
e
E
ner
gy
T
este
d
V
a
l
ue
h
IAR
A
va
l
anc
h
e
C
urrent
c
A
EAR
R
epet
i
t
i
ve
A
va
l
anc
h
e
E
ner
gy
g
mJ
TJ Ope r ating J unc t i on and
TSTG Storage Te m perature Range °C
Soldering Temperature, for 10 seconds
Mo unti ng Torque, 6-32 or M 3 scr ew
Thermal Resi stanc e Parameter Typ. Max. Units
RθJC Junction-to-Case ––– 3.12
RθJA
J
unct
i
on-to-
A
m
bi
ent
(PCB
mount
)
i
––– 40 °C/W
RθJA Junction-to-Ambient –– 110
46
29
See Fig. 12a, 12b , 15, 16
48
0.32
± 20
Max.
30
21
120
-5 5 t o + 17 5
300 ( 1.6m m f rom ca se )
10 lbf
y
in (1.1N
y
m)
IRFR/U4105Z
2www.irf.com
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units
V(BR)DSS Drain-to-Source Br eakdow n Vol tage 55 ––– ––– V
V(BR)DSS
TJ B reak down V o l t age Te m p. Co efficie nt ––– 0. 053 ––– V C
RDS(on) Static D rai n-to-Source On- Resistance ––– 19 24.5 m
VGS(th) Gate Thre shold Voltage 2.0 ––– 4.0 V
gf s F orw a r d Trans c ond uctan c e 16 ––– ––– S
IDSS Drain-to-Source Leakage Current ––– ––– 20 µA
––– –– 250
IGSS Gate-to-Source Forward Leakage ––– ––– 200 nA
Gate-to-S ource Reve rse Leaka ge ––– –– -200
QgTotal Gate Charge ––– 18 27
Qgs Gate-to-Source Charge ––– 5.3 –– nC
Qgd Ga t e - to- Dr ain (" Miller" ) Ch arge ––– 7. 0 –––
td(on) Turn- On D elay Tim e ––– 10 ––
trRise Time –40–
td(off) Turn-Off Delay Time –– 26 –– ns
tfFall Time –24–
LDInte rna l D rai n Indu ctance ––– 4 .5 ––– Bet ween lead,
nH 6mm (0.25in.)
LSInte r nal Sour ce Ind uctan ce ––– 7.5 ––– from package
and center of die contact
Ciss In put Capaci tance ––– 740 –––
Coss O utpu t C apacitance ––– 140 –––
Crss Reve rse Transf er Capacitance –– 74 ––– pF
Coss O utpu t C apacitance ––– 450 –––
Coss O utpu t C apacitance ––– 110 –––
Coss ef f. Effecti v e O utpu t Capacitance ––– 180 –––
Source-Drain Ratin
g
s and Characteristics
Paramet e r Min . Typ. Max . Un its
ISCo ntinuo us Sour c e Cu r rent ––– –– 30
(Body Diode) A
ISM Pulsed Source Current ––– –– 120
(Body Diode)
c
VSD Diode Forward Voltage ––– ––– 1.3 V
trr Reve r se Reco ver y Ti me ––– 19 2 9 ns
Qrr Reverse R ecovery Cha r ge ––– 14 21 n C
ton Forward Turn-On Time Intrinsic turn-on time is negligible ( turn-on is dominated by LS+LD)
VDS = 15V , I D = 18A
ID = 18A
VDS = 44V
Conditions
VGS = 10V
e
VGS = 0V
VDS = 25V
ƒ = 1. 0M H z
VGS = 20V
VGS = -20V
MOSFET symbol
showing the
integra l revers e
p-n ju nctio n diode.
TJ = 25°C, IS = 18A, VGS = 0V
e
TJ = 25°C, IF = 18 A, VDD = 28V
di /dt = 100As
e
Conditions
VGS = 0V, ID = 25 A
Referenc e to 25 °C, ID = 1mA
VGS = 10V, ID = 18A
e
VDS = VGS, ID = 250µ A
VDS = 55V , V GS = 0V
VDS = 55V , V GS = 0V , TJ = 12 C
VGS = 0 V, VDS = 1.0V , ƒ = 1.0MHz
VGS = 0 V, VDS = 44V, ƒ = 1.0MH z
VGS = 0V, VDS = 0V to 44 V
f
VGS = 10V
e
VDD = 28V
ID = 18A
RG = 24.5
S
D
G
IRFR/U4105Z
www.irf.com 3
0 1 10 100
0.1 110 100
VDS, Dr ain-to-Source Vol tage (V)
0.1
1
10
100
1000
ID, Drain-to-Source Current (A)
60µs PU LSE WIDT H
Tj = 25°C
4.5V
Fig 2. Typical Output CharacteristicsFig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics Fig 4. Typical Forward Transconductance
Vs. Drain Current
VGS
TOP 15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
0 1 10 100
0.1 110 100
VDS, Dr ain-to-Source Vol tage (V)
1
10
100
1000
ID, Drain-to-Source Current (A)
60µs PU LSE WIDT H
Tj = 175°C
4.5V
VGS
TOP 15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
4 5 6 7 8 9 10
VGS, G ate-to-Source Vol tage (V)
0
1
10
100
1000
ID, Drain-to-Source Current (Α)
VDS = 25V
60µs PU LSE WIDT H
TJ = 25°C
TJ = 175°C
0 10203040
ID, Drai n-to-S ource Cur rent (A)
0
5
10
15
20
25
30
Gfs, Forward Transconductance (S)
TJ = 25°C
TJ = 175°C
VDS = 8.0V
380µs PU LSE WIDT H
IRFR/U4105Z
4www.irf.com
Fig 8. Maximum Safe Operating Area
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 7. Typical Source-Drain Diode
Forward Voltage
110 100
VDS, Dr ain-to-Source Vol tage (V)
0
200
400
600
800
1000
1200
C, Capacitance (pF)
Coss
Crss
Ciss
VGS = 0V, f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
Coss = Cds + Cgd
0 5 10 15 20 25 30
QG Total Gate Charge (nC)
0
4
8
12
16
20
VGS, Gate-to-Source Voltage (V)
VDS= 44V
VDS= 28V
VDS= 11V
ID= 18A
FOR TEST CIRCUIT
SEE FIGURE 13
0.0 0.5 1.0 1.5 2.0
VSD, Source-t oDrain V oltage (V)
0.1
1.0
10.0
100.0
1000.0
ISD, Reverse Drain Current (A)
TJ = 25°C
TJ = 175°C
VGS = 0V
1 10 100 1000
VDS , Dr ain-toS ource Voltage (V )
0.1
1
10
100
1000
ID, Drain-to-Source Current (A)
Tc = 25°C
Tj = 175°C
Singl e Pulse
1msec
10msec
OPERATION IN THIS AREA
LIMITED BY RDS(on)
100µsec
IRFR/U4105Z
www.irf.com 5
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig 9. Maximum Drain Current Vs.
Case Temperature Fig 10. Normalized On-Resistance
Vs. Temperature
25 50 75 100 125 150 175
TJ , Juncti on Temperatur e (° C)
0
5
10
15
20
25
30
ID , Drain Current (A)
-60 -40 -20 020 40 60 80 100 120 140 160 180
TJ , Juncti on Temperatur e (° C)
0.5
1.0
1.5
2.0
2.5
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID = 18A
VGS = 10V
1E-006 1E-005 0.0001 0.001 0.01
t1 , Rectangul ar Pulse Duration (sec)
0.001
0.01
0.1
1
10
Thermal Response ( Z thJC )
0.20
0.10
D = 0. 50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE ) Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zt hjc + Tc
Ri (°C/W) τi (sec)
1.100 0.000174
1.601 0.000552
0.418 0.007193
τJ
τJ
τ1
τ1τ2
τ2τ3
τ3
R1
R1R2
R2R3
R3
τ
τC
Ci i/Ri
Ci= τi/Ri
IRFR/U4105Z
6www.irf.com
Q
G
Q
GS
Q
GD
V
G
Charge
D.U.T. V
DS
I
D
I
G
3mA
V
GS
.3µF
50K
.2µF
12V
Current Regulator
Same Type as D.U.T.
Current Sampling Resistors
+
-
10 V
Fig 13b. Gate Charge Test Circuit
Fig 13a. Basic Gate Charge Waveform
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
Fig 12b. Unclamped Inductive Waveforms
Fig 12a. Unclamped Inductive Test Circuit
tp
V
(BR)DSS
I
AS
Fig 14. Threshold Voltage Vs. Temperature
R
G
I
AS
0.01
t
p
D.U.T
L
VDS
+
-V
DD
DRIVER
A
15V
20V
VGS
25 50 75 100 125 150 175
Starti ng TJ, Junct ion Temperat ure (°C)
0
20
40
60
80
100
120
EAS, Single Pulse Avalanche Energy (mJ)
ID
TOP 2.0A
3.5A
BOTTOM 18A
-75 -50 -25 025 50 75 100 125 150 175
TJ , Temperature ( °C )
2.0
2.5
3.0
3.5
4.0
4.5
VGS(th) Gate threshold Voltage (V)
ID = 250µA
IRFR/U4105Z
www.irf.com 7
Fig 15. Typical Avalanche Current Vs.Pulsewidth
Fig 16. Maximum Avalanche Energy
Vs. Temperature
Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of T jmax. This is validated for
every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is
not exceeded.
3. Equation below based on circuit and waveforms shown in
Figures 12a, 12b.
4. PD (ave) = Average power dissipation per single
avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. Iav = Allowable avalanche current.
7. T = Allowable rise in junction temperature, not to exceed
Tjmax (assumed as 25°C in Figure 15, 16).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see figure 11)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01
tav (sec)
0.1
1
10
100
Avalanche Current (A)
0.05
Dut y Cycl e = Single Pulse
0.10
Allowed avalanche Current vs
avalanche pulsewidth, tav
assuming Tj = 25°C due to
avalanche losses. Note: In no
case should Tj be allowed to
exceed Tjmax
0.01
25 50 75 100 125 150 175
Starti ng TJ , Junction Tem perat ure (°C)
0
5
10
15
20
25
30
EAR , Avalanche Energy (mJ)
TOP Single Pulse
BOTTOM 1% Du ty Cycle
ID = 18A
IRFR/U4105Z
8www.irf.com
Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
Circuit Layout Considerations
Low Stray Inductance
Ground Plane
Low Leakage Inductance
Current Transformer
P.W. Period
di/dt
Diode Recovery
dv/dt
Ripple 5%
Body Diode Forward Drop
Re-Applied
Voltage
Reverse
Recovery
Current Body Diode Forward
Current
VGS=10V
VDD
ISD
Driver Gate Drive
D.U.T. ISD Waveform
D.U.T. VDS Waveform
Inductor Curent
D = P.W.
Period
* VGS = 5V for Logic Level Devices
*
+
-
+
+
+
-
-
-
RGVDD
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
D.U.T
VDS
90%
10%
VGS t
d(on)
t
r
t
d(off)
t
f
VDS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
RD
VGS
RG
D.U.T.
10V
+
-
VDD
Fig 18a. Switching Time Test Circuit
Fig 18b. Switching Time Waveforms
IRFR/U4105Z
www.irf.com 9
D-Pak (TO-252AA) Package Outline
Dimensions are shown in millimeters (inches)
D-Pak (TO-252AA) Part Marking Information
6.73 (.265)
6.35 (.250)
- A -
4
1 2 3
6.22 (.245)
5.97 (.235)
- B -
3X 0.89 (.035)
0.64 (.025)
0.25 (.010) M A M B
4. 57 (.180 )
2.28 (.090)
2X 1.14 (.045)
0.76 (.030)
1. 52 (.060 )
1. 15 (.045 )
1.02 (.040)
1.64 (.025)
5.46 (.215)
5.21 (.205) 1.27 (.050)
0.88 (.035)
2.38 (.094)
2.19 (.086) 1.14 (.045)
0.89 (.035)
0.58 (.023)
0.46 (.018)
6.45 (.245)
5.68 (.224)
0.51 (.020)
MIN.
0. 58 (.023 )
0. 46 (.018 )
LEAD ASSIGNM ENTS
1 - GATE
2 - DRAIN
3 - SOURCE
4 - DRAIN
10.42 (.410)
9.40 (.370)
NOTES:
1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982.
2 CONTROLLIN G DIME NSIO N : INCH.
3 CONFORMS TO JEDEC OUTLINE TO-252AA.
4 DIMENSI O NS SHOWN ARE BEFORE SOLDER DIP,
SOLDER DIP MAX. +0.16 (.006).
EXAMPLE:
LOT CODE 9U1P
T HIS IS AN IRFR120
WITH ASSEMBLY
WE E K = 16
DAT E CODE
YEAR = 0
LOGO
RECTIFIER
INT E RNAT IONAL
AS S E MB L Y
LOT CODE
016
IRF U120
9U 1P
Notes : This part marking information applies to devices produced before 02/26/2001
INT E RNAT IONAL
LOGO
RECTIFIER
3412
IRF U120
916A
LOT CODE
AS S E MB L Y
EXAMPLE:
WITH ASSEMBLY
T HIS IS AN IRFR120
YE AR 9 = 1999
DAT E CODE
LINE A
WE E K 1 6
IN THE ASSEMBLY LINE "A"
AS SEMBLED ON WW 16, 1999
L OT CODE 1234
PART NUMBER
Notes : This part marking information applies to devices produced after 02/26/2001
IRFR/U4105Z
10 www.irf.com
I-Pak (TO-251AA) Package Outline
Dimensions are shown in millimeters (inches)
I-Pak (TO-251AA) Part Marking Information
6.73 (.265)
6.35 (.250)
- A -
6.22 (.245)
5.97 (.235)
- B -
3X 0.89 (.03 5)
0.64 (.02 5)
0.25 (.010) M A M B
2.28 (.090)
1.14 (.04 5)
0.76 (.03 0)
5.46 ( .215)
5.21 ( .205) 1.27 (.050)
0.88 (.035)
2.38 (.094)
2.19 (.086)
1.14 (.045)
0.89 (.035)
0.58 (.023)
0.46 (.018) LEAD ASSIGNMENTS
1 - GATE
2 - DRAIN
3 - SO URCE
4 - DRAIN
NOTES:
1 DIMENSIO NING & TO L E RA NCING PER ANSI Y14.5M, 1982.
2 CON TRO L L ING DI M E NS ION : INCH.
3 CONFORMS TO JEDEC OUTLINE TO-252AA.
4 DIMENSIONS SHOWN ARE BEFORE SOLDER DIP,
SOLDER DIP MAX. +0.16 (.006).
9.65 (.380)
8.89 (.350)
2X
3X
2.28 (.090)
1.91 (.075)
1.52 (.060)
1.15 (.045)
4
1 2 3
6.45 ( .245)
5.68 ( .224)
0.58 (.023)
0.46 (.018)
WE E K = 16
DAT E CODE
YE AR = 0
Notes : T his part marking information applies to devices produced before 02/26/2001
EXAMPLE:
LOT CODE 9U1P
THIS IS AN IRFR120
WIT H AS S E MB L Y
ASSEMBLY
INTERNATIONAL
RE CT IF IER
LOGO
LOT CODE
IRFU 120
9U 1P
016
INTERNAT IONAL
LOGO
RECTIFIER
LOT CODE
AS S E MB L Y
EXAMPLE:
WIT H AS S E MB L Y
THIS IS AN IRFR120
YEAR 9 = 1999
DAT E CODE
LINE A
WE E K 19
IN THE ASSEMBLY LINE "A"
AS S E MB LE D ON WW 19, 1999
LOT CODE 5678
PART NUMBER
Notes : T his part marking information applies to devices produced after 02/26/2001
56
IRF U120
919A
78
IRFR/U4105Z
www.irf.com 11
Data and specifications subject to change without notice.
This product has been designed and qualified for the Automotive [Q101] market.
Qualification Standards can be found on IR’s Web site.
D-Pak (TO-252AA) Tape & Reel Information
Dimensions are shown in millimeters (inches)
TR
16.3 ( .641 )
15.7 ( .619 )
8.1 ( .318 )
7.9 ( .312 )
12.1 ( .476 )
11.9 ( .469 ) FEED DIRECTION FEED DIRE CTION
16.3 ( .641 )
15.7 ( .619 )
TRR TRL
NOTES :
1. CO NTROLLING DIMENSION : MILLIMETER.
2. ALL DIMENSIONS ARE SHOW N IN MILLIMETERS ( INCHES ).
3. OUTLINE C ONFORMS TO EIA-481 & EIA-541.
NOTES :
1. OUTLINE CONFORMS TO EIA-481.
16 mm
13 INCH
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.8/03
Repetitive rating; pulse width limited by
max. junction temperature. (See fig. 11).
Limited by TJmax, starting TJ = 25°C, L = 0.18mH
RG = 25, IAS = 18A, VGS =10V. Part not
recommended for use above this value.
Pulse width 1.0ms; duty cycle 2%.
Notes:
Coss eff. is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS .
Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive
avalanche performance.
This value determined from sample failure population. 100%
tested to this value in production.
When mounted on 1" square PCB (FR-4 or G-10 Material) .
For recommended footprint and soldering techniques refer to
application note #AN-994
Note: For the most current drawings please refer to the IR website at:
http://www.irf.com/package/