USA 858 674 8100
Germany 49 7032 7806 0
Singapore 65 6287 8998
Shanghai
86 21 54643211 / 2
China 86 755 33966678
Taiwan 886 3 4641811
www.pulseeng.com
34 SPM2007 (11/07)
SMT POWER INDUCTORS
Shielded Drum Core - P1166NL Series
SUGGESTED PAD LAYOUT
.083
2,11
.287
7,29
.197
5,00
XXX
1
2
.297
7,54
.297
7,54
MAX
MAX
.197
5,00
.083
2,11 12
MAX
.138
3,51
1
2
.472
12,00
.630
16,00
.165
4,20
TAPE & REEL LAYOUT
.301
7,65
Weight . . . . . . . . 0.7 grams
Tape & Reel . . . . . 1200/reel
Part 2,3 Inductance Inductance Irated 5DCR (mΩΩ)Saturation 6Heating 7Core Loss 8
SRF
Number @0ADC @Irated (ADC)Current Current Factor (MHz)
(μH ±20%)(μH) MIN TYP MAX -25% (A) +40°C(A) (K2)
P1166.681NL 0.68*0.44 5.5 5.0 6.0 5.9 5.5 380 >40
P1166.102NL 1.00*0.65 4.9 6.2 7.5 5.2 4.9 440 >40
P1166.162NL 1.60*1.0 4.0 7.8 11 4.0 4.4 570 >40
P1166.302NL 3.00*2.0 2.8 19 23 3.0 2.8 780 >40
P1166.482NL 4.80*3.1 2.4 25 31 2.4 2.5 990 >40
P1166.682NL 6.80*4.4 2.1 32 40 2.1 2.2 1200 38
P1166.103NL 10 7.5 1.6 58 70 1.8 1.6 1400 29
P1166.123NL 12 9.0 1.5 62 78 1.7 1.5 1500 25
P1166.153NL 15 11.3 1.4 74 92 1.5 1.4 1700 22
P1166.183NL 18 13.5 1.2 100 124 1.4 1.2 1800 21
P1166.223NL 22 16.5 1.2 106 126 1.2 1.2 2000 20
P1166.273NL 27 20.3 1.0 146 180 1.1 1.0 2300 17
P1166.333NL 33 24.8 0.94 167 205 1.0 0.94 2400 15
P1166.393NL 39 29.3 0.86 183 211 0.86 0.90 2700 13
P1166.473NL 47 35.3 0.83 206 260 0.83 0.85 2900 12
P1166.563NL 56 42.0 0.73 271 340 0.73 0.74 3300 11
P1166.683NL 68 51.0 0.67 303 370 0.67 0.70 3600 9.5
P1166.823NL 82 61.5 0.60 411 500 0.61 0.60 4000 8.0
P1166.104NL 100 75.0 0.56 464 580 0.56 0.57 4300 7.5
P1166.124NL 120 90.0 0.53 528 645 0.55 0.53 4700 7.0
P1166.154NL 150 113 0.46 695 860 0.46 0.46 5300 6.3
P1166.184NL 180 135 0.39 992 1190 0.42 0.39 5800 5.6
P1166.224NL 220 165 0.35 1210 1480 0.37 0.35 6400 5.1
P1166.274NL 270 203 0.32 1407 1750 0.32 0.33 7100 4.6
P1166.334NL 330 248 0.31 1580 1880 0.31 0.31 7800 4.1
P1166.394NL 390 293 0.26 2178 2600 0.29 0.26 8500 3.9
P1166.474NL 470 353 0.25 2400 2910 0.26 0.25 9500 3.6
P1166.564NL 560 420 0.23 2705 3400 0.23 0.23 10000 3.1
P1166.684NL 680 510 0.20 3658 4450 0.21 0.20 11000 2.7
P1166.824NL 820 615 0.17 5021 6200 0.20 0.17 13000 2.5
P1166.105NL 1000 750 0.15 6720 8000 0.16 0.15 14000 1.3
*Inductance at 0ADC tolerance on indicated part numbers is ±30%; tolerance is ±20% on all other parts.
NOTES FROM TABLE: (See page 43)
Electrical Specifications @ 25°C — Operating Temperature -40°C to +130°C
Height: 3.8mm Max
Footprint: 7.5mm x 7.5mm Max
Current Rating: up to 5.5A
Inductance Range: .44µH to 750µH
Dimensions: Inches
mm
Unless otherwise specified,
all tolerances are ± .010
0,25
Mechanical Schematic
USA 858 674 8100
Germany 49 7032 7806 0
Singapore 65 6287 8998
Shanghai
86 21 54643211 / 2
China 86 755 33966678
Taiwan 886 3 4641811
www.pulseeng.com
43 SPM2007 (11/07)
SMT POWER INDUCTORS
Shielded Drum Core Series
Notes from Tables (pages 27 - 42)
1. Unless otherwise specified, all testing is made at
100kHz, 0.1VAC.
2.
Optional Tape & Reel packaging can be ordered by
adding a "T" suffix to the part number (i.e. P1166.102NL
becomes P1166.102NLT). Pulse complies with industry
standard Tape and Tape & Reel specification EIA481.
3. The "NL" suffix indicates an RoHS-compliant part
number. Non-NL suffixed parts are not necessarily
RoHS compliant, but are electrically and mechanically
equivalent to NL versions. If a part number does not
have the "NL" suffix, but an RoHS compliant version is
required, please contact Pulse for availability.
4. Temperature of the component (ambient plus
temperature rise) must be within specified operating
temperature range.
5. The rated current (Irated) as listed is either the satura-
tion current or the heating current depending on which
value is lower.
6. The saturation current, Isat, is the current at which
the component inductance drops by the indicated
percentage (typical) at an ambient temperature of
25°C. This current is determined by placing the
component in the specified ambient environment and
applying a short duration pulse current (to eliminate
self-heating effects) to the component.
7. The heating current, Idc, is the DC current required
to raise the component temperature by the indicated
delta (approximately). The heating current is
determined by mounting the component on a
typical PCB and applying current for 30 minutes. The
temperature is measured by placing the thermocouple
on top of the unit under test.
8. In high volt*time (Et) or ripple current applications, addi-
tional heating in the component can occur due to core
losses in the inductor which may necessitate derating
the current in order to limit the temperature rise of the
component. In order to determine the approximate total
loss (or temperature rise) for a given application, both
copper losses and core losses should be taken into
account.
Estimated Temperature Rise:
Trise = [Total loss (mW) / K0].833 (oC )
Total loss = Copper loss + Core loss (mW)
Copper loss = IRMS2x DCR (Typical) (mW)
Irms = [IDC2+ ΔI2/12]1/2 (A)
Core loss = K1 x f (kHz)1.23 x Bac(Ga)2.38 (mW)
Bac (peak to peak flux density) = K2 x ΔI (Ga)
[= K2/L(µH) x Et(V-µSec) (Ga)]
where f varies between 25kHz and 1MHz, and Bac is
less than 2500 Gauss.
K2 is a core size and winding dependant value and
is given for each p/n in the proceeding datasheets.
K0 & K1 are platform and material dependant constants
and are given in the table below for each platform.
PG0085/86 2.3 5.29E-10
PG0087 5.8 15.2E-10
PG0040/41 0.8 2.80E-10
P1174 0.8 6.47E-10
PF0601 4.6 14.0E-10
PF0464 3.6 24.7E-10
PF0465 3.6 33.4E-10
P1166 1.9 29.6E-10
P1167 2.1 42.2E-10
PF0560NL 5.5 136E-10
P1168/69 4.8 184E-10
P1170/71 4.3 201E-10
P1172/73 5.6 411E-10
PF0552NL 8.3 201E-10
PF0553NL 7.1 411E-10
Part No. Trise Factor Core Loss Factor
(K0 ) (K1)
Take note that the component's temperature rise varies depending on the system condition. It is suggested that the
component be tested at the system level, to verify the temperature rise of the component during system operation.
CoreLoss/K1 Vs Flux Density
0
0.50E+10
1.00E+10
1.50E+10
2.00E+10
2.50E+10
3.00E+10
0 500 1000 1500 2000 2500
DB (Gauss)
where DB = K2 x DI [= K2/L(µH) x Et(V-µSec)]
Core Loss / K1 (mW)
100KHz
200KHz
300KHz
400KHz
500KHz
700KHz
1.0MHz